WO2016152613A1 - Vehicle control device and vehicle control method - Google Patents

Vehicle control device and vehicle control method Download PDF

Info

Publication number
WO2016152613A1
WO2016152613A1 PCT/JP2016/057932 JP2016057932W WO2016152613A1 WO 2016152613 A1 WO2016152613 A1 WO 2016152613A1 JP 2016057932 W JP2016057932 W JP 2016057932W WO 2016152613 A1 WO2016152613 A1 WO 2016152613A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
coasting control
clutch
speed
rotational speed
Prior art date
Application number
PCT/JP2016/057932
Other languages
French (fr)
Japanese (ja)
Inventor
修司 田口
浩志 薄葉
達彦 江原
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2016152613A1 publication Critical patent/WO2016152613A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present disclosure relates to a vehicle control device and a vehicle control method, and more particularly to coasting control in which power transmission between an engine and driving wheels is interrupted to cause the vehicle to coast.
  • the clutch input shaft speed may be lower than the normal shift-down shift speed depending on the vehicle running condition, and the engine speed may be less than the input shaft speed. May overshoot and cause a shock when the clutch is engaged.
  • An object of the present disclosure is to provide a vehicle control device that can reduce a shock when the clutch at the end of coasting control is brought into an engaged state.
  • a vehicle control device starts coasting control that places the clutch in a disengaged state and reduces engine speed when satisfying a predetermined coasting control start condition.
  • Coasting control execution means for controlling the engine so as to increase the engine speed and satisfying the clutch when the predetermined coasting control end condition is satisfied, and the engine speed and the speed of the clutch on the transmission side
  • An increase amount storage means for storing engine speed increase information indicating the relationship between the difference between the rotation speed and the engine speed increase amount indicating the rotation speed to be increased when the coasting control is ended, and the engine speed Based on the difference in engine speed and the speed on the transmission side of the clutch when the coasting control end condition is satisfied with reference to the amount of increase information, the engine speed With a rising amount determining means for determining the amount of rise, and coasting control execution means, when satisfying the predetermined coasting control end condition, the vehicle control device for controlling the engine by the engine rotation speed increase amount determined.
  • the engine speed increase amount of the increase amount storage means may be set lower than the engine speed increase amount that should be increased when shifting down to the current gear position of the transmission.
  • a vehicle control method starts coasting control that causes a clutch to be disengaged and reduces engine speed when a predetermined coasting control start condition is satisfied, and a predetermined coasting control end condition
  • the coasting control execution means for controlling the engine so as to increase the engine speed and bringing the clutch into a contact state, the rotational speed difference between the engine speed and the speed of the clutch on the transmission side
  • An increase amount storage means for storing engine rotation speed increase information indicating a relationship with an engine rotation speed increase amount indicating a rotation speed to be increased when ending the coasting control
  • a vehicle control method comprising: Based on the difference in engine speed and the speed on the transmission side of the clutch when the end condition is satisfied with reference to the engine speed increase information, the engine It determines the rotation speed increase amounts, the coasting control execution means, when satisfying the predetermined coasting control end conditions, and controls the engine according to the engine rotation speed increase amount determined.
  • the vehicle control device of the present disclosure it is possible to reduce a shock when the clutch at the end of coasting control is brought into a contact state.
  • FIG. 1 is a schematic overall configuration diagram illustrating a vehicle according to an embodiment of the present disclosure.
  • FIG. 2 is a functional block diagram illustrating an electronic control unit and related configurations according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating a relationship between a rotational speed difference and an engine rotational speed increase amount in an engine rotational speed increase map in the vehicle control device according to the embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a vehicle control process according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic overall configuration diagram showing a vehicle 1 of the present embodiment.
  • the output shaft of the engine 10 is connected to the input shaft of the transmission 12 via the clutch 11.
  • the output shaft of the transmission 12 is connected to drive wheels (left and right rear wheels) 16L and 16R via a propeller shaft 13, a differential device 14, and a drive shaft 15, respectively.
  • the clutch 11 connects and disconnects a power transmission path between the output shaft of the engine 10 and the input shaft of the transmission 12.
  • the clutch 11 connects and disconnects the power transmission path according to the hydraulic pressure supplied from the hydraulic control device 18.
  • the hydraulic control device 18 generates hydraulic pressure to be supplied to the clutch 11 using the driving force of the engine 10.
  • the transmission 12 is, for example, an automatically controlled manual transmission (AMT).
  • AMT automatically controlled manual transmission
  • the vehicle 1 includes left and right front wheels 17L and 17R, an engine speed sensor 20, a vehicle speed sensor 21, an accelerator pedal sensor 22, a brake pedal sensor 23, and an electronic control unit (hereinafter referred to as an ECU) 50 as an example of a vehicle control device. .
  • an ECU electronice control unit
  • the engine speed sensor 20 detects a rotation speed Ne of a crankshaft (not shown) of the engine 10.
  • the vehicle speed sensor 21 detects the traveling speed VT of the vehicle 1 from the rotational speed of the propeller shaft 13.
  • the accelerator pedal sensor 22 detects the accelerator opening Q from the depression amount of the accelerator pedal 31.
  • the brake pedal sensor 23 detects the presence or absence of a brake operation by the driver from the amount of depression of the brake pedal 32. The sensor values of these various sensors 20 to 23 are transmitted to the electrically connected ECU 50.
  • the ECU 50 performs various controls of the engine 10, the clutch 11, the transmission 12, the hydraulic control device 18, and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like.
  • FIG. 2 is a functional block diagram illustrating an electronic control unit and related configurations according to an embodiment of the present disclosure.
  • the ECU 50 partially includes a coasting control execution unit 51 as an example of a coasting control execution unit, a rising amount determination unit 52 as an example of a rising amount determination unit, and a rising amount storage unit 53 as an example of a rising amount storage unit.
  • a functional element As a functional element. In the present embodiment, these functional elements are described as being included in the ECU 50, which is an integral piece of hardware. However, any one of these functional elements may be provided in separate hardware.
  • the coasting control execution unit 51 determines whether or not a predetermined coasting control start condition is satisfied based on the input sensor value.
  • the coasting control start condition for example, the accelerator opening may be decreased by a predetermined amount or more.
  • the coasting control start condition is not limited to this, and may be various conditions. For example, a case where one or more sensor values indicate an operating state in which the engine 10 does not perform positive work on the drive wheels. It is good also as conditions.
