WO2016152718A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
WO2016152718A1
WO2016152718A1 PCT/JP2016/058496 JP2016058496W WO2016152718A1 WO 2016152718 A1 WO2016152718 A1 WO 2016152718A1 JP 2016058496 W JP2016058496 W JP 2016058496W WO 2016152718 A1 WO2016152718 A1 WO 2016152718A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
metal
ion secondary
lithium ion
negative electrode
Prior art date
Application number
PCT/JP2016/058496
Other languages
French (fr)
Japanese (ja)
Inventor
入山 次郎
川崎 大輔
登 吉田
志村 健一
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017508289A priority Critical patent/JP6809449B2/en
Publication of WO2016152718A1 publication Critical patent/WO2016152718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery, and more particularly, to a secondary battery including a negative electrode containing a non-carbon material and a heat-resistant separator, a manufacturing method thereof, a vehicle using the lithium ion secondary battery, and a power storage device. .
  • Lithium ion secondary batteries are characterized by their small size and large capacity, and they have been widely used as power sources for electronic devices such as mobile phones and laptop computers, and have contributed to improving the convenience of portable IT devices.
  • the use in a larger application such as a power source for driving a motorcycle or an automobile or a storage battery for a smart grid has attracted attention.
  • As demand for lithium-ion secondary batteries increases and it is used in various fields, it is possible to use batteries with higher energy density, life characteristics that can withstand long-term use, and a wide range of temperature conditions. Such characteristics are required.
  • Carbon materials such as graphite are generally used for the negative electrode of lithium ion secondary batteries.
  • metal particles such as silicon, silicon oxide, etc. are used together with carbon material particles.
  • a negative electrode containing oxide particles has been proposed (see, for example, Patent Document 1: Japanese Patent Laid-Open No. 2003-123740).
  • Patent Document 2 describes a separator that contains fibers having a melting point of 150 ° C. or higher, such as aramid and / or polyimide, and prevents shrinkage during abnormal heat generation.
  • Patent Document 3 (WO2012 / 070154) describes a two-layer microporous film of aramid and polyolefin as a separator.
  • the silicon-based material used in Patent Document 1 is effective in improving the energy density, but the hardness is high, and the silicon-based material pulverized to obtain an appropriate particle size has a sharp angle. For this reason, when a separator that is easy to tear is used, the sharp corners of the particles penetrate the separator and cause a micro short, which causes a problem of frequent self-discharge failures. In particular, when the separator is made into a bag shape, pressure is applied to the separator due to expansion of the negative electrode accompanying charging, and self-discharge failure tends to occur. Also, when a laminate film is used for the battery outer package and sealing is performed under reduced pressure, pressure is applied to the separator, and self-discharge failure tends to occur.
  • a separator formed of a high heat resistant material such as aramid and polyimide can prevent shrinkage during abnormal heat generation.
  • a nonwoven fabric separator formed of fibers has the advantage of being difficult to tear, but it is difficult to form a thin and uniform separator, which is disadvantageous in manufacturing a battery having a high energy density.
  • a microporous membrane by using a microporous membrane, a thin and uniform separator is possible, but a high heat resistant material has a significantly smaller elongation at break than a polyolefin material, so it is easy to tear when a microporous membrane is formed. Self-discharge failure is likely to occur.
  • Patent Document 3 If a two-layer microporous membrane of aramid and polyolefin is used as in Patent Document 3, the problem of microshorts can be solved, but the heat resistance of the separator is limited by the polyolefin. That is, in a scene where heat resistance is required, in a case where heat treatment is performed on the electrode element at the time of manufacture, the heat resistance becomes insufficient, and the original heat resistance of aramid cannot be exhibited. Further, Patent Document 4 describes a technique of using silicon oxide having a high degree of circularity as a negative electrode material, but there is no description about using a separator that is easily torn.
  • Embodiments of the present invention have been made to solve the above-described problems, and an object of the present invention is to provide a lithium ion secondary battery having heat resistance and a reduced self-discharge failure rate.
  • One embodiment of the present invention is formed of at least one material selected from a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions (hereinafter referred to as metal and / or metal oxide).
  • a negative electrode including particles whose average circularity defined by the following formula is 0.78 or more;
  • a positive electrode A single layer high heat resistance resin microporous membrane separator,
  • a lithium ion secondary battery comprising:
  • Circularity 4 ⁇ S / L 2 (However, S is the area of the particle projection image, and L is the circumference of the particle projection image.)
  • the particles Since conventionally used metals and metal oxides are generally obtained by pulverizing lumps, the particles have sharp corners and are very hard materials. Therefore, when used with a fragile separator, the sharp corners of the particles penetrate the separator. However, in this embodiment, since the metal or metal oxide particles do not have sharp corners, the separator is damaged even if a microporous film formed of a high heat resistant resin is used as the separator. Even if there is no damage, it is estimated that the self-discharge defective rate could be reduced because it is smaller than the conventional one.
  • the negative electrode has a structure in which a negative electrode active material is laminated on a current collector as a negative electrode active material layer integrated with a negative electrode binder.
  • the negative electrode active material is a material capable of reversibly occluding and releasing lithium ions with charge / discharge.
  • the negative electrode of the present embodiment includes, as an active material, at least one material selected from a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions.
  • a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions may be one or more materials selected from either one, or one from both. The above materials may be selected and used in combination.
  • at least one material selected from a metal that can be alloyed with lithium and a metal oxide capable of occluding and releasing lithium ions may be referred to as “metal and / or metal oxide”.
  • metal and metal oxide both may be collectively referred to as “metal and metal oxide”.
  • Metal and metal oxide are in the form of particles and have no sharp corners. As described later, when the metal is dispersed inside the metal oxide, the metal oxide that forms the outer shape of the particles only needs to have a predetermined shape.
  • the average (number average value) circularity is 0.78 or more, preferably 0.8 or more, more preferably 0.8. 85 or more.
  • the circularity is defined by the following equation.
  • Circularity 4 ⁇ S / L 2
  • S is the area of the particle projection image
  • L is the circumference of the particle projection image
  • the method for measuring the circularity of the particles is not particularly limited. However, before the negative electrode is manufactured, it can be obtained by, for example, performing image processing on a projected image of 500 arbitrary particles using a powder image analyzer. .
  • a powder image analyzer for example, Microtrack FPA (trade name) manufactured by Nikkiso Co., Ltd., PITA-3 manufactured by Seishin Co., Ltd., or the like can be used.
  • image processing can be performed about arbitrary 100 pieces from a negative electrode cross-section photograph using SEM (scanning electron microscope).
  • metals that can be alloyed with lithium include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and alloys of two or more thereof.
  • silicon (Si) is preferably included as a metal that can be alloyed with lithium.
  • the metal content in the negative electrode active material is preferably 5% by mass to 95% by mass, more preferably 10% by mass to 90% by mass, and more preferably 20% by mass to 50% by mass. More preferably.
  • metal oxides that can occlude and release lithium ions include aluminum oxide, silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • silicon oxide is preferably included as a metal oxide capable of inserting and extracting lithium ions.
  • one or more elements selected from nitrogen, boron, phosphorus and sulfur can be added to the metal oxide. By carrying out like this, the electrical conductivity of a metal oxide can be improved.
  • the content of the metal oxide in the negative electrode active material may be 0% by mass or 100% by mass, but is preferably 5% by mass or more and 100% by mass or less, and 40% by mass or more and 95% by mass or less. Is more preferable, and it is further more preferable to set it as 50 to 90 mass%.
  • At least Si and / or silicon oxide is contained as the negative electrode active material.
  • the composition of silicon oxide is represented by SiOx (where 0 ⁇ x ⁇ 2).
  • a particularly preferred silicon oxide is SiO.
  • the metal oxide has an amorphous structure. Since the metal oxide has an amorphous structure, it suppresses volume changes of other negative electrode active materials such as metals that can be alloyed with lithium and carbon materials that can occlude and release lithium ions, and suppresses decomposition of the electrolyte. Can be. Although this mechanism is not clear, it is presumed that the formation of a film on the interface between the carbon material and the electrolytic solution has some influence due to the amorphous structure of the metal oxide. The amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the metal oxide has an amorphous structure. Specifically, when the metal oxide does not have an amorphous structure, a peak specific to the metal oxide is observed. However, the metal oxide may have a case where all or part of the metal oxide has an amorphous structure. Inherent peaks are broad and observed.
  • the negative electrode active material contains a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions
  • all or a part of the alloyable metal is dispersed in the metal oxide.
  • the volume change as the whole negative electrode can be suppressed, and decomposition
  • all or part of the metal is dispersed in the metal oxide because transmission electron microscope observation (general TEM observation) and energy dispersive X-ray spectroscopy measurement (general EDX measurement). It can confirm by using together. Specifically, the cross section of the sample containing metal particles is observed, the oxygen concentration of the metal particles dispersed in the metal oxide is measured, and the metal constituting the metal particles is not an oxide. Can be confirmed.
  • the metal oxide is preferably an oxide of a metal constituting the metal.
  • the negative electrode active material contains both metal and metal oxide
  • the metal is preferably 5% by mass or more and 90% by mass or less, and more preferably 30% by mass or more and 60% by mass or less with respect to the total of the metal and the metal oxide.
  • the metal oxide is preferably 10% by mass or more and 95% by mass or less, and more preferably 40% by mass or more and 70% by mass or less with respect to the total of the metal and the metal oxide.
  • the surface of the metal and metal oxide particles may be coated with a carbon material (usually an amorphous carbon material).
  • a carbon material usually an amorphous carbon material.
  • the coating method include a method of chemical vapor deposition (CVD) of particles in an organic gas and / or vapor. Further, the surfaces of the metal and metal oxide particles may be coated with a metal oxide film.
  • the metal oxide film is preferably an oxide of one or more elements selected from magnesium, aluminum, titanium, and silicon, and in addition to the above elements, zirconium, hafnium, vanadium, niobium, tantalum, Chromium, molybdenum, tungsten, manganese, iron, ruthenium, cobalt, rhodium, iridium, nickel, palladium, cerium, indium, germanium, tin, bismuth, antimony, cadmium, copper, silver. May be included.
  • the surface of the metal oxide film may be further coated with a carbon material (usually an amorphous carbon material).
  • a metal and metal oxide particles coated with a carbon material can provide a secondary battery having superior cycle characteristics.
  • the negative electrode active material may further contain a carbon material capable of inserting and extracting lithium ions.
  • a carbon material capable of inserting and extracting lithium ions.
  • Examples of such a carbon material include graphite, amorphous carbon, diamond-like carbon, carbon nanotube, and a composite thereof. Among these, graphite has high crystallinity, high electrical conductivity, and excellent adhesion to a current collector made of a metal such as copper and voltage flatness.
  • graphite either natural graphite or artificial graphite may be used.
  • the shape of graphite is not particularly limited and may be any.
  • natural graphite include scale-like graphite, scale-like graphite, and earth-like graphite.
  • artificial graphite include massive artificial graphite, flake-like artificial graphite, and spherical artificial graphite such as MCMB (mesophase micro beads).
  • the surface of the carbon material may be coated.
  • the coating material that covers the surface of the carbon material as the active material include carbon materials (usually amorphous carbon materials), metals, and metal oxides.
  • amorphous carbon is preferable.
  • the method of coating the surface of the carbon material particle as a negative electrode active material such as graphite with amorphous carbon include a method of chemical vapor deposition (CVD) in an organic gas and / or vapor.
  • the coating amount of amorphous carbon is about 0.5 to 20% by mass based on the weight of the coated particles.
  • the particle diameters of “metal and metal oxide” and “carbon material” are not particularly limited, but the median diameter (D50 particle diameter) of the metal and metal oxide particles is preferably about 1 to 30 ⁇ m. The median diameter (D50 particle diameter) is preferably about 5 to 50 ⁇ m.
  • the median diameter of the metal and metal oxide particles is smaller than the median diameter of the carbon material. In this way, metals and metal oxides with large volume changes during charging and discharging have relatively small particle sizes, and carbon materials with small volume changes have relatively large particle sizes. Micronization is more effectively suppressed.
  • the content of the metal and metal oxide in the negative electrode is 1 to 100% by mass, preferably 1 to 95% by mass, based on the total amount of the metal, metal oxide and carbon material. It is preferable to change appropriately.
  • the content of the metal and metal oxide is, for example, 1-30% by weight, preferably 1-20% by weight, and in certain embodiments 1-10% by weight.
  • the content of metal and metal oxide is, for example, more than 30% by mass, in a preferred embodiment of 50% by mass or more, and in a specific embodiment, 60% by mass or more. It is good.
  • binder for the negative electrode examples include polyvinylidene fluoride, modified polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber (SBR), poly Examples thereof include tetrafluoroethylene, polypropylene, polyethylene, polyacrylic acid, polyacrylic acid metal salts, polyimide, and polyamideimide.
  • a thickener such as carboxymethyl cellulose (CMC) can also be used.
  • a binder selected from polyimide, polyamideimide, polyacrylic acid, and a metal salt of polyacrylic acid is included as the binder for the negative electrode.
  • the content of the binder for the negative electrode used is 0.5 to 20% by mass with respect to the total mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. Is preferred.
  • the negative electrode active material can be used together with a conductive auxiliary material as necessary.
  • a conductive auxiliary material include the same materials as specifically exemplified in the following positive electrode, and the amount used can also be the same.
  • the negative electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • a negative electrode manufacturing method for example, a negative electrode active material, and if necessary, a conductivity imparting agent and a binder are dispersed and kneaded in a solvent such as N-methyl-2-pyrrolidone (NMP) to prepare a negative electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode layer can be prepared by applying the negative electrode slurry onto a negative electrode current collector such as a copper foil and drying the solvent. Examples of the coating method include a doctor blade method and a die coater method. After forming a negative electrode active material layer in advance, a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • the negative electrode before lithium pre-doping may be manufactured by growing a negative electrode active material or the like on the negative electrode current collector by a vapor phase method such as vapor deposition or sputtering.
  • the positive electrode includes a positive electrode active material capable of reversibly occluding and releasing lithium ions during charge and discharge, and the positive electrode active material is laminated on the current collector as a positive electrode active material layer integrated with a positive electrode binder. It has a structure.
  • the positive electrode active material in the present embodiment is not particularly limited as long as it is a material capable of occluding and releasing lithium, but it is preferable to include a high capacity compound from the viewpoint of increasing the energy density.
  • the high-capacity compound include lithium nickel oxide (LiNiO 2 ) or a lithium nickel composite oxide obtained by substituting a part of Ni of lithium nickelate with another metal element.
  • the layered structure is represented by the following formula (A) Lithium nickel composite oxide is preferred.
  • the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less.
  • x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • two or more compounds represented by the formula (A) may be used as a mixture.
  • NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 .
  • any of the positive electrode active materials described above can be used alone or in combination of two or more.
  • the positive electrode binder the same as the negative electrode binder can be used.
  • polyvinylidene fluoride or polytetrafluoroethylene is preferable, and polyvinylidene fluoride is more preferable.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
  • a conductive auxiliary material may be added to the coating layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include flaky carbonaceous fine particles such as graphite, carbon black, acetylene black, vapor grown carbon fiber (for example, VGCF manufactured by Showa Denko).
  • the positive electrode current collector the same as the negative electrode current collector can be used.
  • the positive electrode is preferably a current collector using aluminum, an aluminum alloy, or iron / nickel / chromium / molybdenum stainless steel.
