WO2016152973A1 - Electric disc brake device - Google Patents

Electric disc brake device Download PDF

Info

Publication number
WO2016152973A1
WO2016152973A1 PCT/JP2016/059374 JP2016059374W WO2016152973A1 WO 2016152973 A1 WO2016152973 A1 WO 2016152973A1 JP 2016059374 W JP2016059374 W JP 2016059374W WO 2016152973 A1 WO2016152973 A1 WO 2016152973A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
force
rotor
servo
brake device
Prior art date
Application number
PCT/JP2016/059374
Other languages
French (fr)
Japanese (ja)
Inventor
利史 前原
Original Assignee
曙ブレーキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曙ブレーキ工業株式会社 filed Critical 曙ブレーキ工業株式会社
Publication of WO2016152973A1 publication Critical patent/WO2016152973A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes

Definitions

  • the present invention relates to an electric disc brake device.
  • the electric disc brake device that uses an electric motor as a drive source eliminates the need for piping compared to a hydraulic disc brake that has been widely used in the past, and facilitates manufacturing and reduces costs.
  • the research is being conducted because there are many advantages, such as the fact that used brake fluid is not generated and the environmental load is small, and the response is improved by the amount of movement of the brake fluid.
  • it is necessary to convert the rotational motion of the electric motor into linear motion while increasing the force, and to strongly press the pair of pads against both side surfaces of the rotor.
  • various electric disc brake devices that combine a gear-type speed reducer and a ball-and-ramp type force-increasing mechanism have been conventionally proposed as described in Patent Document 1. .
  • FIG. 20 shows an example of a conventional structure described in Patent Document 1.
  • this electric disc brake device like an ordinary hydraulic disc brake, an inner pad 2 and an outer pad 3 are installed so as to be capable of displacement in the axial direction of the rotor 1 with a rotor 1 rotating together with wheels.
  • a support 4 (see FIG. 1 showing a first example of an embodiment of the present invention) is supported on the vehicle body (fixed to a knuckle constituting a suspension device) in a state adjacent to the rotor 1.
  • the inner and outer pads 2, 3 are in a state in which the rotor 1 is sandwiched from both sides in the axial direction, and the axial direction (the outer side is the outer side in the width direction of the vehicle body when assembled to the vehicle body, and the inner side is Similarly, the center side is also referred to, and the axial direction means the axial direction of the rotor 1 unless otherwise specified, both of which are the same throughout the present specification and claims). Supported by support 4.
  • a caliper 5 is assembled to the support 4 so as to be capable of axial displacement.
  • the caliper 5 has a caliper claw 6 at the outer side end portion and a cylinder 7 inside the inner side portion.
  • the caliper pawl 6 is opposed to the outer side surface of the outer pad 3 and the inner pad 2 is pressed toward the inner side surface of the rotor 1 by a thrust generating mechanism 8 provided in the cylinder 7. It is configured.
  • the thrust generating mechanism 8 provided in the cylinder 7. It is configured.
  • the electric motor 9 is used as a drive source to press the inner pad 2 against the inner side surface of the rotor 1, and the output shaft 10 of the electric motor 9 and the inner side surface of the inner pad 2.
  • a gear type reduction gear 11, the thrust generating mechanism 8, and a piston 12 are provided with a gear type reduction gear 11, the thrust generating mechanism 8, and a piston 12.
  • the rotational force decelerated by the speed reducer 11 and increased in torque is transmitted to the ball ramp type force increasing mechanism 14 via the feed screw mechanism 13 to rotate the drive side rotor 15 constituting the force increasing mechanism 14.
  • Let The drive-side rotor 15 is moved to the outer side by the function of the feed screw mechanism 13 until the clearance between the inner and outer pads 2 and 3 and the side surface of the rotor 1 is eliminated.
  • the force-increasing mechanism 14 is a so-called one-stage type force-increasing mechanism including the driving-side rotor 15, the driven-side stator 17, and the balls 19. Is adopted.
  • Patent Document 2 discloses a so-called two-stage type in which a first booster mechanism (first ramp mechanism) and a second booster mechanism (second ramp mechanism) are provided in series with respect to the transmission direction of thrust. An invention relating to an electric disc brake device employing a force-increasing mechanism is described.
  • the boosting force as the whole boosting mechanism is ensured while sufficiently securing the stroke as the whole boosting mechanism as compared with the structure employing the one-stage boosting mechanism.
  • a sufficient ratio can be secured to sufficiently increase the force (total thrust) that presses the inner pad against the inner side surface of the rotor.
  • the first force increasing mechanism and the second force increasing mechanism are sequentially operated based on the rotational force of the electric motor during braking. For this reason, compared with the structure which employ
  • the present invention can reduce power consumption even when a structure that can sufficiently increase the force (total thrust) that presses the pad against the side surface of the rotor can be suppressed.
  • the present invention was invented to realize a structure that can suppress Hertz stress generated in members constituting the mechanism.
  • a part of the expansion mechanism is disposed in a cylinder provided at a position opposite to the axial side surface of one of the two pads, and the pad is displaced in a direction approaching the rotor;
  • An electric disc brake device comprising: The expansion mechanism is configured to push the pad toward the rotor in the axial direction until the gap between the pad and the side surface of the rotor is eliminated based on the rotational driving force of the drive source; and An action force for displacing the pad toward the rotor by operating based on the rotational drive force of the drive source after the clearance is eliminated and the axial movement of the shaft feed mechanism is stopped.
  • a pad acting force transmission mechanism that generates A direction in which the pad is pressed against the rotor based on a brake tangential force acting on the pad when the pad is pressed against the rotor based on an acting force generated by the operation of the pad acting force transmission mechanism.
  • a self-servo mechanism that generates the axial force of An electric disc brake device in which a reaction force of an axial force generated by the operation of the self-servo mechanism is transmitted to the shaft feed mechanism via a thrust bearing.
  • the shaft feed mechanism (for example, a feed screw mechanism) is configured to include a member disposed at the innermost diameter position in the cylinder.
  • the shaft feed mechanism (for example, a feed screw mechanism) includes a shaft member (for example, a rotary shaft that is rotationally driven by a drive source) disposed on the center axis of the cylinder, The male screw member is externally fitted so as to be rotatable integrally with the shaft member, and the female screw member is screwed into the male screw member.
  • the pad acting force transmission mechanism is a reversible axial force conversion mechanism and generates an axial pressing force, as described in any one of (1) to (5) above Electric disc brake device.
  • the pad acting force transmission mechanism provides an acting force for displacing the servo plate in the direction of the brake tangential force by a reversible tangential force conversion mechanism (eccentric cam mechanism).
  • a reversible tangential force conversion mechanism eccentric cam mechanism.
  • the electric disc brake device configured as described above, even when a structure capable of sufficiently increasing the force (total thrust) pressing the pad against the side surface of the rotor is adopted, the power consumption can be suppressed.
  • the reaction force applied to the members constituting the expansion mechanism when the servo mechanism is activated can be kept small. That is, in the case of the electric disc brake device having the above-described configuration, the brake tangential force acting on the pad is applied by pressing the pad against the rotor based on the acting force generated by operating the pad acting force transmission mechanism.
  • a self-servo mechanism that generates an axial force in a direction of pressing the pad against the rotor is provided.
  • Such a self-servo mechanism does not operate based on the rotational force of the drive source (electric motor), unlike the second booster mechanism (second ramp mechanism) described in Patent Document 2 described above. For this reason, a large thrust can be generated by the self-servo mechanism, and power consumption can be reduced.
  • the reaction force of the axial force generated when the self-servo mechanism operates is supported by a thrust bearing provided separately from the expansion mechanism. For this reason, the magnitude of the reaction force applied to the member constituting the expansion mechanism can be reduced based on the axial force generated by the operation of the self-servo mechanism.
  • FIG. 1 is a cross-sectional view showing the structure of a first example of an electric disc brake device according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion A in FIG.
  • FIG. 3 is an exploded perspective view showing a part and a self-servo mechanism arranged in the cylinder shown in FIG. 1 and viewed from the outer side. 4 is a sectional view taken along line XX in FIG.
  • FIG. 5 is an enlarged view of part B of FIG.
  • FIG. 6 is an enlarged view of a portion C in FIG.
  • FIG. 7 is a YY cross-sectional view of FIG.
  • FIG. 8 is a plan view showing a state in which each component, self-servo mechanism, and inner pad arranged in the cylinder shown in FIG.
  • FIG. 9 is a perspective view showing a state in which the components, the self-servo mechanism, and the inner pad arranged in the cylinder shown in FIG. 1 are assembled.
  • FIG. 10 is a perspective view of the electric disc brake device of the first example of the embodiment of the present invention.
  • FIG. 11 is a plan view seen from above in FIG. 12 is a front view as seen from the left side of FIG. 13 is a side view as seen from below in FIG.
  • FIG. 14 is a cross-sectional view showing a structure of an electric disc brake device of a second example of the embodiment of the present invention.
  • 15 is an enlarged view of a main part of FIG. FIG.
  • FIG. 16 is an exploded perspective view showing a part and a self-servo mechanism arranged in the cylinder shown in FIG. 14 and viewed from the outer side.
  • FIG. 17 is a sectional view taken along line XX in FIG.
  • FIG. 18 is an enlarged view of a main part of FIG. 19 is a YY cross-sectional view of FIG.
  • FIG. 20 is a cross-sectional view showing an example of the structure of a conventional electric disc brake device.
  • the electric disc brake device of the first example is a floating caliper type, and is provided with a support 4 provided in a state straddling a portion near the outer diameter of the rotor 1 (see FIG. 20) that rotates together with wheels (not shown).
  • the caliper 5a is supported by the pair of guide pins 20a and 20a so that the axial displacement of the rotor 1 is possible.
  • the inner pad 2a and the outer pad 3a are provided so as to be axially displaceable with respect to the support 4.
  • the caliper 5a is disposed so as to straddle the inner and outer pads 2a and 3a.
  • a caliper claw 6a is provided at the outer side end of the caliper 5a, and a cylinder 7a is provided at the inner side.
  • the electric disc brake device includes an electric thrust generating mechanism 8a inside the cylinder 7a.
  • the thrust generating mechanism 8a includes a case 20, a feed screw mechanism 13a provided inside the case 20, which corresponds to the shaft feed mechanism described in the claims, a preset spring 21, and a rotational force as an axial force.
  • a ball ramp mechanism 22 which is an axial force conversion mechanism for conversion.
  • the feed screw mechanism 13a, the ball ramp mechanism 22, and a self-servo mechanism 69 described later constitute an expansion mechanism described in the claims.
  • the ball ramp mechanism 22 corresponds to a pad acting force transmission mechanism and an axial force conversion mechanism described in the claims.
  • the case 20 is a cylindrical member, and an inward flange portion 23 that is bent radially inward of the case 20 is formed at an inner side end portion.
  • a through hole 24 that penetrates the inward flange portion 23 in the axial direction is formed.
  • a pair of inner side notches 25, 25 are formed at two positions (two positions on the left and right in FIG. 3) that are opposite to each other in the radial direction of the case 20 in the inward flange 23.
  • a pair of outer side notches 26 and 26 are formed at two positions (upper and lower two positions in FIG. 3) on the outer side end of the case 20 which are opposite to the radial direction of the case 20.
  • the feed screw mechanism 13 a includes a rotating shaft 34, an adjust task screw 28, and a ramp rotor 29.
  • the rotating shaft 34 is provided in a state where the axial intermediate portion is inserted through a through hole 36 formed in the inner end surface of the cylinder 7a, and the male spline portion 35 is provided on the outer peripheral surface of the axial intermediate portion. Is formed.
  • the rotating shaft 34 is disposed at the innermost diameter portion in the cylinder 7a. Of such a rotating shaft 34, an inner side end portion protruding from the cylinder 7a toward the inner side is engaged with the inner side of the final gear 38 constituting the reduction gear 11a housed in the casing 37 so as not to be relatively rotatable. ing. In this way, the rotary shaft 34 and the adjustment task screw 28 can be rotated by the electric motor 9a.
  • the adjustment task screw 28 is a cylindrical member, and a flange portion 30 is formed on the outer peripheral surface of the inner side end portion so as to protrude outward in the radial direction of the adjustment task screw 28 over the entire periphery.
  • An outer side raceway surface 31 constituting a first thrust ball bearing 39 to be described later is formed on the inner side surface of the flange portion 30.
  • a male screw portion 32 is formed on the outer peripheral surface in the axial direction intermediate portion of the adjustment task screw 28.
  • a female spline portion 33 is formed on at least a part of the inner peripheral surface of the adjustment task screw 28 (a portion extending from the inner side end portion closer to the inner side end portion).
  • Such an adjustment task screw 28 is provided in a state in which the female spline portion 33 is spline-engaged with a male spline portion 35 formed in a portion near the outer side end portion of the outer peripheral surface of the rotating shaft 34. . Accordingly, the adjustment task screw 28 can rotate integrally with the rotary shaft 34.
  • the first thrust ball bearing 39 and the axial load are measured in order from the outer side between the flange portion 30 of the adjustment task screw 28 and the back end surface of the cylinder 7a.
  • the axial force sensor unit 40 is arranged.
  • the lamp rotor 29 is a tubular member, and a flange portion 41 is formed on the outer peripheral surface of the outer side end portion so as to protrude outward in the radial direction of the lamp rotor 29 over the entire circumference.
  • a female screw portion 42 is formed on the inner peripheral surface of the lamp rotor 29.
  • three drive side lamp tracks 43, 43 are provided at a portion closer to the inner end in the radial direction of the lamp rotor 29 while being separated in the circumferential direction of the lamp rotor 29. Is formed. The heights of these drive side lamp tracks 43, 43 in the axial direction gradually change in the same direction with respect to the circumferential direction.
  • an inner side raceway 44 constituting a second thrust ball bearing 53 described later is formed on the outer side surface of the flange portion 41 near the radially outer end of the lamp rotor 29. Further, in the flange portion 41, a through-hole penetrating the flange portion 41 in the axial direction is provided at one position in the radial direction outer end portion of the lamp rotor 29 and in the circumferential direction of the flange portion 41. 45 is formed.
  • Such a lamp rotor 29 is provided in a state where the female screw portion 42 is screwed into the male screw portion 32 of the adjustment task screw 28.
  • the feed screw mechanism 13a is irreversible with respect to force transmission.
  • the adjustment task screw 28 and the lamp rotor 29 do not return to the state before braking based on the reaction force of the axial force generated during braking. In this way, the braking force can be maintained even when the energization of the electric motor 9a is stopped.
  • the feed screw mechanism 13a of the first example is adapted to the adjuster screw 28 that is externally fitted so as to be capable of axial displacement with respect to the rotary shaft 34 disposed on the central axis of the cylinder 7a.
  • the ramp rotor 29 combined with the adjustment task screw 28. For this reason, the moment of inertia for operating the feed screw mechanism 13a can be reduced. As a result, it is possible to reduce the load of the electric motor 9a and reduce the power consumption.
  • the preset spring 21 is a torsion coil spring, and an inner side end is locked in the through hole 24 of the case 20, and an outer side end is locked in the through hole 45 of the lamp rotor 29. It is provided in the state. In this state, the preset spring 21 applies an elastic biasing force in the rotational direction to the lamp rotor 29.
  • the direction of the elastic urging force is a direction in which the lamp rotor 29 is displaced toward the inner side based on the threaded engagement between the male threaded portion 32 of the adjustment task screw 28 and the female threaded portion 42 of the lamp rotor 29.
  • the ball ramp mechanism 22 includes the lamp rotor 29, a lamp stator 46, a cage 47, and three balls 48 and 48.
  • the lamp stator 46 is a cylindrical member, and the lamp stator 46 is located at two positions (upper and lower two positions in FIG. 3) in the circumferential direction of the lamp stator 46 on the outer peripheral surface of the outer side end.
  • a pair of engaging projections 49, 49 projecting outward in the radial direction is formed.
  • a partial conical concave surface portion 50 having an inner diameter that increases toward the outer side is formed in the outer side half of the inner peripheral surface of the lamp stator 46.
  • driven side lamp tracks 51, 51 are formed on the inner side end face of the lamp stator 46 in a state of being separated in the circumferential direction.
  • Each of these driven-side ramp tracks 51, 51 is provided in a state where the height in the axial direction gradually changes in the opposite direction to the respective drive-side ramp tracks 43, 43 in the circumferential direction.
  • Such a lamp stator 46 is fitted on the outer peripheral surface of the adjustment task screw 28 on the outer side of the lamp rotor 29 in a state in which the displacement in the axial direction with respect to the adjustment task screw 28 is possible.
  • the cage 47 is an annular member, and has pockets 52 and 52 at three positions in the circumferential direction of the cage 47.
  • the balls 48, 48 are held in the pockets 52, 52 of the cage 47, and drive side lamp tracks 43, 43 of the lamp rotor 29 and driven side lamp tracks 51 of the lamp stator 46. , 51.
  • the inclination angles of the drive side lamp tracks 43 and 43 of the lamp rotor 29 and the driven side lamp tracks 51 and 51 of the lamp stator 46 are appropriately set within a range where self-locking is not performed.
  • the ball ramp mechanism 22 is reversible.
  • the lamp rotor 29 and the lamp stator 46 are displaced in a direction to return to the state before the braking based on the reaction force of the axial force generated at the time of braking. Is possible. In this way, the ball ramp mechanism 22 is prevented from locking when the brake is released.
  • the electric disk brake device of the first example includes a second thrust ball bearing 53 on the inner side of the case 20 and on the outer side in the radial direction of the ball ramp mechanism 22.
  • the second thrust ball bearing 53 is a member corresponding to the thrust bearing described in the claims.
  • the second thrust ball bearing 53 is provided in a state of being superimposed on the rotor 1 side of the feed screw mechanism 13a and in the radial direction of the ball ramp mechanism 22 and the cylinder 7a. .
  • the second thrust ball bearing 53 includes the ramp rotor 29 described above, the outer raceway ring 54, a cage 55, and a plurality of balls 56 and 56.
  • Outer raceway ring 54 is an annular member, and outer side raceway 57 is formed on the inner side surface.
  • Such an outer raceway ring 54 is externally fitted on the outer circumferential surface of the intermediate portion of the lamp stator 46 in an axially displaceable manner with respect to the lamp stator 46.
  • the cage 55 is an annular member, and has pockets 58 and 58 at a plurality of locations in the circumferential direction of the cage 55. The balls 56 and 56 are held between the pockets 58 and 58 of the retainer 55, and between the inner track 44 of the ramp rotor 29 and the outer track 57 of the outer track 54. It is provided so that it can roll freely.
  • the electric disk brake device of the first example includes a piston 12 a on the outer side of the ramp stator 46.
  • the piston 12a has a bottomed cylindrical shape that is open only on the inner side.
  • an outer flange 59 is formed on the outer peripheral surface of the inner end of the piston 12a so as to protrude outward in the radial direction of the piston 12a over the entire circumference.
  • the inner half of the inner peripheral surface of the piston 12a includes a partial conical concave surface portion 60 whose inner diameter increases toward the inner side, and a cylindrical surface portion 61 provided on the inner side of the partial conical concave surface portion 60. Become.
  • Such a piston 12 a is provided in a state in which the inner side end face is close to and opposed to the outer side end face of the lamp stator 46.
  • the electric disk brake device of the first example includes an iron-based alloy equalizer member 62 between the lamp stator 46 and the piston 12a.
  • the equalizer member 62 is used to prevent an unbalanced load due to deformation of the caliper 5a during braking from being input to the ball ramp mechanism 22.
  • the equalizer member 62 is a substantially trapezoidal tubular member whose cross-sectional shape with respect to a virtual plane including its own central axis decreases in the axial direction as it goes outward in the radial direction of the equalizer member 62.
  • Such an equalizer member 62 is surrounded by the outer peripheral surface of the outer end portion of the adjuster screw 28, the partial conical concave surface portion 50 of the ramp stator 46, the partial conical concave surface portion 60 and the cylindrical surface portion 61 of the piston 12a. Is placed in the space. In this state, the outer peripheral surface of the inner side end portion of the equalizer member 62 is in contact with the partial conical concave surface portion 50 of the lamp stator 46. On the other hand, the outer peripheral surface of the outer end portion of the equalizer member 62 is in contact with the partial conical concave surface portion 60 of the piston 12a. Accordingly, the ramp stator 46 can transmit an axial force to the piston 12a via the equalizer member 62.
  • the electric disc brake device of the first example includes a plug member 63 on the inner side of the case 20 and on the radially outer side of the inner side half of the piston 12a and the outer side end of the lamp stator 46.
  • the plug member 63 is an annular member, and has a shape seen from the axial direction at two positions on the outer circumferential surface opposite to the radial direction of the plug member 63 (upper and lower two positions in FIG. 3). A pair of cutout portions 64 and 64 cut out in an arc shape are formed. Further, on the outer peripheral surface of the plug member 63, the outer side of two positions (two positions on the left and right in FIG. 3) shifted from the both notches 64, 64 by about 90 degrees in the circumferential direction of the plug member 63. The half portion is cut out in a flat surface shape, and the inner side half portion and the flat surface portion at the position are continuous by the engagement step portions 65 and 65.
  • an axial convex portion 66 is formed on the radially inner end of the plug member 63 so as to protrude to the outer side over the entire circumference.
  • an inward flange portion 67 that protrudes inward in the radial direction of the plug member 63 is formed over the entire circumference at a portion that is aligned with the axial convex portion 66 in the axial direction. Is formed.
  • Such a plug member 63 is configured such that the inner side half of the piston 12 a and the inner half of the piston 12 a are in contact with the outer side surface of the outer raceway ring 54 constituting the second thrust ball bearing 53.
  • the lamp stator 46 is provided outside in the radial direction of the outer side end portion. Further, the plug member 63 is prevented from rotating by engaging both the notches 64 and 64 and the heads of bolts 104 and 104 described later.
  • the inward engagement pieces 27 and 27 provided at the outer side end portion of the case 20 have inner side surfaces that are opposite to the engagement step portions 65 and 65 of the plug member 63. , Facing each other through a slight gap.
  • a coil spring is maintained in a state in which an axial elastic force is maintained between the outer side surface of the outward flange portion 59 of the piston 12a and the inner side surface of the inward flange portion 23 of the plug member 63. 68 is provided. In this way, the piston 12a is pressed against the equalizer member 62.
  • the electric disc brake device of the first example includes a self-servo mechanism 69 that is a non-electric thrust generating mechanism.
  • the self-servo mechanism 69 and the ball ramp mechanism 22 are arranged in series in the axial direction.
  • Such a self-servo mechanism 69 includes a servo holder 70, a stator plate 71, a servo plate 72, a cage 73, and four rollers 74 and 74.
  • the servo holder 70 includes a holder base 75 and a pair of flange portions 76 and 76.
  • the holder base 75 includes a cylindrical part 77 and a bottom plate part 78.
  • the cylindrical portion 77 has a first boot locking groove 79 formed on the outer peripheral surface of the inner side end portion over the entire circumference. Further, the inner peripheral surface of the cylindrical portion 77 is provided on a small diameter cylindrical surface portion 80 formed at an inner side end portion and an outer side of the small diameter cylindrical surface portion 80, and has an inner diameter dimension larger than that of the small diameter cylindrical surface portion 80.
  • the bottom plate portion 78 has an annular shape, and is integrally formed on the inner peripheral surface of the inner end portion of the cylindrical portion 77 so as to protrude inward in the radial direction of the cylindrical portion 77.
  • the inner diameter of the bottom plate portion 78 is slightly larger than the outer diameter of the outer peripheral surface of the outer end portion of the plug member 63.
  • the intermediate portion in the radial direction of the cylindrical portion 77 and the two opposite positions on the opposite side in the radial direction of the cylindrical portion 77 (upper and lower two positions in FIG. 3)
  • a pair of through-holes 84 and 84 penetrating the bottom plate portion 78 in the axial direction are formed.
  • the flange portions 76, 76 are located at two positions (two positions on the left and right in FIG. 3) on the opposite side in the radial direction of the cylindrical portion 77 on the outer peripheral surface of the cylindrical portion 77. It is formed in a state of protruding outward in the radial direction.
  • the two flange portions 76 and 76 have a substantially hexagonal shape when viewed from the axial direction.
  • a torque transmission surface 85 (see FIG. 6) is formed at an end portion on the opposite side with respect to the circumferential direction of the rotor 1 among these flange portions 76 and 76.
  • the torque transmission surface 85 transmits a brake tangential force acting on the inner pad 2a from the rotor 1 by contacting the torque receiving surface 86 of the support 4 during braking.
  • pad clips 87, 87 formed by bending a metal plate into a predetermined shape are provided on the torque transmission surface 85.
  • a support-side clip 88 formed by bending a metal plate into a predetermined shape is also provided on the torque receiving surface 86 of the support 4.
  • a pair of through-holes 89 and 89 are formed through the flange portions 76 and 76 in the axial direction, respectively, near the radially outer ends of the flange portions 76 and 76.
  • the outer peripheral surface of the axial projection 66 of the plug member 63 is inserted inside the bottom plate portion 78, and the radially inner end portion of the inner side surface of the bottom plate portion 78 is the plug
  • the member 63 is provided in contact with the outer side end surface. Accordingly, the plug member 63 can transmit the axial force to the servo holder 70 during braking (when the feed screw mechanism is activated).
  • the second boot locking groove 90 formed on the inner peripheral surface of the outer side end portion of the cylinder 7a and the first boot locking groove 79 of the servo holder 70 are arranged between the first boot locking groove 79 and the first boot locking groove 79.
  • One boot 91 is provided.
  • the stator plate 71 is a ring-shaped member, and an outward flange 92 that protrudes outward in the radial direction of the stator plate 71 is formed on the outer side end of the outer peripheral surface. Further, in the stator plate 71, the intermediate portion in the radial direction of the stator plate 71 and the two opposite positions with respect to the radial direction of the stator plate 71 (upper and lower two positions in FIG. 3) A pair of through-holes 93 and 93 penetrating the stator plate 71 in the axial direction are formed. Further, first cam surfaces 94, 94 are formed at the radial intermediate portion of the outer side surface of the stator plate 71 and at four positions in the circumferential direction.
  • Each of these first cam surfaces 94, 94 has the deepest center in the brake tangential force direction (left-right direction in FIG. 3, vertical direction in FIG. 7) during braking, and proceeds to both ends with respect to the brake tangential force direction. It is formed so as to be shallower (inclined in the direction toward the outer side).
  • the stator plate 71 is configured such that, of the inner side surfaces, the radially inner end portion of the stator plate 71 is brought into contact with the outer side end surface of the axial convex portion 66 of the plug member 63, and among the inner side surfaces, An outer side end portion of the piston 12a in a state where a portion of the stator plate 71 extending from the radially inner end portion to the radially outer end portion is in contact with the outer side surface of the bottom plate portion 78 of the servo holder 70.
  • the outer periphery of the piston 12a is externally fitted in a state that allows axial displacement. Further, in this assembled state, the outer peripheral surface of the inner side end portion of the stator plate 71 is fitted into the small diameter cylindrical surface portion 80 of the servo holder 70.
  • the servo plate 72 is a disk-like member, and a locking groove 95 is formed around the entire circumference in the axially intermediate portion of the outer peripheral surface. Further, at two positions (outside the left and right in FIG. 3) opposite to the radial direction of the servo plate 72 on the outer side surface of the servo plate 72, a pair of engagements having a circular shape when viewed from the axial direction are provided. Joint recesses 96 are formed. In addition, second cam surfaces 97 and 97 (see FIG. 7) are formed in the inner side surface of the servo plate 72 at an intermediate portion in the radial direction of the servo plate 72 and at four positions in the circumferential direction. ing.
  • Each of these second cam surfaces 97, 97 is deepest at the center with respect to the direction of the brake tangential force during braking (vertical direction in FIG. 7), and becomes shallower toward the both ends with respect to the direction of the brake tangential force (inner side). It is formed in a state inclined to the direction toward That is, the second cam surfaces 97 and 97 are formed symmetrically with the first cam surfaces 94 and 94 in the axial direction. Further, two positions on the inner side surface of the servo plate 72 that are opposite to the radial direction of the servo plate 72 are a pair that is long in the direction of the brake tangential force during braking (front and back direction in FIGS. 1 and 2). Recesses 98, 98 are formed.
  • Such a servo plate 72 is provided on the outer side of the stator plate 71 with the second cam surfaces 97, 97 and the first cam surfaces 94, 94 facing each other in the axial direction. .
  • a pair formed on the inner side surface of the back plate 99 (see FIGS. 4 and 5) constituting the inner pad 2a is formed in the engaging recesses 96, 96 formed on the outer side surface of the servo plate 72.
  • the engaging projections 100 and 100 are engaged with no gap.
  • the servo plate 72 can be displaced in the axial direction with respect to the stator plate 71.
  • the servo plate 72 is braked and the inner pad 2a is displaced in the direction of the brake tangential force due to friction between the rotor 1 and the inner pad 2a, It can be displaced in the direction.
  • the cage 73 is a plate-like member having a substantially rectangular shape when viewed from the axial direction.
  • the shape of the cage 73 viewed from the axial direction is the direction of the brake tangential force at the time of braking at the center portion in the short direction (left and right direction in FIG. 3).
  • a pair of long through holes 101 and 101 having a long rectangular shape is formed in the short direction of the cage 73 (the horizontal direction in FIG. 3).
  • a central through hole 102 having a substantially cross shape when viewed from the axial direction is formed in the central portion of the cage 73.
  • the shape viewed from the axial direction is a rectangular shape that is long in the longitudinal direction of the retainer 73, and for holding rollers 74, 74 described later on the inside thereof.
  • Four pockets 103, 103 are formed.
  • Such a cage 73 is disposed between the stator plate 71 and the servo plate 72 in a state where the short direction of the cage 73 coincides with the direction of the brake tangential force during braking.
  • Each of the rollers 74 and 74 has a cylindrical shape and is held in the pockets 103 and 103 of the cage 73, and the first cam surfaces 94 and 94 of the stator plate 71 and the servo plates 72. It is clamped between the second cam surfaces 97 and 97.
  • the rollers 74 and 74 are located in the center (deepest position) with respect to the direction of the brake tangential force of the first cam surfaces 94 and 94 and the second cam surfaces 97 and 97.
  • the servo holder 70 having the above configuration, the stator plate 71, the servo plate 72, and the retainer 73 are connected by a pair of bolts 104 and 104.
  • each of these members 70, 71, 72, 73 includes both through holes 84, 84 of the servo holder 70, both through holes 93, 93 of the stator plate 71, and both through holes 101 of the cage 73. , 101 are connected to each other in such a manner that the front end portions (outer side end portions) of the pair of bolts 104, 104 are inserted inside the concave portions 98, 98 of the servo plate 72.
  • the inner diameters of the through holes 84 and 84 of the servo holder 70 and the through holes 93 and 93 of the stator plate 71 are such that the bolts 104 and 104 can be inserted without rattling.
  • the servo plate 72 has a length dimension in the direction of the brake tangential force of the concave portions 98 and 98, and an outer diameter dimension of the tip portions of the bolts 104 and 104. It is possible to displace in the direction of the brake tangential force by the difference between the two.
  • the cage 73 also has a difference between the length in the direction of the brake tangential force of the through holes 101 and 101 of the cage 73 and the outer diameter of the intermediate portion in the axial direction of the bolts 104 and 104. , And can be displaced in this direction.
  • the back plate 99 constituting the inner pad 2 a is positioned with respect to the servo holder 70 by a pair of support mechanisms 105, 105 and has a brake tangential force with respect to the servo holder 70. It is supported so that it can be displaced in the direction.
  • each of the support mechanisms 105 and 105 includes a pin 106, a cup 107, and a compression coil spring 108.
  • the pin 106 includes a head 109, a shaft 110, and a tip 111.
  • the shaft portion 110 is formed in a pair of through holes 112 and 112 formed at both circumferential ends of the back plate 99 and both flange portions 76 and 76 constituting the servo holder 70.
  • the head 109 is disposed on the outer side through both the through holes 89, 89 and is inserted in a state of being prevented from coming off to the inner side.
  • the cup 107 is a dish-shaped member in which a through hole 114 is formed at the center of the bottom 113 in the radial direction.
  • the through hole 114 is externally fitted to the end portion of the shaft portion 110 of the pin 106 with the bottom 113 disposed on the outer side.
  • the cup 107 is prevented from slipping off to the inner side by engaging the inner side surface of the bottom portion 113 with the tip portion 111 of the pin 106.
  • the compression coil spring 108 is provided in a state in which an elastic force is maintained between the outer side surface of the cup 107 and the inner side surface of the servo holder 70.
  • the outer diameter dimension of the shaft portion 110 of the pin 106 is smaller than the inner diameter dimensions of the two through holes 89 and 89 of the servo holder 70 and the two through holes 112 and 112 of the back plate 99.
  • the inner diameters of the holes 89 and 89 are larger than the inner diameters of the through holes 112 and 112 of the back plate 99.
  • a cylindrical second boot 115 is provided. Specifically, the inner side end portion of the second boot 115 is externally fitted and fixed to the outer peripheral surface in the axial direction intermediate portion of the stator plate 71. In this state, the inner side end portion of the second boot 115 and the inner side surface of the outward flange portion 92 of the stator plate 71 are engaged in the axial direction. On the other hand, the outer side end portion of the second boot 115 is locked in the locking groove 95 of the servo plate 72.
  • a thrust roller bearing 117 is provided between the outer side surface (tip surface) of the bottom portion 116 of the piston 12 a and the central portion of the inner side surface of the servo plate 72.
  • a thrust roller bearing 117 includes a cage 118 and three cylindrical rollers 119 and 119.
  • the cage 118 is formed with three pockets 120, 120 in a state adjacent to each other in the direction of the brake tangential force.
  • the cylindrical rollers 119 and 119 are held in the pockets 120 and 120 with their central axes aligned with the direction of the brake tangential force and the direction orthogonal to the axial direction of the piston 12a. Yes.
  • the outer peripheral surfaces of the cylindrical rollers 119 and 119 are in contact with the outer side surface of the bottom portion 116 of the piston 12 a and the central portion of the inner side surface of the servo plate 72.
  • the electric disc brake device of the first example having the above-described configuration operates as follows to press both the pads 2a and 3a against both side surfaces of the rotor 1 to perform braking. During non-braking, there is a gap between the inner and outer pads 2a, 3a and both side surfaces of the rotor 1. From this state, in order to perform braking, the electric motor 9a is energized, and the adjusting shaft 28 and the adjusting screw 28 constituting the feed screw mechanism 13a are rotationally driven via the speed reducer 11a.
  • the resistance generated at the threaded portion between the male threaded portion 32 of the adjustment task screw 28 and the female threaded portion 42 of the lamp rotor 29 is the resistance (elasticity applied) applied to the lamp rotor 29 by the preset spring 21. Smaller than power). Therefore, the lamp rotor 29 is displaced (translated) toward the outer side toward the rotor 1 without rotating. In association with the displacement of the lamp rotor 29, the members disposed closer to the rotor 1 (outer side) than the lamp rotor 29 are integrally displaced toward the rotor 1. At this time, as the plug member 63 is displaced toward the outer side, the case 20 is also displaced toward the outer side.
  • the inner pad 2a is pressed against the inner side surface of the rotor 1 by the servo holder 70 and the servo plate 72.
  • the caliper 5a is displaced toward the inner side, and the outer pad 3a is pressed against the outer side surface of the rotor 1 by the caliper claw 6a.
  • the ball ramp mechanism 22 does not particularly function while the gap between the two pads 2a and 3a and the both side surfaces of the rotor 1 is eliminated.
  • the ball ramp mechanism 22 is activated by the generation of the axial force. Specifically, the resistance generated at the threaded portion between the male screw portion 32 of the adjustment task screw 28 and the female screw portion 42 of the ramp rotor 29 is increased, and the function of the feed screw mechanism 13a is stopped (the lamp rotor 29 is The lamp rotor 29 rotates against the elastic biasing force (resistance) of the preset spring 21. As a result, the balls 48, 48 roll toward the higher side in the direction among the driving side ramp tracks 43, 43 and the driven side ramp tracks 51, 51, respectively.
  • the cage 47 is rotated along with the revolving motion of the balls 48, 48. Then, based on the engagement (rolling contact) between the driving side lamp tracks 43 and 43 and the driven side lamp tracks 51 and 51 and the balls 48 and 48, the lamp rotor 29 and the lamp stator. Increase the distance to 46 with great force.
  • the axial force generated by the operation of the ball ramp mechanism 22 and the increase in the distance between the lamp rotor 29 and the lamp stator 46 corresponds to the acting force described in the claims. .
  • the piston 12a and the thrust roller bearing 117 are displaced to the outer side, and the outer side surface of the servo plate 72 is It is strongly pressed against the back plate 99 of the inner pad 2a.
  • the inner and outer pads 2a and 3a are strongly pressed against both side surfaces of the rotor 1 in the axial direction, and a braking force is generated.
  • the rollers 74, 74 are in the relationship with the stator plate 71 from the deepest position of the first cam surfaces 94, 94 in the direction of brake tangential force (first The cam surfaces 94 and 94 are displaced while rolling to a shallow position.
  • the rollers 74 and 74 are displaced from the deepest position of the second cam surfaces 97 and 97 while rolling in a direction opposite to the direction of the brake tangential force.
  • the axial distance between the servo plate 72 and the stator plate 71 is increased (the servo plate 72 is displaced to the outer side), and the inner pad 2a is pressed against the rotor 1 with a stronger force. It is done.
  • the inner pad 2a is displaced in the direction of the brake tangential force, and the servo plate 72 is displaced toward the outer side (rotor 1 side).
  • the operation is an operation by the self-servo mechanism described in the claims.
  • the brake tangential force applied to the inner pad 2 a is transmitted to the support 4 via the servo holder 70. Further, the reaction force of the axial force generated when the self-servo mechanism 69 is operated is transmitted from the servo plate 72 to the stator plate 71 via the rollers 74, 74, and further, the servo holder 70 and the plug member. It is transmitted to the second thrust ball bearing 53 through 63. The reaction force transmitted in this manner is transmitted from the second thrust ball bearing 53 to the first thrust ball bearing 39 via the ramp rotor 29 and the adjuster screw 28.
  • the electric motor 9a is rotated in the opposite direction by a predetermined angle so that the two pads 2a and 3a A gap with an appropriate thickness is secured between both side surfaces of the rotor 1.
  • the proper clearance is ensured by displacing the adjustment task screw 28 by a certain amount toward the inner side with respect to the lamp rotor 29. In this way, the gap is always kept at an appropriate thickness regardless of the wear of the pads 2a and 3a.
  • the electric disc brake device of the first example having the above-described configuration, a structure capable of sufficiently increasing the force (total thrust) pressing the inner pad 2a against the inner side surface of the rotor 1 is adopted.
  • the power consumption can be reduced. That is, in the case of the electric disc brake device of the first example, the inner pad 2a is pressed against the rotor 1 based on the axial force (acting force) generated by the operation of the ball ramp mechanism 22.
  • a self-servo mechanism 69 is provided that generates an axial force in a direction in which the inner pad 2a is pressed against the rotor 1 based on a brake tangential force acting on the inner pad 2a by the pressing.
  • Such a self-servo mechanism 69 does not operate based on the rotational force of the drive source (electric motor), unlike the second boost mechanism (second ramp mechanism) described in Patent Document 2 described above. Therefore, a sufficiently large thrust can be generated by the ball ramp mechanism 22 and the self-servo mechanism 69, and power consumption can be suppressed. In the case of such an electric disc brake device of the first example, a large axial thrust can be secured, so that it can also be used as a brake device for front wheels.
  • the reaction force of the axial force generated when the self-servo mechanism 69 is operated is supported by the second thrust ball bearing 53. Yes.
  • the contact portions of the drive-side lamp tracks 43 and 43 of the lamp rotor 29 constituting the ball ramp mechanism 22 and the balls 48 and 48, and the lamp stator It is possible to reduce the Hertz stress generated at the contact portion between the driven ramp tracks 51 and 51 of the 46 and the balls 48 and 48.
  • the ball ramp mechanism 22 can be prevented from being locked, and the operation of the ball ramp mechanism 22 when releasing the brake can be made smooth.
  • the ball ramp mechanism 22 supports only the reaction force of the axial force generated during operation. Further, since the Hertz stress is reduced, the ball ramp mechanism 22 can be reduced in size. Since the portion that supports the reaction force is the second thrust ball bearing 53, torque loss can be reduced.
  • FIG. 14 to 19 show a second example of the embodiment of the present invention.
  • the electric disc brake device of the second example is a floating caliper type, like the electric disc brake device of the first example of the embodiment described above.
  • the electric disc brake device of the second example includes a case 20 having the same structure as that of the first example of the embodiment described above inside the cylinder 7a.
  • the electric disc brake device of the second example is provided with a feed screw mechanism 13b corresponding to the shaft feed mechanism described in the claims inside the case 20.
  • the feed screw mechanism 13 b includes a rotating shaft 34, an adjuster screw 28, and an adjuster sleeve 121.
  • the rotating shaft 34 and the adjuster screw 28 are the same as the structure of the first example of the embodiment described above.
  • the adjuster sleeve 121 is a cylindrical member, and a flange portion 122 that protrudes outward in the radial direction of the adjuster sleeve 121 is formed around the entire circumference in the axially intermediate portion of the outer peripheral surface.
  • the electric disc brake device of the second example includes a piston 12 b inside the case 20 and on the outer side of the adjuster sleeve 121.
  • a piston 12 b has a bottomed cylindrical shape having a cylindrical portion 125 and a bottom portion 116 a formed at an outer side end portion of the cylindrical portion 125.
  • an outer flange 126 is formed on the outer peripheral surface of the inner end of the cylindrical portion 125 so as to protrude outward in the radial direction of the piston 12b over the entire circumference. Further, in the outer peripheral surface of the outward flange 126, two positions (the two upper and lower positions in FIG.
  • the bottom 116a has a central axis that is eccentric with respect to the central axis of the piston 12b, and is formed with an eccentric female screw hole 128 that penetrates the bottom 116a in the axial direction.
  • the inner side surface of the outward flange portion 126 abuts on the outer side surface of the flange portion 122 of the adjuster sleeve 121, and the inner side end portion of the piston 12 b is on the outer peripheral surface of the adjuster sleeve 121.
  • it is provided in a state of being fitted on the outer side portion of the flange portion 122 without a gap.
  • the electric disk brake device of the second example includes a second thrust ball bearing 53a inside the case 20 and outside the cylindrical portion 125 of the piston 12b.
  • the second thrust ball bearing 53a is a member corresponding to the thrust bearing described in the claims.
  • Such a second thrust ball bearing 53a is composed of an inner raceway 129, an outer raceway 54a, a cage 55a, and a plurality of balls 56a and 56a.
  • the inner raceway 129 has a ring portion 130, a pair of engaging convex portions 131, 131, and an annular convex portion 132.
  • the outer circumferential surface of the circular ring portion 130 has a partially conical convex shape that is inclined inward with respect to the radial direction of the inner raceway ring 129 toward the inner side.
  • an inner side track 133 is formed over the entire circumference of the outer side surface of the circular ring portion 130 in the intermediate portion in the radial direction of the inner side race ring 129.
  • the engagement protrusions 131 and 131 are located at two positions on the inner side end face of the circular ring portion 130 that are opposite to each other in the radial direction of the inner raceway 129 (FIG. 16). Are formed in a state of projecting toward the inner side.
  • the outer peripheral surfaces of the both engaging convex portions 131 and 131 are smoothly continuous with the outer peripheral surface of the annular ring portion 130 and are inclined inward with respect to the radial direction of the inner side race ring 129 toward the inner side. Is formed.
  • the inner peripheral surfaces of the engaging convex portions 131 and 131 are each formed in a partial cylindrical surface shape, and have an inner diameter dimension larger than the inner diameter dimension of the inner peripheral surface of the annular ring portion 130. .
  • the outer side end portions of the inner peripheral surfaces of the both engaging convex portions 131 and 131 and the inner side end portion of the inner peripheral surface of the annular ring portion 130 are continuous by the step portion 134.
  • the annular convex portion 132 is formed on the inner end portion of the inner side raceway 129 in the radial direction on the outer side surface of the inner side raceway 129 so as to protrude to the outer side over the entire circumference.
  • the inner circumferential surface of the annular ring portion 130 is outside without gaps between the inner end of the outer circumferential surface of the cylindrical portion 125 of the piston 12 b and the axially intermediate portion. It is provided in a fitted state. In this state, the inner peripheral surface of one of the engaging protrusions 131, 131 of the inner side raceway 129 (above FIG. 14, 15) is the two of the adjuster sleeve 121.
  • One surface width 123a of the surface widths 123a and 123b and one surface width 127a of the two surface widths 127a and 127b of the piston 12b are in contact with each other without a gap.
  • the inner peripheral surface of the engagement projection 131 on the other side (below in FIGS. 14 and 15) of the engagement projections 131 and 131 of the inner raceway 129 is the width of both surfaces of the adjuster sleeve 121.
  • the other two-sided width 123b of 123a, 123b and the other two-sided width 127b of the two-sided widths 127a, 127b of the piston 12b are in contact with no gap.
  • the step 134 of the inner race 129 is in contact with the outer side surface of the outward flange 126 of the piston 12b.
  • the adjuster sleeve 121, the piston 12b, and the inner raceway ring 129 can rotate integrally.
  • the outer raceway 54a is a ring-shaped member, and an outer raceway 57a is formed on the inner side surface.
  • the outer raceway 54a is externally fitted on the outer circumferential surface of the intermediate portion in the axial direction of the cylindrical portion 125 of the piston 12b via a gap in the radial direction of the outer raceway 54a.
  • the cage 55a is an annular member and has pockets 58a and 58a at a plurality of locations in the circumferential direction of the cage 55a.
  • the balls 56a, 56a are held in the pockets 58a, 58a of the retainer 55a, and the inner raceway 133 of the inner raceway 129 and the outer raceway 57a of the outer raceway 54a, It is provided so that it can roll freely.
  • the electric disc brake device of the second example includes a spring seat 135 inside the case 20 and outside the inner raceway ring 129 that constitutes the second thrust ball bearing 53a.
  • the spring seat 135 has a conical cylinder part 136, an outward flange part 137, a semi-cylindrical part 138, and a first inward locking piece 139 (see FIG. 15).
  • the conical cylinder portion 136 has a conical cylinder shape that is inclined in a direction in which the inner diameter dimension and the outer diameter dimension decrease toward the inner side.
  • the outward flange 137 is formed from the outer peripheral surface of the outer end portion of the conical cylinder portion 136 so as to protrude outward in the radial direction of the spring seat 135 over the entire circumference.
  • a through hole 140 that penetrates the outward flange 137 in the axial direction. Is formed.
  • the semi-cylindrical part 138 is provided in a semicircular portion (lower semicircular portion in FIG. 16) of the inner side end surface of the conical cylindrical portion 136 in a state of extending toward the inner side.
  • a portion closer to the center of the spring seat 135 in the circumferential direction opens to the inner side end portion and is spaced apart in the circumferential direction.
  • a pair of notches 141 are formed.
  • a second inward locking piece 142 is formed by bending the axially intermediate portion of the portion sandwiched between both the notches 141 inward with respect to the radial direction of the spring seat 135.
  • the first inward locking piece 139 is located at a position opposite to the second inward locking piece 142 with respect to the radial direction of the spring seat 135 in the inner side end of the conical cylinder portion 136.
  • the sheet 135 is formed to be bent inward with respect to the radial direction.
  • the first inward locking piece 139 is located on the outer side of the second inward locking piece 142 in the axial direction.
  • Such a spring seat 135 is provided in a state in which the inner peripheral surface of the conical cylinder portion 136 is fitted on the outer peripheral surface of the inner raceway ring 129 constituting the second thrust ball bearing 53a without a gap. Yes.
  • the inner end edge of the first inwardly engaging piece 139 of the spring seat 135 is the two-sided width 123a of one of the two-sided widths 123a and 123b of the adjuster sleeve 121 (upper side in FIG. 16). Is engaged.
  • the outer side surface of the first inward locking piece 139 is in contact with the inner side end surface of one of the engagement convex portions 131 of the inner side raceway ring 129. .
  • the spring seat 135 is prevented from rotating relative to the adjuster sleeve 121.
  • the inner end portion in the radial direction of the spring seat 135 is in contact with the inner side surface of the flange portion 122 of the adjuster sleeve 121.
  • the electric disc brake device of the second example includes a preset spring 21a, which is a torsion coil spring, in a state of being stretched between the case 20 and the spring seat 135 inside the case 20. I have. Specifically, an inner side end portion of the preset spring 21 a is locked in the through hole 24 of the case 20, and an outer side end portion is locked in the through hole 140 of the spring seat 135. It has been. In this state, the preset spring 21 a applies an elastic biasing force in the rotational direction to the adjuster sleeve 121 via the spring seat 135.
  • a preset spring 21a which is a torsion coil spring
  • the direction of the elastic urging force is a direction in which the adjuster sleeve 121 is displaced toward the inner side based on the threaded engagement between the male threaded portion 32 of the adjuster task screw 28 and the female threaded portion 124 of the adjuster sleeve 121.
  • the electric disk brake device of the second example has the same structure as that of the first example of the embodiment described above inside the case 20 and outside the outer side end portion of the cylindrical portion 125 of the piston 12b.
  • the electric disc brake device of the second example includes an eccentric cam 144 between the bottom 116a of the piston 12b and a servo plate 72a constituting a self-servo mechanism 69a described later.
  • the eccentric cam 144 and the servo plate 72a constitute the pad acting force transmission mechanism described in the claims.
  • the eccentric cam 144 has a columnar cam body 145, an outward flange 146, and a support shaft portion 147.
  • the cam main body 145 has a hexagonal hole formed in the center of the outer side end face.
  • the outward flange 146 is formed on the outer peripheral surface of the outer side end of the cam body 145 so as to protrude outward in the radial direction of the eccentric cam 144.
  • the support shaft portion 147 is formed concentrically with the cam body 145 in a state where the outer diameter dimension is smaller than the outer diameter dimension of the cam body 145 and protrudes from the inner side end surface of the cam body 145 toward the inner side. ing. Further, a male screw portion is formed on the outer peripheral surface of the support shaft portion 147.
  • Such an eccentric cam 144 is supported by the piston 12b in a state where the male screw portion of the support shaft portion 147 is screwed into the eccentric female screw hole 128 of the piston 12b. Therefore, in this state, the central axis of the eccentric cam 144 and the central axis of the piston 12b are eccentric.
  • the electric disk brake device of the second example includes a self-servo mechanism 69a which is a non-electric thrust generating mechanism.
  • a self-servo mechanism 69a includes a servo holder 70, a stator plate 71, a servo plate 72a, a retainer 73, and four rollers 74 and 74.
  • the structure of the servo holder 70, the stator plate 71, the retainer 73, and the rollers 74, 74 is the same as that in the first example of the above-described embodiment.
  • the servo plate 72a is a disk-like member, and a locking groove 95a is formed around the entire circumference in the axially intermediate portion of the outer peripheral surface.
  • two positions on the outer side surface of the servo plate 72a opposite to the radial direction of the servo plate 72a (two positions on the left and right in FIG. 16) have a pair of circular shapes when viewed from the axial direction.
  • Engaging recesses 96a and 96a are formed.
  • second cam surfaces 97a and 97a are formed in the inner side surface of the servo plate 72a at an intermediate portion in the radial direction of the servo plate 72a and at four positions in the circumferential direction. Yes.
  • Each of the second cam surfaces 97a, 97a has the deepest central portion with respect to the direction of the brake tangential force during braking (the vertical direction in FIG. 19), and becomes shallower toward the both ends with respect to the direction of the brake tangential force (inner side). It is formed in a state inclined to the direction toward That is, each of the second cam surfaces 97a, 97a is similar to each of the first cam surfaces 94, 94 formed on the outer side surface of the stator plate 71 in the axial direction, as in the first example of the embodiment described above. It is formed symmetrically.
  • a cylindrical annular convex portion 148 (see FIGS. 15 and 18) projecting toward the inner side is formed at a portion closer to the center of the inner side surface of the servo plate 72a.
  • the shape of the elliptical recess 149 viewed from the axial direction is an elliptical shape in which a short axis is provided in the direction of the brake tangential force and a long axis is provided in a direction perpendicular to the direction of the brake tangential force.
  • Such a servo plate 72a is provided on the outer side of the stator plate 71 on the outer side of the stator plate 71, with the second cam surfaces 97a, 97a and the first cam surfaces 94, 94 being arranged on the outer side of the stator plate 71, respectively.
  • the second cam surfaces 97a, 97a and the first cam surfaces 94, 94 being arranged on the outer side of the stator plate 71, respectively.
  • a pair of engaging convex portions 100 formed on the inner side surface of the back plate 99 constituting the inner pad 2a is formed on the both engaging concave portions 96a, 96a formed on the outer side surface of the servo plate 72a. 100 (see FIG. 18) is inserted.
  • the eccentric cam 144 is disposed inside the elliptical recess 149 via a radial roller bearing 150.
  • the length of the minor axis of the inner peripheral surface of the elliptical recess 149 and the outer diameter of the outer ring 151 constituting the radial roller bearing 150 are the same as those on the inner peripheral surface of the elliptical recess 149.
  • the relationship is such that the roller bearing 150 can be assembled.
  • the other structure of the self-servo mechanism 69a is the same as that of the first example of the embodiment described above.
  • the structure of the other electric disc brake device is the same as that of the first example of the embodiment described above.
  • the electric disc brake device of the second example having the above-described configuration operates as follows, and presses both the pads 2a and 3a against both side surfaces of the rotor 1 to perform braking. During non-braking, there is a gap between the inner and outer pads 2a, 3a and both side surfaces of the rotor 1. From this state, the electric motor 9a is energized to perform braking, and the adjuster screw 28 constituting the rotary shaft 34 and the feed screw mechanism 13b is rotationally driven via the speed reducer 11a.
  • the case 20 is also displaced toward the outer side.
  • the inner pad 2a is pressed against the inner side surface of the rotor 1 by the servo holder 70 and the servo plate 72a.
  • the caliper 5a is displaced toward the inner side, and the outer pad 3a is pressed against the outer side surface of the rotor 1 by the caliper claw 6a.
  • the male screw portion 32 of the adjuster screw 28 and the female screw of the adjuster sleeve 121 are generated by the generation of axial force.
  • the pad acting force transmission mechanism is activated. Specifically, when the function of the feed screw mechanism 13b stops, the adjuster sleeve 121 rotates against the elastic biasing force (resistance) of the preset spring 21a.
  • the inner sleeve race 129 and the piston 12b of the second thrust ball bearing 53a rotate together with the adjuster sleeve 121. Further, the eccentric cam 144 revolves around the central axis of the piston 12b so as to be rotated by the piston 12b. When the eccentric cam 144 rotates in this manner, the outer ring 151 and the servo plate 72a are brought into contact with the servo plate 72a by the contact between the outer peripheral surface of the outer ring 151 of the radial roller bearing 150 and the inner peripheral surface of the elliptical recess 149. A force in the direction of the brake tangential force acts.
  • the force in the direction of the brake tangential force applied to the servo plate 72a by the rotation of the eccentric cam 144 corresponds to the acting force described in the claims.
  • the operation of the pad acting force transmission mechanism described in the claims is performed until the eccentric cam 144 rotates to apply a force (acting force) in the direction of the brake tangential force to the servo plate 72a. is there.
  • the eccentric cam 144 and the servo plate 72a constitute the eccentric cam mechanism described in the claims.
  • the servo plate 72a is displaced in the direction of the brake tangential force with respect to the stator plate 71 based on the above-described force (acting force). Then, in accordance with the displacement of the servo plate 72 a, the rollers 74, 74 have a brake tangential force direction (first) from the deepest position of the first cam surfaces 94, 94 in relation to the stator plate 71. The cam surfaces 94 and 94 are displaced while rolling to a shallow position. On the other hand, in relation to the servo plate 72a, the rollers 74 and 74 are displaced from the deepest position of the second cam surfaces 97a and 97a while rolling in the direction opposite to the direction of the brake tangential force.
  • Such displacement of the rollers 74, 74 with respect to the stator plate 71 and the servo plate 72a is defined as a first stage displacement.
  • the interval between the servo plate 72a and the stator plate 71 in the axial direction is increased (the servo plate 72a is displaced to the outer side), and the inner pad 2a is moved relative to the rotor 1. Pressed.
  • the rollers 74 and 74 are not connected to the end of the first cam surfaces 94 and 94 in the direction of the brake tangential force in relation to the stator plate 71. It is not displaced.
  • the rollers 74 and 74 are not displaced to the end portions of the second cam surfaces 97a and 97a in the direction opposite to the direction of the brake tangential force.
  • the rollers 74 and 74 are further opposite to the direction of the brake tangential force from the state after the first stage displacement with respect to the second cam surfaces 97a and 97a. Displaces while rolling.
  • the interval between the servo plate 72a and the stator plate 71 in the axial direction is further expanded than the above state (the servo plate 72a is displaced to the outer side), and the inner pad 2a is attached to the rotor 1.
  • it is pressed with a stronger force.
  • the displacement of the rollers 74 and 74 with respect to the stator plate 71 and the servo plate 72a after the first-stage displacement is referred to as a second-stage displacement.
  • the brake tangential force applied to the inner pad 2 a is transmitted to the support 4 via the servo holder 70.
  • the reaction force of the axial force generated when the self-servo mechanism 69a is operated is transmitted from the servo plate 72a to the stator plate 71 through the rollers 74 and 74, and further, the servo holder 70 and the plug It is transmitted to the second thrust ball bearing 53a via the member 63.
  • the reaction force transmitted in this manner is transmitted from the second thrust ball bearing 53a to the first thrust ball bearing 39 through the adjuster sleeve 121 and the adjust task screw 28. For this reason, the reaction force applied to the self-servo mechanism 69a and the pad acting force transmission mechanism constituting the expansion mechanism can be reduced.
  • Other structures, operations and effects are the same as those in the first example of the embodiment described above.
  • a pair of pads on the outer side and the inner side (outer pad 3a, inner pad 2a) disposed with the rotor (1) rotating together with the wheels sandwiched from both sides in the axial direction;
  • a part of the pad is disposed in a cylinder (7a) provided at a position facing the side surface in the axial direction of one of these pads (inner pad 2a), and the pad approaches the rotor.
  • An electric disc brake device provided with an expansion mechanism (feed screw mechanism 13a, ball ramp mechanism 22, and self-servo mechanism 69) for displacement to Based on the rotational driving force of the drive source (electric motor), the expansion mechanism pushes the pad in the axial direction toward the rotor until the gap between the pad and the side surface of the rotor is eliminated.
  • a mechanism feed screw mechanism 13a; An action force for displacing the pad toward the rotor by operating based on the rotational drive force of the drive source after the clearance is eliminated and the axial movement of the shaft feed mechanism is stopped.
  • a pad acting force transmission mechanism (ball ramp mechanism 22) for generating (axial force); A direction in which the pad is pressed against the rotor based on a brake tangential force acting on the pad when the pad is pressed against the rotor based on an acting force generated by the operation of the pad acting force transmission mechanism.
  • a self-servo mechanism (69) that generates an axial force of An electric disk brake device in which a reaction force of an axial force generated by the operation of the self-servo mechanism is transmitted to the shaft feed mechanism via a thrust bearing (second thrust ball bearing 53).
  • the pad acting force transmission mechanism is a reversible axial force conversion mechanism (ball ramp mechanism 22) and generates axial pressing force.
  • the pad acting force transmission mechanism imparts an acting force for displacing the servo plate in the direction of the brake tangential force by a reversible tangential force conversion mechanism (eccentric cam mechanism).
  • the electric disc brake device according to the above [4] or [5] wherein the pad is pressed against the rotor by an axial force generated with the displacement of the servo plate.
  • this invention is not limited to embodiment mentioned above, A deformation
  • the material, shape, dimensions, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
  • This application is based on a Japanese patent application filed on March 25, 2015 (Japanese Patent Application No. 2015-061976), the contents of which are incorporated herein by reference.
  • the structure of the shaft feed mechanism, the pad acting force transmission mechanism, and the self-servo mechanism is not limited to the structure of each example of the above-described embodiment.
  • a shaft feed mechanism not only a feed screw type but also a ball screw type can be adopted.
  • rolling bearings such as a thrust ball bearing and a thrust cylindrical roller bearing, a sliding bearing, and other various thrust bearings are employable, for example.
  • various structures can be adopted as appropriate.

