WO2016153073A1 - Nitride thermoelectric conversion material and manufacturing method therefor and thermoelectric conversion element - Google Patents

Nitride thermoelectric conversion material and manufacturing method therefor and thermoelectric conversion element Download PDF

Info

Publication number
WO2016153073A1
WO2016153073A1 PCT/JP2016/060282 JP2016060282W WO2016153073A1 WO 2016153073 A1 WO2016153073 A1 WO 2016153073A1 JP 2016060282 W JP2016060282 W JP 2016060282W WO 2016153073 A1 WO2016153073 A1 WO 2016153073A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
nitride
type
conversion material
thin film
Prior art date
Application number
PCT/JP2016/060282
Other languages
French (fr)
Japanese (ja)
Inventor
利晃 藤田
長友 憲昭
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2016153073A1 publication Critical patent/WO2016153073A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a nitride thermoelectric conversion material suitable for a Peltier element, Seebeck element, thermopile, or the like, a manufacturing method thereof, and a thermoelectric conversion element.
  • thermoelectric material used for a thermoelectric conversion element such as a Peltier element (cooling element), a Seebeck element (thermoelectric power generation element) or a thermopile, a BiTe thermoelectric material, a Heusler thermoelectric material, a clathrate thermoelectric material, an oxide thermoelectric material, nitriding
  • a thermoelectric conversion element such as a Peltier element (cooling element), a Seebeck element (thermoelectric power generation element) or a thermopile
  • BiTe thermoelectric material thermoelectric material
  • Heusler thermoelectric material Heusler thermoelectric material
  • a clathrate thermoelectric material such as an oxide thermoelectric material
  • oxide thermoelectric material such as nitriding
  • thermoelectric materials such as physical thermoelectric materials and thermoelectric materials made of organic materials.
  • An organic material or a printed material containing an organic material is mainly used for the flexible thermoelectric device.
  • a material having a large absolute value of Seebeck coefficient and electrical conductivity (low electrical resistivity) and further low thermal conductivity
  • Patent Document 1 discloses an n-type thermoelectric conversion material containing 80 to 99% by mass of ⁇ -type silicon carbide and 1 to 10% by mass of a metal nitride. An n-type thermoelectric conversion material containing 0.5 to 5% by mass of nitrogen element is described.
  • Patent Document 3 the general formula: Al z Ga y In x M u R v O s in N t (wherein, M is a transition element, R is rare earth element .0 ⁇ z ⁇ 0.7, 0 ⁇ y ⁇ 0.7, 0.2 ⁇ x ⁇ 1.0, 0 ⁇ u ⁇ 0.7, 0 ⁇ v ⁇ 0.05, 0.9 ⁇ s + t ⁇ 1.7, 0.4 ⁇ s ⁇
  • Patent Document 4 the general formula: Ti 1-x A x O y N z (where A is a group consisting of V, Cr, Mn, Fe, Co, Ni, Zr and Nb closer to Ti in the periodic table) At least one element selected from the group consisting of 0 ⁇ x ⁇ 0.5; 0.5 ⁇ y ⁇ 2.0; 0.01 ⁇ z ⁇ 0.6)
  • a thermoelectric conversion material made of a metal oxynitride containing other elements unavoidable is described.
  • AE is at least one element selected from Ca, Sr, Ba.
  • AE is at least one element selected from Ca, Sr, Ba.
  • It is a nitride having a layered crystal structure composed of a product and represented by an ionic formula [AE 2 N] + e ⁇ , has an electric conductivity of 10 3 S / cm or more at room temperature, and has metallic electrical conductivity Nitride electrides are described.
  • the BiSbTe system is known as a thermoelectric material having good performance at room temperature.
  • this BiSbTe system contains harmful elements such as Bi, Sb, and Te and the crystal structure is a layered compound, it is difficult to form a thin film on the film by sputtering.
  • a method of making a BiSbTe-based ink and making it a printed element for printing is necessary, and it is not easy to form directly on a film or the like. .
  • thermoelectric material by an organic material has most p-type thermoelectric characteristics, and the material which has the n-type favorable performance has not been reported.
  • nitride-based thermoelectric materials AlN-based, TiN-based, and CaN-based materials as described above are known, but all have a problem that they are bulk bodies and have low thermoelectric performance.
  • thermoelectric conversion material that does not use harmful elements, has good performance, and can form a thin film on a film, a manufacturing method thereof, and a thermoelectric conversion element are provided.
  • the purpose is to provide.
  • the nitride thermoelectric conversion material according to the first invention has a general formula: (Cr 1-x M x ) 1-y N y (where M is Ti, V, Mn, Fe, Co, Ni, Cu, It represents at least one of Zr, Nb, Mo, Hf, Ta, W, Si, Al, B and Y. Metal nitridation represented by 0 ⁇ x ⁇ 1.0, 0.40 ⁇ y ⁇ 0.54)
  • the crystal structure is NaCl-type and has p-type or n-type thermoelectric characteristics.
  • thermoelectric conversion material In this nitride thermoelectric conversion material, the general formula: (Cr 1 ⁇ x M x ) 1 ⁇ y N y (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf) , Ta, W, Si, Al, B, and Y. It is made of a metal nitride represented by 0 ⁇ x ⁇ 1.0, 0.40 ⁇ y ⁇ 0.54), and its crystal structure
  • metal nitride represented by 0 ⁇ x ⁇ 1.0, 0.40 ⁇ y ⁇ 0.54
  • it since it is NaCl type and has p-type or n-type thermoelectric properties, it can be formed without using harmful elements and without heat treatment, has a larger Seebeck coefficient than an organic material system at room temperature, and more than 200 ° C. It also has high heat resistance. Note that having p-type thermoelectric characteristics indicates that the Seebeck coefficient is positive, and having n-type thermoelectric characteristics indicates that the Seebeck
  • the nitride thermoelectric conversion material according to the second invention is characterized in that, in the first invention, x is in a range of 0 ⁇ x ⁇ 0.2. That is, in this nitride thermoelectric conversion material, since x is in the range of 0 ⁇ x ⁇ 0.2, it is a nitride electronic material with a very large amount of Cr, while maintaining the NaCl-type CrN crystal structure, By adding a small amount of various elements, it is possible to improve the thermoelectric performance. For example, it is possible to improve the Seebeck coefficient and the electrical conductivity.
  • the nitride thermoelectric conversion material according to the third invention is a columnar crystal formed in a film shape and extending in a direction perpendicular to the surface of the film in the first or second invention. And That is, in this nitride thermoelectric conversion material, since it is a columnar crystal extending in a direction perpendicular to the surface of the film, high heat resistance is obtained because the film has high crystallinity.
  • the nitride thermoelectric conversion material according to a fourth invention is characterized in that, in the third invention, the columnar crystal has a crystal diameter of 100 nm or less. That is, in this nitride thermoelectric conversion material, since the crystal diameter of the columnar crystal is 100 nm or less, the heat due to phonons (lattices) becomes difficult to be transferred by the nano-scale crystal sizing, so that the particle size is relatively large. The thermal conductivity in the in-plane direction of the thermoelectric thin film is reduced compared to the bulk sintered body material (100 nm or more), and the in-plane temperature difference of the thermoelectric thin film can be further increased. Therefore, the thermoelectromotive force is increased and the thermoelectric performance can be improved.
  • thermoelectric conversion material the thermal conductivity can be effectively reduced by setting the particle diameter to 100 nm or less. Moreover, the flexibility of the material itself can also be obtained.
  • thermoelectric conversion element is an insulating substrate, a p-type thin film thermoelectric conversion portion and an n-type thin film thermoelectric conversion portion formed on the insulating substrate, and the p-type thin film thermoelectric device.
  • the nitride thermoelectric conversion material of any of the invention is used.
  • thermoelectric conversion element at least one of the p-type thin film thermoelectric conversion part and the n-type thin film thermoelectric conversion part is formed of the nitride thermoelectric conversion material according to any one of the first to fourth inventions.
  • the thin film thermoelectric conversion part having a large absolute value of the Seebeck coefficient at room temperature can be used as a Peltier element, Seebeck element, thermopile, or the like having good performance.
  • thermoelectric conversion element according to a sixth aspect is characterized in that, in the fifth aspect, the insulating substrate is an insulating film. That is, in this thermoelectric conversion element, since the insulating base material is an insulating film, the thin film thermoelectric conversion portion formed without heat treatment and having a large Seebeck coefficient has a low heat resistance insulation property such as a resin film. A flexible thermoelectric conversion element having a thin and good performance can be obtained while using a film.
  • a method for manufacturing a nitride thermoelectric conversion material according to a seventh invention is a method for manufacturing the nitride thermoelectric conversion material according to any one of the first to fourth inventions, and is a Cr sputtering target or a Cr-M alloy sputtering target.
  • M represents at least one of Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta, W, Si, Al, B, and Y). It is characterized by having a film forming step of forming a film by performing reactive sputtering in a nitrogen-containing atmosphere.
  • a Cr sputtering target or a Cr-M alloy sputtering target (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, (At least one of Ta, W, Si, Al, B, and Y is used.)
  • M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, (At least one of Ta, W, Si, Al, B, and Y is used.
  • thermoelectric performance it is possible to control the thermoelectric performance and to make a p-type semiconductor material and an n-type semiconductor material by the same target. Therefore, until now, it has been necessary to prepare a plurality of targets of at least two or more types in order to produce a p-type semiconductor material and an n-type semiconductor material. Even in a sputtering apparatus that can accommodate only one type, both a p-type semiconductor material and an n-type semiconductor material can be produced, so that the efficiency of the target and the cost of the film formation process can be reduced. it can.
  • thermoelectric performance can be manufactured by forming a wiring pattern of a p-type semiconductor material and an n-type semiconductor material by a metal mask method or the like. Furthermore, it is possible to form a film on an insulating substrate (glass, resin film) having a low thermal conductivity, and the nitride thermoelectric conversion material of the present invention also has flexibility, so that it can be formed on a resin film substrate. It is.
  • the method for producing a nitride thermoelectric conversion material according to an eighth invention is the method according to the seventh invention, wherein the reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2, and the N 2 gas fraction at this time is A certain N 2 / (N 2 + Ar) is set in a range of 0.2 to 0.5. That is, in this method for producing a nitride thermoelectric conversion material, reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2, and N 2 / (N 2 + Ar) which is the N 2 gas fraction at this time is calculated. Therefore, a nitride thermoelectric conversion material having n-type thermoelectric characteristics can be formed.
  • a ninth aspect of the present invention there is provided a method for producing a nitride thermoelectric conversion material according to the seventh aspect, wherein the reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2 or in an N 2 atmosphere.
  • N 2 / (N 2 + Ar), which is a two- gas fraction, is set in a range of 0.6 to 1.0.
  • a nitride thermoelectric conversion material in this method for producing a nitride thermoelectric conversion material, reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2 or in an N 2 atmosphere, and N 2 / (which is the N 2 gas fraction at this time Since N 2 + Ar) is set in the range of 0.6 to 1.0, a nitride thermoelectric conversion material having p-type thermoelectric characteristics can be formed.
  • the present invention has the following effects. That is, according to the nitride thermoelectric conversion material according to the present invention, the general formula: (Cr 1 ⁇ x M x ) 1 ⁇ y N y (where M is Ti, V, Mn, Fe, Co, Ni, Cu, It represents at least one of Zr, Nb, Mo, Hf, Ta, W, Si, Al, B and Y. Metal nitridation represented by 0 ⁇ x ⁇ 1.0, 0.40 ⁇ y ⁇ 0.54) Because its crystal structure is NaCl-type and has p-type or n-type thermoelectric properties, it can be formed without using harmful elements and without heat treatment, and has a larger absolute value than organic materials at room temperature. Has a coefficient.
  • a Cr sputtering target or a Cr-M alloy sputtering target (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb). , Mo, Hf, Ta, W , Si, Al, since the deposited performing reactive sputtering in a nitrogen containing atmosphere with a show.) at least one of B and Y, the (Cr 1-x
  • the nitride thermoelectric conversion material of the present invention composed of M x ) 1-y N y can be formed without heat treatment.
  • thermoelectric conversion element according to the present invention, at least one of the p-type thin film thermoelectric conversion part and the n-type thin film thermoelectric conversion part is the nitride thermoelectric conversion material according to any one of the first to fourth inventions. Since it is formed, a thin film thermoelectric conversion part having a large absolute value of the Seebeck coefficient at room temperature can be used as a Peltier element, Seebeck element, thermopile, or the like having good performance.
  • thermoelectric conversion element 1 is a perspective view showing a thermoelectric conversion element in an embodiment of a nitride thermoelectric conversion material, a manufacturing method thereof, and a thermoelectric conversion element according to the present invention.
  • the ratio of nitriding with respect to the nitrogen gas partial pressure in CrN, CrSiN, CrTiN, CrFeN, CrYN, CrBN: N / (Cr + M + N) is shown. It is a graph. In the Example of this invention, it is a graph which shows M (Cr + M) composition ratio in a film
  • Example of this invention it is a graph which shows the result of the X-ray diffraction (XRD) in p-type CrSiN. In the Example of this invention, it is a graph which shows the result of the X-ray diffraction (XRD) in n-type CrSiN. In the Example of this invention, it is a graph which shows the result of the X-ray diffraction (XRD) in p-type CrTiN. In the Example of this invention, it is a graph which shows the result of the X-ray diffraction (XRD) in n-type CrTiN. In the Example which concerns on this invention, it is a cross-sectional SEM photograph in p-type CrSiN.
  • Example which concerns on this invention it is a cross-sectional SEM photograph in n-type CrSiN. In the Example which concerns on this invention, it is a cross-sectional SEM photograph in p-type CrTiN. In the Example which concerns on this invention, it is a cross-sectional SEM photograph in n-type CrTiN. In the Example which concerns on this invention, it is a graph which shows the relationship between the temperature and Seebeck coefficient in p-type CrN, CrSiN, CrTiN, CrFeN, CrWN. In the Example which concerns on this invention, it is a graph which shows the relationship between the temperature and Seebeck coefficient in n-type CrN, CrSiN, CrTiN.
  • Example which concerns on this invention it is a graph which shows the relationship between the temperature and electrical conductivity in p-type CrN, CrSiN, CrTiN, CrFeN, CrWN. In the Example which concerns on this invention, it is a graph which shows the relationship between the temperature and electrical conductivity in n-type CrN, CrSiN, CrTiN.
  • thermoelectric conversion material a nitride thermoelectric conversion material, a manufacturing method thereof, and a thermoelectric conversion element according to the present invention will be described with reference to FIG.
  • the scale is appropriately changed as necessary to make each part recognizable or easily recognizable.
  • the nitride thermoelectric conversion material of the present embodiment has a general formula: (Cr 1-x M x ) 1-y N y (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, It represents at least one of Mo, Hf, Ta, W, Si, Al, B and Y. It consists of a metal nitride represented by 0 ⁇ x ⁇ 1.0, 0.40 ⁇ y ⁇ 0.54), The crystal structure is cubic NaCl type (space group Fm-3m (No. 225)), and has p-type or n-type thermoelectric characteristics. Note that oxygen is included as an inevitable impurity. As CrN-based material of the bulk, but there is Cr 2 N, the crystal structure is a hexagonal space group P-31m (No.162), and the nitride thermoelectric material is different from the crystal structure .
  • the nitride thermoelectric conversion material is a columnar crystal that is formed in a film shape and extends in a direction perpendicular to the surface of the film. Furthermore, the columnar crystal has a crystal diameter of 100 nm or less. This thin film of nitride thermoelectric conversion material is excellent in [111] crystal orientation in the direction perpendicular to the substrate.
