WO2016152705A1 - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
WO2016152705A1
WO2016152705A1 PCT/JP2016/058459 JP2016058459W WO2016152705A1 WO 2016152705 A1 WO2016152705 A1 WO 2016152705A1 JP 2016058459 W JP2016058459 W JP 2016058459W WO 2016152705 A1 WO2016152705 A1 WO 2016152705A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode
insulating layer
organic
layer
Prior art date
Application number
PCT/JP2016/058459
Other languages
French (fr)
Japanese (ja)
Inventor
元彦 浅野
明伸 早川
雄一郎 福本
峻士 小原
麻由美 湯川
智仁 宇野
哲也 会田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2016516621A priority Critical patent/JP6110993B2/en
Publication of WO2016152705A1 publication Critical patent/WO2016152705A1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a solar cell having a photoelectric conversion layer containing an organic / inorganic perovskite compound.
  • Patent Document 1 discloses an example of this type of solar cell.
  • a first electrode is provided on a substrate made of glass or the like.
  • a photoelectric conversion layer including a layer mainly composed of an organic / inorganic perovskite compound is provided over the first electrode.
  • a second electrode is formed on the photoelectric conversion layer.
  • this type of solar cell is required to be less likely to cause delamination, to have excellent sealing properties, and to have excellent impact resistance.
  • the solar cell according to the present invention includes a first electrode, a second electrode disposed to face the first electrode, the first electrode, and the second electrode. And a photovoltaic cell comprising a photoelectric conversion layer comprising an organic-inorganic perovskite compound, wherein the photovoltaic cell is partitioned into a plurality of photovoltaic cell portions sharing the first electrode, It has the 1st insulating layer which has insulated between the said adjacent photovoltaic cell part.
  • a second insulating layer provided on the outer peripheral side surface of the solar cell is further provided.
  • an auxiliary wiring for electrically connecting the second electrodes of the solar battery cell portions is further provided.
  • the second electrodes of all the solar battery cell portions can be reliably electrically connected by the auxiliary wiring. Therefore, what is necessary is just to connect the below-mentioned 2nd electrode for connecting with the exterior to auxiliary wiring.
  • the solar cell further includes a first terminal connected to the first electrode and a second terminal connected to the auxiliary wiring.
  • electric power can be easily taken out by electrically connecting the first terminal, the second terminal, and the outside.
  • the plurality of solar battery cell portions are electrically connected in parallel between the first terminal and the second terminal. Since a plurality of solar cells are electrically connected in parallel, even if some of the solar cell units fail, it is possible to reliably extract electric power by the electromotive force from the remaining solar cell units. .
  • the plurality of solar battery cell portions are arranged in a matrix.
  • the first insulating layer has a lattice shape.
  • the organic / inorganic perovskite compound has the general formula R-MX 3 (where R is an organic molecule, M is a metal atom, X is a halogen atom or a chalcogen) It is an atom.)
  • the first electrode is made of a metal foil. In this case, the flexibility of the solar cell can be enhanced.
  • the solar cell of the present invention delamination can be suppressed and sealing performance can be improved. Further, the impact resistance can be effectively enhanced.
  • FIGS. 1A and 1B are a plan view of a solar cell according to a first embodiment of the present invention and a partially cutaway enlarged cross-sectional view taken along the line BB in FIG.
  • FIG. 2 is a partially cutaway cross-sectional view taken along line CC in FIG. 1, and is a partially cutaway front cross-sectional view for explaining the structure of the vicinity of the outer periphery of the solar cell of the first embodiment of the present invention. It is.
  • FIG. 3 is a partially cutaway front sectional view showing a part of the solar cell according to the second embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing a solar cell according to a modification of the first embodiment of the present invention.
  • FIG. 1A is a plan view of a solar cell according to a first embodiment of the present invention
  • FIG. 1B is a partially cutaway enlarged cross section showing an enlarged portion along the line BB in FIG. FIG.
  • FIG. 2 is a partially cutaway cross-sectional view of a portion along the line CC in FIG. 1, and is an enlarged view of the partially cutout for explaining the structure of the vicinity of the outer periphery of the solar cell of the first embodiment of the present invention. It is sectional drawing.
  • the solar cell 1 has the 1st electrode 2 which consists of metal foil.
  • the first electrode 2 is not limited to a metal foil, and may be one in which a conductive layer is provided on an insulating substrate such as a glass substrate.
  • the metal which comprises metal foil is not specifically limited, Appropriate metals or alloys, such as stainless steel, Al, Cu, Ni, or Ti, can be used. When metal foil is used, the flexibility of the solar cell 1 can be improved.
  • the first electrode 2 may be formed by laminating a metal film on the resin film.
  • a resin film is not particularly limited, and a film made of polyester such as polyethylene terephthalate or polyethylene naphthalate, polyimide, polycarbonate, or the like can be used.
  • an appropriate metal such as Al, Cu, Mo, Ni, Ti or an alloy mainly composed of these can be used.
  • a resin film not only a resin film but a metal film can also be laminated
  • a plurality of metal films may be stacked.
  • a conductive transparent material and a conductive transparent polymer as described later can also be used. Even when a structure in which a metal film or a conductive transparent polymer is laminated on a flexible resin film is used, the flexibility of the solar cell can be improved.
  • a plurality of solar cell portions 3 a to 3 d are stacked on the first electrode 2.
  • the solar battery 1 has a plurality of solar battery cell portions sharing the first electrode 2.
  • adjacent solar battery cell portions for example, between the solar battery cell portion 3 a and the solar battery cell portion 3 b are partitioned by the first insulating layer 4.
  • between the adjacent solar cell portions 3b and 3c and between the adjacent solar cell portions 3c and 3d are also electrically insulated and partitioned by the first insulating layer 4.
  • FIG. 1A schematically shows a section of the solar cell portion. That is, the plurality of straight lines X1 and Y1 in FIG. 1A schematically show the partition portions by the first insulating layer. Actually, since an auxiliary wiring and a gas barrier layer, which will be described later, are provided so as to cover the first insulating layer, the first insulating layer 4 is not observed in a plan view as shown in FIG. In FIG. 1A, a gas barrier layer and auxiliary wiring described later are omitted.
  • the feature of the solar battery 1 of the present embodiment is that the solar battery cells are partitioned in a matrix as shown in FIG. That is, the solar cell part is provided in each of the rectangular portions that are orthogonal to the straight line X1 and the straight line X1 and are surrounded by the straight lines Y1 that are parallel to each other. Thus, a plurality of solar cells are arranged in a matrix. Moreover, as shown in FIG. 2, the 2nd insulating layer 5 is provided in the outer peripheral side surface of the solar cell 1 so that the outer side surface of the photovoltaic cell part 3z located in an outer periphery may be sealed. .
  • the insulating material constituting the first insulating layer 4 and the second insulating layer 5 is not particularly limited. That is, an organic insulating material may be used.
  • an inorganic insulating material may be used. Examples of such an inorganic insulating material include inorganic oxides such as SiO 2 , Al 2 O 3 , and ZrO, glass, crease, and the like. Further, if the heat resistance is sufficiently good, an organic insulating material may be used. Examples of such an organic insulating material include thermosetting polyimide.
  • the 1st insulating layer 4 it is necessary to endure the film-forming temperature of each layer of the said photovoltaic cell.
  • the deposition temperature of each layer of the solar battery cell may be as high as about 400 ° C., for example, it is desirable to use a material that can withstand such a temperature. Therefore, since it is desirable that the first insulating layer 4 is made of an inorganic insulating material, the above-described inorganic oxide baking film is even more preferable.
  • the first insulating layer 4 and the second insulating layer 5 can be formed by printing and baking an insulating material on the first electrode 2. But the formation method of the 1st and 2nd insulating layers 4 and 5 is not limited to this. As the printing method, an appropriate printing method such as screen printing, gravure printing, offset gravure printing, flexographic printing, or the like can be used.
  • the first insulating layer 4 extends along the straight line X1 and the straight line Y1, and has a lattice shape as a whole in plan view.
  • the first insulating layer 4 is not limited to one having a lattice shape.
  • the width of the first insulating layer 4, that is, the dimension in the direction orthogonal to the straight lines X 1 and Y 1 is larger than the width of the second insulating layer 5, that is, the dimension in the direction orthogonal to the extending direction of the second insulating layer 5. It has been made smaller. Thereby, it is possible to increase an effective area in a portion where a plurality of solar battery cell portions are gathered. Therefore, it is preferable that the width of the first insulating layer 4 is smaller than the width of the second insulating layer 5. However, the width of the first insulating layer 4 may be equal to the width of the second insulating layer 5 or may be larger than the width of the second insulating layer 5.
  • the specific dimensions of the first and second insulating layers are not particularly limited.
  • the height of the first insulating layer 4 is preferably about 1 ⁇ m to 10 ⁇ m.
  • the width dimension is preferably 50 ⁇ m to 5 mm, more preferably about 100 ⁇ m to 3 mm, and the distance between the centers of the adjacent first insulating layers 4 is preferably about 50 ⁇ m to 20 mm.
  • the height of the second insulating layer 5 is desirably about 1 ⁇ m to 10 ⁇ m, and the width is desirably about 50 ⁇ m to 5 mm, more preferably about 100 ⁇ m to 3 mm.
  • the first electron transport layer 11, the second electron transport layer 12, the photoelectric conversion layer 13, the hole transport layer 14, the second electrode 15, and the planarization layer are formed on the first electrode 2. 16 are stacked in this order.
  • the photoelectric conversion layer 13 contains an organic / inorganic herbskite compound.
  • photoelectric conversion is performed by this organic / inorganic perovskite compound, and electric power is taken out.
  • the details of each layer constituting the solar cell portion 3b will be described later.
  • a feature of the solar cell 1 is that a plurality of solar cell portions 3a to 3d using such an organic / inorganic perovskite compound are arranged in a matrix.
  • the solar battery cell is divided into the plurality of solar battery cell portions by the first insulating layer 4. Therefore, even when the area is increased, delamination hardly occurs because the area is partitioned into a plurality of solar battery cell portions. Therefore, sealing performance can be improved.
  • the small solar battery cell portions are partitioned by the first insulating layer 4, even when a mechanical shock is applied from the outside, the insulating layer 4 has an impact in a direction perpendicular to the light receiving surface.
  • a gas barrier layer 6 is provided so as to cover the upper surface of the solar cell 1.
  • the gas barrier layer 6 is excellent in water vapor barrier properties. Therefore, it is possible to effectively suppress the penetration of water vapor into the interior.
  • the material constituting the gas barrier layer 6 is not particularly limited, but preferably includes, for example, a metal oxide, a metal nitride, or a metal oxynitride.
  • the metal in the metal oxide, metal nitride or metal oxide is not particularly limited. For example, Si, Al, Zn, Sn, In, Ti, Mg, Zr, Ni, Ta, W, Cu, or these metals are mainly used. Can be mentioned. Especially, since it is excellent in water vapor
  • the gas barrier layer 6 it is possible to reliably suppress the ingress of moisture into the solar cell portion below.
  • the gas barrier layer 6 is provided as in the present embodiment.
  • the impact resistance is also effectively enhanced, it is difficult for the solar cell 1 to be broken or deformed by an external impact or the like.
  • it is compartmentalized it is possible to prevent diffusion of moisture that has entered a certain compartment into other compartments. Therefore, it is possible to effectively prevent moisture from entering.
  • the upper end of the first insulating layer 4 is located above the second electrode 15 and the planarization layer 16.
  • An auxiliary wiring 8 is provided so as to cover the upper end of the first insulating layer 4. Therefore, the auxiliary wiring 8 also has a lattice-like planar shape.
  • the auxiliary wiring 8 is provided so as to reach the upper end and the side surface of the first insulating layer 4. Further, although not shown in FIG. 1A, the auxiliary wiring 8 is extended along the straight line X1 and the straight line Y1 in FIG. That is, the auxiliary wiring 8 is spread over the lattice-shaped first insulating layer 4.