  • the positive electrode can be produced by forming a positive electrode active material layer containing a positive electrode active material and a positive electrode binder on a positive electrode current collector.
  • Electrode Although it does not specifically limit as electrolyte solution of the lithium ion secondary battery which concerns on this embodiment, The nonaqueous electrolyte solution containing the nonaqueous solvent and supporting salt which are stable in the operating potential of a battery is preferable.
  • non-aqueous solvents examples include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and other cyclic carbonates; dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Chain carbonates such as dipropyl carbonate (DPC); propylene carbonate derivatives, aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; ethers such as diethyl ether and ethyl propyl ether; trimethyl phosphate; Aprotic organic solvents such as phosphate esters such as triethyl phosphate, tripropyl phosphate, trioctyl phosphate and triphenyl phosphate, and fluorine compounds in which at least some of the hydrogen atoms of these compounds are substituted with fluorine atoms.
  • aprotic organic solvents and the like.
  • cyclic such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), dipropyl carbonate (DPC), etc.
  • chain carbonates are included.
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • the supporting salts include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) A lithium salt such as 2 .
  • the supporting salt can be used singly or in combination of two or more. LiPF 6 is preferable from the viewpoint of cost reduction.
  • the electrolytic solution can further contain an additive.
  • an additive A halogenated cyclic carbonate, an unsaturated cyclic carbonate, cyclic
  • battery characteristics such as cycle characteristics can be improved. This is presumed to be because these additives decompose during charging / discharging of the lithium ion secondary battery to form a film on the surface of the electrode active material and suppress decomposition of the electrolytic solution and the supporting salt.
  • the cycle characteristics may be further improved by the additive.
  • the additives listed above are specifically described below.
  • halogenated cyclic carbonate examples include compounds represented by the following formula (B).
  • A, B, C and D are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or a halogenated alkyl group, and at least one of A, B, C and D One is a halogen atom or a halogenated alkyl group.
  • the number of carbon atoms of the alkyl group and the halogenated alkyl group is more preferably 1 to 4, and further preferably 1 to 3.
  • the halogenated cyclic carbonate is preferably a fluorinated cyclic carbonate.
  • the fluorinated cyclic carbonate include compounds in which some or all of the hydrogen atoms are substituted with fluorine atoms, such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • FEC fluoro-1,3-dioxolan-2-one
  • the content of the fluorinated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 1% by mass or less in the electrolytic solution. By containing 0.01% by mass or more, a sufficient film forming effect can be obtained. Moreover, the gas generation by decomposition
  • the unsaturated cyclic carbonate is a cyclic carbonate having at least one carbon-carbon unsaturated bond in the molecule.
  • vinylene carbonate methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5- Vinylene carbonate compounds such as diethyl vinylene carbonate; 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylene ethylene carbonate, 5-methyl -4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4,4-dimethyl-5-methyleneethylene carbonate, 4,4-diethyl-5-methyle Vinyl ethylene carbonate compounds such as ethylene carbonate.
  • vinylene carbonate or 4-vinylethylene carbonate is preferable, and vinylene carbonate is particularly preferable.
  • the content of the unsaturated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 10% by mass or less in the electrolytic solution. By containing 0.01% by mass or more, a sufficient film forming effect can be obtained. Moreover, gas generation by decomposition
  • cyclic or chain disulfonic acid ester examples include a cyclic disulfonic acid ester represented by the following formula (C) or a chain disulfonic acid ester represented by the following formula (D).
  • R 1 and R 2 are each independently a substituent selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a halogen group, and an amino group.
  • R 3 is an alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfonyl group, a fluoroalkylene group having 1 to 6 carbon atoms, or an alkylene group or a fluoroalkylene unit having 2 to 6 carbon atoms bonded via an ether group.
  • a divalent group is shown.
  • R 1 and R 2 are preferably each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a halogen group, and R 3 is an alkylene group having 1 or 2 carbon atoms. Or it is more preferable that it is a fluoroalkylene group.
  • Examples of preferable compounds of the cyclic disulfonic acid ester represented by the formula (C) include compounds represented by the following formulas (1) to (20).
  • R 4 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 5 carbon atoms, a carbon atom A polyfluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 3 (X 3 is an alkyl group having 1 to 5 carbon atoms), —SY 1 (Y 1 is an alkyl group having 1 to 5 carbon atoms), —COZ (Z Represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms) and an atom or group selected from a halogen atom.
  • R 5 and R 6 are each independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a phenoxy group, a fluoroalkyl group having 1 to 5 carbon atoms, or a polyalkyl having 1 to 5 carbon atoms.
  • R 4 and R 7 are preferably each independently a hydrogen atom, an alkyl group having 1 or 2 carbon atoms, a fluoroalkyl group having 1 or 2 carbon atoms, or a halogen atom.
  • 5 and R 6 are each independently an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a polyfluoroalkyl group having 1 to 3 carbon atoms, A hydroxyl group or a halogen atom is more preferred.
  • Examples of preferable compounds of the chain disulfonic acid ester compound represented by the formula (D) include the following compounds.
  • the content of the cyclic or chain disulfonic acid ester is preferably 0.005 mol / L or more and 10 mol / L or less, more preferably 0.01 mol / L or more and 5 mol / L or less in the electrolytic solution. It is particularly preferably from 05 mol / L to 0.15 mol / L. By containing 0.005 mol / L or more, a sufficient film effect can be obtained. Further, when the content is 10 mol / L or less, an increase in the viscosity of the electrolyte and an accompanying increase in resistance can be suppressed.
  • An additive can be used alone or in combination of two or more.
  • it is preferable that the sum total of content of an additive is 10 mass% or less in an electrolyte solution, and it is more preferable that it is 5 mass% or less.
  • a microporous membrane separator made of a single layer of high heat resistance resin is used.
  • the high heat-resistant resin a resin having a heat melting or decomposition temperature of 160 ° C. or higher, more preferably 180 ° C. or higher is preferable.
  • the safety of the secondary battery can be increased. The safety of the secondary battery can be evaluated by performing a high temperature heating test at 160 ° C., for example.
  • a resin having a heat resistance of 300 ° C. or higher is preferable because it has a small thermal shrinkage and good shape retention.
  • polyamide, polyimide, polyamideimide and polyphenylene sulfide are preferable.
  • Polyamide, polyimide and polyamideimide are preferably aromatic, particularly aromatic polyamide, that is, aramid.
  • Thermal melting temperature represents a temperature measured by differential scanning calorimetry (DSC) according to JIS K 7121.
  • Thermal decomposition temperature refers to a temperature from 25 ° C. to 10 ° C. in an air stream using a thermogravimetric measuring device. This represents the temperature at which the weight decreased by 10% when the temperature was raised at a rate of 10 ° C / min (10% weight loss temperature).
  • Heat resistance is 300 ° C or higher” indicates deformation such as softening at least at 300 ° C. Means no.
  • the thermal melting or thermal decomposition temperature is 160 ° C. or higher” means that the lower one of the thermal melting temperature and the thermal decomposition temperature is 160 ° C. or higher. In the case of a resin that decomposes, it means that the thermal decomposition temperature is 160 ° C. or higher.
  • Aramid is an aromatic polyamide in which one or more aromatic groups are directly connected by an amide bond.
  • the aromatic group include a phenylene group, and two aromatic rings may be bonded with oxygen, sulfur, or an alkylene group (for example, a methylene group, an ethylene group, a propylene group, etc.).
  • These aromatic groups may have a substituent.
  • the substituent include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, etc.), an alkoxy group (for example, a methoxy group, an ethoxy group, Propoxy group, etc.), halogen (chloro group, etc.) and the like.
  • a material in which part or all of the hydrogen atoms on the aromatic ring are substituted with a halogen group such as fluorine, bromine or chlorine is a preferable material because it has high oxidation resistance and does not cause oxidative deterioration at the positive electrode.
  • the aramid may be either a para type or a meta type.
  • an aramid microporous membrane as a separator because it has high heat resistance, does not deteriorate even under a high energy density, maintains insulation against Li precipitation, and prevents a complete short circuit.
  • Examples of the aramid that can be preferably used in the present embodiment include polymetaphenylene isophthalamide, polyparaphenylene terephthalamide, copolyparaphenylene 3,4′-oxydiphenylene terephthalamide, and hydrogen on these phenylene groups. And the like.
  • the separator used preferably has an oxygen index of 25 or more.
  • the oxygen index means a minimum oxygen concentration at which a vertically supported small test piece maintains combustion in a mixed gas of nitrogen and acidity at room temperature, and a higher value represents a flame retardant material.
  • the oxygen index can be measured according to JIS K7201. Examples of the material used for the separator having an oxygen index of 25 or more include polyphenylene sulfide, polyimide, and aramid.
  • the film thickness of the heat resistant resin microporous film is not particularly limited, but is usually about 3 ⁇ m to 40 ⁇ m, preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the air permeability (Gurley value) of the heat-resistant resin microporous membrane is not particularly limited, but is usually selected from the range of 1 second to 300 seconds.
  • an electrode body in which at least a pair of positive and negative electrodes are arranged to face each other, and an electrolytic solution are included in the exterior body.
  • the shape of the secondary battery may be any of a cylindrical type, a flat wound square type, a laminated square type, a coin type, a flat wound laminated type, and a laminated laminate type, and a laminated laminate type is preferable.
  • a laminated laminate type secondary battery will be described.
  • FIG. 1 shows a schematic cross-sectional view of an example of a laminated electrode body 1 included in a laminated laminate type secondary battery.
  • a plurality of positive electrodes 2 and a plurality of negative electrodes 3 are alternately stacked with the separator 4 interposed therebetween.
  • an active material uncoated portion where the positive electrode current collector 5 and the negative electrode current collector 6 are not covered with the active material is provided.
  • the positive electrode 2 and the negative electrode 3 are stacked with the active material uncoated portions facing in opposite directions.
  • the positive electrode current collector 5 is electrically connected to each other at an active material uncoated portion, and a positive electrode lead terminal 7 is further connected to the connection portion.
  • the negative electrode current collector 6 is electrically connected to each other at an active material uncoated portion, and a negative electrode lead terminal 8 is further connected to the connection portion.
  • a laminated laminate type secondary battery is manufactured by wrapping a laminated electrode body 1 with an exterior body such as an aluminum laminated film, injecting an electrolyte into the inside, and then sealing under reduced pressure.
  • the secondary battery includes a battery element 20, a film outer package 10 that houses the battery element 20 together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter also simply referred to as “electrode tabs”). .
  • the battery element 20 is formed by alternately laminating a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with a separator 25 interposed therebetween.
  • the electrode material 32 is applied to both surfaces of the metal foil 31.
  • the electrode material 42 is applied to both surfaces of the metal foil 41.
  • the secondary battery in FIG. 1 has electrode tabs drawn out on both sides of the outer package. However, in the secondary battery to which the present invention can be applied, the electrode tab is drawn out on one side of the outer package as shown in FIG. It may be a configuration. Although detailed illustration is omitted, each of the positive and negative metal foils has an extension on a part of the outer periphery. The extensions of the negative electrode metal foil are collected together and connected to the negative electrode tab 52, and the extensions of the positive electrode metal foil are collected together and connected to the positive electrode tab 51 (see FIG. 3). The portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions”.
  • the film outer package 10 is composed of two films 10-1 and 10-2 in this example.
  • the films 10-1 and 10-2 are heat sealed to each other at the periphery of the battery element 20 and sealed.
  • the positive electrode tab 51 and the negative electrode tab 52 are drawn out in the same direction from one short side of the film outer package 10 sealed in this way.
  • FIGS. 2 and 3 show examples in which a cup portion is formed on one film 10-1 and a cup portion is not formed on the other film 10-2.
  • a configuration in which a cup portion is formed on both films (not shown) or a configuration in which neither cup portion is formed (not shown) may be employed.
  • the lithium ion secondary battery according to the present embodiment can be produced according to a normal method. Taking a laminated laminate type lithium ion secondary battery as an example, an example of a method for producing a lithium ion secondary battery will be described. First, in the dry air or inert atmosphere, the above-mentioned electrode element is formed by arranging the positive electrode and the negative electrode opposite to each other with a separator interposed therebetween. Next, this electrode element is accommodated in an exterior body (container), and an electrolytic solution is injected to impregnate the electrode with the electrolytic solution. Then, the opening part of an exterior body is sealed and a lithium ion secondary battery is completed.
  • a plurality of lithium ion secondary batteries according to this embodiment can be combined to form an assembled battery.
  • the assembled battery may have a configuration in which two or more lithium ion secondary batteries according to the present embodiment are used and connected in series, in parallel, or both. Capacitance and voltage can be freely adjusted by connecting in series and / or in parallel. About the number of the lithium ion secondary batteries with which an assembled battery is provided, it can set suitably according to battery capacity or an output.
  • the lithium ion secondary battery or its assembled battery according to this embodiment can be used in a vehicle.
  • Vehicles according to this embodiment include hybrid vehicles, fuel cell vehicles, and electric vehicles (all include four-wheel vehicles (passenger cars, trucks, buses and other commercial vehicles, light vehicles, etc.), motorcycles (motorcycles), and tricycles. ).
  • vehicle according to the present embodiment is not limited to an automobile, and may be used as various power sources for other vehicles, for example, moving bodies such as trains.
  • the lithium ion secondary battery or its assembled battery according to this embodiment can be used for a power storage device.
  • a power storage device for example, a power source connected to a commercial power source supplied to a general household and a load such as a home appliance, and used as a backup power source or auxiliary power at the time of a power failure, Examples include photovoltaic power generation, which is also used for large-scale power storage for stabilizing power output with a large time fluctuation due to renewable energy.
  • Example 1 (Adjustment and measurement of SiO circularity) SiO (Catalog No. SIO02PB manufactured by Kojundo Chemical Co., Ltd., 75 ⁇ m mesh passing product) was pulverized using a planetary ball mill (Fritsch Classic Line P-5) to adjust the particle size distribution and circularity. The median diameter (d50) of the adjusted SiO particles and the circularity of 500 arbitrary SiO particles were measured with a powder measuring instrument (Seishin company: PITA-3). Table 1 shows the average values of d50 and circularity.
  • Lithium nickelate, carbon black (trade name: “# 3030B”, manufactured by Mitsubishi Chemical Corporation), and polyvinylidene fluoride (trade name: “W # 7200”, manufactured by Kureha Corporation) are each 95: Weighed at a mass ratio of 2: 3.
  • These and NMP were mixed to form a slurry.
  • the mass ratio of NMP to solid content was 54:46.
  • This slurry was applied to an aluminum foil having a thickness of 15 ⁇ m using a doctor blade. The aluminum foil coated with this slurry was heated at 120 ° C. for 5 minutes to dry the NMP, thereby producing a positive electrode.
  • An aluminum terminal and a nickel terminal were welded to each of the produced positive electrode and negative electrode. These were overlapped via a separator to produce an electrode element.
  • the electrode element was covered with a laminate film, and an electrolyte solution was injected into the laminate film. Thereafter, the laminate film was heat-sealed and sealed while reducing the pressure inside the laminate film. As a result, a plurality of flat-type secondary batteries before the first charge were produced.
  • a polyimide microporous film having a thickness of 15 ⁇ m was used as the separator.
  • As the laminate film a polypropylene film on which aluminum was deposited was used.
  • electrolytic solution a solution containing 1.0 mol / l LiPF 6 as an electrolyte and a mixed solvent of ethylene carbonate and diethyl carbonate (7: 3 (volume ratio)) as a nonaqueous electrolytic solvent was used. Ten identical batteries were made.
