WO2016152054A1 - Pain prevention and alleviation effects of ω3 fatty acid glyceride - Google Patents

Pain prevention and alleviation effects of ω3 fatty acid glyceride Download PDF

Info

Publication number
WO2016152054A1
WO2016152054A1 PCT/JP2016/001259 JP2016001259W WO2016152054A1 WO 2016152054 A1 WO2016152054 A1 WO 2016152054A1 JP 2016001259 W JP2016001259 W JP 2016001259W WO 2016152054 A1 WO2016152054 A1 WO 2016152054A1
Authority
WO
WIPO (PCT)
Prior art keywords
pain
fatty acid
omega
acid
dha
Prior art date
Application number
PCT/JP2016/001259
Other languages
French (fr)
Japanese (ja)
Inventor
忠広 対馬
芳雄 清水
尚吾 徳山
賀寿夫 中本
Original Assignee
備前化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 備前化成株式会社 filed Critical 備前化成株式会社
Publication of WO2016152054A1 publication Critical patent/WO2016152054A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • A61K31/232Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms having three or more double bonds, e.g. etretinate

Definitions

  • the present invention relates to a treatment method for preventing and / or improving pain, a pharmaceutical composition, a composition for eating and drinking, and a method for producing such a composition.
  • the pharmaceutical composition and the food and beverage composition of the present invention contain ⁇ 3 fatty acid glycerides as active ingredients.
  • Non-Patent Documents 1 and 2, and Patent Document 1 ⁇ 3 fatty acids such as ⁇ -linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA) contained in fish oil, algae, genetically modified plants, etc. Not only improves cardiovascular disease, improves cranial nerve function, improves immune function, but also exerts a wide range of functions such as prevention and improvement of diseases through oxidative stress suppression, and is also effective in suppressing cancer growth, etc. It is a material that has been expanded in use (Non-Patent Documents 1 and 2, and Patent Document 1).
  • ALA ⁇ -linolenic acid
  • SDA stearidonic acid
  • EPA eicosapentaenoic acid
  • DPA docosapentaenoic acid
  • DHA docosahexaeno
  • ⁇ 3 fatty acids are put on the market as food materials, health food materials, cosmetic materials and pharmaceutical materials as glycerides, free fatty acids and ethyl esters, or concentrated and purified. These ⁇ 3 fatty acids are generally concentrated by combining a vacuum precision distillation method, a molecular distillation method, a chromatography method, a low-temperature solvent fractional crystallization method, a urea addition method, a silver nitrate complex formation method, and the like in a timely manner.
  • EPA ethyl ethyl ester form of EPA
  • EPA ethyl ethyl ester form of EPA
  • glycerides As they are or after concentrating and purifying ⁇ 3 fatty acids.
  • the ⁇ 3 fatty acid contained in the glyceride may be concentrated by a low-temperature solvent fractional crystallization method or concentrated by enzymatic treatment such as lipase. Fatty acid purity is limited to 70%.
  • Non-patent Document 3 glyceride ⁇ 3 fatty acids have a higher absorption rate and higher bioavailability than ethyl ester, but the details have not been elucidated.
  • free fatty acids have a high absorption rate and reactivity, they are said to cause inflammation and ulceration in the gastrointestinal tract and cause hemolysis of red blood cells when ingested for a long time.
  • prostaglandins and leukotrienes derived from fatty acids are involved in the induction of pain and the onset and chronicity of neuropathic pain.
  • omega-3 fatty acids When omega-3 fatty acids are used as active ingredients in pharmaceutical compositions and food and beverage compositions, free fatty acid type ⁇ 3 fatty acids or lower fatty acid esters of these fatty acids with ethanol, methanol, etc. are used.
  • the free fatty acid type is generally considered to induce digestive ulcer, inflammation and erythrocyte hemolysis after oral ingestion, and there is a problem that continuous ingestion is medically unsuitable.
  • the lower alcohol esters of these fatty acids with ethanol, methanol, etc. are inferior in absorption when compared with the free fatty acid type, and a large amount of intake is required, and further, bioavailability is inferior when compared with the free fatty acid type. It is said that it has problems such as being.
  • the inventors of the present invention have completed the present invention by providing a glyceride type ⁇ 3-fatty acid as an active ingredient of a preventive or therapeutic agent for pain such as pain.
  • the present invention provides the following.
  • a pharmaceutical composition comprising omega-3 fatty acid glycerides for preventing and / or treating pain, wherein the proportion of triglycerides in the omega-3 fatty acid glycerides is 70 wt% or more.
  • the omega-3 fatty acid is selected from the group consisting of ⁇ -linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA).
  • ALA ⁇ -linolenic acid
  • SDA stearidonic acid
  • EPA eicosapentaenoic acid
  • DPA docosapentaenoic acid
  • DHA docosahexaenoic acid
  • the pharmaceutical composition according to Item 1 comprising a target omega-3 fatty acid, wherein the target omega-3 fatty acid accounts for 90 wt% or more of the total omega-3 fatty acid.
  • Item 3 Item 3.
  • DHA docosahexaenoic acid
  • the omega-3 fatty acid glyceride is obtained by performing a treatment selected from the group consisting of an enzymatic treatment and a chemical treatment on a substance selected from the group consisting of an omega-3 fatty acid and a lower alcohol ester thereof.
  • the pharmaceutical composition according to Item 1. Item 5)
  • Item 1 A pharmaceutical composition according to item 1, which is taken orally.
  • the pharmaceutical composition according to item 1 which is administered as an infusion.
  • the pain is arthritis, osteoarthritis, indirect rheumatism, autoimmune disorders, sudden recurrence of chronic diseases, pain from fever, and secondary pain for pain disorders or other symptoms, dysmenorrhea Pain, fibromyalgia, musculoskeletal pain, toothache, postoperative pain, familial adenomatous polyposis, pain from other neoplastic diseases, pain from COX-2 mediated symptoms, burns Item 2.
  • omega-3 fatty acid glycerides for preventing and / or treating pain, wherein the ratio of triglycerides in the omega-3 fatty acid glycerides is 60 wt% or more.
  • the omega-3 fatty acid is selected from the group consisting of ⁇ -linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA).
  • ALA ⁇ -linolenic acid
  • SDA stearidonic acid
  • EPA eicosapentaenoic acid
  • DPA docosapentaenoic acid
  • DHA docosahexaenoic acid
  • the composition for eating and drinking according to Item 8 comprising a target omega-3 fatty acid, wherein the target omega-3 fatty acid accounts for 90 wt% or more of the total omega-3 fatty acid.
  • the composition for eating and drinking according to Item 9 wherein the omega-3 fatty acid is docosahexaenoic acid (DHA).
  • the omega-3 fatty acid glyceride is obtained by performing a treatment selected from the group consisting of an enzymatic treatment and a chemical treatment on a substance selected from the group consisting of an omega-3 fatty acid and a lower alcohol ester thereof.
  • the pain is arthritis, osteoarthritis, indirect rheumatism, autoimmune disorders, sudden recurrence of chronic diseases, pain from fever, and secondary pain for pain disorders or other symptoms, dysmenorrhea Pain, fibromyalgia, musculoskeletal pain, toothache, postoperative pain, familial adenomatous polyposis, pain from other neoplastic diseases, pain from COX-2 mediated symptoms, burns Item 9.
  • omega-3 fatty acids such as glyceride-type ALA, SDA, EPA, DPA, DHA, and the like, substances for inhibiting and treating pain such as pain, and compositions for eating and drinking.
  • pain refers to all categories of pain, regardless of its nature or cause, including neuropathic pain, inflammatory pain, nociceptive pain, idiopathic pain, neuralgia. Pain, orofacial pain, burn pain, chronic bone pain, low back pain, neck pain, abdominal pain, oral burning syndrome, somatic pain, visceral pain (including abdomen), fascial pain, toothache, cancer pain, chemistry Therapeutic pain, myofascial pain syndrome, complex local pain syndrome (CRPS), temporomandibular pain, traumatic pain, paroxysmal pain, surgical pain, postoperative pain, labor pain, reflex sympathetic dystrophy, brachial nerve Plexus withdrawal injury, neurogenic bladder, acute pain, musculoskeletal pain, postoperative pain, chronic pain, persistent pain, peripheral mediated pain, central mediated pain, chronic headache, tension headache, cluster headache, migraine , Associated with familial hemiplegic migraine, headache Condition, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, post-stroke
  • omega-3 fatty acid refers to an unsaturated fatty acid having a carbon-carbon double bond at the ⁇ 3 position.
  • omega-3 fatty acids include ⁇ -linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). It is not limited to.
  • lower alcohol ester of fatty acid refers to an ester of a fatty acid and a lower alcohol.
  • lower alcohols used for the production of lower alcohol esters of fatty acids include, but are not limited to, methanol and ethanol.
  • omega-3 fatty acid glyceride includes triglycerides, diglycerides, and monoglycerides.
  • the “omega-3 fatty acid glyceride” of the present invention is a triglyceride.
  • the proportion of triglyceride in the omega-3 fatty acid glyceride is 60 wt% or more. More preferably, it is 65% or more, still more preferably 70 wt% or more, and most preferably 80 wt% or more.
  • the target omega-3 fatty acids include ⁇ -linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA).
  • ALA ⁇ -linolenic acid
  • SDA stearidonic acid
  • EPA eicosapentaenoic acid
  • DPA docosapentaenoic acid
  • DHA docosahexaenoic acid
  • the ratio of the target omega-3 fatty acid in all the omega-3 fatty acids is 80 wt% or more.
  • the weight of the omega-3 fatty acid used in the calculation of this ratio is calculated as the weight of the omega-3 fatty acid in the weight of the omega-3 fatty acid glyceride, for example, in the case of omega-3 fatty acid glycerides.
  • the desired glyceride having a purity of ⁇ 3 fatty acid of 90 wt% or higher is synthesized by using the fatty acid or lower alcohol ester thereof as a starting material at least 90 wt% or higher as an ester with glycerin.
  • the esterification reaction can be generally obtained by a reversible reaction with lipase or a chemical synthesis reaction with acid or alkali.
  • the fatty acid of 90 wt% or higher or a lower alcohol ester thereof can be obtained by a known method (Japanese Patent Laid-Open Nos. 2000-212588 and 11-209786).
  • these lower alcohol esters are a mixture of multiple types of fatty acid esters, generally one or more methods such as vacuum precision distillation method, molecular distillation method, chromatographic method, urea addition method, silver nitrate complex method, low-temperature solvent fractional crystallization method, etc.
  • a mixture containing at least 90 wt% of the target ⁇ 3 fatty acid can be obtained by purification in combination.
  • these purification methods are merely examples and not the object of the present invention, and it is obvious that the esterification method and the concentration purification method itself are not limited.
  • the glyceride ⁇ 3 fatty acid used in the present invention is assumed to be, for example, trieicosapentaenoyl glyceride in which three molecules of EPA are bound to one molecule of glycerin. Is the same. That is, preferably, the “omega-3 fatty acid glyceride of the present invention” means a triglyceride in which only one ⁇ 3 fatty acid is bonded to one molecule of glycerin.
  • each glyceride is a mixture composed of triglyceride, diglyceride, and monoglyceride.
  • the proportion of triglyceride in the total glyceride is preferably 60 wt. % Or more, more preferably 70 wt% or more, and most preferably 80 wt% or more.
  • ⁇ 3 fatty acid glyceride refers to a composition comprising monoglyceride, diglyceride and at least 60 wt% triglyceride.
  • trieicosapentaenoyl glyceride when trieicosapentaenoyl glyceride is chemically or enzymatically synthesized from ethyl eicosapentaenoate, unreacted ethyl eicosapentaenoate, monoeicosapentaenoyl glyceride or dieicosa is synthesized.
  • pentaenoyl glyceride is present in the product, the proportion of trieicosapentaenoyl glyceride in the total glyceride is preferably at least 60 wt%.
  • a free ⁇ 3 fatty acid is used as a starting material.
  • trieicosapentaenoyl glyceride can be chemically or enzymatically synthesized by a known method.
  • the synthesis of each other fatty acid glyceride is the same (Yukihisa Tanaka, Tadashi Funada and Jiro Hirano, ester synthesis reaction by lipase, synthesis of triacylglycerol of EPA and DHA, oil chemistry, 41 (3), 563-567 (1992). And JP-A-8-40981).
  • the acid value (AV) of the trieicosapentaenoyl glyceride synthesized in this way is 5.0 or less, preferably 4.0 or less, more preferably 3.0 or less, still more preferably 2.0 or less, Preferably it is 1.0 or less.
  • the peroxide value (POV) is 10.0 or less, preferably 8.0 or less, more preferably 6.0 or less, still more preferably 4.0 or less, and most preferably 3.0 or less.
  • unpurified trieicosapentaenoyl glyceride mixture is treated by physical treatment such as adsorbent treatment such as activated clay, acid clay, activated carbon, silicic acid, activated alumina, pyrolysis treatment, molecular distillation treatment, etc. Can be reached.
  • adsorbent treatment such as activated clay, acid clay, activated carbon, silicic acid, activated alumina, pyrolysis treatment, molecular distillation treatment, etc.
  • the resulting product is added with antioxidants such as vitamin E and ascorbyl palmitate to help maintain quality.
  • Non-Patent Documents 4 and 5 When using omega-3 fatty acids, it is possible to ingest or ingest as an infusion.
  • Ethyl ester fatty acids are said to have a lower absorption rate than free fatty acids and glyceride fatty acids (Non-patent Document 3).
  • the present inventors have solved the problems of free fatty acids and ester-type ⁇ 3 fatty acids in the prior art by providing omega-3 fatty acid glycerides in which the ratio of the target omega-3 fatty acids is 90 wt% or more.
  • the present inventors have found that it exhibits pharmacological superiority and superiority as a composition for eating and drinking, and has completed the present invention.
  • Pain is an early warning system necessary to protect the body from disability and noxious stimuli.
  • chronic pain is a state in which pain is felt despite the healing of the disorder. In this case, the pain does not serve as a warning, and quality. It only reduces the of life (QOL).
  • QOL life
  • pain is roughly classified into nociceptive pain, neuropathic pain, cancer pain, and the like regardless of the type of disease. It can also be divided into acute pain and chronic pain according to the duration of pain.
  • Acute pain is a symptom of pain associated with trauma and disease caused by transient excitement of nociceptors by noxious stimuli and disappears in a few days.
  • chronic pain is regarded as substantial pain that seems to be the cause of early pain, and is caused by abnormalities in pain transmission, control, and cognitive mechanisms (Reference 1).
  • NSAIDs Non-steroidal anti-inflammatory drugs
  • COX cycloxygenase
  • neuropathic pain which is one of chronic pain, is known to be difficult to succeed with existing therapeutic agents such as NSAIDs and narcotic analgesics, and appropriate treatment from the point that the pathogenesis of pain is unknown This is a situation where it has not been possible to perform (Reference Documents 2 and 3).
  • the effectiveness and safety of existing analgesics for pain treatment are insufficient, and development of new analgesics and further elucidation of pain control mechanisms are regarded as social issues.
  • Resolvin E1 RvE1
  • Resolvin D1 RvD1
  • chemR23 a receptor for Resolvin
  • NMDA D aspartic acid
  • Resolvin D precursor 17 (R) -hydroxy-docosahexaenoic acid (17 (R) HDoHE) and aspirin-induced resolvin D1 (AT-RvD1) are very low doses of 1 mg / kg Reported that inflammatory pain can be suppressed in arthritis model mice.
  • RvD1 inhibits inflammatory pain by inhibiting the activation of TRP channels such as transient receptor potential channel (TRP) A1, TRPV3 and TRPV4, and spinal cord of RvD1.
  • TRP transient receptor potential channel
  • Intracavitary administration has been reported to be effective in preventing postoperative pain and subsequent relief of symptoms.
  • the anti-nociceptive effects of 17 (R) HDoHE, RvD1 and AT-RvD1 show significant effectiveness against mechanical stimulation rather than thermal stimulation.
  • GPCRs such as GPR32 and ALX / FPR2.
  • the possibility of involvement of other metabolites such as AT-RvD2,3,4,5 has also been suggested (reference documents 13 to 14).
  • neuroprotectin / protectin D1 also suppresses neuropathic pain by inhibiting the activation of neuropathy-induced glial cells after nerve trauma and the accompanying inflammatory response (Reference 15).
  • lipid mediators such as those described above are expected to be new therapeutic agents for inflammatory pain associated with arthritis and back pain inflammatory bowel disease.
  • the pharmaceutical composition and the food and beverage composition of the present invention contain ⁇ 3 fatty acids such as glyceride-type ALA, SDA, EPA, DPA, DHA as active ingredients.
  • the pharmaceutical composition and the edible composition of the present invention desirably have an active ingredient content of 10% by weight or more, more preferably 30% by weight or more.
  • Other known components or raw materials may be used in combination as appropriate as long as they do not interfere with the desired effects of the present invention. Examples of these include ascorbic acid, amino acids, peptides, proteins and degradation products thereof, various sugars, starches and degradation products thereof, minerals, vitamin E, tocopherol, phytosterols, polyphenols such as catechin, guava leaves, etc. and derivatives thereof Although not limited to these, it is not limited to these.
  • these concomitant substances are oil-soluble, such as ascorbyl palmitate, phytosterol, vitamin E, etc.
  • they are mixed with the omega-3 fatty acid or derivative thereof according to the present invention to form a uniform state, and ascorbic acid, amino acid
  • the dry powder is kneaded with the ⁇ 3 fat according to the present invention or a derivative thereof, or an oil containing the same to form a dispersed state, or water and appropriately
  • a surfactant can be coexisted in an emulsified state.
  • a edible composition / pharmaceutical composition comprising ⁇ 3 fat or a derivative thereof as an active ingredient is provided. Furthermore, as an aspect of the composition of the present invention, a pharmaceutical composition and a composition for eating and drinking are suitable.
  • the present invention also provides a method of treating and / or preventing a disease or disorder (eg, ulcerative colitis, nephritis, osteoporosis) that can be treated and / or prevented by administration of an effective amount of a therapeutic agent to a subject.
  • a disease or disorder eg, ulcerative colitis, nephritis, osteoporosis
  • therapeutic agent is meant a composition of the invention in combination with a pharmaceutically acceptable carrier type (eg, a sterile carrier).