Abstract

The present invention is provided with: a feed screw mechanism (13a) to push, on the basis of rotation of an electric motor (9a), a piston (12a) to the outer side until a gap between an inner pad (2a) and a rotor side face is eliminated; a ball ramp mechanism (22) to push, on the basis of the rotation of the electric motor (9a), the piston (12a) to the outer side after the gap is eliminated; and a self-servo mechanism (69) to generate, on the basis of a brake tangential force that acts on the inner pad (2a) by way of the inner pad (2a) pressing into the rotor by operation of the ball ramp mechanism (22), an axial force in the direction in which the inner pad (2a) is pressed into a rotor. In addition, a second thrust ball bearing (53) is provided to receive the reactive force of the axial force generated by the self-servo mechanism (69).

Description

電動式ディスクブレーキ装置Electric disc brake device
 本発明は、電動式ディスクブレーキ装置に関する。 The present invention relates to an electric disc brake device.
 電動モータを駆動源とする電動式ディスクブレーキ装置は、従来から広く実施されている油圧式のディスクブレーキに比べて、配管が不要になり、製造の容易化、低コスト化を図れるだけでなく、用済のブレーキ液が生じず環境負荷が少ない、ブレーキ液の移動がない分だけ応答性の向上を図れる等、多くの利点がある為、研究が進められている。この様な電動式ディスクブレーキ装置では、電動モータの回転運動を増力しつつ直線運動に変換し、一対のパッドをロータの両側面に強く押し付ける必要がある。この様な事情に鑑みて、歯車式等の減速機とボール・ランプ式の増力機構とを組み合わせた電動式ディスクブレーキ装置が、特許文献1に記載されるように、従来から各種提案されている。 The electric disc brake device that uses an electric motor as a drive source eliminates the need for piping compared to a hydraulic disc brake that has been widely used in the past, and facilitates manufacturing and reduces costs. The research is being conducted because there are many advantages, such as the fact that used brake fluid is not generated and the environmental load is small, and the response is improved by the amount of movement of the brake fluid. In such an electric disc brake device, it is necessary to convert the rotational motion of the electric motor into linear motion while increasing the force, and to strongly press the pair of pads against both side surfaces of the rotor. In view of such circumstances, various electric disc brake devices that combine a gear-type speed reducer and a ball-and-ramp type force-increasing mechanism have been conventionally proposed as described in Patent Document 1. .
 図20は、特許文献1に記載された、従来構造の1例を示している。この電動式ディスクブレーキ装置は、一般的な油圧式のディスクブレーキと同様に、車輪と共に回転するロータ1を挟んでインナパッド2及びアウタパッド3が、前記ロータ1の軸方向の変位を可能に設置されている。この為に、前記ロータ1に隣接する状態でサポート4(本発明の実施の形態の第1例を示す図1参照)が、車体に支持(懸架装置を構成するナックルに固定)されている。前記インナ、アウタ両パッド2、3は、前記ロータ1を軸方向両側から挟む状態で、軸方向(アウタ側とは、車体への組み付け状態で前記車体の幅方向外側を、インナ側とは、同じく中央側を、それぞれ言う。又、軸方向とは、特に断らない限り、ロータ1の軸方向を言う。何れも、本明細書及び請求の範囲全体で同じ。)の変位を可能に、前記サポート4に支持されている。 FIG. 20 shows an example of a conventional structure described in Patent Document 1. In this electric disc brake device, like an ordinary hydraulic disc brake, an inner pad 2 and an outer pad 3 are installed so as to be capable of displacement in the axial direction of the rotor 1 with a rotor 1 rotating together with wheels. ing. For this purpose, a support 4 (see FIG. 1 showing a first example of an embodiment of the present invention) is supported on the vehicle body (fixed to a knuckle constituting a suspension device) in a state adjacent to the rotor 1. The inner and outer pads 2, 3 are in a state in which the rotor 1 is sandwiched from both sides in the axial direction, and the axial direction (the outer side is the outer side in the width direction of the vehicle body when assembled to the vehicle body, and the inner side is Similarly, the center side is also referred to, and the axial direction means the axial direction of the rotor 1 unless otherwise specified, both of which are the same throughout the present specification and claims). Supported by support 4.
 又、前記サポート4にキャリパ5が、軸方向の変位を可能に組み付けられている。前記キャリパ5は、アウタ側端部にキャリパ爪6を有し、インナ側部分の内部にシリンダ7を有している。そして、前記キャリパ爪6が、前記アウタパッド3のアウタ側面に対向させられると共に、前記シリンダ7内に設けた推力発生機構8により、前記インナパッド2が前記ロータ1のインナ側面に向け押圧される様に構成されている。制動時には、前記推力発生機構8により前記インナパッド2が前記ロータ1のインナ側面に押し付けられると、前記キャリパ5がインナ側に変位し、前記キャリパ爪6が前記アウタパッド3を前記ロータ1のアウタ側面に押し付ける。この結果、前記ロータ1が軸方向両側から強く挟持されて、制動が行われる。以上の構成及び作用は、広く実施されている油圧式のディスクブレーキ装置と同様である。 Moreover, a caliper 5 is assembled to the support 4 so as to be capable of axial displacement. The caliper 5 has a caliper claw 6 at the outer side end portion and a cylinder 7 inside the inner side portion. The caliper pawl 6 is opposed to the outer side surface of the outer pad 3 and the inner pad 2 is pressed toward the inner side surface of the rotor 1 by a thrust generating mechanism 8 provided in the cylinder 7. It is configured. At the time of braking, when the inner pad 2 is pressed against the inner side surface of the rotor 1 by the thrust generating mechanism 8, the caliper 5 is displaced toward the inner side, and the caliper claw 6 moves the outer pad 3 to the outer side surface of the rotor 1. Press on. As a result, the rotor 1 is strongly clamped from both sides in the axial direction, and braking is performed. The configuration and operation described above are the same as those of a widely used hydraulic disc brake device.
 電動式ディスクブレーキ装置の場合には、電動モータ9を駆動源として、前記インナパッド2を前記ロータ1のインナ側面に押し付ける為に、前記電動モータ9の出力軸10と前記インナパッド2のインナ側面との間に、歯車式の減速機11と、前記推力発生機構8と、ピストン12とが設けられている。前記減速機11で減速されると共にトルクを増大された回転力は、送りねじ機構13を介して、ボールランプ式の増力機構14に伝達され、前記増力機構14を構成する駆動側ロータ15を回転させる。尚、前記駆動側ロータ15は、前記インナ、アウタ両パッド2、3と前記ロータ1の側面との間の隙間が解消される迄の間は、前記送りねじ機構13の機能により、アウタ側に平行移動する。これに対して、前記隙間が解消し、前記送りねじ機構13の機能が停止した後は回転する。すると、前記駆動側ロータ15のアウタ側面に、軸方向に関する高さが円周方向に関して互いに同方向に漸次変化した状態で設けられた複数の駆動側ランプ軌道16、16と、前記ピストン12のインナ側面に添設した被駆動側ステータ17のインナ側面に、軸方向に関する高さが円周方向に関して前記各駆動側ランプ軌道16、16と逆方向に漸次変化する状態で設けられた複数の被駆動側ランプ軌道18、18と、これら両ランプ軌道16、18同士の間に挟持した複数個のボール19との係合(転がり接触)に基づいて、前記駆動側ロータ15と前記被駆動側ステータ17との間隔が、大きな力で拡げられる。この結果、前記ピストン12のアウタ側面が、前記インナパッド2のインナ側面に強く押し付けられる。 In the case of the electric disc brake device, the electric motor 9 is used as a drive source to press the inner pad 2 against the inner side surface of the rotor 1, and the output shaft 10 of the electric motor 9 and the inner side surface of the inner pad 2. Are provided with a gear type reduction gear 11, the thrust generating mechanism 8, and a piston 12. The rotational force decelerated by the speed reducer 11 and increased in torque is transmitted to the ball ramp type force increasing mechanism 14 via the feed screw mechanism 13 to rotate the drive side rotor 15 constituting the force increasing mechanism 14. Let The drive-side rotor 15 is moved to the outer side by the function of the feed screw mechanism 13 until the clearance between the inner and outer pads 2 and 3 and the side surface of the rotor 1 is eliminated. Translate. On the other hand, after the gap is eliminated and the function of the feed screw mechanism 13 is stopped, it rotates. Then, a plurality of drive side ramp tracks 16, 16 provided on the outer side surface of the drive side rotor 15 in a state where the height in the axial direction gradually changes in the same direction with respect to the circumferential direction, and the inner side of the piston 12 A plurality of driven portions provided on the inner side surface of the driven side stator 17 attached to the side surface in a state where the height in the axial direction gradually changes in the opposite direction to the driving side ramp tracks 16 and 16 in the circumferential direction. Based on the engagement (rolling contact) between the side ramp tracks 18, 18 and a plurality of balls 19 sandwiched between the ramp tracks 16, 18, the driving side rotor 15 and the driven side stator 17 are connected. The space between and can be expanded with great force. As a result, the outer side surface of the piston 12 is strongly pressed against the inner side surface of the inner pad 2.
 上述の様な電動式ディスクブレーキ装置の場合、前記増力機構14が、前記駆動側ロータ15と、前記被駆動側ステータ17と、前記各ボール19とにより構成された、所謂1段階式の増力機構が採用されている。
 一方、特許文献2には、第一増力機構(第一ランプ機構)と、第二増力機構(第二ランプ機構)とが、推力の伝達方向に関して互いに直列に設けられた、所謂2段階式の増力機構を採用した電動式ディスクブレーキ装置に関する発明が記載されている。この様な特許文献2に記載された発明によれば、前記1段階式の増力機構を採用した構造と比べて、増力機構全体としてのストロークを十分に確保しつつ、前記増力機構全体としての増力比を十分に確保して、インナパッドをロータのインナ側面に押し付ける力(総推力)を十分に大きくする事ができる。但し、特許文献2に記載された発明の場合、制動時に、電動モータの回転力に基づいて前記第一増力機構及び前記第二増力機構が順次作動させられる。この為、1段階式の増力機構を採用した構造と比べて、第二増力機構を作動させる分だけ消費電力量が多くなる。
 又、特許文献2に記載された構造の場合、本願発明の拡張機構の一部に相当する前記第二増力機構(第二ランプ機構)が作動して発生した軸力に基づく反力は、総て前記第二増力機構に加わる。この為、前記第二増力機構を構成する駆動側ロータと各ボールとの接触部、及び被駆動側ステータと各ボールとの接触部に大きな面圧が作用し、当該部分に発生するヘルツ応力が高くなってしまう可能性がある。
In the case of the electric disc brake device as described above, the force-increasing mechanism 14 is a so-called one-stage type force-increasing mechanism including the driving-side rotor 15, the driven-side stator 17, and the balls 19. Is adopted.
On the other hand, Patent Document 2 discloses a so-called two-stage type in which a first booster mechanism (first ramp mechanism) and a second booster mechanism (second ramp mechanism) are provided in series with respect to the transmission direction of thrust. An invention relating to an electric disc brake device employing a force-increasing mechanism is described. According to the invention described in Patent Document 2 as described above, the boosting force as the whole boosting mechanism is ensured while sufficiently securing the stroke as the whole boosting mechanism as compared with the structure employing the one-stage boosting mechanism. A sufficient ratio can be secured to sufficiently increase the force (total thrust) that presses the inner pad against the inner side surface of the rotor. However, in the case of the invention described in Patent Document 2, the first force increasing mechanism and the second force increasing mechanism are sequentially operated based on the rotational force of the electric motor during braking. For this reason, compared with the structure which employ | adopted the 1 step | paragraph type booster mechanism, electric power consumption increases by the part which act | operates a 2nd booster mechanism.
In the case of the structure described in Patent Document 2, the reaction force based on the axial force generated by the operation of the second force increasing mechanism (second ramp mechanism) corresponding to a part of the expansion mechanism of the present invention is To the second booster mechanism. For this reason, a large surface pressure acts on the contact portion between the driving-side rotor and each ball and the contact portion between the driven-side stator and each ball constituting the second force increasing mechanism, and the Hertz stress generated in the portion is It can be expensive.
日本国特開2004-169729号公報Japanese Unexamined Patent Publication No. 2004-169729 日本国特開2014-219041号公報Japanese Unexamined Patent Publication No. 2014-219041
 本発明は、上述の様な事情に鑑みて、パッドをロータの側面に押し付ける力(総推力)を十分に大きくできる構造を採用した場合にも、消費電力量を抑える事ができ、更に、拡張機構を構成する部材に生じるヘルツ応力を小さく抑えられる構造を実現すべく発明したものである。 In view of the circumstances as described above, the present invention can reduce power consumption even when a structure that can sufficiently increase the force (total thrust) that presses the pad against the side surface of the rotor can be suppressed. The present invention was invented to realize a structure that can suppress Hertz stress generated in members constituting the mechanism.
 本発明に係る上記目的は、下記構成により達成される。
(1) 車輪と共に回転するロータを軸方向両側から挟む状態で配置されたアウタ側とインナ側の一対のパッドと、
 その一部が、これら両パッドのうちの一方のパッドの軸方向側面に対向する位置に設けられたシリンダ内に配置されており、前記パッドを前記ロータに近付く方向に変位させる為の拡張機構とを備えた電動式ディスクブレーキ装置であって、
 前記拡張機構は、駆動源の回転駆動力に基づいて、前記パッドと前記ロータの側面との間の隙間を解消させるまで、前記パッドを前記ロータに向けて軸方向に押し出す軸送り機構と、
 前記隙間が解消し、前記軸送り機構の軸方向への移動が停止した後、前記駆動源の回転駆動力に基づいて作動する事により、前記パッドを前記ロータに向けて変位させる為の作用力を発生するパッド作用力伝達機構と、
 前記パッド作用力伝達機構が作動する事により発生した作用力に基づいて、前記パッドが前記ロータに押し付けられる事により、前記パッドに作用するブレーキ接線力に基づいて、前記パッドを前記ロータに押し付ける方向の軸力を発生する自己サーボ機構とを有しており、
 前記自己サーボ機構が作動する事により発生した軸力の反力が、スラスト軸受を介して前記軸送り機構に伝達される電動式ディスクブレーキ装置。
The above object of the present invention is achieved by the following configuration.
(1) A pair of pads on the outer side and the inner side arranged in a state of sandwiching a rotor that rotates with the wheel from both axial sides;
A part of the expansion mechanism is disposed in a cylinder provided at a position opposite to the axial side surface of one of the two pads, and the pad is displaced in a direction approaching the rotor; An electric disc brake device comprising:
The expansion mechanism is configured to push the pad toward the rotor in the axial direction until the gap between the pad and the side surface of the rotor is eliminated based on the rotational driving force of the drive source; and
An action force for displacing the pad toward the rotor by operating based on the rotational drive force of the drive source after the clearance is eliminated and the axial movement of the shaft feed mechanism is stopped. A pad acting force transmission mechanism that generates
A direction in which the pad is pressed against the rotor based on a brake tangential force acting on the pad when the pad is pressed against the rotor based on an acting force generated by the operation of the pad acting force transmission mechanism. And a self-servo mechanism that generates the axial force of
An electric disc brake device in which a reaction force of an axial force generated by the operation of the self-servo mechanism is transmitted to the shaft feed mechanism via a thrust bearing.
(2) 前記パッド作用力伝達機構と、前記自己サーボ機構とが、軸方向に関して直列に配置されている、上記(1)に記載した電動式ディスクブレーキ装置。
(3) 前記軸送り機構(例えば、送りねじ機構)が、前記シリンダ内の最内径位置に配置された部材を含んで構成されている、上記(1)又は(2)に記載した電動式ディスクブレーキ装置。
 なお、具体的には、例えば、前記軸送り機構(例えば、送りねじ機構)が、前記シリンダの中心軸上に配置された軸部材(例えば、駆動源により回転駆動される回転軸)と、前記軸部材に対して一体に回転可能な状態に外嵌された雄ねじ部材と、前記雄ねじ部材に螺合された雌ねじ部材とにより構成される。
(4) 前記パッド作用力伝達機構が作動して発生する作用力が、前記自己サーボ機構を構成するサーボプレートを介して、前記パッドに伝わる事により、前記パッドが前記ロータに押し付けられる、上記(1)~(3)のうちの何れか1に記載した電動式ディスクブレーキ装置。
(2) The electric disk brake device according to (1), wherein the pad acting force transmission mechanism and the self-servo mechanism are arranged in series in the axial direction.
(3) The electric disk according to (1) or (2), wherein the shaft feed mechanism (for example, a feed screw mechanism) is configured to include a member disposed at the innermost diameter position in the cylinder. Brake device.
Specifically, for example, the shaft feed mechanism (for example, a feed screw mechanism) includes a shaft member (for example, a rotary shaft that is rotationally driven by a drive source) disposed on the center axis of the cylinder, The male screw member is externally fitted so as to be rotatable integrally with the shaft member, and the female screw member is screwed into the male screw member.
(4) The acting force generated by the operation of the pad acting force transmission mechanism is transmitted to the pad via a servo plate constituting the self-servo mechanism, whereby the pad is pressed against the rotor. The electric disc brake device described in any one of 1) to (3).
(5) 前記サーボプレートが、前記パッドに作用するブレーキ接線力に基づいて、前記パッドと共に、前記ブレーキ接線力の方向に変位可能な状態に設けられている、上記(4)に記載した電動式ディスクブレーキ装置。
(6) 前記パッド作用力伝達機構が、可逆性の軸力変換機構であり、軸方向の押圧力を発生するものである、上記(1)~(5)のうちの何れか1に記載した電動式ディスクブレーキ装置。
(7) 前記軸力変換機構が、ボールランプ機構である、上記(6)に記載した電動式ディスクブレーキ装置。
(5) The electric type described in (4), wherein the servo plate is provided in a state displaceable in the direction of the brake tangential force together with the pad based on the brake tangential force acting on the pad. Disc brake device.
(6) The pad acting force transmission mechanism is a reversible axial force conversion mechanism and generates an axial pressing force, as described in any one of (1) to (5) above Electric disc brake device.
(7) The electric disc brake device according to (6), wherein the axial force conversion mechanism is a ball ramp mechanism.
(8) 前記パッド作用力伝達機構が、可逆性の接線力変換機構(偏心カム機構)で前記サーボプレートを前記ブレーキ接線力の方向に変位させる為の作用力を付与するものであり、
 前記サーボプレートの変位に伴って発生した軸力により、前記パッドを前記ロータに押し付ける、上記(4)又は(5)に記載した電動式ディスクブレーキ装置。
(9) 前記接線力変換機構が、偏心カム機構である、上記(8)に記載した電動式ディスクブレーキ装置。
(10) 前記軸送り機構が、非可逆性を有している、上記(1)~(9)のうちの何れか1に記載した電動式ディスクブレーキ装置。
(8) The pad acting force transmission mechanism provides an acting force for displacing the servo plate in the direction of the brake tangential force by a reversible tangential force conversion mechanism (eccentric cam mechanism).
The electric disk brake device according to (4) or (5), wherein the pad is pressed against the rotor by an axial force generated in accordance with displacement of the servo plate.
(9) The electric disc brake device according to (8), wherein the tangential force conversion mechanism is an eccentric cam mechanism.
(10) The electric disc brake device according to any one of (1) to (9), wherein the shaft feed mechanism has irreversibility.
 上述の様に構成の電動式ディスクブレーキ装置によれば、パッドをロータの側面に押し付ける力(総推力)を十分に大きくする事ができる構造を採用した場合にも、消費電力量を抑える事ができ、更に、サーボ機構が作動した際に拡張機構を構成する部材に加わる反力を小さく抑えられる。
 即ち、上記構成の電動式ディスクブレーキ装置の場合、パッド作用力伝達機構が作動する事により発生した作用力に基づいて、前記パッドが前記ロータに押し付けられる事により前記パッドに作用するブレーキ接線力に基づいて、前記パッドを前記ロータに押し付ける方向の軸力を発生する自己サーボ機構を備えている。この様な自己サーボ機構は、前述した特許文献2に記載された第二増力機構(第二ランプ機構)の様に、駆動源(電動モータ)の回転力に基づいて作動するものではない。この為、自己サーボ機構により大きな推力を発生させる事ができ、しかも、消費電力量を抑える事ができる。
 又、上記構成の電動式ディスクブレーキ装置の場合、自己サーボ機構が作動した際に発生する軸力の反力が拡張機構とは別に設けたスラスト軸受により支承される様に構成されている。この為、前記自己サーボ機構が作動する事により発生する軸力に基づいて、前記拡張機構を構成する部材に加わる反力の大きさを小さくする事ができる。
According to the electric disc brake device configured as described above, even when a structure capable of sufficiently increasing the force (total thrust) pressing the pad against the side surface of the rotor is adopted, the power consumption can be suppressed. In addition, the reaction force applied to the members constituting the expansion mechanism when the servo mechanism is activated can be kept small.
That is, in the case of the electric disc brake device having the above-described configuration, the brake tangential force acting on the pad is applied by pressing the pad against the rotor based on the acting force generated by operating the pad acting force transmission mechanism. A self-servo mechanism that generates an axial force in a direction of pressing the pad against the rotor is provided. Such a self-servo mechanism does not operate based on the rotational force of the drive source (electric motor), unlike the second booster mechanism (second ramp mechanism) described in Patent Document 2 described above. For this reason, a large thrust can be generated by the self-servo mechanism, and power consumption can be reduced.
In the electric disk brake device having the above-described configuration, the reaction force of the axial force generated when the self-servo mechanism operates is supported by a thrust bearing provided separately from the expansion mechanism. For this reason, the magnitude of the reaction force applied to the member constituting the expansion mechanism can be reduced based on the axial force generated by the operation of the self-servo mechanism.
図1は、本発明の実施の形態の第1例の電動式ディスクブレーキ装置の構造を示す断面図。FIG. 1 is a cross-sectional view showing the structure of a first example of an electric disc brake device according to an embodiment of the present invention. 図2は、図1のA部拡大図。FIG. 2 is an enlarged view of a portion A in FIG. 図3は、図1に示したシリンダ内に配置される部品、及び自己サーボ機構を取り出して、アウタ側から見た状態で示す分解斜視図。FIG. 3 is an exploded perspective view showing a part and a self-servo mechanism arranged in the cylinder shown in FIG. 1 and viewed from the outer side. 図4は、図1のX-X断面図。4 is a sectional view taken along line XX in FIG. 図5は、一部を省略して示す、図4のB部拡大図。FIG. 5 is an enlarged view of part B of FIG. 図6は、図4のC部拡大図。FIG. 6 is an enlarged view of a portion C in FIG. 図7は、図2のY-Y断面図。FIG. 7 is a YY cross-sectional view of FIG. 図8は、図1に示したシリンダ内に配置される各部品、自己サーボ機構、及びインナパッドを組み立てた状態で示す平面図。FIG. 8 is a plan view showing a state in which each component, self-servo mechanism, and inner pad arranged in the cylinder shown in FIG. 1 are assembled. 図9は、図1に示したシリンダ内に配置される各部品、自己サーボ機構、及びインナパッドを組み立てた状態で示す斜視図。FIG. 9 is a perspective view showing a state in which the components, the self-servo mechanism, and the inner pad arranged in the cylinder shown in FIG. 1 are assembled. 図10は、本発明の実施の形態の第1例の電動式ディスクブレーキ装置の斜視図。FIG. 10 is a perspective view of the electric disc brake device of the first example of the embodiment of the present invention. 図11は、図10の上方から見た平面図。FIG. 11 is a plan view seen from above in FIG. 図12は、図11の左方から見た正面図。12 is a front view as seen from the left side of FIG. 図13は、図11の下方から見た側面図。13 is a side view as seen from below in FIG. 図14は本発明の実施の形態の第2例の電動式ディスクブレーキ装置の構造を示す断面図。FIG. 14 is a cross-sectional view showing a structure of an electric disc brake device of a second example of the embodiment of the present invention. 図15は、図14の要部拡大図。15 is an enlarged view of a main part of FIG. 図16は、図14に示したシリンダ内に配置される部品、及び自己サーボ機構を取り出して、アウタ側から見た状態で示す分解斜視図。FIG. 16 is an exploded perspective view showing a part and a self-servo mechanism arranged in the cylinder shown in FIG. 14 and viewed from the outer side. 図17は、図14のX-X断面図。FIG. 17 is a sectional view taken along line XX in FIG. 図18は、一部を省略して示す、図4の要部拡大図。FIG. 18 is an enlarged view of a main part of FIG. 図19は、図15のY-Y断面図。19 is a YY cross-sectional view of FIG. 図20は、従来構造の電動式ディスクブレーキ装置の構造の1例を示す断面図。FIG. 20 is a cross-sectional view showing an example of the structure of a conventional electric disc brake device.
  [実施の形態の第1例]
 本発明の実施の形態の第1例に就いて、図1~13により説明する。本第1例の電動式ディスクブレーキ装置は、フローティングキャリパ型であり、車輪(図示せず)と共に回転するロータ1(図20参照)の外径寄り部分を跨ぐ状態で設けたサポート4に、1対のガイドピン20a、20aにより、キャリパ5aが、前記ロータ1の軸方向の変位を可能に支持されている。又、インナパッド2a及びアウタパッド3aは、前記サポート4に対して軸方向の変位可能に設けられており、これらインナ、アウタ両パッド2a、3aを跨ぐ状態で、前記キャリパ5aが配設されている。又、前記キャリパ5aのアウタ側端部にはキャリパ爪6aが設けられ、インナ側にはシリンダ7aが設けられている。
[First example of embodiment]
A first example of the embodiment of the present invention will be described with reference to FIGS. The electric disc brake device of the first example is a floating caliper type, and is provided with a support 4 provided in a state straddling a portion near the outer diameter of the rotor 1 (see FIG. 20) that rotates together with wheels (not shown). The caliper 5a is supported by the pair of guide pins 20a and 20a so that the axial displacement of the rotor 1 is possible. The inner pad 2a and the outer pad 3a are provided so as to be axially displaceable with respect to the support 4. The caliper 5a is disposed so as to straddle the inner and outer pads 2a and 3a. . Further, a caliper claw 6a is provided at the outer side end of the caliper 5a, and a cylinder 7a is provided at the inner side.
 本第1例の電動式ディスクブレーキ装置は、前記シリンダ7aの内側に、電動式の推力発生機構8aを備えている。
 前記推力発生機構8aは、ケース20と、前記ケース20の内側に設けられた、請求の範囲に記載した軸送り機構に相当する送りねじ機構13aと、プリセットスプリング21と、回転力を軸力に変換する軸力変換機構であるボールランプ機構22とを有している。本第1例の場合、前記送りねじ機構13aと、前記ボールランプ機構22と、後述する自己サーボ機構69とが、請求の範囲に記載した拡張機構を構成している。又、前記ボールランプ機構22が、請求の範囲に記載したパッド作用力伝達機構及び軸力変換機構に相当する。
 このうちのケース20は、円筒状部材であり、インナ側端部に前記ケース20の径方向内側に折り曲げられた内向鍔部23が形成されている。前記内向鍔部23の円周方向1箇所位置には、前記内向鍔部23を軸方向に貫通した貫通孔24が形成されている。又、前記内向鍔部23のうち、前記ケース20の径方向に関して反対側となる2箇所位置(図3の左右2箇所位置)には、一対のインナ側切欠き25、25が形成されている。又、前記ケース20のアウタ側端部のうち、前記ケース20の径方向に関して反対側となる2箇所位置(図3の上下2箇所位置)には、一対のアウタ側切欠き26、26が形成されている。又、前記ケース20のアウタ側端部のうち、これらアウタ側切欠き26、26から前記ケース20の円周方向に約90度ずれた2箇所位置(図3の左右2箇所位置)には、前記ケース20の径方向に関して内側に折り曲げられた一対の内向係合片27、27が形成されている。この様なケース20は、前記シリンダ7aの内周面に、前記シリンダ7aに対する軸方向の変位を可能な状態で内嵌されている。尚、前記ケース20は、後述するプラグ部材63との係合により、前記シリンダ7aに対する回り止めを図られている。
The electric disc brake device according to the first example includes an electric thrust generating mechanism 8a inside the cylinder 7a.
The thrust generating mechanism 8a includes a case 20, a feed screw mechanism 13a provided inside the case 20, which corresponds to the shaft feed mechanism described in the claims, a preset spring 21, and a rotational force as an axial force. And a ball ramp mechanism 22 which is an axial force conversion mechanism for conversion. In the case of the first example, the feed screw mechanism 13a, the ball ramp mechanism 22, and a self-servo mechanism 69 described later constitute an expansion mechanism described in the claims. The ball ramp mechanism 22 corresponds to a pad acting force transmission mechanism and an axial force conversion mechanism described in the claims.
Of these, the case 20 is a cylindrical member, and an inward flange portion 23 that is bent radially inward of the case 20 is formed at an inner side end portion. At one position in the circumferential direction of the inward flange portion 23, a through hole 24 that penetrates the inward flange portion 23 in the axial direction is formed. Further, a pair of inner side notches 25, 25 are formed at two positions (two positions on the left and right in FIG. 3) that are opposite to each other in the radial direction of the case 20 in the inward flange 23. . A pair of outer side notches 26 and 26 are formed at two positions (upper and lower two positions in FIG. 3) on the outer side end of the case 20 which are opposite to the radial direction of the case 20. Has been. Further, of the outer side end portions of the case 20, there are two positions (two positions on the left and right in FIG. 3) that are shifted by about 90 degrees in the circumferential direction of the case 20 from the outer side cutouts 26, 26. A pair of inwardly engaging pieces 27, 27 bent inward with respect to the radial direction of the case 20 are formed. Such a case 20 is fitted in the inner peripheral surface of the cylinder 7a in a state in which axial displacement with respect to the cylinder 7a is possible. The case 20 is prevented from rotating with respect to the cylinder 7a by engagement with a plug member 63 described later.
 前記送りねじ機構13aは、回転軸34と、アジャスタスクリュ28と、ランプロータ29とにより構成されている。