  • Example 2 A secondary battery was produced in the same manner as in Example 1 except that the particle size and circularity of the ground SiO in Example 1 were adjusted as shown in Table 1, and a self-discharge test was performed.
  • Example 3 A secondary battery was produced in the same manner as in Example 1 except that the particle size and circularity of the ground SiO in Example 1 were adjusted as shown in Table 1, and a self-discharge test was performed.
  • the ratio of the negative electrode slurry is a mixed solution of SiO, flaky natural graphite, polyamic acid and N-methyl-2-pyrrolidone (NMP) (trade name: U-Varnish A, manufactured by Ube Industries, Ltd., solid content 18 wt% ) Was made into a mass ratio of 82: 3: 15 (however, the polyamic acid solution was a solid content mass), and a secondary battery was produced in the same manner as in Example 1 and subjected to a self-discharge test.
  • NMP N-methyl-2-pyrrolidone
  • the ratio of the negative electrode slurry is a mixed solution of SiO, flaky natural graphite, polyamic acid and N-methyl-2-pyrrolidone (NMP) (trade name: U-Varnish A, manufactured by Ube Industries, Ltd., solid content 18 wt% ) Was set to 70:15:84, respectively, and a secondary battery was produced in the same manner as in Example 1 and subjected to a self-discharge test.
  • NMP N-methyl-2-pyrrolidone
  • the ratio of the negative electrode slurry is a mixed solution of SiO, flaky natural graphite, polyamic acid and N-methyl-2-pyrrolidone (NMP) (trade name: U-Varnish A, manufactured by Ube Industries, Ltd., solid content 18 wt% ) Was made into a mass ratio of 70:15:15 (however, the polyamic acid solution was a solid content mass), and a secondary battery was produced in the same manner as in Example 1 and subjected to a self-discharge test.
  • NMP N-methyl-2-pyrrolidone
  • Example 7 A secondary battery was produced in the same manner as in Example 1 except that Si (catalog No. SIE07PB, manufactured by Kojundo Chemical Co., Ltd., 300 ⁇ m or less) was used instead of SiO in Example 1, and a self-discharge test was performed. .
  • Si catalog No. SIE07PB, manufactured by Kojundo Chemical Co., Ltd., 300 ⁇ m or less
  • Example 8 A secondary battery was produced in the same manner as in Example 1 except that SnO (catalog No SNO01PB, manufactured by Kojundo Chemical Co., Ltd.) was used instead of SiO in Example 1, and a self-discharge test was performed.
  • SnO catalog No SNO01PB, manufactured by Kojundo Chemical Co., Ltd.
  • Example 1 A secondary battery was produced in the same manner as in Example 1 except that the particle size and circularity of the ground SiO in Example 1 were adjusted as shown in Table 1, and a self-discharge test was performed.
  • Example 2 A secondary battery was produced in the same manner as in Example 7 except that the particle size and circularity of Si after pulverization in Example 7 were adjusted as shown in Table 1, and a self-discharge test was performed.
  • Example 3 A secondary battery was produced in the same manner as in Example 8 except that the particle size and circularity of SnO after pulverization in Example 8 were adjusted as shown in Table 1, and a self-discharge test was performed.
  • the ratio of the negative electrode slurry is a mixed solution of SiO, flaky natural graphite, polyamic acid and N-methyl-2-pyrrolidone (NMP) (trade name: U-Varnish A, manufactured by Ube Industries, Ltd., solid content 18 wt% ) Was made into a mass ratio of 82: 3: 15 (wherein the polyamic acid solution was a solid mass), a secondary battery was prepared in the same manner as in Comparative Example 1, and a self-discharge test was performed.
  • NMP N-methyl-2-pyrrolidone
  • Example 7 The ratio of the negative electrode slurry is a mixed solution of SiO, flaky natural graphite, polyamic acid and N-methyl-2-pyrrolidone (NMP) (trade name: U-Varnish A, manufactured by Ube Industries, Ltd., solid content 18 wt% ) Was set to 50:35:84, respectively, and a secondary battery was produced in the same manner as in Example 1 and subjected to a self-discharge test.
  • NMP N-methyl-2-pyrrolidone
  • the secondary battery provided in the present invention can be used in all industrial fields that require a power source and in industrial fields related to the transport, storage, and supply of electrical energy. Specifically, it can be used for a power source of a mobile device, a power source of a moving / transport medium, a backup power source, a solar power generation, a wind power generation, and a power storage facility for storing power generated by the power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This lithium ion secondary battery is provided with: a negative electrode which contains particles which are formed from at least one material (below, referred to as the metal and/or metal oxide) selected from metals that can alloy with lithium and metal oxides that can occlude and release lithium ions and which have a 0.78 or greater average value of circularity, defined by the expression below: Circularity = 4πS/L2 (here, S: surface area of projected particle image, L: circumferential length of projected particle image); a positive electrode; and a single-layer, highly heat-resistant microporous resin film separator. This battery has the property of having a reduced self-discharge failure rate.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関し、より詳細には非炭素材料を含有する負極と耐熱性セパレータを備えた二次電池およびその製造方法、リチウムイオン二次電池を用いた車両ならびに蓄電装置に関する。 The present invention relates to a lithium ion secondary battery, and more particularly, to a secondary battery including a negative electrode containing a non-carbon material and a heat-resistant separator, a manufacturing method thereof, a vehicle using the lithium ion secondary battery, and a power storage device. .
 リチウムイオン二次電池は小型で大容量であるという特徴を有しており、携帯電話、ノート型パソコン等の電子機器の電源として広く用いられ、携帯用IT機器の利便性向上に貢献してきた。近年では、二輪や自動車などの駆動用電源や、スマートグリッドのための蓄電池といった、大型化した用途での利用も注目を集めている。リチウムイオン二次電池の需要が高まり、様々な分野で使用されるにつれて、電池の更なる高エネルギー密度化や、長期使用に耐え得る寿命特性、広範囲な温度条件での使用が可能であること、などの特性が求められている。 Lithium ion secondary batteries are characterized by their small size and large capacity, and they have been widely used as power sources for electronic devices such as mobile phones and laptop computers, and have contributed to improving the convenience of portable IT devices. In recent years, the use in a larger application such as a power source for driving a motorcycle or an automobile or a storage battery for a smart grid has attracted attention. As demand for lithium-ion secondary batteries increases and it is used in various fields, it is possible to use batteries with higher energy density, life characteristics that can withstand long-term use, and a wide range of temperature conditions. Such characteristics are required.
 リチウムイオン二次電池の負極には黒鉛などの炭素系材料が一般に使用されているが、電池の高エネルギー密度化のために、炭素材料粒子と共に、シリコン等の金属粒子や、シリコン酸化物等の酸化物粒子を含む負極が提案されている(例えば特許文献1:特開2003-123740号公報参照)。 Carbon materials such as graphite are generally used for the negative electrode of lithium ion secondary batteries. However, in order to increase the energy density of batteries, metal particles such as silicon, silicon oxide, etc. are used together with carbon material particles. A negative electrode containing oxide particles has been proposed (see, for example, Patent Document 1: Japanese Patent Laid-Open No. 2003-123740).
 一方、容量やエネルギー密度を向上させた高性能の二次電池においては、安全性に対する配慮がより求められる。二次電池の安全性を高める手段としては、セパレータの性能を向上させることが有望であり、高耐熱性のセパレータ等が検討されている。高耐熱性のセパレータとしては、例えば、特許文献2に、アラミドおよび/またはポリイミドなどの融点が150℃以上である繊維を含み、異常発熱時の収縮を防止するセパレータが記載されている。 On the other hand, high-performance secondary batteries with improved capacity and energy density require more safety considerations. As a means for enhancing the safety of the secondary battery, it is promising to improve the performance of the separator, and a high heat-resistant separator or the like has been studied. As a high heat-resistant separator, for example, Patent Document 2 describes a separator that contains fibers having a melting point of 150 ° C. or higher, such as aramid and / or polyimide, and prevents shrinkage during abnormal heat generation.
 また、特許文献3(WO2012/070154)には、セパレータとして、アラミドとポリオレフィンの2層の微多孔膜が記載されている。 Also, Patent Document 3 (WO2012 / 070154) describes a two-layer microporous film of aramid and polyolefin as a separator.
特開2003-123740号公報JP 2003-123740 A 特開2006-59717号公報JP 2006-59717 A WO2012/070154号公報WO2012 / 070154 特開2014-225347号公報JP 2014-225347 A
 特許文献1において使用されているシリコン系材料は、エネルギー密度の改善に効果があるが、硬度が高く、適当な粒子サイズにするために粉砕したシリコン系材料は鋭利な角を有する。そのため、裂けやすいセパレータを使用すると、粒子の鋭利な角がセパレータを貫通し、マイクロショートを起こすため、自己放電不良が多発するという問題がある。特にセパレータを袋状にした場合、充電に伴う負極の膨張によりセパレータに圧力が掛り、自己放電不良が起こりやすい。また電池の外装体にラミネートフィルムを用い、減圧下で封止する場合も、セパレータに圧力が掛り、自己放電不良が起こりやすい。 The silicon-based material used in Patent Document 1 is effective in improving the energy density, but the hardness is high, and the silicon-based material pulverized to obtain an appropriate particle size has a sharp angle. For this reason, when a separator that is easy to tear is used, the sharp corners of the particles penetrate the separator and cause a micro short, which causes a problem of frequent self-discharge failures. In particular, when the separator is made into a bag shape, pressure is applied to the separator due to expansion of the negative electrode accompanying charging, and self-discharge failure tends to occur. Also, when a laminate film is used for the battery outer package and sealing is performed under reduced pressure, pressure is applied to the separator, and self-discharge failure tends to occur.
 特許文献2のように、アラミドおよびポリイミドなどの高耐熱性材料で形成されたセパレータは、異常発熱時の収縮を防止することができる。繊維で形成された不織布形態のセパレータは裂けにくい利点を有するが、薄くて均一なセパレータを形成することが困難であるため、高エネルギー密度を有する電池を製造する上では不利である。 As in Patent Document 2, a separator formed of a high heat resistant material such as aramid and polyimide can prevent shrinkage during abnormal heat generation. A nonwoven fabric separator formed of fibers has the advantage of being difficult to tear, but it is difficult to form a thin and uniform separator, which is disadvantageous in manufacturing a battery having a high energy density.
 一方、微多孔膜を用いることで、薄く均一なセパレータが可能になるが、高耐熱性材料は、ポリオレフィン材料と比べて著しく破断伸びが小さいため、微多孔膜を形成した場合に裂けやすく、上述の自己放電不良が生じ易い。 On the other hand, by using a microporous membrane, a thin and uniform separator is possible, but a high heat resistant material has a significantly smaller elongation at break than a polyolefin material, so it is easy to tear when a microporous membrane is formed. Self-discharge failure is likely to occur.
 特許文献3のように、アラミドとポリオレフィンの2層の微多孔膜とすれば、マイクロショートの問題は解決できるが、セパレータの耐熱性はポリオレフィンにより制限される。即ち、耐熱性が要求される場面、製造時に電極素子に熱処理を施す場合等において、耐熱性が不十分となり、アラミド本来の耐熱性を発揮することができない。また、特許文献4には、円形度の高いシリコン酸化物を負極材料に使用する技術が記載されているが、裂けやすいセパレータを用いることについてはなんら記載がない。 If a two-layer microporous membrane of aramid and polyolefin is used as in Patent Document 3, the problem of microshorts can be solved, but the heat resistance of the separator is limited by the polyolefin. That is, in a scene where heat resistance is required, in a case where heat treatment is performed on the electrode element at the time of manufacture, the heat resistance becomes insufficient, and the original heat resistance of aramid cannot be exhibited. Further, Patent Document 4 describes a technique of using silicon oxide having a high degree of circularity as a negative electrode material, but there is no description about using a separator that is easily torn.
 本発明の実施形態は、以上の課題を解決するためになされたものであり、耐熱性を有すると共に自己放電不良率が低減されたリチウムイオン二次電池を提供することを目的とする。 Embodiments of the present invention have been made to solve the above-described problems, and an object of the present invention is to provide a lithium ion secondary battery having heat resistance and a reduced self-discharge failure rate.
 本発明の一態様は、リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物から選ばれる少なくとも1種の材料(以下、金属および/または金属酸化物という。)で形成され、下式で定義される円形度の平均値が、0.78以上である粒子を含む負極と、
 正極と、
 単層の高耐熱性樹脂微多孔膜セパレータと、
を備えるリチウムイオン二次電池に関する。
One embodiment of the present invention is formed of at least one material selected from a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions (hereinafter referred to as metal and / or metal oxide). A negative electrode including particles whose average circularity defined by the following formula is 0.78 or more;
A positive electrode;
A single layer high heat resistance resin microporous membrane separator,
A lithium ion secondary battery comprising:
 円形度=4πS/L
 (但し、S:粒子投影像の面積、L:粒子投影像の周長である。)
Circularity = 4πS / L 2
(However, S is the area of the particle projection image, and L is the circumference of the particle projection image.)
 本発明の実施形態によれば、耐熱性を有すると共に自己放電不良率が改善されたリチウムイオン二次電池を提供することができる。 According to the embodiment of the present invention, it is possible to provide a lithium ion secondary battery having heat resistance and an improved self-discharge failure rate.
積層電極素子の一例を模式的に示す断面図である。It is sectional drawing which shows an example of a laminated electrode element typically. フィルム外装電池の基本的構造を示す分解斜視図である。It is a disassembled perspective view which shows the basic structure of a film-clad battery. 図2の電池の断面を模式的に示す断面図である。It is sectional drawing which shows the cross section of the battery of FIG. 2 typically.
 従来使用されてきた金属や金属酸化物は、一般に塊を粉砕して得られたものであるため、粒子は鋭利な角を有し、かつ、非常に硬い材料である。そのため、裂けやすいセパレータと共に使用すると、粒子の鋭利な角がセパレータを貫通する。しかし、本実施形態においては、金属や金属酸化物粒子が鋭利な角を有していないために、高耐熱性樹脂で形成された微多孔膜をセパレータとして使用しても、セパレータを損傷することがないか、損傷したとしても従来より小さい程度であるため、自己放電不良率を低減することができたと推定される。 Since conventionally used metals and metal oxides are generally obtained by pulverizing lumps, the particles have sharp corners and are very hard materials. Therefore, when used with a fragile separator, the sharp corners of the particles penetrate the separator. However, in this embodiment, since the metal or metal oxide particles do not have sharp corners, the separator is damaged even if a microporous film formed of a high heat resistant resin is used as the separator. Even if there is no damage, it is estimated that the self-discharge defective rate could be reduced because it is smaller than the conventional one.
 以下、本発明の実施形態を、リチウム二次電池の各部材ごとに説明する。 Hereinafter, embodiments of the present invention will be described for each member of a lithium secondary battery.
 [負極]
 負極は、負極活物質が、負極結着剤により一体化された負極活物質層として集電体上に積層された構造を有する。負極活物質は、充放電に伴いリチウムイオンを可逆的に吸蔵、放出可能な材料である。
[Negative electrode]
The negative electrode has a structure in which a negative electrode active material is laminated on a current collector as a negative electrode active material layer integrated with a negative electrode binder. The negative electrode active material is a material capable of reversibly occluding and releasing lithium ions with charge / discharge.