  • the total pharmaceutically effective amount of orally administered therapeutic agent per dose is in the range of about 2 ⁇ g / kg / day to 1000 mg / kg / day of patient body weight, as described above. This is left to therapeutic discretion. More preferably, for the extracts of the present invention, this dose is at least 10 mg / kg / day, most preferably between about 20 mg / kg / day and about 1000 mg / kg / day for humans. Also, as a general proposition, the total pharmaceutically effective amount of the therapeutic agent administered parenterally per dose is in the range of about 0.2 ⁇ g / kg / day to 250 mg / kg / day of patient weight. As noted above, this is left to therapeutic discretion. More preferably, for the extract of the invention, this dose is at least 1 mg / kg / day, most preferably between about 5 mg / kg / day and about 25 mg / kg / day for humans.
  • the therapeutic agent can be oral, rectal, parenteral, intracisternally, intravaginally, intraperitoneally, topically (such as by powder, ointment, gel, instillation, or transdermal patch), oral or oral or It can be administered as a nasal spray.
  • a typical route of administration of the pharmaceutical composition of the present invention is oral administration.
  • “Pharmaceutically acceptable carrier” refers to a non-toxic solid, semi-solid or liquid filler, diluent, encapsulant or any type of formulation aid.
  • the therapeutic agent of the present invention is also appropriately administered by a sustained release system.
  • sustained release therapeutic agents are oral, rectal, parenteral, intracisternally, intravaginally, intraperitoneally, topically (powder, ointment, gel, infusion, or transdermal patch) Etc.), or as an oral or nasal spray.
  • “Pharmaceutically acceptable carrier” refers to a non-toxic solid, semi-solid or liquid filler, diluent, encapsulant or any type of formulation adjuvant.
  • parenteral refers to modes of administration including intravenous and intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injections and infusions.
  • the therapeutic agent of the present invention is also appropriately administered by a sustained release system.
  • sustained release therapeutic agents include suitable polymer materials (eg, semipermeable polymer matrices in the form of molded articles (eg, films or microcapsules)), suitable hydrophobic materials (eg, in acceptable quality oils). Or an ion exchange resin, and poorly soluble derivatives (eg, poorly soluble salts).
  • Sustained release matrices include polylactide (US Pat. No. 3,773,919, EP 58,481), a copolymer of L-glutamic acid and ⁇ -ethyl-L-glutamate (Sidman et al., Biopolymers 22: 547-556 (1983)). ), Poly (2-hydroxyethyl methacrylate) (Langer et al., J. Biomed. Mater. Res. 15: 167-277 (1981), and Langer, Chem. Tech. 12: 98-105 (1982)), ethylene vinyl Acetate (Langer et al., Ibid) or poly-D-(-)-3-hydroxybutyric acid (EP133,988).
  • polylactide US Pat. No. 3,773,919, EP 58,481
  • a copolymer of L-glutamic acid and ⁇ -ethyl-L-glutamate Sidman et al., Biopolymers 22: 547
  • Sustained release therapeutic agents also include the therapeutic agents of the present invention entrapped in liposomes (generally, Langer, Science 249: 1527-1533 (1990); Treat et al., Liposomes in the Therapeutic Diseases and Cancers, Cancer -See Berstein and Fiddler (eds.), Liss, New York, pages 317-327 and 353-365 (1989)).
  • Liposomes containing therapeutic agents can be prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82: 3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci.
  • liposomes are small (about 200-800 cm) unilamellar type, where the lipid content is greater than about 30 mol% cholesterol and the selected proportion is adjusted for optimal therapeutic agents.
  • the therapeutics of the invention can be delivered by a pump (Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14: 201 (1987); Buchwald et al., Surgary 88: 507 ( 1980); Saudek et al., N. Engl. J. Med. 321: 574 (1989)).
  • the therapeutic agent is toxic to the recipient in the desired degree of purity, in a pharmaceutically acceptable carrier, i.e. the dosage and concentration used. It is formulated by mixing in a unit dosage injectable form (solution, suspension or emulsion) with one that is not and compatible with the other ingredients of the formulation.
  • a unit dosage injectable form solution, suspension or emulsion
  • the formulation preferably does not include oxidation and other compounds known to be harmful to therapeutic agents.
  • a formulation is prepared by contacting the therapeutic agent uniformly and intimately with a liquid carrier or a finely divided solid carrier or both.
  • the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient.
  • carrier vehicles include water, saline, Ringer's solution, and dextrose solution.
  • Nonaqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as are liposomes.
  • the carrier suitably contains trace amounts of additives such as substances that enhance isotonicity and chemical stability. Such substances are not toxic to the recipient at the dosages and concentrations used, such as phosphate, citrate, succinate, acetic acid and other organic acids or their salts.
  • Buffering agents such as ascorbic acid; low molecular weight (less than about 10 residues) polypeptides (eg, polyarginine or tripeptides); proteins such as serum albumin, gelatin or immunoglobulins; polyvinylpyrrolidone Hydrophilic polymers such as: amino acids such as glycine, glutamic acid, aspartic acid or arginine; monosaccharides, disaccharides and other carbohydrates including cellulose or derivatives thereof, glucose, mannose or dextrin; chelating agents such as EDTA Sugar sugars such as mannitol or sorbitol Lumpur; counterions such as sodium; and / or polysorbate include nonionic surfactants such as poloxamers or PEG.
  • polypeptides eg, polyarginine or tripeptides
  • proteins such as serum albumin, gelatin or immunoglobulins
  • polyvinylpyrrolidone Hydrophilic polymers such as: amino acids such as glycine, gluta
  • the therapeutic agent is typically formulated in such a vehicle at a pH of about 6-9 at a concentration of about 10 mg / ml to 1000 mg / ml, preferably 50-1000 mg / ml. It is understood that by using the specific excipients, carriers or stabilizers described above, salts are formed.
  • Any drug to be used for therapeutic administration may be in a state that does not contain a living organism / virus other than the virus as an active ingredient, that is, in a sterile state. Aseptic conditions are easily achieved by filtration through sterile filtration membranes (eg, 0.2 micron membranes).
  • the therapeutic agent is placed in a container having a sterile access port, for example, an intravenous solution bag or vial with a stopper puncturable with a hypodermic needle.
  • Treatment agents are usually stored in unit dose or multi-dose containers, such as sealed ampoules or vials, as aqueous solutions or lyophilized formulations for reconstitution.
  • a lyophilized formulation a 10 ml vial is filled with 5 ml of a sterile filtered 5% (w / v) aqueous therapeutic agent and the resulting mixture is lyophilized.
  • the lyophilized therapeutic agent is reconstituted with bacteriostatic water for injection to prepare an infusion solution.
  • the present invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more components of the therapeutic agent of the present invention.
  • a notice of the form prescribed by a government agency that regulates the manufacture, use or sale of a medicinal product or biological product may be attached to such a container, and this notice may be attached to the government regarding the manufacture, use or sale for human administration. Represents institutional approval.
  • the therapeutic agent may be used in combination with other therapeutic compounds.
  • the therapeutic agent of the present invention can be administered alone or in combination with other therapeutic agents.
  • the combinations can be administered, for example, either simultaneously as a mixture; simultaneously or concurrently but separately; or over time. This includes the presentation that the combined agents are administered together as a therapeutic mixture, and also the procedure where the combined agents are administered separately but simultaneously, eg, through separate intravenous lines to the same individual . Administration in combination further includes separate administration of one of the compounds or agents given first, followed by the second.
  • the above-mentioned extract may be used as it is, but this is further fractionated to obtain a fraction containing an active ingredient at a higher concentration. It may be used.
  • composition for eating and drinking is a composition for eating and drinking. That is, a pharmaceutical composition or a composition for eating or drinking containing an omega-3 fatty acid or a derivative thereof obtained as described above as an active ingredient is used as it is as a liquid, gel or solid food, for example, juice, soft drink , Coffee, tea, Japanese tea, oolong tea, vegetable juice, natural fruit juice, milk drink, milk, soy milk, sports drink, near-water drink, nutritional drink, coffee drink, cocoa, soup, dressing, mousse, jelly, yogurt, Pudding, sprinkles, infant formula, processed milk, sports drink, energy drink, cake mix, bread, pizza, pie, crackers, biscuits, cake, cookies, spaghetti, macaroni, pasta, udon, buckwheat, ramen, candy, soft candy , Gum, chocolate, rice cake, potato chips Powdered or liquid dairy products such as snacks, snacks, ice cream, sorbets, creams, cheese, powdered milk, condensed milk
  • the blending amount of the omega-3 fatty acid of the present invention or a derivative thereof in these foods or food-drinking compositions is difficult to define uniformly depending on the type and state of the food or composition, but is about 0.01 to 50 % By weight, more preferably 0.1 to 30% by weight. If the blending amount is less than 0.01% by weight, the desired effect by oral intake is small, and if it exceeds 50% by weight, the flavor may be impaired or the food may not be prepared depending on the type of food.
  • the omega-3 fatty acid or derivative thereof of the present invention may be used for food as it is.
  • a desired ⁇ 3 fatty acid ester, glycerin, and a hydroxide of an alkali metal or alkaline earth metal are prepared.
  • the ⁇ 3-fatty acid ester of the substrate is an ester condensation compound of ALA, SDA, EPA, DPA, DHA, a compound obtained by ester condensation of a carboxyl group substituted with these fatty acids, and ethanol is used as the alcohol to be condensed.
  • ethanol is used as the alcohol to be condensed.
  • hydroxides with alkali metals and alkaline earth metals calcium hydroxide, sodium hydroxide, potassium hydroxide, etc., potassium hydroxide is preferred.
  • fatty acid esters, glycerin, and potassium hydroxide are heated and stirred.
  • the heating device is set to a range of 110 ° C. to 130 ° C. using an oil bath, for example, and further, a decompression device such as a vacuum pump is used to reduce the pressure to 5 mmHg or less. Pressure is preferred.
  • the upper organic phase in which the reactant is dissolved is recovered and the solvent is distilled off using a rotary evaporator.
  • the pressure in the reduced pressure is preferably 150 mmHg or less, but may be higher if the solvent can be distilled off.
  • the temperature at the time of distilling off the solvent is in a range where the oxidation of the reaction product does not proceed extremely, and is 20 ° C. to 40 ° C., preferably 30 ° C.
  • the reaction product is purified by various purification methods such as column chromatography to obtain the desired tridocosahexaenoyl glyceride.
  • Example 1 Synthesis of ⁇ 3 fatty acid glyceride from ethyl ester
  • DHA ethyl ester Specific examples for the preparation of tridocosahexaenoyl glyceride using DHA ethyl ester as a starting material are shown below: 45 g (0.126 mol) of DHA ethyl ester (purity: 97%), 4.0 g (0.043 mol) of glycerin, and 0.6 g (0.011 mol) of potassium hydroxide were placed in a reaction vessel. The triglyceride synthesis reaction was carried out by reducing the pressure to 5 mmHg by means of a vacuum pump in an oil bath and stirring for 24 hours.
  • the heat-treated reaction product After the heat-treated reaction product is cooled to room temperature, it is transferred to a separatory funnel, and water, hexane, and ethanol are added to separate it into two layers by liquid-liquid distribution. Glycerin and potassium hydroxide were removed.
  • the solvent is distilled off at a pressure of 150 mmHg and a temperature of 30 ° C. using a rotary evaporator to obtain 34.5 g of the reaction product (tridocosahexahexa Enoyl glyceride: 20.7 g, diglyceride: 9.3 g, monoglyceride: 3.4 g, free fatty acid: 0.7 g, unreacted DHA ethyl ester: 0.03 g).
  • the reaction product was purified by tridocosahexaenoyl glyceride by silica gel column chromatography using a hexane-diethyl ether mixture as a mobile phase, added with activated carbon, stirred, and filtered to give an acid value of 1 or less and a peroxide value of 3
  • an omega-3 fatty acid glyceride having 65% by weight of tridocosahexaenoyl glyceride and a DHA composition ratio (ratio of DHA in the whole omega-3 fatty acid) of 96% was obtained.
  • Example 2 Synthesis of ⁇ 3 fatty acid glyceride from methyl ester
  • the synthesis reaction was performed.
  • reaction product after the heat treatment is cooled to room temperature, then transferred to a separatory funnel, water and hexane are added, and ethanol is further separated into two layers by liquid-liquid distribution. Glycerol and potassium hydroxide were removed.
  • the solvent is distilled off at a pressure of 150 mmHg and a temperature of 30 ° C. using a rotary evaporator to obtain 34.5 g of the reaction product (tridocosahexahexa Enoyl glyceride: 21.1 g, diglyceride: 8.3 g, monoglyceride: 4.1 g, free fatty acid: 0.8 g, unreacted DHA methyl ester: 0.03 g).
  • the reaction product was purified by tridocosahexaenoyl glyceride by silica gel column chromatography using a hexane-diethyl ether mixture as a mobile phase, added with activated clay, stirred and filtered to give an acid value of 1 or less and a peroxide value of 3
  • omega-3 fatty acid glycerides having 78% by weight of tridocosahexaenoyl glyceride and 98% DHA composition ratio (ratio of DHA in the whole omega-3 fatty acids) were obtained.
  • Example 3 Synthesis of ⁇ 3 fatty acid glyceride from fatty acid
  • DHA purity: 97%)
  • 4.5 g (0.049 mol) of glycerin and 2.25 g of Lipozyme RMIM (Novo Nordisk A / S Corp. Denmark) were placed in a reaction vessel at 60 ° C.
  • a triglyceride synthesis reaction was performed by reducing the pressure to 5 mmHg with a vacuum pump in a hot water bath and shaking for 48 hours.
  • reaction product after the shaking reaction was transferred to a separatory funnel, a diethyl ether-ethanol (1: 1) solution was added, and the reaction mixture was separated into two layers by liquid-liquid distribution to stop the reaction. Unreacted glycerin was removed by discarding the lower aqueous phase.
  • the solvent was distilled off at a pressure of 150 mmHg and a temperature of 30 ° C. using a rotary evaporator to obtain the reaction product.
  • the reaction product contains 81% of tridocosahexaenoyl glyceride and 19% of diglyceride, and this was purified by tridocosahexaenoyl glyceride by silica gel column chromatography using a hexane-diethyl ether mixture as a mobile phase.
  • Example 4 tail flick test
  • the anti-nociceptive effect of DHA on heat stimulation was tested.
  • Anti-nociceptive action against heat stimulation was evaluated by tail-flick test. Mice were placed on a tail-flick type analgesic effect measuring device (MK-330B, Muromachi Kikai, Tokyo, Japan), radiant heat was applied to the dorsal side of the tail, and the latency until the tail was moved was measured. The intensity of the thermal stimulation was adjusted so that the tail was moved between 2.5 and 3 seconds after the heat was applied, and was used as a reference value for the response latency (baseline latency). Response latencies were measured 30, 60, and 120 minutes after DHA administration.
  • Example 1 Administration of tridocosahexaenoyl glyceride prepared in Example 1 increased the response latency in a dose-dependent manner, and a peak of action was observed 60 minutes after administration. Similarly, the curve area of the tridocosahexaenoyl glyceride administration group was significantly increased compared to the control group and the DHA ethyl group. Compared to DHA ethyl, its action was stronger.
  • Example 5 Acetic acid rising test
  • Mice were transferred from home cages to new cages one by one and allowed to acclimate for 1 hour, followed by intraperitoneal injection of 0.6% (v / v) acetic acid (Wako, 10 mg / kg) for 30 minutes The number of times was measured.
  • mice were transferred one by one from the home cage to a new cage and allowed to acclimate to the environment for 1 hour, and then 10 mL of formalin 5% was administered subcutaneously to the right hind footpad of the mouse. The total time of licking, biting, and flinging of the administration site was measured in seconds and evaluated. Pain behavior was measured for 30 minutes between 0-10 minutes (early phase) and 10-30 minutes (late phase) after formalin was administered.
  • Example 7 Test in chronic inflammatory pain model mouse
  • the chronic inflammatory pain model was prepared by administering 0.5 mg / kg Freund's complete adjuvant (CFA) into the right hind footpad of mice.
  • CFA Freund's complete adjuvant
  • physiological saline was administered.
  • a chronic inflammatory pain model a mouse which was subjected to foot thickening and pain evaluation, and had inflammation of the foot, mechanical allodynia and thermal hyperalgesia from 1 day after CFA administration was used.
  • Digital calipers Sa Measurement, Niigata, Japan
  • the mouse was placed on a metal mesh and allowed to adapt for 60 minutes with a transparent plastic case covered. After confirming the disappearance of spontaneous movement, touch test filament (Touch-Test (R) Sensory E) The test was started with 0.16 g of the filament (Valators) (North Coast Medical Inc, CA, USA). The filament was pressed vertically against the ventral center of the hind limb of the mouse until it was bent slightly, and the escape response to the stimulus for 6 seconds was observed. The operation of applying stimulation with this filament was repeated 10 times, and the number of times of showing an escape reaction was recorded.
  • touch test filament Touch-Test (R) Sensory E
  • the test was started with 0.16 g of the filament (Valators) (North Coast Medical Inc, CA, USA). The filament was pressed vertically against the ventral center of the hind limb of the mouse until it was bent slightly, and the escape response to the stimulus for 6 seconds was observed. The operation of applying stimulation with this filament was repeated 10 times, and the number of times of showing an escape reaction was recorded.
  • the evaluation of escape response to thermal stimulation was performed as follows.
  • the mouse was placed in a plastic case on the glass floor and allowed to adapt for 3 hours. After confirming the disappearance of spontaneous movement, radiant heat is applied from the bottom of the glass floor to the ventral side of the hind limb of the mouse using the planter test (Ugo Basile, Comerio, Italy), and the hind limb is raised.
  • the reaction latency (pWL) until showing an escape response was recorded. In order to prevent tissue damage, the measurement time was set to a maximum of 20 seconds.
  • the present invention provides a therapeutic method for preventing and / or improving pain, a pharmaceutical composition, a composition for eating and drinking, and a method for producing such a medicine and a composition for eating and drinking.
  • Reference 1 Woolf J. et al. , What is this thing called pain? , J .; Clin. Invest. , 120, 3742-3744 (2010).
  • Reference 2 Zeilhofer H. U. Brune K. , Analytical Strategies Beyond the Inhibition of Cyclooxygenes. , Trends Pharmacol. Sci. 27, 467-474 (2006).
  • Reference 3 Woolf C.M. J. et al. , Mu and delta opioid receptors diver. , Cell, 137, 987-988 (2009).
  • Reference 4 Nakamoto, K .; Nishinaka, T .; Mankura, M .; Fujita-Hamabe, W .; , Tokuyama, S .; , 2010. Antigenic effectives of docosahexaneic acid against variant pain stimuli in mice. Biol Pharm Bull. 33, 1070-2.
  • Reference 5 Nakamoto, K .; Nishinaka, T .; , Ambo, A .; Mankura, M .; Kasuya, F .; , Tokuyama, S .; , 2011. Possible involution of beta-endorphin in docosahexaenoic acid-induced antinoction. Eur J Pharmacol. 666, 100-4.