  • the coasting control execution unit 51 determines that the coasting control start condition is satisfied, the rotational speed of the engine 10 is lower than a predetermined rotational speed (for example, a rotational speed lower than the normal idle speed of the engine 10 (when the vehicle is stopped)). And the hydraulic control device 18 is controlled to make the clutch 11 disengaged.
  • a predetermined rotational speed for example, a rotational speed lower than the normal idle speed of the engine 10 (when the vehicle is stopped
  • the coasting control execution unit 51 determines whether or not a predetermined coasting control end condition is satisfied based on the input sensor value.
  • the coasting control end condition for example, the accelerator opening may be increased by a predetermined amount or more.
  • the coasting control end condition is not limited to this, and can be various conditions. For example, an operation state in which one or more sensor values do not cause the engine 10 to perform positive work on the drive wheels has been eliminated. This may be a condition.
  • the coasting control execution unit 51 determines that the coasting control end condition is satisfied, the coasting control end process, that is, increases the engine speed by the engine speed increase amount determined by the increase amount determination unit 52. While performing control, when the engine 10 rises to a predetermined number of revolutions, a process of controlling the hydraulic control device 18 to bring the clutch 11 into the engaged state is executed.
  • the coasting control execution unit 51 determines that the coasting control end condition is satisfied, the coasting control execution unit 51 inquires of the increase amount determination unit 52 about the engine rotation number increase amount and acquires the engine rotation number acquired from the increase amount determination unit 52. Control for increasing the rotational speed of the engine 10 according to the amount of increase (feed forward control) is performed.
  • the increase amount storage unit 53 performs coasting control when the rotational speed difference between the engine rotational speed and the rotational speed of the clutch 11 on the transmission 12 side (the rotational speed of the input shaft of the transmission 12) is the rotational speed difference.
  • the engine speed increase map (an example of engine speed increase information) indicating the relationship with the engine speed (referred to as engine speed increase) that should be increased in the end process is stored.
  • the engine speed increase amount may be expressed, for example, as an increase amount of fuel supplied to the engine 10.
  • FIG. 3 is a diagram illustrating a relationship between a rotational speed difference and an engine speed increase amount in an engine speed increase map in the vehicle control device according to an embodiment of the present disclosure.
  • the engine speed increase increases as the difference between the engine speed and the speed of the clutch 11 on the transmission 12 side increases. It has become.
  • the engine speed increase amount is based on the engine speed increase amount to be increased when shifting down to the gear stage of the transmission 12 indicated by the broken line in FIG. Is also getting smaller.
  • the lift amount determination unit 52 specifies the rotation speed of the input shaft of the transmission 12 based on the vehicle speed from the vehicle speed sensor 21. Specifically, the rotational speed of the input shaft of the transmission 12 can be specified by using the gear ratio of the current gear position of the transmission 12 from the vehicle speed. A sensor for detecting the rotational speed of the input shaft of the transmission 12 may be provided, and the rotational speed of the input shaft may be specified by the output value of the sensor.
  • the increase amount determination unit 52 calculates the rotation speed difference between the engine rotation speed from the engine rotation speed sensor 20 and the identified rotation speed of the input shaft, and refers to the engine rotation speed increase map in the increase amount storage unit 53. To determine the engine speed increase. In the present embodiment, the increase amount determination unit 52 determines the engine rotation amount increase amount from the difference in rotation number when the inquiry is received from the coasting control execution unit 51 (that is, when the conditions of the coasting control end process are met). decide. The increase amount determination unit 52 notifies the coasting control execution unit 51 of the determined engine speed increase amount.
  • FIG. 4 is a flowchart of a vehicle control process according to an embodiment of the present disclosure.
  • This vehicle control process is started, for example, at the same time as starting the engine 10 (ignition switch key switch ON).
  • the coasting control execution unit 51 determines whether or not the state of the vehicle matches the coasting control start condition (S10). As a result, when the state of the vehicle does not match the coasting control start condition, the coasting control execution unit 51 repeats the process of step S10 (S10: NO).
  • the coasting control execution unit 51 starts coasting control (S11). Specifically, the coasting control execution unit 51 performs control to reduce the rotational speed of the engine 10 to a predetermined rotational speed (for example, a rotational speed lower than the idle rotational speed of the engine 10), and controls the hydraulic control device 18. Control is performed so that the clutch 11 is disengaged. As a result, fuel consumption in the engine 10 can be appropriately reduced.
  • a predetermined rotational speed for example, a rotational speed lower than the idle rotational speed of the engine 10
  • the coasting control execution unit 51 determines whether or not the state of the vehicle matches the coasting control end condition (S12). As a result, when the state of the vehicle does not match the coasting control end condition (S12: NO), the coasting control execution unit 51 maintains the coasting control state and repeats the process of step S12.
  • coasting control execution unit 51 inquires engine speed increase amount from engine amount determination unit 52 and determines the engine amount to be increased.
  • the unit 52 determines the engine speed increase amount and notifies the coasting control execution unit 51 of the engine speed increase amount (S13).
  • the coasting control execution unit 51 performs coasting control end processing (S14).
  • the coasting control execution unit 51 increases the rotational speed of the engine 10 in accordance with the engine rotational speed increase amount determined by the rotational speed determination unit 52 and increases the engine rotational speed. 18 is controlled to bring the clutch 11 into the engaged state.
  • the engine speed increase amount is lower than the increase amount at the time of downshifting, the engine speed is less than the speed of the input shaft of the transmission 12 as compared with the case of using the increase amount at the time of downshifting. Overshooting can be reduced.
  • the control is performed based on the engine speed increase amount determined when starting the coasting control end process, the engine speed is prevented from overshooting the input shaft speed of the transmission 12 like feedback control. As well as being able to control quickly.
  • AMT has been described as an example.
  • the present invention is not limited to this, and the transmission may be another type even if the transmission is a manual transmission as long as the clutch can be automatically connected and disconnected.
  • the automatic transmission (for example, torque controller type transmission) may be used.
  • the vehicle control device of the present disclosure can be used to reduce a shock when the clutch at the end of coasting control is brought into a contact state.
  • Vehicle 10 Engine 11 Clutch 12 Transmission 13 Propeller Shaft 14 Differential Device 15 Drive Shaft 50 ECU 51 coasting control execution unit 52 climb amount determination unit 53 climb amount storage unit