 このうちの回転軸34は、軸方向中間部を前記シリンダ7aの奥端面に形成された貫通孔36に挿通された状態で設けられており、軸方向中間部の外周面に雄スプライン部35が形成されている。前記回転軸34は、前記シリンダ7a内の最内径部分に配置されている。この様な回転軸34のうち、前記シリンダ7aからインナ側に突出したインナ側端部は、ケーシング37内に収納された減速機11aを構成する最終歯車38の内側に相対回転不能に係合されている。この様にして電動モータ9aにより、前記回転軸34及び前記アジャスタスクリュ28が回転駆動可能とされている。
The feed screw mechanism 13 a includes a rotating shaft 34, an adjust task screw 28, and a ramp rotor 29.
Among these, the rotating shaft 34 is provided in a state where the axial intermediate portion is inserted through a through hole 36 formed in the inner end surface of the cylinder 7a, and the male spline portion 35 is provided on the outer peripheral surface of the axial intermediate portion. Is formed. The rotating shaft 34 is disposed at the innermost diameter portion in the cylinder 7a. Of such a rotating shaft 34, an inner side end portion protruding from the cylinder 7a toward the inner side is engaged with the inner side of the final gear 38 constituting the reduction gear 11a housed in the casing 37 so as not to be relatively rotatable. ing. In this way, the rotary shaft 34 and the adjustment task screw 28 can be rotated by the electric motor 9a.
 前記アジャスタスクリュ28は、筒状部材であり、インナ側端部外周面に、全周に亙り前記アジャスタスクリュ28の径方向に関して外側に突出したフランジ部30が形成されている。前記フランジ部30のインナ側面には、後述する第一のスラスト玉軸受39を構成するアウタ側軌道面31が形成されている。又、前記アジャスタスクリュ28の軸方向中間部外周面には雄ねじ部32が形成されている。又、前記アジャスタスクリュ28の内周面の少なくとも一部(インナ側端部寄り部分からインナ側端部に掛けての部分)には、雌スプライン部33が形成されている。この様なアジャスタスクリュ28は、前記雌スプライン部33が、前記回転軸34の外周面のアウタ側端部寄り部分に形成された雄スプライン部35に、スプライン係合された状態で設けられている。従って、前記アジャスタスクリュ28は、前記回転軸34と一体的に回転可能である。
 尚、本第1例の場合、前記アジャスタスクリュ28のフランジ部30と、前記シリンダ7aの奥端面との間には、アウタ側から順に、第一のスラスト玉軸受39、アキシアル荷重を測定する為の軸力センサユニット40が配置されている。
The adjustment task screw 28 is a cylindrical member, and a flange portion 30 is formed on the outer peripheral surface of the inner side end portion so as to protrude outward in the radial direction of the adjustment task screw 28 over the entire periphery. An outer side raceway surface 31 constituting a first thrust ball bearing 39 to be described later is formed on the inner side surface of the flange portion 30. Further, a male screw portion 32 is formed on the outer peripheral surface in the axial direction intermediate portion of the adjustment task screw 28. A female spline portion 33 is formed on at least a part of the inner peripheral surface of the adjustment task screw 28 (a portion extending from the inner side end portion closer to the inner side end portion). Such an adjustment task screw 28 is provided in a state in which the female spline portion 33 is spline-engaged with a male spline portion 35 formed in a portion near the outer side end portion of the outer peripheral surface of the rotating shaft 34. . Accordingly, the adjustment task screw 28 can rotate integrally with the rotary shaft 34.
In the case of the first example, the first thrust ball bearing 39 and the axial load are measured in order from the outer side between the flange portion 30 of the adjustment task screw 28 and the back end surface of the cylinder 7a. The axial force sensor unit 40 is arranged.
 前記ランプロータ29は、筒状部材であり、アウタ側端部外周面に、全周に亙り前記ランプロータ29の径方向に関して外側に突出したフランジ部41が形成されている。又、前記ランプロータ29の内周面には雌ねじ部42が形成されている。又、前記フランジ部41のアウタ側面のうち、前記ランプロータ29の径方向に関する内端寄り部分には、前記ランプロータ29の円周方向に離隔した状態で3つの駆動側ランプ軌道43、43が形成されている。これら各駆動側ランプ軌道43、43の軸方向に関する高さは、円周方向に関して互いに同方向に漸次変化している。又、前記フランジ部41のアウタ側面のうち、前記ランプロータ29の径方向外端寄り部分には、後述する第二のスラスト玉軸受53を構成するインナ側軌道44が形成されている。又、前記フランジ部41のうち、前記ランプロータ29の径方向外端部で、且つ、前記フランジ部41の円周方向に関する1箇所位置には、前記フランジ部41を軸方向に貫通した貫通孔45が形成されている。この様なランプロータ29は、前記雌ねじ部42を、前記アジャスタスクリュ28の雄ねじ部32に螺合させた状態で設けられている。
 本第1例の場合、前記送りねじ機構13aは、力の伝達に関して非可逆性を有している。従って、電動モータ9aへの通電を停止した状態では、制動時に発生する軸力の反力に基づいて、前記アジャスタスクリュ28と前記ランプロータ29とが、制動前の状態に戻る事はない。この様にして、前記電動モータ9aへの通電を停止した状態でも制動力を保持できる様にしている。
The lamp rotor 29 is a tubular member, and a flange portion 41 is formed on the outer peripheral surface of the outer side end portion so as to protrude outward in the radial direction of the lamp rotor 29 over the entire circumference. A female screw portion 42 is formed on the inner peripheral surface of the lamp rotor 29. In addition, on the outer side surface of the flange portion 41, three drive side lamp tracks 43, 43 are provided at a portion closer to the inner end in the radial direction of the lamp rotor 29 while being separated in the circumferential direction of the lamp rotor 29. Is formed. The heights of these drive side lamp tracks 43, 43 in the axial direction gradually change in the same direction with respect to the circumferential direction. Further, an inner side raceway 44 constituting a second thrust ball bearing 53 described later is formed on the outer side surface of the flange portion 41 near the radially outer end of the lamp rotor 29. Further, in the flange portion 41, a through-hole penetrating the flange portion 41 in the axial direction is provided at one position in the radial direction outer end portion of the lamp rotor 29 and in the circumferential direction of the flange portion 41. 45 is formed. Such a lamp rotor 29 is provided in a state where the female screw portion 42 is screwed into the male screw portion 32 of the adjustment task screw 28.
In the case of the first example, the feed screw mechanism 13a is irreversible with respect to force transmission. Therefore, in a state where the energization to the electric motor 9a is stopped, the adjustment task screw 28 and the lamp rotor 29 do not return to the state before braking based on the reaction force of the axial force generated during braking. In this way, the braking force can be maintained even when the energization of the electric motor 9a is stopped.
 以上の様に、本第1例の送りねじ機構13aは、前記シリンダ7aの中心軸上に配置された前記回転軸34に対して軸方向変位を可能な状態に外嵌された前記アジャスタスクリュ28と、前記アジャスタスクリュ28に組み合わせた前記ランプロータ29とにより構成されている。この為、前記送りねじ機構13aを作動する為の慣性モーメントを小さくする事ができる。この結果、前記電動モータ9aの負荷を減らして、消費電力量を減らす事が可能となる。 As described above, the feed screw mechanism 13a of the first example is adapted to the adjuster screw 28 that is externally fitted so as to be capable of axial displacement with respect to the rotary shaft 34 disposed on the central axis of the cylinder 7a. And the ramp rotor 29 combined with the adjustment task screw 28. For this reason, the moment of inertia for operating the feed screw mechanism 13a can be reduced. As a result, it is possible to reduce the load of the electric motor 9a and reduce the power consumption.
 前記プリセットスプリング21は、捩じりコイルばねであり、インナ側端部が前記ケース20の貫通孔24に係止されると共に、アウタ側端部が前記ランプロータ29の貫通孔45に係止された状態で設けられている。この状態で、前記プリセットスプリング21は、前記ランプロータ29に対し回転方向の弾性付勢力を付与している。前記弾性付勢力の方向は、前記アジャスタスクリュ28の雄ねじ部32と、前記ランプロータ29の雌ねじ部42との螺合に基づいて、前記ランプロータ29をインナ側に変位させる方向としている。 The preset spring 21 is a torsion coil spring, and an inner side end is locked in the through hole 24 of the case 20, and an outer side end is locked in the through hole 45 of the lamp rotor 29. It is provided in the state. In this state, the preset spring 21 applies an elastic biasing force in the rotational direction to the lamp rotor 29. The direction of the elastic urging force is a direction in which the lamp rotor 29 is displaced toward the inner side based on the threaded engagement between the male threaded portion 32 of the adjustment task screw 28 and the female threaded portion 42 of the lamp rotor 29.
 前記ボールランプ機構22は、前記ランプロータ29と、ランプステータ46と、保持器47と、3つのボール48、48とにより構成されている。
 このうちのランプステータ46は、筒状部材であり、アウタ側端部外周面のうち、前記ランプステータ46の円周方向に関する2箇所位置(図3の上下2箇所位置)に、前記ランプステータ46の径方向に関して外側に突出した一対の係合凸部49、49が形成されている。又、前記ランプステータ46の内周面のアウタ側半部には、アウタ側に向かうほど内径寸法が大きくなる部分円錐凹面部50が形成されている。又、前記ランプステータ46のインナ側端面には、円周方向に離隔した状態で3つの被駆動側ランプ軌道51、51が形成されている。これら各被駆動側ランプ軌道51、51は、軸方向に関する高さが円周方向に関して前記各駆動側ランプ軌道43、43と逆方向に漸次変化する状態で設けられている。この様なランプステータ46は、前記アジャスタスクリュ28の外周面のうちの、前記ランプロータ29よりもアウタ側部分に、前記アジャスタスクリュ28に対する軸方向の変位を可能な状態で外嵌されている。
The ball ramp mechanism 22 includes the lamp rotor 29, a lamp stator 46, a cage 47, and three balls 48 and 48.
Among these, the lamp stator 46 is a cylindrical member, and the lamp stator 46 is located at two positions (upper and lower two positions in FIG. 3) in the circumferential direction of the lamp stator 46 on the outer peripheral surface of the outer side end. A pair of engaging projections 49, 49 projecting outward in the radial direction is formed. Further, a partial conical concave surface portion 50 having an inner diameter that increases toward the outer side is formed in the outer side half of the inner peripheral surface of the lamp stator 46. Further, three driven side lamp tracks 51, 51 are formed on the inner side end face of the lamp stator 46 in a state of being separated in the circumferential direction. Each of these driven-side ramp tracks 51, 51 is provided in a state where the height in the axial direction gradually changes in the opposite direction to the respective drive-side ramp tracks 43, 43 in the circumferential direction. Such a lamp stator 46 is fitted on the outer peripheral surface of the adjustment task screw 28 on the outer side of the lamp rotor 29 in a state in which the displacement in the axial direction with respect to the adjustment task screw 28 is possible.
 前記保持器47は、円輪状部材であり、前記保持器47の円周方向に関する3箇所位置にポケット52、52を有している。
 前記各ボール48、48は、前記保持器47の各ポケット52、52に保持された状態で、前記ランプロータ29の駆動側ランプ軌道43、43と、前記ランプステータ46の被駆動側ランプ軌道51、51との間に挟持されている。尚、前記ランプロータ29の駆動側ランプ軌道43、43及び前記ランプステータ46の被駆動側ランプ軌道51、51の傾斜角度は、セルフロックしない範囲で適宜設定するものである。
 又、本第1例の場合、前記ボールランプ機構22は、可逆性を有するものとしている。従って、電動モータ9aへの通電を停止した状態では、制動時に発生する軸力の反力に基づいて、前記ランプロータ29と前記ランプステータ46とが、制動前の状態に戻る方向に変位する事が可能である。この様にして、前記ボールランプ機構22が制動解除の際にロックする事を防止している。
The cage 47 is an annular member, and has pockets 52 and 52 at three positions in the circumferential direction of the cage 47.
The balls 48, 48 are held in the pockets 52, 52 of the cage 47, and drive side lamp tracks 43, 43 of the lamp rotor 29 and driven side lamp tracks 51 of the lamp stator 46. , 51. The inclination angles of the drive side lamp tracks 43 and 43 of the lamp rotor 29 and the driven side lamp tracks 51 and 51 of the lamp stator 46 are appropriately set within a range where self-locking is not performed.
In the case of the first example, the ball ramp mechanism 22 is reversible. Therefore, in a state where the electric power supply to the electric motor 9a is stopped, the lamp rotor 29 and the lamp stator 46 are displaced in a direction to return to the state before the braking based on the reaction force of the axial force generated at the time of braking. Is possible. In this way, the ball ramp mechanism 22 is prevented from locking when the brake is released.
 又、本第1例の電動式ディスクブレーキ装置は、前記ケース20の内側、且つ前記ボールランプ機構22の径方向外側に第二のスラスト玉軸受53を備えている。本第1例の場合、前記第二のスラスト玉軸受53が、請求の範囲に記載したスラスト軸受に相当する部材である。本第1例の場合、前記第二のスラスト玉軸受53を、前記送りねじ機構13aよりも前記ロータ1側、且つ、ボールランプ機構22と前記シリンダ7aの径方向に重畳した状態で設けている。 Further, the electric disk brake device of the first example includes a second thrust ball bearing 53 on the inner side of the case 20 and on the outer side in the radial direction of the ball ramp mechanism 22. In the case of the first example, the second thrust ball bearing 53 is a member corresponding to the thrust bearing described in the claims. In the case of the first example, the second thrust ball bearing 53 is provided in a state of being superimposed on the rotor 1 side of the feed screw mechanism 13a and in the radial direction of the ball ramp mechanism 22 and the cylinder 7a. .
 前記第二のスラスト玉軸受53は、前述したランプロータ29と、アウタ側軌道輪54と、保持器55と、複数個の玉56、56とにより構成されている。
 このうちのアウタ側軌道輪54は、円輪状部材であり、インナ側面にアウタ側軌道57が形成されている。この様なアウタ側軌道輪54は、前記ランプステータ46の軸方向中間部外周面に、前記ランプステータ46に対する軸方向変位を可能な状態で外嵌されている。
 前記保持器55は、円輪状部材であり、前記保持器55の円周方向に関する複数箇所にポケット58、58を有している。
 前記各玉56、56は、前記保持器55の各ポケット58、58に保持された状態で、前記ランプロータ29のインナ側軌道44と、前記アウタ側軌道輪54のアウタ側軌道57との間に転動自在に設けられている。
The second thrust ball bearing 53 includes the ramp rotor 29 described above, the outer raceway ring 54, a cage 55, and a plurality of balls 56 and 56.
Outer raceway ring 54 is an annular member, and outer side raceway 57 is formed on the inner side surface. Such an outer raceway ring 54 is externally fitted on the outer circumferential surface of the intermediate portion of the lamp stator 46 in an axially displaceable manner with respect to the lamp stator 46.
The cage 55 is an annular member, and has pockets 58 and 58 at a plurality of locations in the circumferential direction of the cage 55.
The balls 56 and 56 are held between the pockets 58 and 58 of the retainer 55, and between the inner track 44 of the ramp rotor 29 and the outer track 57 of the outer track 54. It is provided so that it can roll freely.
 又、本第1例の電動式ディスクブレーキ装置は、前記ランプステータ46のアウタ側にピストン12aを備えている。
 前記ピストン12aは、インナ側のみが開口した有底円筒状である。又、前記ピストン12aのインナ側端部外周面には、全周に亙り前記ピストン12aの径方向に関して外側に突出した外向鍔部59が形成されている。又、前記ピストン12aの内周面のインナ側半部は、インナ側に向かうほど内径が大きくなる部分円錐凹面部60と、前記部分円錐凹面部60のインナ側に設けられた円筒面部61とから成る。この様なピストン12aは、インナ側端面を、前記ランプステータ46のアウタ側端面に近接対向させた状態で設けられている。
Further, the electric disk brake device of the first example includes a piston 12 a on the outer side of the ramp stator 46.
The piston 12a has a bottomed cylindrical shape that is open only on the inner side. Further, an outer flange 59 is formed on the outer peripheral surface of the inner end of the piston 12a so as to protrude outward in the radial direction of the piston 12a over the entire circumference. Further, the inner half of the inner peripheral surface of the piston 12a includes a partial conical concave surface portion 60 whose inner diameter increases toward the inner side, and a cylindrical surface portion 61 provided on the inner side of the partial conical concave surface portion 60. Become. Such a piston 12 a is provided in a state in which the inner side end face is close to and opposed to the outer side end face of the lamp stator 46.
 又、本第1例の電動式ディスクブレーキ装置は、前記ランプステータ46と前記ピストン12aとの間に、鉄系合金製のイコライザ部材62を備えている。前記イコライザ部材62は、制動時に於ける、前記キャリパ5aの変形に基づく偏荷重が、前記ボールランプ機構22に入力される事を防止する為のものである。前記イコライザ部材62は、自身の中心軸を含む仮想平面に関する断面形状が、前記イコライザ部材62の径方向に関して外側に向かうほど軸方向寸法が小さくなる略台形状の筒状部材である。この様なイコライザ部材62は、前記アジャスタスクリュ28のアウタ側端部外周面と、前記ランプステータ46の部分円錐凹面部50と、前記ピストン12aの部分円錐凹面部60及び円筒面部61とにより囲まれた空間に配置されている。この状態で、前記イコライザ部材62のインナ側端部外周面は、前記ランプステータ46の部分円錐凹面部50に当接している。一方、前記イコライザ部材62のアウタ側端部外周面は、前記ピストン12aの部分円錐凹面部60に当接している。従って、前記ランプステータ46は、前記ピストン12aに対して、前記イコライザ部材62を介して軸力を伝達する事ができる。 Further, the electric disk brake device of the first example includes an iron-based alloy equalizer member 62 between the lamp stator 46 and the piston 12a. The equalizer member 62 is used to prevent an unbalanced load due to deformation of the caliper 5a during braking from being input to the ball ramp mechanism 22. The equalizer member 62 is a substantially trapezoidal tubular member whose cross-sectional shape with respect to a virtual plane including its own central axis decreases in the axial direction as it goes outward in the radial direction of the equalizer member 62. Such an equalizer member 62 is surrounded by the outer peripheral surface of the outer end portion of the adjuster screw 28, the partial conical concave surface portion 50 of the ramp stator 46, the partial conical concave surface portion 60 and the cylindrical surface portion 61 of the piston 12a. Is placed in the space. In this state, the outer peripheral surface of the inner side end portion of the equalizer member 62 is in contact with the partial conical concave surface portion 50 of the lamp stator 46. On the other hand, the outer peripheral surface of the outer end portion of the equalizer member 62 is in contact with the partial conical concave surface portion 60 of the piston 12a. Accordingly, the ramp stator 46 can transmit an axial force to the piston 12a via the equalizer member 62.
 又、本第1例の電動式ディスクブレーキ装置は、前記ケース20の内側、且つ前記ピストン12aのインナ側半部及び前記ランプステータ46のアウタ側端部の径方向外側にプラグ部材63を備えている。
 前記プラグ部材63は、円輪状部材であり、外周面のうち、前記プラグ部材63の径方向に関して反対側となる2箇所位置(図3の上下2箇所位置)に、軸方向から見た形状が円弧状に切り欠かれた一対の切欠き部64、64が形成されている。又、前記プラグ部材63の外周面のうち、これら両切欠き部64、64から前記プラグ部材63の円周方向に約90度ずれた2箇所位置(図3の左右2箇所位置)のアウタ側半部は、平坦面状に切り欠かれており、当該位置のインナ側半部と前記平坦面状部分とは係合段部65、65により連続している。
The electric disc brake device of the first example includes a plug member 63 on the inner side of the case 20 and on the radially outer side of the inner side half of the piston 12a and the outer side end of the lamp stator 46. Yes.
The plug member 63 is an annular member, and has a shape seen from the axial direction at two positions on the outer circumferential surface opposite to the radial direction of the plug member 63 (upper and lower two positions in FIG. 3). A pair of cutout portions 64 and 64 cut out in an arc shape are formed. Further, on the outer peripheral surface of the plug member 63, the outer side of two positions (two positions on the left and right in FIG. 3) shifted from the both notches 64, 64 by about 90 degrees in the circumferential direction of the plug member 63. The half portion is cut out in a flat surface shape, and the inner side half portion and the flat surface portion at the position are continuous by the engagement step portions 65 and 65.
 前記プラグ部材63のアウタ側面のうち、前記プラグ部材63の径方向内端部には、全周に亙りアウタ側に突出した軸方向凸部66が形成されている。又、前記プラグ部材63の内周面のうち、軸方向に関して前記軸方向凸部66と整合する部分には、全周に亙り前記プラグ部材63の径方向に関して内側に突出した内向鍔部67が形成されている。この様なプラグ部材63は、インナ側端面を、前記第二のスラスト玉軸受53を構成するアウタ側軌道輪54のアウタ側面に当接させた状態で、前記ピストン12aのインナ側半部及び前記ランプステータ46のアウタ側端部の径方向に関して外側に設けられている。又、前記プラグ部材63は、前記両切欠き部64、64と後述するボルト104、104の頭部との係合により回り止めを図られている。
 尚、上述の様な組み付け状態で、前記ケース20のアウタ側端部に設けられた両内向係合片27、27は、インナ側面を前記プラグ部材63の係合段部65、65に対して、僅かな隙間を介して対向している。
Of the outer side surface of the plug member 63, an axial convex portion 66 is formed on the radially inner end of the plug member 63 so as to protrude to the outer side over the entire circumference. In addition, in the inner peripheral surface of the plug member 63, an inward flange portion 67 that protrudes inward in the radial direction of the plug member 63 is formed over the entire circumference at a portion that is aligned with the axial convex portion 66 in the axial direction. Is formed. Such a plug member 63 is configured such that the inner side half of the piston 12 a and the inner half of the piston 12 a are in contact with the outer side surface of the outer raceway ring 54 constituting the second thrust ball bearing 53. The lamp stator 46 is provided outside in the radial direction of the outer side end portion. Further, the plug member 63 is prevented from rotating by engaging both the notches 64 and 64 and the heads of bolts 104 and 104 described later.
In the assembled state as described above, the inward engagement pieces 27 and 27 provided at the outer side end portion of the case 20 have inner side surfaces that are opposite to the engagement step portions 65 and 65 of the plug member 63. , Facing each other through a slight gap.
 又、本第1例の場合、前記ピストン12aの外向鍔部59のアウタ側面と前記プラグ部材63の内向鍔部23のインナ側面との間に、軸方向の弾性力を保持した状態でコイルばね68が設けられている。この様にして、前記ピストン12aを前記イコライザ部材62に対して押し付けている。 In the case of the first example, a coil spring is maintained in a state in which an axial elastic force is maintained between the outer side surface of the outward flange portion 59 of the piston 12a and the inner side surface of the inward flange portion 23 of the plug member 63. 68 is provided. In this way, the piston 12a is pressed against the equalizer member 62.
 又、本第1例の電動式ディスクブレーキ装置は、非電動式の推力発生機構である、自己サーボ機構69を備えている。本第1例の場合、前記自己サーボ機構69と、前記ボールランプ機構22とを、軸方向に関して直列に配置している。
 この様な自己サーボ機構69は、サーボホルダ70と、ステータプレート71と、サーボプレート72と、保持器73と、4個のローラ74、74とを備えている。
The electric disc brake device of the first example includes a self-servo mechanism 69 that is a non-electric thrust generating mechanism. In the case of the first example, the self-servo mechanism 69 and the ball ramp mechanism 22 are arranged in series in the axial direction.
Such a self-servo mechanism 69 includes a servo holder 70, a stator plate 71, a servo plate 72, a cage 73, and four rollers 74 and 74.
 このうちのサーボホルダ70は、ホルダ基部75と、一対のフランジ部76、76とを備えている。
 前記ホルダ基部75は、筒部77と、底板部78とから成る。
 前記筒部77は、インナ側端部外周面に、全周に亙り第一ブーツ係止溝79が形成されている。又、前記筒部77の内周面は、インナ側端部に形成された小径円筒面部80と、前記小径円筒面部80のアウタ側に設けられており、前記小径円筒面部80よりも内径寸法が大きい中径円筒面部81と、前記中径円筒面部81のアウタ側に設けられており、アウタ側に向かうほど内径寸法が大きくなる方向に傾斜した部分円錐凹面部82と、前記部分円錐凹面部82のアウタ側に設けられており、前記中径円筒面部81よりも内径寸法が大きい大径円筒面部83とから成る。
The servo holder 70 includes a holder base 75 and a pair of flange portions 76 and 76.
The holder base 75 includes a cylindrical part 77 and a bottom plate part 78.
The cylindrical portion 77 has a first boot locking groove 79 formed on the outer peripheral surface of the inner side end portion over the entire circumference. Further, the inner peripheral surface of the cylindrical portion 77 is provided on a small diameter cylindrical surface portion 80 formed at an inner side end portion and an outer side of the small diameter cylindrical surface portion 80, and has an inner diameter dimension larger than that of the small diameter cylindrical surface portion 80. A large medium-diameter cylindrical surface portion 81, a partial conical concave surface portion 82 that is provided on the outer side of the medium-diameter cylindrical surface portion 81 and is inclined in a direction in which the inner diameter dimension increases toward the outer side, and the partial conical concave surface portion 82. And a large-diameter cylindrical surface portion 83 having a larger inner diameter than the medium-diameter cylindrical surface portion 81.
 前記底板部78は、円輪状であり、前記筒部77のインナ側端部内周面に、前記筒部77の径方向に関して内側に突出した状態で一体に形成されている。前記底板部78の内径寸法は、前記プラグ部材63のアウタ側端部外周面の外径寸法よりも僅かに大きい。この様な底板部78のうち、前記筒部77の径方向に関する中間部で、且つ前記筒部77の径方向に関して反対側となる2箇所位置(図3の上下2箇所位置)には、前記底板部78を軸方向に貫通した一対の貫通孔84、84が形成されている。 The bottom plate portion 78 has an annular shape, and is integrally formed on the inner peripheral surface of the inner end portion of the cylindrical portion 77 so as to protrude inward in the radial direction of the cylindrical portion 77. The inner diameter of the bottom plate portion 78 is slightly larger than the outer diameter of the outer peripheral surface of the outer end portion of the plug member 63. Among such bottom plate portions 78, the intermediate portion in the radial direction of the cylindrical portion 77 and the two opposite positions on the opposite side in the radial direction of the cylindrical portion 77 (upper and lower two positions in FIG. 3) A pair of through- holes 84 and 84 penetrating the bottom plate portion 78 in the axial direction are formed.
 前記両フランジ部76、76は、前記筒部77の外周面のうち、前記筒部77の径方向に関して反対側となる2箇所位置(図3の左右2箇所位置)に、前記筒部77の径方向に関して外側に突出した状態で形成されている。この様な両フランジ部76、76は、軸方向から見た形状が、略六角形状である。又、これら両フランジ部76、76のうち、前記ロータ1の周方向に関して反対側の端部には、トルク伝達面85(図6参照)が形成されている。前記トルク伝達面85は、制動時に前記サポート4のトルク受面86に当接する事により、前記ロータ1から前記インナパッド2aに作用するブレーキ接線力を伝達する。尚、本第1例の場合、前記トルク伝達面85に金属板を所定形状に折り曲げ形成して成るパッドクリップ87、87が設けられている。一方、前記サポート4のトルク受面86にも、金属板を所定形状に折り曲げ形成して成るサポート側クリップ88が設けられている。又、前記両フランジ部76、76の径方向外端寄り部分にはそれぞれ、これら両フランジ部76、76を軸方向に貫通した一対の貫通孔89、89が形成されている。 The flange portions 76, 76 are located at two positions (two positions on the left and right in FIG. 3) on the opposite side in the radial direction of the cylindrical portion 77 on the outer peripheral surface of the cylindrical portion 77. It is formed in a state of protruding outward in the radial direction. The two flange portions 76 and 76 have a substantially hexagonal shape when viewed from the axial direction. Further, a torque transmission surface 85 (see FIG. 6) is formed at an end portion on the opposite side with respect to the circumferential direction of the rotor 1 among these flange portions 76 and 76. The torque transmission surface 85 transmits a brake tangential force acting on the inner pad 2a from the rotor 1 by contacting the torque receiving surface 86 of the support 4 during braking. In the case of the first example, pad clips 87, 87 formed by bending a metal plate into a predetermined shape are provided on the torque transmission surface 85. On the other hand, a support-side clip 88 formed by bending a metal plate into a predetermined shape is also provided on the torque receiving surface 86 of the support 4. A pair of through- holes 89 and 89 are formed through the flange portions 76 and 76 in the axial direction, respectively, near the radially outer ends of the flange portions 76 and 76.
 この様なサーボホルダ70は、前記底板部78の内側に前記プラグ部材63の軸方向凸部66の外周面が挿入され、且つ、前記底板部78のインナ側面の径方向内端部が、前記プラグ部材63のアウタ側端面に当接した状態で設けられている。従って、制動時(送りねじ機構の作動時)に於いて、前記プラグ部材63は、前記サーボホルダ70に軸力の伝達が可能である。
 又、上述の様な組み付け状態で、前記シリンダ7aのアウタ側端部内周面に形成された第二ブーツ係止溝90と、前記サーボホルダ70の第一ブーツ係止溝79との間に、第一のブーツ91が設けられている。
In such a servo holder 70, the outer peripheral surface of the axial projection 66 of the plug member 63 is inserted inside the bottom plate portion 78, and the radially inner end portion of the inner side surface of the bottom plate portion 78 is the plug The member 63 is provided in contact with the outer side end surface. Accordingly, the plug member 63 can transmit the axial force to the servo holder 70 during braking (when the feed screw mechanism is activated).
Further, in the assembled state as described above, the second boot locking groove 90 formed on the inner peripheral surface of the outer side end portion of the cylinder 7a and the first boot locking groove 79 of the servo holder 70 are arranged between the first boot locking groove 79 and the first boot locking groove 79. One boot 91 is provided.