  • Reference 6 Nakamoto, K .; Nishinaka, T .; , Matsumoto, K .; Kasuya, F .; Mankura, M .; , Koyama, Y .; , Tokuyama, S .; 2012. Involvement of the long-chain fatity acid receptor GPR40 as a novel pain regulatory system. Brain Res. 1432, 74-83.
  • Reference 7 Nakamoto K, Nishinaka T, Sato N, Mankura M, Koyama Y, Kasuya F, Tokyoyama S. Hypothalamic GPR40 signaling activated by free long chain fatity acids suppresses CFA-induced inflammatory chronic pain. PLoS One. 2013 Dec 12; 8 (12): e81563.
  • Reference 8 Lu Y, Zhao LX, Cao DL, Gao YJ. , Spinal injection of docosahexaenoic acid attendants carriageenan-induced inflammatory pain through microflamation-mediated neuroinflammation. Neuroscience. 2013 Jun 25; 241: 22-31.
  • Reference 9 Lawson LD, Hughes BG. Absorption of eicosapentaenoic acid and docosahexaenoic acid from foil oil triacylycerols or fishoil etheresters co-inged with whistle. Biochem Biophys Res Commun. 1988; 156: 960-3.
  • Reference 10 Serhan, CN.
  • Novell eicosanoid and docosanoid mediators resolvins, docosatrienes, and neuroprotectins. Curr Opin Clin Nutr Meta Care, 2005; 8: 115-21.
  • Reference 11 Schwab, JM, Chiang, N, Arita, M & Serhan, CN.
  • Resolvin E1 and protectionin D1 activate inflation-resolution programs. Nature, 2007; 447: 869-74.
  • Reference 12 Xu, ZZ, Zhang, L, Liu, T, Park, JY, Berta, T, Yang, R, Serhan, CN & Ji, RR. Resolvins RvE1 and RvD1 attendant information pain pain central and peripheral actions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Emergency Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Provided are compositions by which problems of free-type ω3 fatty acids or ethyl ester-type ω3 fatty acids can be overcome. The present invention provides a medicinal composition and an edible composition for preventing and/or treating a pain, each composition comprising ω3 fatty acid glycerides, wherein the ratio of triglycerides in the ω3 fatty acid glycerides being 60 wt% or more. Also provided is a method for preventing and/or treating a pain using the aforesaid medicinal composition or edible composition.

Description

オメガ3系脂肪酸グリセリドの疼痛予防および改善作用Pain prevention and improvement of omega-3 fatty acid glycerides
 本発明は、疼痛を予防および/または改善するための治療法、薬学的組成物、飲食用組成物、ならびに、そのような組成物の製造方法に関する。本発明の薬学的組成物および飲食用組成物は、有効成分として、ω3系脂肪酸グリセリドを含む。 The present invention relates to a treatment method for preventing and / or improving pain, a pharmaceutical composition, a composition for eating and drinking, and a method for producing such a composition. The pharmaceutical composition and the food and beverage composition of the present invention contain ω3 fatty acid glycerides as active ingredients.
 魚油、藻類、遺伝子組み換え植物等に含まれるα-リノレン酸(ALA)、ステアリドン酸(SDA)、エイコサペンタエン酸(EPA)、ドコサペンタエン酸(DPA)、ドコサヘキサエン酸(DHA)等のω3系脂肪酸は循環器系疾患改善、脳神経機能の改善、免疫機能の改善だけでなく、酸化ストレス抑制を介する疾病の予防改善など広範な機能を発揮し、更に、癌の増殖抑制にも有効とされるなど用途の拡大が続いている素材である(非特許文献1および2、ならびに、特許文献1)。 Ω3 fatty acids such as α-linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA) contained in fish oil, algae, genetically modified plants, etc. Not only improves cardiovascular disease, improves cranial nerve function, improves immune function, but also exerts a wide range of functions such as prevention and improvement of diseases through oxidative stress suppression, and is also effective in suppressing cancer growth, etc. It is a material that has been expanded in use (Non-Patent Documents 1 and 2, and Patent Document 1).
 これらω3系脂肪酸はグリセリド体又は遊離型脂肪酸やエチルエステル体としてそのままで、又は、濃縮精製されて食品素材、健康食品素材、化粧品素材、医薬品素材として上市されている。これらのω3系脂肪酸は一般に、真空精密蒸留法、分子蒸留法、クロマト法、低温溶媒分別結晶法、尿素付加法、硝酸銀錯体形成法、などを適時組み合わせて濃縮されている。 These ω3 fatty acids are put on the market as food materials, health food materials, cosmetic materials and pharmaceutical materials as glycerides, free fatty acids and ethyl esters, or concentrated and purified. These ω3 fatty acids are generally concentrated by combining a vacuum precision distillation method, a molecular distillation method, a chromatography method, a low-temperature solvent fractional crystallization method, a urea addition method, a silver nitrate complex formation method, and the like in a timely manner.
 特に、EPAのエチルエステル体(以下EPAエチル)はスイッチOTCとして閉塞性動脈硬化症、高脂血症等の治療薬として販売が開始され、医薬品グレードEPAエチルの市場拡大が続いている。 In particular, the ethyl ester form of EPA (hereinafter referred to as EPA ethyl) has been sold as a therapeutic agent for obstructive arteriosclerosis, hyperlipidemia, etc. as a switch OTC, and the market for pharmaceutical grade EPA ethyl continues to expand.
 また、グリセリド体としてそのままで、又はω3系脂肪酸を濃縮精製した後、市販されているものもある。例えば、魚油を出発原料とする時、該グリセリドに含まれるω3系脂肪酸は低温溶媒分別結晶法により濃縮されたり、リパーゼなど酵素処理により濃縮される場合もあるが、現在の商業規模では該ω3系脂肪酸純度は70%が限界とされている。 There are also commercially available glycerides as they are or after concentrating and purifying ω3 fatty acids. For example, when fish oil is used as a starting material, the ω3 fatty acid contained in the glyceride may be concentrated by a low-temperature solvent fractional crystallization method or concentrated by enzymatic treatment such as lipase. Fatty acid purity is limited to 70%.
 一般に、グリセリド体のω3系脂肪酸はエチルエステル体よりも吸収速度が速く、バイオアベイラビリティーも高いとされているが、その詳細は解明されていない(非特許文献3)。 Generally, glyceride ω3 fatty acids have a higher absorption rate and higher bioavailability than ethyl ester, but the details have not been elucidated (Non-patent Document 3).
 また、遊離型脂肪酸は吸収速度、反応性は高いが、長期間摂取により胃腸に炎症や潰瘍を発生し、赤血球の溶血を引き起こすとされている。 In addition, although free fatty acids have a high absorption rate and reactivity, they are said to cause inflammation and ulceration in the gastrointestinal tract and cause hemolysis of red blood cells when ingested for a long time.
 一方で、脂肪酸に由来するプロスタグランジンやロイコトリエンは疼痛の惹起、神経障害性疼痛の発症と慢性化に関与するものがあることが知られている。 On the other hand, it is known that prostaglandins and leukotrienes derived from fatty acids are involved in the induction of pain and the onset and chronicity of neuropathic pain.
 しかし、ALA、EPA、DHAなどのω3系脂肪酸の摂取により関節リュウマチや月経困難症に伴う痛みが軽減すること、さらに、難治性疼痛である神経障害性疼痛にも有効であることが報告されている。このことに関連して、特にDHAに関しては、間接的にオピオイド神経系を介して抗侵害作用を起こすこと、この抗侵害作用には内因性オピオイドペプチドであるβ-エンドルフィンが関与していること、更にβ-エンドルフィン遊離にはGPR40が関与していることなどが明らかになっている(非特許文献4および5、特許文献2)。 However, it has been reported that ingestion of omega-3 fatty acids such as ALA, EPA, DHA reduces pain associated with rheumatoid arthritis and dysmenorrhea, and is also effective for neuropathic pain, which is intractable pain. Yes. In this connection, in particular with regard to DHA, it indirectly causes an anti-nociceptive action through the opioid nervous system, and this anti-nociceptive action involves the endogenous opioid peptide β-endorphin, Furthermore, it has been revealed that GPR40 is involved in β-endorphin release (Non-patent Documents 4 and 5, Patent Document 2).
特表2012-531911号公報Special table 2012-53911 gazette 特表2010-515773号公報JP 2010-515773 gazette
 オメガ3系脂肪酸を薬学的組成物および飲食用組成物の有効成分として使用する場合、遊離脂肪酸型のω3系脂肪酸又はこれら脂肪酸のエタノールやメタノールなどとの低級脂肪酸エステルが使用されている。遊離脂肪酸型は一般に経口摂取後、消化器の潰瘍、炎症、赤血球溶血を誘発する、とされており、継続的な摂取は医学的に不向きという問題点がある。更に、これら脂肪酸のエタノールやメタノールなどとの低級アルコールエステルは遊離脂肪酸型と比較した時、吸収性が劣り、その分大量摂取が必要となり、更に、バイオアベイラビリティも遊離脂肪酸型と比較した時劣るとされるなどの問題点を有するとされている。 When omega-3 fatty acids are used as active ingredients in pharmaceutical compositions and food and beverage compositions, free fatty acid type ω3 fatty acids or lower fatty acid esters of these fatty acids with ethanol, methanol, etc. are used. The free fatty acid type is generally considered to induce digestive ulcer, inflammation and erythrocyte hemolysis after oral ingestion, and there is a problem that continuous ingestion is medically unsuitable. Furthermore, the lower alcohol esters of these fatty acids with ethanol, methanol, etc. are inferior in absorption when compared with the free fatty acid type, and a large amount of intake is required, and further, bioavailability is inferior when compared with the free fatty acid type. It is said that it has problems such as being.
 そのため、遊離脂肪酸型ω3系脂肪酸やエチルエステル型のω3系脂肪酸の問題点を解決した組成物の提供が待ち望まれていた。 Therefore, it has been awaited to provide a composition that solves the problems of free fatty acid type ω3 fatty acid and ethyl ester type ω3 fatty acid.
 本発明の発明者らは、グリセリド型のω3系脂肪酸を疼痛などの痛みの予防薬ないし治療薬の有効成分として提供することによって、本発明を完成した。 The inventors of the present invention have completed the present invention by providing a glyceride type ω3-fatty acid as an active ingredient of a preventive or therapeutic agent for pain such as pain.
 本発明は、例えば、以下を提供する。
(項目1)
 疼痛を予防および/または治療するための、オメガ3系脂肪酸グリセリドを含む薬学的組成物であって、該オメガ3系脂肪酸グリセリド中のトリグリセリドの割合が70wt%以上である、薬学的組成物。
(項目2)
前記オメガ3系脂肪酸が、α-リノレン酸(ALA)、ステアリドン酸(SDA)、エイコサペンタエン酸(EPA)、ドコサペンタエン酸(DPA)、および、ドコサヘキサエン酸(DHA)からなる群から選択される目的とするオメガ3系脂肪酸を含み、該目的とするオメガ3系脂肪酸が、オメガ3系脂肪酸全体の90wt%以上を占める、項目1に記載の薬学的組成物。
(項目3)
前記オメガ3系脂肪酸が、ドコサヘキサエン酸(DHA)である、項目2に記載の薬学的組成物。
(項目4)
前記オメガ3系脂肪酸グリセリドが、オメガ3系脂肪酸およびその低級アルコールエステルからなる群から選択される物質に対して、酵素的処理および化学的処理からなる群から選択される処理を行うことによって得られる、項目1に記載の薬学的組成物。
(項目5)
経口的に摂取することを特徴とする項目1の薬学的組成物。
(項目6)
輸液として投与されることを特徴とする項目1の薬学的組成物。
(項目7)
前記疼痛が、関節炎、骨関節炎、間接リウマチ、自己免疫障害、慢性疾患の突然の再発、発熱に由来する痛み、および、痛み障害もしくは他の症状に対しての二次的な痛み、月経困難症に伴う痛み、線維筋痛、筋骨格痛、歯痛、術後の痛み、家族性腺腫性ポリポーシス、他の腫瘍性疾患に由来する痛み、COX-2の介在する症状に由来する痛み、火傷に伴う痛み、ならびに、外傷に伴う痛みからなる群から選択される、項目1に記載の薬学的組成物。
(項目8)
 疼痛を予防および/または治療するための、オメガ3系脂肪酸グリセリドを含む飲食用組成物であって、該オメガ3系脂肪酸グリセリド中のトリグリセリドの割合が60wt%以上である、飲食用組成物。
(項目9)
前記オメガ3系脂肪酸が、α-リノレン酸(ALA)、ステアリドン酸(SDA)、エイコサペンタエン酸(EPA)、ドコサペンタエン酸(DPA)、および、ドコサヘキサエン酸(DHA)からなる群から選択される目的とするオメガ3系脂肪酸を含み、該目的とするオメガ3系脂肪酸が、オメガ3系脂肪酸全体の90wt%以上を占める、項目8に記載の飲食用組成物。
(項目10)
前記オメガ3系脂肪酸が、ドコサヘキサエン酸(DHA)である、項目9に記載の飲食用組成物。
(項目11)
前記オメガ3系脂肪酸グリセリドが、オメガ3系脂肪酸およびその低級アルコールエステルからなる群から選択される物質に対して、酵素的処理および化学的処理からなる群から選択される処理を行うことによって得られる、項目8に記載の飲食用組成物。
(項目12)
前記疼痛が、関節炎、骨関節炎、間接リウマチ、自己免疫障害、慢性疾患の突然の再発、発熱に由来する痛み、および、痛み障害もしくは他の症状に対しての二次的な痛み、月経困難症に伴う痛み、線維筋痛、筋骨格痛、歯痛、術後の痛み、家族性腺腫性ポリポーシス、他の腫瘍性疾患に由来する痛み、COX-2の介在する症状に由来する痛み、火傷に伴う痛み、ならびに、外傷に伴う痛みからなる群から選択される、項目8に記載の飲食用組成物。
For example, the present invention provides the following.
(Item 1)
A pharmaceutical composition comprising omega-3 fatty acid glycerides for preventing and / or treating pain, wherein the proportion of triglycerides in the omega-3 fatty acid glycerides is 70 wt% or more.
(Item 2)
The omega-3 fatty acid is selected from the group consisting of α-linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Item 2. The pharmaceutical composition according to Item 1, comprising a target omega-3 fatty acid, wherein the target omega-3 fatty acid accounts for 90 wt% or more of the total omega-3 fatty acid.
(Item 3)
Item 3. The pharmaceutical composition according to Item 2, wherein the omega-3 fatty acid is docosahexaenoic acid (DHA).
(Item 4)
The omega-3 fatty acid glyceride is obtained by performing a treatment selected from the group consisting of an enzymatic treatment and a chemical treatment on a substance selected from the group consisting of an omega-3 fatty acid and a lower alcohol ester thereof. The pharmaceutical composition according to Item 1.
(Item 5)
Item 1. A pharmaceutical composition according to item 1, which is taken orally.
(Item 6)
2. The pharmaceutical composition according to item 1, which is administered as an infusion.
(Item 7)
The pain is arthritis, osteoarthritis, indirect rheumatism, autoimmune disorders, sudden recurrence of chronic diseases, pain from fever, and secondary pain for pain disorders or other symptoms, dysmenorrhea Pain, fibromyalgia, musculoskeletal pain, toothache, postoperative pain, familial adenomatous polyposis, pain from other neoplastic diseases, pain from COX-2 mediated symptoms, burns Item 2. The pharmaceutical composition according to item 1, selected from the group consisting of pain and pain associated with trauma.
(Item 8)
An eating and drinking composition containing omega-3 fatty acid glycerides for preventing and / or treating pain, wherein the ratio of triglycerides in the omega-3 fatty acid glycerides is 60 wt% or more.
(Item 9)
The omega-3 fatty acid is selected from the group consisting of α-linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Item 9. The composition for eating and drinking according to Item 8, comprising a target omega-3 fatty acid, wherein the target omega-3 fatty acid accounts for 90 wt% or more of the total omega-3 fatty acid.
(Item 10)
The composition for eating and drinking according to Item 9, wherein the omega-3 fatty acid is docosahexaenoic acid (DHA).
(Item 11)
The omega-3 fatty acid glyceride is obtained by performing a treatment selected from the group consisting of an enzymatic treatment and a chemical treatment on a substance selected from the group consisting of an omega-3 fatty acid and a lower alcohol ester thereof. The composition for eating and drinking according to Item 8.
(Item 12)
The pain is arthritis, osteoarthritis, indirect rheumatism, autoimmune disorders, sudden recurrence of chronic diseases, pain from fever, and secondary pain for pain disorders or other symptoms, dysmenorrhea Pain, fibromyalgia, musculoskeletal pain, toothache, postoperative pain, familial adenomatous polyposis, pain from other neoplastic diseases, pain from COX-2 mediated symptoms, burns Item 9. The composition for eating and drinking according to Item 8, selected from the group consisting of pain and pain associated with trauma.
 本発明によって、グリセリド型のALA、SDA、EPA、DPA、DHA等のω3系脂肪酸を疼痛などの痛みの抑制物質・治療物質および飲食用組成物が提供される。 According to the present invention, there are provided omega-3 fatty acids such as glyceride-type ALA, SDA, EPA, DPA, DHA, and the like, substances for inhibiting and treating pain such as pain, and compositions for eating and drinking.
 以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。また、本明細書において「wt%」は、「質量パーセント濃度」と互換可能に使用される。 Hereinafter, the present invention will be described. Throughout this specification, it should be understood that the singular forms also include the plural concept unless specifically stated otherwise. In addition, it is to be understood that the terms used in the present specification are used in the meaning normally used in the art unless otherwise specified. Thus, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control. In the present specification, “wt%” is used interchangeably with “mass percent concentration”.
 (用語の定義)
 以下に本明細書において特に使用される用語の定義を列挙する。
(Definition of terms)
Listed below are definitions of terms particularly used in the present specification.