Abstract

A vehicle control device is provided with: a coasting control execution unit (51) that, when a coasting control termination condition is satisfied, controls the engine such that the rotational frequency of the engine is increased when the clutch is in a connected state, and puts the clutch into a connected state; an increase-amount storage unit (53) that stores engine rotational frequency increase-amount information indicating the relationship between the engine rotational frequency increase amount, which indicates the rotational frequency by which the rotational frequency of the engine is to be increased when coasting control is terminated, and the rotational frequency difference between the rotational frequency of the engine and the transmission-side rotational frequency of the clutch; and an increase-amount determination unit (52) that makes reference to the engine rotational frequency increase-amount information and, when the coasting control termination condition is satisfied, determines the engine rotational frequency increase amount on the basis of the rotational frequency difference between the rotational frequency of the engine and the transmission-side rotational frequency of the clutch. When the coasting control termination condition is satisfied, the coasting control execution unit (51) controls the engine in accordance with the determined engine rotational frequency increase amount.

Description

車両制御装置及び車両の制御方法Vehicle control apparatus and vehicle control method
 本開示は、車両制御装置及び車両の制御方法に関し、特に、エンジンと駆動輪との間の動力伝達を遮断して車両を惰行走行させる惰行制御に関する。 The present disclosure relates to a vehicle control device and a vehicle control method, and more particularly to coasting control in which power transmission between an engine and driving wheels is interrupted to cause the vehicle to coast.
 車両の走行時に、クラッチを断状態にして、もしくは、変速機をニュートラルにすることによりエンジンと駆動輪との間の動力伝達を遮断し、その間、エンジンの回転数を低下させることにより、燃料の消費を低減する惰行制御が知られている。 When the vehicle is running, the clutch is disengaged or the transmission is set to neutral to cut off the power transmission between the engine and the drive wheels. Coasting control that reduces consumption is known.
 このような惰行制御を行う車両において、惰行制御の終了時にエンジン回転数を上昇させてからクラッチを接状態にする技術が開示されている(例えば、特許文献1参照)。 In a vehicle that performs such coasting control, a technique is disclosed in which the clutch is engaged after the engine speed is increased at the end of coasting control (see, for example, Patent Document 1).
日本国特開2012-030709号公報Japanese Unexamined Patent Publication No. 2012-030709
 通常シフトダウン変速時のクラッチを接状態にする場合、エンジン回転数をシフトダウン前後の変速段間のギア比に応じた回転数に上昇させて、クラッチを接状態にする。しかしながら、惰行制御の終了時にクラッチを接状態にする場合、車両の走行状態によっては、変速機のインプットシャフト回転数が通常シフトダウン変速時に比べて低下していて、エンジン回転数がインプットシャフト回転数をオーバーシュートしてしまい、クラッチを接状態にする際にショックを発生させてしまう虞がある。 ∙ When putting the clutch in the normal downshift to the engaged state, increase the engine speed to the number of revolutions according to the gear ratio between the gears before and after the downshift and put the clutch in the engaged state. However, when the coasting control is terminated, the clutch input shaft speed may be lower than the normal shift-down shift speed depending on the vehicle running condition, and the engine speed may be less than the input shaft speed. May overshoot and cause a shock when the clutch is engaged.
 本開示の目的は、惰行制御終了時のクラッチを接状態にする際におけるショックを低減することのできる車両制御装置を提供することを目的とする。 An object of the present disclosure is to provide a vehicle control device that can reduce a shock when the clutch at the end of coasting control is brought into an engaged state.
 上述の目的を達成するため、本開示の一観点に係る車両制御装置は、所定の惰行制御開始条件を充足する際に、クラッチを断状態にするとともにエンジン回転数を低下させる惰行制御を開始し、所定の惰行制御終了条件を充足する際に、エンジン回転数を上昇させるようにエンジンを制御するとともにクラッチを接状態にする惰行制御実行手段と、エンジン回転数とクラッチの変速機側の回転数との回転数差と、前記惰行制御を終了させる際に上昇させるべき回転数を示すエンジン回転数上昇量との関係を示すエンジン回転数上昇量情報を記憶する上昇量記憶手段と、エンジン回転数上昇量情報を参照し、前記惰行制御終了条件を充足する際における、エンジン回転数とクラッチの変速機側の回転数との回転数差に基づいて、エンジン回転数上昇量を決定する上昇量決定手段と、を備え、惰行制御実行手段は、所定の惰行制御終了条件を充足する際に、決定されたエンジン回転数上昇量によりエンジンを制御する車両制御装置。 In order to achieve the above-described object, a vehicle control device according to an aspect of the present disclosure starts coasting control that places the clutch in a disengaged state and reduces engine speed when satisfying a predetermined coasting control start condition. , Coasting control execution means for controlling the engine so as to increase the engine speed and satisfying the clutch when the predetermined coasting control end condition is satisfied, and the engine speed and the speed of the clutch on the transmission side An increase amount storage means for storing engine speed increase information indicating the relationship between the difference between the rotation speed and the engine speed increase amount indicating the rotation speed to be increased when the coasting control is ended, and the engine speed Based on the difference in engine speed and the speed on the transmission side of the clutch when the coasting control end condition is satisfied with reference to the amount of increase information, the engine speed With a rising amount determining means for determining the amount of rise, and coasting control execution means, when satisfying the predetermined coasting control end condition, the vehicle control device for controlling the engine by the engine rotation speed increase amount determined.
 上記車両制御装置において、上昇量記憶手段のエンジン回転数上昇量は、変速機の現在の変速段にシフトダウンする際に上昇させるべきエンジン回転数の上昇量よりも低く設定されていてもよい。 In the above vehicle control apparatus, the engine speed increase amount of the increase amount storage means may be set lower than the engine speed increase amount that should be increased when shifting down to the current gear position of the transmission.