  • thermoelectric conversion element 1 includes an insulating base 2, a p-type thin film thermoelectric conversion part 3 p and an n-type thin film thermoelectric conversion part 3 n formed on the insulating base 2.
  • a connection electrode part 4 for connecting the p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n, and the connected p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n And a pair of electrode terminal portions 5 formed at the end portions.
  • At least one of the p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n is formed of the nitride thermoelectric conversion material.
  • both the p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n are formed of the nitride thermoelectric conversion material of the present invention.
  • the p-type thin film thermoelectric conversion part May be formed of an organic thermoelectric material (printed material), and the n-type thin film thermoelectric conversion portion 3n may be formed of the nitride thermoelectric conversion material of the present invention.
  • the p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n are formed in a plurality of lines or strips, extend in parallel with each other, and are alternately arranged. Moreover, the end part of the adjacent p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n is connected by the connection electrode part 4, and one thin film thermoelectric conversion part by which the whole was folded back several times, A pair of electrode terminal portions 5 are formed at both ends.
  • connection electrode portion 4 and the electrode terminal portion 5 are patterned with Ag, an Ag alloy, or the like.
  • a lead wire 6 is connected to the pair of electrode terminal portions 5, and the lead wire 6 is connected to a power source 7.
  • the insulating base material 2 is preferably formed of a material having a low thermal conductivity, and for example, an insulating film or glass can be employed.
  • an insulating film or glass can be employed as the insulating film.
  • a film formed of a polyimide resin sheet is used as the insulating film.
  • LCP liquid crystal polymer
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the glass substrate for example, alkali-free glass, alkali glass plate, glass film or the like can be adopted.
  • the sheet-type thermoelectric conversion element 1 is obtained.
  • a sheet-type Peltier element (cooling element) that converts electrical energy into thermal energy and transports heat
  • a sheet-type Seebeck element thermoelectric power generation element
  • It can be a sheet-type thermopile or the like to be an infrared sensor applying the thermocouple principle.
  • the manufacturing method of the nitride thermoelectric conversion material of this embodiment is a Cr sputtering target or a Cr-M alloy sputtering target (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo). , Hf, Ta, W, Si, Al, B, and Y).) Is used to perform film formation by performing reactive sputtering in a nitrogen-containing atmosphere.
  • M Zr
  • the reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2, and N 2 gas fraction at this time is N 2.
  • / (N 2 + Ar) is set in the range of 0.2 to 0.5.
  • the reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2 or in an N 2 atmosphere, and N 2 gas fraction at this time is N.
  • 2 / (N 2 + Ar) is set in the range of 0.6 to 1.0.
  • the reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2, and N 2 / (N 2 + Ar) which is the N 2 gas fraction at this time is in the range of 0.5 to 0.6. Even when set to p, a p-type or n-type nitride thermoelectric conversion material can be produced, but the N 2 gas fraction serving as the boundary between the p-type and the n-type differs depending on the composition, that is, the element M.
  • the connection electrode part 4 and the electrode terminal part 5 form a wiring pattern by a metal mask method.
  • nitride electronic material having a very large amount of Cr can be obtained, so that various elements are added in minute amounts while maintaining the NaCl-type CrN crystal structure.
  • thermoelectric performance it is possible to improve the thermoelectric performance, and it is possible to improve the Seebeck coefficient and the electrical conductivity.
  • the columnar crystals extend in the direction perpendicular to the surface of the film, the film has high crystallinity and high heat resistance can be obtained.
  • the crystal diameter of the columnar crystal is 100 nm or less
  • the bulk-sintered body having a relatively large particle size (100 nm or more) due to the difficulty in transferring heat due to phonons (lattices) due to nano-scale crystal sizing.
  • the thermal conductivity in the in-plane direction of the thermoelectric thin film is reduced, and the in-plane temperature difference of the thermoelectric thin film can be further increased. Therefore, the thermoelectromotive force is increased and the thermoelectric performance can be improved.
  • the flexibility of the material itself can also be obtained.
  • thermoelectric conversion element 1 of the present embodiment at least one of the p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n is formed of the nitride thermoelectric conversion material.
  • the large thin film thermoelectric converters 3p and 3n can be a Peltier element, Seebeck element, thermopile, or the like having good performance.
  • a Cr sputtering target or a Cr-M alloy sputtering target (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf). , Ta, W, Si, Al, B, and Y.) is used to perform film formation by reactive sputtering in a nitrogen-containing atmosphere. Therefore, the above (Cr 1-x M x ) 1 the nitride thermoelectric conversion material of the present invention comprising -y N y can be deposited without heat treatment.
  • thermoelectric performance can be controlled, and the p-type semiconductor material and the n-type semiconductor material can be made separately by the same target.
  • an element having excellent thermoelectric performance can be manufactured by forming a wiring pattern of a p-type semiconductor material and an n-type semiconductor material by a metal mask method or the like.
  • reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2, and N 2 / (N 2 + Ar), which is the N 2 gas fraction at this time, is set in the range of 0.2 to 0.5.
  • N 2 / (N 2 + Ar) which is the N 2 gas fraction at this time
  • reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2 or in an N 2 atmosphere, and N 2 / (N 2 + Ar) which is the N 2 gas fraction at this time is set to 0.6 to 1
  • N 2 / (N 2 + Ar) which is the N 2 gas fraction at this time is set to 0.6 to 1
  • a nitride thermoelectric conversion material having n-type thermoelectric characteristics can be formed.
  • thermoelectric conversion material the manufacturing method thereof, and the thermoelectric conversion element according to the present invention
  • results of evaluation based on the examples manufactured based on the above embodiment are specifically described with reference to FIGS. explain.
  • nitride thermoelectric conversion material of the present invention formed with various composition ratios was formed on a substrate with a thickness of 400 to 600 nm.
  • the film thickness was measured with a surface shape measuring device: Dektak 150 manufactured by Veeco. Some samples were also deposited on a polyimide film substrate.
  • Bi 2 Te 3 printed thin film (Comparative Example 1), a Cr thin film (Comparative Example 2), and a TiN thin film (Comparative Example 3) were prepared, respectively. went.
  • the printed thin film of Bi 2 Te 3 of Comparative Example 1 was prepared as follows. Bi 2 Te 3 fine powder was mixed with ethylene glycol and a dispersant to obtain a Bi 2 Te 3 paste. Bi 2 Te 3 having a thickness of about 1 micron was formed on a liquid crystal polymer (LCP) substrate with a dispenser, dried, and then heat treated at 200 ° C. in an N 2 atmosphere. This sample was taken into close contact with the film, and after evaluating thermoelectric properties, it was confirmed by SEM that there were no cracks.
  • LCP liquid crystal polymer
  • the Cr thin film of Comparative Example 2 and the TiN thin film of Comparative Example 3 were formed by reactive sputtering using a Cr target and a Ti target, respectively.
  • the Cr thin film of Comparative Example 2 was formed in an Ar gas atmosphere
  • the TiN thin film of Comparative Example 3 was formed in a mixed gas atmosphere of Ar and N 2 .
  • sputtering conditions in the film forming process are as follows: ultimate vacuum: 5 ⁇ 10 ⁇ 6 Pa, sputtering gas pressure: 0.67 Pa, target input power (output): 300 W, in a mixed gas atmosphere of Ar gas + nitrogen gas The nitrogen gas partial pressure was changed from 0 to 100%. Further, a pair of Ag electrodes was formed by patterning on the thin film of the nitride thermoelectric conversion material formed by the metal mask method, and Examples and Comparative Examples of the present invention were produced.
  • FIG. 2 shows the results of examining the nitriding amount: N / (Cr + M + N) ratio with respect to the nitrogen gas partial pressure for CrN, CrTiN, CrSiN, CrFeN, CrYN, and CrBN.
  • the quantitative accuracy of N / (Cr + M + N) is ⁇ 2%.
  • the composition ratio in the table is indicated by “atomic%”.
  • the X-ray source is AlK ⁇ (350 W)
  • the path energy is 46.95 eV
  • the measurement interval is 0.1 eV
  • the photoelectron extraction angle with respect to the sample surface is 45 deg
  • the analysis area is about Quantitative analysis was performed under the condition of 800 ⁇ m ⁇ .
  • the oxygen ratio O / (Cr + M + N + O) is 0 ⁇ O / (Cr + M + N + O) ⁇ 0.05, which indicates that oxygen is included as an inevitable impurity.
  • the thermoelectric characteristics Seebeck coefficient, electrical conductivity
  • oxygen has a small contribution to the thermoelectric characteristics, and it is considered that this thermoelectric characteristic is mainly composed of metal nitride.
  • ⁇ Thin film X-ray diffraction (identification of crystal phase)>
  • the crystal phase of the nitride thermoelectric conversion material obtained by the reactive sputtering method was identified by grazing incidence X-ray diffraction (Grazing Incidence X-ray Diffraction).
  • the Seebeck coefficient S the electrical conductivity ⁇
  • the power factor power factor: S 2 ⁇
  • the Seebeck coefficient is 2 to 10 ° C by using two commercially available Peltier elements and wiring so that one Peltier element is cooled and the other Peltier element is heated so that there is a temperature difference between the two Peltier elements. Measured with a temperature difference of.
  • thermocouple Seakaguchi Electrothermal T350155 sheath material: Pt, filling in sheath: MgO powder
  • thermoelectromotive force using the sheath as an electrode
  • temperature difference using thermocouple It was measured.
  • the Seebeck coefficient was evaluated by linearly approximating the relationship between the obtained thermoelectromotive force and the temperature difference by the least square method.
  • the electrical conductivity was measured by the Van der Pauw method.
  • N 2 gas fraction is N 2 / a (gas ratio) (N 2 + Ar), examples ranging from 0.2 to 0.5, has an n-type thermoelectric properties of, N 2 Examples in which / (N 2 + Ar) is in the range of 0.6 to 1.0 had p-type thermoelectric properties.
  • N 2 gas fraction is N 2 / a (gas ratio) (N 2 + Ar)
  • examples ranging from 0.2 to 0.5 has an n-type thermoelectric properties of
  • N 2 Examples in which / (N 2 + Ar) is in the range of 0.6 to 1.0 had p-type thermoelectric properties.
  • both the n-type material and the p-type material had a high electrical conductivity of 10 S / cm or more in almost all materials. In particular, some samples had extremely high electric conductivity of 1000 S / cm or more.
  • each of the examples of the present invention had a relatively large absolute value of Seebeck coefficient and good electrical conductivity. Further, by controlling the N 2 gas fraction during sputtering, the Seebeck coefficient was changed, and the thermoelectric performance could be controlled using the same target.
  • Example 7 p-type CrSiN
  • Example 5 n-type CrSiN
  • Example 18 p-type CrTiN
  • Examples are shown as examples showing the crystal form in the cross section of the nitride thermoelectric conversion material.
  • Each cross-sectional SEM photograph with 16 (n-type CrTiN) is shown in FIGS.
  • the samples of these examples are those that have been cleaved. Moreover, it is the photograph which observed the inclination at an angle of 45 degrees.
  • the examples of the present invention are formed of dense columnar crystals. That is, it has been observed that columnar crystals grow in a direction perpendicular to the substrate surface. The columnar crystals are broken when cleaved.
  • the particle size (crystal diameter) of the columnar crystals in the photograph was 100 nm or less.
  • the grain size here is the diameter of the columnar crystal in the substrate surface, and the length is the length (film thickness) of the columnar crystal in the direction perpendicular to the substrate surface.
  • the aspect ratio of the columnar crystal is defined as (length) / (grain size)
  • this embodiment has a large aspect ratio of 5 or more. It is considered that the film is dense due to the small grain size of the columnar crystals.
  • ⁇ Heat resistance> For each example, the temperature dependence of the Seebeck coefficient was evaluated. The results are shown in FIG. 12 for the p-type nitride thermoelectric conversion materials (Examples 3, 7, 18, 34, 50), and the n-type nitride thermoelectric conversion materials (Examples 1, 10, 21). ) Is shown in FIG. Next, the temperature dependence of electrical conductivity was evaluated for each example. The results are shown in FIG. 14 for the p-type nitride thermoelectric conversion materials (Examples 3, 7, 18, 34, 50), and the n-type nitride thermoelectric conversion materials (Examples 1, 10, 21). ) Is shown in FIG.
  • the examples of the present invention have a heat resistance of 200 ° C. for both n-type and p-type.
  • the Seebeck coefficient in both n-type and p-type, the absolute value of the Seebeck coefficient tended to increase with increasing temperature.
  • the electric conductivity both n-type and p-type materials tended to increase exponentially with increasing temperature. Therefore, it can be seen that the nitride thermoelectric conversion material of the present invention having n-type and p-type characteristics has improved thermoelectric characteristics as the temperature rises.
  • the nitride thermoelectric conversion material of the present invention was formed on a glass substrate, and the thermal conductivity in the film thickness direction of the thin film was measured using a picosecond thermoreflectance method.
  • a 1246 nm-thick nitride thermoelectric conversion material of the present invention (the same material as in Example 28) was formed on a glass substrate, and an Mo film was formed as a reflective film to a thickness of 100 nm to prepare an evaluation sample. About this evaluation sample, the surface heating and surface temperature measurement of the pulsed light heating thermoreflectance method were carried out.
  • thermo conductivity was calculated based on the obtained thermal permeability, specific heat capacity, and density.
  • specific heat capacity and density were based on values of bulk (Cr 2 N, VN).
  • the value of thermal conductivity is an estimated value calculated by substituting the specific heat capacity and density of the bulk material with the same composition as the thin film, but the thermal diffusivity is sensitive to the crystal structure and microstructure of the thin film.
  • the specific heat capacity and density do not depend much on the crystal structure or microstructure, so that the difference from the bulk value is not so large for a dense thin film.
  • the thermal conductivity in the film thickness direction at room temperature was 6.2 W / (m ⁇ K).
  • the thermal conductivity evaluation of this embodiment was the thermal conductivity in the film thickness direction of 1246 nm, but in the in-plane direction thermal conductivity composed of columnar crystals of 100 nm or less, phonons (lattice ) Is expected to be lower than 6.2 W / (m ⁇ K).
  • ZT value was evaluated for this evaluation sample (the same material as in Example 28). Seebeck coefficient and electrical conductivity were evaluated in the in-plane direction, and thermal conductivity was evaluated in the film thickness direction. As a result, the ZT value at room temperature (25 ° C.) was 0.004.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Ceramic Products (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

The nitride thermoelectric conversion material according to the present invention comprises a metal nitride represented by general formula: (Cr1-xMx)1-yNy (wherein M represents at least one of Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta, W, Si, Al, B and Y. 0 ≤ x < 1.0; 0.40 ≤ y < 0.54), has a NaCl-type crystal structure, and has p-type or n-type thermoelectric properties. The method for manufacturing this nitride thermoelectric conversion material has a film forming step for forming a film by reactive sputtering in a nitrogen-containing atmosphere using a Cr sputtering target or Cr-M alloy sputtering target (wherein M represents at least one of Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta, W, Si, Al, B and Y).