  • the auxiliary wiring 8 does not need to be a grid
  • the lower end of the auxiliary wiring 8 is in contact with and electrically connected to the upper surface of the second electrode 15. Therefore, the second electrodes 15 of all the solar battery cell portions are electrically connected by the auxiliary wiring 8.
  • the gas barrier layer 6 is removed in a part of the auxiliary wiring 8.
  • the second terminal 7 is bonded to the portion where the gas barrier layer 6 is removed and the auxiliary wiring 8 is exposed.
  • a plurality of second terminals 7 are preferably provided as shown in FIG.
  • the 1st terminal 9 is provided below the part in which the 2nd terminal 7 is provided.
  • the first terminal 9 is electrically joined to the first electrode 2.
  • the material constituting the auxiliary wiring 8, the first terminal 9, and the second terminal 7 is not particularly limited as long as it is a conductive material. However, it is preferable to use a metal or alloy such as Cu, Al, or Ag. It is preferable that the surfaces of the first terminal 9 and the second terminal 7 are plated with solder. Costs can be reduced by using this type of metal or alloy. In addition, the electric resistance of the electrical connection portion can be lowered and a larger amount of power can be taken out.
  • auxiliary wiring 8 it is not always necessary to provide the auxiliary wiring 8 over the entire region of the upper end surface of the lattice-shaped first insulating layer 4, and the arrangement of the auxiliary wiring 8 is not limited as long as a plurality of solar battery cell portions can be electrically connected. You may deform
  • the second terminal 7 does not necessarily have to be joined to the upper surface of the auxiliary wiring 8 as long as it is electrically connected to the auxiliary wiring 8.
  • the second terminal 7 may be provided so as to be electrically connected to the side surface of the auxiliary wiring 8 or the like.
  • the first terminal 9 may not be provided, and the first electrode 2 itself may be electrically connected to the outside.
  • the gas barrier layer 6 having the water vapor barrier property is provided, but the gas barrier layer 6 may be removed as in the second embodiment shown in FIG. Further, the planarizing layer 16 may also be removed. In this case, the second terminal 7 may be directly joined to the upper surface of the auxiliary wiring 8.
  • FIG. 4 is a schematic plan view showing a solar cell according to a modification of the first embodiment of the present invention.
  • a plurality of types of auxiliary wirings 8, 8A, 8B are provided in the solar cell 1A of this modification. That is, as in the first embodiment, the narrow auxiliary wirings 8 are arranged in a grid pattern.
  • An auxiliary wiring 8A having a width wider than that of the auxiliary wiring 8 is provided so as to extend in the horizontal direction in FIG. Further, a plurality of auxiliary wirings 8B having a wider width extend in a direction intersecting with the auxiliary wiring 8A.
  • auxiliary wirings 8, 8A, 8B having different widths may be provided.
  • a plurality of types of auxiliary wirings 8, 8A, 8B having different widths may be provided.
  • not only the thickness but also a plurality of types of auxiliary wirings having different heights may be used.
  • a plurality of types of auxiliary wirings having different thicknesses, heights and thicknesses may be used.
  • the second terminals 7 and 7 shown in FIG. 1 are not shown.
  • the second terminal may be joined to the widest auxiliary wiring 8B, 8B.
  • the plurality of solar battery cell portions are arranged in a matrix.
  • the plurality of solar battery cell portions may be distributed in a form other than the matrix shape. That is, the form which partitions a photovoltaic cell is not limited to matrix form.
  • the material of each layer constituting the solar cell part is not particularly limited.
  • the first electrode 2 and the second electrode 15 may be formed using an appropriate conductive material.
  • suitable conductive material include FTO (fluorine-doped tin oxide), sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / Al 2 O. 3 mixture, Al / LiF mixture, metal such as gold, CuI, ITO (indium tin oxide), SnO 2 , AZO (aluminum zinc oxide), IZO (indium zinc oxide), GZO (gallium zinc oxide), etc.
  • the first electrode is preferably a metal foil.
  • the metal which comprises metal foil is not specifically limited, Appropriate metals or alloys, such as stainless steel, Al, Cu, Ni, or Ti, can be used.
  • the second electrode 15 may be formed on the first insulating layer 4 and / or the second insulating layer 5.
  • the first and second electron transport layers 11 and 12 may not be provided, but the photoelectric conversion efficiency can be increased by providing the first and second electron transport layers 11 and 12.
  • the material of the electron transport layers 11 and 12 is not particularly limited.
  • the N-type conductive polymer, the N-type low molecular organic semiconductor, the N-type metal oxide, the N-type metal sulfide, the alkali metal halide, the alkali metal Specific examples thereof include cyano group-containing polyphenylene vinylene, boron-containing polymer, bathocuproine, bathophenanthrene, hydroxyquinolinato aluminum, oxadiazole compound, benzimidazole compound, naphthalene tetracarboxylic acid compound, perylene.
  • phosphine oxide compounds phosphine sulfide compounds
  • fluoro group-containing phthalocyanines titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, and the like. These materials may be used alone or in combination of two or more.
  • the first electron transport layer 11 may be used, but it is more preferable to provide the porous second electron transport layer 12.
  • the photoelectric conversion layer 13 is a composite film in which an organic semiconductor or an inorganic semiconductor part and an organic / inorganic perovskite compound part are combined, a more complex composite film (a more complicated structure) can be obtained. It is preferable that a composite film is formed on the porous second electron transport layer 12 because the conversion efficiency becomes high.
  • the thickness of the electron transport layer has a preferable lower limit of 1 nm and a preferable upper limit of 2000 nm.
  • the thickness of the electron transport layer is the thickness of the first electron transport layer 11 when only the first electron transport layer 11 is used, and the thickness of the first electron transport layer 12 is also used. , And the total thickness of the first and second electron transport layers 11 and 12. If the thickness of the electron transport layer is 1 nm or more, holes can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of electron transport, and photoelectric conversion efficiency will become high.
  • the more preferable lower limit of the thickness of the electron transport layer is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the more preferable upper limit is 500 nm.
  • the photoelectric conversion layer 13 includes an organic / inorganic perovskite compound represented by the general formula RMX 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom or a chalcogen atom).
  • RMX 3 organic / inorganic perovskite compound represented by the general formula RMX 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom or a chalcogen atom.
  • the R is an organic molecule, and is preferably represented by C 1 N m H n (l, m, and n are all positive integers).
  • R is, for example, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, trimethylamine, triethylamine, tripropyl.
  • ions eg, methylammonium (CH 3 NH 3 )
  • methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine and their ions and phenethylammonium are preferred, and methylamine, ethylamine, propylamine and these ions are more preferred.
  • M is a metal atom, for example, lead, tin, zinc, titanium, antimony, bismuth, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, Europium etc. are mentioned. These metal atoms may be used independently and 2 or more types may be used together.
  • X is a halogen atom or a chalcogen atom, and examples thereof include chlorine, bromine, iodine, sulfur, selenium and the like. These halogen atoms or chalcogen atoms may be used alone or in combination of two or more. Among these, the halogen atom is preferable because the organic / inorganic perovskite compound becomes soluble in an organic solvent and can be applied to an inexpensive printing method by containing halogen in the structure. Furthermore, iodine is more preferable because the energy band gap of the organic-inorganic perovskite compound becomes narrow.
  • the organic / inorganic perovskite compound preferably has a cubic structure in which a metal atom M is located at the body center, an organic molecule R is located at each vertex, and a halogen atom or a chalcogen atom X is located at the face center.
  • the photoelectric conversion layer 13 may further contain an organic semiconductor or an inorganic semiconductor in addition to the organic / inorganic perovskite compound as long as the effect of the present invention is not impaired.
  • the organic semiconductor or inorganic semiconductor here may serve as an electron transport layer or a hole transport layer.
  • organic semiconductor examples include compounds having a thiophene skeleton such as poly (3-alkylthiophene).
  • conductive polymers having a polyparaphenylene vinylene skeleton, a polyvinyl carbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton, and the like can be given.
  • a compound having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, or a benzoporphyrin skeleton, a spirobifluorene skeleton, or the like, or a carbon-containing material such as a carbon nanotube, graphene, or fullerene that may be surface-modified.
  • a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, or a benzoporphyrin skeleton, a spirobifluorene skeleton, or the like, or a carbon-containing material such as a carbon nanotube, graphene, or fullerene that may be surface-modified.
  • the inorganic semiconductor examples include titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, CuSCN, Cu 2 O, CuI, MoO 3 , V 2 O 5 , WO 3 , MoS 2, MoSe 2, Cu 2 S , and the like.
  • the photoelectric conversion layer may be a thin film organic semiconductor or a laminated body in which an inorganic semiconductor portion and a thin organic inorganic perovskite compound portion are laminated, or an organic semiconductor Alternatively, a composite film in which an inorganic semiconductor site and an organic / inorganic perovskite compound site are combined may be used.
  • a laminated body is preferable in that the production method is simple, and a composite film is preferable in that the charge separation efficiency in the organic semiconductor or the inorganic semiconductor can be improved.
  • the preferable lower limit of the thickness of the thin-film organic / inorganic perovskite compound portion is 5 nm, and the preferable upper limit is 5000 nm. If the thickness is 5 nm or more, light can be sufficiently absorbed, and the photoelectric conversion efficiency is increased. If the said thickness is 5000 nm or less, since it can suppress that the area
  • the more preferable lower limit of the thickness is 10 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 20 nm, and the still more preferable upper limit is 500 nm.
  • the hole transport layer 14 may not be used, but is preferably provided as in the above embodiment.
  • the material of the hole transport layer 14 is not particularly limited, and examples thereof include a P-type conductive polymer, a P-type low molecular organic semiconductor, a P-type metal oxide, a P-type metal sulfide, and a surfactant.
  • copper compounds such as copper and tin sulfide, copper compounds such as fluoro group-containing phosphonic acid, carbonyl group-containing phosphonic acid, CuSCN, and CuI, carbon nanotubes that may be surface-modified, and graphene.
  • the preferable lower limit of the thickness of the hole transport layer is 1 nm, and the preferable upper limit is 2000 nm. If the thickness is 1 nm or more, electrons can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of hole transport, and a photoelectric conversion efficiency will become high.
  • the more preferable lower limit of the thickness is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 500 nm.
  • the second electrode 15 is preferably transparent. Thereby, sufficient light can be guided to the photoelectric conversion layer 13. Therefore, it is desirable to use an electrode material having excellent transparency such as ITO for the second electrode 15.
  • the planarization layer 16 is provided to seal each solar cell part, and is provided to planarize the upper surface of the solar cell part.
  • a planarization layer 16 can be formed using, for example, a transparent resin.
  • a resin having an alicyclic skeleton is preferably used.
  • the resin having such an alicyclic skeleton include a polymer of TOPAS9014 (manufactured by Polyplastics, having a norbornene skeleton), light ester IB-X (manufactured by Kyoeisha Chemical Co., Ltd., having an isobornene skeleton), MA-DM. And a polymer of Mitsubishi Gas Chemical Co., Ltd. (having an adamantane skeleton).
  • the present invention is characterized by partitioning a solar battery cell into a plurality of solar battery cell portions, and therefore, the individual laminated form of each of the solar battery cell portions and the material of each layer are particularly It is not limited. Therefore, the configuration of the solar battery cell itself in the solar battery of the present invention can be modified as appropriate.