 前記ステータプレート71は、円輪状部材であり、外周面のアウタ側端部に全周に亙り、前記ステータプレート71の径方向に関する外側に突出した外向鍔部92が形成されている。又、前記ステータプレート71のうち、前記ステータプレート71の径方向に関する中間部で、且つ、前記ステータプレート71の径方向に関して反対側となる2箇所位置(図3の上下2箇所位置)に、前記ステータプレート71を軸方向に貫通した一対の貫通孔93、93が形成されている。又、前記ステータプレート71のアウタ側面の径方向中間部で、且つ、円周方向4箇所位置に、第一カム面94、94が形成されている。これら各第一カム面94、94は、制動時のブレーキ接線力の方向(図3の左右方向、図7の上下方向)に関して中央部が最も深く、前記ブレーキ接線力の方向に関して両端側に進むほど浅くなる(アウタ側に向かう方向に傾斜した)状態に形成されている。この様なステータプレート71は、インナ側面のうち、前記ステータプレート71の径方向内端部を前記プラグ部材63の軸方向凸部66のアウタ側端面に当接させると共に、前記インナ側面のうち、前記ステータプレート71の径方向内端寄り部分から径方向外端部に掛けての部分を、前記サーボホルダ70の底板部78のアウタ側面に当接させた状態で、前記ピストン12aのアウタ側端部外周面に、前記ピストン12aに対する軸方向の変位を可能な状態で外嵌されている。又、この様に組み付けられた状態で、前記ステータプレート71のインナ側端部外周面は、前記サーボホルダ70の小径円筒面部80に内嵌されている。 The stator plate 71 is a ring-shaped member, and an outward flange 92 that protrudes outward in the radial direction of the stator plate 71 is formed on the outer side end of the outer peripheral surface. Further, in the stator plate 71, the intermediate portion in the radial direction of the stator plate 71 and the two opposite positions with respect to the radial direction of the stator plate 71 (upper and lower two positions in FIG. 3) A pair of through- holes 93 and 93 penetrating the stator plate 71 in the axial direction are formed. Further, first cam surfaces 94, 94 are formed at the radial intermediate portion of the outer side surface of the stator plate 71 and at four positions in the circumferential direction. Each of these first cam surfaces 94, 94 has the deepest center in the brake tangential force direction (left-right direction in FIG. 3, vertical direction in FIG. 7) during braking, and proceeds to both ends with respect to the brake tangential force direction. It is formed so as to be shallower (inclined in the direction toward the outer side). The stator plate 71 is configured such that, of the inner side surfaces, the radially inner end portion of the stator plate 71 is brought into contact with the outer side end surface of the axial convex portion 66 of the plug member 63, and among the inner side surfaces, An outer side end portion of the piston 12a in a state where a portion of the stator plate 71 extending from the radially inner end portion to the radially outer end portion is in contact with the outer side surface of the bottom plate portion 78 of the servo holder 70. The outer periphery of the piston 12a is externally fitted in a state that allows axial displacement. Further, in this assembled state, the outer peripheral surface of the inner side end portion of the stator plate 71 is fitted into the small diameter cylindrical surface portion 80 of the servo holder 70.
 前記サーボプレート72は、円板状部材であり、外周面の軸方向中間部に、全周に亙り係止凹溝95が形成されている。又、前記サーボプレート72のアウタ側面のうち、前記サーボプレート72の径方向に関して反対側となる2箇所位置(図3の左右方向)には、軸方向から見た形状が円形の1対の係合凹部96、96が形成されている。又、前記サーボプレート72のインナ側面のうち、前記サーボプレート72の径方向に関する中間部で、且つ、円周方向4箇所位置には、第二カム面97、97(図7参照)が形成されている。これら各第二カム面97、97は、制動時のブレーキ接線力の方向(図7の上下方向)に関して中央部が最も深く、前記ブレーキ接線力の方向に関して両端側に進むほど浅くなる(インナ側に向かう方向に傾斜した)状態に形成されている。即ち、前記各第二カム面97、97は、軸方向に関して、前記各第一カム面94、94と対称に形成されている。更に、前記サーボプレート72のインナ側面のうち、前記サーボプレート72の径方向に関して反対側となる2箇所位置には、制動時のブレーキ接線力の方向(図1、2の表裏方向)に長い一対の凹部98、98が形成されている。この様なサーボプレート72は、前記ステータプレート71のアウタ側に、前記各第二カム面97、97と前記各第一カム面94、94とが、軸方向に対向した状態で設けられている。この状態で、前記サーボプレート72のアウタ側面に形成された前記両係合凹部96、96に、前記インナパッド2aを構成する裏板99(図4、5参照)のインナ側面に形成された一対の係合凸部100、100が隙間なく係合されている。尚、前記サーボプレート72は、前記ステータプレート71に対して軸方向に変位可能である。又、前記サーボプレート72は、制動時に、前記ロータ1と前記インナパッド2aとの摩擦により、前記インナパッド2aがブレーキ接線力の方向に変位した場合には、前記インナパッド2aと共にブレーキ接線力の方向に変位可能である。 The servo plate 72 is a disk-like member, and a locking groove 95 is formed around the entire circumference in the axially intermediate portion of the outer peripheral surface. Further, at two positions (outside the left and right in FIG. 3) opposite to the radial direction of the servo plate 72 on the outer side surface of the servo plate 72, a pair of engagements having a circular shape when viewed from the axial direction are provided. Joint recesses 96 are formed. In addition, second cam surfaces 97 and 97 (see FIG. 7) are formed in the inner side surface of the servo plate 72 at an intermediate portion in the radial direction of the servo plate 72 and at four positions in the circumferential direction. ing. Each of these second cam surfaces 97, 97 is deepest at the center with respect to the direction of the brake tangential force during braking (vertical direction in FIG. 7), and becomes shallower toward the both ends with respect to the direction of the brake tangential force (inner side). It is formed in a state inclined to the direction toward That is, the second cam surfaces 97 and 97 are formed symmetrically with the first cam surfaces 94 and 94 in the axial direction. Further, two positions on the inner side surface of the servo plate 72 that are opposite to the radial direction of the servo plate 72 are a pair that is long in the direction of the brake tangential force during braking (front and back direction in FIGS. 1 and 2). Recesses 98, 98 are formed. Such a servo plate 72 is provided on the outer side of the stator plate 71 with the second cam surfaces 97, 97 and the first cam surfaces 94, 94 facing each other in the axial direction. . In this state, a pair formed on the inner side surface of the back plate 99 (see FIGS. 4 and 5) constituting the inner pad 2a is formed in the engaging recesses 96, 96 formed on the outer side surface of the servo plate 72. The engaging projections 100 and 100 are engaged with no gap. The servo plate 72 can be displaced in the axial direction with respect to the stator plate 71. In addition, when the servo plate 72 is braked and the inner pad 2a is displaced in the direction of the brake tangential force due to friction between the rotor 1 and the inner pad 2a, It can be displaced in the direction.
 前記保持器73は、軸方向から見た形状が略矩形状の板状部材である。前記保持器73の長手方向(図3の上下方向)両端寄り部分で、短手方向(図3の左右方向)中央部には、軸方向から見た形状が、制動時のブレーキ接線力の方向(保持器73の短手方向であって、図3の左右方向)に長い矩形状の一対の貫通孔101、101が形成されている。又、前記保持器73の中央部には、軸方向から見た形状が、略十字状の中央貫通孔102が形成されている。更に、前記保持器73の四隅寄り部分には、軸方向から見た形状が、前記保持器73の長手方向に長い矩形状であり、その内側に後述する各ローラ74、74を保持する為の4個のポケット103、103が形成されている。この様な保持器73は、前記保持器73の短手方向が、制動時のブレーキ接線力の方向に一致した状態で、前記ステータプレート71と前記サーボプレート72との間に配置されている。 The cage 73 is a plate-like member having a substantially rectangular shape when viewed from the axial direction. The shape of the cage 73 viewed from the axial direction is the direction of the brake tangential force at the time of braking at the center portion in the short direction (left and right direction in FIG. 3). A pair of long through holes 101 and 101 having a long rectangular shape is formed in the short direction of the cage 73 (the horizontal direction in FIG. 3). Further, a central through hole 102 having a substantially cross shape when viewed from the axial direction is formed in the central portion of the cage 73. Further, at the four corners of the retainer 73, the shape viewed from the axial direction is a rectangular shape that is long in the longitudinal direction of the retainer 73, and for holding rollers 74, 74 described later on the inside thereof. Four pockets 103, 103 are formed. Such a cage 73 is disposed between the stator plate 71 and the servo plate 72 in a state where the short direction of the cage 73 coincides with the direction of the brake tangential force during braking.
 前記各ローラ74、74は、円筒状であり、前記保持器73の各ポケット103、103に保持された状態で、前記ステータプレート71の各第一カム面94、94と前記サーボプレート72の各第二カム面97、97との間で挟持されている。尚、前記ステータプレート71(各第一カム面94、94)と、前記サーボプレート72(第二カム面97、97)とが、ブレーキ接線力の方向に相対変位していない状態では、前記各ローラ74、74は、前記各第一カム面94、94及び前記各第二カム面97、97のブレーキ接線力の方向に関して中央部(最も深い位置)に位置している。 Each of the rollers 74 and 74 has a cylindrical shape and is held in the pockets 103 and 103 of the cage 73, and the first cam surfaces 94 and 94 of the stator plate 71 and the servo plates 72. It is clamped between the second cam surfaces 97 and 97. In the state where the stator plate 71 (the first cam surfaces 94, 94) and the servo plate 72 (the second cam surfaces 97, 97) are not relatively displaced in the direction of the brake tangential force, The rollers 74 and 74 are located in the center (deepest position) with respect to the direction of the brake tangential force of the first cam surfaces 94 and 94 and the second cam surfaces 97 and 97.
 以上の様な構成を有する前記サーボホルダ70と、前記ステータプレート71と、前記サーボプレート72と、前記保持器73とは、一対のボルト104、104により連結されている。具体的には、これら各部材70、71、72、73は、前記サーボホルダ70の両貫通孔84、84、前記ステータプレート71の両貫通孔93、93、及び前記保持器73の両貫通孔101、101に挿通された一対のボルト104、104の先端部(アウタ側端部)が、前記サーボプレート72の両凹部98、98の内側に挿入された状態で連結されている。尚、前記サーボホルダ70の両貫通孔84、84及び前記ステータプレート71の両貫通孔93、93の内径寸法は、前記ボルト104、104をがたつく事なく挿入可能な大きさである。この状態で、前記サーボプレート72は、前記ステータプレート71に対して、前記両凹部98、98のブレーキ接線力の方向に関する長さ寸法と、前記両ボルト104、104の先端部の外径寸法との差の分だけ、ブレーキ接線力の方向に変位可能である。又、前記保持器73も、前記保持器73の両貫通孔101、101のブレーキ接線力の方向に関する長さと、前記両ボルト104、104の軸方向中間部の外径寸法との差の分だけ、当該方向に変位可能である。 The servo holder 70 having the above configuration, the stator plate 71, the servo plate 72, and the retainer 73 are connected by a pair of bolts 104 and 104. Specifically, each of these members 70, 71, 72, 73 includes both through holes 84, 84 of the servo holder 70, both through holes 93, 93 of the stator plate 71, and both through holes 101 of the cage 73. , 101 are connected to each other in such a manner that the front end portions (outer side end portions) of the pair of bolts 104, 104 are inserted inside the concave portions 98, 98 of the servo plate 72. The inner diameters of the through holes 84 and 84 of the servo holder 70 and the through holes 93 and 93 of the stator plate 71 are such that the bolts 104 and 104 can be inserted without rattling. In this state, with respect to the stator plate 71, the servo plate 72 has a length dimension in the direction of the brake tangential force of the concave portions 98 and 98, and an outer diameter dimension of the tip portions of the bolts 104 and 104. It is possible to displace in the direction of the brake tangential force by the difference between the two. The cage 73 also has a difference between the length in the direction of the brake tangential force of the through holes 101 and 101 of the cage 73 and the outer diameter of the intermediate portion in the axial direction of the bolts 104 and 104. , And can be displaced in this direction.
 又、本第1例の場合、前記インナパッド2aを構成する裏板99は、一対の支持機構105、105により、前記サーボホルダ70に対する位置決めを図られると共に、前記サーボホルダ70に対してブレーキ接線力の方向に変位可能な状態で支持されている。具体的には、前記両支持機構105、105はそれぞれ、ピン106と、カップ107と、圧縮コイルばね108とにより構成されている。 In the case of the first example, the back plate 99 constituting the inner pad 2 a is positioned with respect to the servo holder 70 by a pair of support mechanisms 105, 105 and has a brake tangential force with respect to the servo holder 70. It is supported so that it can be displaced in the direction. Specifically, each of the support mechanisms 105 and 105 includes a pin 106, a cup 107, and a compression coil spring 108.
 このうちのピン106は、頭部109と、軸部110と、先端部111とから成る。
 この様なピン106は、前記軸部110が、前記裏板99の周方向両端部に形成された一対の貫通孔112、112と、前記サーボホルダ70を構成する両フランジ部76、76に形成された両貫通孔89、89とに、前記頭部109がアウタ側に配置され、インナ側への抜け止めが図られた状態で挿通されている。
Of these, the pin 106 includes a head 109, a shaft 110, and a tip 111.
In such a pin 106, the shaft portion 110 is formed in a pair of through holes 112 and 112 formed at both circumferential ends of the back plate 99 and both flange portions 76 and 76 constituting the servo holder 70. Further, the head 109 is disposed on the outer side through both the through holes 89, 89 and is inserted in a state of being prevented from coming off to the inner side.
 前記カップ107は、底部113の径方向に関する中央部に貫通孔114が形成された皿状部材である。この様なカップ107は、前記底部113がアウタ側に配置された状態で、前記貫通孔114が、前記ピン106の軸部110の先端寄り部分に外嵌されている。尚、前記カップ107のインナ側への抜け止めは、前記底部113のインナ側面と、前記ピン106の先端部111との係合により図られている。 The cup 107 is a dish-shaped member in which a through hole 114 is formed at the center of the bottom 113 in the radial direction. In such a cup 107, the through hole 114 is externally fitted to the end portion of the shaft portion 110 of the pin 106 with the bottom 113 disposed on the outer side. The cup 107 is prevented from slipping off to the inner side by engaging the inner side surface of the bottom portion 113 with the tip portion 111 of the pin 106.
 前記圧縮コイルばね108は、前記カップ107のアウタ側面と、前記サーボホルダ70のインナ側面との間に弾性力を保持した状態で設けられている。尚、前記ピン106の軸部110の外径寸法は、前記サーボホルダ70の両貫通孔89、89及び前記裏板99の両貫通孔112、112の内径寸法よりも小さく、前記サーボホルダ70の両貫通孔89、89の内径寸法は、前記裏板99の両貫通孔112、112の内径寸法よりも大きい。この構成により、前記インナパッド2aに対して、ブレーキ接線力の方向(ロータの周方向)の力が作用した場合に、前記ピン106が前記サーボホルダ70の両貫通孔89、89の内側で傾斜して、前記サーボホルダ70に対する前記インナパッド2aのブレーキ接線力の方向への変位を許容する。又、前記インナパッド2aに対して、ブレーキ接線力の方向の力が作用しなくなった場合には、前記圧縮コイルばね108の弾性力により、前記ピン106が、前記サーボホルダ70の両貫通孔89、89に対して元の状態(図6に示す状態)に戻る。この結果、前記インナパッド2aは、前記サーボホルダ70に対してブレーキ接線力の方向に変位する前の状態に戻る。 The compression coil spring 108 is provided in a state in which an elastic force is maintained between the outer side surface of the cup 107 and the inner side surface of the servo holder 70. The outer diameter dimension of the shaft portion 110 of the pin 106 is smaller than the inner diameter dimensions of the two through holes 89 and 89 of the servo holder 70 and the two through holes 112 and 112 of the back plate 99. The inner diameters of the holes 89 and 89 are larger than the inner diameters of the through holes 112 and 112 of the back plate 99. With this configuration, when a force in the direction of the brake tangential force (the circumferential direction of the rotor) is applied to the inner pad 2a, the pin 106 is inclined inside the through holes 89, 89 of the servo holder 70. Thus, displacement of the inner pad 2a in the direction of the brake tangential force with respect to the servo holder 70 is allowed. When the force in the direction of the brake tangential force does not act on the inner pad 2a, the pin 106 is connected to the through holes 89 of the servo holder 70 by the elastic force of the compression coil spring 108. 89 returns to the original state (the state shown in FIG. 6). As a result, the inner pad 2a returns to the state before being displaced in the direction of the brake tangential force with respect to the servo holder 70.
 又、本第1例の場合、前記ステータプレート71のアウタ側面と、前記サーボプレート72のインナ側面との間に存在する空間のうち、前記ステータプレート71の径方向に関して外側の開口部を塞ぐ為に、筒状の第二のブーツ115が設けられている。具体的には、前記第二のブーツ115のインナ側端部は、前記ステータプレート71の軸方向中間部外周面に外嵌固定されている。この状態で、前記第二のブーツ115のインナ側端部と前記ステータプレート71の外向鍔部92のインナ側面とが軸方向に係合している。一方、前記第二のブーツ115のアウタ側端部は、前記サーボプレート72の係止凹溝95に係止されている。 Further, in the case of the first example, in order to block the outer opening in the radial direction of the stator plate 71 in the space existing between the outer side surface of the stator plate 71 and the inner side surface of the servo plate 72. In addition, a cylindrical second boot 115 is provided. Specifically, the inner side end portion of the second boot 115 is externally fitted and fixed to the outer peripheral surface in the axial direction intermediate portion of the stator plate 71. In this state, the inner side end portion of the second boot 115 and the inner side surface of the outward flange portion 92 of the stator plate 71 are engaged in the axial direction. On the other hand, the outer side end portion of the second boot 115 is locked in the locking groove 95 of the servo plate 72.
 又、本第1例の場合、前記ピストン12aの底部116のアウタ側面(先端面)と、前記サーボプレート72のインナ側面の中央部との間に、スラストころ軸受117が設けられている。この様なスラストころ軸受117は、保持器118と、3本の円筒ころ119、119とから成る。このうちの保持器118は、ブレーキ接線力の方向に隣り合う状態で3個のポケット120、120が形成されている。又、前記各円筒ころ119、119は、自身の中心軸を、ブレーキ接線力の方向及び前記ピストン12aの軸方向に直交する方向に一致させた状態で、前記各ポケット120、120に保持されている。この状態で、前記各円筒ころ119、119の外周面は、前記ピストン12aの底部116のアウタ側面と、前記サーボプレート72のインナ側面の中央部とに当接している。 In the case of the first example, a thrust roller bearing 117 is provided between the outer side surface (tip surface) of the bottom portion 116 of the piston 12 a and the central portion of the inner side surface of the servo plate 72. Such a thrust roller bearing 117 includes a cage 118 and three cylindrical rollers 119 and 119. Of these, the cage 118 is formed with three pockets 120, 120 in a state adjacent to each other in the direction of the brake tangential force. The cylindrical rollers 119 and 119 are held in the pockets 120 and 120 with their central axes aligned with the direction of the brake tangential force and the direction orthogonal to the axial direction of the piston 12a. Yes. In this state, the outer peripheral surfaces of the cylindrical rollers 119 and 119 are in contact with the outer side surface of the bottom portion 116 of the piston 12 a and the central portion of the inner side surface of the servo plate 72.
 以上の様な構成を有する本第1例の電動式ディスクブレーキ装置は、次の様に作動して、前記両パッド2a、3aを前記ロータ1の両側面に押し付け、制動を行わせる。
 非制動時には、前記インナ、アウタ両パッド2a、3aと前記ロータ1の両側面との間には隙間が存在する。この状態から、制動を行う為に、前記電動モータ9aに通電し、前記減速機11aを介して、前記回転軸34及び前記送りねじ機構13aを構成するアジャスタスクリュ28を回転駆動する。この状態では、前記アジャスタスクリュ28の雄ねじ部32と前記ランプロータ29の雌ねじ部42との螺合部で発生する抵抗が、前記プリセットスプリング21により、前記ランプロータ29に付与される抵抗(弾性付勢力)よりも小さい。この為、前記ランプロータ29は、回転せずに、前記ロータ1に向けてアウタ側に変位(平行移動)する。そして、前記ランプロータ29の変位に伴い、前記ランプロータ29よりも前記ロータ1側(アウタ側)に配置された各部材が、一体的に前記ロータ1に向けて変位する。この際、前記プラグ部材63のアウタ側への変位に伴い、前記ケース20もアウタ側へ変位する。この様な各部材のアウタ側への変位に伴い、前記インナパッド2aが、前記サーボホルダ70及び前記サーボプレート72により前記ロータ1のインナ側面に押し付けられる。この際、前記キャリパ5aがインナ側に変位して、前記キャリパ爪6aにより、前記アウタパッド3aを前記ロータ1のアウタ側面に押し付ける。この様に、前記両パッド2a、3aと前記ロータ1の両側面との間の隙間を解消する間は、前記ボールランプ機構22は特に機能しない。
The electric disc brake device of the first example having the above-described configuration operates as follows to press both the pads 2a and 3a against both side surfaces of the rotor 1 to perform braking.
During non-braking, there is a gap between the inner and outer pads 2a, 3a and both side surfaces of the rotor 1. From this state, in order to perform braking, the electric motor 9a is energized, and the adjusting shaft 28 and the adjusting screw 28 constituting the feed screw mechanism 13a are rotationally driven via the speed reducer 11a. In this state, the resistance generated at the threaded portion between the male threaded portion 32 of the adjustment task screw 28 and the female threaded portion 42 of the lamp rotor 29 is the resistance (elasticity applied) applied to the lamp rotor 29 by the preset spring 21. Smaller than power). Therefore, the lamp rotor 29 is displaced (translated) toward the outer side toward the rotor 1 without rotating. In association with the displacement of the lamp rotor 29, the members disposed closer to the rotor 1 (outer side) than the lamp rotor 29 are integrally displaced toward the rotor 1. At this time, as the plug member 63 is displaced toward the outer side, the case 20 is also displaced toward the outer side. As the respective members are displaced toward the outer side, the inner pad 2a is pressed against the inner side surface of the rotor 1 by the servo holder 70 and the servo plate 72. At this time, the caliper 5a is displaced toward the inner side, and the outer pad 3a is pressed against the outer side surface of the rotor 1 by the caliper claw 6a. In this manner, the ball ramp mechanism 22 does not particularly function while the gap between the two pads 2a and 3a and the both side surfaces of the rotor 1 is eliminated.
 そして、前記両パッド2a、3aと前記ロータ1の両側面との間の隙間が解消されると、軸力の発生により、前記ボールランプ機構22が作動する。具体的には、前記アジャスタスクリュ28の雄ねじ部32と前記ランプロータ29の雌ねじ部42との螺合部で発生する抵抗が増大し、前記送りねじ機構13aの機能が停止する(ランプロータ29がアジャスタスクリュ28に対して相対回転しなくなる)と、前記ランプロータ29が、前記プリセットスプリング21の弾性付勢力(抵抗)に抗して回転する。これにより、前記各ボール48、48が、前記各駆動側ランプ軌道43、43及び前記各被駆動側ランプ軌道51、51のうち、方向に関する高さの高い側に向けてそれぞれ転動する。この際、前記保持器47は、前記各ボール48、48の公転運動に伴って連れ回される。そして、前記各駆動側ランプ軌道43、43及び前記各被駆動側ランプ軌道51、51と、前記各ボール48、48との係合(転がり接触)に基づいて、前記ランプロータ29と前記ランプステータ46との間隔を大きな力で拡げる。本第1例の場合、前記ボールランプ機構22が作動して、前記ランプロータ29と前記ランプステータ46との間隔が拡がる事により発生する軸力が、請求の範囲に記載した作用力に相当する。 When the gap between the two pads 2a and 3a and both side surfaces of the rotor 1 is eliminated, the ball ramp mechanism 22 is activated by the generation of the axial force. Specifically, the resistance generated at the threaded portion between the male screw portion 32 of the adjustment task screw 28 and the female screw portion 42 of the ramp rotor 29 is increased, and the function of the feed screw mechanism 13a is stopped (the lamp rotor 29 is The lamp rotor 29 rotates against the elastic biasing force (resistance) of the preset spring 21. As a result, the balls 48, 48 roll toward the higher side in the direction among the driving side ramp tracks 43, 43 and the driven side ramp tracks 51, 51, respectively. At this time, the cage 47 is rotated along with the revolving motion of the balls 48, 48. Then, based on the engagement (rolling contact) between the driving side lamp tracks 43 and 43 and the driven side lamp tracks 51 and 51 and the balls 48 and 48, the lamp rotor 29 and the lamp stator. Increase the distance to 46 with great force. In the case of the first example, the axial force generated by the operation of the ball ramp mechanism 22 and the increase in the distance between the lamp rotor 29 and the lamp stator 46 corresponds to the acting force described in the claims. .
 以上の様なボールランプ機構22の作動により発生した軸力(作用力)に基づいて、前記ピストン12a及び前記スラストころ軸受117がアウタ側に変位して、前記サーボプレート72のアウタ側面が、前記インナパッド2aの裏板99に強く押し付けられる。これにより、前記インナ、アウタ両パッド2a、3aが前記ロータ1の軸方向両側面に強く押し付けられて、制動力が発生する。 Based on the axial force (acting force) generated by the operation of the ball ramp mechanism 22 as described above, the piston 12a and the thrust roller bearing 117 are displaced to the outer side, and the outer side surface of the servo plate 72 is It is strongly pressed against the back plate 99 of the inner pad 2a. As a result, the inner and outer pads 2a and 3a are strongly pressed against both side surfaces of the rotor 1 in the axial direction, and a braking force is generated.
 又、本第1例の場合、上述の様に前記ボールランプ機構22の作動により発生した軸力(作用力)に基づいて、前記インナパッド2aが前記ロータ1に強く押し付けられると、前記インナパッド2aと前記ロータ1との摩擦に基づいて、前記インナパッド2aにブレーキ接線力の方向の力が作用する。そして、前記インナパッド2a及び前記サーボプレート72が、ブレーキ接線力の方向に変位する。すると、前記サーボプレート72の変位に伴い、前記各ローラ74、74が、前記ステータプレート71との関係では、前記各第一カム面94、94の最も深い位置から、ブレーキ接線力の方向(第一カム面94、94の深さが浅い位置)に転動しながら変位する。一方、前記各ローラ74、74は、前記サーボプレート72との関係では、前記各第二カム面97、97の最も深い位置から、ブレーキ接線力の方向と反対方向に転動しながら変位する。この結果、前記サーボプレート72と前記ステータプレート71との軸方向に関する間隔が拡がり(サーボプレート72がアウタ側に変位して)、前記インナパッド2aが、前記ロータ1に対して更に強い力で押し付けられる。
 以上の様に、前記インナパッド2aと前記ロータ1との摩擦に基づいて、前記インナパッド2aがブレーキ接線力の方向に変位して、前記サーボプレート72がアウタ側(ロータ1側)に変位する動作が、請求の範囲に記載した自己サーボ機構による動作である。
In the case of the first example, when the inner pad 2a is strongly pressed against the rotor 1 based on the axial force (acting force) generated by the operation of the ball ramp mechanism 22 as described above, the inner pad Based on the friction between 2a and the rotor 1, a force in the direction of the brake tangential force acts on the inner pad 2a. Then, the inner pad 2a and the servo plate 72 are displaced in the direction of the brake tangential force. Then, with the displacement of the servo plate 72, the rollers 74, 74 are in the relationship with the stator plate 71 from the deepest position of the first cam surfaces 94, 94 in the direction of brake tangential force (first The cam surfaces 94 and 94 are displaced while rolling to a shallow position. On the other hand, in relation to the servo plate 72, the rollers 74 and 74 are displaced from the deepest position of the second cam surfaces 97 and 97 while rolling in a direction opposite to the direction of the brake tangential force. As a result, the axial distance between the servo plate 72 and the stator plate 71 is increased (the servo plate 72 is displaced to the outer side), and the inner pad 2a is pressed against the rotor 1 with a stronger force. It is done.
As described above, based on the friction between the inner pad 2a and the rotor 1, the inner pad 2a is displaced in the direction of the brake tangential force, and the servo plate 72 is displaced toward the outer side (rotor 1 side). The operation is an operation by the self-servo mechanism described in the claims.
 尚、本第1例の場合、前記インナパッド2aに加わるブレーキ接線力は、前記サーボホルダ70を介して前記サポート4に伝達される。
 又、自己サーボ機構69が作動した際に発生する軸力の反力は、前記サーボプレート72から前記各ローラ74、74を介して前記ステータプレート71に伝わり、更に、前記サーボホルダ70及び前記プラグ部材63を介して、前記第二のスラスト玉軸受53に伝達される。そして、この様に伝達された前記反力は、前記第二のスラスト玉軸受53から、前記ランプロータ29及びアジャスタスクリュ28を介して、第一のスラスト玉軸受39に伝達される。
In the case of the first example, the brake tangential force applied to the inner pad 2 a is transmitted to the support 4 via the servo holder 70.
Further, the reaction force of the axial force generated when the self-servo mechanism 69 is operated is transmitted from the servo plate 72 to the stator plate 71 via the rollers 74, 74, and further, the servo holder 70 and the plug member. It is transmitted to the second thrust ball bearing 53 through 63. The reaction force transmitted in this manner is transmitted from the second thrust ball bearing 53 to the first thrust ball bearing 39 via the ramp rotor 29 and the adjuster screw 28.
 制動解除時には、前記電動モータ9aへの通電に基づいて、前記電動モータ9aの出力軸が、制動時とは逆方向に回転する。そして、各部材が制動時とは逆方向に変位して、前記ピストン12aをインナ側へと退避させる。この結果、前記両パッド2a、3aと前記ロータ1の両側面との間に、それぞれ隙間が存在する状態となる。この際、前記インナパッド2aは、前述した前記両支持機構105、105の作用により、前記サーボホルダ70に対してブレーキ接線力の方向に変位する前の状態に戻る。又、本第1例の場合、前記両パッド2a、3aが前記ロータ1の両側面から離隔した後、前記電動モータ9aを所定角度だけ逆方向に回転させて、前記両パッド2a、3aと前記ロータ1の両側面との間に適正厚さの隙間を確保する。前記適正隙間の確保は、前記アジャスタスクリュ28を前記ランプロータ29に対して、インナ側に一定量変位させる事により行う。この様にして、前記両パッド2a、3aの摩耗に拘らず、前記隙間を常に適正厚さに保てる様にしている。 When releasing the brake, the output shaft of the electric motor 9a rotates in the opposite direction to that during braking based on the energization of the electric motor 9a. Then, each member is displaced in the opposite direction to that during braking, and the piston 12a is retracted toward the inner side. As a result, gaps exist between the pads 2a and 3a and both side surfaces of the rotor 1, respectively. At this time, the inner pad 2a returns to the state before being displaced in the direction of the brake tangential force with respect to the servo holder 70 by the action of the both support mechanisms 105, 105 described above. In the case of the first example, after the two pads 2a and 3a are separated from both side surfaces of the rotor 1, the electric motor 9a is rotated in the opposite direction by a predetermined angle so that the two pads 2a and 3a A gap with an appropriate thickness is secured between both side surfaces of the rotor 1. The proper clearance is ensured by displacing the adjustment task screw 28 by a certain amount toward the inner side with respect to the lamp rotor 29. In this way, the gap is always kept at an appropriate thickness regardless of the wear of the pads 2a and 3a.