Description

窒化物熱電変換材料及びその製造方法並びに熱電変換素子Nitride thermoelectric conversion material, method for producing the same, and thermoelectric conversion element
 本発明は、ペルチェ素子、ゼーベック素子又はサーモパイル等に好適な窒化物熱電変換材料及びその製造方法並びに熱電変換素子に関する。 The present invention relates to a nitride thermoelectric conversion material suitable for a Peltier element, Seebeck element, thermopile, or the like, a manufacturing method thereof, and a thermoelectric conversion element.
 従来、ペルチェ素子(冷却素子)、ゼーベック素子(熱電発電素子)又はサーモパイル等の熱電変換素子に用いる熱電材料として、BiTe系熱電材料、ホイスラー系熱電材料、クラスレート熱電材料、酸化物熱電材料、窒化物熱電材料、有機材料による熱電材料等の種々の熱電材料が多数知られている。さらに、上記材料を用いたフレキシブル熱電デバイスの開発が盛んに行われている。フレキシブル熱電デバイスには、主に有機材料もしくは、有機材料を含むプリンテッド材料が使用されている。
 これらの熱電材料について、熱電性能向上のために、ゼーベック係数の絶対値および電気伝導率が大きく(電気抵抗率が小さく)、さらに熱伝導率が小さい材料が望まれている。
Conventionally, as a thermoelectric material used for a thermoelectric conversion element such as a Peltier element (cooling element), a Seebeck element (thermoelectric power generation element) or a thermopile, a BiTe thermoelectric material, a Heusler thermoelectric material, a clathrate thermoelectric material, an oxide thermoelectric material, nitriding Many various thermoelectric materials are known, such as physical thermoelectric materials and thermoelectric materials made of organic materials. Furthermore, development of flexible thermoelectric devices using the above materials has been actively conducted. An organic material or a printed material containing an organic material is mainly used for the flexible thermoelectric device.
For these thermoelectric materials, in order to improve thermoelectric performance, a material having a large absolute value of Seebeck coefficient and electrical conductivity (low electrical resistivity) and further low thermal conductivity is desired.
 例えば、窒化物熱電材料としては、特許文献1には、β型炭化ケイ素80~99質量%と金属窒化物1~10質量%とを含むn型熱電変換材料であって、熱電変換材料中に窒素元素を0.5~5質量%含むn型熱電変換材料が記載されている。
 また、特許文献2では、一般式:AlGaIn(式中、Mは遷移元素、Rは希土類元素及びDは第IV族または第II族元素からそれぞれ選ばれる少なくとも一種の元素であり、0≦z≦0.7、0≦y≦0.7、0.2≦x≦1.0、0≦u≦0.7、0≦v≦0.05、0≦w≦0.2及び0.9≦s≦1.1の範囲であって、かつx+y+z=1である。)で表され、100℃以上の温度におけるゼーベック係数の絶対値が50μV/K以上、電気抵抗率が10−3Ωm以下である窒化物熱電変換材料が記載されている。
For example, as a nitride thermoelectric material, Patent Document 1 discloses an n-type thermoelectric conversion material containing 80 to 99% by mass of β-type silicon carbide and 1 to 10% by mass of a metal nitride. An n-type thermoelectric conversion material containing 0.5 to 5% by mass of nitrogen element is described.
In Patent Document 2, the general formula: Al z Ga y In x M u R v D w in N s (wherein, M is a transition element, R represents a rare earth element and D respectively from Group IV or Group II element At least one element selected, 0 ≦ z ≦ 0.7, 0 ≦ y ≦ 0.7, 0.2 ≦ x ≦ 1.0, 0 ≦ u ≦ 0.7, 0 ≦ v ≦ 0.05 , 0 ≦ w ≦ 0.2 and 0.9 ≦ s ≦ 1.1, and x + y + z = 1), and the absolute value of the Seebeck coefficient at a temperature of 100 ° C. or higher is 50 μV / A nitride thermoelectric conversion material having an electrical resistivity of 10 −3 Ωm or less is described.
 また、特許文献3では、一般式:AlGaIn(式中、Mは遷移元素であり、Rは希土類元素である。0≦z≦0.7、0≦y≦0.7、0.2≦x≦1.0、0≦u≦0.7、0≦v≦0.05、0.9≦s+t≦1.7、0.4≦s≦1.2の範囲であり、かつx+y+z=1である。)で表される元素組成からなり、100℃以上の温度におけるゼーベック係数の絶対値が40μV/K以上である酸化窒化物熱電変換材料が記載されている。 In Patent Document 3, the general formula: Al z Ga y In x M u R v O s in N t (wherein, M is a transition element, R is rare earth element .0 ≦ z ≦ 0.7, 0 ≦ y ≦ 0.7, 0.2 ≦ x ≦ 1.0, 0 ≦ u ≦ 0.7, 0 ≦ v ≦ 0.05, 0.9 ≦ s + t ≦ 1.7, 0.4 ≦ s ≦ An oxynitride thermoelectric conversion material having an elemental composition represented by the following formula: 1.2 and x + y + z = 1) and having an Seebeck coefficient of 40 μV / K or more at a temperature of 100 ° C. or more. Are listed.
 また、特許文献4では、一般式:Ti1−x(式中、Aは周期表においてTiにより近いV、Cr、Mn、Fe、Co、Ni、Zr及びNbらなる群から選ばれた少なくとも一種の元素であり、0<x≦0.5;0.5≦y≦2.0;0.01≦z≦0.6である)で表される組成を有し、不可避なるその他の元素を含む金属酸窒化物からなる熱電変換材料が記載されている。 In Patent Document 4, the general formula: Ti 1-x A x O y N z (where A is a group consisting of V, Cr, Mn, Fe, Co, Ni, Zr and Nb closer to Ti in the periodic table) At least one element selected from the group consisting of 0 <x ≦ 0.5; 0.5 ≦ y ≦ 2.0; 0.01 ≦ z ≦ 0.6) A thermoelectric conversion material made of a metal oxynitride containing other elements unavoidable is described.
 さらに、特許文献5では、組成式AENにより表記され、固相のAEとAE金属(AEは、Ca、Sr、Baから選択される少なくとも一種類の元素)の蒸気との反応生成物からなる層状結晶構造を持ち、イオン式[AEN]で表記される窒化物であり、室温で10S/cm以上の電気伝導度を有し、金属的電気伝導性を示す窒化物エレクトライドが記載されている。 Furthermore, in patent document 5, it is represented by the composition formula AE 2 N, and the reaction between the solid phase AE 3 N 2 and the vapor of AE metal (AE is at least one element selected from Ca, Sr, Ba). It is a nitride having a layered crystal structure composed of a product and represented by an ionic formula [AE 2 N] + e , has an electric conductivity of 10 3 S / cm or more at room temperature, and has metallic electrical conductivity Nitride electrides are described.
特開2001−274464号公報JP 2001-274464 A 特許第4000366号公報Japanese Patent No. 4000366 特許第4000369号公報Japanese Patent No. 4000369 特許第5024745号公報Japanese Patent No. 5024745 特開2014−24712号公報JP 2014-24712 A
 しかしながら、上記従来の技術においても、以下の課題が残されている。
 すなわち、上記熱電材料で室温において性能が良いものとしてBiSbTe系が知られている。しかしながら、このBiSbTe系は、Bi、Sb、Teといった有害元素を含むと共に、結晶構造が層状化合物であるために、フィルム上へスパッタリングによる薄膜形成が困難であった。薄膜を形成する場合、BiSbTe系インクを作製して印刷するプリンテッド素子にする方法があるが、性能を上げるためには、熱処理が必要であり、フィルム等に直接形成することが容易でなかった。また、有機材料による熱電材料では、p型の熱電特性がほとんどであり、n型の良好な性能を有する材料は報告されていない。さらに、窒化物系の熱電材料では、上記のようなAlN系、TiN系、CaN系が知られているが、いずれもバルク体であり、熱電性能が低いという問題があった。
However, the following problems remain in the above-described conventional technology.
That is, the BiSbTe system is known as a thermoelectric material having good performance at room temperature. However, since this BiSbTe system contains harmful elements such as Bi, Sb, and Te and the crystal structure is a layered compound, it is difficult to form a thin film on the film by sputtering. When forming a thin film, there is a method of making a BiSbTe-based ink and making it a printed element for printing. However, in order to improve the performance, heat treatment is necessary, and it is not easy to form directly on a film or the like. . Moreover, the thermoelectric material by an organic material has most p-type thermoelectric characteristics, and the material which has the n-type favorable performance has not been reported. Further, as nitride-based thermoelectric materials, AlN-based, TiN-based, and CaN-based materials as described above are known, but all have a problem that they are bulk bodies and have low thermoelectric performance.
 本発明は、前述の課題に鑑みてなされたもので、有害元素を用いず、良好な性能を有すると共にフィルム等への薄膜形成が可能な窒化物熱電変換材料及びその製造方法並びに熱電変換素子を提供することを目的とする。 The present invention has been made in view of the above-described problems. A nitride thermoelectric conversion material that does not use harmful elements, has good performance, and can form a thin film on a film, a manufacturing method thereof, and a thermoelectric conversion element are provided. The purpose is to provide.
 本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係る窒化物熱電変換材料は、一般式:(Cr1−x1−y(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。0≦x<1.0、0.40≦y<0.54)で示される金属窒化物からなり、その結晶構造が、NaCl型であり、p型又はn型の熱電特性を有することを特徴とする。 The present invention employs the following configuration in order to solve the above problems. That is, the nitride thermoelectric conversion material according to the first invention has a general formula: (Cr 1-x M x ) 1-y N y (where M is Ti, V, Mn, Fe, Co, Ni, Cu, It represents at least one of Zr, Nb, Mo, Hf, Ta, W, Si, Al, B and Y. Metal nitridation represented by 0 ≦ x <1.0, 0.40 ≦ y <0.54) The crystal structure is NaCl-type and has p-type or n-type thermoelectric characteristics.
 この窒化物熱電変換材料では、一般式:(Cr1−x1−y(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。0≦x<1.0、0.40≦y<0.54)で示される金属窒化物からなり、その結晶構造が、NaCl型であり、p型又はn型の熱電特性を有するので、有害元素を用いないと共に熱処理なしで形成でき、室温で有機材料系よりも大きなゼーベック係数を有し、さらに200℃以上の高い耐熱性も有している。なお、p型の熱電特性を有するとはゼーベック係数が正であることを示し、n型の熱電特性を有するとはゼーベック係数が負であることを示している。 In this nitride thermoelectric conversion material, the general formula: (Cr 1−x M x ) 1−y N y (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf) , Ta, W, Si, Al, B, and Y. It is made of a metal nitride represented by 0 ≦ x <1.0, 0.40 ≦ y <0.54), and its crystal structure However, since it is NaCl type and has p-type or n-type thermoelectric properties, it can be formed without using harmful elements and without heat treatment, has a larger Seebeck coefficient than an organic material system at room temperature, and more than 200 ° C. It also has high heat resistance. Note that having p-type thermoelectric characteristics indicates that the Seebeck coefficient is positive, and having n-type thermoelectric characteristics indicates that the Seebeck coefficient is negative.
 第2の発明に係る窒化物熱電変換材料は、第1の発明において、前記xが、0≦x≦0.2の範囲であることを特徴とする。
 すなわち、この窒化物熱電変換材料では、前記xが、0≦x≦0.2の範囲であるので、Cr量の非常に多い窒化物電子材料であり、NaCl型のCrN結晶構造を保ちながら、種々の元素を微量添加することにより、熱電性能向上を図ることが可能であり、例えば、ゼーベック係数の向上、電気伝導度の向上が可能となる。
The nitride thermoelectric conversion material according to the second invention is characterized in that, in the first invention, x is in a range of 0 ≦ x ≦ 0.2.
That is, in this nitride thermoelectric conversion material, since x is in the range of 0 ≦ x ≦ 0.2, it is a nitride electronic material with a very large amount of Cr, while maintaining the NaCl-type CrN crystal structure, By adding a small amount of various elements, it is possible to improve the thermoelectric performance. For example, it is possible to improve the Seebeck coefficient and the electrical conductivity.
 第3の発明に係る窒化物熱電変換材料は、第1又は第2の発明において、膜状に形成され、前記膜の表面に対して垂直方向に延在している柱状結晶であることを特徴とする。
 すなわち、この窒化物熱電変換材料では、膜の表面に対して垂直方向に延在している柱状結晶であるので、膜の結晶性が高いため、高い耐熱性が得られる。
The nitride thermoelectric conversion material according to the third invention is a columnar crystal formed in a film shape and extending in a direction perpendicular to the surface of the film in the first or second invention. And
That is, in this nitride thermoelectric conversion material, since it is a columnar crystal extending in a direction perpendicular to the surface of the film, high heat resistance is obtained because the film has high crystallinity.
 第4の発明に係る窒化物熱電変換材料は、第3の発明において、前記柱状結晶の結晶径が、100nm以下であることを特徴とする。
 すなわち、この窒化物熱電変換材料では、柱状結晶の結晶径が、100nm以下であるので、ナノスケールの結晶サイズ化により、フォノン(格子)による熱が伝わり難くなることで、比較的粒子サイズの大きい(100nm以上)バルク焼結体材料に比べて、熱電薄膜の面内方向の熱伝導率が小さくなり、熱電薄膜の面内の温度差をより大きくすることができる。したがって、熱起電力が大きくなり、熱電性能を向上させることが可能となる。なお、複数の材料系において理論計算より100nmのカットオフ平均自由工程時の累積熱伝導率が半減している結果が得られている。そのため、熱電変換材料において、粒子径を100nm以下にすることで、熱伝導率を効果的に低減することが可能となる。また、材料自体のフレキシブル性も得ることができる。
The nitride thermoelectric conversion material according to a fourth invention is characterized in that, in the third invention, the columnar crystal has a crystal diameter of 100 nm or less.
That is, in this nitride thermoelectric conversion material, since the crystal diameter of the columnar crystal is 100 nm or less, the heat due to phonons (lattices) becomes difficult to be transferred by the nano-scale crystal sizing, so that the particle size is relatively large. The thermal conductivity in the in-plane direction of the thermoelectric thin film is reduced compared to the bulk sintered body material (100 nm or more), and the in-plane temperature difference of the thermoelectric thin film can be further increased. Therefore, the thermoelectromotive force is increased and the thermoelectric performance can be improved. In addition, the result that the cumulative thermal conductivity at the time of the cutoff mean free process of 100 nm is halved by theoretical calculation in a plurality of material systems is obtained. Therefore, in the thermoelectric conversion material, the thermal conductivity can be effectively reduced by setting the particle diameter to 100 nm or less. Moreover, the flexibility of the material itself can also be obtained.
 第5の発明に係る熱電変換素子は、絶縁性基材と、該絶縁性基材上に形成されたp型の薄膜熱電変換部及びn型の薄膜熱電変換部と、前記p型の薄膜熱電変換部と前記n型の薄膜熱電変換部とを接続する接続電極部とを備え、前記p型の薄膜熱電変換部及び前記n型の薄膜熱電変換部の少なくとも一方が、第1から第4の発明のいずれかの窒化物熱電変換材料で形成されていることを特徴とする。
 すなわち、この熱電変換素子では、p型の薄膜熱電変換部及びn型の薄膜熱電変換部の少なくとも一方が、第1から第4の発明のいずれかの窒化物熱電変換材料で形成されているので、室温でゼーベック係数の絶対値が大きい薄膜熱電変換部により、良好な性能を有するペルチェ素子、ゼーベック素子又はサーモパイル等とすることができる。
A thermoelectric conversion element according to a fifth aspect of the present invention is an insulating substrate, a p-type thin film thermoelectric conversion portion and an n-type thin film thermoelectric conversion portion formed on the insulating substrate, and the p-type thin film thermoelectric device. A connecting electrode portion connecting the conversion portion and the n-type thin film thermoelectric conversion portion, wherein at least one of the p-type thin film thermoelectric conversion portion and the n-type thin film thermoelectric conversion portion is a first to a fourth The nitride thermoelectric conversion material of any of the invention is used.
That is, in this thermoelectric conversion element, at least one of the p-type thin film thermoelectric conversion part and the n-type thin film thermoelectric conversion part is formed of the nitride thermoelectric conversion material according to any one of the first to fourth inventions. The thin film thermoelectric conversion part having a large absolute value of the Seebeck coefficient at room temperature can be used as a Peltier element, Seebeck element, thermopile, or the like having good performance.
 第6の発明に係る熱電変換素子は、第5の発明において、前記絶縁性基材が、絶縁性フィルムであることを特徴とする。
 すなわち、この熱電変換素子では、絶縁性基材が、絶縁性フィルムであるので、熱処理なしで形成され絶対値の大きいゼーベック係数を有する薄膜熱電変換部により、樹脂フィルム等の耐熱性の低い絶縁性フィルムを用いることができると共に、薄型で良好な性能を有するフレキシブルな熱電変換素子が得られる。
The thermoelectric conversion element according to a sixth aspect is characterized in that, in the fifth aspect, the insulating substrate is an insulating film.
That is, in this thermoelectric conversion element, since the insulating base material is an insulating film, the thin film thermoelectric conversion portion formed without heat treatment and having a large Seebeck coefficient has a low heat resistance insulation property such as a resin film. A flexible thermoelectric conversion element having a thin and good performance can be obtained while using a film.
 第7の発明に係る窒化物熱電変換材料の製造方法は、第1から第4の発明のいずれかの窒化物熱電変換材料を製造する方法であって、Crスパッタリングターゲット又はCr−M合金スパッタリングターゲット(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。)を用いて窒素含有雰囲気中で反応性スパッタを行って成膜する成膜工程を有していることを特徴とする。
 すなわち、この窒化物熱電変換材料の製造方法では、Crスパッタリングターゲット又はCr−M合金スパッタリングターゲット(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。)を用いて窒素含有雰囲気中で反応性スパッタを行って成膜するので、上記(Cr1−x1−yからなる本発明の窒化物熱電変換材料を熱処理なしで成膜することができる。また、スパッタ時のNガス分率を制御することで、熱電性能をコントロール可能であると共に、同一ターゲットによるp型半導体材料とn型半導体材料とを作り分けることが可能である。したがって、これまでは、p型半導体材料とn型半導体材料を作製するのに、少なくとも2種類以上の複数のターゲットを用意する必要があったが、本窒化物熱電変換材料は、例えば、ターゲットが1種類しか収容できないスパッタリング装置においても、p型半導体材料とn型半導体材料の双方の材料を作製することができるので、効率がよく、ターゲットのコスト、ならびに、成膜プロセスのコストを抑えることができる。また、メタルマスク法等により、p型半導体材料とn型半導体材料とを配線パターン形成することで、熱電性能の優れた素子を作製することが可能である。