Abstract

Provided is a solar cell unlikely to have interlayer peeling, having excellent sealing properties, and having excellent impact resistance. The solar cell (1) has: solar cell cells layered above a first electrode (2) and partitioned into a plurality of solar cell cell sections (3a-3d) by a first insulating layer (4); and a second insulating layer (5) provided on the outer periphery of an area in which the plurality of solar cell cell sections (3a-3d) are arranged. Each solar cell cell section (3a-3d) has: the first electrode (2); and a second electrode (15) laminated upon the first electrode (2) and laminated upon a photoelectric conversion layer (13) including an organic-inorganic perovskite compound.

Description

太陽電池Solar cell
 本発明は、有機無機ペロブスカイト化合物を含む光電変換層を有する太陽電池に関する。 The present invention relates to a solar cell having a photoelectric conversion layer containing an organic / inorganic perovskite compound.
 従来、有機無機ペロブスカイト化合物を含む光電変換層を有する太陽電池が知られている。例えば下記の特許文献1には、この種の太陽電池の一例が開示されている。この太陽電池では、ガラス等からなる基板上に第1の電極が設けられている。第1の電極上に、有機無機ペロブスカイト化合物を主体とする層を含む光電変換層が設けられている。この光電変換層上に、第2の電極が形成されている。 Conventionally, a solar cell having a photoelectric conversion layer containing an organic / inorganic perovskite compound is known. For example, Patent Document 1 below discloses an example of this type of solar cell. In this solar cell, a first electrode is provided on a substrate made of glass or the like. A photoelectric conversion layer including a layer mainly composed of an organic / inorganic perovskite compound is provided over the first electrode. A second electrode is formed on the photoelectric conversion layer.
特開2014-72327号公報JP 2014-72327 A
 有機無機ペロブスカイト化合物等の有機系光電変換層を用いた太陽電池では、柔軟な基材を用いることにより、フレキシブル性を高めることができる。しかしながら、光電変換層の面積が大きくなると、層間剥離が生じやすくなるという問題があった。層間剥離が生じたり、外部からの衝撃等により欠陥が生じたりすると、水分が太陽電池内に浸入することとなる。他方、有機無機ペロブスカイト化合物の金属原子としてPbが用いられている場合、上記水分が浸入すると、Pbイオンが外部に溶出するおそれがあった。 In a solar cell using an organic photoelectric conversion layer such as an organic / inorganic perovskite compound, flexibility can be enhanced by using a flexible base material. However, when the area of the photoelectric conversion layer is increased, there is a problem that delamination is likely to occur. When delamination occurs or a defect occurs due to an impact from the outside, moisture enters the solar cell. On the other hand, when Pb is used as the metal atom of the organic / inorganic perovskite compound, there is a possibility that Pb ions may be eluted to the outside when the moisture enters.
 従って、この種の太陽電池では、層間剥離が生じ難いこと、封止性に優れていること、並びに耐衝撃性に優れていることが求められる。 Therefore, this type of solar cell is required to be less likely to cause delamination, to have excellent sealing properties, and to have excellent impact resistance.
 本発明の目的は、層間剥離が生じ難く、封止性に優れており、さらに耐衝撃性に優れている、太陽電池を提供することにある。 It is an object of the present invention to provide a solar cell that does not easily cause delamination, has excellent sealing properties, and has excellent impact resistance.
 本発明に係る太陽電池は、第1の電極と、前記第1の電極と対向するように配置されている第2の電極と、前記第1の電極と、前記第2の電極との間に配置されており、有機無機ペロブスカイト化合物を含む光電変換層とを備える太陽電池であって、前記太陽電池を、前記第1の電極を共有している複数の太陽電池セル部に区画するように、隣り合う前記太陽電池セル部間を絶縁している第1の絶縁層を有する。 The solar cell according to the present invention includes a first electrode, a second electrode disposed to face the first electrode, the first electrode, and the second electrode. And a photovoltaic cell comprising a photoelectric conversion layer comprising an organic-inorganic perovskite compound, wherein the photovoltaic cell is partitioned into a plurality of photovoltaic cell portions sharing the first electrode, It has the 1st insulating layer which has insulated between the said adjacent photovoltaic cell part.
 本発明に係る太陽電池のある特定の局面では、前記太陽電池の外周側面に設けられた第2の絶縁層がさらに備えられている。 In a specific aspect of the solar cell according to the present invention, a second insulating layer provided on the outer peripheral side surface of the solar cell is further provided.
 本発明に係る太陽電池の他の特定の局面では、前記各太陽電池セル部の前記第2の電極同士を電気的に接続する補助配線がさらに備えられている。この場合には、補助配線により、全ての太陽電池セル部の第2の電極同士を確実に電気的に接続することができる。よって、補助配線に、外部と接続するための後述の第2の電極同士を接続すればよい。 In another specific aspect of the solar battery according to the present invention, an auxiliary wiring for electrically connecting the second electrodes of the solar battery cell portions is further provided. In this case, the second electrodes of all the solar battery cell portions can be reliably electrically connected by the auxiliary wiring. Therefore, what is necessary is just to connect the below-mentioned 2nd electrode for connecting with the exterior to auxiliary wiring.
 本発明に係る太陽電池のさらに他の特定の局面では、前記第1の電極に接続されている第1の端子と、前記補助配線に接続されている第2の端子とがさらに備えられている。この場合には、第1の端子と第2の端子と外部と電気的に接続することにより容易に電力を取り出すことができる。 In still another specific aspect of the solar cell according to the present invention, the solar cell further includes a first terminal connected to the first electrode and a second terminal connected to the auxiliary wiring. . In this case, electric power can be easily taken out by electrically connecting the first terminal, the second terminal, and the outside.
 本発明に係る太陽電池の別の特定の局面では、前記複数の太陽電池セル部が、前記第1の端子と前記第2の端子との間で電気的に並列に接続されている。複数の太陽電池セルが電気的に並列に接続されているため、いくつかの太陽電池セル部が故障したとしても、残りの太陽電池セル部からの起電力により、電力を確実に取り出すことができる。 In another specific aspect of the solar battery according to the present invention, the plurality of solar battery cell portions are electrically connected in parallel between the first terminal and the second terminal. Since a plurality of solar cells are electrically connected in parallel, even if some of the solar cell units fail, it is possible to reliably extract electric power by the electromotive force from the remaining solar cell units. .
 本発明に係る太陽電池のさらに他の特定の局面では、前記複数の太陽電池セル部が、マトリクス状に配置されている。 In yet another specific aspect of the solar battery according to the present invention, the plurality of solar battery cell portions are arranged in a matrix.
 本発明に係る太陽電池のさらに別の特定の局面では、前記第1の絶縁層が、格子状である。 In yet another specific aspect of the solar cell according to the present invention, the first insulating layer has a lattice shape.
 本発明に係る太陽電池のさらに他の特定の局面では、前記有機無機ペロブスカイト型化合物が、一般式R-M-X(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子またはカルコゲン原子である。)で表される。 In still another specific aspect of the solar cell according to the present invention, the organic / inorganic perovskite compound has the general formula R-MX 3 (where R is an organic molecule, M is a metal atom, X is a halogen atom or a chalcogen) It is an atom.)
 本発明に係る太陽電池の別の特定の局面では、前記第1の電極が金属箔からなる。この場合には、太陽電池のフレキシブル性を高めることができる。 In another specific aspect of the solar cell according to the present invention, the first electrode is made of a metal foil. In this case, the flexibility of the solar cell can be enhanced.
 本発明に係る太陽電池によれば、層間剥離を抑制することができ、封止性を高めることができる。また、耐衝撃性も効果的に高められる。 According to the solar cell of the present invention, delamination can be suppressed and sealing performance can be improved. Further, the impact resistance can be effectively enhanced.
図1(a),(b)は、本発明の第1の実施形態に係る太陽電池の平面図及び(a)中の矢印B-B線に沿う部分の部分切欠拡大断面図である。FIGS. 1A and 1B are a plan view of a solar cell according to a first embodiment of the present invention and a partially cutaway enlarged cross-sectional view taken along the line BB in FIG. 図2は、図1のC-C線に沿う部分の部分切欠断面図であって、本発明の第1の実形態の太陽電池の外周近傍部分の構造を説明するための部分切欠正面断面図である。FIG. 2 is a partially cutaway cross-sectional view taken along line CC in FIG. 1, and is a partially cutaway front cross-sectional view for explaining the structure of the vicinity of the outer periphery of the solar cell of the first embodiment of the present invention. It is. 図3は、本発明の第2の実施形態に係る太陽電池の一部を示す部分切欠正面断面図である。FIG. 3 is a partially cutaway front sectional view showing a part of the solar cell according to the second embodiment of the present invention. 図4は、本発明の第1の実施形態の変形例に係る太陽電池を示す模式的平面図である。FIG. 4 is a schematic plan view showing a solar cell according to a modification of the first embodiment of the present invention.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 図1(a)は、本発明の第1の実施形態に係る太陽電池の平面図であり、(b)は(a)中のB-B線に沿う部分を拡大して示す部分切欠拡大断面図である。 FIG. 1A is a plan view of a solar cell according to a first embodiment of the present invention, and FIG. 1B is a partially cutaway enlarged cross section showing an enlarged portion along the line BB in FIG. FIG.
 また、図2は、図1のC-C線に沿う部分の部分切欠断面図であって、本発明の第1の実形態の太陽電池の外周近傍部分の構造を説明するための部分切欠拡大断面図である。 FIG. 2 is a partially cutaway cross-sectional view of a portion along the line CC in FIG. 1, and is an enlarged view of the partially cutout for explaining the structure of the vicinity of the outer periphery of the solar cell of the first embodiment of the present invention. It is sectional drawing.
 図1(b)に示すように、太陽電池1は、金属箔からなる第1の電極2を有する。なお、第1の電極2は、金属箔に限らず、例えばガラス基板等の絶縁性基板上に導電層を設けたものであってもよい。金属箔を構成する金属は、特に限定されず、ステンレス、Al、Cu、NiまたはTi等の適宜の金属もしくは合金を用いることができる。金属箔を用いた場合、太陽電池1のフレキシブル性を高めることができる。 As shown in FIG.1 (b), the solar cell 1 has the 1st electrode 2 which consists of metal foil. The first electrode 2 is not limited to a metal foil, and may be one in which a conductive layer is provided on an insulating substrate such as a glass substrate. The metal which comprises metal foil is not specifically limited, Appropriate metals or alloys, such as stainless steel, Al, Cu, Ni, or Ti, can be used. When metal foil is used, the flexibility of the solar cell 1 can be improved.
 もっとも、樹脂フィルム上に金属膜を積層することにより、該金属膜により第1の電極2を構成してもよい。このような樹脂フィルムとしては、特に限定されず、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリイミド、ポリカーボネート等からなるものを用いることができる。また、金属膜についても、Al、Cu、Mo、Ni、Tiまたはこれらを主体とする合金等の適宜の金属を用いることができる。なお、樹脂フィルムに限らず、金属箔上に金属膜を積層することもできる。また、複数の金属膜が積層されていてもよい。更に、後述するような導電性透明材料、導電性透明ポリマーを用いることもできる。柔軟な樹脂フィルム上に金属膜や導電性透明ポリマーを積層した構造を用いた場合においても、太陽電池のフレキシブル性を高めることができる。 Of course, the first electrode 2 may be formed by laminating a metal film on the resin film. Such a resin film is not particularly limited, and a film made of polyester such as polyethylene terephthalate or polyethylene naphthalate, polyimide, polycarbonate, or the like can be used. Also for the metal film, an appropriate metal such as Al, Cu, Mo, Ni, Ti or an alloy mainly composed of these can be used. In addition, not only a resin film but a metal film can also be laminated | stacked on metal foil. A plurality of metal films may be stacked. Furthermore, a conductive transparent material and a conductive transparent polymer as described later can also be used. Even when a structure in which a metal film or a conductive transparent polymer is laminated on a flexible resin film is used, the flexibility of the solar cell can be improved.
 第1の電極2上に、複数の太陽電池セル部3a~3dが積層されている。太陽電池1では、第1の電極2を共有する複数の太陽電池セル部を有する。具体的には、図1(b)に示す部分では、隣り合う太陽電池セル部、例えば太陽電池セル部3aと太陽電池セル部3bとの間が、第1の絶縁層4により区画されている。同様に、隣り合う太陽電池セル部3b,3c間及び隣り合う太陽電池セル部3c,3d間も第1の絶縁層4により電気的に絶縁され、かつ区画されている。 A plurality of solar cell portions 3 a to 3 d are stacked on the first electrode 2. The solar battery 1 has a plurality of solar battery cell portions sharing the first electrode 2. Specifically, in the portion shown in FIG. 1B, adjacent solar battery cell portions, for example, between the solar battery cell portion 3 a and the solar battery cell portion 3 b are partitioned by the first insulating layer 4. . Similarly, between the adjacent solar cell portions 3b and 3c and between the adjacent solar cell portions 3c and 3d are also electrically insulated and partitioned by the first insulating layer 4.