 本明細書において使用される用語「疼痛」とは、その性質もしくは原因に拘わらず、疼痛の全てのカテゴリーに言及し、神経障害性疼痛、 炎症性疼痛、侵害受容性疼痛、特発性疼痛、神経痛性疼痛、口腔顔面痛、熱傷痛、慢性骨痛、腰痛、頚痛、腹痛、口腔灼熱症候群、体性痛、内臓痛(腹部を含む)、筋筋膜痛、歯痛、癌性疼痛、化学療法性疼痛、筋筋膜痛症候群、複合性局所疼痛症候群(CRPS)、顎関節痛、外傷性疼痛、発作性激痛症、手術疼痛、術後 疼痛、陣痛、反射性交感神経性ジストロフィー、腕神経叢引き抜き損傷、神経因性膀胱、急性疼痛、筋骨格痛、術後疼痛、慢性疼痛、持続性疼痛、末梢媒介性疼痛、中枢媒介性疼痛、慢性頭痛、緊張型頭痛、群発 性頭痛、片頭痛、家族性片麻痺性片頭痛、頭部痛と関連した状態、副鼻腔性頭痛、緊張型頭痛、幻肢痛、末梢神経損傷、発作後疼痛、視床病変、神経根症、 HIV疼痛、疱疹後疼痛、非心臓性胸痛、過敏性腸症候群ならびに腸障害と消化不良とに関連した疼痛、ならびにこれらの組み合わせが挙げられるが、これらに限定されないことが理解される。 As used herein, the term “pain” refers to all categories of pain, regardless of its nature or cause, including neuropathic pain, inflammatory pain, nociceptive pain, idiopathic pain, neuralgia. Pain, orofacial pain, burn pain, chronic bone pain, low back pain, neck pain, abdominal pain, oral burning syndrome, somatic pain, visceral pain (including abdomen), fascial pain, toothache, cancer pain, chemistry Therapeutic pain, myofascial pain syndrome, complex local pain syndrome (CRPS), temporomandibular pain, traumatic pain, paroxysmal pain, surgical pain, postoperative pain, labor pain, reflex sympathetic dystrophy, brachial nerve Plexus withdrawal injury, neurogenic bladder, acute pain, musculoskeletal pain, postoperative pain, chronic pain, persistent pain, peripheral mediated pain, central mediated pain, chronic headache, tension headache, cluster headache, migraine , Associated with familial hemiplegic migraine, headache Condition, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, post-stroke pain, thalamic lesions, radiculopathy, HIV pain, postherpetic pain, non-cardiac chest pain, irritable bowel syndrome and bowel disorders It is understood that the pain associated with dyspepsia, as well as combinations thereof, includes but is not limited to.
 本明細書において使用される用語「オメガ3系脂肪酸」とは、不飽和脂肪酸であって、ω3位に炭素-炭素二重結合を持つ脂肪酸をいう。オメガ3系脂肪酸としては、例えば、α-リノレン酸(ALA)、ステアリドン酸(SDA)、エイコサペンタエン酸(EPA)、ドコサペンタエン酸(DPA)、および、ドコサヘキサエン酸(DHA)が挙げられるがこれらに限定されない。 As used herein, the term “omega-3 fatty acid” refers to an unsaturated fatty acid having a carbon-carbon double bond at the ω3 position. Examples of omega-3 fatty acids include α-linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). It is not limited to.
 本明細書において使用される用語「脂肪酸の低級アルコールエステル」とは、脂肪酸と低級アルコールとのエステルをいう。脂肪酸の低級アルコールエステルの生成に利用される低級アルコールとしては、例えば、メタノールおよびエタノールが挙げられるがこれらに限定されない。 As used herein, the term “lower alcohol ester of fatty acid” refers to an ester of a fatty acid and a lower alcohol. Examples of lower alcohols used for the production of lower alcohol esters of fatty acids include, but are not limited to, methanol and ethanol.
 本明細書において使用される用語「オメガ3系脂肪酸グリセリド」としては、トリグリセリド、ジグリセリド、および、モノグリセリドが挙げられる。好ましくは、本発明の「オメガ3系脂肪酸グリセリド」は、トリグリセリドである。本発明において、好ましくは、オメガ3系脂肪酸グリセリド中のトリグリセリドの割合は、60wt%以上である。さらに好ましくは65%以上、さらにより好ましくは70wt%以上、最も好ましくは80wt%以上である。 As used herein, the term “omega-3 fatty acid glyceride” includes triglycerides, diglycerides, and monoglycerides. Preferably, the “omega-3 fatty acid glyceride” of the present invention is a triglyceride. In the present invention, preferably, the proportion of triglyceride in the omega-3 fatty acid glyceride is 60 wt% or more. More preferably, it is 65% or more, still more preferably 70 wt% or more, and most preferably 80 wt% or more.
 本発明において、目的とするオメガ3系脂肪酸は、α-リノレン酸(ALA)、ステアリドン酸(SDA)、エイコサペンタエン酸(EPA)、ドコサペンタエン酸(DPA)、および、ドコサヘキサエン酸(DHA)からなる群から選択される。好ましくは、オメガ3系脂肪酸全体の中での目的とするオメガ3系脂肪酸の割合(全ての種類のオメガ3系脂肪酸中の、目的とするオメガ3系脂肪酸の割合)は、80wt%以上である。なお、この比率の計算において使用するオメガ3系脂肪酸の重量は、例えば、オメガ3系脂肪酸グリセリドの場合には、オメガ3系脂肪酸グリセリド重量中のオメガ3系脂肪酸の重量として計算する。 In the present invention, the target omega-3 fatty acids include α-linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Selected from the group consisting of Preferably, the ratio of the target omega-3 fatty acid in all the omega-3 fatty acids (the ratio of the target omega-3 fatty acids in all types of omega-3 fatty acids) is 80 wt% or more. . The weight of the omega-3 fatty acid used in the calculation of this ratio is calculated as the weight of the omega-3 fatty acid in the weight of the omega-3 fatty acid glyceride, for example, in the case of omega-3 fatty acid glycerides.
 目的とするω3系脂肪酸純度が90wt%以上のグリセリドは少なくとも90wt%以上の当該脂肪酸又はその低級アルコールエステルを出発原料とし、グリセリンとのエステルとすることによって合成される。エステル化反応は一般にリパーゼによる可逆反応、又は酸、アルカリによる化学的合成反応によって得ることが出来る。なお、上記90wt%以上の当該脂肪酸又はその低級アルコールエステルは公知の方法によって得ることが出来る(特開2000-212588号公報、特開平11-209786号公報)。 The desired glyceride having a purity of ω3 fatty acid of 90 wt% or higher is synthesized by using the fatty acid or lower alcohol ester thereof as a starting material at least 90 wt% or higher as an ester with glycerin. The esterification reaction can be generally obtained by a reversible reaction with lipase or a chemical synthesis reaction with acid or alkali. The fatty acid of 90 wt% or higher or a lower alcohol ester thereof can be obtained by a known method (Japanese Patent Laid-Open Nos. 2000-212588 and 11-209786).
 グリセリド型のALA、SDA、EPA、DPA、および/または、DHAを工業的に生産するためには、各脂肪酸の高純度品を出発原料として用いることが必要である。脂肪酸又はそれらの低級アルコールエステルの高純度化方法自体は本発明の課題ではないが、これらのω3系脂肪酸を含む魚油、藻類油脂、微生物油脂を出発原料とした時、アルカリ触媒法、酸触媒法、酵素法などにより前記ω3系脂肪酸を含む原料油脂を定法に従って、例えばエチルエステル化、メチルエステル化が達成される(松本渉、加水分解、エステル化およびエステル交換、油脂化学便覧(日本油化学会編)、丸善(東京)、454-457(2001))。 In order to industrially produce glyceride type ALA, SDA, EPA, DPA, and / or DHA, it is necessary to use high purity products of each fatty acid as a starting material. Although the purification method itself of fatty acids or their lower alcohol esters is not the subject of the present invention, when using fish oils, algal fats and microbial fats and oils containing these ω3 fatty acids as starting materials, the alkali catalyst method, the acid catalyst method According to conventional methods, for example, ethyl esterification and methyl esterification of the raw oil and fat containing the ω3-fatty acid by enzymatic methods, etc. are achieved (Matsumoto Wataru, hydrolysis, esterification and transesterification, Oil and Fat Chemical Handbook (The Japan Oil Chemists' Society) Ed.), Maruzen (Tokyo), 454-457 (2001)).
 これらの低級アルコールエステルは複数種類脂肪酸エステルの混合物であるため、一般に、真空精密蒸留法、分子蒸留法、クロマト法、尿素付加法、硝酸銀錯体法、低温溶媒分別結晶法などの手法を1種類以上組み合わせて精製し、目的とするω3系脂肪酸を少なくとも90wt%含む混合物を取得することが出来る。当然のことながら、これらの精製法そのものは例示の為であって本発明の目的ではないため、エステル化法、濃縮精製法そのものは限定されないことは自明である。 Since these lower alcohol esters are a mixture of multiple types of fatty acid esters, generally one or more methods such as vacuum precision distillation method, molecular distillation method, chromatographic method, urea addition method, silver nitrate complex method, low-temperature solvent fractional crystallization method, etc. A mixture containing at least 90 wt% of the target ω3 fatty acid can be obtained by purification in combination. As a matter of course, these purification methods are merely examples and not the object of the present invention, and it is obvious that the esterification method and the concentration purification method itself are not limited.
 また、本発明で用いるグリセリド体のω3系脂肪酸とは、例えば、1分子のグリセリンに3分子のEPAが結合したトリエイコサペンタエノイルグリセライドの如きを想定しており、他のω3系脂肪酸においても同様である。即ち、好ましくは、本発明のオメガ3系脂肪酸グリセリド」は、1分子のグリセリンに何れか一種類のω3系脂肪酸のみが三分子結合したトリグリセリドを意味する。 The glyceride ω3 fatty acid used in the present invention is assumed to be, for example, trieicosapentaenoyl glyceride in which three molecules of EPA are bound to one molecule of glycerin. Is the same. That is, preferably, the “omega-3 fatty acid glyceride of the present invention” means a triglyceride in which only one ω3 fatty acid is bonded to one molecule of glycerin.
 また、一般に、各グリセリドに含まれるALA、SDA、EPA、DPA、DHAは少なくとも90wt%であることが医薬品として求められる。各グリセリドはトリグリセリド、ジグリセリド、モノグリセリドから成る混合物であるが、生体内には構成脂質としてトリグリセリドが主成分として存在していることに鑑みて、全グリセリド中に占めるトリグリセリドの割合は、好ましくは、60wt%以上、さらに好ましくは70wt%以上、最も好ましくは80wt%以上である。一つの局面において、本発明において、ω3系脂肪酸グリセリドとはモノグリセリドとジグリセリドと少なくとも60wt%のトリグリセリドを含む組成物を指す。 In general, ALA, SDA, EPA, DPA, and DHA contained in each glyceride are required to be at least 90 wt% as a pharmaceutical product. Each glyceride is a mixture composed of triglyceride, diglyceride, and monoglyceride. However, in view of the fact that triglyceride is present as a main component in the living body, the proportion of triglyceride in the total glyceride is preferably 60 wt. % Or more, more preferably 70 wt% or more, and most preferably 80 wt% or more. In one aspect, in the present invention, ω3 fatty acid glyceride refers to a composition comprising monoglyceride, diglyceride and at least 60 wt% triglyceride.
 本発明においては、例えば、エイコサペンタエン酸エチルからトリエイコサペンタエノイルグリセライドを化学的、又は、酵素的に合成した時、未反応のエイコサペンタエン酸エチルやモノエイコサペンタエノイルグリセライドやジエイコサペンタエノイルグリセライドが製品中に共存する場合、全グリセリド中のトリエイコサペンタエノイルグリセライドの割合は、好ましくは、少なくとも60wt%である。他のω3系脂肪酸グリセリドにおいても同様である。また、遊離型ω3系脂肪酸を出発原料とする場合も同様である。 In the present invention, for example, when trieicosapentaenoyl glyceride is chemically or enzymatically synthesized from ethyl eicosapentaenoate, unreacted ethyl eicosapentaenoate, monoeicosapentaenoyl glyceride or dieicosa is synthesized. When pentaenoyl glyceride is present in the product, the proportion of trieicosapentaenoyl glyceride in the total glyceride is preferably at least 60 wt%. The same applies to other ω3 fatty acid glycerides. The same applies when a free ω3 fatty acid is used as a starting material.
 このようにトリエイコサペンタエノイルグリセライドは公知の手法により化学的又は酵素的に合成できる。その他の各脂肪酸グリセリドの合成も同様である(田中幸久、船田正および平野次郎、リパーゼによるエステル合成反応、EPA及びDHAのトリアシルグリセリンの合成、油化学、41(3)、563-567(1992)、ならびに、特開平8-40981号公報)。 Thus, trieicosapentaenoyl glyceride can be chemically or enzymatically synthesized by a known method. The synthesis of each other fatty acid glyceride is the same (Yukihisa Tanaka, Tadashi Funada and Jiro Hirano, ester synthesis reaction by lipase, synthesis of triacylglycerol of EPA and DHA, oil chemistry, 41 (3), 563-567 (1992). And JP-A-8-40981).
 このようにして合成されたトリエイコサペンタエノイルグリセライドの酸価(AV)は5.0以下、好ましくは4.0以下、より好ましくは3.0以下、さらに好ましくは2.0以下、最も好ましくは1.0以下である。本発明において、過酸化物価(POV)は10.0以下、好ましくは8.0以下、より好ましくは6.0以下、さらに好ましくは4.0以下、最も好ましくは3.0以下である。具体的には、未精製のトリエイコサペンタエノイルグリセライド混合物を活性白土、酸性白土、活性炭、ケイ酸、活性アルミナ等の吸着剤処理、熱分解処理、分子蒸留処理等の物理的処理により目的を達することが出来る。得られた製品はビタミンE、アスコルビルパルミテートなどの抗酸化剤添加を行い、品質保持に資する。 The acid value (AV) of the trieicosapentaenoyl glyceride synthesized in this way is 5.0 or less, preferably 4.0 or less, more preferably 3.0 or less, still more preferably 2.0 or less, Preferably it is 1.0 or less. In the present invention, the peroxide value (POV) is 10.0 or less, preferably 8.0 or less, more preferably 6.0 or less, still more preferably 4.0 or less, and most preferably 3.0 or less. Specifically, unpurified trieicosapentaenoyl glyceride mixture is treated by physical treatment such as adsorbent treatment such as activated clay, acid clay, activated carbon, silicic acid, activated alumina, pyrolysis treatment, molecular distillation treatment, etc. Can be reached. The resulting product is added with antioxidants such as vitamin E and ascorbyl palmitate to help maintain quality.
 前述のように、ω3系脂肪酸は疼痛に有効性が認められている(非特許文献4および5)。ω3系脂肪酸を用いる場合、経口摂取も輸液として摂取することも可能である。 As described above, ω3 fatty acids have been confirmed to be effective for pain (Non-Patent Documents 4 and 5). When using omega-3 fatty acids, it is possible to ingest or ingest as an infusion.
 一般に、遊離型脂肪酸を経口摂取すると、吸収速度は大きいが胃腸に炎症や潰瘍を発生したり、赤血球の溶血が起こるとされている。エチルエステル型脂肪酸は吸収速度が遊離型脂肪酸やグリセリド型脂肪酸よりも低いとされている(非特許文献3)。 Generally, when a free fatty acid is ingested orally, the absorption rate is high, but inflammation and ulceration in the gastrointestinal tract and hemolysis of red blood cells occur. Ethyl ester fatty acids are said to have a lower absorption rate than free fatty acids and glyceride fatty acids (Non-patent Document 3).
 しかしながら、今日に至るまで、目的とするオメガ3系脂肪酸の割合が90wt%以上であるω3系脂肪酸グリセリドであって、その60wt%以上がトリグリセリドである組成物の薬理学的機能は実証的には知られておらず、ω3系脂肪酸の低級脂肪酸エステルや遊離型脂肪酸と比較した時の医学的な優位性は実質的には推測の域を出ていない現状であった。 However, to date, the pharmacological function of a composition in which the proportion of the target omega-3 fatty acid is an omega-3 fatty acid glyceride of 90 wt% or more, of which 60 wt% or more is triglyceride is empirically demonstrated. It is not known, and the medical superiority when compared with lower fatty acid esters of ω3 fatty acids and free fatty acids has not been in the range of speculation.
 本発明者らは目的とするオメガ3系脂肪酸の割合が90wt%以上のω3系脂肪酸グリセリドを提供することによって、従来技術における遊離型脂肪酸やエステル型ω3系脂肪酸の問題点を解決し、医学的、薬理学的優位性および飲食用組成物としての優位性を発揮することを見出し、本発明を完成した。 The present inventors have solved the problems of free fatty acids and ester-type ω3 fatty acids in the prior art by providing omega-3 fatty acid glycerides in which the ratio of the target omega-3 fatty acids is 90 wt% or more. The present inventors have found that it exhibits pharmacological superiority and superiority as a composition for eating and drinking, and has completed the present invention.
 以下、トリドコサヘキサエノイルグリセライドを例として、疼痛への有効性に関する詳細を述べる。 The following details the effectiveness for pain, taking tridocosahexaenoylglyceride as an example.
 (疼痛の原因)
 痛みは、障害や侵害刺激から生体を保護するために必要な早期警告システムである。生理的な痛みが生体の保護において必要なシステムであることに対して、慢性疼痛は障害が治癒したにもかかわらず痛みを感じる状態であり、この場合の痛みは警告としての役割はなく、quality of life(QOL)を低下させるだけである。一般的に、痛みは臨床において、疾患の種類を問わず侵害受容性疼痛、神経障害性疼痛およびがん性疼痛等に大別される。また、痛みの持続期間により急性疼痛と慢性疼痛にも分けることができる。急性疼痛は、侵害刺激による侵害受容器の一過性の興奮によってもたらされる外傷や疾患に伴う痛みの症状であり、数日のうちに消失する。一方で、慢性疼痛は初期の痛みの原因と思われる実質的な痛みと位置づけられ、疼痛の伝達、制御、認知機構の異常が原因である(参考文献1)。
(Cause of pain)
Pain is an early warning system necessary to protect the body from disability and noxious stimuli. In contrast to the fact that physiological pain is a necessary system for protecting the living body, chronic pain is a state in which pain is felt despite the healing of the disorder. In this case, the pain does not serve as a warning, and quality. It only reduces the of life (QOL). In general, pain is roughly classified into nociceptive pain, neuropathic pain, cancer pain, and the like regardless of the type of disease. It can also be divided into acute pain and chronic pain according to the duration of pain. Acute pain is a symptom of pain associated with trauma and disease caused by transient excitement of nociceptors by noxious stimuli and disappears in a few days. On the other hand, chronic pain is regarded as substantial pain that seems to be the cause of early pain, and is caused by abnormalities in pain transmission, control, and cognitive mechanisms (Reference 1).