 さらに、熱伝導率の低い絶縁基板(ガラス、樹脂フィルム)への成膜が可能であり、本発明の窒化物熱電変換材料はフレキシブル性も有するため、樹脂フィルム基板上に成膜することが可能である。
A method for manufacturing a nitride thermoelectric conversion material according to a seventh invention is a method for manufacturing the nitride thermoelectric conversion material according to any one of the first to fourth inventions, and is a Cr sputtering target or a Cr-M alloy sputtering target. (However, M represents at least one of Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta, W, Si, Al, B, and Y). It is characterized by having a film forming step of forming a film by performing reactive sputtering in a nitrogen-containing atmosphere.
That is, in this method for producing a nitride thermoelectric conversion material, a Cr sputtering target or a Cr-M alloy sputtering target (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, (At least one of Ta, W, Si, Al, B, and Y is used.) To form a film by performing reactive sputtering in a nitrogen-containing atmosphere, so that the above (Cr 1-x M x ) 1- the nitride thermoelectric conversion material of the present invention consisting of y N y can be deposited without heat treatment. Further, by controlling the N 2 gas fraction at the time of sputtering, it is possible to control the thermoelectric performance and to make a p-type semiconductor material and an n-type semiconductor material by the same target. Therefore, until now, it has been necessary to prepare a plurality of targets of at least two or more types in order to produce a p-type semiconductor material and an n-type semiconductor material. Even in a sputtering apparatus that can accommodate only one type, both a p-type semiconductor material and an n-type semiconductor material can be produced, so that the efficiency of the target and the cost of the film formation process can be reduced. it can. In addition, an element having excellent thermoelectric performance can be manufactured by forming a wiring pattern of a p-type semiconductor material and an n-type semiconductor material by a metal mask method or the like.
Furthermore, it is possible to form a film on an insulating substrate (glass, resin film) having a low thermal conductivity, and the nitride thermoelectric conversion material of the present invention also has flexibility, so that it can be formed on a resin film substrate. It is.
 第8の発明に係る窒化物熱電変換材料の製造方法は、第7の発明において、前記反応性スパッタを、ArとNとの混合ガス雰囲気中で行い、この際のNガス分率であるN/(N+Ar)を、0.2~0.5の範囲に設定することを特徴とする。
 すなわち、この窒化物熱電変換材料の製造方法では、反応性スパッタを、ArとNとの混合ガス雰囲気中で行い、この際のNガス分率であるN/(N+Ar)を、0.2~0.5の範囲に設定するので、n型の熱電特性を有する窒化物熱電変換材料を形成することができる。
The method for producing a nitride thermoelectric conversion material according to an eighth invention is the method according to the seventh invention, wherein the reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2, and the N 2 gas fraction at this time is A certain N 2 / (N 2 + Ar) is set in a range of 0.2 to 0.5.
That is, in this method for producing a nitride thermoelectric conversion material, reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2, and N 2 / (N 2 + Ar) which is the N 2 gas fraction at this time is calculated. Therefore, a nitride thermoelectric conversion material having n-type thermoelectric characteristics can be formed.
 第9の発明に係る窒化物熱電変換材料の製造方法は、第7の発明において、前記反応性スパッタを、ArとNとの混合ガス雰囲気中又はN雰囲気中で行い、この際のNガス分率であるN/(N+Ar)を、0.6~1.0の範囲に設定することを特徴とする。
 すなわち、この窒化物熱電変換材料の製造方法では、反応性スパッタを、ArとNとの混合ガス雰囲気中又はN雰囲気中で行い、この際のNガス分率であるN/(N+Ar)を、0.6~1.0の範囲に設定するので、p型の熱電特性を有する窒化物熱電変換材料を形成することができる。
According to a ninth aspect of the present invention, there is provided a method for producing a nitride thermoelectric conversion material according to the seventh aspect, wherein the reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2 or in an N 2 atmosphere. N 2 / (N 2 + Ar), which is a two- gas fraction, is set in a range of 0.6 to 1.0.
That is, in this method for producing a nitride thermoelectric conversion material, reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2 or in an N 2 atmosphere, and N 2 / (which is the N 2 gas fraction at this time Since N 2 + Ar) is set in the range of 0.6 to 1.0, a nitride thermoelectric conversion material having p-type thermoelectric characteristics can be formed.
 本発明によれば、以下の効果を奏する。
 すなわち、本発明に係る窒化物熱電変換材料によれば、一般式:(Cr1−x1−y(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。0≦x<1.0、0.40≦y<0.54)で示される金属窒化物からなり、その結晶構造が、NaCl型であり、p型又はn型の熱電特性を有するので、有害元素を用いないと共に熱処理なしで形成でき、室温で有機材料系よりも絶対値の大きなゼーベック係数を有している。
 また、本発明に係る窒化物熱電変換材料の製造方法によれば、Crスパッタリングターゲット又はCr−M合金スパッタリングターゲット(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。)を用いて窒素含有雰囲気中で反応性スパッタを行って成膜するので、上記(Cr1−x1−yからなる本発明の窒化物熱電変換材料を熱処理なしで成膜することができる。
 さらに、本発明に係る熱電変換素子によれば、p型の薄膜熱電変換部及びn型の薄膜熱電変換部の少なくとも一方が、第1から第4の発明のいずれかの窒化物熱電変換材料で形成されているので、室温でゼーベック係数の絶対値の大きい薄膜熱電変換部により、良好な性能を有するペルチェ素子、ゼーベック素子又はサーモパイル等とすることができる。
The present invention has the following effects.
That is, according to the nitride thermoelectric conversion material according to the present invention, the general formula: (Cr 1−x M x ) 1−y N y (where M is Ti, V, Mn, Fe, Co, Ni, Cu, It represents at least one of Zr, Nb, Mo, Hf, Ta, W, Si, Al, B and Y. Metal nitridation represented by 0 ≦ x <1.0, 0.40 ≦ y <0.54) Because its crystal structure is NaCl-type and has p-type or n-type thermoelectric properties, it can be formed without using harmful elements and without heat treatment, and has a larger absolute value than organic materials at room temperature. Has a coefficient.
In addition, according to the method for producing a nitride thermoelectric conversion material according to the present invention, a Cr sputtering target or a Cr-M alloy sputtering target (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb). , Mo, Hf, Ta, W , Si, Al, since the deposited performing reactive sputtering in a nitrogen containing atmosphere with a show.) at least one of B and Y, the (Cr 1-x The nitride thermoelectric conversion material of the present invention composed of M x ) 1-y N y can be formed without heat treatment.
Furthermore, according to the thermoelectric conversion element according to the present invention, at least one of the p-type thin film thermoelectric conversion part and the n-type thin film thermoelectric conversion part is the nitride thermoelectric conversion material according to any one of the first to fourth inventions. Since it is formed, a thin film thermoelectric conversion part having a large absolute value of the Seebeck coefficient at room temperature can be used as a Peltier element, Seebeck element, thermopile, or the like having good performance.
本発明に係る窒化物熱電変換材料及びその製造方法並びに熱電変換素子の一実施形態において、熱電変換素子を示す斜視図である。1 is a perspective view showing a thermoelectric conversion element in an embodiment of a nitride thermoelectric conversion material, a manufacturing method thereof, and a thermoelectric conversion element according to the present invention. 本発明に係る窒化物熱電変換材料及びその製造方法並びに熱電変換素子の実施例において、CrN,CrSiN,CrTiN,CrFeN,CrYN,CrBNにおける窒素ガス分圧に対する窒化量:N/(Cr+M+N)比を示すグラフである。In the examples of the nitride thermoelectric conversion material, the manufacturing method thereof, and the thermoelectric conversion element according to the present invention, the ratio of nitriding with respect to the nitrogen gas partial pressure in CrN, CrSiN, CrTiN, CrFeN, CrYN, CrBN: N / (Cr + M + N) is shown. It is a graph. 本発明の実施例において、ターゲットのM/(Cr+M)組成比に対する膜中のM(Cr+M)組成比を示すグラフである。In the Example of this invention, it is a graph which shows M (Cr + M) composition ratio in a film | membrane with respect to M / (Cr + M) composition ratio of a target. 本発明の実施例において、p型のCrSiNにおけるX線回折(XRD)の結果を示すグラフである。In the Example of this invention, it is a graph which shows the result of the X-ray diffraction (XRD) in p-type CrSiN. 本発明の実施例において、n型のCrSiNにおけるX線回折(XRD)の結果を示すグラフである。In the Example of this invention, it is a graph which shows the result of the X-ray diffraction (XRD) in n-type CrSiN. 本発明の実施例において、p型のCrTiNにおけるX線回折(XRD)の結果を示すグラフである。In the Example of this invention, it is a graph which shows the result of the X-ray diffraction (XRD) in p-type CrTiN. 本発明の実施例において、n型のCrTiNにおけるX線回折(XRD)の結果を示すグラフである。In the Example of this invention, it is a graph which shows the result of the X-ray diffraction (XRD) in n-type CrTiN. 本発明に係る実施例において、p型のCrSiNにおける断面SEM写真である。In the Example which concerns on this invention, it is a cross-sectional SEM photograph in p-type CrSiN. 本発明に係る実施例において、n型のCrSiNにおける断面SEM写真である。In the Example which concerns on this invention, it is a cross-sectional SEM photograph in n-type CrSiN. 本発明に係る実施例において、p型のCrTiNにおける断面SEM写真である。In the Example which concerns on this invention, it is a cross-sectional SEM photograph in p-type CrTiN. 本発明に係る実施例において、n型のCrTiNにおける断面SEM写真である。In the Example which concerns on this invention, it is a cross-sectional SEM photograph in n-type CrTiN. 本発明に係る実施例において、p型のCrN,CrSiN,CrTiN,CrFeN,CrWNにおける温度とゼーベック係数との関係を示すグラフである。In the Example which concerns on this invention, it is a graph which shows the relationship between the temperature and Seebeck coefficient in p-type CrN, CrSiN, CrTiN, CrFeN, CrWN. 本発明に係る実施例において、n型のCrN,CrSiN,CrTiNにおける温度とゼーベック係数との関係を示すグラフである。In the Example which concerns on this invention, it is a graph which shows the relationship between the temperature and Seebeck coefficient in n-type CrN, CrSiN, CrTiN. 本発明に係る実施例において、p型のCrN,CrSiN,CrTiN,CrFeN,CrWNにおける温度と電気伝導率との関係を示すグラフである。In the Example which concerns on this invention, it is a graph which shows the relationship between the temperature and electrical conductivity in p-type CrN, CrSiN, CrTiN, CrFeN, CrWN. 本発明に係る実施例において、n型のCrN,CrSiN,CrTiNにおける温度と電気伝導率との関係を示すグラフである。In the Example which concerns on this invention, it is a graph which shows the relationship between the temperature and electrical conductivity in n-type CrN, CrSiN, CrTiN.
 以下、本発明に係る窒化物熱電変換材料及びその製造方法並びに熱電変換素子の一実施形態を、図1を参照しながら説明する。なお、以下の説明に用いる図面では、各部を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している。 Hereinafter, an embodiment of a nitride thermoelectric conversion material, a manufacturing method thereof, and a thermoelectric conversion element according to the present invention will be described with reference to FIG. In the drawings used for the following description, the scale is appropriately changed as necessary to make each part recognizable or easily recognizable.
 本実施形態の窒化物熱電変換材料は、一般式:(Cr1−x1−y(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。0≦x<1.0、0.40≦y<0.54)で示される金属窒化物からなり、その結晶構造が、立方晶のNaCl型(空間群Fm−3m(No.225))であり、p型又はn型の熱電特性を有する。なお、酸素が不可避不純物として含まれている。
 なお、バルクのCrN系材料として、CrNがあるが、その結晶構造は、六方晶系の空間群P−31m(No.162)であり、本窒化物熱電変換材料とは結晶構造が異なる。
The nitride thermoelectric conversion material of the present embodiment has a general formula: (Cr 1-x M x ) 1-y N y (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, It represents at least one of Mo, Hf, Ta, W, Si, Al, B and Y. It consists of a metal nitride represented by 0 ≦ x <1.0, 0.40 ≦ y <0.54), The crystal structure is cubic NaCl type (space group Fm-3m (No. 225)), and has p-type or n-type thermoelectric characteristics. Note that oxygen is included as an inevitable impurity.
As CrN-based material of the bulk, but there is Cr 2 N, the crystal structure is a hexagonal space group P-31m (No.162), and the nitride thermoelectric material is different from the crystal structure .
 また、この窒化物熱電変換材料は、膜状に形成され、前記膜の表面に対して垂直方向に延在している柱状結晶である。さらに、上記柱状結晶の結晶径が、100nm以下である。
 なお、この窒化物熱電変換材料の薄膜は、基板に対して垂直方向へ[111]結晶配向性に優れている。
The nitride thermoelectric conversion material is a columnar crystal that is formed in a film shape and extends in a direction perpendicular to the surface of the film. Furthermore, the columnar crystal has a crystal diameter of 100 nm or less.
This thin film of nitride thermoelectric conversion material is excellent in [111] crystal orientation in the direction perpendicular to the substrate.
 次に、本実施形態の窒化物熱電変換材料を用いた熱電変換素子について説明する。この熱電変換素子1は、図1に示すように、絶縁性基材2と、該絶縁性基材2上に形成されたp型の薄膜熱電変換部3p及びn型の薄膜熱電変換部3nと、p型の薄膜熱電変換部3pとn型の薄膜熱電変換部3nとを接続する接続電極部4と、接続されたp型の薄膜熱電変換部3pとn型の薄膜熱電変換部3nとの端部に形成された一対の電極端子部5とを備えている。 Next, a thermoelectric conversion element using the nitride thermoelectric conversion material of this embodiment will be described. As shown in FIG. 1, the thermoelectric conversion element 1 includes an insulating base 2, a p-type thin film thermoelectric conversion part 3 p and an n-type thin film thermoelectric conversion part 3 n formed on the insulating base 2. , A connection electrode part 4 for connecting the p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n, and the connected p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n And a pair of electrode terminal portions 5 formed at the end portions.
 上記p型の薄膜熱電変換部3p及びn型の薄膜熱電変換部3nの少なくとも一方は、上記窒化物熱電変換材料で形成されている。
 なお、本実施形態では、p型の薄膜熱電変換部3p及びn型の薄膜熱電変換部3nの両方を本発明の上記窒化物熱電変換材料で形成しているが、p型の薄膜熱電変換部を有機材料の熱電材料(プリンテッド材料)で形成し、n型の薄膜熱電変換部3nを本発明の上記窒化物熱電変換材料で形成しても構わない。
At least one of the p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n is formed of the nitride thermoelectric conversion material.
In this embodiment, both the p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n are formed of the nitride thermoelectric conversion material of the present invention. However, the p-type thin film thermoelectric conversion part May be formed of an organic thermoelectric material (printed material), and the n-type thin film thermoelectric conversion portion 3n may be formed of the nitride thermoelectric conversion material of the present invention.
 p型の薄膜熱電変換部3pとn型の薄膜熱電変換部3nとは、複数の線状又は帯状に形成され、互いに平行に延在すると共に交互に並んで配されている。また、隣接するp型の薄膜熱電変換部3pとn型の薄膜熱電変換部3nとの端部が、接続電極部4で接続され、全体が複数回折り返された一本の薄膜熱電変換部となっており、両端部に一対の電極端子部5が形成されている。 The p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n are formed in a plurality of lines or strips, extend in parallel with each other, and are alternately arranged. Moreover, the end part of the adjacent p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n is connected by the connection electrode part 4, and one thin film thermoelectric conversion part by which the whole was folded back several times, A pair of electrode terminal portions 5 are formed at both ends.
 上記接続電極部4と電極端子部5とは、AgやAg合金等でパターン形成されている。
 一対の電極端子部5には、リード線6が接続され、リード線6が電源7に接続されている。
The connection electrode portion 4 and the electrode terminal portion 5 are patterned with Ag, an Ag alloy, or the like.
A lead wire 6 is connected to the pair of electrode terminal portions 5, and the lead wire 6 is connected to a power source 7.