 図1(a)は、この太陽電池セル部の区画を模式的に示している。すなわち、図1(a)の複数の直線X1及びY1は、上記第1の絶縁層による区画部分を模式的に示している。実際には、第1の絶縁層を覆うように後述の補助配線やガスバリア層が設けられているため、図1(a)のような平面視においては、第1の絶縁層4は観察されない。図1(a)では、後述のガスバリア層及び補助配線を省略している。 FIG. 1A schematically shows a section of the solar cell portion. That is, the plurality of straight lines X1 and Y1 in FIG. 1A schematically show the partition portions by the first insulating layer. Actually, since an auxiliary wiring and a gas barrier layer, which will be described later, are provided so as to cover the first insulating layer, the first insulating layer 4 is not observed in a plan view as shown in FIG. In FIG. 1A, a gas barrier layer and auxiliary wiring described later are omitted.
 本実施形態の太陽電池1の特徴は、太陽電池セルが図1(a)に示すように、マトリクス状に区画されていることにある。すなわち、互いに平行な直線X1と、直線X1に直交しており、互いに平行な直線Y1で囲まれた矩形部に、それぞれ、太陽電池セル部が設けられている。よって、複数の太陽電池セルが、マトリクス状に配置されている。また、図2に示すように、太陽電池1の外周側面には、外周縁に位置している太陽電池セル部3zの外側側面を封止するように第2の絶縁層5が設けられている。 The feature of the solar battery 1 of the present embodiment is that the solar battery cells are partitioned in a matrix as shown in FIG. That is, the solar cell part is provided in each of the rectangular portions that are orthogonal to the straight line X1 and the straight line X1 and are surrounded by the straight lines Y1 that are parallel to each other. Thus, a plurality of solar cells are arranged in a matrix. Moreover, as shown in FIG. 2, the 2nd insulating layer 5 is provided in the outer peripheral side surface of the solar cell 1 so that the outer side surface of the photovoltaic cell part 3z located in an outer periphery may be sealed. .
 上記第1の絶縁層4及び第2の絶縁層5を構成する絶縁性材料は特に限定されない。すなわち、有機絶縁性材料を用いてもよい。また、無機絶縁性材料を用いてもよい。このような無機絶縁性材料としては、SiO、Al、ZrO等の無機酸化物、ガラス、クレースト等を挙げることができる。また、耐熱性が充分良好であれば、有機絶縁性材料を用いてもよい。このような有機絶縁性材料としては、例えば熱硬化性ポリイミド等を挙げることができる。 The insulating material constituting the first insulating layer 4 and the second insulating layer 5 is not particularly limited. That is, an organic insulating material may be used. In addition, an inorganic insulating material may be used. Examples of such an inorganic insulating material include inorganic oxides such as SiO 2 , Al 2 O 3 , and ZrO, glass, crease, and the like. Further, if the heat resistance is sufficiently good, an organic insulating material may be used. Examples of such an organic insulating material include thermosetting polyimide.
 なお、第1の絶縁層4については、上記太陽電池セルの各層の成膜温度に耐え得る必要がある。例えば、太陽電池セルの各層の成膜温度が例えば400℃程度と高い場合があるため、このような温度に耐え得る材料を用いることが望ましい。よって、第1の絶縁層4は、無機絶縁性材料から成ることが望ましいため、特に、上記無機酸化物の焼き付け膜がより一層好ましい。 In addition, about the 1st insulating layer 4, it is necessary to endure the film-forming temperature of each layer of the said photovoltaic cell. For example, since the deposition temperature of each layer of the solar battery cell may be as high as about 400 ° C., for example, it is desirable to use a material that can withstand such a temperature. Therefore, since it is desirable that the first insulating layer 4 is made of an inorganic insulating material, the above-described inorganic oxide baking film is even more preferable.
 また、第1の絶縁層4及び第2の絶縁層5は、絶縁性材料を第1の電極2上に印刷し、焼き付けることにより形成することができる。もっとも、第1及び第2の絶縁層4,5の形成方法はこれに限定されるものではない。上記印刷方法としては、スクリーン印刷、グラビア印刷、オフセットグラビア印刷、フレキソ印刷等の適宜の印刷方法を用いることができる。 The first insulating layer 4 and the second insulating layer 5 can be formed by printing and baking an insulating material on the first electrode 2. But the formation method of the 1st and 2nd insulating layers 4 and 5 is not limited to this. As the printing method, an appropriate printing method such as screen printing, gravure printing, offset gravure printing, flexographic printing, or the like can be used.
 なお、第1の絶縁層4は、直線X1及び直線Y1に沿って延びており、平面視において、全体として格子状の形状をしている。もっとも、第1の絶縁層4は格子状の形状を有するものに限定されるものではない。 Note that the first insulating layer 4 extends along the straight line X1 and the straight line Y1, and has a lattice shape as a whole in plan view. However, the first insulating layer 4 is not limited to one having a lattice shape.
 また、第1の絶縁層4の幅、すなわち直線X1,Y1と直交する方向の寸法は、第2の絶縁層5の幅すなわち第2の絶縁層5の延びる方向と直交する方向の寸法よりも小さくされている。それによって、複数の太陽電池セル部が集合されている部分における有効面積を大きくすることが可能とされている。従って、好ましくは、第1の絶縁層4の幅が、第2の絶縁層5の幅よりも小さいことが望ましい。もっとも、第1の絶縁層4の幅は第2の絶縁層5の幅と等しくてもよく、第2の絶縁層5の幅よりも大きくてもよい。 Further, the width of the first insulating layer 4, that is, the dimension in the direction orthogonal to the straight lines X 1 and Y 1 is larger than the width of the second insulating layer 5, that is, the dimension in the direction orthogonal to the extending direction of the second insulating layer 5. It has been made smaller. Thereby, it is possible to increase an effective area in a portion where a plurality of solar battery cell portions are gathered. Therefore, it is preferable that the width of the first insulating layer 4 is smaller than the width of the second insulating layer 5. However, the width of the first insulating layer 4 may be equal to the width of the second insulating layer 5 or may be larger than the width of the second insulating layer 5.
 上記第1,第2の絶縁層の具体的な寸法は特に限定されない。もっとも、第1の絶縁層4の高さについては、1μm~10μm程度とすることが好ましい。また、幅方向寸法は50μm~5mm、より好ましくは100μm~3mm程度とすることが望ましく、隣り合う第1の絶縁層4の中心間距離は、50μm~20mm程度とすることが望ましい。 The specific dimensions of the first and second insulating layers are not particularly limited. However, the height of the first insulating layer 4 is preferably about 1 μm to 10 μm. The width dimension is preferably 50 μm to 5 mm, more preferably about 100 μm to 3 mm, and the distance between the centers of the adjacent first insulating layers 4 is preferably about 50 μm to 20 mm.
 他方、第2の絶縁層5の高さは、1μm~10μm程度とすることが望ましく、幅は50μm~5mm、より好ましくは100μm~3mm程度とすることが望ましい。 On the other hand, the height of the second insulating layer 5 is desirably about 1 μm to 10 μm, and the width is desirably about 50 μm to 5 mm, more preferably about 100 μm to 3 mm.
 次に、太陽電池セル部3bを代表して積層構造の詳細を説明することとする。 Next, the details of the laminated structure will be described on behalf of the solar battery cell portion 3b.
 太陽電池セル部3bでは、第1の電極2上に、第1の電子輸送層11、第2の電子輸送層12、光電変換層13、ホール輸送層14、第2の電極15、平坦化層16がこの順序で積層されている。 In the solar cell portion 3b, the first electron transport layer 11, the second electron transport layer 12, the photoelectric conversion layer 13, the hole transport layer 14, the second electrode 15, and the planarization layer are formed on the first electrode 2. 16 are stacked in this order.
 上記光電変換層13は、有機無機ヘロブスカイト化合物を含む。太陽電池1では、この有機無機ペロブスカイト化合物により、光電変換が行われ、電力が取り出される。なお、上記太陽電池セル部3bを構成している各層の詳細は後ほど説明することとする。 The photoelectric conversion layer 13 contains an organic / inorganic herbskite compound. In the solar cell 1, photoelectric conversion is performed by this organic / inorganic perovskite compound, and electric power is taken out. The details of each layer constituting the solar cell portion 3b will be described later.
 太陽電池1の特徴は、このような有機無機ペロブスカイト化合物を用いた複数の太陽電池セル部3a~3dがマトリクス状に配置されていることにある。言い換えれば、前述したように、太陽電池セルが、複数の太陽電池セル部に第1の絶縁層4により区画されていることにある。そのため、面積を大きくした場合であっても、複数の太陽電池セル部に区画されているため、層間剥離が生じ難い。よって、封止性を高めることができる。加えて、小さい太陽電池セル部間が第1の絶縁層4で区画されているため、外部からの機械的衝撃が加わった場合であっても、絶縁層4が受光面に対し垂直方向の衝撃を吸収するため、薄膜層に外力が加わることを効果的に抑制することができる。すなわち、耐衝撃性を高めることができる。また、太陽電池セルが区画化されているため、ある区画に浸入した水分が他の区画へ拡散することを効果的に防止することができる。すなわち、封止性も高められる。 A feature of the solar cell 1 is that a plurality of solar cell portions 3a to 3d using such an organic / inorganic perovskite compound are arranged in a matrix. In other words, as described above, the solar battery cell is divided into the plurality of solar battery cell portions by the first insulating layer 4. Therefore, even when the area is increased, delamination hardly occurs because the area is partitioned into a plurality of solar battery cell portions. Therefore, sealing performance can be improved. In addition, since the small solar battery cell portions are partitioned by the first insulating layer 4, even when a mechanical shock is applied from the outside, the insulating layer 4 has an impact in a direction perpendicular to the light receiving surface. Therefore, it is possible to effectively suppress external force from being applied to the thin film layer. That is, impact resistance can be improved. Moreover, since the photovoltaic cell is divided, it can prevent effectively that the water | moisture content which penetrate | invaded one division spreads to another division. That is, the sealing property is also improved.
 図1(b)に示すように、ガスバリア層6が太陽電池1の上面を覆うように設けられている。ガスバリア層6は、水蒸気バリア性に優れている。従って、水蒸気の内部への浸入を効果的に抑制することができる。 As shown in FIG. 1B, a gas barrier layer 6 is provided so as to cover the upper surface of the solar cell 1. The gas barrier layer 6 is excellent in water vapor barrier properties. Therefore, it is possible to effectively suppress the penetration of water vapor into the interior.
 上記ガスバリア層6の水蒸気バリア性としては、水蒸気透過度(WVTR:Water vapor transmission rate)が、10-1g/m/day未満であることが望ましい。このようなガスバリア層6を構成する材料としては、特に限定されないが、例えば、金属酸化物、金属窒化物または金属酸窒化物を含んでいることが好ましい。金属酸化物、金属窒化物または金属酸化物における金属は特に限定されないが、例えば、Si、Al、Zn、Sn、In、Ti、Mg、Zr、Ni、Ta、W、Cuもしくはこれらの金属を主体とする合金を挙げることができる。なかでも、水蒸気バリア性及び柔軟性に優れているので、Zn及びSnの双方を含む金属酸化物、金属窒化物が好ましい。 As the water vapor barrier property of the gas barrier layer 6, it is desirable that a water vapor transmission rate (WVTR) is less than 10 −1 g / m 2 / day. The material constituting the gas barrier layer 6 is not particularly limited, but preferably includes, for example, a metal oxide, a metal nitride, or a metal oxynitride. The metal in the metal oxide, metal nitride or metal oxide is not particularly limited. For example, Si, Al, Zn, Sn, In, Ti, Mg, Zr, Ni, Ta, W, Cu, or these metals are mainly used. Can be mentioned. Especially, since it is excellent in water vapor | steam barrier property and a softness | flexibility, the metal oxide and metal nitride containing both Zn and Sn are preferable.
 太陽電池1では、上記ガスバリア層6が設けられていることによって、下方の太陽電池セル部への水分の浸入を確実に抑制することができる。もっとも、本発明の太陽電池では、複数の太陽電池セル部に第1の絶縁層4により区画されているため、層間剥離自体が生じ難いため、それによっても、水蒸気の浸入を抑制することができる。より好ましくは、本実施形態のように、ガスバリア層6が設けられていることが望ましい。 In the solar cell 1, by providing the gas barrier layer 6, it is possible to reliably suppress the ingress of moisture into the solar cell portion below. However, in the solar battery of the present invention, since the plurality of solar battery cell portions are partitioned by the first insulating layer 4, delamination itself is unlikely to occur, and thereby, entry of water vapor can be suppressed. . More preferably, the gas barrier layer 6 is provided as in the present embodiment.
 層間剥離が生じ難く、封止性が優れているため、有機無機ペロブスカイト化合物がPbを含んでいたとしても、Pbイオンの外部への溶出が生じ難い。 Delamination hardly occurs and sealing properties are excellent, so that even if the organic / inorganic perovskite compound contains Pb, elution of Pb ions to the outside hardly occurs.
 さらに、太陽電池1では、耐衝撃性も効果的に高められているので、外部からの衝撃等による破壊や変形が生じ難い。また、区画化されているため、ある区画に浸入した水分の他の区画への拡散を防止することができる。よって、水分の浸入を効果的に抑制することができる。 Furthermore, in the solar cell 1, since the impact resistance is also effectively enhanced, it is difficult for the solar cell 1 to be broken or deformed by an external impact or the like. Moreover, since it is compartmentalized, it is possible to prevent diffusion of moisture that has entered a certain compartment into other compartments. Therefore, it is possible to effectively prevent moisture from entering.