 以上の様な構成を有する本第1例の電動式ディスクブレーキ装置によれば、前記インナパッド2aを前記ロータ1のインナ側面に押し付ける力(総推力)を十分に大きくする事ができる構造を採用した場合にも、消費電力量を抑える事ができる。
 即ち、本第1例の電動式ディスクブレーキ装置の場合、前記ボールランプ機構22が作動して発生する軸力(作用力)に基づいて、前記インナパッド2aが前記ロータ1に押し付けられる。そして、前記押し付けにより前記インナパッド2aに作用するブレーキ接線力に基づいて、前記インナパッド2aを前記ロータ1に押し付ける方向の軸力を発生する自己サーボ機構69が設けられている。この様な自己サーボ機構69は、前述した特許文献2に記載された第二増力機構(第二ランプ機構)の様に、駆動源(電動モータ)の回転力に基づいて作動するものではない。この為、前記ボールランプ機構22と、前記自己サーボ機構69とにより十分に大きな推力を発生させる事ができ、しかも、消費電力量を抑える事ができる。尚、この様な本第1例の電動式ディスクブレーキ装置の場合、発生する軸方向の推力を大きく確保できる為、前輪用のブレーキ装置として使用する事も可能となる。
According to the electric disc brake device of the first example having the above-described configuration, a structure capable of sufficiently increasing the force (total thrust) pressing the inner pad 2a against the inner side surface of the rotor 1 is adopted. In this case, the power consumption can be reduced.
That is, in the case of the electric disc brake device of the first example, the inner pad 2a is pressed against the rotor 1 based on the axial force (acting force) generated by the operation of the ball ramp mechanism 22. A self-servo mechanism 69 is provided that generates an axial force in a direction in which the inner pad 2a is pressed against the rotor 1 based on a brake tangential force acting on the inner pad 2a by the pressing. Such a self-servo mechanism 69 does not operate based on the rotational force of the drive source (electric motor), unlike the second boost mechanism (second ramp mechanism) described in Patent Document 2 described above. Therefore, a sufficiently large thrust can be generated by the ball ramp mechanism 22 and the self-servo mechanism 69, and power consumption can be suppressed. In the case of such an electric disc brake device of the first example, a large axial thrust can be secured, so that it can also be used as a brake device for front wheels.
 又、本第1例の電動式ディスクブレーキ装置の場合、前記自己サーボ機構69が作動した際に発生する軸力の反力が前記第二のスラスト玉軸受53により支承される様に構成している。この為、前記自己サーボ機構69が作動した際、前記ボールランプ機構22を構成するランプロータ29の各駆動側ランプ軌道43、43と前記各ボール48、48との接触部、及び、前記ランプステータ46の各被駆動側ランプ軌道51、51と前記各ボール48、48との接触部に生じるヘルツ応力を小さくする事ができる。この結果、前記ボールランプ機構22がロックしてしまう事を防止して、制動解除の際の前記ボールランプ機構22の作動を滑らかにする事ができる。尚、本第1例の場合、前記自己サーボ機構69が作動している際、前記ボールランプ機構22は、作動時に発生した軸力の反力のみを支承している。
 又、前記ヘルツ応力が小さくなる為、前記ボールランプ機構22の小型化を図る事も可能となる。尚、前記反力を支承する部分を前記第二のスラスト玉軸受53としている為、トルク損失を小さくする事ができる。
In the case of the electric disk brake device of the first example, the reaction force of the axial force generated when the self-servo mechanism 69 is operated is supported by the second thrust ball bearing 53. Yes. For this reason, when the self-servo mechanism 69 is operated, the contact portions of the drive-side lamp tracks 43 and 43 of the lamp rotor 29 constituting the ball ramp mechanism 22 and the balls 48 and 48, and the lamp stator It is possible to reduce the Hertz stress generated at the contact portion between the driven ramp tracks 51 and 51 of the 46 and the balls 48 and 48. As a result, the ball ramp mechanism 22 can be prevented from being locked, and the operation of the ball ramp mechanism 22 when releasing the brake can be made smooth. In the case of the first example, when the self-servo mechanism 69 is operating, the ball ramp mechanism 22 supports only the reaction force of the axial force generated during operation.
Further, since the Hertz stress is reduced, the ball ramp mechanism 22 can be reduced in size. Since the portion that supports the reaction force is the second thrust ball bearing 53, torque loss can be reduced.
 [実施の形態の第2例]
 図14~19は、本発明の実施の形態の第2例を示している。本第2例の電動式ディスクブレーキ装置は、前述した実施の形態の第1例の電動式ディスクブレーキ装置と同様に、フローティングキャリパ型である。
 本第2例の電動式ディスクブレーキ装置は、シリンダ7aの内側に、前述した実施の形態の第1例と同様の構造を有するケース20を備えている。
[Second Example of Embodiment]
14 to 19 show a second example of the embodiment of the present invention. The electric disc brake device of the second example is a floating caliper type, like the electric disc brake device of the first example of the embodiment described above.
The electric disc brake device of the second example includes a case 20 having the same structure as that of the first example of the embodiment described above inside the cylinder 7a.
 又、本第2例の電動式ディスクブレーキ装置は、前記ケース20の内側に、請求の範囲に記載した軸送り機構に相当する送りねじ機構13bを備えている。
 前記送りねじ機構13bは、回転軸34と、アジャスタスクリュ28と、アジャスタスリーブ121とにより構成されている。
 このうちの回転軸34及びアジャスタスクリュ28は、前述した実施の形態の第1例の構造と同様である。
 前記アジャスタスリーブ121は、筒状部材であり、外周面の軸方向中間部に、全周に亙り前記アジャスタスリーブ121の径方向に関して外側に突出したフランジ部122が形成されている。又、前記フランジ部122の外周面のうち、前記アジャスタスリーブ121の径方向に関して反対側となる2箇所位置(図16の上下2箇所位置)には、互いに平行な平坦面状に切り欠かれた二面幅123a、123bが形成されている。又、前記アジャスタスリーブ121の内周面には、雌ねじ部124が形成されている。
 本第2例の場合も、前記送りねじ機構13bは、力の伝達に関して非可逆性を有している。
The electric disc brake device of the second example is provided with a feed screw mechanism 13b corresponding to the shaft feed mechanism described in the claims inside the case 20.
The feed screw mechanism 13 b includes a rotating shaft 34, an adjuster screw 28, and an adjuster sleeve 121.
Among these, the rotating shaft 34 and the adjuster screw 28 are the same as the structure of the first example of the embodiment described above.
The adjuster sleeve 121 is a cylindrical member, and a flange portion 122 that protrudes outward in the radial direction of the adjuster sleeve 121 is formed around the entire circumference in the axially intermediate portion of the outer peripheral surface. Further, in the outer peripheral surface of the flange portion 122, two positions (on the two upper and lower positions in FIG. 16) opposite to the radial direction of the adjuster sleeve 121 were cut out into flat surfaces parallel to each other. Two face widths 123a and 123b are formed. A female thread portion 124 is formed on the inner peripheral surface of the adjuster sleeve 121.
Also in the case of the second example, the feed screw mechanism 13b is irreversible with respect to force transmission.
 又、本第2例の電動式ディスクブレーキ装置は、前記ケース20の内側で、且つ、前記アジャスタスリーブ121のアウタ側にピストン12bを備えている。この様なピストン12bは、円筒部125と、前記円筒部125のアウタ側端部に形成された底部116aとを有する有底円筒状である。このうちの円筒部125のインナ側端部外周面には、全周に亙り前記ピストン12bの径方向に関して外側に突出した外向鍔部126が形成されている。又、前記外向鍔部126の外周面のうち、前記ピストン12bの径方向に関して反対側となる2箇所位置(図16の上下2箇所位置)には、互いに平行な平坦面状に切り欠かれた二面幅127a、127bが形成されている。又、前記底部116aには、その中心軸が、前記ピストン12bの中心軸に対して偏心しており、前記底部116aを軸方向に貫通した偏心雌ねじ孔128が形成されている。この様なピストン12bは、前記外向鍔部126のインナ側面が前記アジャスタスリーブ121のフランジ部122のアウタ側面に当接すると共に、前記ピストン12bのインナ側端部が、前記アジャスタスリーブ121の外周面のうち、前記フランジ部122よりもアウタ側部分に隙間なく外嵌された状態で設けられている。 In addition, the electric disc brake device of the second example includes a piston 12 b inside the case 20 and on the outer side of the adjuster sleeve 121. Such a piston 12 b has a bottomed cylindrical shape having a cylindrical portion 125 and a bottom portion 116 a formed at an outer side end portion of the cylindrical portion 125. Of these, an outer flange 126 is formed on the outer peripheral surface of the inner end of the cylindrical portion 125 so as to protrude outward in the radial direction of the piston 12b over the entire circumference. Further, in the outer peripheral surface of the outward flange 126, two positions (the two upper and lower positions in FIG. 16) on the opposite side with respect to the radial direction of the piston 12b were cut out into flat surfaces parallel to each other. Two face widths 127a and 127b are formed. The bottom 116a has a central axis that is eccentric with respect to the central axis of the piston 12b, and is formed with an eccentric female screw hole 128 that penetrates the bottom 116a in the axial direction. In such a piston 12 b, the inner side surface of the outward flange portion 126 abuts on the outer side surface of the flange portion 122 of the adjuster sleeve 121, and the inner side end portion of the piston 12 b is on the outer peripheral surface of the adjuster sleeve 121. Among these, it is provided in a state of being fitted on the outer side portion of the flange portion 122 without a gap.
 又、本第2例の電動式ディスクブレーキ装置は、前記ケース20の内側で、且つ、前記ピストン12bの円筒部125の外側に、第二のスラスト玉軸受53aを備えている。本第2例の場合、前記第二のスラスト玉軸受53aが、請求の範囲に記載したスラスト軸受に相当する部材である。
 この様な第二のスラスト玉軸受53aは、インナ側軌道輪129と、アウタ側軌道輪54aと、保持器55aと、複数個の玉56a、56aとにより構成されている。
Further, the electric disk brake device of the second example includes a second thrust ball bearing 53a inside the case 20 and outside the cylindrical portion 125 of the piston 12b. In the case of the second example, the second thrust ball bearing 53a is a member corresponding to the thrust bearing described in the claims.
Such a second thrust ball bearing 53a is composed of an inner raceway 129, an outer raceway 54a, a cage 55a, and a plurality of balls 56a and 56a.
 このうちのインナ側軌道輪129は、円輪部130と、一対の係合凸部131、131と、環状凸部132とを有している。
 前記円輪部130の外周面は、インナ側に向かうほど前記インナ側軌道輪129の径方向に関して内側に傾斜した部分円錐凸面状である。又、前記円輪部130のアウタ側面のうち、前記インナ側軌道輪129の径方向に関する中間部には、全周に亙りインナ側軌道133が形成されている。
Of these, the inner raceway 129 has a ring portion 130, a pair of engaging convex portions 131, 131, and an annular convex portion 132.
The outer circumferential surface of the circular ring portion 130 has a partially conical convex shape that is inclined inward with respect to the radial direction of the inner raceway ring 129 toward the inner side. Further, an inner side track 133 is formed over the entire circumference of the outer side surface of the circular ring portion 130 in the intermediate portion in the radial direction of the inner side race ring 129.
 前記両係合凸部131、131(図15、16参照)は、前記円輪部130のインナ側端面のうち、前記インナ側軌道輪129の径方向に関して反対側となる2箇所位置(図16の上下2箇所位置)に、インナ側に突出した状態で形成されている。前記両係合凸部131、131の外周面は、前記円輪部130の外周面と滑らかに連続しており、インナ側に向かうほど前記インナ側軌道輪129の径方向に関して内側に傾斜した状態に形成されている。又、前記両係合凸部131、131の内周面は、それぞれ部分円筒面状に形成されており、前記円輪部130の内周面の内径寸法よりも大きい内径寸法を有している。この様な両係合凸部131、131の内周面のアウタ側端部と、前記円輪部130の内周面のインナ側端部とは、段部134により連続している。 The engagement protrusions 131 and 131 (see FIGS. 15 and 16) are located at two positions on the inner side end face of the circular ring portion 130 that are opposite to each other in the radial direction of the inner raceway 129 (FIG. 16). Are formed in a state of projecting toward the inner side. The outer peripheral surfaces of the both engaging convex portions 131 and 131 are smoothly continuous with the outer peripheral surface of the annular ring portion 130 and are inclined inward with respect to the radial direction of the inner side race ring 129 toward the inner side. Is formed. In addition, the inner peripheral surfaces of the engaging convex portions 131 and 131 are each formed in a partial cylindrical surface shape, and have an inner diameter dimension larger than the inner diameter dimension of the inner peripheral surface of the annular ring portion 130. . The outer side end portions of the inner peripheral surfaces of the both engaging convex portions 131 and 131 and the inner side end portion of the inner peripheral surface of the annular ring portion 130 are continuous by the step portion 134.
 前記環状凸部132は、前記インナ側軌道輪129のアウタ側面のうち、前記インナ側軌道輪129の径方向に関する内端部に、全周に亙りアウタ側に突出した状態で形成されている。この様なインナ側軌道輪129は、前記円輪部130の内周面が、前記ピストン12bの円筒部125の外周面のインナ側端部から軸方向中間部に掛けての部分に隙間なく外嵌された状態で設けられている。この状態で、前記インナ側軌道輪129の両係合凸部131、131のうちの一方(図14、15の上方)の係合凸部131の内周面は、前記アジャスタスリーブ121の両二面幅123a、123bのうちの一方の二面幅123a、及び、前記ピストン12bの両二面幅127a、127bのうちの一方の二面幅127aに隙間なく当接している。一方、前記インナ側軌道輪129の両係合凸部131、131のうちの他方(図14、15の下方)の係合凸部131の内周面は、前記アジャスタスリーブ121の両二面幅123a、123bのうちの他方の二面幅123b、及び、前記ピストン12bの両二面幅127a、127bのうちの他方の二面幅127bに隙間なく当接している。又、前記インナ側軌道輪129の段部134は、前記ピストン12bの外向鍔部126のアウタ側面と当接している。この様に組み付けられた状態で、前記アジャスタスリーブ121と、前記ピストン12bと、前記インナ側軌道輪129とは、一体的に回転可能である。 The annular convex portion 132 is formed on the inner end portion of the inner side raceway 129 in the radial direction on the outer side surface of the inner side raceway 129 so as to protrude to the outer side over the entire circumference. In such an inner raceway 129, the inner circumferential surface of the annular ring portion 130 is outside without gaps between the inner end of the outer circumferential surface of the cylindrical portion 125 of the piston 12 b and the axially intermediate portion. It is provided in a fitted state. In this state, the inner peripheral surface of one of the engaging protrusions 131, 131 of the inner side raceway 129 (above FIG. 14, 15) is the two of the adjuster sleeve 121. One surface width 123a of the surface widths 123a and 123b and one surface width 127a of the two surface widths 127a and 127b of the piston 12b are in contact with each other without a gap. On the other hand, the inner peripheral surface of the engagement projection 131 on the other side (below in FIGS. 14 and 15) of the engagement projections 131 and 131 of the inner raceway 129 is the width of both surfaces of the adjuster sleeve 121. The other two-sided width 123b of 123a, 123b and the other two-sided width 127b of the two- sided widths 127a, 127b of the piston 12b are in contact with no gap. The step 134 of the inner race 129 is in contact with the outer side surface of the outward flange 126 of the piston 12b. In the assembled state, the adjuster sleeve 121, the piston 12b, and the inner raceway ring 129 can rotate integrally.
 前記アウタ側軌道輪54aは、円輪状部材であり、インナ側面にアウタ側軌道57aが形成されている。この様なアウタ側軌道輪54aは、前記ピストン12bの円筒部125の軸方向中間部外周面に、前記アウタ側軌道輪54aの径方向に関する隙間を介した状態で外嵌されている。 The outer raceway 54a is a ring-shaped member, and an outer raceway 57a is formed on the inner side surface. The outer raceway 54a is externally fitted on the outer circumferential surface of the intermediate portion in the axial direction of the cylindrical portion 125 of the piston 12b via a gap in the radial direction of the outer raceway 54a.
 前記保持器55aは、円輪状部材であり、前記保持器55aの円周方向に関する複数箇所にポケット58a、58aを有している。
 前記各玉56a、56aは、前記保持器55aの各ポケット58a、58aに保持された状態で、前記インナ側軌道輪129のインナ側軌道133と、前記アウタ側軌道輪54aのアウタ側軌道57aとの間に、転動自在に設けられている。
The cage 55a is an annular member and has pockets 58a and 58a at a plurality of locations in the circumferential direction of the cage 55a.
The balls 56a, 56a are held in the pockets 58a, 58a of the retainer 55a, and the inner raceway 133 of the inner raceway 129 and the outer raceway 57a of the outer raceway 54a, It is provided so that it can roll freely.
 又、本第2例の電動式ディスクブレーキ装置は、前記ケース20の内側で、且つ、前記第二のスラスト玉軸受53aを構成するインナ側軌道輪129の外側に、スプリングシート135を備えている。前記スプリングシート135は、円錐筒部136と、外向鍔部137と、半円筒部138と、第一の内向係止片139(図15参照)とを有している。 The electric disc brake device of the second example includes a spring seat 135 inside the case 20 and outside the inner raceway ring 129 that constitutes the second thrust ball bearing 53a. . The spring seat 135 has a conical cylinder part 136, an outward flange part 137, a semi-cylindrical part 138, and a first inward locking piece 139 (see FIG. 15).
 このうちの円錐筒部136は、インナ側に向かうほど、内径寸法及び外径寸法が小さくなる方向に傾斜した円錐筒状である。
 前記外向鍔部137は、前記円錐筒部136のアウタ側端部外周面から、全周に亙り前記スプリングシート135の径方向に関して外側に突出した状態で形成されている。この様な外向鍔部137のうち、前記スプリングシート135の円周方向に関する1箇所位置(図15、16の上側1箇所位置)には、前記外向鍔部137を軸方向に貫通した貫通孔140が形成されている。
Of these, the conical cylinder portion 136 has a conical cylinder shape that is inclined in a direction in which the inner diameter dimension and the outer diameter dimension decrease toward the inner side.
The outward flange 137 is formed from the outer peripheral surface of the outer end portion of the conical cylinder portion 136 so as to protrude outward in the radial direction of the spring seat 135 over the entire circumference. Among such outward flanges 137, at one position in the circumferential direction of the spring seat 135 (one upper position in FIGS. 15 and 16), a through hole 140 that penetrates the outward flange 137 in the axial direction. Is formed.
 前記半円筒部138は、前記円錐筒部136のインナ側端面の半円周部分(図16の下側半円周部分)に、インナ側に延出した状態で設けられている。この様な半円筒部138のうち、前記スプリングシート135の円周方向に関する中央寄り部分(図16の下側部分)には、それぞれがインナ側端部に開口すると共に、前記円周方向に離隔した状態で、一対の切欠部141が形成されている。又、これら両切欠部141に挟まれた部分の軸方向中間部が、前記スプリングシート135の径方向に関して内側に折り曲げられる事により第二の内向係止片142が形成されている。
 前記第一の内向係止片139は、前記円錐筒部136のインナ側端部のうち、前記スプリングシート135の径方向に関して前記第二の内向係止片142と反対となる位置に、前記スプリングシート135の径方向に関して内側に折り曲げられた状態で形成されている。尚、前記第一の内向係止片139は、軸方向に関して、前記第二の内向係止片142よりもアウタ側に位置している。
The semi-cylindrical part 138 is provided in a semicircular portion (lower semicircular portion in FIG. 16) of the inner side end surface of the conical cylindrical portion 136 in a state of extending toward the inner side. In such a semi-cylindrical portion 138, a portion closer to the center of the spring seat 135 in the circumferential direction (the lower portion in FIG. 16) opens to the inner side end portion and is spaced apart in the circumferential direction. In this state, a pair of notches 141 are formed. Further, a second inward locking piece 142 is formed by bending the axially intermediate portion of the portion sandwiched between both the notches 141 inward with respect to the radial direction of the spring seat 135.
The first inward locking piece 139 is located at a position opposite to the second inward locking piece 142 with respect to the radial direction of the spring seat 135 in the inner side end of the conical cylinder portion 136. The sheet 135 is formed to be bent inward with respect to the radial direction. The first inward locking piece 139 is located on the outer side of the second inward locking piece 142 in the axial direction.
 この様なスプリングシート135は、前記円錐筒部136の内周面が、前記第二のスラスト玉軸受53aを構成するインナ側軌道輪129の外周面に隙間なく外嵌された状態で設けられている。この状態で、前記スプリングシート135の第一の内向係止片139の内端縁は、前記アジャスタスリーブ121の両二面幅123a、123bのうちの一方(図16の上方)の二面幅123aに係合している。又、前記第一の内向係止片139のアウタ側面は、前記インナ側軌道輪129の両係合凸部131、131のうちの一方の係合凸部131のインナ側端面に当接している。この様にして、前記スプリングシート135は、前記アジャスタスリーブ121に対する相対回転を阻止されている。
 一方、前記第二の内向係止片142のアウタ側面のうち、前記スプリングシート135の径方向に関する内端部は、前記アジャスタスリーブ121のフランジ部122のインナ側面に当接している。
Such a spring seat 135 is provided in a state in which the inner peripheral surface of the conical cylinder portion 136 is fitted on the outer peripheral surface of the inner raceway ring 129 constituting the second thrust ball bearing 53a without a gap. Yes. In this state, the inner end edge of the first inwardly engaging piece 139 of the spring seat 135 is the two-sided width 123a of one of the two- sided widths 123a and 123b of the adjuster sleeve 121 (upper side in FIG. 16). Is engaged. Further, the outer side surface of the first inward locking piece 139 is in contact with the inner side end surface of one of the engagement convex portions 131 of the inner side raceway ring 129. . In this way, the spring seat 135 is prevented from rotating relative to the adjuster sleeve 121.
On the other hand, of the outer side surface of the second inward locking piece 142, the inner end portion in the radial direction of the spring seat 135 is in contact with the inner side surface of the flange portion 122 of the adjuster sleeve 121.
 又、本第2例の電動式ディスクブレーキ装置は、前記ケース20の内側に、前記ケース20と、前記スプリングシート135とに掛け渡された状態で、捩じりコイルばねであるプリセットスプリング21aを備えている。具体的には、前記プリセットスプリング21aのインナ側端部が前記ケース20の貫通孔24に係止されると共に、アウタ側端部が前記スプリングシート135の貫通孔140に係止された状態で設けられている。この状態で、前記プリセットスプリング21aは、前記スプリングシート135を介して前記アジャスタスリーブ121に対し回転方向の弾性付勢力を付与している。前記弾性付勢力の方向は、前記アジャスタスクリュ28の雄ねじ部32と、前記アジャスタスリーブ121の雌ねじ部124との螺合に基づいて、前記アジャスタスリーブ121をインナ側に変位させる方向としている。 The electric disc brake device of the second example includes a preset spring 21a, which is a torsion coil spring, in a state of being stretched between the case 20 and the spring seat 135 inside the case 20. I have. Specifically, an inner side end portion of the preset spring 21 a is locked in the through hole 24 of the case 20, and an outer side end portion is locked in the through hole 140 of the spring seat 135. It has been. In this state, the preset spring 21 a applies an elastic biasing force in the rotational direction to the adjuster sleeve 121 via the spring seat 135. The direction of the elastic urging force is a direction in which the adjuster sleeve 121 is displaced toward the inner side based on the threaded engagement between the male threaded portion 32 of the adjuster task screw 28 and the female threaded portion 124 of the adjuster sleeve 121.
 又、本第2例の電動式ディスクブレーキ装置は、前記ケース20の内側で、前記ピストン12bの円筒部125のアウタ側端部の外側に、前述した実施の形態の第1例と同様の構造を有するプラグ部材63を備えている。
 又、本第2例の場合、前記プラグ部材63の内周面と、前記ピストン12bのアウタ側端部外周面との間に、ラジアルころ軸受143が設けられている。
Further, the electric disk brake device of the second example has the same structure as that of the first example of the embodiment described above inside the case 20 and outside the outer side end portion of the cylindrical portion 125 of the piston 12b. A plug member 63 having
In the case of the second example, a radial roller bearing 143 is provided between the inner peripheral surface of the plug member 63 and the outer peripheral end portion outer peripheral surface of the piston 12b.
 又、本第2例の電動式ディスクブレーキ装置は、前記ピストン12bの底部116aと、後述する自己サーボ機構69aを構成するサーボプレート72aとの間に、偏心カム144を備えている。本第2例の場合、前記偏心カム144と、前記サーボプレート72aとにより、請求の範囲に記載したパッド作用力伝達機構を構成している。
 前記偏心カム144は、円柱状のカム本体145と、外向鍔部146と、支持軸部147とを有している。
 このうちのカム本体145は、アウタ側端面の中央部に六角孔が形成されている。
 又、前記外向鍔部146は、前記カム本体145のアウタ側端部外周面に、全周に亙り前記偏心カム144の径方向に関して外側に突出した状態で形成されている。
 前記支持軸部147は、外径寸法が前記カム本体145の外径寸法よりも小さく、前記カム本体145のインナ側端面から、インナ側に突出した状態で、前記カム本体145と同心に形成されている。又、前記支持軸部147の外周面には雄ねじ部が形成されている。この様な偏心カム144は、前記支持軸部147の雄ねじ部が、前記ピストン12bの偏心雌ねじ孔128に螺合された状態で、前記ピストン12bに支持されている。従って、この状態で、前記偏心カム144の中心軸と、前記ピストン12bの中心軸とは偏心している。
The electric disc brake device of the second example includes an eccentric cam 144 between the bottom 116a of the piston 12b and a servo plate 72a constituting a self-servo mechanism 69a described later. In the case of the second example, the eccentric cam 144 and the servo plate 72a constitute the pad acting force transmission mechanism described in the claims.
The eccentric cam 144 has a columnar cam body 145, an outward flange 146, and a support shaft portion 147.
Of these, the cam main body 145 has a hexagonal hole formed in the center of the outer side end face.
Further, the outward flange 146 is formed on the outer peripheral surface of the outer side end of the cam body 145 so as to protrude outward in the radial direction of the eccentric cam 144.
The support shaft portion 147 is formed concentrically with the cam body 145 in a state where the outer diameter dimension is smaller than the outer diameter dimension of the cam body 145 and protrudes from the inner side end surface of the cam body 145 toward the inner side. ing. Further, a male screw portion is formed on the outer peripheral surface of the support shaft portion 147. Such an eccentric cam 144 is supported by the piston 12b in a state where the male screw portion of the support shaft portion 147 is screwed into the eccentric female screw hole 128 of the piston 12b. Therefore, in this state, the central axis of the eccentric cam 144 and the central axis of the piston 12b are eccentric.
 又、本第2例の電動式ディスクブレーキ装置は、非電動式の推力発生機構である、自己サーボ機構69aを備えている。
 この様な自己サーボ機構69aは、サーボホルダ70と、ステータプレート71と、サーボプレート72aと、保持器73と、4個のローラ74、74とを備えている。
 前記サーボホルダ70、前記ステータプレート71、前記保持器73、及び前記各ローラ74、74の構造は、前述した実施の形態の第1例の場合と同様である。
Further, the electric disk brake device of the second example includes a self-servo mechanism 69a which is a non-electric thrust generating mechanism.
Such a self-servo mechanism 69a includes a servo holder 70, a stator plate 71, a servo plate 72a, a retainer 73, and four rollers 74 and 74.
The structure of the servo holder 70, the stator plate 71, the retainer 73, and the rollers 74, 74 is the same as that in the first example of the above-described embodiment.
 前記サーボプレート72aは、円板状部材であり、外周面の軸方向中間部に、全周に亙り係止凹溝95aが形成されている。又、前記サーボプレート72aのアウタ側面のうち、前記サーボプレート72aの径方向に関して反対側となる2箇所位置(図16の左右2箇所位置)には、軸方向から見た形状が円形の1対の係合凹部96a、96aが形成されている。又、前記サーボプレート72aのインナ側面のうち、前記サーボプレート72aの径方向に関する中間部、且つ、円周方向4箇所位置には、第二カム面97a、97a(図19参照)が形成されている。 The servo plate 72a is a disk-like member, and a locking groove 95a is formed around the entire circumference in the axially intermediate portion of the outer peripheral surface. In addition, two positions on the outer side surface of the servo plate 72a opposite to the radial direction of the servo plate 72a (two positions on the left and right in FIG. 16) have a pair of circular shapes when viewed from the axial direction. Engaging recesses 96a and 96a are formed. In addition, second cam surfaces 97a and 97a (see FIG. 19) are formed in the inner side surface of the servo plate 72a at an intermediate portion in the radial direction of the servo plate 72a and at four positions in the circumferential direction. Yes.
 これら各第二カム面97a、97aは、制動時のブレーキ接線力の方向(図19の上下方向)に関する中央部が最も深く、前記ブレーキ接線力の方向に関して両端側に進むほど浅くなる(インナ側に向かう方向に傾斜した)状態に形成されている。即ち、前記各第二カム面97a、97aは、前述した実施の形態の第1例と同様に、軸方向に関して、前記ステータプレート71のアウタ側面に形成された各第一カム面94、94と対称に形成されている。 Each of the second cam surfaces 97a, 97a has the deepest central portion with respect to the direction of the brake tangential force during braking (the vertical direction in FIG. 19), and becomes shallower toward the both ends with respect to the direction of the brake tangential force (inner side). It is formed in a state inclined to the direction toward That is, each of the second cam surfaces 97a, 97a is similar to each of the first cam surfaces 94, 94 formed on the outer side surface of the stator plate 71 in the axial direction, as in the first example of the embodiment described above. It is formed symmetrically.