 本開示の一観点に係る車両の制御方法は、所定の惰行制御開始条件を充足する際に、クラッチを断状態にするとともにエンジン回転数を低下させる惰行制御を開始し、所定の惰行制御終了条件を充足する際に、エンジン回転数を上昇させるようにエンジンを制御するとともにクラッチを接状態にする惰行制御実行手段と、エンジン回転数とクラッチの変速機側の回転数との回転数差と、前記惰行制御を終了させる際に上昇させるべき回転数を示すエンジン回転数上昇量との関係を示すエンジン回転数上昇量情報を記憶する上昇量記憶手段と、を備える車両の制御方法であって、前記エンジン回転数上昇量情報を参照し、前記終了条件を充足する際における、エンジン回転数とクラッチの変速機側の回転数との回転数差に基づいて、エンジン回転数上昇量を決定し、前記惰行制御実行手段は、所定の惰行制御終了条件を充足する際に、決定された前記エンジン回転数上昇量に従って前記エンジンを制御する。 A vehicle control method according to an aspect of the present disclosure starts coasting control that causes a clutch to be disengaged and reduces engine speed when a predetermined coasting control start condition is satisfied, and a predetermined coasting control end condition When the engine is satisfied, the coasting control execution means for controlling the engine so as to increase the engine speed and bringing the clutch into a contact state, the rotational speed difference between the engine speed and the speed of the clutch on the transmission side, An increase amount storage means for storing engine rotation speed increase information indicating a relationship with an engine rotation speed increase amount indicating a rotation speed to be increased when ending the coasting control, and a vehicle control method comprising: Based on the difference in engine speed and the speed on the transmission side of the clutch when the end condition is satisfied with reference to the engine speed increase information, the engine It determines the rotation speed increase amounts, the coasting control execution means, when satisfying the predetermined coasting control end conditions, and controls the engine according to the engine rotation speed increase amount determined.
 本開示の車両制御装置によれば、惰行制御終了時のクラッチを接状態にする際におけるショックを低減することができる。 According to the vehicle control device of the present disclosure, it is possible to reduce a shock when the clutch at the end of coasting control is brought into a contact state.
図1は、本開示の一実施形態に係る車両を示す模式的な全体構成図である。FIG. 1 is a schematic overall configuration diagram illustrating a vehicle according to an embodiment of the present disclosure. 図2は、本開示の一実施形態に係る電子制御ユニット及び関連する構成を示す機能ブロック図である。FIG. 2 is a functional block diagram illustrating an electronic control unit and related configurations according to an embodiment of the present disclosure. 図3は、本開示の一実施形態に係る車両制御装置におけるエンジン回転数上昇量マップにおける回転数差とエンジン回転数上昇量との関係を示す図である。FIG. 3 is a diagram illustrating a relationship between a rotational speed difference and an engine rotational speed increase amount in an engine rotational speed increase map in the vehicle control device according to the embodiment of the present disclosure. 図4は、本開示の一実施形態に係る車両制御処理のフローチャートである。FIG. 4 is a flowchart of a vehicle control process according to an embodiment of the present disclosure.
 以下、添付図面に基づいて、本開示の一実施形態に係る車両制御装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, a vehicle control device according to an embodiment of the present disclosure will be described based on the accompanying drawings. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図1は、本実施形態の車両1を示す模式的な全体構成図である。エンジン10の出力軸は、クラッチ11を介して変速機12の入力軸に接続されている。変速機12の出力軸は、プロペラシャフト13、差動装置14、ドライブシャフト15を介して駆動輪(左右後輪)16L,16Rにそれぞれ接続されている。 FIG. 1 is a schematic overall configuration diagram showing a vehicle 1 of the present embodiment. The output shaft of the engine 10 is connected to the input shaft of the transmission 12 via the clutch 11. The output shaft of the transmission 12 is connected to drive wheels (left and right rear wheels) 16L and 16R via a propeller shaft 13, a differential device 14, and a drive shaft 15, respectively.
 クラッチ11は、エンジン10の出力軸と、変速機12の入力軸との間の動力伝達経路を断接する。本実施形態では、クラッチ11は、油圧制御装置18から供給される油圧に応じて動力伝達経路を断接する。油圧制御装置18は、エンジン10の駆動力を利用してクラッチ11に供給する油圧を生成する。 The clutch 11 connects and disconnects a power transmission path between the output shaft of the engine 10 and the input shaft of the transmission 12. In the present embodiment, the clutch 11 connects and disconnects the power transmission path according to the hydraulic pressure supplied from the hydraulic control device 18. The hydraulic control device 18 generates hydraulic pressure to be supplied to the clutch 11 using the driving force of the engine 10.
 変速機12は、例えば、自動制御式マニュアルトランスミッション(AMT)である。 The transmission 12 is, for example, an automatically controlled manual transmission (AMT).
 車両1は、左右前輪17L,17R、エンジン回転数センサ20、車速センサ21、アクセルペダルセンサ22、ブレーキペダルセンサ23、車両制御装置の一例としての電子制御ユニット(以下、ECUと称する)50を備える。 The vehicle 1 includes left and right front wheels 17L and 17R, an engine speed sensor 20, a vehicle speed sensor 21, an accelerator pedal sensor 22, a brake pedal sensor 23, and an electronic control unit (hereinafter referred to as an ECU) 50 as an example of a vehicle control device. .
 エンジン回転数センサ20は、エンジン10の図示しないクランクシャフトの回転数Neを検出する。車速センサ21は、プロペラシャフト13の回転速度から車両1の走行速度VTを検出する。アクセルペダルセンサ22は、アクセルペダル31の踏み込み量からアクセル開度Qを検出する。ブレーキペダルセンサ23は、ブレーキペダル32の踏み込み量から運転者によるブレーキ操作の有無を検出する。これら各種センサ類20~23のセンサ値は、電気的に接続されたECU50に送信される。 The engine speed sensor 20 detects a rotation speed Ne of a crankshaft (not shown) of the engine 10. The vehicle speed sensor 21 detects the traveling speed VT of the vehicle 1 from the rotational speed of the propeller shaft 13. The accelerator pedal sensor 22 detects the accelerator opening Q from the depression amount of the accelerator pedal 31. The brake pedal sensor 23 detects the presence or absence of a brake operation by the driver from the amount of depression of the brake pedal 32. The sensor values of these various sensors 20 to 23 are transmitted to the electrically connected ECU 50.
 ECU50は、エンジン10、クラッチ11、変速機12、油圧制御装置18等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備える。 The ECU 50 performs various controls of the engine 10, the clutch 11, the transmission 12, the hydraulic control device 18, and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like.
 図2は、本開示の一実施形態に係る電子制御ユニット及び関連する構成を示す機能ブロック図である。 FIG. 2 is a functional block diagram illustrating an electronic control unit and related configurations according to an embodiment of the present disclosure.
 ECU50は、惰行制御実行手段の一例としての惰行制御実行部51と、上昇量決定手段の一例としての上昇量決定部52と、上昇量記憶手段の一例としての上昇量記憶部53とを一部の機能要素として有する。これら各機能要素は、本実施形態では一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。 The ECU 50 partially includes a coasting control execution unit 51 as an example of a coasting control execution unit, a rising amount determination unit 52 as an example of a rising amount determination unit, and a rising amount storage unit 53 as an example of a rising amount storage unit. As a functional element. In the present embodiment, these functional elements are described as being included in the ECU 50, which is an integral piece of hardware. However, any one of these functional elements may be provided in separate hardware.