 図1(b)に戻り、第1の絶縁層4の上端は、第2の電極15及び平坦化層16よりも上方に位置している。そして、補助配線8が、第1の絶縁層4の上端を覆うように、設けられている。従って、補助配線8も格子状の平面形状を有する。補助配線8は、第1の絶縁層4の上端、かつ側面に至るように設けられている。さらに図1(a)では図示を省略しているが、上記補助配線8は図1(a)の直線X1及び直線Y1に沿うように延ばされている。すなわち、格子状の第1の絶縁層4上に、補助配線8が行き渡っている。なお、第1の絶縁層4が格子状ではない場合は、補助配線8も格子状である必要はないが、第1の絶縁層4の形状に追従して形成されていることが好ましい。 Returning to FIG. 1B, the upper end of the first insulating layer 4 is located above the second electrode 15 and the planarization layer 16. An auxiliary wiring 8 is provided so as to cover the upper end of the first insulating layer 4. Therefore, the auxiliary wiring 8 also has a lattice-like planar shape. The auxiliary wiring 8 is provided so as to reach the upper end and the side surface of the first insulating layer 4. Further, although not shown in FIG. 1A, the auxiliary wiring 8 is extended along the straight line X1 and the straight line Y1 in FIG. That is, the auxiliary wiring 8 is spread over the lattice-shaped first insulating layer 4. In addition, when the 1st insulating layer 4 is not a grid | lattice form, although the auxiliary wiring 8 does not need to be a grid | lattice form, it is preferable to be formed following the shape of the 1st insulating layer 4.
 そして、図1(b)に示すように、補助配線8の下端は、第2の電極15の上面に当接されて、電気的に接続されている。よって、全ての太陽電池セル部の第2の電極15が補助配線8により電気的に接続されている。 As shown in FIG. 1B, the lower end of the auxiliary wiring 8 is in contact with and electrically connected to the upper surface of the second electrode 15. Therefore, the second electrodes 15 of all the solar battery cell portions are electrically connected by the auxiliary wiring 8.
 他方、上記補助配線8の一部において、上記ガスバリア層6が除去されている。このガスバリア層6が除去されて補助配線8が露出している部分に第2の端子7が接合されている。第2の端子7は、図1(a)に示すように複数設けられていることが好ましい。他方、図1(b)に示すように、第2の端子7が設けられている部分の下方に第1の端子9が設けられている。第1の端子9は、第1の電極2と電気的に接合されている。 On the other hand, the gas barrier layer 6 is removed in a part of the auxiliary wiring 8. The second terminal 7 is bonded to the portion where the gas barrier layer 6 is removed and the auxiliary wiring 8 is exposed. A plurality of second terminals 7 are preferably provided as shown in FIG. On the other hand, as shown in FIG.1 (b), the 1st terminal 9 is provided below the part in which the 2nd terminal 7 is provided. The first terminal 9 is electrically joined to the first electrode 2.
 上記補助配線8、第1の端子9及び第2の端子7を構成する材料としては、導電性材料である限り、特に限定されるものではない。もっとも、好ましくは、Cu、Al、Ag等の金属もしくは合金を用いることが好ましい。第1の端子9及び第2の端子7は、表面が半田でめっきされていることが好ましい。この種の金属もしくは合金を用いることにより、コストを低減できる。また、電気的接続部分の電気抵抗を低め、より大きな電力を取り出すことができる。 The material constituting the auxiliary wiring 8, the first terminal 9, and the second terminal 7 is not particularly limited as long as it is a conductive material. However, it is preferable to use a metal or alloy such as Cu, Al, or Ag. It is preferable that the surfaces of the first terminal 9 and the second terminal 7 are plated with solder. Costs can be reduced by using this type of metal or alloy. In addition, the electric resistance of the electrical connection portion can be lowered and a larger amount of power can be taken out.
 上記格子状の第1の絶縁層4の上端面の全領域に渡って補助配線8を設ける必要は必ずしもなく、複数の太陽電池セル部を電気的に接続し得る限り、補助配線8の配置は適宜変形してもよい。 It is not always necessary to provide the auxiliary wiring 8 over the entire region of the upper end surface of the lattice-shaped first insulating layer 4, and the arrangement of the auxiliary wiring 8 is not limited as long as a plurality of solar battery cell portions can be electrically connected. You may deform | transform suitably.
 また、第2の端子7は、上記補助配線8に電気的に接続されておれば、上記補助配線8の上面に接合される必要は必ずしもない。補助配線8の側面等に電気的に接続されるように、第2の端子7を設けてもよい。また、第1の端子9は設けずともよく、第1の電極2自体を外部と電気的に接続してもよい。 The second terminal 7 does not necessarily have to be joined to the upper surface of the auxiliary wiring 8 as long as it is electrically connected to the auxiliary wiring 8. The second terminal 7 may be provided so as to be electrically connected to the side surface of the auxiliary wiring 8 or the like. Further, the first terminal 9 may not be provided, and the first electrode 2 itself may be electrically connected to the outside.
 第1の実施形態の太陽電池1では、上記水蒸気バリア性を有するガスバリア層6を設けたが、図3に示す第2の実施形態のように上記ガスバリア層6を除去してもよい。また、平坦化層16も除去してもよい。この場合には、第2の端子7を補助配線8の上面に直接接合すればよい。 In the solar cell 1 of the first embodiment, the gas barrier layer 6 having the water vapor barrier property is provided, but the gas barrier layer 6 may be removed as in the second embodiment shown in FIG. Further, the planarizing layer 16 may also be removed. In this case, the second terminal 7 may be directly joined to the upper surface of the auxiliary wiring 8.
 図4は、本発明の第1の実施形態の変形例に係る太陽電池を示す模式的平面図である。本変形例の太陽電池1Aでは、複数種の補助配線8,8A,8Bが設けられている。すなわち、第1の実施形態と同様に、幅の細い補助配線8が格子状に配置されている。そして、上記補助配線8よりも太い幅の補助配線8Aが、図4において横方向に延びるように設けられている。また、上記補助配線8Aと交差する方向に、さらに幅の太い複数の補助配線8Bが延びている。 FIG. 4 is a schematic plan view showing a solar cell according to a modification of the first embodiment of the present invention. In the solar cell 1A of this modification, a plurality of types of auxiliary wirings 8, 8A, 8B are provided. That is, as in the first embodiment, the narrow auxiliary wirings 8 are arranged in a grid pattern. An auxiliary wiring 8A having a width wider than that of the auxiliary wiring 8 is provided so as to extend in the horizontal direction in FIG. Further, a plurality of auxiliary wirings 8B having a wider width extend in a direction intersecting with the auxiliary wiring 8A.
 このように、本発明においては、幅が異なる、複数種の補助配線8,8A,8Bを設けてもよい。この場合、太さに限らず、高さが異なる複数種の補助配線を用いてもよい。さらに、太さと、高さや厚みの双方が異なる、複数種の補助配線を用いてもよい。 Thus, in the present invention, a plurality of types of auxiliary wirings 8, 8A, 8B having different widths may be provided. In this case, not only the thickness but also a plurality of types of auxiliary wirings having different heights may be used. Further, a plurality of types of auxiliary wirings having different thicknesses, heights and thicknesses may be used.
 なお、図4では、図1に示した第2の端子7,7の図示は省略してある。最も幅の太い補助配線8B,8Bには、この第2の端子を接合してもよい。 In FIG. 4, the second terminals 7 and 7 shown in FIG. 1 are not shown. The second terminal may be joined to the widest auxiliary wiring 8B, 8B.
 なお、太陽電池では、複数の太陽電池セル部がマトリクス状に配置されていたが、本発明においては、複数の太陽電池セル部はマトリクス状以外の形態で分散配置されていてもよい。すなわち、太陽電池セルを区画する形態はマトリクス状に限定されない。 In the solar battery, the plurality of solar battery cell portions are arranged in a matrix. However, in the present invention, the plurality of solar battery cell portions may be distributed in a form other than the matrix shape. That is, the form which partitions a photovoltaic cell is not limited to matrix form.
 上記太陽電池セル部を構成する各層の材料についても特に限定されるものではない。 The material of each layer constituting the solar cell part is not particularly limited.
 まず、上記第1の電極2及び第2の電極15は、適宜の導電性材料を用いて形成すればよい。このような材料としては、例えば、FTO(フッ素ドープ酸化スズ)、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/Al混合物、Al/LiF混合物、金等の金属、CuI、ITO(インジウムスズ酸化物)、SnO、AZO(アルミニウム亜鉛酸化物)、IZO(インジウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)等の導電性透明材料、導電性透明ポリマー、金属箔等が挙げられる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。前記第1の電極は金属箔が好ましい。この場合には、太陽電池のフレキシブル性を高めることができる。金属箔を構成する金属は、特に限定されず、ステンレス、Al、Cu、NiまたはTi等の適宜の金属もしくは合金を用いることができる。また、第2の電極15は、第1の絶縁層4及び/又は第2の絶縁層5上に形成されていてもよい。 First, the first electrode 2 and the second electrode 15 may be formed using an appropriate conductive material. Examples of such materials include FTO (fluorine-doped tin oxide), sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / Al 2 O. 3 mixture, Al / LiF mixture, metal such as gold, CuI, ITO (indium tin oxide), SnO 2 , AZO (aluminum zinc oxide), IZO (indium zinc oxide), GZO (gallium zinc oxide), etc. Conductive transparent materials, conductive transparent polymers, metal foils, and the like. These materials may be used alone or in combination of two or more. The first electrode is preferably a metal foil. In this case, the flexibility of the solar cell can be enhanced. The metal which comprises metal foil is not specifically limited, Appropriate metals or alloys, such as stainless steel, Al, Cu, Ni, or Ti, can be used. Further, the second electrode 15 may be formed on the first insulating layer 4 and / or the second insulating layer 5.
 また、上記第1,第2の電子輸送層11,12は設けられずともよいが、第1,第2の電子輸送層11,12を設けることにより、光電変換効率を高めることができる。電子輸送層11,12の材料は特に限定されず、例えば、N型導電性高分子、N型低分子有機半導体、N型金属酸化物、N型金属硫化物、ハロゲン化アルカリ金属、アルカリ金属、界面活性剤等が挙げられ、具体的には例えば、シアノ基含有ポリフェニレンビニレン、ホウ素含有ポリマー、バソキュプロイン、バソフェナントレン、ヒドロキシキノリナトアルミニウム、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、フルオロ基含有フタロシアニン、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛等が挙げられる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。 The first and second electron transport layers 11 and 12 may not be provided, but the photoelectric conversion efficiency can be increased by providing the first and second electron transport layers 11 and 12. The material of the electron transport layers 11 and 12 is not particularly limited. For example, the N-type conductive polymer, the N-type low molecular organic semiconductor, the N-type metal oxide, the N-type metal sulfide, the alkali metal halide, the alkali metal, Specific examples thereof include cyano group-containing polyphenylene vinylene, boron-containing polymer, bathocuproine, bathophenanthrene, hydroxyquinolinato aluminum, oxadiazole compound, benzimidazole compound, naphthalene tetracarboxylic acid compound, perylene. Derivatives, phosphine oxide compounds, phosphine sulfide compounds, fluoro group-containing phthalocyanines, titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, and the like. These materials may be used alone or in combination of two or more.
 また、第1の電子輸送層11を用いてもよいが、多孔質状の第2の電子輸送層12を設けることがより一層好ましい。特に、上記光電変換層13が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜である場合、より複雑な複合膜(より複雑に入り組んだ構造)が得られ、光電変換効率が高くなることから、多孔質状の第2の電子輸送層12上に複合膜が成膜されていることが好ましい。 The first electron transport layer 11 may be used, but it is more preferable to provide the porous second electron transport layer 12. In particular, when the photoelectric conversion layer 13 is a composite film in which an organic semiconductor or an inorganic semiconductor part and an organic / inorganic perovskite compound part are combined, a more complex composite film (a more complicated structure) can be obtained. It is preferable that a composite film is formed on the porous second electron transport layer 12 because the conversion efficiency becomes high.
 上記電子輸送層の厚みは、好ましい下限が1nm、好ましい上限が2000nmである。なお、電子輸送層の厚みとは、第1の電子輸送層11のみを用いた場合には、第1の電子輸送層11の厚みを、第2の電子輸送層12をも用いた場合には、第1,第2の電子輸送層11,12の厚みの合計をいうものとする。上記電子輸送層の厚みが1nm以上であれば、充分にホールをブロックできるようになる。上記厚みが2000nm以下であれば、電子輸送の際の抵抗になり難く、光電変換効率が高くなる。上記電子輸送層の厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、さらに好ましい下限は5nm、さらに好ましい上限は500nmである。 The thickness of the electron transport layer has a preferable lower limit of 1 nm and a preferable upper limit of 2000 nm. The thickness of the electron transport layer is the thickness of the first electron transport layer 11 when only the first electron transport layer 11 is used, and the thickness of the first electron transport layer 12 is also used. , And the total thickness of the first and second electron transport layers 11 and 12. If the thickness of the electron transport layer is 1 nm or more, holes can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of electron transport, and photoelectric conversion efficiency will become high. The more preferable lower limit of the thickness of the electron transport layer is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the more preferable upper limit is 500 nm.