 本実施形態の負極は、活物質として、リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物から選ばれる少なくとも1種の材料を含む。 The negative electrode of the present embodiment includes, as an active material, at least one material selected from a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions.
 本実施形態において、「リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物」は、どちらか一方から選ばれる1種以上の材料を用いても良いし、また両方から1種以上の材料を選んで組み合わせて用いていてもよい。以下、「リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物から選ばれる少なくとも1種の材料」を、「金属および/または金属酸化物」と記載する場合があり、また、「リチウムと合金可能な金属」および「リチウムイオンを吸蔵、放出可能な金属酸化物」について説明する場合に、両者をまとめて「金属および金属酸化物」と記載する場合がある。 In the present embodiment, “a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions” may be one or more materials selected from either one, or one from both. The above materials may be selected and used in combination. Hereinafter, “at least one material selected from a metal that can be alloyed with lithium and a metal oxide capable of occluding and releasing lithium ions” may be referred to as “metal and / or metal oxide”. In the description of “metal that can be alloyed with lithium” and “metal oxide capable of inserting and extracting lithium ions”, both may be collectively referred to as “metal and metal oxide”.
 「金属および金属酸化物」は、粒子状であって鋭利な角のない形状を有している。後述するように金属が金属酸化物の内部に分散されている場合は、粒子外形を形作る金属酸化物が所定の形状を有していればよい。 “Metal and metal oxide” are in the form of particles and have no sharp corners. As described later, when the metal is dispersed inside the metal oxide, the metal oxide that forms the outer shape of the particles only needs to have a predetermined shape.
 金属および金属酸化物の粒子の投影像の形状を、円形度を指標として表すと、平均(数平均値)の円形度が、0.78以上、好ましくは0.8以上、より好ましくは0.85以上である。ここで円形度は次の式により定義される。 When the shape of the projected image of the metal and metal oxide particles is expressed using the circularity as an index, the average (number average value) circularity is 0.78 or more, preferably 0.8 or more, more preferably 0.8. 85 or more. Here, the circularity is defined by the following equation.
 円形度=4πS/L
 ここで、S:粒子投影像の面積、L:粒子投影像の周長である。
Circularity = 4πS / L 2
Here, S is the area of the particle projection image, and L is the circumference of the particle projection image.
 粒子の円形度の測定方法は特に限定されないが、負極を製造する前であれば、例えば粉体画像解析装置を用いて、任意の粒子500個の投影像を画像処理することにより求めることができる。粉体画像解析装置としては、例えば日機装株式会社製マイクロトラックFPA(商品名)や、株式会社セイシン企業製PITA-3等を使用することができる。また、負極製造後であれば、SEM(走査型電子顕微鏡)を用いて、負極断面写真から、任意の100個について画像処理を行って求めることができる。 The method for measuring the circularity of the particles is not particularly limited. However, before the negative electrode is manufactured, it can be obtained by, for example, performing image processing on a projected image of 500 arbitrary particles using a powder image analyzer. . As the powder image analyzing apparatus, for example, Microtrack FPA (trade name) manufactured by Nikkiso Co., Ltd., PITA-3 manufactured by Seishin Co., Ltd., or the like can be used. Moreover, if it is after negative electrode manufacture, image processing can be performed about arbitrary 100 pieces from a negative electrode cross-section photograph using SEM (scanning electron microscope).
 リチウムと合金可能な金属としては、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、およびこれらの二種以上の合金が挙げられる。特に、リチウムと合金可能な金属としてシリコン(Si)を含むことが好ましい。負極活物質中の金属の含有率は、5質量%以上95質量%以下とすることが好ましく、10質量%以上90質量%以下とすることがより好ましく、20質量%以上50質量%以下とすることがさらに好ましい。 Examples of metals that can be alloyed with lithium include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and alloys of two or more thereof. . In particular, silicon (Si) is preferably included as a metal that can be alloyed with lithium. The metal content in the negative electrode active material is preferably 5% by mass to 95% by mass, more preferably 10% by mass to 90% by mass, and more preferably 20% by mass to 50% by mass. More preferably.
 リチウムイオンを吸蔵、放出可能な金属酸化物としては、酸化アルミニウム、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、または、これらの複合物が挙げられる。特に、リチウムイオンを吸蔵、放出可能な金属酸化物として酸化シリコンを含むことが好ましい。また、金属酸化物に窒素、ホウ素、リンおよびイオウの中から選ばれる一種または二種以上の元素を添加することもできる。こうすることで、金属酸化物の電気伝導性を向上させることができる。負極活物質中の金属酸化物の含有率は、0質量%でも100質量%でも構わないが、5質量%以上100質量%以下とすることが好ましく、40質量%以上95質量%以下とすることがより好ましく、50質量%以上90質量%以下とすることがさらに好ましい。 Examples of metal oxides that can occlude and release lithium ions include aluminum oxide, silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof. In particular, silicon oxide is preferably included as a metal oxide capable of inserting and extracting lithium ions. In addition, one or more elements selected from nitrogen, boron, phosphorus and sulfur can be added to the metal oxide. By carrying out like this, the electrical conductivity of a metal oxide can be improved. The content of the metal oxide in the negative electrode active material may be 0% by mass or 100% by mass, but is preferably 5% by mass or more and 100% by mass or less, and 40% by mass or more and 95% by mass or less. Is more preferable, and it is further more preferable to set it as 50 to 90 mass%.
 本実施形態において、負極活物質として、少なくともSiおよび/またはシリコン酸化物が含有されることが好ましい。シリコン酸化物は、組成がSiOx(ただし、0<x≦2)で表される。特に好ましいシリコン酸化物は、SiOである。 In this embodiment, it is preferable that at least Si and / or silicon oxide is contained as the negative electrode active material. The composition of silicon oxide is represented by SiOx (where 0 <x ≦ 2). A particularly preferred silicon oxide is SiO.
 また、金属酸化物は、その全部または一部がアモルファス構造を有することが好ましい。金属酸化物がアモルファス構造を有することで、リチウムと合金可能な金属やリチウムイオンを吸蔵、放出可能な炭素材料などの他の負極活物質の体積変化を抑制したり、電解液の分解を抑制したりすることができる。このメカニズムは明確ではないが、金属酸化物がアモルファス構造であることにより、炭素材料と電解液の界面への皮膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物がアモルファス構造を有しない場合には、金属酸化物に固有のピークが観測されるが、金属酸化物の全部または一部がアモルファス構造を有する場合が、金属酸化物に固有ピークがブロードとなって観測される。 Moreover, it is preferable that all or part of the metal oxide has an amorphous structure. Since the metal oxide has an amorphous structure, it suppresses volume changes of other negative electrode active materials such as metals that can be alloyed with lithium and carbon materials that can occlude and release lithium ions, and suppresses decomposition of the electrolyte. Can be. Although this mechanism is not clear, it is presumed that the formation of a film on the interface between the carbon material and the electrolytic solution has some influence due to the amorphous structure of the metal oxide. The amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects. It can be confirmed by X-ray diffraction measurement (general XRD measurement) that all or part of the metal oxide has an amorphous structure. Specifically, when the metal oxide does not have an amorphous structure, a peak specific to the metal oxide is observed. However, the metal oxide may have a case where all or part of the metal oxide has an amorphous structure. Inherent peaks are broad and observed.
 また、負極活物質が、リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物を含む場合、合金可能な金属はその全部または一部が金属酸化物中に分散していることが好ましい。こうすることで、負極全体としての体積変化を抑制することができ、電解液の分解も抑制することができる。なお、金属の全部または一部が金属酸化物中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属粒子を含むサンプルの断面を観察し、金属酸化物中に分散している金属粒子の酸素濃度を測定し、金属粒子を構成している金属が酸化物となっていないことを確認することができる。 In addition, when the negative electrode active material contains a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions, all or a part of the alloyable metal is dispersed in the metal oxide. Is preferred. By carrying out like this, the volume change as the whole negative electrode can be suppressed, and decomposition | disassembly of electrolyte solution can also be suppressed. Note that all or part of the metal is dispersed in the metal oxide because transmission electron microscope observation (general TEM observation) and energy dispersive X-ray spectroscopy measurement (general EDX measurement). It can confirm by using together. Specifically, the cross section of the sample containing metal particles is observed, the oxygen concentration of the metal particles dispersed in the metal oxide is measured, and the metal constituting the metal particles is not an oxide. Can be confirmed.
 負極活物質が金属および金属酸化物の両方を含む場合、金属酸化物は、金属を構成する金属の酸化物であることが好ましい。 When the negative electrode active material contains both a metal and a metal oxide, the metal oxide is preferably an oxide of a metal constituting the metal.
 負極活物質が金属および金属酸化物の両方を含む場合、金属および金属酸化物の割合に特に制限はない。金属は、金属および金属酸化物の合計に対し、5質量%以上90質量%以下とすることが好ましく、30質量%以上60質量%以下とすることがより好ましい。金属酸化物は、金属および金属酸化物の合計に対し、10質量%以上95質量%以下とすることが好ましく、40質量%以上70質量%以下とすることがより好ましい。 When the negative electrode active material contains both metal and metal oxide, there is no particular limitation on the ratio of metal and metal oxide. The metal is preferably 5% by mass or more and 90% by mass or less, and more preferably 30% by mass or more and 60% by mass or less with respect to the total of the metal and the metal oxide. The metal oxide is preferably 10% by mass or more and 95% by mass or less, and more preferably 40% by mass or more and 70% by mass or less with respect to the total of the metal and the metal oxide.
 金属および金属酸化物粒子は、表面が炭素材料(通常、非晶質炭素材料)で被覆されていてもよい。被覆する方法としては、粒子を有機物ガスおよび/または蒸気中で化学蒸着(CVD)する方法が挙げられる。また、金属および金属酸化物粒子の表面が、金属酸化物被膜で被覆されていてもよい。金属酸化物被膜としては、マグネシウム、アルミニウム、チタン、シリコンから選択される1種又は2種以上の元素の酸化物が好ましく、さらに、上記元素に加えて、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、ルテニウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、セリウム、インジウム、ゲルマニウム、スズ、ビスマス、アンチモン、カドミウム、銅、銀からなる群のうち少なくとも1種を構成元素として含んでいてもよい。この場合において、金属酸化物被膜の表面がさらに炭素材料(通常、非晶質炭素材料)で被覆されてもよい。 The surface of the metal and metal oxide particles may be coated with a carbon material (usually an amorphous carbon material). Examples of the coating method include a method of chemical vapor deposition (CVD) of particles in an organic gas and / or vapor. Further, the surfaces of the metal and metal oxide particles may be coated with a metal oxide film. The metal oxide film is preferably an oxide of one or more elements selected from magnesium, aluminum, titanium, and silicon, and in addition to the above elements, zirconium, hafnium, vanadium, niobium, tantalum, Chromium, molybdenum, tungsten, manganese, iron, ruthenium, cobalt, rhodium, iridium, nickel, palladium, cerium, indium, germanium, tin, bismuth, antimony, cadmium, copper, silver. May be included. In this case, the surface of the metal oxide film may be further coated with a carbon material (usually an amorphous carbon material).
 一般的に炭素材料で被覆された金属および金属酸化物粒子の方が優れたサイクル特性を有する二次電池とすることができる。 Generally, a metal and metal oxide particles coated with a carbon material can provide a secondary battery having superior cycle characteristics.
 本実施形態において、負極活物質として、リチウムイオンを吸蔵、放出可能な炭素材料をさらに含有することができる。このような炭素材料としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、およびこれらの複合物が挙げられる。これらのうち黒鉛は、結晶性が高く、また電気伝導性が高く、銅などの金属からなる集電体との接着性および電圧の平坦性に優れている。 In this embodiment, the negative electrode active material may further contain a carbon material capable of inserting and extracting lithium ions. Examples of such a carbon material include graphite, amorphous carbon, diamond-like carbon, carbon nanotube, and a composite thereof. Among these, graphite has high crystallinity, high electrical conductivity, and excellent adhesion to a current collector made of a metal such as copper and voltage flatness.
 黒鉛としては、天然黒鉛および人造黒鉛のいずれであってもよい。黒鉛の形状としては特に限定されることはなくいずれでもよい。天然黒鉛としては鱗状黒鉛、鱗片状黒鉛、土状黒鉛等が挙げられ、人造黒鉛としては塊状人造黒鉛、りん片状人造黒鉛、MCMB(メゾフェーズ マイクロ ビーズ)等球状の人造黒鉛が挙げられる。 As the graphite, either natural graphite or artificial graphite may be used. The shape of graphite is not particularly limited and may be any. Examples of natural graphite include scale-like graphite, scale-like graphite, and earth-like graphite. Examples of artificial graphite include massive artificial graphite, flake-like artificial graphite, and spherical artificial graphite such as MCMB (mesophase micro beads).
 本実施形態において、炭素材料の表面が被覆されていてもよい。活物質としての炭素材料の表面を被覆する被覆材料としては、炭素材料(通常、非晶質炭素材料)、金属、金属酸化物などが挙げられる。被覆材料としては、非晶質炭素が好ましい。黒鉛等の負極活物質としての炭素材料粒子表面を非晶質炭素で被覆する方法としては、有機物ガスおよび/または蒸気中で化学蒸着(CVD)する方法が挙げられる。非晶質炭素の被覆量は、被覆粒子の重量を基準として、0.5~20質量%程度である。 In this embodiment, the surface of the carbon material may be coated. Examples of the coating material that covers the surface of the carbon material as the active material include carbon materials (usually amorphous carbon materials), metals, and metal oxides. As the coating material, amorphous carbon is preferable. Examples of the method of coating the surface of the carbon material particle as a negative electrode active material such as graphite with amorphous carbon include a method of chemical vapor deposition (CVD) in an organic gas and / or vapor. The coating amount of amorphous carbon is about 0.5 to 20% by mass based on the weight of the coated particles.
 本実施形態において、「金属および金属酸化物」および「炭素材料」の粒子径は特に限定されないが、金属および金属酸化物粒子のメジアン径(D50粒子径)は1~30μm程度が好ましく、炭素材料のメジアン径(D50粒子径)は5~50μm程度が好ましい。 In this embodiment, the particle diameters of “metal and metal oxide” and “carbon material” are not particularly limited, but the median diameter (D50 particle diameter) of the metal and metal oxide particles is preferably about 1 to 30 μm. The median diameter (D50 particle diameter) is preferably about 5 to 50 μm.
 また、金属および金属酸化物粒子のメジアン径が、炭素材料のメジアン径より小さいことが好ましい。このようにすると、充放電時に伴う体積変化の大きい金属および金属酸化物が相対的に小粒径となり、体積変化の小さい炭素材料が相対的に大粒径となるため、デンドライト生成および負極材料の微粉化がより効果的に抑制される。 Also, it is preferable that the median diameter of the metal and metal oxide particles is smaller than the median diameter of the carbon material. In this way, metals and metal oxides with large volume changes during charging and discharging have relatively small particle sizes, and carbon materials with small volume changes have relatively large particle sizes. Micronization is more effectively suppressed.