 上記絶縁性基材2は、熱伝導率の小さい材料で形成されていることが好ましく、例えば絶縁性フィルム又はガラス等が採用可能である。上記絶縁性フィルムとして、例えばポリイミド樹脂シートで形成されたものが採用される。なお、絶縁性フィルムとしては、他にLCP:液晶ポリマー、PET:ポリエチレンテレフタレート,PEN:ポリエチレンナフタレート等でも構わない。また、上記ガラス基板は、例えば無アルカリガラス、アルカリガラス板、ガラスフィルム等が採用可能である。 The insulating base material 2 is preferably formed of a material having a low thermal conductivity, and for example, an insulating film or glass can be employed. For example, a film formed of a polyimide resin sheet is used as the insulating film. In addition, as the insulating film, LCP: liquid crystal polymer, PET: polyethylene terephthalate, PEN: polyethylene naphthalate, or the like may be used. Further, as the glass substrate, for example, alkali-free glass, alkali glass plate, glass film or the like can be adopted.
 上記絶縁性基材2に絶縁性フィルムを採用した場合、シート型の熱電変換素子1となる。例えば、電気エネルギーを熱エネルギーに変換し、熱輸送を行うシート型のペルチェ素子(冷却素子)、熱エネルギーを電気エネルギーに変換し、温度差発電を行うシート型のゼーベック素子(熱電発電素子)、熱電対の原理を応用した赤外線センサとなるシート型のサーモパイル等とすることができる。 When an insulating film is employed for the insulating base material 2, the sheet-type thermoelectric conversion element 1 is obtained. For example, a sheet-type Peltier element (cooling element) that converts electrical energy into thermal energy and transports heat, a sheet-type Seebeck element (thermoelectric power generation element) that converts thermal energy into electrical energy and performs temperature difference power generation, It can be a sheet-type thermopile or the like to be an infrared sensor applying the thermocouple principle.
 この窒化物熱電変換材料の製造方法について、以下に説明する。
 まず、本実施形態の窒化物熱電変換材料の製造方法は、Crスパッタリングターゲット又はCr−M合金スパッタリングターゲット(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。)を用いて窒素含有雰囲気中で反応性スパッタを行って成膜する成膜工程を有している。
The manufacturing method of this nitride thermoelectric conversion material is demonstrated below.
First, the manufacturing method of the nitride thermoelectric conversion material of this embodiment is a Cr sputtering target or a Cr-M alloy sputtering target (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo). , Hf, Ta, W, Si, Al, B, and Y).) Is used to perform film formation by performing reactive sputtering in a nitrogen-containing atmosphere.
 例えば、x=0の場合(元素Mを含まない場合)は、Crスパッタリングターゲットを用い、また、M=Tiの場合、Cr−Ti合金スパッタリングターゲットを用い、また、M=Vの場合、Cr−V合金スパッタリングターゲットを用い、また、M=Mnの場合、Cr−Mn合金スパッタリングターゲットを用い、また、M=Feの場合、Cr−Fe合金スパッタリングターゲットを用いる。
 また、M=Coの場合、Cr−Co合金スパッタリングターゲットを用い、また、M=Niの場合、Cr−Ni合金スパッタリングターゲットを用い、また、M=Cuの場合、Cr−Cu合金スパッタリングターゲットを用い、また、M=Zrの場合、Cr−Zr合金スパッタリングターゲットを用い、また、M=Nbの場合、Cr−Nb合金スパッタリングターゲットを用いる。
 また、M=Moの場合、Cr−Mo合金スパッタリングターゲットを用い、また、M=Hfの場合、Cr−Hf合金スパッタリングターゲットを用い、また、M=Taの場合、Cr−Ta合金スパッタリングターゲットを用い、また、M=Wの場合、Cr−W合金スパッタリングターゲットを用い、また、M=Siの場合、Cr−Si合金スパッタリングターゲットを用いる。
 さらに、M=Alの場合、Cr−Al合金スパッタリングターゲットを用い、また、M=Bの場合、Cr−B合金スパッタリングターゲットを用い、また、M=Yの場合、Cr−Y合金スパッタリングターゲットを用いる。
For example, when x = 0 (when element M is not included), a Cr sputtering target is used, when M = Ti, a Cr—Ti alloy sputtering target is used, and when M = V, Cr— A V alloy sputtering target is used. When M = Mn, a Cr—Mn alloy sputtering target is used. When M = Fe, a Cr—Fe alloy sputtering target is used.
When M = Co, a Cr—Co alloy sputtering target is used. When M = Ni, a Cr—Ni alloy sputtering target is used. When M = Cu, a Cr—Cu alloy sputtering target is used. When M = Zr, a Cr—Zr alloy sputtering target is used. When M = Nb, a Cr—Nb alloy sputtering target is used.
Further, when M = Mo, a Cr—Mo alloy sputtering target is used. When M = Hf, a Cr—Hf alloy sputtering target is used. When M = Ta, a Cr—Ta alloy sputtering target is used. When M = W, a Cr—W alloy sputtering target is used. When M = Si, a Cr—Si alloy sputtering target is used.
Further, when M = Al, a Cr—Al alloy sputtering target is used. When M = B, a Cr—B alloy sputtering target is used. When M = Y, a Cr—Y alloy sputtering target is used. .
 この成膜工程では、n型の窒化物熱電変換材料を作製する場合、上記反応性スパッタにおいて、ArとNとの混合ガス雰囲気中で行い、この際のNガス分率であるN/(N+Ar)を、0.2~0.5の範囲に設定する。
 また、p型の窒化物熱電変換材料を作製する場合、上記反応性スパッタにおいて、ArとNとの混合ガス雰囲気中又はN雰囲気中で行い、この際のNガス分率であるN/(N+Ar)を、0.6~1.0の範囲に設定する。
 なお、上記反応性スパッタにおいて、ArとNとの混合ガス雰囲気中で行い、この際のNガス分率であるN/(N+Ar)を、0.5~0.6の範囲に設定した場合でも、p型またはn型の窒化物熱電変換材料が作成できるが、p型とn型との境界となるNガス分率は組成、すなわち、元素Mによって異なる。
 なお、接続電極部4及び電極端子部5は、メタルマスク法により配線パターン形成する。
In this film forming process, when producing an n-type nitride thermoelectric conversion material, the reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2, and N 2 gas fraction at this time is N 2. / (N 2 + Ar) is set in the range of 0.2 to 0.5.
Further, when producing a p-type nitride thermoelectric conversion material, the reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2 or in an N 2 atmosphere, and N 2 gas fraction at this time is N. 2 / (N 2 + Ar) is set in the range of 0.6 to 1.0.
The reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2, and N 2 / (N 2 + Ar) which is the N 2 gas fraction at this time is in the range of 0.5 to 0.6. Even when set to p, a p-type or n-type nitride thermoelectric conversion material can be produced, but the N 2 gas fraction serving as the boundary between the p-type and the n-type differs depending on the composition, that is, the element M.
In addition, the connection electrode part 4 and the electrode terminal part 5 form a wiring pattern by a metal mask method.
 このように本実施形態の窒化物熱電変換材料では、一般式:(Cr1−x1−y(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。0≦x<1.0、0.40≦y<0.54)で示される金属窒化物からなり、その結晶構造が、NaCl型であり、p型又はn型の熱電特性を有するので、有害元素を用いないと共に熱処理なしで形成でき、室温で有機材料系よりも大きなゼーベック係数を有し、さらに、少なくとも200℃の高い耐熱性も有している。 As described above, in the nitride thermoelectric conversion material of the present embodiment, the general formula: (Cr 1−x M x ) 1−y N y (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr). , Nb, Mo, Hf, Ta, W, Si, Al, B, and Y. Metal nitride represented by 0 ≦ x <1.0, 0.40 ≦ y <0.54) Since its crystal structure is NaCl type and has p-type or n-type thermoelectric properties, it can be formed without using harmful elements and without heat treatment, and has a larger Seebeck coefficient than organic materials at room temperature. Furthermore, it has high heat resistance of at least 200 ° C.
 また、前記xを、0≦x≦0.2の範囲とすることで、Cr量の非常に多い窒化物電子材料となるので、NaCl型のCrN結晶構造を保ちながら、種々の元素を微量添加することにより、熱電性能向上を図ることが可能であり、ゼーベック係数の向上、電気伝導度の向上が可能となる。
 また、膜の表面に対して垂直方向に延在している柱状結晶であるので、膜の結晶性が高く、高い耐熱性が得られる。
Further, by setting x to a range of 0 ≦ x ≦ 0.2, a nitride electronic material having a very large amount of Cr can be obtained, so that various elements are added in minute amounts while maintaining the NaCl-type CrN crystal structure. By doing so, it is possible to improve the thermoelectric performance, and it is possible to improve the Seebeck coefficient and the electrical conductivity.
Further, since the columnar crystals extend in the direction perpendicular to the surface of the film, the film has high crystallinity and high heat resistance can be obtained.
 さらに、柱状結晶の結晶径が、100nm以下であるので、ナノスケールの結晶サイズ化により、フォノン(格子)による熱が伝わり難くなることで、比較的粒子サイズの大きい(100nm以上)バルク焼結体材料に比べて、熱電薄膜の面内方向の熱伝導率が小さくなり、熱電薄膜の面内の温度差をより大きくすることができる。したがって、熱起電力が大きくなり、熱電性能を向上させることが可能となる。また、材料自体のフレキシブル性も得ることができる。 Furthermore, since the crystal diameter of the columnar crystal is 100 nm or less, the bulk-sintered body having a relatively large particle size (100 nm or more) due to the difficulty in transferring heat due to phonons (lattices) due to nano-scale crystal sizing. Compared with the material, the thermal conductivity in the in-plane direction of the thermoelectric thin film is reduced, and the in-plane temperature difference of the thermoelectric thin film can be further increased. Therefore, the thermoelectromotive force is increased and the thermoelectric performance can be improved. Moreover, the flexibility of the material itself can also be obtained.
 本実施形態の熱電変換素子1では、p型の薄膜熱電変換部3p及びn型の薄膜熱電変換部3nの少なくとも一方が、上記窒化物熱電変換材料で形成されているので、室温でゼーベック係数の大きい薄膜熱電変換部3p,3nにより、良好な性能を有するペルチェ素子、ゼーベック素子又はサーモパイル等とすることができる。 In the thermoelectric conversion element 1 of the present embodiment, at least one of the p-type thin film thermoelectric conversion part 3p and the n-type thin film thermoelectric conversion part 3n is formed of the nitride thermoelectric conversion material. The large thin film thermoelectric converters 3p and 3n can be a Peltier element, Seebeck element, thermopile, or the like having good performance.
 本実施形態の窒化物熱電変換材料の製造方法では、Crスパッタリングターゲット又はCr−M合金スパッタリングターゲット(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。)を用いて窒素含有雰囲気中で反応性スパッタを行って成膜するので、上記(Cr1−x1−yからなる本発明の窒化物熱電変換材料を熱処理なしで成膜することができる。 In the manufacturing method of the nitride thermoelectric conversion material of the present embodiment, a Cr sputtering target or a Cr-M alloy sputtering target (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf). , Ta, W, Si, Al, B, and Y.) is used to perform film formation by reactive sputtering in a nitrogen-containing atmosphere. Therefore, the above (Cr 1-x M x ) 1 the nitride thermoelectric conversion material of the present invention comprising -y N y can be deposited without heat treatment.
 また、スパッタ時のNガス分率を制御することで、熱電性能をコントロール可能であると共に、同一ターゲットによるp型半導体材料とn型半導体材料との作り分けが可能である。また、メタルマスク法等により、p型半導体材料とn型半導体材料とを配線パターン形成することで、熱電性能の優れた素子を作製することが可能である。
 さらに、熱伝導率の低い絶縁基板(ガラス、樹脂フィルム)への成膜が可能であり、本発明の窒化物熱電変換材料はフレキシブル性も有するため、樹脂フィルム基板上に成膜することが可能である。
Further, by controlling the N 2 gas fraction at the time of sputtering, the thermoelectric performance can be controlled, and the p-type semiconductor material and the n-type semiconductor material can be made separately by the same target. In addition, an element having excellent thermoelectric performance can be manufactured by forming a wiring pattern of a p-type semiconductor material and an n-type semiconductor material by a metal mask method or the like.
Furthermore, it is possible to form a film on an insulating substrate (glass, resin film) having a low thermal conductivity, and the nitride thermoelectric conversion material of the present invention also has flexibility, so that it can be formed on a resin film substrate. It is.
 すなわち、反応性スパッタを、ArとNとの混合ガス雰囲気中で行い、この際のNガス分率であるN/(N+Ar)を、0.2~0.5の範囲に設定することで、n型の熱電特性を有する窒化物熱電変換材料を形成することができる。
 また、反応性スパッタを、ArとNとの混合ガス雰囲気中又はN雰囲気中で行い、この際のNガス分率であるN/(N+Ar)を、0.6~1.0の範囲に設定することで、n型の熱電特性を有する窒化物熱電変換材料を形成することができる。
That is, reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2, and N 2 / (N 2 + Ar), which is the N 2 gas fraction at this time, is set in the range of 0.2 to 0.5. By setting, a nitride thermoelectric conversion material having n-type thermoelectric characteristics can be formed.
Further, reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2 or in an N 2 atmosphere, and N 2 / (N 2 + Ar) which is the N 2 gas fraction at this time is set to 0.6 to 1 By setting the range to 0.0, a nitride thermoelectric conversion material having n-type thermoelectric characteristics can be formed.
 次に、本発明に係る窒化物熱電変換材料及びその製造方法並びに熱電変換素子について、上記実施形態に基づいて作製した実施例により評価した結果を、図2から図15を参照して具体的に説明する。 Next, with respect to the nitride thermoelectric conversion material, the manufacturing method thereof, and the thermoelectric conversion element according to the present invention, the results of evaluation based on the examples manufactured based on the above embodiment are specifically described with reference to FIGS. explain.
 まず、反応性スパッタ法にて、表1及び表2に示すように、Crスパッタリングターゲット又は組成が「M/(Cr+M)比」(原子%)であるCr−M合金スパッタリングターゲットで、無アルカリガラス基板上に、様々な組成比で形成された本発明の窒化物熱電変換材料を厚さ400~600nmで成膜した。膜厚は、Veeco社製表面形状測定装置:Dektak 150で測定した。
 一部のサンプルは、ポリイミドフィルム基板上へも成膜した。
First, as shown in Tables 1 and 2, by reactive sputtering, a Cr sputtering target or a Cr—M alloy sputtering target whose composition is “M / (Cr + M) ratio” (atomic%) The nitride thermoelectric conversion material of the present invention formed with various composition ratios was formed on a substrate with a thickness of 400 to 600 nm. The film thickness was measured with a surface shape measuring device: Dektak 150 manufactured by Veeco.
Some samples were also deposited on a polyimide film substrate.
 なお、比較としてBiTeのプリンテッド薄膜(比較例1)、Cr薄膜(比較例2)及びTiN薄膜(比較例3)をそれぞれ作製し、これら比較例についても同様に作製して評価を行った。
 比較例1のBiTeのプリンテッド薄膜は以下のようにして用意した。BiTe微粉末をエチレングリコールと分散剤とに混合し、BiTeペーストを得た。ディスペンサーにより、液晶ポリマー(LCP)基板上に、1ミクロン程度の膜厚をもつBiTeを配線化し、乾燥後、N雰囲気中で、200℃により熱処理した。このサンプルは、フィルムとの密着もとれており、熱電特性を評価した後、SEMにてクラックがないことを確認した。
 比較例2のCr薄膜、および、比較例3のTiN薄膜については、それぞれCrターゲット、Tiターゲットを用いて反応性スパッタ法にて成膜した。比較例2のCr薄膜は、Arガス雰囲気中、比較例3のTiN薄膜については、ArとNとの混合ガス雰囲気中にて成膜した。
For comparison, a Bi 2 Te 3 printed thin film (Comparative Example 1), a Cr thin film (Comparative Example 2), and a TiN thin film (Comparative Example 3) were prepared, respectively. went.
The printed thin film of Bi 2 Te 3 of Comparative Example 1 was prepared as follows. Bi 2 Te 3 fine powder was mixed with ethylene glycol and a dispersant to obtain a Bi 2 Te 3 paste. Bi 2 Te 3 having a thickness of about 1 micron was formed on a liquid crystal polymer (LCP) substrate with a dispenser, dried, and then heat treated at 200 ° C. in an N 2 atmosphere. This sample was taken into close contact with the film, and after evaluating thermoelectric properties, it was confirmed by SEM that there were no cracks.
The Cr thin film of Comparative Example 2 and the TiN thin film of Comparative Example 3 were formed by reactive sputtering using a Cr target and a Ti target, respectively. The Cr thin film of Comparative Example 2 was formed in an Ar gas atmosphere, and the TiN thin film of Comparative Example 3 was formed in a mixed gas atmosphere of Ar and N 2 .
 また、成膜工程のスパッタ条件は、到達真空度:5×10−6Pa、スパッタガス圧:0.67Pa、ターゲット投入電力(出力):300Wで、Arガス+窒素ガスの混合ガス雰囲気下において、窒素ガス分圧を0~100%と変えて作製した。
 さらに、成膜した上記窒化物熱電変換材料の薄膜上に、一対のAg電極をメタルマスク法によりパターン形成して本発明の実施例及び比較例を作製した。
Also, sputtering conditions in the film forming process are as follows: ultimate vacuum: 5 × 10 −6 Pa, sputtering gas pressure: 0.67 Pa, target input power (output): 300 W, in a mixed gas atmosphere of Ar gas + nitrogen gas The nitrogen gas partial pressure was changed from 0 to 100%.
Further, a pair of Ag electrodes was formed by patterning on the thin film of the nitride thermoelectric conversion material formed by the metal mask method, and Examples and Comparative Examples of the present invention were produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<組成分析>
 反応性スパッタ法にて得られた窒化物熱電変換材料について、EPMA(Electron Probe Micro Analyzer)にて組成分析を行った。このEPMA分析加速電圧8kV条件下で実施した。Tiを含む材料におけるTiのL線とNのKα線におけるスペクトル重なりについては干渉補正法により強度分離した。
 CrN、CrTiN、CrSiN、CrFeN、CrYN、CrBNについて、窒素ガス分圧に対する窒化量:N/(Cr+M+N)比を調べた結果を、図2に示す。なお、N/(Cr+M+N)の定量精度は±2%である。なお、表中の組成比は「原子%」で示している。
 n型熱電特性を示すNガス分率0.2~0.5の範囲では、0.40≦N/(Cr+M+N)<0.52であり、p型熱電特性を示すNガス分率0.6~1.0の範囲では、0.51≦N/(Cr+M+N)<0.54であった。p型材料の方が、n型材料よりも窒化量が多く、窒素欠陥量が少ないと考えられる。
 なお、M/(Cr+M)比について、定量精度2%範囲内にて、図3に示すように、ターゲットのM/(Cr+M)比組成と略同じであることを確認している。
<Composition analysis>
The nitride thermoelectric conversion material obtained by the reactive sputtering method was subjected to composition analysis by EPMA (Electron Probe Micro Analyzer). The EPMA analysis acceleration voltage was 8 kV. The spectral overlap between the Ti L line and the N Kα line in the Ti-containing material was separated by the interference correction method.