 上記光電変換層13は、一般式R-M-X(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含む。上記光電変換層に上記有機無機ペロブスカイト化合物を用いることにより、太陽電池の光電変換効率を向上させることができる。 The photoelectric conversion layer 13 includes an organic / inorganic perovskite compound represented by the general formula RMX 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom or a chalcogen atom). By using the organic-inorganic perovskite compound for the photoelectric conversion layer, the photoelectric conversion efficiency of the solar cell can be improved.
 上記Rは有機分子であり、C(l、m、nはいずれも正の整数)で示されることが好ましい。 The R is an organic molecule, and is preferably represented by C 1 N m H n (l, m, and n are all positive integers).
 上記Rは、具体的には例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、エチルメチルアミン、メチルプロピルアミン、ブチルメチルアミン、メチルペンチルアミン、ヘキシルメチルアミン、エチルプロピルアミン、エチルブチルアミン、イミダゾール、アゾール、ピロール、アジリジン、アジリン、アゼチジン、アゼト、アゾール、イミダゾリン、カルバゾール及びこれらのイオン(例えば、メチルアンモニウム(CHNH)等)やフェネチルアンモニウム等が挙げられる。なかでも、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン及びこれらのイオンやフェネチルアンモニウムが好ましく、メチルアミン、エチルアミン、プロピルアミン及びこれらのイオンがより好ましい。 Specifically, R is, for example, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, trimethylamine, triethylamine, tripropyl. Amine, tributylamine, tripentylamine, trihexylamine, ethylmethylamine, methylpropylamine, butylmethylamine, methylpentylamine, hexylmethylamine, ethylpropylamine, ethylbutylamine, imidazole, azole, pyrrole, aziridine, azirine, Azetidine, azeto, azole, imidazoline, carbazole and their ions (eg, methylammonium (CH 3 NH 3 )) and fluorine And enethylammonium. Of these, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine and their ions and phenethylammonium are preferred, and methylamine, ethylamine, propylamine and these ions are more preferred.
 上記Mは金属原子であり、例えば、鉛、スズ、亜鉛、チタン、アンチモン、ビスマス、ニッケル、鉄、コバルト、銀、銅、ガリウム、ゲルマニウム、マグネシウム、カルシウム、インジウム、アルミニウム、マンガン、クロム、モリブデン、ユーロピウム等が挙げられる。これらの金属原子は単独で用いられてもよく、2種以上が併用されてもよい。 M is a metal atom, for example, lead, tin, zinc, titanium, antimony, bismuth, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, Europium etc. are mentioned. These metal atoms may be used independently and 2 or more types may be used together.
 上記Xはハロゲン原子又はカルコゲン原子であり、例えば、塩素、臭素、ヨウ素、硫黄、セレン等が挙げられる。これらのハロゲン原子又はカルコゲン原子は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、構造中にハロゲンを含有することで、上記有機無機ペロブスカイト化合物が有機溶媒に可溶になり、安価な印刷法等への適用が可能になることから、ハロゲン原子が好ましい。さらに、上記有機無機ペロブスカイト化合物のエネルギーバンドギャップが狭くなることから、ヨウ素がより好ましい。 X is a halogen atom or a chalcogen atom, and examples thereof include chlorine, bromine, iodine, sulfur, selenium and the like. These halogen atoms or chalcogen atoms may be used alone or in combination of two or more. Among these, the halogen atom is preferable because the organic / inorganic perovskite compound becomes soluble in an organic solvent and can be applied to an inexpensive printing method by containing halogen in the structure. Furthermore, iodine is more preferable because the energy band gap of the organic-inorganic perovskite compound becomes narrow.
 上記有機無機ペロブスカイト化合物は、体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造を有することが好ましい。 The organic / inorganic perovskite compound preferably has a cubic structure in which a metal atom M is located at the body center, an organic molecule R is located at each vertex, and a halogen atom or a chalcogen atom X is located at the face center.
 上記光電変換層13は、本発明の効果を損なわない範囲内であれば、上記有機無機ペロブスカイト化合物に加えて、さらに、有機半導体又は無機半導体を含んでいてもよい。なお、ここでいう有機半導体又は無機半導体は、電子輸送層又はホール輸送層としての役割を果たしてもよい。 The photoelectric conversion layer 13 may further contain an organic semiconductor or an inorganic semiconductor in addition to the organic / inorganic perovskite compound as long as the effect of the present invention is not impaired. Note that the organic semiconductor or inorganic semiconductor here may serve as an electron transport layer or a hole transport layer.
 上記有機半導体として、例えば、ポリ(3-アルキルチオフェン)等のチオフェン骨格を有する化合物等が挙げられる。また、例えば、ポリパラフェニレンビニレン骨格、ポリビニルカルバゾール骨格、ポリアニリン骨格、ポリアセチレン骨格等を有する導電性高分子等も挙げられる。さらに、例えば、フタロシアニン骨格、ナフタロシアニン骨格、ペンタセン骨格、ベンゾポルフィリン骨格等のポルフィリン骨格、スピロビフルオレン骨格等を有する化合物や、表面修飾されていてもよいカーボンナノチューブ、グラフェン、フラーレン等のカーボン含有材料も挙げられる。 Examples of the organic semiconductor include compounds having a thiophene skeleton such as poly (3-alkylthiophene). In addition, for example, conductive polymers having a polyparaphenylene vinylene skeleton, a polyvinyl carbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton, and the like can be given. Further, for example, a compound having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, or a benzoporphyrin skeleton, a spirobifluorene skeleton, or the like, or a carbon-containing material such as a carbon nanotube, graphene, or fullerene that may be surface-modified. Also mentioned.
 上記無機半導体として、例えば、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛、CuSCN、CuO、CuI、MoO、V、WO、MoS、MoSe、CuS等が挙げられる。 Examples of the inorganic semiconductor include titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, CuSCN, Cu 2 O, CuI, MoO 3 , V 2 O 5 , WO 3 , MoS 2, MoSe 2, Cu 2 S , and the like.
 上記光電変換層は、上記有機半導体又は上記無機半導体を含む場合、薄膜状の有機半導体又は無機半導体部位と薄膜状の有機無機ペロブスカイト化合物部位とを積層した積層体であってもよいし、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜であってもよい。製法が簡便である点では積層体が好ましく、上記有機半導体又は上記無機半導体中の電荷分離効率を向上させることができる点では複合膜が好ましい。 When the photoelectric conversion layer includes the organic semiconductor or the inorganic semiconductor, the photoelectric conversion layer may be a thin film organic semiconductor or a laminated body in which an inorganic semiconductor portion and a thin organic inorganic perovskite compound portion are laminated, or an organic semiconductor Alternatively, a composite film in which an inorganic semiconductor site and an organic / inorganic perovskite compound site are combined may be used. A laminated body is preferable in that the production method is simple, and a composite film is preferable in that the charge separation efficiency in the organic semiconductor or the inorganic semiconductor can be improved.
 上記薄膜状の有機無機ペロブスカイト化合物部位の厚みは、好ましい下限が5nm、好ましい上限が5000nmである。上記厚みが5nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが5000nm以下であれば、電荷分離できない領域が発生することを抑制できるため、光電変換効率の向上につながる。上記厚みのより好ましい下限は10nm、より好ましい上限は1000nmであり、さらに好ましい下限は20nm、さらに好ましい上限は500nmである。 The preferable lower limit of the thickness of the thin-film organic / inorganic perovskite compound portion is 5 nm, and the preferable upper limit is 5000 nm. If the thickness is 5 nm or more, light can be sufficiently absorbed, and the photoelectric conversion efficiency is increased. If the said thickness is 5000 nm or less, since it can suppress that the area | region which cannot carry out charge separation generate | occur | produces, it leads to the improvement of photoelectric conversion efficiency. The more preferable lower limit of the thickness is 10 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 20 nm, and the still more preferable upper limit is 500 nm.
 上記ホール輸送層14は用いられずともよいが、上記実施形態のように備えられていることが望ましい。上記ホール輸送層14の材料は特に限定されず、例えば、P型導電性高分子、P型低分子有機半導体、P型金属酸化物、P型金属硫化物、界面活性剤等が挙げられ、具体的には例えば、ポリエチレンジオキシチオフェンのポリスチレンスルホン酸付加物、カルボキシル基含有ポリチオフェン、フタロシアニン、ポルフィリン、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ニッケル、酸化銅、酸化スズ、硫化モリブデン、硫化タングステン、硫化銅、硫化スズ等、フルオロ基含有ホスホン酸、カルボニル基含有ホスホン酸、CuSCN、CuI等の銅化合物、表面修飾されていてもよいカーボンナノチューブ、グラフェン等のカーボン含有材料等が挙げられる。 The hole transport layer 14 may not be used, but is preferably provided as in the above embodiment. The material of the hole transport layer 14 is not particularly limited, and examples thereof include a P-type conductive polymer, a P-type low molecular organic semiconductor, a P-type metal oxide, a P-type metal sulfide, and a surfactant. Specifically, for example, polystyrene sulfonic acid adduct of polyethylenedioxythiophene, carboxyl group-containing polythiophene, phthalocyanine, porphyrin, molybdenum oxide, vanadium oxide, tungsten oxide, nickel oxide, copper oxide, tin oxide, molybdenum sulfide, tungsten sulfide, sulfide Examples thereof include copper compounds such as copper and tin sulfide, copper compounds such as fluoro group-containing phosphonic acid, carbonyl group-containing phosphonic acid, CuSCN, and CuI, carbon nanotubes that may be surface-modified, and graphene.
 上記ホール輸送層の厚みは、好ましい下限は1nm、好ましい上限は2000nmである。上記厚みが1nm以上であれば、充分に電子をブロックできるようになる。上記厚みが2000nm以下であれば、ホール輸送の際の抵抗になり難く、光電変換効率が高くなる。上記厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、さらに好ましい上限は500nmである。 The preferable lower limit of the thickness of the hole transport layer is 1 nm, and the preferable upper limit is 2000 nm. If the thickness is 1 nm or more, electrons can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of hole transport, and a photoelectric conversion efficiency will become high. The more preferable lower limit of the thickness is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 500 nm.
 なお、第2の電極15は透明であることが望ましい。それによって光電変換層13に十分な光を導くことができる。よって第2の電極15については、ITOなどの透明性に優れた電極材料を用いることが望ましい。 Note that the second electrode 15 is preferably transparent. Thereby, sufficient light can be guided to the photoelectric conversion layer 13. Therefore, it is desirable to use an electrode material having excellent transparency such as ITO for the second electrode 15.
 平坦化層16は各太陽電池セル部を封止するために設けられており、かつ太陽電池セル部の上面を平坦化するために設けられている。このような平坦化層16は、例えば、透明な樹脂を用いて形成することができる。このような樹脂としては、例えば脂環式骨格を有する樹脂が好適に用いられる。このような脂環式骨格を有する樹脂としては、例えば、TOPAS9014(Polyplastics社製、ノルボルネン骨格を有する)、ライトエステルIB-X(共栄社化学社製、イソボルネン骨格を有する)の重合物、MA-DM(三菱ガス化学社製、アダマンタン骨格を有する)の重合物等が挙げられる。 The planarization layer 16 is provided to seal each solar cell part, and is provided to planarize the upper surface of the solar cell part. Such a planarization layer 16 can be formed using, for example, a transparent resin. As such a resin, for example, a resin having an alicyclic skeleton is preferably used. Examples of the resin having such an alicyclic skeleton include a polymer of TOPAS9014 (manufactured by Polyplastics, having a norbornene skeleton), light ester IB-X (manufactured by Kyoeisha Chemical Co., Ltd., having an isobornene skeleton), MA-DM. And a polymer of Mitsubishi Gas Chemical Co., Ltd. (having an adamantane skeleton).
 前述したように、本発明は、太陽電池セルを複数の太陽電池セル部に区画したことにより特徴を有するものであり、従って、上記各太陽電池セル部の個々の積層形態及び各層の材料は特に限定されるものではない。よって、本発明の太陽電池における太陽電池セル部自体の構成は適宜変形することができる。 As described above, the present invention is characterized by partitioning a solar battery cell into a plurality of solar battery cell portions, and therefore, the individual laminated form of each of the solar battery cell portions and the material of each layer are particularly It is not limited. Therefore, the configuration of the solar battery cell itself in the solar battery of the present invention can be modified as appropriate.
 1…太陽電池
 2…第1の電極
 3a,3b,3c,3d,3z…太陽電池セル部
 4…第1の絶縁層
 5…第2の絶縁層
 6…ガスバリア層
 7…第2の端子
 8…補助配線
 9…第1の端子
 11…第1の電子輸送層
 12…第2の電子輸送層
 13…光電変換層
 14…ホール輸送層
 15…第2の電極
 16…平坦化層
DESCRIPTION OF SYMBOLS 1 ... Solar cell 2 ... 1st electrode 3a, 3b, 3c, 3d, 3z ... Solar cell part 4 ... 1st insulating layer 5 ... 2nd insulating layer 6 ... Gas barrier layer 7 ... 2nd terminal 8 ... Auxiliary wiring 9 ... first terminal 11 ... first electron transport layer 12 ... second electron transport layer 13 ... photoelectric conversion layer 14 ... hole transport layer 15 ... second electrode 16 ... flattening layer