 現在、疼痛治療に用いられる鎮痛薬は長期間の使用により副作用が出現することから、その使用が制限されている。非ステロイド性抗炎症薬(NSAID; nonsteroidal anti-inflammatory drug) では消化管障害、麻薬性鎮痛薬では悪心・嘔吐、眠気、便秘や呼吸抑制などの副作用が起きることが知られており、副作用が少ないとされていた cyclooxygenase (COX)-2阻害薬においても、重篤な心血管系の有害事象が報告されている。さらに、慢性疼痛の一つである神経障害性疼痛は、NSAIDや麻薬性鎮痛薬など、既存の治療薬が奏功しにくいことが知られ、疼痛の発症機序が不明な点からも適切な治療を行うことができていない状況である(参考文献2および3)。このように、疼痛治療に対して既存の鎮痛薬では有効性、安全性が不十分であり、新たな鎮痛薬の開発、さらには、疼痛制御機構の解明が社会的課題とされている。 Currently, the use of analgesics used for pain treatment is limited because of the long-term use that causes side effects. Non-steroidal anti-inflammatory drugs (NSAIDs) are known to have side effects such as gastrointestinal disorders and narcotic analgesics such as nausea / vomiting, drowsiness, constipation and respiratory depression. Serious cardiovascular adverse events have also been reported for cycloxygenase (COX) -2 inhibitors. Furthermore, neuropathic pain, which is one of chronic pain, is known to be difficult to succeed with existing therapeutic agents such as NSAIDs and narcotic analgesics, and appropriate treatment from the point that the pathogenesis of pain is unknown This is a situation where it has not been possible to perform (Reference Documents 2 and 3). Thus, the effectiveness and safety of existing analgesics for pain treatment are insufficient, and development of new analgesics and further elucidation of pain control mechanisms are regarded as social issues.
 (疼痛に対するDHAエチルの有効性とメカニズム)
 これまでに、本研究発明者である中本および徳山らはDHAエチルエステルの経口投与が各種疼痛試験に対して、抗侵害(鎮痛)作用を示すことを報告している。その作用メカニズムは、視床下部の弓状核領域において、β-エンドルフィンの産生を増加させることが示唆されている。さらに、最近の研究において、DHAが作用する受容体として報告されている長鎖脂肪酸受容体GPR40がDHAを介した疼痛制御機構に重要な役割をしていることが示されており、これらのDHA/GPR40シグナルを介した新たな疼痛制御機構の可能性が提唱されている(参考文献4~7)。さらにLuら(参考文献8)は、カラゲニン誘発の炎症性疼痛や神経炎症に対して、DHAの脊髄腔内投与が有効であり、この機構にはp38 MAPKの活性化を介したミクログリア由来の炎症性サイトカインの抑制が関与していると報告している。
(Efficacy and mechanism of DHA ethyl for pain)
So far, Nakamoto and Tokuyama, who are the inventors of the present study, have reported that oral administration of DHA ethyl ester exhibits an anti-nociceptive (analgesic) effect on various pain tests. Its mechanism of action has been suggested to increase the production of β-endorphin in the hypothalamic arcuate nucleus region. Furthermore, recent studies have shown that the long-chain fatty acid receptor GPR40, which has been reported as a receptor on which DHA acts, plays an important role in the mechanism of pain control via DHA. The possibility of a new pain control mechanism via / GPR40 signal has been proposed (References 4 to 7). In addition, Lu et al. (Reference 8) shows that DHA is effective in intrathecal administration for carrageenin-induced inflammatory pain and neuroinflammation, and this mechanism involves inflammation derived from microglia via activation of p38 MAPK. It is reported that suppression of sex cytokines is involved.
 (エチルエステルの問題点)
 これまでにDHAの吸収効率に関して検討を行った研究がある。ヒトに魚油をトリグリセリド、遊離脂肪酸、エチルエステルの形で、一回投与したのちに、DHAの血漿トリグリセリドの取り込み能を検討したところ、DHAの吸収効率は、遊離脂肪酸で95%以上、トリグリセリドで57%、エチルエステルで21%であったと報告されている(参考文献9)。このように、DHAの消化管吸収はその投与形態により大きく影響する。特に、エチルエステル体の吸収効率は悪い。
(Problems of ethyl ester)
There has been research that has been conducted on the absorption efficiency of DHA. After human fish oil was administered once in the form of triglycerides, free fatty acids, and ethyl esters, the ability of DHA to take up plasma triglycerides was examined. The absorption efficiency of DHA was 95% or more for free fatty acids and 57 for triglycerides. % And ethyl ester was reported to be 21% (Reference 9). Thus, the digestive tract absorption of DHA is greatly influenced by its administration form. In particular, the absorption efficiency of ethyl ester is poor.
 (グリセリド体の可能性、および、EPA-TGの優位性)
 グリセリド体はエチルエステル体と比較して、吸収効率がよいことが報告されているため、これらを摂取することにより、組織中のEPAやDHA含量を効率良く増加させることが期待できる。
(Possibility of glyceride body and superiority of EPA-TG)
Since the glyceride form has been reported to have better absorption efficiency than the ethyl ester form, it is expected that the EPA and DHA content in the tissue can be efficiently increased by ingesting these.
 最近の研究において、EPAやDHAは、シクロオキシゲナーゼやリポキシゲナーゼによって代謝を受けると、それぞれ強力な抗炎症作用を示すレゾルビンやプロテクチンへと変換されることが明らかとなった(参考文献10)。Schwabら(参考文献11)は、EPAやDHAの酸化型代謝産物であるレゾルビンE1やプロテクチンD1が炎症の修復過程を活性化させることを報告している。さらに、EPA由来のレゾルビンE1およびDHA由来のレゾルビンD1の脊髄腔内投与(0.3~20ng)が、炎症性疼痛を抑制することも示された(参考文献12)。これはレゾルビンE1(RvE1)およびレゾルビンD1(RvD1)が、脊髄に発現しているchemR23(レゾルビンの受容体として同定されている)に作用し、細胞外シグナルによって調節されるキナーゼの発現やNメチルDアスパラギン酸(NMDA)を介した興奮作用を抑制するとされている。レゾルビンDの前駆体である17(R)-ヒドロキシ-ドコサヘキサエン酸(17(R)HDoHE)やアスピリン誘発性レゾルビンD1(aspirin-triggered resolvin D1)(AT-RvD1)が、1mg/kgという極めて少ない用量で関節炎モデルマウスにおける炎症性疼痛を抑制できるとの報告がある。さらに、RvD1の足跡皮下投与は、一過性受容器電位チャネル(TRP)A1、TRPV3やTRPV4のようなTRPチャネルの活性化を阻害することで、炎症性疼痛を抑制することや、RvD1の脊髄腔内投与は術後痛の予防やその後の症状緩和において有効であるとの報告もある。興味深いことに、17(R)HDoHEやRvD1やAT-RvD1の抗侵害作用は熱的刺激よりも機械的刺激に対して顕著な有効性を示す。これらの作用メカニズムには、GPR32やALX/FPR2のようなGPCRを介したシグナル経路の活性化が関与していると考えられている。また、AT-RvD2,3,4,5のような他の代謝産物の関与の可能性も示唆されている(参考文献13~14)。最近では、ニューロプロテクチン/protectin D1もまた、神経外傷後の神経障害誘発グリア細胞の活性化やそれに伴う炎症反応を抑制し、神経障害性疼痛を抑制する(参考文献15)。現在、上記のような脂質メディエーターは、関節炎や背部痛炎症性の腸疾患に伴う炎症性疼痛の新たな治療薬となることが期待されている。 Recent studies have revealed that EPA and DHA are converted to resolvins and protectins, which have strong anti-inflammatory effects, respectively, when metabolized by cyclooxygenase and lipoxygenase (Reference 10). Schwab et al. (Reference 11) report that oxidative metabolites of EPA and DHA, resolvin E1 and protectin D1, activate the repair process of inflammation. Furthermore, it was also shown that intrathecal administration (0.3-20 ng) of EPA-derived resolvin E1 and DHA-derived resolvin D1 suppresses inflammatory pain (Reference Document 12). This is because Resolvin E1 (RvE1) and Resolvin D1 (RvD1) act on chemR23 (identified as a receptor for Resolvin) that is expressed in the spinal cord. It is supposed to suppress excitatory action via D aspartic acid (NMDA). Resolvin D precursor 17 (R) -hydroxy-docosahexaenoic acid (17 (R) HDoHE) and aspirin-induced resolvin D1 (AT-RvD1) are very low doses of 1 mg / kg Reported that inflammatory pain can be suppressed in arthritis model mice. Furthermore, subcutaneous footprinting of RvD1 inhibits inflammatory pain by inhibiting the activation of TRP channels such as transient receptor potential channel (TRP) A1, TRPV3 and TRPV4, and spinal cord of RvD1. Intracavitary administration has been reported to be effective in preventing postoperative pain and subsequent relief of symptoms. Interestingly, the anti-nociceptive effects of 17 (R) HDoHE, RvD1 and AT-RvD1 show significant effectiveness against mechanical stimulation rather than thermal stimulation. These action mechanisms are thought to involve activation of signal pathways via GPCRs such as GPR32 and ALX / FPR2. The possibility of involvement of other metabolites such as AT-RvD2,3,4,5 has also been suggested (reference documents 13 to 14). Recently, neuroprotectin / protectin D1 also suppresses neuropathic pain by inhibiting the activation of neuropathy-induced glial cells after nerve trauma and the accompanying inflammatory response (Reference 15). Currently, lipid mediators such as those described above are expected to be new therapeutic agents for inflammatory pain associated with arthritis and back pain inflammatory bowel disease.
 このような背景からEPA-TGを投与ないし摂取することにより、エチルエステル型と比べて、効率良く組織中のEPA等を蓄積させることができ、これら脂質メディエーターを介した作用も期待できる。 From such a background, by administering or ingesting EPA-TG, it is possible to accumulate EPA and the like in the tissue more efficiently than the ethyl ester type, and an action via these lipid mediators can also be expected.
 本発明の薬学的組成物および飲食用組成物は、グリセリド型のALA、SDA、EPA、DPA、DHA等のω3系脂肪酸を有効成分として含有する。本発明の薬学的組成物および飲食用組成物は、望ましくは有効成分の含有量が10重量%以上、さらに好ましくは30重量%以上である。本発明の所望の効果を阻害しない範囲および程度であれば、他の公知の成分あるいは原材料を適宜に併用せしめてもよい。これらの例としてアスコルビン酸、アミノ酸、ペプチド、蛋白質およびこの分解物、各種糖質、澱粉およびこの分解物、ミネラル類、ビタミンE、トコフェロール、フィトステロール、カテキン、グァバ葉等のポリフェノール類等およびこれらの誘導体を挙げることができるが、これらに限定されない。 The pharmaceutical composition and the food and beverage composition of the present invention contain ω3 fatty acids such as glyceride-type ALA, SDA, EPA, DPA, DHA as active ingredients. The pharmaceutical composition and the edible composition of the present invention desirably have an active ingredient content of 10% by weight or more, more preferably 30% by weight or more. Other known components or raw materials may be used in combination as appropriate as long as they do not interfere with the desired effects of the present invention. Examples of these include ascorbic acid, amino acids, peptides, proteins and degradation products thereof, various sugars, starches and degradation products thereof, minerals, vitamin E, tocopherol, phytosterols, polyphenols such as catechin, guava leaves, etc. and derivatives thereof Although not limited to these, it is not limited to these.
 これらの併用物質がアスコルビン酸パルミテート、フィトステロール、ビタミンE等のように油溶性の場合は、本発明に係るオメガ3系脂肪酸またはその誘導体と混合して均一状態となし、また、アスコルビン酸、アミノ酸、ミネラル、蛋白質等のように水溶性ないしは水分散性の場合は、例えばその乾燥粉末を本発明に係るω3系脂肪またはその誘導体またはこれを含む油分と混練して分散状態にするか、水および適宜に界面活性剤を共存させて乳化状態となすこともできる。 When these concomitant substances are oil-soluble, such as ascorbyl palmitate, phytosterol, vitamin E, etc., they are mixed with the omega-3 fatty acid or derivative thereof according to the present invention to form a uniform state, and ascorbic acid, amino acid, In the case of water solubility or water dispersibility such as mineral, protein, etc., for example, the dry powder is kneaded with the ω3 fat according to the present invention or a derivative thereof, or an oil containing the same to form a dispersed state, or water and appropriately In addition, a surfactant can be coexisted in an emulsified state.
 本発明では、前述のように、ω3系脂肪またはその誘導体を有効成分としてなる飲食用組成物/薬学的組成物が提供される。さらに、本願発明の組成物の態様としては、薬学的組成物および飲食用組成物が好適である。 In the present invention, as described above, a edible composition / pharmaceutical composition comprising ω3 fat or a derivative thereof as an active ingredient is provided. Furthermore, as an aspect of the composition of the present invention, a pharmaceutical composition and a composition for eating and drinking are suitable.
 (薬学的組成物の処方)
 本発明はまた、有効量の治療剤の被験体への投与によって治療および/または予防され得る疾患または障害(例えば、潰瘍性大腸炎、腎炎、骨粗鬆症)の処置および/または予防の方法を提供する。治療剤とは、薬学的に受容可能なキャリア型(例えば、滅菌キャリア)と組み合せた、本発明の組成物を意味する。
(Formulation of pharmaceutical composition)
The present invention also provides a method of treating and / or preventing a disease or disorder (eg, ulcerative colitis, nephritis, osteoporosis) that can be treated and / or prevented by administration of an effective amount of a therapeutic agent to a subject. . By therapeutic agent is meant a composition of the invention in combination with a pharmaceutically acceptable carrier type (eg, a sterile carrier).
 治療剤を、個々の患者の臨床状態(特に、治療剤単独処置の副作用)、送達部位、投与方法、投与計画および当業者に公知の他の因子を考慮に入れ、医療実施基準(GMP=good medical practice)を遵守する方式で処方および投薬する。従って、本明細書において目的とする「有効量」は、このような考慮を行って決定される。 The therapeutic agent is considered to be a medical practice standard (GMP = good) taking into account the clinical condition of the individual patient (especially the side effects of the therapeutic agent alone treatment), the site of delivery, the method of administration, the dosage regimen and other factors known to those skilled in the art. Formulate and administer in a manner that complies with medical practice. Therefore, the target “effective amount” in the present specification is determined by taking such consideration into consideration.
 一般的提案として、用量当り、経口的に投与される治療剤の合計薬学的有効量は、患者体重の、約2μg/kg/日~1000mg/kg/日の範囲にあるが、上記のようにこれは治療的裁量に委ねられる。さらに好ましくは、本発明の抽出物について、この用量は、少なくとも10mg/kg/日、最も好ましくはヒトに対して約20mg/kg/日と約1000mg/kg/日との間である。また、一般的提案として、用量当り、非経口的に投与される治療剤の合計薬学的有効量は、患者体重の、約0.2μg/kg/日~250mg/kg/日の範囲にあるが、上記のようにこれは治療的裁量に委ねられる。さらに好ましくは、本発明の抽出物について、この用量は、少なくとも1mg/kg/日、最も好ましくはヒトに対して約5mg/kg/日と約25mg/kg/日との間である。 As a general suggestion, the total pharmaceutically effective amount of orally administered therapeutic agent per dose is in the range of about 2 μg / kg / day to 1000 mg / kg / day of patient body weight, as described above. This is left to therapeutic discretion. More preferably, for the extracts of the present invention, this dose is at least 10 mg / kg / day, most preferably between about 20 mg / kg / day and about 1000 mg / kg / day for humans. Also, as a general proposition, the total pharmaceutically effective amount of the therapeutic agent administered parenterally per dose is in the range of about 0.2 μg / kg / day to 250 mg / kg / day of patient weight. As noted above, this is left to therapeutic discretion. More preferably, for the extract of the invention, this dose is at least 1 mg / kg / day, most preferably between about 5 mg / kg / day and about 25 mg / kg / day for humans.
 治療剤を、経口的、直腸内、非経口的、槽内(intracistemally)、膣内、腹腔内、局所的(粉剤、軟膏、ゲル、点滴剤、または経皮パッチによるなど)、口内あるいは経口または鼻腔スプレーとして投与し得る。本発明の薬学的組成物の代表的投与経路は、経口投与である。 The therapeutic agent can be oral, rectal, parenteral, intracisternally, intravaginally, intraperitoneally, topically (such as by powder, ointment, gel, instillation, or transdermal patch), oral or oral or It can be administered as a nasal spray. A typical route of administration of the pharmaceutical composition of the present invention is oral administration.
 「薬学的に受容可能なキャリア」とは、非毒性の固体、半固体または液体の充填剤、希釈剤、被包材または任意の型の処方補助剤をいう。 “Pharmaceutically acceptable carrier” refers to a non-toxic solid, semi-solid or liquid filler, diluent, encapsulant or any type of formulation aid.
 本発明の治療剤はまた、徐放性システムにより適切に投与される。徐放性治療剤の適切な例は、経口的、直腸内、非経口的、槽内(intracistemally)、膣内、腹腔内、局所的(粉剤、軟膏、ゲル、点滴剤、または経皮パッチによるなど)、口内あるいは経口または鼻腔スプレーとして投与され得る。「薬学的に受容可能なキャリア」とは、非毒性の固体、半固体または液体の充填剤、希釈剤、被包材または任意の型の処方補助剤をいう。本明細書で用いる用語「非経口的」とは、静脈内、筋肉内、腹腔内、胸骨内、皮下および関節内の注射および注入を含む投与の様式をいう。 The therapeutic agent of the present invention is also appropriately administered by a sustained release system. Suitable examples of sustained release therapeutic agents are oral, rectal, parenteral, intracisternally, intravaginally, intraperitoneally, topically (powder, ointment, gel, infusion, or transdermal patch) Etc.), or as an oral or nasal spray. “Pharmaceutically acceptable carrier” refers to a non-toxic solid, semi-solid or liquid filler, diluent, encapsulant or any type of formulation adjuvant. The term “parenteral” as used herein refers to modes of administration including intravenous and intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injections and infusions.
 本発明の治療剤はまた、徐放性システムにより適切に投与される。徐放性治療剤の適切な例は、適切なポリマー物質(例えば、成形品(例えば、フィルムまたはマイクロカプセル)の形態の半透過性ポリマーマトリックス)、適切な疎水性物質(例えば、許容品質油中のエマルジョンとして)またはイオン交換樹脂、および貧可溶性誘導体(例えば、貧可溶性塩)を包含する。 The therapeutic agent of the present invention is also appropriately administered by a sustained release system. Suitable examples of sustained release therapeutic agents include suitable polymer materials (eg, semipermeable polymer matrices in the form of molded articles (eg, films or microcapsules)), suitable hydrophobic materials (eg, in acceptable quality oils). Or an ion exchange resin, and poorly soluble derivatives (eg, poorly soluble salts).