 惰行制御実行部51は、入力されるセンサ値に基づいて、所定の惰行制御開始条件を満たすか否かを判定する。惰行制御開始条件としては、例えば、アクセル開度が所定量以上低下した場合としてもよい。なお、惰行制御開始条件としては、これに限られず、種々の条件とすることができ、例えば、1以上のセンサ値がエンジン10が駆動輪に対して正の仕事をしない運転状態を示す場合を条件としてもよい。 The coasting control execution unit 51 determines whether or not a predetermined coasting control start condition is satisfied based on the input sensor value. As the coasting control start condition, for example, the accelerator opening may be decreased by a predetermined amount or more. The coasting control start condition is not limited to this, and may be various conditions. For example, a case where one or more sensor values indicate an operating state in which the engine 10 does not perform positive work on the drive wheels. It is good also as conditions.
 惰行制御実行部51は、惰行制御開始条件を満たすと判定した場合には、エンジン10の回転数を所定の回転数(例えば、エンジン10の通常(車両停止時)のアイドル回転数よりも低い回転数)に低下させる制御を行うとともに、油圧制御装置18にクラッチ11を断状態にさせるように制御する。 When the coasting control execution unit 51 determines that the coasting control start condition is satisfied, the rotational speed of the engine 10 is lower than a predetermined rotational speed (for example, a rotational speed lower than the normal idle speed of the engine 10 (when the vehicle is stopped)). And the hydraulic control device 18 is controlled to make the clutch 11 disengaged.
 惰行制御実行部51は、入力されるセンサ値に基づいて、所定の惰行制御終了条件を満たすか否かを判定する。惰行制御終了条件としては、例えば、アクセル開度が所定量以上増加した場合としてもよい。なお、惰行制御終了条件としては、これに限られず、種々の条件とすることができ、例えば、1以上のセンサ値がエンジン10が駆動輪に対して正の仕事をしない運転状態が解消されたことを示す場合を条件としてもよい。 The coasting control execution unit 51 determines whether or not a predetermined coasting control end condition is satisfied based on the input sensor value. As the coasting control end condition, for example, the accelerator opening may be increased by a predetermined amount or more. The coasting control end condition is not limited to this, and can be various conditions. For example, an operation state in which one or more sensor values do not cause the engine 10 to perform positive work on the drive wheels has been eliminated. This may be a condition.
 惰行制御実行部51は、惰行制御終了条件を満たすと判定した場合には、惰行制御の終了処理、すなわち、エンジン10の回転数を上昇量決定部52が決定したエンジン回転数上昇量だけ上昇させる制御を行うとともに、エンジン10が所定の回転数まで上昇した場合に、油圧制御装置18にクラッチ11を接状態にさせるように制御する処理を実行する。 When the coasting control execution unit 51 determines that the coasting control end condition is satisfied, the coasting control end process, that is, increases the engine speed by the engine speed increase amount determined by the increase amount determination unit 52. While performing control, when the engine 10 rises to a predetermined number of revolutions, a process of controlling the hydraulic control device 18 to bring the clutch 11 into the engaged state is executed.
 本実施形態では、惰行制御実行部51は、惰行制御終了条件を満たすと判定した場合には、上昇量決定部52にエンジン回転数上昇量を問い合わせ、上昇量決定部52から取得したエンジン回転数上昇量に従ってエンジン10の回転数を上昇させる制御(フィードフォワード制御)を行う。 In the present embodiment, when the coasting control execution unit 51 determines that the coasting control end condition is satisfied, the coasting control execution unit 51 inquires of the increase amount determination unit 52 about the engine rotation number increase amount and acquires the engine rotation number acquired from the increase amount determination unit 52. Control for increasing the rotational speed of the engine 10 according to the amount of increase (feed forward control) is performed.
 上昇量記憶部53は、エンジン回転数とクラッチ11の変速機12側の回転数(変速機12のインプットシャフトの回転数)との回転数差と、その回転数差である場合に、惰行制御の終了処理において上昇させるべきエンジン回転数(エンジン回転数上昇量という。)との関係を示すエンジン回転数上昇量マップ(エンジン回転数上昇量情報の一例)を記憶する。エンジン回転数上昇量は、例えば、エンジン10に供給する燃料の増加量として表現してもよい。 The increase amount storage unit 53 performs coasting control when the rotational speed difference between the engine rotational speed and the rotational speed of the clutch 11 on the transmission 12 side (the rotational speed of the input shaft of the transmission 12) is the rotational speed difference. The engine speed increase map (an example of engine speed increase information) indicating the relationship with the engine speed (referred to as engine speed increase) that should be increased in the end process is stored. The engine speed increase amount may be expressed, for example, as an increase amount of fuel supplied to the engine 10.
 図3は、本開示の一実施形態に係る車両制御装置におけるエンジン回転数上昇量マップにおける回転数差とエンジン回転数上昇量との関係を示す図である。 FIG. 3 is a diagram illustrating a relationship between a rotational speed difference and an engine speed increase amount in an engine speed increase map in the vehicle control device according to an embodiment of the present disclosure.
 図3に示すように、エンジン回転数上昇量マップにおいては、エンジン回転数とクラッチ11の変速機12側の回転数との回転数差が大きくなるほど、エンジン回転数上昇量が多くなるような関係となっている。本実施形態においては、エンジン回転数上昇量は、図3中の破線で示す変速機12の変速段にシフトダウンする際に上昇させるべきエンジン回転数の上昇量(シフトダウン時上昇量という)よりも小さくなっている。 As shown in FIG. 3, in the engine speed increase map, the engine speed increase increases as the difference between the engine speed and the speed of the clutch 11 on the transmission 12 side increases. It has become. In the present embodiment, the engine speed increase amount is based on the engine speed increase amount to be increased when shifting down to the gear stage of the transmission 12 indicated by the broken line in FIG. Is also getting smaller.
 図2の説明に戻り、上昇量決定部52は、車速センサ21からの車速に基づいて、変速機12のインプットシャフトの回転数を特定する。具体的には、車速から変速機12の現在の変速段のギア比を用いることにより、変速機12のインプットシャフトの回転数を特定することができる。なお、変速機12のインプットシャフトの回転数を検出するセンサを備えるようにして、そのセンサの出力値によりインプットシャフトの回転数を特定するようにしてもよい。 Returning to the description of FIG. 2, the lift amount determination unit 52 specifies the rotation speed of the input shaft of the transmission 12 based on the vehicle speed from the vehicle speed sensor 21. Specifically, the rotational speed of the input shaft of the transmission 12 can be specified by using the gear ratio of the current gear position of the transmission 12 from the vehicle speed. A sensor for detecting the rotational speed of the input shaft of the transmission 12 may be provided, and the rotational speed of the input shaft may be specified by the output value of the sensor.