 本実施形態において、負極中の金属および金属酸化物の含有量は、金属、金属酸化物および炭素材料の合計量を基準に、1~100質量%、好ましくは1~95質量%であり、目的によって適宜変更することが好ましい。例えば、炭素材料のみを用いたときの不都合を改善する目的で(例えばエネルギー密度の改善のため)、金属および/または金属酸化物を添加するときは、金属および金属酸化物の含有量は、例えば1~30質量、好ましくは1~20質量%であり、特定の実施形態においては1~10質量%である。また、高エネルギー密度が要求される用途において、金属および金属酸化物の含有量は例えば30質量%より多く、好ましい実施形態においては50質量%以上であり、特定の実施形態においては60質量%以上としてもよい。 In the present embodiment, the content of the metal and metal oxide in the negative electrode is 1 to 100% by mass, preferably 1 to 95% by mass, based on the total amount of the metal, metal oxide and carbon material. It is preferable to change appropriately. For example, when adding a metal and / or metal oxide for the purpose of improving the disadvantages when using only a carbon material (for example, for improving energy density), the content of the metal and metal oxide is, for example, 1-30% by weight, preferably 1-20% by weight, and in certain embodiments 1-10% by weight. In applications where high energy density is required, the content of metal and metal oxide is, for example, more than 30% by mass, in a preferred embodiment of 50% by mass or more, and in a specific embodiment, 60% by mass or more. It is good.
 負極用結着剤としては、ポリフッ化ビニリデン、変性ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム(SBR)、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリアクリル酸、ポリアクリル酸の金属塩、ポリイミド、ポリアミドイミド等が挙げられる。SBR系エマルジョンのような水系の結着剤を用いる場合、カルボキシメチルセルロース(CMC)等の増粘剤を用いることもできる。 Examples of the binder for the negative electrode include polyvinylidene fluoride, modified polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber (SBR), poly Examples thereof include tetrafluoroethylene, polypropylene, polyethylene, polyacrylic acid, polyacrylic acid metal salts, polyimide, and polyamideimide. When an aqueous binder such as an SBR emulsion is used, a thickener such as carboxymethyl cellulose (CMC) can also be used.
 本実施形態では、負極用結着剤としてポリイミド、ポリアミドイミド、ポリアクリル酸およびポリアクリル酸の金属塩から選ばれる結着剤を含むことが好ましい。使用する負極用結着剤の含有率は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質の全質量に対し、0.5~20質量%が好ましい。 In this embodiment, it is preferable that a binder selected from polyimide, polyamideimide, polyacrylic acid, and a metal salt of polyacrylic acid is included as the binder for the negative electrode. The content of the binder for the negative electrode used is 0.5 to 20% by mass with respect to the total mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. Is preferred.
 負極活物質は、必要により導電補助材と共に用いることができる。導電補助材としては、具体的には、下記の正極において具体的に例示したものと同様のものを挙げることができ、その使用量も同様とすることができる。 The negative electrode active material can be used together with a conductive auxiliary material as necessary. Specific examples of the conductive auxiliary material include the same materials as specifically exemplified in the following positive electrode, and the amount used can also be the same.
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。 As the negative electrode current collector, aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability. Examples of the shape include foil, flat plate, and mesh.
 負極の製造方法としては、例えば、負極活物質、必要により導電性付与剤、および結着剤を、N-メチル-2-ピロリドン(NMP)等の溶剤中に分散、混練して負極スラリーを調整する。負極スラリーを銅箔等の負極集電体上に塗布し、溶剤を乾燥することで負極層を作製することができる。塗布方法としては、ドクターブレード法、ダイコーター法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。また、ポリイミド前駆体やポリアミドイミド前駆体等の、溶剤の乾燥温度以上での熱処理が必要な場合は、必要に応じて所望の熱処理を行うことができる。ポリアミド前駆体やポリイミド前駆体として、ポリアミック酸を含有していることが好ましい。また、負極集電体上に負極活物質等を蒸着やスパッタ等の気相法により成長することで、リチウムプレドープ前の負極を製作してもよい。 As a negative electrode manufacturing method, for example, a negative electrode active material, and if necessary, a conductivity imparting agent and a binder are dispersed and kneaded in a solvent such as N-methyl-2-pyrrolidone (NMP) to prepare a negative electrode slurry. To do. The negative electrode layer can be prepared by applying the negative electrode slurry onto a negative electrode current collector such as a copper foil and drying the solvent. Examples of the coating method include a doctor blade method and a die coater method. After forming a negative electrode active material layer in advance, a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector. Moreover, when the heat processing above the drying temperature of a solvent, such as a polyimide precursor and a polyamideimide precursor, is required, desired heat processing can be performed as needed. It is preferable that a polyamic acid is contained as a polyamide precursor or a polyimide precursor. Alternatively, the negative electrode before lithium pre-doping may be manufactured by growing a negative electrode active material or the like on the negative electrode current collector by a vapor phase method such as vapor deposition or sputtering.
 本実施形態においては、金属および金属酸化物粒子の円形度が大きいため、裂けやすいセパレータを用いても、セパレータに与える損傷が小さく、これにより電池特性、特に自己放電不良を低減できたと考えられる。 In this embodiment, since the circularity of the metal and metal oxide particles is large, even if a separator that is easy to tear is used, the damage to the separator is small, and it is considered that the battery characteristics, particularly the self-discharge failure, can be reduced.
 [正極]
 正極は、充放電に伴いリチウムイオンを可逆的に吸蔵、放出可能な正極活物質を含み、正極活物質が正極結着剤により一体化された正極活物質層として集電体上に積層された構造を有する。
[Positive electrode]
The positive electrode includes a positive electrode active material capable of reversibly occluding and releasing lithium ions during charge and discharge, and the positive electrode active material is laminated on the current collector as a positive electrode active material layer integrated with a positive electrode binder. It has a structure.
 本実施形態における正極活物質としては、リチウムを吸蔵放出し得る材料であれば特に限定されないが、高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、ニッケル酸リチウム(LiNiO)またはニッケル酸リチウムのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(A)で表される層状リチウムニッケル複合酸化物が好ましい。 The positive electrode active material in the present embodiment is not particularly limited as long as it is a material capable of occluding and releasing lithium, but it is preferable to include a high capacity compound from the viewpoint of increasing the energy density. Examples of the high-capacity compound include lithium nickel oxide (LiNiO 2 ) or a lithium nickel composite oxide obtained by substituting a part of Ni of lithium nickelate with another metal element. The layered structure is represented by the following formula (A) Lithium nickel composite oxide is preferred.
 LiNi(1-x)   (A)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
Li y Ni (1-x) M x O 2 (A)
(However, 0 ≦ x <1, 0 <y ≦ 1.2, and M is at least one element selected from the group consisting of Co, Al, Mn, Fe, Ti, and B.)
 高容量の観点では、Niの含有量が高いこと、即ち式(A)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。 From the viewpoint of high capacity, the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less. Examples of such a compound include Li α Ni β Co γ Mn δ O 2 (0 <α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0. .2), Li α Ni β Co γ Al δ O 2 (0 <α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, preferably β ≧ 0.7, γ ≦ 0.2), etc., especially LiNi β Co γ Mn δ O 2 (0.75 ≦ β ≦ 0.85, 0.05 ≦ γ ≦ 0.15, 0.10 ≦ δ ≦ 0.20). ). More specifically, for example, LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(A)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。 From the viewpoint of thermal stability, it is also preferable that the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half. Such compounds include Li α Ni β Co γ Mn δ O 2 (0 <α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, 0.2 ≦ β ≦ 0.5, 0 0.1 ≦ γ ≦ 0.4, 0.1 ≦ δ ≦ 0.4). More specifically, LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
 また、式(A)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(A)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。 In addition, two or more compounds represented by the formula (A) may be used as a mixture. For example, NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1). Furthermore, in the formula (A), a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;及びLiFePOなどのオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。 Other than the above, as the positive electrode active material, for example, LiMnO 2 , Li x Mn 2 O 4 (0 <x <2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 <x < 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 . Furthermore, a material in which these metal oxides are partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Can also be used. Any of the positive electrode active materials described above can be used alone or in combination of two or more.
 正極用結着剤としては、負極用結着剤と同様のものと用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンまたはポリテトラフルオロエチレンが好ましく、ポリフッ化ビニリデンがより好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。 As the positive electrode binder, the same as the negative electrode binder can be used. Among these, from the viewpoint of versatility and low cost, polyvinylidene fluoride or polytetrafluoroethylene is preferable, and polyvinylidene fluoride is more preferable. The amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
 正極活物質を含む塗工層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、鱗片状、煤状、線維状の炭素質微粒子等、例えば、グラファイト、カーボンブラック、アセチレンブラック、気相法炭素繊維(例えば、昭和電工製VGCF)等が挙げられる。 A conductive auxiliary material may be added to the coating layer containing the positive electrode active material for the purpose of reducing impedance. Examples of the conductive auxiliary material include flaky carbonaceous fine particles such as graphite, carbon black, acetylene black, vapor grown carbon fiber (for example, VGCF manufactured by Showa Denko).
 正極集電体としては、負極集電体と同様のものを用いることができる。特に正極としては、アルミニウム、アルミニウム合金、鉄・ニッケル・クロム・モリブデン系のステンレスを用いた集電体が好ましい。 As the positive electrode current collector, the same as the negative electrode current collector can be used. In particular, the positive electrode is preferably a current collector using aluminum, an aluminum alloy, or iron / nickel / chromium / molybdenum stainless steel.
 正極は、負極と同様に、正極集電体上に、正極活物質と正極用結着剤を含む正極活物質層を形成することで作製することができる。 Similarly to the negative electrode, the positive electrode can be produced by forming a positive electrode active material layer containing a positive electrode active material and a positive electrode binder on a positive electrode current collector.
 [電解液]
 本実施形態に係るリチウムイオン二次電池の電解液としては特に限定されないが、電池の動作電位において安定な非水溶媒と支持塩を含む非水電解液が好ましい。
[Electrolyte]
Although it does not specifically limit as electrolyte solution of the lithium ion secondary battery which concerns on this embodiment, The nonaqueous electrolyte solution containing the nonaqueous solvent and supporting salt which are stable in the operating potential of a battery is preferable.
 非水溶媒の例としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;ジエチルエーテル、エチルプロピルエーテル等のエーテル類、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等のリン酸エステル類等の非プロトン性有機溶媒、及び、これらの化合物の水素原子の少なくとも一部をフッ素原子で置換したフッ素化非プロトン性有機溶媒等が挙げられる。 Examples of non-aqueous solvents include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and other cyclic carbonates; dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Chain carbonates such as dipropyl carbonate (DPC); propylene carbonate derivatives, aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; ethers such as diethyl ether and ethyl propyl ether; trimethyl phosphate; Aprotic organic solvents such as phosphate esters such as triethyl phosphate, tripropyl phosphate, trioctyl phosphate and triphenyl phosphate, and fluorine compounds in which at least some of the hydrogen atoms of these compounds are substituted with fluorine atoms. Of aprotic organic solvents, and the like.
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の環状または鎖状カーボネート類を含むことが好ましい。 Among these, cyclic such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), dipropyl carbonate (DPC), etc. Or it is preferable that chain carbonates are included.
 非水溶媒は、1種を単独で、または2種以上を組み合わせて使用することができる。 Non-aqueous solvents can be used alone or in combination of two or more.
 支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO等のリチウム塩が挙げられる。支持塩は、1種を単独で、または2種以上を組み合わせて使用することができる。低コスト化の観点からはLiPFが好ましい。 The supporting salts include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) A lithium salt such as 2 . The supporting salt can be used singly or in combination of two or more. LiPF 6 is preferable from the viewpoint of cost reduction.
 電解液は、さらに添加剤を含むことができる。添加剤としては特に限定されるものではないが、ハロゲン化環状カーボネート、不飽和環状カーボネート、及び、環状または鎖状ジスルホン酸エステル等が挙げられる。これらの化合物を添加することにより、サイクル特性等の電池特性を改善することができる。これは、これらの添加剤がリチウムイオン二次電池の充放電時に分解して電極活物質の表面に皮膜を形成し、電解液や支持塩の分解を抑制するためと推定される。本発明においては添加剤によりさらにサイクル特性が改善できる場合がある。上記に列記した添加剤を具体的に以下で説明する。 The electrolytic solution can further contain an additive. Although it does not specifically limit as an additive, A halogenated cyclic carbonate, an unsaturated cyclic carbonate, cyclic | annular or chain | strand-shaped disulfonic acid ester, etc. are mentioned. By adding these compounds, battery characteristics such as cycle characteristics can be improved. This is presumed to be because these additives decompose during charging / discharging of the lithium ion secondary battery to form a film on the surface of the electrode active material and suppress decomposition of the electrolytic solution and the supporting salt. In the present invention, the cycle characteristics may be further improved by the additive. The additives listed above are specifically described below.
 ハロゲン化環状カーボネートとしては、例えば、下記式(B)で表される化合物を挙げることができる。 Examples of the halogenated cyclic carbonate include compounds represented by the following formula (B).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(B)において、A、B、CおよびDは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基またはハロゲン化アルキル基であり、A、B、CおよびDの少なくともひとつは、ハロゲン原子またはハロゲン化アルキル基である。アルキル基およびハロゲン化アルキル基の炭素数は1~4であることがより好ましく、1~3であることがさらに好ましい。 In the formula (B), A, B, C and D are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or a halogenated alkyl group, and at least one of A, B, C and D One is a halogen atom or a halogenated alkyl group. The number of carbon atoms of the alkyl group and the halogenated alkyl group is more preferably 1 to 4, and further preferably 1 to 3.
 一実施形態において、ハロゲン化環状カーボネートはフッ素化環状カーボンネートであることが好ましい。フッ素化環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の一部または全部の水素原子をフッ素原子に置換した化合物等を挙げることができ、中でも、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート:FEC)が好ましい。 In one embodiment, the halogenated cyclic carbonate is preferably a fluorinated cyclic carbonate. Examples of the fluorinated cyclic carbonate include compounds in which some or all of the hydrogen atoms are substituted with fluorine atoms, such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC). -Fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate: FEC) is preferred.
 フッ素化環状カーボネートの含有量は、特に制限されるものではないが、電解液中0.01質量%以上1質量%以下であることが好ましい。0.01質量%以上含有することにより十分な皮膜形成効果が得られる。また、含有量が1質量%以下であるとフッ素化環状カーボネート自体の分解によるガス発生を抑制することができる。本実施形態では、特に、0.8質量%以下がさらに好ましい。フッ素化環状カーボネートの含有量を0.8質量%以下とすることにより、負極活物質の活性低下を抑制し、良好なサイクル特性を維持できる。 The content of the fluorinated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 1% by mass or less in the electrolytic solution. By containing 0.01% by mass or more, a sufficient film forming effect can be obtained. Moreover, the gas generation by decomposition | disassembly of fluorinated cyclic carbonate itself can be suppressed as content is 1 mass% or less. In the present embodiment, in particular, 0.8% by mass or less is more preferable. By setting the content of the fluorinated cyclic carbonate to 0.8% by mass or less, it is possible to suppress a decrease in the activity of the negative electrode active material and maintain good cycle characteristics.
 不飽和環状カーボネートは、分子内に炭素-炭素不飽和結合を少なくとも1つ有する環状カーボネートであり、例えば、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート等のビニレンカーボネート化合物;4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート、4-エチル-4-ビニルエチレンカーボネート、4-n-プロピル-4-ビニレンエチレンカーボネート、5-メチル-4-ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4,4-ジメチル-5-メチレンエチレンカーボネート、4,4-ジエチル-5-メチレンエチレンカーボネート等のビニルエチレンカーボネート化合物等が挙げられる。中でも、ビニレンカーボネート又は4-ビニルエチレンカーボネートが好ましく、ビニレンカーボネートが特に好ましい。 The unsaturated cyclic carbonate is a cyclic carbonate having at least one carbon-carbon unsaturated bond in the molecule. For example, vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5- Vinylene carbonate compounds such as diethyl vinylene carbonate; 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylene ethylene carbonate, 5-methyl -4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4,4-dimethyl-5-methyleneethylene carbonate, 4,4-diethyl-5-methyle Vinyl ethylene carbonate compounds such as ethylene carbonate. Among these, vinylene carbonate or 4-vinylethylene carbonate is preferable, and vinylene carbonate is particularly preferable.