 徐放性マトリックスとしては、ポリラクチド(米国特許第3,773,919号、EP58,481)、L-グルタミン酸およびγ-エチル-L-グルタメートのコポリマー(Sidmanら、Biopolymers 22:547-556(1983))、ポリ(2-ヒドロキシエチルメタクリレート)(Langerら、J.Biomed.Mater.Res.15: 167-277(1981)、およびLanger,Chem.Tech.12:98-105(1982))、エチレンビニルアセテート(Langerら、同書)またはポリ-D-(-)-3-ヒドロキシ酪酸(EP133,988)が挙げられる。 Sustained release matrices include polylactide (US Pat. No. 3,773,919, EP 58,481), a copolymer of L-glutamic acid and γ-ethyl-L-glutamate (Sidman et al., Biopolymers 22: 547-556 (1983)). ), Poly (2-hydroxyethyl methacrylate) (Langer et al., J. Biomed. Mater. Res. 15: 167-277 (1981), and Langer, Chem. Tech. 12: 98-105 (1982)), ethylene vinyl Acetate (Langer et al., Ibid) or poly-D-(-)-3-hydroxybutyric acid (EP133,988).
 徐放性治療剤はまた、リポソームに包括された本発明の治療剤を包含する(一般に、Langer,Science 249:1527-1533(1990);Treatら,Liposomes in the Therapy of Infectious Disease and Cancer,Lopez-Berestein and Fidler(編),Liss,New York,317-327頁および353-365(1989)を参照のこと)。治療剤を含有するリポソームは、それ自体が公知である方法により調製され得る:DE3,218,121;Epsteinら、Proc.Natl.Acad.Sci.USA 82:3688-3692(1985);Hwangら、Proc.Natl.Acad.Sci.USA 77:4030-4034(1980);EP52,322;EP36,676;EP88,046;EP143,949;EP142,641;日本国特許出 願第83-118008号;米国特許第4,485,045号および同第4,544,545号ならびにEP第102,324号。通常、リポソームは、小さな(約200~800Å)ユニラメラ型であり、そこでは、脂質含有量は、約30モル%コレステロールよりも多く、選択された割合が、最適治療剤のために調整される。 Sustained release therapeutic agents also include the therapeutic agents of the present invention entrapped in liposomes (generally, Langer, Science 249: 1527-1533 (1990); Treat et al., Liposomes in the Therapeutic Diseases and Cancers, Cancer -See Berstein and Fiddler (eds.), Liss, New York, pages 317-327 and 353-365 (1989)). Liposomes containing therapeutic agents can be prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82: 3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77: 4030-4034 (1980); EP52,322; EP36,676; EP88,046; EP143,949; EP142,641; Japanese Patent Application No. 83-118008; US Patent 4,485,045 And 4,544,545 and EP 102,324. Usually, liposomes are small (about 200-800 cm) unilamellar type, where the lipid content is greater than about 30 mol% cholesterol and the selected proportion is adjusted for optimal therapeutic agents.
 なおさらなる実施態様において、本発明の治療剤は、ポンプにより送達されうる(Langer、前出;Sefton、CRC Crit.Ref.Biomed.Eng.14:201(1987);Buchwaldら、Surgery 88:507(1980);Saudekら、N.Engl.J.Med.321:574(1989)を参照のこと)。 In still further embodiments, the therapeutics of the invention can be delivered by a pump (Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14: 201 (1987); Buchwald et al., Surgary 88: 507 ( 1980); Saudek et al., N. Engl. J. Med. 321: 574 (1989)).
 他の制御放出系は、Langer(Science 249:1527-1533(1990))による総説において議論される。 Other controlled release systems are discussed in the review by Langer (Science 249: 1527-1533 (1990)).
 非経口投与のために、1つの実施態様において、一般に、治療剤は、それを所望の程度の純度で、薬学的に受容可能なキャリア、すなわち用いる投薬量および濃度でレシピエントに対して毒性がなく、かつ処方物の他の成分と適合するものと、単位投薬量の注射可能な形態(溶液、懸濁液または乳濁液)で混合することにより処方される。例えば、この処方物は、好ましくは、酸化、および治療剤に対して有害であることが知られている他の化合物を含まない。 For parenteral administration, in one embodiment, in general, the therapeutic agent is toxic to the recipient in the desired degree of purity, in a pharmaceutically acceptable carrier, i.e. the dosage and concentration used. It is formulated by mixing in a unit dosage injectable form (solution, suspension or emulsion) with one that is not and compatible with the other ingredients of the formulation. For example, the formulation preferably does not include oxidation and other compounds known to be harmful to therapeutic agents.
 一般に、治療剤を液体キャリアまたは微細分割固体キャリアあるいはその両方と均一および緊密に接触させて処方物を調製する。次に、必要であれば、生成物を所望の処方物に成形する。好ましくは、キャリアは、非経口的キャリア、より好ましくはレシピエントの血液と等張である溶液である。このようなキャリアビヒクルの例としては、水、生理食塩水、リンゲル溶液およびデキストロース溶液が挙げられる。不揮発性油およびオレイン酸エチルのような非水性ビヒクルもまた、リポソームと同様に本明細書において有用である。 Generally, a formulation is prepared by contacting the therapeutic agent uniformly and intimately with a liquid carrier or a finely divided solid carrier or both. Next, if necessary, the product is shaped into the desired formulation. Preferably, the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Nonaqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as are liposomes.
 キャリアは、等張性および化学安定性を高める物質のような微量の添加剤を適切に含有する。このような物質は、用いる投薬量および濃度でレシピエントに対して毒性がなく、このような物質としては、リン酸塩、クエン酸塩、コハク酸塩、酢酸および他の有機酸またはその塩類のような緩衝剤;アスコルビン酸のような抗酸化剤;低分子量(約10残基より少ない)ポリペプチド(例えば、ポリアルギニンまたはトリペプチド);血清アルブミン、ゼラチンまたは免疫グロブリンのようなタンパク質;ポリビニルピロリドンのような親水性ポリマー;グリシン、グルタミン酸、アスパラギン酸またはアルギニンのようなアミノ酸;セルロースまたはその誘導体、ブドウ糖、マンノースまたはデキストリンを含む、単糖類、二糖類、および他の炭水化物;EDTAのようなキレート剤;マンニトールまたはソルビトールのような糖アルコール;ナトリウムのような対イオン;および/またはポリソルベート、ポロキサマーもしくはPEGのような非イオン性界面活性剤が挙げられる。 The carrier suitably contains trace amounts of additives such as substances that enhance isotonicity and chemical stability. Such substances are not toxic to the recipient at the dosages and concentrations used, such as phosphate, citrate, succinate, acetic acid and other organic acids or their salts. Buffering agents; antioxidants such as ascorbic acid; low molecular weight (less than about 10 residues) polypeptides (eg, polyarginine or tripeptides); proteins such as serum albumin, gelatin or immunoglobulins; polyvinylpyrrolidone Hydrophilic polymers such as: amino acids such as glycine, glutamic acid, aspartic acid or arginine; monosaccharides, disaccharides and other carbohydrates including cellulose or derivatives thereof, glucose, mannose or dextrin; chelating agents such as EDTA Sugar sugars such as mannitol or sorbitol Lumpur; counterions such as sodium; and / or polysorbate include nonionic surfactants such as poloxamers or PEG.
 治療剤は、代表的には約10mg/ml~1000mg/ml、好ましくは50~1000mg/mlの濃度で、約6~9のpHで、このようなビヒクル中に処方される。前記の特定の賦形剤、キャリアまたは安定化剤を使用することにより、塩が形成されることが理解される。 The therapeutic agent is typically formulated in such a vehicle at a pH of about 6-9 at a concentration of about 10 mg / ml to 1000 mg / ml, preferably 50-1000 mg / ml. It is understood that by using the specific excipients, carriers or stabilizers described above, salts are formed.
 治療的投与に用いられるべき任意の薬剤は、有効成分としてのウイルス以外の生物・ウイルスを含まない状態、すなわち、無菌状態であり得る。滅菌濾過膜(例えば0.2ミクロンメンブレン)で濾過することにより無菌状態は容易に達成される。一般に、治療剤は、滅菌アクセスポートを有する容器、例えば、皮下用注射針で穿刺可能なストッパー付の静脈内用溶液バッグまたはバイアルに配置される。 Any drug to be used for therapeutic administration may be in a state that does not contain a living organism / virus other than the virus as an active ingredient, that is, in a sterile state. Aseptic conditions are easily achieved by filtration through sterile filtration membranes (eg, 0.2 micron membranes). In general, the therapeutic agent is placed in a container having a sterile access port, for example, an intravenous solution bag or vial with a stopper puncturable with a hypodermic needle.
 治療剤は、通常、単位用量または複数用量容器、例えば、密封アンプルまたはバイアルに、水溶液または再構成するための凍結乾燥処方物として貯蔵される。凍結乾燥処方物の例として、10mlのバイアルに、滅菌濾過した5%(w/v)治療剤水溶液5mlを充填し、そして得られる混合物を凍結乾燥する。凍結乾燥した治療剤を、注射用静菌水を用いて再構成して注入溶液を調製する。 Treatment agents are usually stored in unit dose or multi-dose containers, such as sealed ampoules or vials, as aqueous solutions or lyophilized formulations for reconstitution. As an example of a lyophilized formulation, a 10 ml vial is filled with 5 ml of a sterile filtered 5% (w / v) aqueous therapeutic agent and the resulting mixture is lyophilized. The lyophilized therapeutic agent is reconstituted with bacteriostatic water for injection to prepare an infusion solution.
 本発明はまた、本発明の治療剤の1つ以上の成分を満たした一つ以上の容器を備える薬学的パックまたはキットを提供する。医薬品または生物学的製品の製造、使用または販売を規制する政府機関が定めた形式の通知が、このような容器に付属し得、この通知は、ヒトへの投与に対する製造、使用または販売に関する政府機関による承認を表す。さらに、治療剤を他の治療用化合物と組み合わせて使用し得る。 The present invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more components of the therapeutic agent of the present invention. A notice of the form prescribed by a government agency that regulates the manufacture, use or sale of a medicinal product or biological product may be attached to such a container, and this notice may be attached to the government regarding the manufacture, use or sale for human administration. Represents institutional approval. In addition, the therapeutic agent may be used in combination with other therapeutic compounds.
 本発明の治療剤は、単独または他の治療剤と組合わせて投与され得る。組合わせは、例えば、混合物として同時に;同時にまたは並行してだが別々に;あるいは経時的のいずれかで投与され得る。これは、組み合わされた薬剤が、治療用混合物として共に投与されるという提示、およびまた、組み合わされた薬剤が、別々にしかし同時に、例えば、同じ個体に別々の静脈ラインを通じて投与される手順を含む。「組み合わせて」の投与は、一番目、続いて二番目に与えられる化合物または薬剤のうち1つの別々の投与をさらに含む。 The therapeutic agent of the present invention can be administered alone or in combination with other therapeutic agents. The combinations can be administered, for example, either simultaneously as a mixture; simultaneously or concurrently but separately; or over time. This includes the presentation that the combined agents are administered together as a therapeutic mixture, and also the procedure where the combined agents are administered separately but simultaneously, eg, through separate intravenous lines to the same individual . Administration in combination further includes separate administration of one of the compounds or agents given first, followed by the second.
 本発明のオメガ3系脂肪酸またはその誘導体の製剤化にあたっては、前述の抽出物をそのまま使用してもよいが、これをさらに分画処理して有効成分をより高濃度に含有する分画物として用いてもよい。 In the preparation of the omega-3 fatty acid or derivative thereof of the present invention, the above-mentioned extract may be used as it is, but this is further fractionated to obtain a fraction containing an active ingredient at a higher concentration. It may be used.
 (飲食用組成物の製造)
 本発明の好適な態様は飲食用組成物である。すなわち、前述のようにして得られるオメガ3系脂肪酸またはその誘導体を有効成分として含む薬学的組成物または飲食用組成物は、これをそのまま液状、ゲル状あるいは固形状の食品、例えばジュース、清涼飲料、コーヒー、紅茶、日本茶、ウーロン茶、野菜ジュース、天然果汁、乳飲料、牛乳、豆乳、スポーツ飲料、ニアウォーター系飲料、栄養補給飲料、コーヒー飲料、ココア、スープ、ドレッシング、ムース、ゼリー、ヨーグルト、プリン、ふりかけ、育児用粉乳、加工乳、スポーツドリンク、栄養ドリンク、ケーキミックス、パン、ピザ、パイ、クラッカー、ビスケット、ケーキ、クッキー、スパゲティー、マカロニ、パスタ、うどん、そば、ラーメン、キャンデー、ソフトキャンデー、ガム、チョコレート、おかき、ポテトチップス、スナック、アイスクリーム、シャーベット、クリーム、チーズ、粉乳、練乳、乳飲料などの粉末状または液状の乳製品、饅頭、ういろ、もち、おはぎ、醤油、たれ、麺つゆ、ソース、だしの素、シチューの素、スープの素、複合調味料、カレーの素、マヨネーズ、ケチャップ、レトルトカレー、レトルトシチュー、レトルトスープ、レトルトどんぶり、缶詰、ハム、ハンバーグ、ミートボール、コロッケ、餃子、ピラフ、おにぎり、冷凍食品および冷蔵食品、ちくわ、蒲鉾、弁当のご飯、寿司、乳児用ミルク、離乳食、ベビーフード、スポーツ食品、栄養補助食品、サプリメント、健康食品等に添加したり、必要に応じてデキストリン、乳糖、澱粉等の賦型剤や香料、色素等とともにペレット、錠剤、顆粒等に加工したり、またゼラチン等で被覆してカプセルに成形加工して健康食品や栄養補助食品等として利用できる。これらの食品類あるいは飲食用組成物における本発明のオメガ3系脂肪酸またはその誘導体の配合量は、当該食品や組成物の種類や状態等により一律に規定しがたいが、約0.01~50重量%、より好ましくは0.1~30重量%である。配合量が0.01重量%未満では経口摂取による所望の効果が小さく、50重量%を超えると食品の種類によっては風味を損なったり当該食品を調製できなくなる場合がある。なお、本発明のオメガ3系脂肪酸またはその誘導体は、これをそのまま食用に供してもさしつかえない。
(Manufacture of composition for eating and drinking)
The suitable aspect of this invention is a composition for eating and drinking. That is, a pharmaceutical composition or a composition for eating or drinking containing an omega-3 fatty acid or a derivative thereof obtained as described above as an active ingredient is used as it is as a liquid, gel or solid food, for example, juice, soft drink , Coffee, tea, Japanese tea, oolong tea, vegetable juice, natural fruit juice, milk drink, milk, soy milk, sports drink, near-water drink, nutritional drink, coffee drink, cocoa, soup, dressing, mousse, jelly, yogurt, Pudding, sprinkles, infant formula, processed milk, sports drink, energy drink, cake mix, bread, pizza, pie, crackers, biscuits, cake, cookies, spaghetti, macaroni, pasta, udon, buckwheat, ramen, candy, soft candy , Gum, chocolate, rice cake, potato chips Powdered or liquid dairy products such as snacks, snacks, ice cream, sorbets, creams, cheese, powdered milk, condensed milk, milk drinks, buns, oysters, rice cakes, soy sauce, sauce, noodle soup, sauces, dashi stock, Stew, soup, mixed seasoning, curry, mayonnaise, ketchup, retort curry, retort stew, retort soup, canned, ham, hamburger, meatballs, croquette, dumplings, pilaf, rice balls, frozen Add to foods and refrigerated foods, chikuwa, rice cakes, bento rice, sushi, baby milk, baby food, baby food, sports food, dietary supplements, supplements, health foods, etc., dextrin, lactose, starch as required It is processed into pellets, tablets, granules, etc. together with excipients such as excipients, fragrances, pigments, etc. Coated with available molding to as a health food or dietary supplements such as capsules or the like. The blending amount of the omega-3 fatty acid of the present invention or a derivative thereof in these foods or food-drinking compositions is difficult to define uniformly depending on the type and state of the food or composition, but is about 0.01 to 50 % By weight, more preferably 0.1 to 30% by weight. If the blending amount is less than 0.01% by weight, the desired effect by oral intake is small, and if it exceeds 50% by weight, the flavor may be impaired or the food may not be prepared depending on the type of food. In addition, the omega-3 fatty acid or derivative thereof of the present invention may be used for food as it is.
 以下に実施例等により本発明を詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples and the like, but the present invention is not limited thereto.
 本発明の実施例を詳述する。原料として、所望のω3系脂肪酸エステルとグリセリン、アルカリ金属やアルカリ土類金属との水酸化物を用意する。該基質のω3系脂肪酸エステルとは、ALA、SDA、EPA、DPA、DHAのエステル縮合化合物で、それら脂肪酸に置換しているカルボキシル基とアルコールがエステル縮合した化合物で、縮合させるアルコールとしてはエタノールが好ましいが、それに限らない。アルカリ金属やアルカリ土類金属との水酸化物としては、水酸化カルシウム、水酸化ナトリウム、水酸化カリウムなどで、水酸化カリウムが好ましい。 Embodiments of the present invention will be described in detail. As a raw material, a desired ω3 fatty acid ester, glycerin, and a hydroxide of an alkali metal or alkaline earth metal are prepared. The ω3-fatty acid ester of the substrate is an ester condensation compound of ALA, SDA, EPA, DPA, DHA, a compound obtained by ester condensation of a carboxyl group substituted with these fatty acids, and ethanol is used as the alcohol to be condensed. Although preferable, it is not limited thereto. As hydroxides with alkali metals and alkaline earth metals, calcium hydroxide, sodium hydroxide, potassium hydroxide, etc., potassium hydroxide is preferred.
 これら脂肪酸エステルとグリセリン、水酸化カリウムを加熱撹拌処理させるが、この場合、加熱装置には例えばオイルバスを用いて110℃~130℃の範囲にし、さらに減圧装置例えば真空ポンプなどで、5mmHg以下の圧力が好ましい。 These fatty acid esters, glycerin, and potassium hydroxide are heated and stirred. In this case, the heating device is set to a range of 110 ° C. to 130 ° C. using an oil bath, for example, and further, a decompression device such as a vacuum pump is used to reduce the pressure to 5 mmHg or less. Pressure is preferred.