FIG. 2 shows the results of examining the nitriding amount: N / (Cr + M + N) ratio with respect to the nitrogen gas partial pressure for CrN, CrTiN, CrSiN, CrFeN, CrYN, and CrBN. The quantitative accuracy of N / (Cr + M + N) is ± 2%. The composition ratio in the table is indicated by “atomic%”.
In the range of N 2 gas fraction 0.2 to 0.5 showing n-type thermoelectric characteristics, 0.40 ≦ N / (Cr + M + N) <0.52, and N 2 gas fraction showing p-type thermoelectric characteristics 0 In the range of .6 to 1.0, 0.51 ≦ N / (Cr + M + N) <0.54. It is considered that the p-type material has a larger amount of nitriding and a smaller amount of nitrogen defects than the n-type material.
It has been confirmed that the M / (Cr + M) ratio is substantially the same as the M / (Cr + M) ratio composition of the target as shown in FIG.
 400~600nm厚のEPMA分析においては、酸素がガラス基板由来か窒化物膜中に含まれる酸素か不確定のため、一部のサンプルについて、X線光電子分光法(XPS)にて元素分析も行った。このXPSでは、Arスパッタにより、最表面から深さ20nm、60nm、100nmのスパッタ面において、定量分析を実施した。深さ20nm、60nm、100nmのスパッタ面におけるM/(Cr+M)比について、定量精度の範囲内で同じM/(Cr+M)組成比であることを確認している。
 なお、上記X線光電子分光法(XPS)は、X線源をAlKα(350W)とし、パスエネルギー:46.95eV、測定間隔:0.1eV、試料面に対する光電子取り出し角:45deg、分析エリアを約800μmφの条件下で定量分析を実施した。
 その結果、いずれのサンプルにおいても、酸素比O/(Cr+M+N+O)が、0<O/(Cr+M+N+O)<0.05となり、酸素が不可避不純物として含まれていることがわかる。
 しかしながら、熱電特性(ゼーベック係数、電気伝導率)と酸素量とに相関がないことから、酸素は熱電特性への寄与が小さく、本熱電特性は金属窒化物が主体であると考えられる。
In the EPMA analysis with a thickness of 400 to 600 nm, since it is uncertain whether oxygen is derived from the glass substrate or contained in the nitride film, elemental analysis is also performed on some samples by X-ray photoelectron spectroscopy (XPS). It was. In this XPS, quantitative analysis was performed on the sputtered surfaces having a depth of 20 nm, 60 nm, and 100 nm from the outermost surface by Ar sputtering. It has been confirmed that the M / (Cr + M) ratio on the sputter surfaces with depths of 20 nm, 60 nm, and 100 nm is the same M / (Cr + M) composition ratio within the range of quantitative accuracy.
In the X-ray photoelectron spectroscopy (XPS), the X-ray source is AlKα (350 W), the path energy is 46.95 eV, the measurement interval is 0.1 eV, the photoelectron extraction angle with respect to the sample surface is 45 deg, and the analysis area is about Quantitative analysis was performed under the condition of 800 μmφ.
As a result, in any sample, the oxygen ratio O / (Cr + M + N + O) is 0 <O / (Cr + M + N + O) <0.05, which indicates that oxygen is included as an inevitable impurity.
However, since there is no correlation between the thermoelectric characteristics (Seebeck coefficient, electrical conductivity) and the amount of oxygen, oxygen has a small contribution to the thermoelectric characteristics, and it is considered that this thermoelectric characteristic is mainly composed of metal nitride.
<薄膜X線回折(結晶相の同定)>
 反応性スパッタ法にて得られた窒化物熱電変換材料を、視斜角入射X線回折(Grazing Incidence X−ray Diffraction)により、結晶相を同定した。この薄膜X線回折は、微小角X線回折実験であり、管球をCuとし、入射角を1度とすると共に2θ=20~130度の範囲で測定した。一部のサンプルについては、入射角を0度とし、2θ=20~100度の範囲で測定した。
<Thin film X-ray diffraction (identification of crystal phase)>
The crystal phase of the nitride thermoelectric conversion material obtained by the reactive sputtering method was identified by grazing incidence X-ray diffraction (Grazing Incidence X-ray Diffraction). This thin film X-ray diffraction was a micro-angle X-ray diffraction experiment, and was measured in the range of 2θ = 20 to 130 degrees with Cu as the tube, an incident angle of 1 degree. Some samples were measured in the range of 2θ = 20 to 100 degrees with an incident angle of 0 degrees.
 その結果、本発明の実施例は、いずれも結晶構造が立方晶のNaCl型(空間群Fm−3m(No.225))であり、[111]結晶配向性に優れた材料であった。
なお、バルクのCrN系材料として、CrNがあるが、その結晶構造は、六方晶系の空間群P−31m(No.162)であり、本窒化物熱電変換材料とは結晶構造が異なっている。
 XRDプロファイルの一例として、実施例7(p型のCrSiN)と、実施例5(n型のCrSiN)と、実施例18(p型のCrTiN)と、実施例16(n型のCrTiN)とについて、図4から図7に示す。
As a result, all of the examples of the present invention were NaCl-type (space group Fm-3m (No. 225)) having a cubic crystal structure, and were excellent in [111] crystal orientation.
Although there is Cr 2 N as a bulk CrN-based material, the crystal structure thereof is a hexagonal space group P-31m (No. 162), and the crystal structure is different from the nitride thermoelectric conversion material. ing.
As an example of the XRD profile, Example 7 (p-type CrSiN), Example 5 (n-type CrSiN), Example 18 (p-type CrTiN), and Example 16 (n-type CrTiN) 4 to FIG.
<性能評価>
 次に、本発明の実施例及び比較例について、ゼーベック係数S、電気伝導率σ及びpower factor(パワー因子:Sσ)について評価した。なお、ゼーベック係数及び電気伝導率は、室温で測定した。
 ゼーベック係数は、市販のペルチェ素子を2個用い、2個のペルチェ素子間で温度差がつくように、一方のペルチェ素子を冷却、他方のペルチェ素子を加熱するように配線し、2~10℃の温度差をつけて測定した。0.15mmΦのシース熱電対(坂口電熱T350155 シース材:Pt、シース内充填物:MgO粉末)を使って測定し、シースを電極として熱起電力を測定すると共に、熱電対を使って温度差を測定した。得られた熱起電力と温度差との関係を最小二乗法による直線近似することで、ゼーベック係数を評価した。また、電気伝導率は、Van der Pauw法で測定した。
<Performance evaluation>
Next, the Seebeck coefficient S, the electrical conductivity σ, and the power factor (power factor: S 2 σ) were evaluated for the examples and comparative examples of the present invention. Note that the Seebeck coefficient and the electrical conductivity were measured at room temperature.
The Seebeck coefficient is 2 to 10 ° C by using two commercially available Peltier elements and wiring so that one Peltier element is cooled and the other Peltier element is heated so that there is a temperature difference between the two Peltier elements. Measured with a temperature difference of. Measure using a 0.15mmφ sheath thermocouple (Sakaguchi Electrothermal T350155 sheath material: Pt, filling in sheath: MgO powder), measure thermoelectromotive force using the sheath as an electrode, and measure temperature difference using thermocouple It was measured. The Seebeck coefficient was evaluated by linearly approximating the relationship between the obtained thermoelectromotive force and the temperature difference by the least square method. Moreover, the electrical conductivity was measured by the Van der Pauw method.
 次に、ゼーベック係数の評価結果より、p型半導体材料なのか、n型半導体材料なのかについて判定した。その結果、Nガス分率(ガス比)であるN/(N+Ar)が、0.2~0.5の範囲にある実施例は、n型の熱電特性を有し、N/(N+Ar)が、0.6~1.0の範囲にある実施例では、p型の熱電特性を有していた。
 また、電気伝導率を調べた結果、n型材料、p型材料ともに、ほとんどの材料で10S/cm以上の高い電気伝導率を有していた。特に、一部のサンプルについては、1000S/cm以上のきわめて高い電気伝導率を有していた。
 これらの結果、本発明の実施例は、いずれも比較的大きなゼーベック係数の絶対値であると共に、良好な電気伝導率を有していた。また、スパッタ時のNガス分率を制御することで、ゼーベック係数が変化し、同一ターゲットを用いて、熱電性能をコントロール可能であった。
Next, from the evaluation result of the Seebeck coefficient, it was determined whether it was a p-type semiconductor material or an n-type semiconductor material. As a result, N 2 gas fraction is N 2 / a (gas ratio) (N 2 + Ar), examples ranging from 0.2 to 0.5, has an n-type thermoelectric properties of, N 2 Examples in which / (N 2 + Ar) is in the range of 0.6 to 1.0 had p-type thermoelectric properties.
As a result of examining the electrical conductivity, both the n-type material and the p-type material had a high electrical conductivity of 10 S / cm or more in almost all materials. In particular, some samples had extremely high electric conductivity of 1000 S / cm or more.
As a result, each of the examples of the present invention had a relatively large absolute value of Seebeck coefficient and good electrical conductivity. Further, by controlling the N 2 gas fraction during sputtering, the Seebeck coefficient was changed, and the thermoelectric performance could be controlled using the same target.
<結晶形態の評価>
 次に、窒化物熱電変換材料の断面における結晶形態を示す一例として、実施例7(p型CrSiN)と、実施例5(n型CrSiN)と、実施例18(p型CrTiN)と、実施例16(n型CrTiN)との各断面SEM写真を、図8から図11に示す。
 これらの実施例のサンプルは、へき開破断したものを用いている。また、45°の角度で傾斜観察した写真である。
<Evaluation of crystal form>
Next, Example 7 (p-type CrSiN), Example 5 (n-type CrSiN), Example 18 (p-type CrTiN), and Examples are shown as examples showing the crystal form in the cross section of the nitride thermoelectric conversion material. Each cross-sectional SEM photograph with 16 (n-type CrTiN) is shown in FIGS.
The samples of these examples are those that have been cleaved. Moreover, it is the photograph which observed the inclination at an angle of 45 degrees.
 これらの写真からわかるように、本発明の実施例は緻密な柱状結晶で形成されている。すなわち、基板面に垂直な方向に柱状の結晶が成長している様子が観測されている。なお、柱状結晶の破断は、へき開破断した際に生じたものである。
 なお、写真中の柱状結晶の粒径(結晶径)は、いずれも100nm以下であった。
As can be seen from these photographs, the examples of the present invention are formed of dense columnar crystals. That is, it has been observed that columnar crystals grow in a direction perpendicular to the substrate surface. The columnar crystals are broken when cleaved.
In addition, the particle size (crystal diameter) of the columnar crystals in the photograph was 100 nm or less.
 また、ここでの粒径は、基板面内における柱状結晶の直径であり、長さは、基板面に垂直な方向の柱状結晶の長さ(膜厚)である。
 柱状結晶のアスペクト比を(長さ)÷(粒径)として定義すると、本実施例は5以上の大きいアスペクト比をもっている。柱状結晶の粒径が小さいことにより、膜が緻密となっていると考えられる。
Further, the grain size here is the diameter of the columnar crystal in the substrate surface, and the length is the length (film thickness) of the columnar crystal in the direction perpendicular to the substrate surface.
When the aspect ratio of the columnar crystal is defined as (length) / (grain size), this embodiment has a large aspect ratio of 5 or more. It is considered that the film is dense due to the small grain size of the columnar crystals.
<耐熱性>
 各実施例について、ゼーベック係数の温度依存性について評価した。その結果を、p型の窒化物熱電変換材料(実施例3,7,18,34,50)については、図12に示すと共に、n型の窒化物熱電変換材料(実施例1,10,21)については、図13に示す。
 次に、各実施例について、電気伝導率の温度依存性について評価した。その結果を、p型の窒化物熱電変換材料(実施例3,7,18,34,50)については、図14に示すと共に、n型の窒化物熱電変換材料(実施例1,10,21)については、図15に示す。
 これらの結果、本発明の実施例は、n型及びp型の両方とも200℃の耐熱性を有していることが分かる。ゼーベック係数については、n型及びp型の両方とも、温度上昇ともに、ゼーベック係数の絶対値が増加する傾向がみられた。電気伝導率については、n型及びp型材料ともに温度上昇ともに指数関数的に増加する傾向がみられた。したがって、n型及びp型特性をもつ本発明の窒化物熱電変換材料は、温度上昇ともに、熱電特性が向上していることがわかる。
<Heat resistance>
For each example, the temperature dependence of the Seebeck coefficient was evaluated. The results are shown in FIG. 12 for the p-type nitride thermoelectric conversion materials (Examples 3, 7, 18, 34, 50), and the n-type nitride thermoelectric conversion materials (Examples 1, 10, 21). ) Is shown in FIG.
Next, the temperature dependence of electrical conductivity was evaluated for each example. The results are shown in FIG. 14 for the p-type nitride thermoelectric conversion materials (Examples 3, 7, 18, 34, 50), and the n-type nitride thermoelectric conversion materials (Examples 1, 10, 21). ) Is shown in FIG.
As a result, it can be seen that the examples of the present invention have a heat resistance of 200 ° C. for both n-type and p-type. Regarding the Seebeck coefficient, in both n-type and p-type, the absolute value of the Seebeck coefficient tended to increase with increasing temperature. Regarding the electric conductivity, both n-type and p-type materials tended to increase exponentially with increasing temperature. Therefore, it can be seen that the nitride thermoelectric conversion material of the present invention having n-type and p-type characteristics has improved thermoelectric characteristics as the temperature rises.
<膜厚方向の熱伝導率>
 次に、ガラス基板上に本発明の窒化物熱電変換材料を成膜し、その薄膜の膜厚方向における熱伝導率を、ピコ秒サーモリフレクタンス法を用いて測定した。
 まず、ガラス基板上に本発明の窒化物熱電変換材料(実施例28と同じ材料)を1246nm成膜し、また反射膜としてMo膜を100nm成膜して評価サンプルを作製した。この評価サンプルについて、パルス光加熱サーモリフレクタンス法の表面加熱及び表面測温した。
<Thermal conductivity in the film thickness direction>
Next, the nitride thermoelectric conversion material of the present invention was formed on a glass substrate, and the thermal conductivity in the film thickness direction of the thin film was measured using a picosecond thermoreflectance method.
First, a 1246 nm-thick nitride thermoelectric conversion material of the present invention (the same material as in Example 28) was formed on a glass substrate, and an Mo film was formed as a reflective film to a thickness of 100 nm to prepare an evaluation sample. About this evaluation sample, the surface heating and surface temperature measurement of the pulsed light heating thermoreflectance method were carried out.
 得られた温度履歴曲線より、時定数及び温度振幅係数を求め、薄膜の膜厚方向の熱浸透率を計測した。さらに、得られた熱浸透率と比熱容量と密度とに基づいて、熱伝導率を算出した。このとき、比熱容量と密度とは、バルク(CrN、VN)の値を基準とした。なお、熱伝導率の値は、薄膜と同一組成のバルク材料の比熱容量と密度とを代用して算出した推定値となるが、熱拡散率が薄膜の結晶構造や微構造に敏感に異存して大きく変化するのに対して、比熱容量と密度とは結晶構造や微構造にあまり依存しないため、緻密な薄膜であればバルクの値との差はそれほど大きくないと考えられる。 A time constant and a temperature amplitude coefficient were obtained from the obtained temperature history curve, and the thermal permeability in the film thickness direction of the thin film was measured. Furthermore, the thermal conductivity was calculated based on the obtained thermal permeability, specific heat capacity, and density. At this time, the specific heat capacity and density were based on values of bulk (Cr 2 N, VN). The value of thermal conductivity is an estimated value calculated by substituting the specific heat capacity and density of the bulk material with the same composition as the thin film, but the thermal diffusivity is sensitive to the crystal structure and microstructure of the thin film. On the other hand, the specific heat capacity and density do not depend much on the crystal structure or microstructure, so that the difference from the bulk value is not so large for a dense thin film.
 この結果、本発明の評価サンプル(実施例28と同じ材料)において、室温における膜厚方向の熱伝導率は、6.2W/(m・K)であった。
 なお、本実施の熱伝導率評価は、1246nm成膜された膜厚方向の熱伝導率であったが、100nm以下の柱状結晶で構成される面内方向の熱伝導率においては、フォノン(格子)による熱伝導率低下が見込まれるため、6.2W/(m・K)より小さい熱伝導率であると推定される。
As a result, in the evaluation sample of the present invention (the same material as in Example 28), the thermal conductivity in the film thickness direction at room temperature was 6.2 W / (m · K).
Note that the thermal conductivity evaluation of this embodiment was the thermal conductivity in the film thickness direction of 1246 nm, but in the in-plane direction thermal conductivity composed of columnar crystals of 100 nm or less, phonons (lattice ) Is expected to be lower than 6.2 W / (m · K).
 また、この評価サンプル(実施例28と同じ材料)に対して、性能指数:ZT値を評価した。ゼーベック係数及び電気伝導率は、面内方向にて評価し、熱伝導率は膜厚方向にて評価した。その結果、室温(25℃)におけるZT値は、0.004であった。
 なお、ZT値は、以下の式で定義される。
 ZT=(Sσ/κ)×T
(S:ゼーベック係数、σ:電気伝導率、κ:熱伝導率、T:温度)
Further, the figure of merit: ZT value was evaluated for this evaluation sample (the same material as in Example 28). Seebeck coefficient and electrical conductivity were evaluated in the in-plane direction, and thermal conductivity was evaluated in the film thickness direction. As a result, the ZT value at room temperature (25 ° C.) was 0.004.
The ZT value is defined by the following formula.
ZT = (S 2 σ / κ) × T
(S: Seebeck coefficient, σ: electrical conductivity, κ: thermal conductivity, T: temperature)
 なお、本発明の技術範囲は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.
 1…熱電変換素子、2…絶縁性基材、3p…p型の薄膜熱電変換部、3n…n型の薄膜熱電変換部、4…接続電極部、5…電極端子部 DESCRIPTION OF SYMBOLS 1 ... Thermoelectric conversion element, 2 ... Insulating base material, 3p ... P-type thin film thermoelectric conversion part, 3n ... N-type thin film thermoelectric conversion part, 4 ... Connection electrode part, 5 ... Electrode terminal part