 不飽和環状カーボネートの含有量は、特に制限されるものではないが、電解液中0.01質量%以上10質量%以下であることが好ましい。0.01質量%以上含有することにより十分な皮膜形成効果が得られる。また、含有量が10質量%以下であると不飽和環状カーボネート自体の分解によるガス発生を抑制することができる。本実施形態では、特に、負極活物質の活性低下を抑制する観点から、5質量%以下がより好ましい。 The content of the unsaturated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 10% by mass or less in the electrolytic solution. By containing 0.01% by mass or more, a sufficient film forming effect can be obtained. Moreover, gas generation by decomposition | disassembly of unsaturated cyclic carbonate itself can be suppressed as content is 10 mass% or less. In the present embodiment, in particular, 5% by mass or less is more preferable from the viewpoint of suppressing the decrease in activity of the negative electrode active material.
 環状または鎖状ジスルホン酸エステルとしては、例えば、下記式(C)で表される環状ジスルホン酸エステル、または下記式(D)で表される鎖状ジスルホン酸エステルを挙げることができる。 Examples of the cyclic or chain disulfonic acid ester include a cyclic disulfonic acid ester represented by the following formula (C) or a chain disulfonic acid ester represented by the following formula (D).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(C)において、R、Rは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、ハロゲン基、アミノ基からなる群の中から選ばれる置換基である。Rは炭素数1~5のアルキレン基、カルボニル基、スルホニル基、炭素数1~6のフルオロアルキレン基、または、エーテル基を介してアルキレン単位もしくはフルオロアルキレン単位が結合した炭素数2~6の2価の基を示す。 In the formula (C), R 1 and R 2 are each independently a substituent selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a halogen group, and an amino group. R 3 is an alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfonyl group, a fluoroalkylene group having 1 to 6 carbon atoms, or an alkylene group or a fluoroalkylene unit having 2 to 6 carbon atoms bonded via an ether group. A divalent group is shown.
 式(C)において、R、Rは、それぞれ独立して、水素原子、炭素数1~3のアルキル基またはハロゲン基であることが好ましく、Rは、炭素数1または2のアルキレン基またはフルオロアルキレン基であることがより好ましい。 In the formula (C), R 1 and R 2 are preferably each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a halogen group, and R 3 is an alkylene group having 1 or 2 carbon atoms. Or it is more preferable that it is a fluoroalkylene group.
 式(C)で表される環状ジスルホン酸エステルの好ましい化合物としては、例えば以下の式(1)~(20)で表される化合物を挙げることができる。 Examples of preferable compounds of the cyclic disulfonic acid ester represented by the formula (C) include compounds represented by the following formulas (1) to (20).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(D)において、RおよびRは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、-SO(Xは炭素数1~5のアルキル基)、-SY(Yは炭素数1~5のアルキル基)、-COZ(Zは水素原子、または炭素数1~5のアルキル基)、およびハロゲン原子から選ばれる原子または基を示す。RおよびRは、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、フェノキシ基、炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、炭素数1~5のフルオロアルコキシ基、炭素数1~5のポリフルオロアルコキシ基、水酸基、ハロゲン原子、-NX(XおよびXは、それぞれ独立して、水素原子、または炭素数1~5のアルキル基)、および-NYCONY(Y~Yは、それぞれ独立して、水素原子、または炭素数1~5のアルキル基)から選ばれる原子または基を示す。 In the formula (D), R 4 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 5 carbon atoms, a carbon atom A polyfluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 3 (X 3 is an alkyl group having 1 to 5 carbon atoms), —SY 1 (Y 1 is an alkyl group having 1 to 5 carbon atoms), —COZ (Z Represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms) and an atom or group selected from a halogen atom. R 5 and R 6 are each independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a phenoxy group, a fluoroalkyl group having 1 to 5 carbon atoms, or a polyalkyl having 1 to 5 carbon atoms. A fluoroalkyl group, a fluoroalkoxy group having 1 to 5 carbon atoms, a polyfluoroalkoxy group having 1 to 5 carbon atoms, a hydroxyl group, a halogen atom, —NX 4 X 5 (X 4 and X 5 are each independently a hydrogen atom; Or an alkyl group having 1 to 5 carbon atoms) and —NY 2 CONY 3 Y 4 (where Y 2 to Y 4 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms). Or a group.
 式(D)において、RおよびRは、それぞれ独立して、水素原子、炭素数1もしくは2のアルキル基、炭素数1もしくは2のフルオロアルキル基、またはハロゲン原子であることが好ましく、RおよびRは、それぞれ独立して、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフルオロアルキル基、炭素数1~3のポリフルオロアルキル基、水酸基またはハロゲン原子であることがより好ましい。 In the formula (D), R 4 and R 7 are preferably each independently a hydrogen atom, an alkyl group having 1 or 2 carbon atoms, a fluoroalkyl group having 1 or 2 carbon atoms, or a halogen atom. 5 and R 6 are each independently an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a polyfluoroalkyl group having 1 to 3 carbon atoms, A hydroxyl group or a halogen atom is more preferred.
 式(D)で表される鎖状ジスルホン酸エステル化合物の好ましい化合物としては、例えば以下の化合物を挙げることができる。 Examples of preferable compounds of the chain disulfonic acid ester compound represented by the formula (D) include the following compounds.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 環状または鎖状ジスルホン酸エステルの含有量は、電解液中0.005mol/L以上10mol/L以下であることが好ましく、0.01mol/L以上5mol/L以下であることがより好ましく、0.05mol/L以上0.15mol/L以下が特に好ましい。0.005mol/L以上含有することにより、十分な皮膜効果を得ることができる。また、含有量が10mol/L以下であると電解液の粘性の上昇、およびそれに伴う抵抗の増加を抑制することができる。 The content of the cyclic or chain disulfonic acid ester is preferably 0.005 mol / L or more and 10 mol / L or less, more preferably 0.01 mol / L or more and 5 mol / L or less in the electrolytic solution. It is particularly preferably from 05 mol / L to 0.15 mol / L. By containing 0.005 mol / L or more, a sufficient film effect can be obtained. Further, when the content is 10 mol / L or less, an increase in the viscosity of the electrolyte and an accompanying increase in resistance can be suppressed.
 添加剤は1種を単独で、または2種以上を混合して用いることができる。2種以上の添加剤を組合せて使用する場合、添加剤の含有量の合計が、電解液中10質量%以下であることが好ましく、5質量%以下であることがより好ましい。 An additive can be used alone or in combination of two or more. When using combining 2 or more types of additives, it is preferable that the sum total of content of an additive is 10 mass% or less in an electrolyte solution, and it is more preferable that it is 5 mass% or less.
 [セパレータ]
 本実施形態では、単層の高耐熱性樹脂製の微多孔膜セパレータが使用される。高耐熱性樹脂としては、熱溶融または熱分解温度が160℃以上、より好ましくは180℃以上の樹脂が好ましい。セパレータの材料として高耐熱性樹脂を用いることにより、二次電池の安全性を高めることができる。二次電池の安全性は、例えば160℃における高温加熱試験を行うことにより評価することができる。
[Separator]
In the present embodiment, a microporous membrane separator made of a single layer of high heat resistance resin is used. As the high heat-resistant resin, a resin having a heat melting or decomposition temperature of 160 ° C. or higher, more preferably 180 ° C. or higher is preferable. By using a high heat resistant resin as the material of the separator, the safety of the secondary battery can be increased. The safety of the secondary battery can be evaluated by performing a high temperature heating test at 160 ° C., for example.
 特に耐熱性が300℃以上の樹脂は、熱収縮が小さく形状保持性が良好であることから好ましい。高耐熱性樹脂として、ポリアミド、ポリイミド、ポリアミドイミドおよびポリフェニレンサルファイドが好ましく、ポリアミド、ポリイミドおよびポリアミドイミドは芳香族系のものが好ましく、特に芳香族ポリアミド、即ちアラミドが最も好ましい。 Particularly, a resin having a heat resistance of 300 ° C. or higher is preferable because it has a small thermal shrinkage and good shape retention. As the high heat-resistant resin, polyamide, polyimide, polyamideimide and polyphenylene sulfide are preferable. Polyamide, polyimide and polyamideimide are preferably aromatic, particularly aromatic polyamide, that is, aramid.
 「熱溶融温度」とはJIS K 7121に準じて示差走査熱量測定(DSC)により測定される温度を表し、「熱分解温度」とは熱重量測定装置を用いて空気気流中で25℃から10℃/分で昇温したときに10%重量が減少したときの温度(10%重量減少温度)を表し、また「耐熱性が300℃以上」とは少なくとも300℃において軟化等の変形が見られないことを意味する。また、「熱溶融または熱分解温度が160℃以上」とは、熱溶融温度及び熱分解温度のいずれか低い方の温度が160℃以上であることを表し、例えば、昇温時に溶融せずに分解する樹脂の場合、熱分解温度が160℃以上であることを意味する。 “Thermal melting temperature” represents a temperature measured by differential scanning calorimetry (DSC) according to JIS K 7121. “Thermal decomposition temperature” refers to a temperature from 25 ° C. to 10 ° C. in an air stream using a thermogravimetric measuring device. This represents the temperature at which the weight decreased by 10% when the temperature was raised at a rate of 10 ° C / min (10% weight loss temperature). "Heat resistance is 300 ° C or higher" indicates deformation such as softening at least at 300 ° C. Means no. In addition, “the thermal melting or thermal decomposition temperature is 160 ° C. or higher” means that the lower one of the thermal melting temperature and the thermal decomposition temperature is 160 ° C. or higher. In the case of a resin that decomposes, it means that the thermal decomposition temperature is 160 ° C. or higher.
 アラミドは、1種または2種以上の芳香族基がアミド結合により直接連結されている芳香族ポリアミドである。芳香族基としては、例えばフェニレン基が挙げられ、また、2個の芳香環が酸素、硫黄またはアルキレン基(例えば、メチレン基、エチレン基、プロピレン基等)で結合されたものであってもよい。これらの芳香族基は置換基を有していてもよく、置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基等)、ハロゲン(クロル基等)等が挙げられる。芳香環上の水素原子の一部または全部が、フッ素や臭素、塩素などのハロゲン基で置換されているものは、耐酸化性が高く、正極での酸化劣化が生じないことから好ましい材料である。アラミドは、パラ型およびメタ型のいずれであってもよい。 Aramid is an aromatic polyamide in which one or more aromatic groups are directly connected by an amide bond. Examples of the aromatic group include a phenylene group, and two aromatic rings may be bonded with oxygen, sulfur, or an alkylene group (for example, a methylene group, an ethylene group, a propylene group, etc.). . These aromatic groups may have a substituent. Examples of the substituent include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, etc.), an alkoxy group (for example, a methoxy group, an ethoxy group, Propoxy group, etc.), halogen (chloro group, etc.) and the like. A material in which part or all of the hydrogen atoms on the aromatic ring are substituted with a halogen group such as fluorine, bromine or chlorine is a preferable material because it has high oxidation resistance and does not cause oxidative deterioration at the positive electrode. . The aramid may be either a para type or a meta type.
 アラミド微多孔膜をセパレータとして使用すると、高耐熱性であり、高エネルギー密度下においても劣化せず、Li析出に対しても絶縁性を保持し完全な短絡を防止できることから、特に好ましい。 It is particularly preferable to use an aramid microporous membrane as a separator because it has high heat resistance, does not deteriorate even under a high energy density, maintains insulation against Li precipitation, and prevents a complete short circuit.
 本実施形態において好ましく使用できるアラミドとしては、例えば、ポリメタフェニレンイソフタルアミド、ポリパラフェニレンテレフタルアミド、コポリパラフェニレン3,4’-オキシジフェニレンテレフタルアミド、およびこれらのフェニレン基上の水素が置換されたもの等が挙げられる。 Examples of the aramid that can be preferably used in the present embodiment include polymetaphenylene isophthalamide, polyparaphenylene terephthalamide, copolyparaphenylene 3,4′-oxydiphenylene terephthalamide, and hydrogen on these phenylene groups. And the like.
 電池の熱暴走による発火を防止するために、使用されるセパレータは、酸素指数が25以上であることが好ましい。酸素指数は、室温における窒素と酸度との混合ガス中で、垂直に支持された小試験片が燃焼を維持する最小酸素濃度を意味し、値が高いほど難燃性の材料を表す。酸素指数の測定は、JIS K 7201に準じて実施することができる。酸素指数が25以上のセパレータに用いられる材料としては、ポリフェニレンスルファイド、ポリイミド、アラミドなどが挙げられる。 In order to prevent ignition due to thermal runaway of the battery, the separator used preferably has an oxygen index of 25 or more. The oxygen index means a minimum oxygen concentration at which a vertically supported small test piece maintains combustion in a mixed gas of nitrogen and acidity at room temperature, and a higher value represents a flame retardant material. The oxygen index can be measured according to JIS K7201. Examples of the material used for the separator having an oxygen index of 25 or more include polyphenylene sulfide, polyimide, and aramid.
 耐熱性樹脂微多孔膜の膜厚は、特に限定されないが、通常3μm~40μm程度、好ましくは30μm以下、より好ましくは25μm以下、特に好ましくは20μm以下である。耐熱性樹脂微多孔膜の通気度(ガーレー値)は、特に限定されないが、通常1秒~300秒の範囲から選ばれる。 The film thickness of the heat resistant resin microporous film is not particularly limited, but is usually about 3 μm to 40 μm, preferably 30 μm or less, more preferably 25 μm or less, and particularly preferably 20 μm or less. The air permeability (Gurley value) of the heat-resistant resin microporous membrane is not particularly limited, but is usually selected from the range of 1 second to 300 seconds.
 [二次電池]
 本実施形態に係るリチウムイオン二次電池は、少なくとも一対の正極および負極が対向に配置された電極体と、電解液が外装体に内包される。二次電池の形状は、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型、および積層ラミネート型のいずれでもよいが、積層ラミネート型が好ましい。以下、積層ラミネート型の二次電池について説明する。
[Secondary battery]
In the lithium ion secondary battery according to the present embodiment, an electrode body in which at least a pair of positive and negative electrodes are arranged to face each other, and an electrolytic solution are included in the exterior body. The shape of the secondary battery may be any of a cylindrical type, a flat wound square type, a laminated square type, a coin type, a flat wound laminated type, and a laminated laminate type, and a laminated laminate type is preferable. Hereinafter, a laminated laminate type secondary battery will be described.