 更に、本第2例の場合、前記サーボプレート72aのインナ側面の中央寄り部分に、インナ側に突出した筒状の環状凸部148(図15、18参照)が形成されており、前記環状凸部148の内側に前記環状凸部148により囲まれた楕円形凹部149が形成されている。前記楕円形凹部149の軸方向から見た形状は、前記ブレーキ接線力の方向に短軸が設けられ、前記ブレーキ接線力の方向に対し垂直な方向に長軸が設けられた楕円形状である。 Further, in the case of the second example, a cylindrical annular convex portion 148 (see FIGS. 15 and 18) projecting toward the inner side is formed at a portion closer to the center of the inner side surface of the servo plate 72a. An elliptical concave portion 149 surrounded by the annular convex portion 148 is formed inside the portion 148. The shape of the elliptical recess 149 viewed from the axial direction is an elliptical shape in which a short axis is provided in the direction of the brake tangential force and a long axis is provided in a direction perpendicular to the direction of the brake tangential force.
 この様なサーボプレート72aは、前述した実施の形態の第1例と同様に、前記ステータプレート71のアウタ側に、前記各第二カム面97a、97aと前記各第一カム面94、94とが、軸方向に対向した状態で設けられている。この状態で、前記サーボプレート72aのアウタ側面に形成された前記両係合凹部96a、96aに、前記インナパッド2aを構成する裏板99のインナ側面に形成された一対の係合凸部100、100(図18参照)が挿入されている。又、前記楕円形凹部149の内側に、前記偏心カム144が、ラジアルころ軸受150を介して配置されている。尚、前記楕円形凹部149の内周面の短軸の長さ寸法と、前記ラジアルころ軸受150を構成する外輪151の外径寸法とは、前記楕円形凹部149の内周面に、前記ラジアルころ軸受150を組み付け可能な程度の関係である。その他の、自己サーボ機構69aの構造は、前述した実施の形態の第1例の構造と同様である。
 又、その他の電動式ディスクブレーキ装置の構造に関しても、前述した実施の形態の第1例の構造と同様である。
Such a servo plate 72a is provided on the outer side of the stator plate 71 on the outer side of the stator plate 71, with the second cam surfaces 97a, 97a and the first cam surfaces 94, 94 being arranged on the outer side of the stator plate 71, respectively. Are provided in a state of being opposed in the axial direction. In this state, a pair of engaging convex portions 100 formed on the inner side surface of the back plate 99 constituting the inner pad 2a is formed on the both engaging concave portions 96a, 96a formed on the outer side surface of the servo plate 72a. 100 (see FIG. 18) is inserted. The eccentric cam 144 is disposed inside the elliptical recess 149 via a radial roller bearing 150. The length of the minor axis of the inner peripheral surface of the elliptical recess 149 and the outer diameter of the outer ring 151 constituting the radial roller bearing 150 are the same as those on the inner peripheral surface of the elliptical recess 149. The relationship is such that the roller bearing 150 can be assembled. The other structure of the self-servo mechanism 69a is the same as that of the first example of the embodiment described above.
The structure of the other electric disc brake device is the same as that of the first example of the embodiment described above.
 以上の様な構成を有する本第2例の電動式ディスクブレーキ装置は、次の様に作動して、前記両パッド2a、3aを前記ロータ1の両側面に押し付け、制動を行わせる。
 非制動時には、前記インナ、アウタ両パッド2a、3aと前記ロータ1の両側面との間には隙間が存在する。この状態から、制動を行う為に電動モータ9aに通電し、減速機11aを介して、前記回転軸34及び前記送りねじ機構13bを構成するアジャスタスクリュ28を回転駆動する。この状態では、前記アジャスタスクリュ28の雄ねじ部32と前記アジャスタスリーブ121の雌ねじ部124との螺合部で発生する抵抗が、前記プリセットスプリング21aにより、前記スプリングシート135を介して前記アジャスタスリーブ121に付与される抵抗(弾性付勢力)よりも小さい。この為、前記アジャスタスリーブ121は、回転せずに、前記ロータ1に向けてアウタ側に変位(平行移動)する。そして、前記アジャスタスリーブ121の変位に伴い、前記アジャスタスリーブ121よりも前記ロータ1側(アウタ側)に配置された各部材が、一体的に前記ロータ1に向けて変位する。この際、前記プラグ部材63のアウタ側への変位に伴い、前記ケース20もアウタ側へ変位する。この様な各部材のアウタ側への変位に伴い、前記インナパッド2aが、前記サーボホルダ70及び前記サーボプレート72aにより前記ロータ1のインナ側面に押し付けられる。この際、前記キャリパ5aがインナ側に変位して、前記キャリパ爪6aにより、前記アウタパッド3aを前記ロータ1のアウタ側面に押し付ける。
The electric disc brake device of the second example having the above-described configuration operates as follows, and presses both the pads 2a and 3a against both side surfaces of the rotor 1 to perform braking.
During non-braking, there is a gap between the inner and outer pads 2a, 3a and both side surfaces of the rotor 1. From this state, the electric motor 9a is energized to perform braking, and the adjuster screw 28 constituting the rotary shaft 34 and the feed screw mechanism 13b is rotationally driven via the speed reducer 11a. In this state, resistance generated at the threaded portion of the male threaded portion 32 of the adjuster screw 28 and the female threaded portion 124 of the adjuster sleeve 121 is applied to the adjuster sleeve 121 via the spring seat 135 by the preset spring 21a. It is smaller than the applied resistance (elastic urging force). For this reason, the adjuster sleeve 121 is displaced (translated) toward the outer side toward the rotor 1 without rotating. Then, with the displacement of the adjuster sleeve 121, the respective members disposed closer to the rotor 1 (outer side) than the adjuster sleeve 121 are displaced toward the rotor 1 integrally. At this time, as the plug member 63 is displaced toward the outer side, the case 20 is also displaced toward the outer side. With such displacement of each member toward the outer side, the inner pad 2a is pressed against the inner side surface of the rotor 1 by the servo holder 70 and the servo plate 72a. At this time, the caliper 5a is displaced toward the inner side, and the outer pad 3a is pressed against the outer side surface of the rotor 1 by the caliper claw 6a.
 上述の様にして前記両パッド2a、3aと前記ロータ1の両側面との間の隙間が解消されると、軸力の発生により、前記アジャスタスクリュ28の雄ねじ部32と前記アジャスタスリーブ121の雌ねじ部124との螺合部で発生する抵抗が増大し、前記送りねじ機構13bの機能(軸送り機構の機能)が停止する(アジャスタスリーブ121がアジャスタスクリュ28に対して相対回転しなくなる)と、パッド作用力伝達機構が作動する。具体的には、前記送りねじ機構13bの機能が停止すると、前記アジャスタスリーブ121が、前記プリセットスプリング21aの弾性付勢力(抵抗)に抗して回転する。又、前記アジャスタスリーブ121と共に、前記第二のスラスト玉軸受53aのインナ側軌道輪129及び前記ピストン12bが回転する。更に、前記ピストン12bに連れ回される様にして、前記偏心カム144が、前記ピストン12bの中心軸を中心として公転的に回転する。この様に偏心カム144が回転すると、前記ラジアルころ軸受150の外輪151の外周面と、前記楕円形凹部149の内周面との当接により、前記外輪151から、前記サーボプレート72aに対して、ブレーキ接線力の方向の力が作用する。本第2例の場合、前記偏心カム144が回転する事により、前記サーボプレート72aに対して付与されるブレーキ接線力の方向の力が、請求の範囲に記載した作用力に相当する。以上の様に、前記偏心カム144が回転して、前記サーボプレート72aにブレーキ接線力の方向の力(作用力)を付与するまでが、請求の範囲に記載したパッド作用力伝達機構の作動である。又、本第2例の場合、前記偏心カム144と、前記サーボプレート72aとが、請求の範囲に記載した偏心カム機構を構成している。 When the gap between the two pads 2a, 3a and both side surfaces of the rotor 1 is eliminated as described above, the male screw portion 32 of the adjuster screw 28 and the female screw of the adjuster sleeve 121 are generated by the generation of axial force. When the resistance generated at the screwing portion with the portion 124 increases and the function of the feed screw mechanism 13b (function of the shaft feed mechanism) stops (the adjuster sleeve 121 does not rotate relative to the adjust task screw 28), The pad acting force transmission mechanism is activated. Specifically, when the function of the feed screw mechanism 13b stops, the adjuster sleeve 121 rotates against the elastic biasing force (resistance) of the preset spring 21a. The inner sleeve race 129 and the piston 12b of the second thrust ball bearing 53a rotate together with the adjuster sleeve 121. Further, the eccentric cam 144 revolves around the central axis of the piston 12b so as to be rotated by the piston 12b. When the eccentric cam 144 rotates in this manner, the outer ring 151 and the servo plate 72a are brought into contact with the servo plate 72a by the contact between the outer peripheral surface of the outer ring 151 of the radial roller bearing 150 and the inner peripheral surface of the elliptical recess 149. A force in the direction of the brake tangential force acts. In the case of the second example, the force in the direction of the brake tangential force applied to the servo plate 72a by the rotation of the eccentric cam 144 corresponds to the acting force described in the claims. As described above, the operation of the pad acting force transmission mechanism described in the claims is performed until the eccentric cam 144 rotates to apply a force (acting force) in the direction of the brake tangential force to the servo plate 72a. is there. In the case of the second example, the eccentric cam 144 and the servo plate 72a constitute the eccentric cam mechanism described in the claims.
 そして、上述の様な力(作用力)に基づいて、前記サーボプレート72aが、前記ステータプレート71に対して、ブレーキ接線力の方向に変位する。すると、前記サーボプレート72aの変位に伴い、前記ステータプレート71との関係で、前記各ローラ74、74が、前記各第一カム面94、94の最も深い位置から、ブレーキ接線力の方向(第一カム面94、94の深さが浅い位置)に転動しながら変位する。一方、前記サーボプレート72aとの関係で、前記各ローラ74、74は、前記各第二カム面97a、97aの最も深い位置から、ブレーキ接線力の方向と反対方向に転動しながら変位する。この様な前記各ローラ74、74の、前記ステータプレート71及び前記サーボプレート72aに対する変位を第一段階変位とする。前記第一段階変位の結果、前記サーボプレート72aと前記ステータプレート71との軸方向に関する間隔が拡がり(サーボプレート72aがアウタ側に変位して)、前記インナパッド2aが、前記ロータ1に対して押し付けられる。
 尚、前記第一段階変位が終わった状態では、前記各ローラ74、74は、前記ステータプレート71との関係では、前記第一カム面94、94のブレーキ接線力の方向の端部にまでは変位していない。一方、前記サーボプレート72aとの関係では、前記各ローラ74、74は、前記各第二カム面97a、97aのブレーキ接線力の方向と反対方向の端部にまでは変位していない。
Then, the servo plate 72a is displaced in the direction of the brake tangential force with respect to the stator plate 71 based on the above-described force (acting force). Then, in accordance with the displacement of the servo plate 72 a, the rollers 74, 74 have a brake tangential force direction (first) from the deepest position of the first cam surfaces 94, 94 in relation to the stator plate 71. The cam surfaces 94 and 94 are displaced while rolling to a shallow position. On the other hand, in relation to the servo plate 72a, the rollers 74 and 74 are displaced from the deepest position of the second cam surfaces 97a and 97a while rolling in the direction opposite to the direction of the brake tangential force. Such displacement of the rollers 74, 74 with respect to the stator plate 71 and the servo plate 72a is defined as a first stage displacement. As a result of the first stage displacement, the interval between the servo plate 72a and the stator plate 71 in the axial direction is increased (the servo plate 72a is displaced to the outer side), and the inner pad 2a is moved relative to the rotor 1. Pressed.
In the state where the first stage displacement is finished, the rollers 74 and 74 are not connected to the end of the first cam surfaces 94 and 94 in the direction of the brake tangential force in relation to the stator plate 71. It is not displaced. On the other hand, in relation to the servo plate 72a, the rollers 74 and 74 are not displaced to the end portions of the second cam surfaces 97a and 97a in the direction opposite to the direction of the brake tangential force.
 上述の様に前記インナパッド2aが前記ロータ1に強く押し付けられると、前記インナパッド2aと前記ロータ1との摩擦に基づいて、前記インナパッド2aにブレーキ接線力の方向の力が作用する。そして、前記インナパッド2aが、ブレーキ接線力の方向に変位する。又、前記インナパッド2aのブレーキ接線力の方向への変位に伴い、前記サーボプレート72aも前記ブレーキ接線力の方向に変位する。すると、前記サーボプレート72aの変位に伴い、前記ステータプレート71との関係で、前記各ローラ74、74が、前記各第一カム面94、94に対して、前記第一段階変位後の状態から更にブレーキ接線力の方向に転動しながら変位する。一方、前記サーボプレート72aとの関係で、前記各ローラ74、74は、前記各第二カム面97a、97aに対して、前記第一段階変位後の状態から更にブレーキ接線力の方向と反対方向に転動しながら変位する。この結果、前記サーボプレート72aと前記ステータプレート71との軸方向に関する間隔が、上述の状態よりも更に拡がり(サーボプレート72aがアウタ側に変位して)、前記インナパッド2aが、前記ロータ1に対して更に強い力で押し付けられる。尚、前記第一段階変位後の上述の様な前記各ローラ74、74の、前記ステータプレート71及び前記サーボプレート72aに対する変位を第二段階変位とする。 As described above, when the inner pad 2a is strongly pressed against the rotor 1, a force in the direction of the brake tangential force acts on the inner pad 2a based on the friction between the inner pad 2a and the rotor 1. Then, the inner pad 2a is displaced in the direction of the brake tangential force. Further, as the inner pad 2a is displaced in the direction of the brake tangential force, the servo plate 72a is also displaced in the direction of the brake tangential force. Then, with the displacement of the servo plate 72a, the rollers 74, 74 are moved from the state after the first stage displacement with respect to the first cam surfaces 94, 94 in relation to the stator plate 71. Furthermore, it is displaced while rolling in the direction of the brake tangential force. On the other hand, in relation to the servo plate 72a, the rollers 74 and 74 are further opposite to the direction of the brake tangential force from the state after the first stage displacement with respect to the second cam surfaces 97a and 97a. Displaces while rolling. As a result, the interval between the servo plate 72a and the stator plate 71 in the axial direction is further expanded than the above state (the servo plate 72a is displaced to the outer side), and the inner pad 2a is attached to the rotor 1. On the other hand, it is pressed with a stronger force. The displacement of the rollers 74 and 74 with respect to the stator plate 71 and the servo plate 72a after the first-stage displacement is referred to as a second-stage displacement.
 尚、本第2例の場合も、前記インナパッド2aに加わるブレーキ接線力は、前記サーボホルダ70を介して前記サポート4に伝達される。又、前記自己サーボ機構69aが作動した際に発生する軸力の反力は、前記サーボプレート72aから前記各ローラ74、74を介して前記ステータプレート71に伝わり、更に、前記サーボホルダ70及び前記プラグ部材63を介して、前記第二のスラスト玉軸受53aに伝達される。そして、この様に伝達された前記反力は、前記第二のスラスト玉軸受53aから、前記アジャスタスリーブ121及びアジャスタスクリュ28を介して、第一のスラスト玉軸受39に伝達される。この為、前記拡張機構を構成する自己サーボ機構69a及びパッド作用力伝達機構に加わる前記反力を小さくする事ができる。その他の構造、及び作用・効果は、前述した実施の形態の第1例と同様である。 In the second example as well, the brake tangential force applied to the inner pad 2 a is transmitted to the support 4 via the servo holder 70. The reaction force of the axial force generated when the self-servo mechanism 69a is operated is transmitted from the servo plate 72a to the stator plate 71 through the rollers 74 and 74, and further, the servo holder 70 and the plug It is transmitted to the second thrust ball bearing 53a via the member 63. The reaction force transmitted in this manner is transmitted from the second thrust ball bearing 53a to the first thrust ball bearing 39 through the adjuster sleeve 121 and the adjust task screw 28. For this reason, the reaction force applied to the self-servo mechanism 69a and the pad acting force transmission mechanism constituting the expansion mechanism can be reduced. Other structures, operations and effects are the same as those in the first example of the embodiment described above.
 ここで、上述した本発明に係る電動式ディスクブレーキ装置の実施の形態の特徴をそれぞれ以下に簡潔に纏めて列記する。
 [1] 車輪と共に回転するロータ(1)を軸方向両側から挟む状態で配置されたアウタ側とインナ側の一対のパッド(アウタパッド3a,インナパッド2a)と、
 その一部が、これら両パッドのうちの一方のパッド(インナパッド2a)の軸方向側面に対向する位置に設けられたシリンダ(7a)内に配置されており、前記パッドを前記ロータに近付く方向に変位させる為の拡張機構(送りねじ機構13a、ボールランプ機構22、及び自己サーボ機構69)とを備えた電動式ディスクブレーキ装置であって、
 前記拡張機構は、駆動源(電動モータ)の回転駆動力に基づいて、前記パッドと前記ロータの側面との間の隙間を解消させるまで、前記パッドを前記ロータに向けて軸方向に押し出す軸送り機構(送りねじ機構13a)と、
 前記隙間が解消し、前記軸送り機構の軸方向への移動が停止した後、前記駆動源の回転駆動力に基づいて作動する事により、前記パッドを前記ロータに向けて変位させる為の作用力(軸力)を発生するパッド作用力伝達機構(ボールランプ機構22)と、
 前記パッド作用力伝達機構が作動する事により発生した作用力に基づいて、前記パッドが前記ロータに押し付けられる事により、前記パッドに作用するブレーキ接線力に基づいて、前記パッドを前記ロータに押し付ける方向の軸力を発生する自己サーボ機構(69)とを有しており、
 前記自己サーボ機構が作動する事により発生した軸力の反力が、スラスト軸受(第二のスラスト玉軸受53)を介して前記軸送り機構に伝達される電動式ディスクブレーキ装置。
 [2] 前記パッド作用力伝達機構と、前記自己サーボ機構とが、軸方向に関して直列に配置されている、上記[1]に記載した電動式ディスクブレーキ装置。
 [3] 前記軸送り機構が、前記シリンダ内の最内径位置に配置された部材(回転軸34)を含んで構成されている、上記[1]又は[2]に記載した電動式ディスクブレーキ装置。
 [4] 前記パッド作用力伝達機構が作動して発生する作用力が、前記自己サーボ機構を構成するサーボプレート(72)を介して、前記パッドに伝わる事により、前記パッドが前記ロータに押し付けられる、上記[1]~[3]のうちの何れか1つに記載した電動式ディスクブレーキ装置。
 [5] 前記サーボプレートが、前記パッドに作用するブレーキ接線力に基づいて、前記パッドと共に、前記ブレーキ接線力の方向に変位可能な状態に設けられている、上記[4]に記載した電動式ディスクブレーキ装置。
 [6] 前記パッド作用力伝達機構が、可逆性の軸力変換機構(ボールランプ機構22)であり、軸方向の押圧力を発生するものである、上記[1]~[5]のうちの何れか1つに記載した電動式ディスクブレーキ装置。
 [7] 前記軸力変換機構が、ボールランプ機構(22)である、上記[6]に記載した電動式ディスクブレーキ装置。
 [8] 前記パッド作用力伝達機構が、可逆性の接線力変換機構(偏心カム機構)で前記サーボプレートを前記ブレーキ接線力の方向に変位させる為の作用力を付与するものであり、
 前記サーボプレートの変位に伴って発生した軸力により、前記パッドを前記ロータに押し付ける上記[4]又は[5]に記載した電動式ディスクブレーキ装置。
 [9] 前記接線力変換機構が、偏心カム機構(偏心カム144及びサーボプレート72a)である、上記[8]に記載した電動式ディスクブレーキ装置。
 [10] 前記軸送り機構が、非可逆性を有している、上記[1]~[9]のうちの何れか1つに記載した電動式ディスクブレーキ装置。
Here, the features of the embodiments of the electric disk brake device according to the present invention described above will be briefly summarized below.
[1] A pair of pads on the outer side and the inner side (outer pad 3a, inner pad 2a) disposed with the rotor (1) rotating together with the wheels sandwiched from both sides in the axial direction;
A part of the pad is disposed in a cylinder (7a) provided at a position facing the side surface in the axial direction of one of these pads (inner pad 2a), and the pad approaches the rotor. An electric disc brake device provided with an expansion mechanism (feed screw mechanism 13a, ball ramp mechanism 22, and self-servo mechanism 69) for displacement to
Based on the rotational driving force of the drive source (electric motor), the expansion mechanism pushes the pad in the axial direction toward the rotor until the gap between the pad and the side surface of the rotor is eliminated. A mechanism (feed screw mechanism 13a);
An action force for displacing the pad toward the rotor by operating based on the rotational drive force of the drive source after the clearance is eliminated and the axial movement of the shaft feed mechanism is stopped. A pad acting force transmission mechanism (ball ramp mechanism 22) for generating (axial force);
A direction in which the pad is pressed against the rotor based on a brake tangential force acting on the pad when the pad is pressed against the rotor based on an acting force generated by the operation of the pad acting force transmission mechanism. A self-servo mechanism (69) that generates an axial force of
An electric disk brake device in which a reaction force of an axial force generated by the operation of the self-servo mechanism is transmitted to the shaft feed mechanism via a thrust bearing (second thrust ball bearing 53).
[2] The electric disk brake device according to [1], wherein the pad acting force transmission mechanism and the self-servo mechanism are arranged in series in the axial direction.
[3] The electric disc brake device according to [1] or [2], wherein the shaft feed mechanism includes a member (rotary shaft 34) disposed at an innermost diameter position in the cylinder. .
[4] The acting force generated by the operation of the pad acting force transmission mechanism is transmitted to the pad via the servo plate (72) constituting the self-servo mechanism, whereby the pad is pressed against the rotor. The electric disc brake device according to any one of [1] to [3] above.
[5] The electric type described in [4], wherein the servo plate is provided in a state displaceable in the direction of the brake tangential force together with the pad based on a brake tangential force acting on the pad. Disc brake device.
[6] Of the above [1] to [5], the pad acting force transmission mechanism is a reversible axial force conversion mechanism (ball ramp mechanism 22) and generates axial pressing force. The electric disc brake device described in any one.
[7] The electric disc brake device according to [6], wherein the axial force conversion mechanism is a ball ramp mechanism (22).
[8] The pad acting force transmission mechanism imparts an acting force for displacing the servo plate in the direction of the brake tangential force by a reversible tangential force conversion mechanism (eccentric cam mechanism).
The electric disc brake device according to the above [4] or [5], wherein the pad is pressed against the rotor by an axial force generated with the displacement of the servo plate.
[9] The electric disc brake device according to [8], wherein the tangential force conversion mechanism is an eccentric cam mechanism (the eccentric cam 144 and the servo plate 72a).
[10] The electric disc brake device according to any one of [1] to [9], wherein the shaft feed mechanism has irreversibility.
 なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
 また、本出願は、2015年3月25日出願の日本特許出願(特願2015-061976)に基づくものであり、その内容はここに参照として取り込まれる。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimensions, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
This application is based on a Japanese patent application filed on March 25, 2015 (Japanese Patent Application No. 2015-061976), the contents of which are incorporated herein by reference.
 本発明を実施する場合に、軸送り機構、パッド作用力伝達機構、自己サーボ機構の構造は前述した実施の形態の各例の構造に限定されるものではない。
 具体的には、例えば、軸送り機構に関しては、送りねじ式のものだけでなく、ボールねじ式のものを採用する事もできる。
 又、本発明を実施する場合に、スラスト軸受としては、例えば、スラスト玉軸受、スラスト円筒ころ軸受等の転がり軸受、滑り軸受、その他の各種スラスト軸受を採用する事ができる。
 その他の構造に関しても、各種構造を適宜採用する事ができる。
When carrying out the present invention, the structure of the shaft feed mechanism, the pad acting force transmission mechanism, and the self-servo mechanism is not limited to the structure of each example of the above-described embodiment.
Specifically, for example, regarding a shaft feed mechanism, not only a feed screw type but also a ball screw type can be adopted.
Moreover, when implementing this invention, as a thrust bearing, rolling bearings, such as a thrust ball bearing and a thrust cylindrical roller bearing, a sliding bearing, and other various thrust bearings are employable, for example.
As for other structures, various structures can be adopted as appropriate.
 1  ロータ
 2、2a  インナパッド(パッド)
 3、3a  アウタパッド(パッド)
 4 サポート
 5、5a キャリパ
 6、6a  キャリパ爪
 7、7a シリンダ
 8、8a、8b 推力発生機構
 9、9a、9b  電動モータ
 10  出力軸
 11、11a 減速機
 12、12a、12b ピストン
 13、13a、13b 送りねじ機構(軸送り機構)
 14 増力機構
 15  駆動側ロータ
 16  駆動側ランプ軌道
 17  被駆動側ステータ
 18  被駆動側ランプ軌道
 19  ボール
 20 ケース
 21、21a プリセットスプリング
 22 ボールランプ機構(パッド作用力伝達機構、軸力変換機構)
 23 内向鍔部
 24 貫通孔
 25 インナ側切欠き
 26 アウタ側切欠き
 27 内向係合片
 28 アジャスタスクリュ
 29 ランプロータ
 30 フランジ部
 31 アウタ側軌道面
 32 雄ねじ部
 33 雌スプライン部
 34 回転軸(シリンダ内の最内径位置に配置された部材)
 35 雄スプライン部
 36 貫通孔
 37 ケーシング
 38 最終歯車
 39 第一のスラスト玉軸受
 40 軸力センサユニット
 41 フランジ部
 42 雌ねじ部
 43 駆動側ランプ軌道
 44 インナ側軌道
 45 貫通孔
 46 ランプステータ
 47 保持器
 48 ボール
 49 係合凸部
 50 部分円錐凹面部
 51 被駆動側ランプ軌道
 52 ポケット
 53、53a 第二のスラスト玉軸受(スラスト軸受)
 54、54a アウタ側軌道輪
 55、55a 保持器
 56、56a 玉
 57、57a アウタ側軌道
 58、58a ポケット
 59 外向鍔部
 60 部分円錐凹面部
 61 円筒面部
 62 イコライザ部材
 63 プラグ部材
 64 切欠き部
 65 係合段部
 66 軸方向凸部
 67 内向鍔部
 68 コイルばね
 69、69a 自己サーボ機構
 70 サーボホルダ
 71 ステータプレート
 72、72a サーボプレート(接線力変換機構)
 73 保持器
 74 ローラ
 75 ホルダ基部
 76 フランジ部
 77 筒部
 78 底板部
 79 第一ブーツ係止溝
 80 小径円筒面部
 81 中径円筒面部
 82 部分円錐凹面部
 83 大径円筒面部
 84 貫通孔
 85 トルク伝達面
 86 トルク受面
 87 パッドクリップ
 88 サポート側クリップ
 89 貫通孔
 90 第二ブーツ係止溝
 91 第一のブーツ
 92 外向鍔部
 93 貫通孔
 94 第一カム面
 95、95a 係止凹溝
 96、96a 係合凹部
 97、97a 第二カム面
 98 凹部
 99 裏板
 100 係合凸部
 101 貫通孔
 102 中央貫通孔
 103 ポケット
 104 ボルト
 105 支持機構
 106 ピン
 107 カップ
 108 圧縮コイルばね
 109 頭部
 110 軸部
 111 先端部
 112 貫通孔
 113 底部
 114 貫通孔
 115 第二のブーツ
 116、116a 底部
 117 スラストころ軸受
 118 保持器
 119 円筒ころ
 120 ポケット
 121 アジャスタスリーブ
 122 フランジ部
 123a、123b 二面幅
 124 雌ねじ部
 125 円筒部
 126 外向鍔部
 127a、127b 二面幅
 128 偏心雌ねじ孔
 129 インナ側軌道輪
 130 円輪部
 131 係合凸部
 132 環状凸部
 133 インナ側軌道
 134 段部
 135 スプリングシート
 136 円錐筒部
 137 外向鍔部
 138 半円筒部
 139 第一の内向係止片
 140 貫通孔
 141 切欠部
 142 第二の内向係止片
 143 ラジアルころ軸受
 144 偏心カム(接線力変換機構)
 145 カム本体
 146 外向鍔部
 147 支持軸部
 148 環状凸部
 149 楕円形凹部
 150 ラジアルころ軸受
 151 外輪
1 Rotor 2, 2a Inner pad (pad)
3, 3a Outer pad (pad)
4 Support 5, 5a Caliper 6, 6a Caliper claw 7, 7a Cylinder 8, 8a, 8b Thrust generating mechanism 9, 9a, 9b Electric motor 10 Output shaft 11, 11a Reducer 12, 12a, 12b Piston 13, 13a, 13b Feed Screw mechanism (shaft feed mechanism)
DESCRIPTION OF SYMBOLS 14 Booster mechanism 15 Drive side rotor 16 Drive side ramp track 17 Driven side stator 18 Driven side ramp track 19 Ball 20 Case 21, 21a Preset spring 22 Ball ramp mechanism (pad acting force transmission mechanism, axial force conversion mechanism)
23 Inward flange portion 24 Through hole 25 Inner side notch 26 Outer side notch 27 Inward engagement piece 28 Adjustable screw 29 Ramp rotor 30 Flange portion 31 Outer side raceway surface 32 Male thread portion 33 Female spline portion 34 Rotating shaft (inside cylinder) Member located at the innermost diameter position)
35 Male Spline Part 36 Through Hole 37 Casing 38 Final Gear 39 First Thrust Ball Bearing 40 Axial Force Sensor Unit 41 Flange Part 42 Female Thread Part 43 Drive Side Lamp Track 44 Inner Side Track 45 Through Hole 46 Lamp Stator 47 Cage 48 Ball 49 Engaging convex part 50 Partial conical concave part 51 Driven side ramp orbit 52 Pocket 53, 53a Second thrust ball bearing (thrust bearing)
54, 54a Outer side raceway 55, 55a Cage 56, 56a Ball 57, 57a Outer side raceway 58, 58a Pocket 59 Outward flange part 60 Partial conical concave part 61 Cylindrical surface part 62 Equalizer member 63 Plug member 64 Notch part 65 Engagement Stepped portion 66 Axial convex portion 67 Inward flange portion 68 Coil spring 69, 69a Self-servo mechanism 70 Servo holder 71 Stator plate 72, 72a Servo plate (tangential force conversion mechanism)
73 Cage 74 Roller 75 Holder Base 76 Flange 77 Tube 78 Bottom Plate 79 First Boot Locking Groove 80 Small Diameter Cylindrical Surface 81 Medium Diameter Cylindrical Surface 82 Partial Conical Recessed Surface 83 Large Diameter Cylindrical Surface 84 84 Through Hole 85 Torque Transmission Surface 86 Torque receiving surface 87 Pad clip 88 Support side clip 89 Through hole 90 Second boot locking groove 91 First boot 92 Outward flange part 93 Through hole 94 First cam surface 95, 95a Locking concave groove 96, 96a Engagement Concave portion 97, 97a Second cam surface 98 Concave portion 99 Back plate 100 Engaging convex portion 101 Through hole 102 Central through hole 103 Pocket 104 Bolt 105 Support mechanism 106 Pin 107 Cup 108 Compression coil spring 109 Head portion 110 Shaft portion 111 Tip portion 112 Through-hole 113 bottom 114 through-hole 115 second boot 116, 16a Bottom portion 117 Thrust roller bearing 118 Cage 119 Cylindrical roller 120 Pocket 121 Adjuster sleeve 122 Flange portion 123a, 123b Two-sided width 124 Female threaded portion 125 Cylindrical portion 126 Outward flange portion 127a, 127b Two-sided width 128 Eccentric female screw hole 129 Inner side raceway Ring 130 Circular ring part 131 Engaging convex part 132 Annular convex part 133 Inner side track 134 Step part 135 Spring seat 136 Conical cylindrical part 137 Outward flange part 138 Semi-cylindrical part 139 First inward locking piece 140 Through hole 141 Notch part 142 Second inward locking piece 143 Radial roller bearing 144 Eccentric cam (tangential force conversion mechanism)
145 Cam body 146 Outward flange 147 Support shaft 148 Annular convex 149 Elliptical concave 150 Radial roller bearing 151 Outer ring