Claims (10)

  1.  一般式:(Cr1−x1−y(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。0≦x<1.0、0.40≦y<0.54)で示される金属窒化物からなり、
     その結晶構造が、NaCl型であり、p型又はn型の熱電特性を有することを特徴とする窒化物熱電変換材料。
    General formula: (Cr 1-x M x ) 1-y N y (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta, W, Si, Al , B and Y. It is composed of a metal nitride represented by 0 ≦ x <1.0, 0.40 ≦ y <0.54),
    A nitride thermoelectric conversion material characterized in that its crystal structure is NaCl type and has p-type or n-type thermoelectric properties.
  2. 請求項1に記載の窒化物熱電変換材料において、
     前記xが、0≦x≦0.2の範囲であることを特徴とする窒化物熱電変換材料。
    The nitride thermoelectric conversion material according to claim 1,
    The nitride thermoelectric conversion material, wherein x is in a range of 0 ≦ x ≦ 0.2.
  3.  請求項1に記載の窒化物熱電変換材料において、
     膜状に形成され、
     前記膜の表面に対して垂直方向に延在している柱状結晶であることを特徴とする窒化物熱電変換材料。
    The nitride thermoelectric conversion material according to claim 1,
    Formed into a film,
    A nitride thermoelectric conversion material, which is a columnar crystal extending in a direction perpendicular to the surface of the film.
  4.  請求項3に記載の窒化物熱電変換材料において、
     前記柱状結晶の結晶径が、100nm以下であることを特徴とする窒化物熱電変換材料。
    In the nitride thermoelectric conversion material according to claim 3,
    A nitride thermoelectric conversion material, wherein the columnar crystal has a crystal diameter of 100 nm or less.
  5.  絶縁性基材と、
     該絶縁性基材上に形成されたp型の薄膜熱電変換部及びn型の薄膜熱電変換部と、
     前記p型の薄膜熱電変換部と前記n型の薄膜熱電変換部とを接続する接続電極部とを備え、
     前記p型の薄膜熱電変換部及び前記n型の薄膜熱電変換部の少なくとも一方が、請求項1に記載の窒化物熱電変換材料で形成されていることを特徴とする熱電変換素子。
    An insulating substrate;
    A p-type thin film thermoelectric conversion part and an n-type thin film thermoelectric conversion part formed on the insulating substrate;
    A connection electrode part for connecting the p-type thin film thermoelectric conversion part and the n-type thin film thermoelectric conversion part,
    2. The thermoelectric conversion element, wherein at least one of the p-type thin film thermoelectric conversion part and the n-type thin film thermoelectric conversion part is formed of the nitride thermoelectric conversion material according to claim 1.
  6.  請求項5に記載の熱電変換素子において、
     前記絶縁性基材が、絶縁性フィルムであることを特徴とする熱電変換素子。
    In the thermoelectric conversion element according to claim 5,
    The thermoelectric conversion element, wherein the insulating substrate is an insulating film.
  7.  請求項1に記載の窒化物熱電変換材料を製造する方法であって、
     Crスパッタリングターゲット又はCr−M合金スパッタリングターゲット(但し、MはTi,V,Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,Hf,Ta,W,Si,Al,B及びYのうち少なくとも1種を示す。)を用いて窒素含有雰囲気中で反応性スパッタを行って成膜する成膜工程を有していることを特徴とする窒化物熱電変換材料の製造方法。
    A method for producing the nitride thermoelectric conversion material according to claim 1,
    Cr sputtering target or Cr-M alloy sputtering target (where M is Ti, V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta, W, Si, Al, B and Y) A method for producing a nitride thermoelectric conversion material, which includes a film forming step of forming a film by performing reactive sputtering in a nitrogen-containing atmosphere using at least one kind.
  8.  請求項7に記載の窒化物熱電変換材料の製造方法において、
     前記反応性スパッタを、ArとNとの混合ガス雰囲気中又はN雰囲気中で行い、この際のNガス分率であるN/(N+Ar)を、0.2以上1.0以下の範囲に設定することを特徴とする窒化物熱電変換材料の製造方法。
    In the manufacturing method of the nitride thermoelectric conversion material according to claim 7,
    The reactive sputtering is performed in a mixed gas atmosphere of Ar and N 2 or in an N 2 atmosphere, and N 2 / (N 2 + Ar), which is the N 2 gas fraction at this time, is 0.2 to 1. A method for producing a nitride thermoelectric conversion material, which is set to a range of 0 or less.
  9.  請求項8に記載の窒化物熱電変換材料の製造方法において、
     前記Nガス分率を、0.2以上0.5以下の範囲に設定することを特徴とする窒化物熱電変換材料の製造方法。
    In the manufacturing method of the nitride thermoelectric conversion material according to claim 8,
    The method for producing a nitride thermoelectric conversion material, wherein the N 2 gas fraction is set in a range of 0.2 to 0.5.
  10.  請求項8に記載の窒化物熱電変換材料の製造方法において、
     前記Nガス分率を、0.6以上1.0以下の範囲に設定することを特徴とする窒化物熱電変換材料の製造方法。
    In the manufacturing method of the nitride thermoelectric conversion material according to claim 8,
    The method for producing a nitride thermoelectric conversion material, wherein the N 2 gas fraction is set in a range of 0.6 to 1.0.
PCT/JP2016/060282 2015-03-26 2016-03-22 Nitride thermoelectric conversion material and manufacturing method therefor and thermoelectric conversion element WO2016153073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015063588A JP6680995B2 (en) 2015-03-26 2015-03-26 Nitride thermoelectric conversion material, manufacturing method thereof, and thermoelectric conversion element
JP2015-063588 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016153073A1 true WO2016153073A1 (en) 2016-09-29