 図1に、積層ラミネート型の二次電池が有する積層電極体1の一例の模式的な断面図を示す。複数の正極2および複数の負極3がセパレータ4を挟みつつ交互に積み重ねられている。各正極2および各負極3の一端において、それぞれ正極集電体5、負極集電体6が活物質に覆われていない活物質未塗布部分が設けられている。正極2および負極3は、該活物質未塗布部分を互いに反対向きにして重ねられている。 FIG. 1 shows a schematic cross-sectional view of an example of a laminated electrode body 1 included in a laminated laminate type secondary battery. A plurality of positive electrodes 2 and a plurality of negative electrodes 3 are alternately stacked with the separator 4 interposed therebetween. At one end of each positive electrode 2 and each negative electrode 3, an active material uncoated portion where the positive electrode current collector 5 and the negative electrode current collector 6 are not covered with the active material is provided. The positive electrode 2 and the negative electrode 3 are stacked with the active material uncoated portions facing in opposite directions.
 正極集電体5は、活物質未塗布部分で互いに電気的に接続され、その接続箇所にさらに正極リード端子7が接続されている。負極集電体6は、活物質未塗布部分で互いに電気的に接続され、その接続箇所にさらに負極リード端子8が接続されている。 The positive electrode current collector 5 is electrically connected to each other at an active material uncoated portion, and a positive electrode lead terminal 7 is further connected to the connection portion. The negative electrode current collector 6 is electrically connected to each other at an active material uncoated portion, and a negative electrode lead terminal 8 is further connected to the connection portion.
 積層ラミネート型の二次電池は、積層電極体1をアルミニウムラミネートフィルムなどの外装体で包み、内部に電解液を注液した後、減圧状態で封止することで作製される。 A laminated laminate type secondary battery is manufactured by wrapping a laminated electrode body 1 with an exterior body such as an aluminum laminated film, injecting an electrolyte into the inside, and then sealing under reduced pressure.
 さらに別の態様としては、図2および図3のような構造の二次電池としてもよい。この二次電池は、電池要素20と、それを電解質と一緒に収容するフィルム外装体10と、正極タブ51および負極タブ52(以下、これらを単に「電極タブ」ともいう)とを備えている。 As another aspect, a secondary battery having a structure as shown in FIGS. 2 and 3 may be used. The secondary battery includes a battery element 20, a film outer package 10 that houses the battery element 20 together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter also simply referred to as “electrode tabs”). .
 電池要素20は、図3に示すように、複数の正極30と複数の負極40とがセパレータ25を間に挟んで交互に積層されたものである。正極30は、金属箔31の両面に電極材料32が塗布されており、負極40も、同様に、金属箔41の両面に電極材料42が塗布されている。 As shown in FIG. 3, the battery element 20 is formed by alternately laminating a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with a separator 25 interposed therebetween. In the positive electrode 30, the electrode material 32 is applied to both surfaces of the metal foil 31. Similarly, in the negative electrode 40, the electrode material 42 is applied to both surfaces of the metal foil 41.
 図1の二次電池は電極タブが外装体の両側に引き出されたものであったが、本発明を適用しうる二次電池は図2のように電極タブが外装体の片側に引き出された構成であってもよい。詳細な図示は省略するが、正極および負極の金属箔は、それぞれ、外周の一部に延長部を有している。負極金属箔の延長部は一つに集められて負極タブ52と接続され、正極金属箔の延長部は一つに集められて正極タブ51と接続される(図3参照)。このように延長部どうし積層方向に1つに集めた部分は「集電部」などとも呼ばれる。 The secondary battery in FIG. 1 has electrode tabs drawn out on both sides of the outer package. However, in the secondary battery to which the present invention can be applied, the electrode tab is drawn out on one side of the outer package as shown in FIG. It may be a configuration. Although detailed illustration is omitted, each of the positive and negative metal foils has an extension on a part of the outer periphery. The extensions of the negative electrode metal foil are collected together and connected to the negative electrode tab 52, and the extensions of the positive electrode metal foil are collected together and connected to the positive electrode tab 51 (see FIG. 3). The portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions”.
 フィルム外装体10は、この例では、2枚のフィルム10-1、10-2で構成されている。フィルム10-1、10-2どうしは電池要素20の周辺部で互いに熱融着されて密閉される。図3では、このように密閉されたフィルム外装体10の1つの短辺から、正極タブ51および負極タブ52が同じ方向に引き出されている。 The film outer package 10 is composed of two films 10-1 and 10-2 in this example. The films 10-1 and 10-2 are heat sealed to each other at the periphery of the battery element 20 and sealed. In FIG. 3, the positive electrode tab 51 and the negative electrode tab 52 are drawn out in the same direction from one short side of the film outer package 10 sealed in this way.
 当然ながら、異なる2辺から電極タブがそれぞれ引き出されていてもよい。また、フィルムの構成に関し、図2、図3では、一方のフィルム10-1にカップ部が形成されるとともに他方のフィルム10-2にはカップ部が形成されていない例が示されているが、この他にも、両方のフィルムにカップ部を形成する構成(不図示)や、両方ともカップ部を形成しない構成(不図示)なども採用しうる。 Of course, electrode tabs may be drawn from two different sides. As for the film configuration, FIGS. 2 and 3 show examples in which a cup portion is formed on one film 10-1 and a cup portion is not formed on the other film 10-2. In addition, a configuration in which a cup portion is formed on both films (not shown) or a configuration in which neither cup portion is formed (not shown) may be employed.
 [リチウムイオン二次電池の製造方法]
 本実施形態によるリチウムイオン二次電池は、通常の方法に従って作製することができる。積層ラミネート型のリチウムイオン二次電池を例に、リチウムイオン二次電池の製造方法の一例を説明する。まず、乾燥空気または不活性雰囲気において、正極および負極をセパレータを介して対向配置して、前述の電極素子を形成する。次に、この電極素子を外装体(容器)に収容し、電解液を注入して電極に電解液を含浸させる。その後、外装体の開口部を封止してリチウムイオン二次電池を完成する。
[Method for producing lithium ion secondary battery]
The lithium ion secondary battery according to the present embodiment can be produced according to a normal method. Taking a laminated laminate type lithium ion secondary battery as an example, an example of a method for producing a lithium ion secondary battery will be described. First, in the dry air or inert atmosphere, the above-mentioned electrode element is formed by arranging the positive electrode and the negative electrode opposite to each other with a separator interposed therebetween. Next, this electrode element is accommodated in an exterior body (container), and an electrolytic solution is injected to impregnate the electrode with the electrolytic solution. Then, the opening part of an exterior body is sealed and a lithium ion secondary battery is completed.
 [組電池]
 本実施形態に係るリチウムイオン二次電池を複数組み合わせて組電池とすることができる。組電池は、例えば、本実施形態に係るリチウムイオン二次電池を2つ以上用い、直列、並列又はその両方で接続した構成とすることができる。直列および/または並列接続することで容量および電圧を自由に調節することが可能になる。組電池が備えるリチウムイオン二次電池の個数については、電池容量や出力に応じて適宜設定することができる。
[Battery]
A plurality of lithium ion secondary batteries according to this embodiment can be combined to form an assembled battery. For example, the assembled battery may have a configuration in which two or more lithium ion secondary batteries according to the present embodiment are used and connected in series, in parallel, or both. Capacitance and voltage can be freely adjusted by connecting in series and / or in parallel. About the number of the lithium ion secondary batteries with which an assembled battery is provided, it can set suitably according to battery capacity or an output.
 [車両]
 本実施形態に係るリチウムイオン二次電池またはその組電池は、車両に用いることができる。本実施形態に係る車両としては、ハイブリッド車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バス等の商用車、軽自動車等)のほか、二輪車(バイク)や三輪車を含む)が挙げられる。なお、本実施形態に係る車両は自動車に限定されるわけではなく、他の車両、例えば電車等の移動体の各種電源として用いることもできる。
[vehicle]
The lithium ion secondary battery or its assembled battery according to this embodiment can be used in a vehicle. Vehicles according to this embodiment include hybrid vehicles, fuel cell vehicles, and electric vehicles (all include four-wheel vehicles (passenger cars, trucks, buses and other commercial vehicles, light vehicles, etc.), motorcycles (motorcycles), and tricycles. ). Note that the vehicle according to the present embodiment is not limited to an automobile, and may be used as various power sources for other vehicles, for example, moving bodies such as trains.
 [蓄電装置]
 本実施形態に係るリチウムイオン二次電池またはその組電池は、蓄電装置に用いることができる。本実施形態に係る蓄電装置としては、例えば、一般家庭に供給される商用電源と家電製品等の負荷との間に接続され、停電時等のバックアップ電源や補助電力として使用されるものや、太陽光発電等の、再生可能エネルギーによる時間変動の大きい電力出力を安定化するための、大規模電力貯蔵用としても使用されるものが挙げられる。
[Power storage device]
The lithium ion secondary battery or its assembled battery according to this embodiment can be used for a power storage device. As the power storage device according to the present embodiment, for example, a power source connected to a commercial power source supplied to a general household and a load such as a home appliance, and used as a backup power source or auxiliary power at the time of a power failure, Examples include photovoltaic power generation, which is also used for large-scale power storage for stabilizing power output with a large time fluctuation due to renewable energy.
 次に、本実施形態を実施例により具体的に説明する。下記の実施例は本実施形態の好ましい形態を例示するものであり、本発明が下記の実施例に限られるわけではない。 Next, this embodiment will be specifically described by way of examples. The following examples illustrate preferred forms of the present embodiment, and the present invention is not limited to the following examples.
 [実施例1]
 (SiOの円形度の調整、測定)
 SiO((株)高純度化学 製 カタログNo SIO02PB、75μmメッシュ通過品)を遊星型ボールミル(フリッチュ社製クラシックラインP-5)を用いて粉砕し、粒度分布と円形度を調整した。調整後のSiO粒子のメジアン径(d50)と任意のSiO粒子500個の円形度を紛体測定機器(セイシン企業:PITA-3)で測定した。d50と円形度の平均値を表1に示す。
[Example 1]
(Adjustment and measurement of SiO circularity)
SiO (Catalog No. SIO02PB manufactured by Kojundo Chemical Co., Ltd., 75 μm mesh passing product) was pulverized using a planetary ball mill (Fritsch Classic Line P-5) to adjust the particle size distribution and circularity. The median diameter (d50) of the adjusted SiO particles and the circularity of 500 arbitrary SiO particles were measured with a powder measuring instrument (Seishin company: PITA-3). Table 1 shows the average values of d50 and circularity.
 (負極の作製)
 上記のSiOと鱗片状天然黒鉛と、ポリアミック酸とN-メチル-2-ピロリドン(NMP)の混合溶液(商品名:U-ワニスA、宇部興産(株)製、固形分18wt%)をそれぞれ60:25:15の質量比(但し、ポリアミック酸溶液は固形分質量)で混合し、さらにn-メチルピロリドン(NMP)を追加し粘度を調整しスラリーを得た。このスラリーを厚さ10μmの銅箔上にドクターブレードで塗布した後、130℃で7分間加熱乾燥した。その後、得られた負極を真空中で180℃15分間加熱し、ポリアミック酸をイミド化して負極を完成させた。
(Preparation of negative electrode)
Each of the above-mentioned SiO, scale-like natural graphite, and a mixed solution of polyamic acid and N-methyl-2-pyrrolidone (NMP) (trade name: U-Varnish A, manufactured by Ube Industries, Ltd., solid content: 18 wt%) each 60 Was mixed at a mass ratio of 25:15 (where the polyamic acid solution had a solid mass), and n-methylpyrrolidone (NMP) was further added to adjust the viscosity to obtain a slurry. This slurry was applied on a copper foil having a thickness of 10 μm with a doctor blade, and then dried by heating at 130 ° C. for 7 minutes. Thereafter, the obtained negative electrode was heated in a vacuum at 180 ° C. for 15 minutes to imidize polyamic acid to complete the negative electrode.
 (正極の作製)
 ニッケル酸リチウムと、カーボンブラック(商品名:「#3030B」、三菱化学(株)製)と、ポリフッ化ビニリデン(商品名:「W#7200」、(株)クレハ製)とを、それぞれ95:2:3の質量比で計量した。これらと、NMPとを混合し、スラリーとした。NMPと固形分との質量比は54:46とした。このスラリーを厚さ15μmのアルミニウム箔にドクターブレードを用いて塗布した。このスラリーの塗布されたアルミニウム箔を120℃で5分間加熱してNMPを乾燥させ、正極を作製した。
(Preparation of positive electrode)
Lithium nickelate, carbon black (trade name: “# 3030B”, manufactured by Mitsubishi Chemical Corporation), and polyvinylidene fluoride (trade name: “W # 7200”, manufactured by Kureha Corporation) are each 95: Weighed at a mass ratio of 2: 3. These and NMP were mixed to form a slurry. The mass ratio of NMP to solid content was 54:46. This slurry was applied to an aluminum foil having a thickness of 15 μm using a doctor blade. The aluminum foil coated with this slurry was heated at 120 ° C. for 5 minutes to dry the NMP, thereby producing a positive electrode.
 (二次電池の組み立て)
 作製した正極および負極のそれぞれに、アルミニウム端子、ニッケル端子を溶接した。これらを、セパレータを介して重ね合わせて電極素子を作製した。電極素子をラミネートフィルムで外装し、ラミネートフィルム内部に電解液を注入した。その後、ラミネートフィルム内部を減圧しながらラミネートフィルムを熱融着して封止した。これにより平板型の初回充電前の二次電池を複数個、作製した。セパレータには厚さ15μmのポリイミド微多孔膜を用いた。ラミネートフィルムにはアルミニウムを蒸着したポリプロピレンフィルムを用いた。電解液には、電解質として1.0mol/lのLiPFと、非水電解溶媒としてエチレンカーボネートとジエチルカーボネートの混合溶媒(7:3(体積比))を含む溶液を用いた。同じ電池を10個作製した。
(Assembly of secondary battery)
An aluminum terminal and a nickel terminal were welded to each of the produced positive electrode and negative electrode. These were overlapped via a separator to produce an electrode element. The electrode element was covered with a laminate film, and an electrolyte solution was injected into the laminate film. Thereafter, the laminate film was heat-sealed and sealed while reducing the pressure inside the laminate film. As a result, a plurality of flat-type secondary batteries before the first charge were produced. A polyimide microporous film having a thickness of 15 μm was used as the separator. As the laminate film, a polypropylene film on which aluminum was deposited was used. As the electrolytic solution, a solution containing 1.0 mol / l LiPF 6 as an electrolyte and a mixed solvent of ethylene carbonate and diethyl carbonate (7: 3 (volume ratio)) as a nonaqueous electrolytic solvent was used. Ten identical batteries were made.
 (二次電池の自己放電試験)
 作製した電池を4.15Vに充電した。充電は、CCCV方式で行い、4.15Vに達した後は電圧を一定に一時間保った。充電後の電池を、45℃に保った恒温槽内で19日間保管し、自己放電試験を行った。保管後の電圧が4.00V以下になったものを自己放電不良とした。不良率(n/10)を表1に示す。
(Self-discharge test of secondary battery)
The produced battery was charged to 4.15V. Charging was performed by the CCCV method, and the voltage was kept constant for one hour after reaching 4.15V. The charged battery was stored in a thermostat kept at 45 ° C. for 19 days and subjected to a self-discharge test. Self-discharge failure was determined when the voltage after storage was 4.00 V or less. The defect rate (n / 10) is shown in Table 1.
 [実施例2]
 実施例1の粉砕後のSiOの粒度と円形度を表1に示すように調整した以外は、実施例1と同様に二次電池を作製し、自己放電試験を行った。
[Example 2]
A secondary battery was produced in the same manner as in Example 1 except that the particle size and circularity of the ground SiO in Example 1 were adjusted as shown in Table 1, and a self-discharge test was performed.