 上昇量決定部52は、エンジン回転数センサ20からのエンジン回転数と、特定したインプットシャフトの回転数との回転数差を算出し、上昇量記憶部53のエンジン回転数上昇量マップを参照して、エンジン回転数上昇量を決定する。本実施形態では、上昇量決定部52は、惰行制御実行部51から問い合わせを受けた場合(すなわち、惰行制御の終了処理の条件が合致した場合)における回転数差から、エンジン回転数上昇量を決定する。上昇量決定部52は、決定したエンジン回転数上昇量を惰行制御実行部51に通知する。 The increase amount determination unit 52 calculates the rotation speed difference between the engine rotation speed from the engine rotation speed sensor 20 and the identified rotation speed of the input shaft, and refers to the engine rotation speed increase map in the increase amount storage unit 53. To determine the engine speed increase. In the present embodiment, the increase amount determination unit 52 determines the engine rotation amount increase amount from the difference in rotation number when the inquiry is received from the coasting control execution unit 51 (that is, when the conditions of the coasting control end process are met). decide. The increase amount determination unit 52 notifies the coasting control execution unit 51 of the determined engine speed increase amount.
 次に、本開示の一実施形態に係る車両制御処理について説明する。 Next, a vehicle control process according to an embodiment of the present disclosure will be described.
 図4は、本開示の一実施形態に係る車両制御処理のフローチャートである。 FIG. 4 is a flowchart of a vehicle control process according to an embodiment of the present disclosure.
 この車両制御処理は、例えば、エンジン10の始動(イグニッションスイッチのキースイッチON)と同時に開始される。 This vehicle control process is started, for example, at the same time as starting the engine 10 (ignition switch key switch ON).
 惰行制御実行部51は、車両の状態が惰行制御開始条件に合致するか否かを判定する(S10)。この結果、車両の状態が惰行制御開始条件に合致しない場合には、惰行制御実行部51は、ステップS10の処理を繰り返す(S10:NO)。 The coasting control execution unit 51 determines whether or not the state of the vehicle matches the coasting control start condition (S10). As a result, when the state of the vehicle does not match the coasting control start condition, the coasting control execution unit 51 repeats the process of step S10 (S10: NO).
 一方、車両の状態が惰行制御開始条件に合致する場合(S10:YES)には、惰行制御実行部51は、惰行制御を開始する(S11)。具体的には、惰行制御実行部51は、エンジン10の回転数を所定の回転数(例えば、エンジン10のアイドル回転数よりも低い回転数)に低下させる制御を行うとともに、油圧制御装置18にクラッチ11を断状態にさせるように制御する。この結果、エンジン10における燃料消費を適切に低減することができる。 On the other hand, when the state of the vehicle matches the coasting control start condition (S10: YES), the coasting control execution unit 51 starts coasting control (S11). Specifically, the coasting control execution unit 51 performs control to reduce the rotational speed of the engine 10 to a predetermined rotational speed (for example, a rotational speed lower than the idle rotational speed of the engine 10), and controls the hydraulic control device 18. Control is performed so that the clutch 11 is disengaged. As a result, fuel consumption in the engine 10 can be appropriately reduced.
 次いで、惰行制御実行部51は、車両の状態が惰行制御終了条件に合致するか否かを判定する(S12)。この結果、車両の状態が惰行制御終了条件に合致しない場合(S12:NO)には、惰行制御実行部51は、惰行制御の状態を維持し、ステップS12の処理を繰り返す。 Next, the coasting control execution unit 51 determines whether or not the state of the vehicle matches the coasting control end condition (S12). As a result, when the state of the vehicle does not match the coasting control end condition (S12: NO), the coasting control execution unit 51 maintains the coasting control state and repeats the process of step S12.
 一方、車両の状態が惰行制御終了条件に合致する場合(S12:YES)には、惰行制御実行部51は、上昇量決定部52にエンジン回転数上昇量を問い合わせ、問い合わせを受けた上昇量決定部52が、エンジン回転数上昇量を決定し、惰行制御実行部51にエンジン回転数上昇量を通知する(S13)。 On the other hand, when the state of the vehicle matches the coasting control end condition (S12: YES), coasting control execution unit 51 inquires engine speed increase amount from engine amount determination unit 52 and determines the engine amount to be increased. The unit 52 determines the engine speed increase amount and notifies the coasting control execution unit 51 of the engine speed increase amount (S13).
 次いで、惰行制御実行部51は、惰行制御終了処理を行う(S14)。惰行制御終了処理においては、惰行制御実行部51は、回転数決定部52により決定されたエンジン回転数上昇量に従ってエンジン10の回転数を上昇させ、エンジン回転数を上昇させた後、油圧制御装置18にクラッチ11を接状態にさせるように制御する。ここで、エンジン回転数上昇量は、シフトダウン時の上昇量よりも低いので、シフトダウン時の上昇量を用いた場合に比して、エンジン回転数が変速機12のインプットシャフトの回転数をオーバーシュートしてしまうことを低減できる。また、惰行制御終了処理を開始する際に決定したエンジン回転数上昇量により制御するので、フィードバック制御のようにエンジン回転数が変速機12のインプットシャフトの回転数をオーバーシュートしてしまうことを防止できるとともに、迅速に制御を行うことができる。 Next, the coasting control execution unit 51 performs coasting control end processing (S14). In the coasting control end process, the coasting control execution unit 51 increases the rotational speed of the engine 10 in accordance with the engine rotational speed increase amount determined by the rotational speed determination unit 52 and increases the engine rotational speed. 18 is controlled to bring the clutch 11 into the engaged state. Here, since the engine speed increase amount is lower than the increase amount at the time of downshifting, the engine speed is less than the speed of the input shaft of the transmission 12 as compared with the case of using the increase amount at the time of downshifting. Overshooting can be reduced. Further, since the control is performed based on the engine speed increase amount determined when starting the coasting control end process, the engine speed is prevented from overshooting the input shaft speed of the transmission 12 like feedback control. As well as being able to control quickly.
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the spirit of the present invention.
 例えば、上記実施形態では、AMTを例に説明していたが、本発明はこれに限られず、自動でクラッチを断接することができれば、トランスミッションは、マニュアル式のトランスミッションであっても、他の方式の自動式トランスミッション(例えば、トルクコントローラ式トランスミッション)であってもよい。 For example, in the above-described embodiment, AMT has been described as an example. However, the present invention is not limited to this, and the transmission may be another type even if the transmission is a manual transmission as long as the clutch can be automatically connected and disconnected. The automatic transmission (for example, torque controller type transmission) may be used.
 本出願は、2015年03月26日付で出願された日本国特許出願(特願2015-063954 )に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on March 26, 2015 (Japanese Patent Application No. 2015-063954), the contents of which are incorporated herein by reference.
 本開示の車両制御装置は、惰行制御終了時のクラッチを接状態にする際におけるショックを低減することに利用できる。 The vehicle control device of the present disclosure can be used to reduce a shock when the clutch at the end of coasting control is brought into a contact state.
 1 車両
 10 エンジン
 11 クラッチ
 12 変速機
 13 プロペラシャフト
 14 差動装置
 15 ドライブシャフト
 50 ECU
 51 惰行制御実行部
 52 上昇量決定部
 53 上昇量記憶部
1 Vehicle 10 Engine 11 Clutch 12 Transmission 13 Propeller Shaft 14 Differential Device 15 Drive Shaft 50 ECU
51 coasting control execution unit 52 climb amount determination unit 53 climb amount storage unit