Claims (10)

  1.  車輪と共に回転するロータを軸方向両側から挟む状態で配置されたアウタ側とインナ側の一対のパッドと、
     その一部が、これら両パッドのうちの一方のパッドの軸方向側面に対向する位置に設けられたシリンダ内に配置されており、前記パッドを前記ロータに近付く方向に変位させる為の拡張機構とを備えた電動式ディスクブレーキ装置であって、
     前記拡張機構は、駆動源の回転駆動力に基づいて、前記パッドと前記ロータの側面との間の隙間を解消させるまで、前記パッドを前記ロータに向けて軸方向に押し出す軸送り機構と、
     前記隙間が解消し、前記軸送り機構の軸方向への移動が停止した後、前記駆動源の回転駆動力に基づいて作動する事により、前記パッドを前記ロータに向けて変位させる為の作用力を発生するパッド作用力伝達機構と、
     前記パッド作用力伝達機構が作動する事により発生した作用力に基づいて、前記パッドが前記ロータに押し付けられる事により、前記パッドに作用するブレーキ接線力に基づいて、前記パッドを前記ロータに押し付ける方向の軸力を発生する自己サーボ機構とを有しており、
     前記自己サーボ機構が作動する事により発生した軸力の反力が、スラスト軸受を介して前記軸送り機構に伝達される電動式ディスクブレーキ装置。
    A pair of pads on the outer side and the inner side arranged in a state of sandwiching the rotor rotating with the wheels from both sides in the axial direction;
    A part of the expansion mechanism is disposed in a cylinder provided at a position opposite to the axial side surface of one of the two pads, and the pad is displaced in a direction approaching the rotor; An electric disc brake device comprising:
    The expansion mechanism is configured to push the pad toward the rotor in the axial direction until the gap between the pad and the side surface of the rotor is eliminated based on the rotational driving force of the drive source; and
    An action force for displacing the pad toward the rotor by operating based on the rotational drive force of the drive source after the clearance is eliminated and the axial movement of the shaft feed mechanism is stopped. A pad acting force transmission mechanism that generates
    A direction in which the pad is pressed against the rotor based on a brake tangential force acting on the pad when the pad is pressed against the rotor based on an acting force generated by the operation of the pad acting force transmission mechanism. And a self-servo mechanism that generates the axial force of
    An electric disc brake device in which a reaction force of an axial force generated by the operation of the self-servo mechanism is transmitted to the shaft feed mechanism via a thrust bearing.
  2.  前記パッド作用力伝達機構と、前記自己サーボ機構とが、軸方向に関して直列に配置されている、請求項1に記載した電動式ディスクブレーキ装置。 The electric disk brake device according to claim 1, wherein the pad acting force transmission mechanism and the self-servo mechanism are arranged in series in the axial direction.
  3.  前記軸送り機構が、前記シリンダ内の最内径位置に配置された部材を含んで構成されている、請求項1又は2に記載した電動式ディスクブレーキ装置。 The electric disk brake device according to claim 1 or 2, wherein the shaft feed mechanism includes a member disposed at an innermost diameter position in the cylinder.
  4.  前記パッド作用力伝達機構が作動して発生する作用力が、前記自己サーボ機構を構成するサーボプレートを介して、前記パッドに伝わる事により、前記パッドが前記ロータに押し付けられる、請求項1~3のうちの何れか1項に記載した電動式ディスクブレーキ装置。 The acting force generated by the operation of the pad acting force transmission mechanism is transmitted to the pad via a servo plate constituting the self-servo mechanism, whereby the pad is pressed against the rotor. The electric disc brake device described in any one of the above.
  5.  前記サーボプレートが、前記パッドに作用するブレーキ接線力に基づいて、前記パッドと共に、前記ブレーキ接線力の方向に変位可能な状態に設けられている、請求項4に記載した電動式ディスクブレーキ装置。 The electric disc brake device according to claim 4, wherein the servo plate is provided in a state displaceable in the direction of the brake tangential force together with the pad based on a brake tangential force acting on the pad.
  6.  前記パッド作用力伝達機構が、可逆性の軸力変換機構であり、軸方向の押圧力を発生するものである、請求項1~5のうちの何れか1項に記載した電動式ディスクブレーキ装置。 The electric disc brake device according to any one of claims 1 to 5, wherein the pad acting force transmission mechanism is a reversible axial force conversion mechanism and generates an axial pressing force. .
  7.  前記軸力変換機構が、ボールランプ機構である、請求項6に記載した電動式ディスクブレーキ装置。 The electric disc brake device according to claim 6, wherein the axial force conversion mechanism is a ball ramp mechanism.
  8.  前記パッド作用力伝達機構が、可逆性の接線力変換機構で前記サーボプレートを前記ブレーキ接線力の方向に変位させる為の作用力を付与するものであり、
     前記サーボプレートの変位に伴って発生した軸力により、前記パッドを前記ロータに押し付ける請求項4~5のうちの何れか1項に記載した電動式ディスクブレーキ装置。
    The pad acting force transmission mechanism is a reversible tangential force conversion mechanism that imparts an acting force for displacing the servo plate in the direction of the brake tangential force,
    The electric disc brake device according to any one of claims 4 to 5, wherein the pad is pressed against the rotor by an axial force generated with the displacement of the servo plate.
  9.  前記接線力変換機構が、偏心カム機構である、請求項8に記載した電動式ディスクブレーキ装置。 The electric disc brake device according to claim 8, wherein the tangential force conversion mechanism is an eccentric cam mechanism.
  10.  前記軸送り機構が、非可逆性を有している、請求項1~9のうちの何れか1項に記載した電動式ディスクブレーキ装置。 The electric disk brake device according to any one of claims 1 to 9, wherein the shaft feed mechanism has irreversibility.
PCT/JP2016/059374 2015-03-25 2016-03-24 Electric disc brake device WO2016152973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061976A JP2016180481A (en) 2015-03-25 2015-03-25 Electrically-driven disc brake device
JP2015-061976 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016152973A1 true WO2016152973A1 (en) 2016-09-29