 [実施例3]
 実施例1の粉砕後のSiOの粒度と円形度を表1に示すように調整した以外は、実施例1と同様に二次電池を作製し、自己放電試験を行った。
[Example 3]
A secondary battery was produced in the same manner as in Example 1 except that the particle size and circularity of the ground SiO in Example 1 were adjusted as shown in Table 1, and a self-discharge test was performed.
 [実施例4]
 負極スラリーの比率を、SiOと鱗片状天然黒鉛と、ポリアミック酸とN-メチル-2-ピロリドン(NMP)の混合溶液(商品名:U-ワニスA、宇部興産(株)製、固形分18wt%)をそれぞれ82:3:15の質量比(但し、ポリアミック酸溶液は固形分質量)とした以外は、実施例1と同様に二次電池を作製し、自己放電試験を行った。
[Example 4]
The ratio of the negative electrode slurry is a mixed solution of SiO, flaky natural graphite, polyamic acid and N-methyl-2-pyrrolidone (NMP) (trade name: U-Varnish A, manufactured by Ube Industries, Ltd., solid content 18 wt% ) Was made into a mass ratio of 82: 3: 15 (however, the polyamic acid solution was a solid content mass), and a secondary battery was produced in the same manner as in Example 1 and subjected to a self-discharge test.
 [実施例5]
 負極スラリーの比率を、SiOと鱗片状天然黒鉛と、ポリアミック酸とN-メチル-2-ピロリドン(NMP)の混合溶液(商品名:U-ワニスA、宇部興産(株)製、固形分18wt%)をそれぞれ70:15:84とした以外は、実施例1と同様に二次電池を作製し、自己放電試験を行った。
[Example 5]
The ratio of the negative electrode slurry is a mixed solution of SiO, flaky natural graphite, polyamic acid and N-methyl-2-pyrrolidone (NMP) (trade name: U-Varnish A, manufactured by Ube Industries, Ltd., solid content 18 wt% ) Was set to 70:15:84, respectively, and a secondary battery was produced in the same manner as in Example 1 and subjected to a self-discharge test.
 [実施例6]
 負極スラリーの比率を、SiOと鱗片状天然黒鉛と、ポリアミック酸とN-メチル-2-ピロリドン(NMP)の混合溶液(商品名:U-ワニスA、宇部興産(株)製、固形分18wt%)をそれぞれ70:15:15の質量比(但し、ポリアミック酸溶液は固形分質量)とした以外は、実施例1と同様に二次電池を作製し、自己放電試験を行った。
[Example 6]
The ratio of the negative electrode slurry is a mixed solution of SiO, flaky natural graphite, polyamic acid and N-methyl-2-pyrrolidone (NMP) (trade name: U-Varnish A, manufactured by Ube Industries, Ltd., solid content 18 wt% ) Was made into a mass ratio of 70:15:15 (however, the polyamic acid solution was a solid content mass), and a secondary battery was produced in the same manner as in Example 1 and subjected to a self-discharge test.
 [実施例7]
 実施例1のSiOの代わりに、Si((株)高純度化学製 カタログNo SIE07PB、300μm以下)を用いた以外は、実施例1と同様に二次電池を作製し、自己放電試験を行った。
[Example 7]
A secondary battery was produced in the same manner as in Example 1 except that Si (catalog No. SIE07PB, manufactured by Kojundo Chemical Co., Ltd., 300 μm or less) was used instead of SiO in Example 1, and a self-discharge test was performed. .
 [実施例8]
 実施例1のSiOの代わりに、SnO((株)高純度化学製 カタログNo SNO01PB)を用いた以外は、実施例1と同様に二次電池を作製し、自己放電試験を行った。
[Example 8]
A secondary battery was produced in the same manner as in Example 1 except that SnO (catalog No SNO01PB, manufactured by Kojundo Chemical Co., Ltd.) was used instead of SiO in Example 1, and a self-discharge test was performed.
 [比較例1]
 実施例1の粉砕後のSiOの粒度と円形度を表1に示すように調整した以外は、実施例1と同様に二次電池を作製し、自己放電試験を行った。
[Comparative Example 1]
A secondary battery was produced in the same manner as in Example 1 except that the particle size and circularity of the ground SiO in Example 1 were adjusted as shown in Table 1, and a self-discharge test was performed.
 [比較例2]
 実施例7の粉砕後のSiの粒度と円形度を表1に示すように調整した以外は、実施例7と同様に二次電池を作製し、自己放電試験を行った。
[Comparative Example 2]
A secondary battery was produced in the same manner as in Example 7 except that the particle size and circularity of Si after pulverization in Example 7 were adjusted as shown in Table 1, and a self-discharge test was performed.
 [比較例3]
 実施例8の粉砕後のSnOの粒度と円形度を表1に示すように調整した以外は、実施例8と同様に二次電池を作製し、自己放電試験を行った。
[Comparative Example 3]
A secondary battery was produced in the same manner as in Example 8 except that the particle size and circularity of SnO after pulverization in Example 8 were adjusted as shown in Table 1, and a self-discharge test was performed.
 [比較例4]
 負極スラリーの比率を、SiOと鱗片状天然黒鉛と、ポリアミック酸とN-メチル-2-ピロリドン(NMP)の混合溶液(商品名:U-ワニスA、宇部興産(株)製、固形分18wt%)をそれぞれ82:3:15の質量比(但し、ポリアミック酸溶液は固形分質量)とした以外は、比較例1と同様に二次電池を作製し、自己放電試験を行った。
[Comparative Example 4]
The ratio of the negative electrode slurry is a mixed solution of SiO, flaky natural graphite, polyamic acid and N-methyl-2-pyrrolidone (NMP) (trade name: U-Varnish A, manufactured by Ube Industries, Ltd., solid content 18 wt% ) Was made into a mass ratio of 82: 3: 15 (wherein the polyamic acid solution was a solid mass), a secondary battery was prepared in the same manner as in Comparative Example 1, and a self-discharge test was performed.
 [実施例7]
 負極スラリーの比率を、SiOと鱗片状天然黒鉛と、ポリアミック酸とN-メチル-2-ピロリドン(NMP)の混合溶液(商品名:U-ワニスA、宇部興産(株)製、固形分18wt%)をそれぞれ50:35:84とした以外は、実施例1と同様に二次電池を作製し、自己放電試験を行った。
[Example 7]
The ratio of the negative electrode slurry is a mixed solution of SiO, flaky natural graphite, polyamic acid and N-methyl-2-pyrrolidone (NMP) (trade name: U-Varnish A, manufactured by Ube Industries, Ltd., solid content 18 wt% ) Was set to 50:35:84, respectively, and a secondary battery was produced in the same manner as in Example 1 and subjected to a self-discharge test.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明で提供される二次電池は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、モバイル機器の電源、移動・輸送用媒体の電源、バックアップ電源、太陽光発電、風力発電などで発電した電力を貯める蓄電設備などに、利用することができる。 The secondary battery provided in the present invention can be used in all industrial fields that require a power source and in industrial fields related to the transport, storage, and supply of electrical energy. Specifically, it can be used for a power source of a mobile device, a power source of a moving / transport medium, a backup power source, a solar power generation, a wind power generation, and a power storage facility for storing power generated by the power generation.
1  積層電極体
2  正極
3  負極
4  セパレータ
5  正極集電体
6  負極集電体
7  正極リード端子
8  負極リード端子
10 フィルム外装体
20 電池要素
25 セパレータ
30 正極
40 負極
DESCRIPTION OF SYMBOLS 1 Laminated electrode body 2 Positive electrode 3 Negative electrode 4 Separator 5 Positive electrode collector 6 Negative electrode collector 7 Positive electrode lead terminal 8 Negative electrode lead terminal 10 Film exterior body 20 Battery element 25 Separator 30 Positive electrode 40 Negative electrode

Claims (9)

  1.  リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物から選ばれる少なくとも1種の材料(以下、金属および/または金属酸化物という。)で形成され、下式で定義される円形度の平均値が、0.78以上である粒子を含む負極と、
     正極と、
     単層の高耐熱性樹脂微多孔膜セパレータと、
    を備えるリチウムイオン二次電池。
     円形度=4πS/L
     (但し、S:粒子投影像の面積、L:粒子投影像の周長である。)
    A circle formed of at least one material selected from a metal that can be alloyed with lithium and a metal oxide capable of occluding and releasing lithium ions (hereinafter referred to as metal and / or metal oxide) and defined by the following formula: A negative electrode containing particles having an average degree of 0.78 or more;
    A positive electrode;
    A single layer high heat resistance resin microporous membrane separator,
    A lithium ion secondary battery comprising:
    Circularity = 4πS / L 2
    (However, S is the area of the particle projection image, and L is the circumference of the particle projection image.)
  2.  前記単層の高耐熱性樹脂微多孔膜を構成する高耐熱性樹脂の熱溶融または熱分解温度が、160℃以上であることを特徴とする請求項1に記載のリチウムイオン二次電池。 2. The lithium ion secondary battery according to claim 1, wherein a heat melting or thermal decomposition temperature of the high heat resistance resin constituting the single layer high heat resistance resin microporous film is 160 ° C. or more.
  3.  前記高耐熱性樹脂がアラミドを含むことを特徴とする請求項2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 2, wherein the high heat resistant resin contains aramid.
  4.  前記金属および/または金属酸化物として、少なくともSiおよび/またはシリコン酸化物が含有されることを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein the metal and / or metal oxide contains at least Si and / or silicon oxide.
  5.  負極活物質として、さらに炭素材料を含有することを特徴とする請求項1~4のいずれか1項に記載のリチウムイオン二次電池。 5. The lithium ion secondary battery according to claim 1, further comprising a carbon material as the negative electrode active material.
  6.  前記金属および/または金属酸化物粒子のメジアン径が1~30μmであり、前記表面被覆炭素材料粒子のメジアン径が5~50μmであり、前記金属および/または金属酸化物粒子のメジアン径が、前記表面被覆炭素材料のメジアン径より小さいことを特徴とする請求項1~5のいずれか1項に記載のリチウムイオン二次電池。 The median diameter of the metal and / or metal oxide particles is 1 to 30 μm, the median diameter of the surface-coated carbon material particles is 5 to 50 μm, and the median diameter of the metal and / or metal oxide particles is The lithium ion secondary battery according to any one of claims 1 to 5, wherein the lithium ion secondary battery is smaller than the median diameter of the surface-coated carbon material.
  7.  請求項1~6のいずれか1項に記載のリチウムイオン二次電池を搭載したことを特徴とする車両。 A vehicle equipped with the lithium ion secondary battery according to any one of claims 1 to 6.
  8.  請求項6に記載のリチウムイオン二次電池を用いたことを特徴とする蓄電装置。 A power storage device using the lithium ion secondary battery according to claim 6.
  9.  正極と負極とをセパレータを介して積層して電極素子を製造する工程と、前記電極素子と電解液とを外装体に封入する工程とを有するリチウム二次電池の製造方法であって、
     前記負極が、リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物から選ばれる少なくとも1種の材料で形成され、下式で定義される円形度の平均値が、0.78以上である粒子を含み、
     前記セパレータが単層の高耐熱性樹脂微多孔膜で形成されていること
    を特徴とするリチウムイオン二次電池の製造方法。
     円形度=4πS/L
     (但し、S:粒子投影像の面積、L:粒子投影像の周長である。)
    A method for producing a lithium secondary battery, comprising: a step of laminating a positive electrode and a negative electrode via a separator to produce an electrode element; and a step of encapsulating the electrode element and an electrolytic solution in an exterior body,
    The negative electrode is formed of at least one material selected from a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions, and the average value of circularity defined by the following formula is 0.78. Including particles that are
    A method for producing a lithium ion secondary battery, wherein the separator is formed of a single-layer high-heat-resistant resin microporous film.
    Circularity = 4πS / L 2
    (However, S is the area of the particle projection image, and L is the circumference of the particle projection image.)
PCT/JP2016/058496 2015-03-24 2016-03-17 Lithium ion secondary battery WO2016152718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017508289A JP6809449B2 (en) 2015-03-24 2016-03-17 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061576 2015-03-24
JP2015-061576 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152718A1 true WO2016152718A1 (en) 2016-09-29

Family

ID=56979228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058496 WO2016152718A1 (en) 2015-03-24 2016-03-17 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP6809449B2 (en)
WO (1) WO2016152718A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023500542A (en) * 2019-12-17 2023-01-06 エルジー エナジー ソリューション リミテッド A negative electrode and a secondary battery including the negative electrode
WO2023130683A1 (en) * 2022-01-05 2023-07-13 中材锂膜有限公司 Separator for non-aqueous electrolyte lithium secondary battery, and non-aqueous electrolyte lithium secondary battery
WO2023140192A1 (en) * 2022-01-21 2023-07-27 Tdk株式会社 Negative electrode active material for lithium ion secondary batteries, negative electrode active material layer for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128766A (en) * 2005-11-04 2007-05-24 Sony Corp Negative electrode active substance and battery
WO2014185005A1 (en) * 2013-05-15 2014-11-20 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery
JP2015005377A (en) * 2013-06-20 2015-01-08 信越化学工業株式会社 Active material for nonaqueous electrolyte secondary batteries, negative electrode mold, and nonaqueous electrolyte secondary battery
JP2015015171A (en) * 2013-07-05 2015-01-22 信越化学工業株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128766A (en) * 2005-11-04 2007-05-24 Sony Corp Negative electrode active substance and battery
WO2014185005A1 (en) * 2013-05-15 2014-11-20 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery
JP2015005377A (en) * 2013-06-20 2015-01-08 信越化学工業株式会社 Active material for nonaqueous electrolyte secondary batteries, negative electrode mold, and nonaqueous electrolyte secondary battery
JP2015015171A (en) * 2013-07-05 2015-01-22 信越化学工業株式会社 Nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023500542A (en) * 2019-12-17 2023-01-06 エルジー エナジー ソリューション リミテッド A negative electrode and a secondary battery including the negative electrode
WO2023130683A1 (en) * 2022-01-05 2023-07-13 中材锂膜有限公司 Separator for non-aqueous electrolyte lithium secondary battery, and non-aqueous electrolyte lithium secondary battery
WO2023140192A1 (en) * 2022-01-21 2023-07-27 Tdk株式会社 Negative electrode active material for lithium ion secondary batteries, negative electrode active material layer for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP6809449B2 (en) 2021-01-06
JPWO2016152718A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
EP3386022B1 (en) Lithium ion secondary battery
JP6919646B2 (en) Lithium ion secondary battery
JP6848435B2 (en) Lithium ion secondary battery
JP6965745B2 (en) Lithium ion secondary battery
JP6927034B2 (en) Lithium-ion secondary battery and its manufacturing method
JP6787310B2 (en) Lithium ion secondary battery
JP6984584B2 (en) Negative electrode active material and lithium ion secondary battery using it
WO2016152991A1 (en) High-safety/high-energy-density cell
WO2017204213A1 (en) Lithium ion secondary battery
WO2016093246A1 (en) Lithium ion secondary battery
WO2016181926A1 (en) Lithium-ion secondary battery
WO2016152877A1 (en) Lithium ion secondary battery
JP5855737B2 (en) Lithium ion battery
JP6809449B2 (en) Lithium ion secondary battery
JP6812966B2 (en) Negative electrode and secondary battery for lithium ion secondary battery
US11824192B2 (en) Lithium ion secondary battery
WO2019182013A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768621

Country of ref document: EP

Kind code of ref document: A1