Claims (3)

  1.  所定の惰行制御開始条件を充足する際に、クラッチを断状態にするとともにエンジン回転数を低下させる惰行制御を開始し、所定の惰行制御終了条件を充足する際に、エンジン回転数を上昇させるようにエンジンを制御するとともにクラッチを接状態にする惰行制御実行手段と、
     エンジン回転数とクラッチの変速機側の回転数との回転数差と、前記惰行制御を終了させる際に上昇させるべき回転数を示すエンジン回転数上昇量との関係を示すエンジン回転数上昇量情報を記憶する上昇量記憶手段と、
     前記エンジン回転数上昇量情報を参照し、前記終了条件を充足する際における、エンジン回転数とクラッチの変速機側の回転数との回転数差に基づいて、エンジン回転数上昇量を決定する上昇量決定手段と、を備え、
     前記惰行制御実行手段は、所定の惰行制御終了条件を充足する際に、決定された前記エンジン回転数上昇量に従って前記エンジンを制御する
     車両制御装置。
    When satisfying a predetermined coasting control start condition, the coasting control for disengaging the clutch and lowering the engine speed is started, and when the predetermined coasting control end condition is satisfied, the engine speed is increased. Coasting control execution means for controlling the engine and bringing the clutch into the engaged state;
    Engine rotational speed increase information indicating the relationship between the rotational speed difference between the engine rotational speed and the rotational speed on the transmission side of the clutch and the engine rotational speed increase indicating the rotational speed to be increased when the coasting control is terminated. Rising amount storage means for storing
    The engine speed increase amount is determined by referring to the engine speed increase amount information and determining the engine speed increase amount based on the difference between the engine speed and the clutch transmission speed when the end condition is satisfied. A quantity determining means,
    The coasting control execution means controls the engine according to the determined amount of increase in the engine speed when satisfying a predetermined coasting control end condition.
  2.  前記上昇量記憶手段の前記エンジン回転数上昇量は、変速機の現在の変速段にシフトダウンする際に上昇させるべきエンジン回転数の上昇量よりも低く設定されている請求項1に記載の車両制御装置。 2. The vehicle according to claim 1, wherein the engine speed increase amount of the increase amount storage means is set lower than the engine speed increase amount to be increased when shifting down to the current gear position of the transmission. Control device.
  3.  所定の惰行制御開始条件を充足する際に、クラッチを断状態にするとともにエンジン回転数を低下させる惰行制御を開始し、所定の惰行制御終了条件を充足する際に、エンジン回転数を上昇させるようにエンジンを制御するとともにクラッチを接状態にする惰行制御実行手段と、
     エンジン回転数とクラッチの変速機側の回転数との回転数差と、前記惰行制御を終了させる際に上昇させるべき回転数を示すエンジン回転数上昇量との関係を示すエンジン回転数上昇量情報を記憶する上昇量記憶手段と、を備える車両の制御方法であって、
     前記エンジン回転数上昇量情報を参照し、前記終了条件を充足する際における、エンジン回転数とクラッチの変速機側の回転数との回転数差に基づいて、エンジン回転数上昇量を決定し、
     前記惰行制御実行手段は、所定の惰行制御終了条件を充足する際に、決定された前記エンジン回転数上昇量に従って前記エンジンを制御する
     車両の制御方法。
    When satisfying a predetermined coasting control start condition, the coasting control for disengaging the clutch and lowering the engine speed is started, and when the predetermined coasting control end condition is satisfied, the engine speed is increased. Coasting control execution means for controlling the engine and bringing the clutch into the engaged state;
    Engine rotational speed increase information indicating the relationship between the rotational speed difference between the engine rotational speed and the rotational speed on the transmission side of the clutch and the engine rotational speed increase indicating the rotational speed to be increased when the coasting control is terminated. And a rising amount storage means for storing the vehicle, the vehicle control method comprising:
    With reference to the engine speed increase information, the engine speed increase amount is determined based on the difference between the engine speed and the speed on the transmission side of the clutch when the end condition is satisfied,
    The coasting control execution means controls the engine according to the determined amount of increase in engine speed when satisfying a predetermined coasting control end condition.
PCT/JP2016/057932 2015-03-26 2016-03-14 Vehicle control device and vehicle control method WO2016152613A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015063954A JP2016182870A (en) 2015-03-26 2015-03-26 Vehicle control device
JP2015-063954 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152613A1 true WO2016152613A1 (en) 2016-09-29