 加熱撹拌処理後の該反応物を室温まで冷却した後、水と有機溶媒好ましくはヘキサン、エタノールを加えて液液分配によって二層に分離し、下層の水相を廃棄して未反応の水酸化カリウムおよびグリセリンを除去する。尚、該水酸化物および該未反応グリセリンを除去することが可能であれば、有機溶媒の種類は問わない。 After cooling the reaction product after the heating and stirring treatment to room temperature, water and an organic solvent, preferably hexane and ethanol, are added and separated into two layers by liquid-liquid distribution. The lower aqueous phase is discarded and unreacted hydroxylation is performed. Remove potassium and glycerin. In addition, the kind of organic solvent will not be ask | required if this hydroxide and this unreacted glycerol can be removed.
 反応物が溶解している上層の有機相を回収し、ロータリーエバポレーターを使用して溶媒を留去する。減圧における圧力は150mmHg以下が好ましいが、溶媒留去が可能であればその以上でもよい。溶媒留去時の温度は、該反応物の酸化が極端に進行しない範囲とし、20℃~40℃、好ましくは30℃がよい。
溶媒留去後、該反応物を各種精製法、例えばカラムクロマトグラフィーによって精製することにより、目的のトリドコサヘキサエノイルグリセライドが得られる。
The upper organic phase in which the reactant is dissolved is recovered and the solvent is distilled off using a rotary evaporator. The pressure in the reduced pressure is preferably 150 mmHg or less, but may be higher if the solvent can be distilled off. The temperature at the time of distilling off the solvent is in a range where the oxidation of the reaction product does not proceed extremely, and is 20 ° C. to 40 ° C., preferably 30 ° C.
After distilling off the solvent, the reaction product is purified by various purification methods such as column chromatography to obtain the desired tridocosahexaenoyl glyceride.
 (実施例1:エチルエステルからのω3系脂肪酸グリセリドの合成)
 DHAエチルエステルを出発原料として、トリドコサヘキサエノイルグリセライドを調製する場合の具体例を以下に示す:
 DHAエチルエステル(純度:97%)45g(0.126モル)とグリセリン4.0g(0.043モル)、さらに水酸化カリウム0.6g(0.011モル)を反応容器に入れ、120℃のオイルバス中で真空ポンプによって5mmHgに減圧して24時間撹拌することにより、トリグリセライドの合成反応を行った。
(Example 1: Synthesis of ω3 fatty acid glyceride from ethyl ester)
Specific examples for the preparation of tridocosahexaenoyl glyceride using DHA ethyl ester as a starting material are shown below:
45 g (0.126 mol) of DHA ethyl ester (purity: 97%), 4.0 g (0.043 mol) of glycerin, and 0.6 g (0.011 mol) of potassium hydroxide were placed in a reaction vessel. The triglyceride synthesis reaction was carried out by reducing the pressure to 5 mmHg by means of a vacuum pump in an oil bath and stirring for 24 hours.
 加熱処理後の反応物を室温まで冷却した後、分液ロートに移して水およびヘキサン、さらにエタノールを加えて液液分配によって二層に分離し、下層の水相を廃棄することにより未反応のグリセリンおよび水酸化カリウムを除去した。 After the heat-treated reaction product is cooled to room temperature, it is transferred to a separatory funnel, and water, hexane, and ethanol are added to separate it into two layers by liquid-liquid distribution. Glycerin and potassium hydroxide were removed.
 トリドコサヘキサエノイルグリセライドが溶解している上層のヘキサン相を回収した後、ロータリーエバポレーターを使用して圧力150mmHg、温度30℃で溶媒を留去して、該反応物34.5g(トリドコサヘキサエノイルグリセライド:20.7g、ジグリセライド:9.3g、モノグリセライド:3.4g、遊離脂肪酸:0.7g、未反応DHAエチルエステル:0.03g)を得た。該反応物をヘキサン-ジエチルエーテル混液を移動相としたシリカゲルカラムクロマトグラフィーによってトリドコサヘキサエノイルグリセライド精製し、活性炭を加えて撹拌、濾過することによって、酸価=1以下、過酸化物価=3以下、トリドコサヘキサエノイルグリセライドが65wt%、DHA組成比(オメガ3系脂肪酸全体の中でのDHAの割合)が96%のオメガ3系脂肪酸グリセリドを得た。 After recovering the upper hexane phase in which tridocosahexaenoylglyceride is dissolved, the solvent is distilled off at a pressure of 150 mmHg and a temperature of 30 ° C. using a rotary evaporator to obtain 34.5 g of the reaction product (tridocosahexahexa Enoyl glyceride: 20.7 g, diglyceride: 9.3 g, monoglyceride: 3.4 g, free fatty acid: 0.7 g, unreacted DHA ethyl ester: 0.03 g). The reaction product was purified by tridocosahexaenoyl glyceride by silica gel column chromatography using a hexane-diethyl ether mixture as a mobile phase, added with activated carbon, stirred, and filtered to give an acid value of 1 or less and a peroxide value of 3 Hereinafter, an omega-3 fatty acid glyceride having 65% by weight of tridocosahexaenoyl glyceride and a DHA composition ratio (ratio of DHA in the whole omega-3 fatty acid) of 96% was obtained.
 (実施例2:メチルエステルからのω3系脂肪酸グリセリドの合成)
 DHAメチルエステル(純度:97%)45g(0.131モル)とグリセリン4.0
 g(0.043モル)、さらに水酸化カリウム0.6g(0.011モル)を反応容器に入れ、120℃のオイルバス中で真空ポンプによって5mmHgに減圧して24時間撹拌することにより、トリグリセライドの合成反応を行った。
(Example 2: Synthesis of ω3 fatty acid glyceride from methyl ester)
45 g (0.131 mol) of DHA methyl ester (purity: 97%) and glycerin 4.0
g (0.043 mol) and 0.6 g (0.011 mol) of potassium hydroxide in a reaction vessel, and reduced in pressure to 5 mmHg by a vacuum pump in an oil bath at 120 ° C. and stirred for 24 hours to obtain triglyceride. The synthesis reaction was performed.
 加熱処理後の該反応物を室温まで冷却した後、分液ロートに移して水およびヘキサン、さらにエタノールを加えて液液分配によって二層に分離し、下層の水相を廃棄することにより未反応のグリセリンおよび水酸化カリウムを除去した。 The reaction product after the heat treatment is cooled to room temperature, then transferred to a separatory funnel, water and hexane are added, and ethanol is further separated into two layers by liquid-liquid distribution. Glycerol and potassium hydroxide were removed.
 トリドコサヘキサエノイルグリセライドが溶解している上層のヘキサン相を回収した後、ロータリーエバポレーターを使用して圧力150mmHg、温度30℃で溶媒を留去して、該反応物34.5g(トリドコサヘキサエノイルグリセライド:21.1g、ジグリセライド:8.3g、モノグリセライド:4.1g、遊離脂肪酸:0.8g、未反応DHAメチルエステル:0.03g)を得た。反応物をヘキサン-ジエチルエーテル混液を移動相としたシリカゲルカラムクロマトグラフィーによってトリドコサヘキサエノイルグリセライド精製し、活性白土を加えて撹拌、濾過することによって、酸価=1以下、過酸化物価=3以下、トリドコサヘキサエノイルグリセライドが78wt%、DHA組成比(オメガ3系脂肪酸全体の中でのDHAの割合)が98%のオメガ3系脂肪酸グリセリドを得た。 After recovering the upper hexane phase in which tridocosahexaenoylglyceride is dissolved, the solvent is distilled off at a pressure of 150 mmHg and a temperature of 30 ° C. using a rotary evaporator to obtain 34.5 g of the reaction product (tridocosahexahexa Enoyl glyceride: 21.1 g, diglyceride: 8.3 g, monoglyceride: 4.1 g, free fatty acid: 0.8 g, unreacted DHA methyl ester: 0.03 g). The reaction product was purified by tridocosahexaenoyl glyceride by silica gel column chromatography using a hexane-diethyl ether mixture as a mobile phase, added with activated clay, stirred and filtered to give an acid value of 1 or less and a peroxide value of 3 Hereinafter, omega-3 fatty acid glycerides having 78% by weight of tridocosahexaenoyl glyceride and 98% DHA composition ratio (ratio of DHA in the whole omega-3 fatty acids) were obtained.
 (実施例3:脂肪酸からのω3系脂肪酸グリセリドの合成)
 DHA(純度:97%)45g(0.137モル)とグリセリン4.5g(0.049モル)、さらにLipozyme RMIM(Novo Nordisk A/S Corp.デンマーク)2.25gを反応容器に入れ、60℃中の湯浴中で真空ポンプによって5mmHgに減圧して48時間振盪反応することにより、トリグリセライドの合成反応を行った。
(Example 3: Synthesis of ω3 fatty acid glyceride from fatty acid)
45 g (0.137 mol) of DHA (purity: 97%), 4.5 g (0.049 mol) of glycerin, and 2.25 g of Lipozyme RMIM (Novo Nordisk A / S Corp. Denmark) were placed in a reaction vessel at 60 ° C. A triglyceride synthesis reaction was performed by reducing the pressure to 5 mmHg with a vacuum pump in a hot water bath and shaking for 48 hours.
 振盪反応後の該反応物を、分液ロートに移してジエチルエーテル-エタノール(1:1)溶液を加えて液液分配によって二層に分離し、反応を停止させた。下層の水相を廃棄することにより未反応のグリセリンを除去した。 The reaction product after the shaking reaction was transferred to a separatory funnel, a diethyl ether-ethanol (1: 1) solution was added, and the reaction mixture was separated into two layers by liquid-liquid distribution to stop the reaction. Unreacted glycerin was removed by discarding the lower aqueous phase.
 トリドコサヘキサエノイルグリセライドが溶解している上層のヘキサン相を回収した後、ロータリーエバポレーターを使用して圧力150mmHg、温度30℃で溶媒を留去して、該反応物を得た。該反応物にはトリドコサヘキサエノイルグリセライドが81%、ジグリセライドが19%含有しており、これをヘキサン-ジエチルエーテル混液を移動相としたシリカゲルカラムクロマトグラフィーによってトリドコサヘキサエノイルグリセライド精製し、酸性白土を加えて撹拌、濾過することによって、酸価=1以下、過酸化物価=3以下、トリドコサヘキサエノイルグリセライドが88wt%、DHA組成比(オメガ3系脂肪酸全体の中でのDHAの割合)が97%のオメガ3系脂肪酸グリセリドを得た。 After collecting the upper hexane phase in which tridocosahexaenoylglyceride was dissolved, the solvent was distilled off at a pressure of 150 mmHg and a temperature of 30 ° C. using a rotary evaporator to obtain the reaction product. The reaction product contains 81% of tridocosahexaenoyl glyceride and 19% of diglyceride, and this was purified by tridocosahexaenoyl glyceride by silica gel column chromatography using a hexane-diethyl ether mixture as a mobile phase. By adding acid clay and stirring and filtering, acid value = 1 or less, peroxide value = 3 or less, tridocosahexaenoyl glyceride is 88 wt%, DHA composition ratio (DHA in all omega-3 fatty acids) An omega-3 fatty acid glyceride having a ratio of 97% was obtained.
 (実施例4:tail flick試験)
 熱刺激に対するDHAの抗侵害作用について試験した。熱刺激に対する抗侵害作用はtail-flick試験により評価を行った。マウスをtail-flick式鎮痛効果測定装置(MK-330B、室町機械、東京、日本)にのせ、尻尾の背側に放射熱を当て、尻尾を動かすまでの潜時を測定した。熱刺激の強さは、熱を当ててから2.5~3秒の間で尻尾を動かすように調節し、反応潜時の基準値(baseline latency)とした。反応潜時はDHA投与の30、60、120分後に測定した。刺激部位の損傷を防ぐために熱刺激は10秒(cut-off time)までとした。反応潜時は可能な最大効果に対する割合(% of maximal possible effect(%MPE))として、[(各潜時-反応潜時の基準値)/(10-反応潜時の基準値)]で表した。抗侵害作用の評価ためにMPE-時間曲線の曲線化面積(area under the curve; AUC)を計算した。
(Example 4: tail flick test)
The anti-nociceptive effect of DHA on heat stimulation was tested. Anti-nociceptive action against heat stimulation was evaluated by tail-flick test. Mice were placed on a tail-flick type analgesic effect measuring device (MK-330B, Muromachi Kikai, Tokyo, Japan), radiant heat was applied to the dorsal side of the tail, and the latency until the tail was moved was measured. The intensity of the thermal stimulation was adjusted so that the tail was moved between 2.5 and 3 seconds after the heat was applied, and was used as a reference value for the response latency (baseline latency). Response latencies were measured 30, 60, and 120 minutes after DHA administration. In order to prevent damage to the stimulation site, thermal stimulation was performed up to 10 seconds (cut-off time). Response latency is expressed as [(each latency−reference value of reaction latency) / (10−reference value of reaction latency)] as a percentage of the maximum possible effect (% of maximum possible effect (% MPE)). did. The area under the curve (AUC) of the MPE-time curve was calculated to evaluate the anti-nociceptive effect.
 実施例1で調製したトリドコサヘキサエノイルグリセリド投与により用量依存的に反応潜時の増加が認められ、投与後60分で作用のピークが認められた。同様に、トリドコサヘキサエノイルグリセリド投与群の曲線化面積は、コントロール群およびDHAエチル群に比べて、有意に増大していた。DHAエチルと比較して、その作用はより強かった。 Administration of tridocosahexaenoyl glyceride prepared in Example 1 increased the response latency in a dose-dependent manner, and a peak of action was observed 60 minutes after administration. Similarly, the curve area of the tridocosahexaenoyl glyceride administration group was significantly increased compared to the control group and the DHA ethyl group. Compared to DHA ethyl, its action was stronger.
 (実施例5:酢酸ライジング試験)
 マウスを1匹ずつホームケージから新しいケージに移し変え、1時間環境に順応させた後、0.6%(v/v)酢酸(Wako、10mg/kg)を腹腔内投与して30分間のライジング回数を測定した。
(Example 5: Acetic acid rising test)
Mice were transferred from home cages to new cages one by one and allowed to acclimate for 1 hour, followed by intraperitoneal injection of 0.6% (v / v) acetic acid (Wako, 10 mg / kg) for 30 minutes The number of times was measured.
 コントロール群では酢酸投与により55±9回のライジング回数が認められた。これに対して、実施例2で調製したトリドコサヘキサエノイルグリセリドの経口投与により用量依存的かつ有意にライジング回数が減少し、DHAエチルと比較して、その作用はより強かった。 In the control group, 55 ± 9 rising times were observed by acetic acid administration. In contrast, oral administration of tridocosahexaenoyl glyceride prepared in Example 2 dose-dependently and significantly reduced the number of rising, and its effect was stronger compared to DHA ethyl.
 (実施例6:ホルマリン試験)
 マウスを1匹ずつホームケージから新しいケージに移し変え、1時間環境に順応させた後、マウスの右後肢足蹠皮下にホルマリン5%を10mL投与した。投与部位を舐める(licking)、かむ(biting)、振り回す(flinching)行動の合計時間を秒単位で測定し、評価を行った。疼痛行動はホルマリンを投与してから0~10分(early phase)と10~30分(late phase)の30分間測定した。
(Example 6: formalin test)
The mice were transferred one by one from the home cage to a new cage and allowed to acclimate to the environment for 1 hour, and then 10 mL of formalin 5% was administered subcutaneously to the right hind footpad of the mouse. The total time of licking, biting, and flinging of the administration site was measured in seconds and evaluated. Pain behavior was measured for 30 minutes between 0-10 minutes (early phase) and 10-30 minutes (late phase) after formalin was administered.
 コントロール群ではホルマリンの足蹠皮下投与によって引き起こされる、足を舐める(licking)、噛む(biting)、振る(shaking)といった疼痛行動がearly phaseでは147±13秒、late phaseでは300±37秒認められた。これに対して実施例3で調製したトリドコサヘキサエノイルグリセリド投与によりearly phase、late phaseとも疼痛行動が有意に減少し、この作用はコントロール群およびDHAエチル群と比較して、有意に抑制された。 In the control group, pain behaviors such as licking, biting, and shaking caused by subcutaneous administration of formalin to the footpad were observed in early phase of 147 ± 13 seconds and in late phase of 300 ± 37 seconds. It was. In contrast, the administration of tridocosahexaenoyl glyceride prepared in Example 3 significantly reduced pain behavior in both early and late phases, and this action was significantly suppressed compared to the control group and the DHA ethyl group. It was.
 (実施例7:慢性炎症性疼痛モデルマウスにおける試験)
 慢性炎症性疼痛モデルは、マウスの右後肢足蹠内へ0.5mg/kgのフロイント完全アジュバント(CFA)投与により作製した。対象群として、生理食塩水を投与した。慢性炎症性疼痛モデルには、足の肥厚および疼痛評価を行い、CFA投与1日後より足の炎症、機械的アロディニアおよび熱痛覚過敏が認められたマウスを用いた。足の肥厚は、デジタルノギス(シンワ測定、新潟、日本)を用いた。
(Example 7: Test in chronic inflammatory pain model mouse)
The chronic inflammatory pain model was prepared by administering 0.5 mg / kg Freund's complete adjuvant (CFA) into the right hind footpad of mice. As a subject group, physiological saline was administered. As a chronic inflammatory pain model, a mouse which was subjected to foot thickening and pain evaluation, and had inflammation of the foot, mechanical allodynia and thermal hyperalgesia from 1 day after CFA administration was used. Digital calipers (Shinwa Measurement, Niigata, Japan) were used for foot thickening.
 マウスを金属メッシュの上に置き、透明プラスチックケースをかぶせた状態で60分間アダプテーションさせた。自発運動の消失を確認後、タッチテストフィラメント(touch test filament)(Touch-Test(R) Sensory E
valuators)(North Coast Medical Inc、 CA、 U.S.A)のうち、0.16gのフィラメントを用いて試験を開始した。マウスの後肢腹側中心部に、フィラメントを少し曲がるまで垂直に押し当て、6秒間の刺激に対する逃避反応を観察した。このフィラメントで刺激を与える操作を10回繰り返し、逃避反応を示した回数を記録した。
The mouse was placed on a metal mesh and allowed to adapt for 60 minutes with a transparent plastic case covered. After confirming the disappearance of spontaneous movement, touch test filament (Touch-Test (R) Sensory E)
The test was started with 0.16 g of the filament (Valators) (North Coast Medical Inc, CA, USA). The filament was pressed vertically against the ventral center of the hind limb of the mouse until it was bent slightly, and the escape response to the stimulus for 6 seconds was observed. The operation of applying stimulation with this filament was repeated 10 times, and the number of times of showing an escape reaction was recorded.