Claims (9)

  1.  第1の電極と、
     前記第1の電極と対向するように配置されている第2の電極と、
     前記第1の電極と、前記第2の電極との間に配置されており、有機無機ペロブスカイト化合物を含む光電変換層とを備える太陽電池であって、
     前記太陽電池を、前記第1の電極を共有している複数の太陽電池セル部に区画するように、隣り合う前記太陽電池セル部間を絶縁している第1の絶縁層をさらに備える、太陽電池。
    A first electrode;
    A second electrode disposed to face the first electrode;
    A solar cell that is disposed between the first electrode and the second electrode and includes a photoelectric conversion layer containing an organic-inorganic perovskite compound,
    The solar cell further includes a first insulating layer that insulates the adjacent solar cell portions so as to divide the solar cell into a plurality of solar cell portions sharing the first electrode, battery.
  2.  前記太陽電池の外周側面に設けられた第2の絶縁層をさらに備える、請求項1に記載の太陽電池。 The solar cell according to claim 1, further comprising a second insulating layer provided on an outer peripheral side surface of the solar cell.
  3.  前記各太陽電池セル部の前記第2の電極同士を電気的に接続する補助配線をさらに備える、請求項1に記載の太陽電池。 The solar cell according to claim 1, further comprising an auxiliary wiring for electrically connecting the second electrodes of the solar cell portions.
  4.  前記第1の電極に接続されている第1の端子と、前記補助配線に接続されている第2の端子とをさらに備える、請求項1~3のいずれか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 3, further comprising a first terminal connected to the first electrode and a second terminal connected to the auxiliary wiring.
  5.  前記複数の太陽電池セル部が、前記第1の端子と前記第2の端子との間で電気的に並列に接続されている、請求項4に記載の太陽電池。 The solar cell according to claim 4, wherein the plurality of solar cell portions are electrically connected in parallel between the first terminal and the second terminal.
  6.  前記複数の太陽電池セル部が、マトリクス状に配置されている、請求項1~5のいずれか1項に記載の太陽電池。 The solar battery according to any one of claims 1 to 5, wherein the plurality of solar battery cell portions are arranged in a matrix.
  7.  前記第1の絶縁層が、格子状である、請求項6に記載の太陽電池。 The solar cell according to claim 6, wherein the first insulating layer has a lattice shape.
  8.  前記有機無機ペロブスカイト型化合物が、一般式R-M-X(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子またはカルコゲン原子である。)で表される、請求項1~6のいずれか1項に記載の太陽電池。 The organic-inorganic perovskite type compound is represented by the general formula RMX 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom or a chalcogen atom). The solar cell according to any one of the above.
  9.  前記第1の電極が金属箔からなる、請求項1~8のいずれか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 8, wherein the first electrode is made of a metal foil.
PCT/JP2016/058459 2015-03-25 2016-03-17 Solar cell WO2016152705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016516621A JP6110993B2 (en) 2015-03-25 2016-03-17 Solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061967 2015-03-25
JP2015-061967 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016152705A1 true WO2016152705A1 (en) 2016-09-29