Family

ID=56978384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057932 WO2016152613A1 (en) 2015-03-26 2016-03-14 Vehicle control device and vehicle control method

Country Status (2)

Country Link
JP (1) JP2016182870A (en)
WO (1) WO2016152613A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102371236B1 (en) * 2016-12-15 2022-03-04 현대자동차 주식회사 Method for controlling coasting drive of environmentally friendly vehicle
WO2022059156A1 (en) * 2020-09-18 2022-03-24 ヤマハ発動機株式会社 Leaning vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227885A (en) * 2001-02-06 2002-08-14 Hino Motors Ltd Clutch control device
JP2006112248A (en) * 2004-10-12 2006-04-27 Nissan Motor Co Ltd Engine control device
JP2012030709A (en) * 2010-07-30 2012-02-16 Isuzu Motors Ltd Coasting control device
WO2014068718A1 (en) * 2012-10-31 2014-05-08 トヨタ自動車株式会社 Vehicle drive controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227885A (en) * 2001-02-06 2002-08-14 Hino Motors Ltd Clutch control device
JP2006112248A (en) * 2004-10-12 2006-04-27 Nissan Motor Co Ltd Engine control device
JP2012030709A (en) * 2010-07-30 2012-02-16 Isuzu Motors Ltd Coasting control device
WO2014068718A1 (en) * 2012-10-31 2014-05-08 トヨタ自動車株式会社 Vehicle drive controller

Also Published As

Publication number Publication date
JP2016182870A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP6070630B2 (en) Control device for four-wheel drive vehicle
JP5648698B2 (en) Control device for hybrid vehicle
EP2949528B1 (en) Hybrid vehicle control device
JP5990947B2 (en) Vehicle control device
JP2009281439A (en) Device and method for controlling transmission mechanism and method for controlling motor vehicle
JP2017172630A (en) Gear change control device of vehicle
JP2010084830A (en) Clutch control device of vehicle
WO2016152613A1 (en) Vehicle control device and vehicle control method
EP3196498A1 (en) Controller for vehicle and control method for vehicle
JP5728421B2 (en) Lock-up control device and lock-up control method
WO2016152604A1 (en) Vehicle control device and vehicle control method
JP5355164B2 (en) Control device for automatic transmission
WO2016152607A1 (en) Vehicle control device and vehicle control method
JP2009264475A (en) Control device for vehicular continuously variable transmission
JP2018141425A (en) Driving force control device
JP5068280B2 (en) Lockup control device and lockup control method for automatic transmission
US20170089457A1 (en) Method for controlling transmission for vehicle
JP7111448B2 (en) vehicle controller
JP7001035B2 (en) Vehicle control device
JP3938474B2 (en) Control device for mechanical transmission
JP6413834B2 (en) Drive control device
JP2017089830A (en) Vehicle control device
JP2005113830A (en) Power system
JP2021004649A (en) Vehicle control device, vehicle and control method
KR20120068384A (en) Learning method about control of torque converter clutch, apparatus applied to the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768516

Country of ref document: EP

Kind code of ref document: A1