Family

ID=56978661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060282 WO2016153073A1 (en) 2015-03-26 2016-03-22 Nitride thermoelectric conversion material and manufacturing method therefor and thermoelectric conversion element

Country Status (2)

Country Link
JP (1) JP6680995B2 (en)
WO (1) WO2016153073A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107328808A (en) * 2017-06-30 2017-11-07 西安工业大学 Substrate and preparation and method of testing for testing semiconductive thin film Seebeck coefficient
JP2018072085A (en) * 2016-10-26 2018-05-10 京セラ株式会社 Heat penetration rate sensor
CN110536974A (en) * 2017-02-28 2019-12-03 普兰西复合材料有限公司 The method of sputtering target and production sputtering target
CN114959577A (en) * 2022-06-09 2022-08-30 中国科学院宁波材料技术与工程研究所 Cr-based multi-principal-element nitride coating and preparation method and application thereof
WO2022181521A1 (en) * 2021-02-26 2022-09-01 三菱マテリアル株式会社 Nitride semiconductor material and heat flow switching device comprising same
CN115710687A (en) * 2022-12-01 2023-02-24 广州智圣高分子材料科技有限公司 Method for preparing CoCrTi film by nitrogen reactive sputtering method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286463A (en) * 1999-03-30 2000-10-13 Nhk Spring Co Ltd Thermoelectric conversion module
JP2004063727A (en) * 2002-07-29 2004-02-26 National Institute Of Advanced Industrial & Technology Nitride thermoelectric conversion material
JP2006269721A (en) * 2005-03-24 2006-10-05 Yamaha Corp Thermoelectric module and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110055399A (en) * 2009-11-19 2011-05-25 한국생산기술연구원 Sputtering target mother material of multi-component alloy system and method for manufacturing complex-coating thin film of multi-function
JP6015425B2 (en) * 2012-12-21 2016-10-26 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6015423B2 (en) * 2012-12-21 2016-10-26 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6308364B2 (en) * 2013-06-05 2018-04-11 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6354947B2 (en) * 2013-08-30 2018-07-11 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286463A (en) * 1999-03-30 2000-10-13 Nhk Spring Co Ltd Thermoelectric conversion module
JP2004063727A (en) * 2002-07-29 2004-02-26 National Institute Of Advanced Industrial & Technology Nitride thermoelectric conversion material
JP2006269721A (en) * 2005-03-24 2006-10-05 Yamaha Corp Thermoelectric module and its manufacturing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONGDONG WANG ET AL.: "Properties of Cr-N films deposited by reactive ion plating", THE JOURNAL OF THE SURFACE FINISHING SOCIETY OF JAPAN, vol. 41, no. 5, 30 October 2009 (2009-10-30), pages 519 - 523, XP055318195, ISSN: 0915-1869 *
QUINTELA, C. X. ET AL.: "Thermoelectric Properties of Heavy-Element Doped CrN", APPLIED PHYSICS LETTERS, vol. 104, 13 January 2014 (2014-01-13), pages 022103 - 1 -022103-5, XP012180455, ISSN: 0003-6951 *
QUINTELA, C. X. ET AL.: "Thermoelectric Properties of Stoichiometric and Hole-Doped CrN", APPLIED PHYSICS LETTERS, vol. 94, 16 April 2009 (2009-04-16), pages 152103 - 1 -152103-3, XP012120851, ISSN: 0003-6951 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072085A (en) * 2016-10-26 2018-05-10 京セラ株式会社 Heat penetration rate sensor
CN110536974A (en) * 2017-02-28 2019-12-03 普兰西复合材料有限公司 The method of sputtering target and production sputtering target
CN110536974B (en) * 2017-02-28 2022-03-04 普兰西复合材料有限公司 Sputtering target and method for producing a sputtering target
US11767587B2 (en) 2017-02-28 2023-09-26 Plansee Composite Materials Gmbh Sputter target and method for producing a sputter target
CN107328808A (en) * 2017-06-30 2017-11-07 西安工业大学 Substrate and preparation and method of testing for testing semiconductive thin film Seebeck coefficient
WO2022181521A1 (en) * 2021-02-26 2022-09-01 三菱マテリアル株式会社 Nitride semiconductor material and heat flow switching device comprising same
CN114959577A (en) * 2022-06-09 2022-08-30 中国科学院宁波材料技术与工程研究所 Cr-based multi-principal-element nitride coating and preparation method and application thereof
CN114959577B (en) * 2022-06-09 2024-05-14 中国科学院宁波材料技术与工程研究所 Cr-based multi-principal element nitride coating and preparation method and application thereof
CN115710687A (en) * 2022-12-01 2023-02-24 广州智圣高分子材料科技有限公司 Method for preparing CoCrTi film by nitrogen reactive sputtering method

Also Published As

Publication number Publication date
JP2016184636A (en) 2016-10-20
JP6680995B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
WO2016153073A1 (en) Nitride thermoelectric conversion material and manufacturing method therefor and thermoelectric conversion element
JP6354947B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6308435B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6318915B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
WO2014097910A1 (en) Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
TW201509868A (en) Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
JP6308436B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
Vora–ud et al. Power factor investigation of RF magnetron sputtered c-GeSbTe thin film
TW201516161A (en) Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
WO2022181642A1 (en) Magnetic material, laminate, laminate manufacturing method, thermoelectric conversion element, and magnetic sensor
JP3922651B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element
JP6384672B2 (en) Nitride thermoelectric conversion material, method for producing the same, and thermoelectric conversion element
JP6492855B2 (en) Nitride thermoelectric conversion material, method for producing the same, and thermoelectric conversion element
TW201515027A (en) Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor
Rogé et al. Effect of post-deposition thermal treatment on thermoelectric properties of pulsed-laser deposited Ca3Co4O9 thin films
JP6015425B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
EP4299516A1 (en) Nitride insulator material, method for manufacturing same, heat flow switching element and thermoelectric conversion element
JP2016134505A (en) Metal nitride material for thermistor, manufacturing method for the same and film type thermistor sensor
Takahashi et al. Effect of deposition temperature and post-heat-treatment condition on the characteristics of (100)-self-orientation LaNiO3 films prepared by RF magnetron sputter deposition
Zhang et al. Thermoelectric Properties of C-Axis-Oriented Ca3Co4O9+ δ Films Grown on MgO-Buffered Si (100) by PLD Technique
JP2016134504A (en) Metal nitride material for thermistor, manufacturing method for the same and film type thermistor sensor
JP2016134490A (en) Metal nitride material for thermistor, manufacturing method for the same and film type thermistor sensor
JP2016134491A (en) Metal nitride material for thermistor, manufacturing method for the same and film type thermistor sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768975

Country of ref document: EP

Kind code of ref document: A1