Family

ID=56977583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058459 WO2016152705A1 (en) 2015-03-25 2016-03-17 Solar cell

Country Status (2)

Country Link
JP (1) JP6110993B2 (en)
WO (1) WO2016152705A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142024A (en) * 2010-01-07 2011-07-21 Dainippon Printing Co Ltd Method of manufacturing oxide semiconductor electrode substrate, and dye-sensitized solar cell
WO2011129250A1 (en) * 2010-04-13 2011-10-20 株式会社フジクラ Dye-sensitized solar cell module and method for fabricating same
JP2014049551A (en) * 2012-08-30 2014-03-17 Peccell Technologies Inc Photoelectric conversion element using perovskite compound and method of manufacturing the same
WO2014045021A1 (en) * 2012-09-18 2014-03-27 Isis Innovation Limited Optoelectronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142024A (en) * 2010-01-07 2011-07-21 Dainippon Printing Co Ltd Method of manufacturing oxide semiconductor electrode substrate, and dye-sensitized solar cell
WO2011129250A1 (en) * 2010-04-13 2011-10-20 株式会社フジクラ Dye-sensitized solar cell module and method for fabricating same
JP2014049551A (en) * 2012-08-30 2014-03-17 Peccell Technologies Inc Photoelectric conversion element using perovskite compound and method of manufacturing the same
WO2014045021A1 (en) * 2012-09-18 2014-03-27 Isis Innovation Limited Optoelectronic device

Also Published As

Publication number Publication date
JPWO2016152705A1 (en) 2017-04-27
JP6110993B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6034540B1 (en) Solar cell
JP4970443B2 (en) Organic solar cells
US8440496B2 (en) Solar cell with conductive material embedded substrate
CN110392940B (en) Solar cell and method for manufacturing same
US20100018581A1 (en) Large area solar cell
CN106796991B (en) Solar cell
US20160111223A1 (en) A laminated opto-electronic device and method for manufacturing the same
JP2016184726A (en) Solar cell
JP6110993B2 (en) Solar cell
JP6725219B2 (en) Solar cell
US20230019802A1 (en) Solar cell
JP2017152510A (en) Method of manufacturing solar cell module, and solar cell module
US20200403108A1 (en) Photoelectric conversion device and method of manufacturing photoelectric conversion device
JP6646471B2 (en) Solar cell module and method of manufacturing the same
JP5077408B2 (en) Solar cell and solar cell module
JP7192134B2 (en) photoelectric conversion device
WO2021131113A1 (en) Solar cell
JP2014011004A (en) Organic semiconductor element
WO2024029426A1 (en) Perovskite solar cell and method for producing same
CN117693276A (en) Flexible perovskite solar cell module and manufacturing method thereof
JP2020053454A (en) Solar battery and method of manufacturing the same
JP6000808B2 (en) Dye-sensitized solar cell module
JP2011114072A (en) Solar battery and unit cell thereof
KR20170113233A (en) Organic solar cell and method for manufacturing the same
JP2016100357A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016516621

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768608

Country of ref document: EP

Kind code of ref document: A1