Family

ID=56977444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059374 WO2016152973A1 (en) 2015-03-25 2016-03-24 Electric disc brake device

Country Status (2)

Country Link
JP (1) JP2016180481A (en)
WO (1) WO2016152973A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313953B (en) * 2020-02-21 2023-08-18 南京智慧基础设施技术研究院有限公司 Signal amplifying device convenient for fixed installation for long-distance signal transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321478A (en) * 2005-05-17 2006-11-30 Robert Bosch Gmbh Brake device of vehicle and operating method for the same
JP2011122649A (en) * 2009-12-10 2011-06-23 Akebono Brake Ind Co Ltd Electric brake device
JP2011158058A (en) * 2010-02-03 2011-08-18 Akebono Brake Ind Co Ltd Disk brake device with electric parking mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321478A (en) * 2005-05-17 2006-11-30 Robert Bosch Gmbh Brake device of vehicle and operating method for the same
JP2011122649A (en) * 2009-12-10 2011-06-23 Akebono Brake Ind Co Ltd Electric brake device
JP2011158058A (en) * 2010-02-03 2011-08-18 Akebono Brake Ind Co Ltd Disk brake device with electric parking mechanism

Also Published As

Publication number Publication date
JP2016180481A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
WO2014017609A1 (en) Electric disc brake device
JP5513914B2 (en) Disc brake device with electric parking mechanism
WO2010041588A1 (en) Electric linear actuator and electric brake device
US11780419B2 (en) Electric park brake with electromagnetic brake
WO2012124812A1 (en) Electric braking device with parking mechanism
JP2013072511A (en) Disk brake
WO2013157646A1 (en) Friction brake device
EP2615323A1 (en) Electric direct-acting actuator and electric disc brake device
WO2010087101A1 (en) Disk brake
JP2017116014A5 (en)
JP2016050629A (en) Gear unit and brake device
JP2014190347A (en) Electrically-driven disc brake device
WO2012124811A1 (en) Electric braking device with parking mechanism
JP2014214752A (en) Electric disc brake device
WO2016152973A1 (en) Electric disc brake device
US20040200676A1 (en) Electric sliding disc brake system
JP5466259B2 (en) Disc brake booster
JP5289182B2 (en) Electric disc brake
JP5946399B2 (en) Electric disc brake device
JP5226604B2 (en) Electric disc brake device
JP2017116013A5 (en)
JP2017020565A (en) Floating-type electric disc brake device
JP2016098873A (en) Electrically-driven direct acting actuator and electrically-driven brake device
JP7103538B1 (en) Rotation transmission state switching device
WO2018003191A1 (en) Disc brake

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768876

Country of ref document: EP

Kind code of ref document: A1