 熱的刺激に対する逃避反応の評価は以下のように実施した。マウスをガラスフロア上のプラスチックケースの中に入れ、3時間アダプテーションさせた。自発運動の消失を確認後、プランターテスト(Plantar test)(Ugo Basile、Comerio、Italy)を用いて、マウスの後肢腹側中心部に、ガラスフロアの下から放射熱を照射し、後肢を上げるなどの逃避反応を示すまでの反応潜時(paw withdrawal latency; PWL)を記録した。組織の損傷を防ぐため、測定時間は最大20秒までとした。 The evaluation of escape response to thermal stimulation was performed as follows. The mouse was placed in a plastic case on the glass floor and allowed to adapt for 3 hours. After confirming the disappearance of spontaneous movement, radiant heat is applied from the bottom of the glass floor to the ventral side of the hind limb of the mouse using the planter test (Ugo Basile, Comerio, Italy), and the hind limb is raised. The reaction latency (pWL) until showing an escape response was recorded. In order to prevent tissue damage, the measurement time was set to a maximum of 20 seconds.
 CFA投与1日後より足の炎症が認められ、その後3、5、7、14日後も炎症が継続して認められた。同様に、CFA投与1日後より機械的アロディニアが認められ、その後14日目まで機械的アロディニアが認められた。同様に、熱痛覚過敏においても、14日後まで継続して認められた。これらのマウスに対して、実施例3で調製したトリドコサヘキサエノイルグリセリドの単回または反復投与により機械的アロディニアおよび熱痛覚過敏が有意に減少し、この作用はDHAエチルエステル投与群と比較して、有意に抑制された。 Inflammation of the foot was observed from 1 day after the administration of CFA, and inflammation was continuously observed after 3, 5, 7, and 14 days thereafter. Similarly, mechanical allodynia was observed 1 day after CFA administration, and mechanical allodynia was observed until 14 days thereafter. Similarly, thermal hyperalgesia continued until 14 days later. In these mice, single or repeated administration of tridocosahexaenoyl glyceride prepared in Example 3 significantly reduced mechanical allodynia and thermal hyperalgesia, and this effect was compared to the DHA ethyl ester administration group. Was significantly suppressed.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみ、その範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified using the preferred embodiment of the present invention, but the present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.
 本発明によって、疼痛を予防および/または改善するための治療法、薬学的組成物、飲食用組成物、ならびに、そのような医薬および飲食用組成物の製造方法が提供される。 The present invention provides a therapeutic method for preventing and / or improving pain, a pharmaceutical composition, a composition for eating and drinking, and a method for producing such a medicine and a composition for eating and drinking.
 (参考文献)
参考文献1:
Woolf C.J.,What is this thing called pain?,J.Clin.Invest.,120,3742-3744(2010).
参考文献2:
Zeilhofer H.U.,Brune K.,Analgesic strategies beyond the inhibition of cyclooxygenases., Trends Pharmacol.Sci.,27,467-474(2006).
参考文献3:
Woolf C.J.,Mu and delta opioid receptors diverge.,Cell,137,987-988(2009).
参考文献4:
Nakamoto,K.,Nishinaka,T.,Mankura,M.,Fujita-Hamabe,W.,Tokuyama,S.,2010.Antinociceptive effects of docosahexaenoic acid against various pain stimuli in mice.Biol Pharm Bull.33,1070-2.
参考文献5:
Nakamoto,K.,Nishinaka,T.,Ambo,A.,Mankura,M.,Kasuya,F.,Tokuyama,S.,2011.Possible involvement of beta-endorphin in docosahexaenoic acid-induced antinociception.Eur J Pharmacol.666,100-4.
参考文献6:
Nakamoto,K.,Nishinaka,T.,Matsumoto,K.,Kasuya,F.,Mankura,M.,Koyama,Y.,Tokuyama,S.,2012.Involvement of the long-chain fatty acid receptor GPR40 as a novel pain regulatory system.Brain Res.1432,74-83.
参考文献7:
Nakamoto K,Nishinaka T,Sato N,Mankura M,Koyama Y,Kasuya F,Tokuyama S.Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain.PLoS One.2013 Dec 12;8(12):e81563.
参考文献8:
Lu Y,Zhao LX,Cao DL,Gao YJ.,Spinal injection of docosahexaenoic acid attenuates carrageenan-induced inflammatory pain through inhibition of microglia-mediated neuroinflammation in the spinal cord.Neuroscience.2013 Jun 25;241:22-31.
参考文献9:
Lawson LD,Hughes BG.Absorption of eicosapentaenoic acid and docosahexaenoic acid from fish oil triacylglycerols or fish oil ethyl esters co-ingested with a high-fat meal.Biochem Biophys Res Commun.1988;156:960-3.
参考文献10:
Serhan,CN.Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins.Curr Opin Clin Nutr Metab Care,2005;8:115-21.
参考文献11:
Schwab,JM,Chiang,N,Arita,M & Serhan,CN.Resolvin E1 and protectin D1 activate inflammation-resolution programmes.Nature,2007;447:869-74.
参考文献12:
Xu,ZZ,Zhang,L,Liu,T,Park,JY,Berta,T,Yang,R,Serhan,CN & Ji,RR.Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions.Nat Med,2010;16:592-7,
参考文献13:
Serhan,CN.Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways.Annu Rev Immunol,2007;25:101-37.
参考文献14:
Serhan,CN,Hong,S,Gronert,K,Colgan,SP,Devchand,PR,Mirick,G & Moussignac,RL.Resolvins:a family of bioactive products of omega-3 fatty acid transformation circuits
 initiated by aspirin treatment that counter proinflammation signals.J Exp Med,2002;196:1025-37.
参考文献15:
Xu,ZZ,Liu,XJ,Berta,T,Park,CK,Lu,N,Serhan,CN & Ji,RR.Neuroprotectin/Protectin D1 protects neuropathic pain in mice after nerve trauma.Ann Neurol,2013.
(References)
Reference 1:
Woolf J. et al. , What is this thing called pain? , J .; Clin. Invest. , 120, 3742-3744 (2010).
Reference 2:
Zeilhofer H. U. Brune K. , Analytical Strategies Beyond the Inhibition of Cyclooxygenes. , Trends Pharmacol. Sci. 27, 467-474 (2006).
Reference 3:
Woolf C.M. J. et al. , Mu and delta opioid receptors diver. , Cell, 137, 987-988 (2009).
Reference 4:
Nakamoto, K .; Nishinaka, T .; Mankura, M .; Fujita-Hamabe, W .; , Tokuyama, S .; , 2010. Antigenic effectives of docosahexaneic acid against variant pain stimuli in mice. Biol Pharm Bull. 33, 1070-2.
Reference 5:
Nakamoto, K .; Nishinaka, T .; , Ambo, A .; Mankura, M .; Kasuya, F .; , Tokuyama, S .; , 2011. Possible involution of beta-endorphin in docosahexaenoic acid-induced antinoction. Eur J Pharmacol. 666, 100-4.
Reference 6:
Nakamoto, K .; Nishinaka, T .; , Matsumoto, K .; Kasuya, F .; Mankura, M .; , Koyama, Y .; , Tokuyama, S .; 2012. Involvement of the long-chain fatity acid receptor GPR40 as a novel pain regulatory system. Brain Res. 1432, 74-83.
Reference 7:
Nakamoto K, Nishinaka T, Sato N, Mankura M, Koyama Y, Kasuya F, Tokyoyama S. Hypothalamic GPR40 signaling activated by free long chain fatity acids suppresses CFA-induced inflammatory chronic pain. PLoS One. 2013 Dec 12; 8 (12): e81563.
Reference 8:
Lu Y, Zhao LX, Cao DL, Gao YJ. , Spinal injection of docosahexaenoic acid attendants carriageenan-induced inflammatory pain through microflamation-mediated neuroinflammation. Neuroscience. 2013 Jun 25; 241: 22-31.
Reference 9:
Lawson LD, Hughes BG. Absorption of eicosapentaenoic acid and docosahexaenoic acid from foil oil triacylycerols or fishoil etheresters co-inged with whistle. Biochem Biophys Res Commun. 1988; 156: 960-3.
Reference 10:
Serhan, CN. Novell eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr Opin Clin Nutr Meta Care, 2005; 8: 115-21.
Reference 11:
Schwab, JM, Chiang, N, Arita, M & Serhan, CN. Resolvin E1 and protectionin D1 activate inflation-resolution programs. Nature, 2007; 447: 869-74.
Reference 12:
Xu, ZZ, Zhang, L, Liu, T, Park, JY, Berta, T, Yang, R, Serhan, CN & Ji, RR. Resolvins RvE1 and RvD1 attendant information pain pain central and peripheral actions. Nat Med, 2010; 16: 592-7,
Reference 13:
Serhan, CN. Resolution phase of inflation: novel endogenous anti-inflammatory and promoting lipid mediators and paths. Annu Rev Immunol, 2007; 25: 101-37.
Reference 14:
Serhan, CN, Hong, S, Gronert, K, Colgan, SP, Devchand, PR, Mirick, G & Moussignac, RL. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits
initiated by aspirit treatment that counter counter propagation signals. J Exp Med, 2002; 196: 1025-37.
Reference 15:
Xu, ZZ, Liu, XJ, Berta, T, Park, CK, Lu, N, Serhan, CN & Ji, RR. Neuroprotectin / Protectin D1 protects neuropathic pain in mice after nerve trauma. Ann Neurol, 2013.

Claims (12)

  1.  疼痛を予防および/または治療するための、オメガ3系脂肪酸グリセリドを含む薬学的組成物であって、該オメガ3系脂肪酸グリセリド中のトリグリセリドの割合が60wt%以上である、薬学的組成物。 A pharmaceutical composition containing omega-3 fatty acid glycerides for preventing and / or treating pain, wherein the proportion of triglycerides in the omega-3 fatty acid glycerides is 60 wt% or more.
  2. 前記オメガ3系脂肪酸が、α-リノレン酸(ALA)、ステアリドン酸(SDA)、エイコサペンタエン酸(EPA)、ドコサペンタエン酸(DPA)、および、ドコサヘキサエン酸(DHA)からなる群から選択される目的とするオメガ3系脂肪酸を含み、該目的とするオメガ3系脂肪酸が、オメガ3系脂肪酸全体の90wt%以上を占める、請求項1に記載の薬学的組成物。 The omega-3 fatty acid is selected from the group consisting of α-linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). The pharmaceutical composition according to claim 1, comprising a target omega-3 fatty acid, wherein the target omega-3 fatty acid accounts for 90 wt% or more of the total omega-3 fatty acid.
  3. 前記オメガ3系脂肪酸が、ドコサヘキサエン酸(DHA)である、請求項2に記載の薬学的組成物。 The pharmaceutical composition according to claim 2, wherein the omega-3 fatty acid is docosahexaenoic acid (DHA).
  4. 前記オメガ3系脂肪酸グリセリドが、オメガ3系脂肪酸およびその低級アルコールエステルからなる群から選択される物質に対して、酵素的処理および化学的処理からなる群から選択される処理を行うことによって得られる、請求項1に記載の薬学的組成物。 The omega-3 fatty acid glyceride is obtained by performing a treatment selected from the group consisting of an enzymatic treatment and a chemical treatment on a substance selected from the group consisting of an omega-3 fatty acid and a lower alcohol ester thereof. The pharmaceutical composition according to claim 1.
  5. 経口的に摂取することを特徴とする請求項1の薬学的組成物。 The pharmaceutical composition according to claim 1, which is taken orally.
  6. 輸液として投与されることを特徴とする請求項1の薬学的組成物。 The pharmaceutical composition of claim 1, wherein the pharmaceutical composition is administered as an infusion.
  7. 前記疼痛が、関節炎、骨関節炎、間接リウマチ、自己免疫障害、慢性疾患の突然の再発、発熱に由来する痛み、および、痛み障害もしくは他の症状に対しての二次的な痛み、月経困難症に伴う痛み、線維筋痛、筋骨格痛、歯痛、術後の痛み、家族性腺腫性ポリポーシス、他の腫瘍性疾患に由来する痛み、COX-2の介在する症状に由来する痛み、火傷に伴う痛み、ならびに、外傷に伴う痛みからなる群から選択される、請求項1に記載の薬学的組成物。 The pain is arthritis, osteoarthritis, indirect rheumatism, autoimmune disorders, sudden recurrence of chronic diseases, pain from fever, and secondary pain for pain disorders or other symptoms, dysmenorrhea Pain, fibromyalgia, musculoskeletal pain, toothache, postoperative pain, familial adenomatous polyposis, pain from other neoplastic diseases, pain from COX-2 mediated symptoms, burns The pharmaceutical composition according to claim 1, selected from the group consisting of pain and pain associated with trauma.
  8.  疼痛を予防および/または治療するための、オメガ3系脂肪酸グリセリドを含む飲食用組成物であって、該オメガ3系脂肪酸グリセリド中のトリグリセリドの割合が60wt%以上である、飲食用組成物。 An eating and drinking composition containing omega-3 fatty acid glycerides for preventing and / or treating pain, wherein the ratio of triglycerides in the omega-3 fatty acid glycerides is 60 wt% or more.
  9. 前記オメガ3系脂肪酸が、α-リノレン酸(ALA)、ステアリドン酸(SDA)、エイコサペンタエン酸(EPA)、ドコサペンタエン酸(DPA)、および、ドコサヘキサエン酸(DHA)からなる群から選択される目的とするオメガ3系脂肪酸を含み、該目的とするオメガ3系脂肪酸が、オメガ3系脂肪酸全体の90wt%以上を占める、請求項8に記載の飲食用組成物。 The omega-3 fatty acid is selected from the group consisting of α-linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). The composition for eating and drinking according to claim 8, comprising a target omega-3 fatty acid, wherein the target omega-3 fatty acid accounts for 90 wt% or more of the total omega-3 fatty acid.
  10. 前記オメガ3系脂肪酸が、ドコサヘキサエン酸(DHA)である、請求項9に記載の飲食用組成物。 The composition for eating and drinking according to claim 9, wherein the omega-3 fatty acid is docosahexaenoic acid (DHA).
  11. 前記オメガ3系脂肪酸グリセリドが、オメガ3系脂肪酸およびその低級アルコールエステルからなる群から選択される物質に対して、酵素的処理および化学的処理からなる群から選択される処理を行うことによって得られる、請求項8に記載の飲食用組成物。 The omega-3 fatty acid glyceride is obtained by performing a treatment selected from the group consisting of an enzymatic treatment and a chemical treatment on a substance selected from the group consisting of an omega-3 fatty acid and a lower alcohol ester thereof. The composition for eating and drinking according to claim 8.
  12. 前記疼痛が、関節炎、骨関節炎、間接リウマチ、自己免疫障害、慢性疾患の突然の再発、発熱に由来する痛み、および、痛み障害もしくは他の症状に対しての二次的な痛み、月経困難症に伴う痛み、線維筋痛、筋骨格痛、歯痛、術後の痛み、家族性腺腫性ポリポーシス、他の腫瘍性疾患に由来する痛み、COX-2の介在する症状に由来する痛み、火傷に伴う痛み、ならびに、外傷に伴う痛みからなる群から選択される、請求項8に記載の飲食用組成物。 The pain is arthritis, osteoarthritis, indirect rheumatism, autoimmune disorders, sudden recurrence of chronic diseases, pain from fever, and secondary pain for pain disorders or other symptoms, dysmenorrhea Pain, fibromyalgia, musculoskeletal pain, toothache, postoperative pain, familial adenomatous polyposis, pain from other neoplastic diseases, pain from COX-2 mediated symptoms, burns The composition for eating and drinking according to claim 8, which is selected from the group consisting of pain and pain associated with trauma.
PCT/JP2016/001259 2015-03-26 2016-03-08 Pain prevention and alleviation effects of ω3 fatty acid glyceride WO2016152054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-065025 2015-03-26
JP2015065025 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152054A1 true WO2016152054A1 (en) 2016-09-29

Family

ID=56979015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001259 WO2016152054A1 (en) 2015-03-26 2016-03-08 Pain prevention and alleviation effects of ω3 fatty acid glyceride

Country Status (1)

Country Link
WO (1) WO2016152054A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244140A1 (en) * 2018-06-21 2019-12-26 マルハニチロ株式会社 Kidney function maintenance and protection agent, and method for evaluating effect thereof
JP2020002125A (en) * 2018-06-21 2020-01-09 マルハニチロ株式会社 Agent for maintaining and protecting kidney function, and method for evaluating its effect
WO2021074118A1 (en) * 2019-10-15 2021-04-22 Hermes Arzneimittel Gmbh Liquid omega-3 fatty acid compositions for direct oral administration
EP3744323A4 (en) * 2018-01-26 2021-12-29 Ajinomoto Co., Inc. Composition for preventing or improving nociceptive pain

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129216A (en) * 1985-11-28 1987-06-11 Nippon Suisan Kaisha Ltd Fat transfusion liquid
JPS62163669A (en) * 1986-01-14 1987-07-20 Taiyo Fishery Co Ltd Spread food containing eicosapentaenoic acid
JPH05331105A (en) * 1991-07-24 1993-12-14 Agency Of Ind Science & Technol Docosahexaenoic acid triglyceride and its production
JPH0672959A (en) * 1991-03-28 1994-03-15 Agency Of Ind Science & Technol Eicosapentaenoic acid triglyceride and its production
JP2000212588A (en) * 1999-01-21 2000-08-02 Ikeda Shokken Kk Production of highly unsaturated fatty acid-containing glyceride
JP2009520824A (en) * 2005-12-20 2009-05-28 セネストラ エルエルシー Omega 3 fatty acid preparation
JP2009544701A (en) * 2006-07-21 2009-12-17 リライアント・ファーマシューティカルズ・インコーポレイテッド Compositions containing omega-3 fatty acids and their use to treat peripheral arterial injury and intermittent claudication
US20140050807A1 (en) * 2010-09-17 2014-02-20 Harry J. Leighton Compositions containing omega-3 oil with an anti-inflammatory agent and uses thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129216A (en) * 1985-11-28 1987-06-11 Nippon Suisan Kaisha Ltd Fat transfusion liquid
JPS62163669A (en) * 1986-01-14 1987-07-20 Taiyo Fishery Co Ltd Spread food containing eicosapentaenoic acid
JPH0672959A (en) * 1991-03-28 1994-03-15 Agency Of Ind Science & Technol Eicosapentaenoic acid triglyceride and its production
JPH05331105A (en) * 1991-07-24 1993-12-14 Agency Of Ind Science & Technol Docosahexaenoic acid triglyceride and its production
JP2000212588A (en) * 1999-01-21 2000-08-02 Ikeda Shokken Kk Production of highly unsaturated fatty acid-containing glyceride
JP2009520824A (en) * 2005-12-20 2009-05-28 セネストラ エルエルシー Omega 3 fatty acid preparation
JP2009544701A (en) * 2006-07-21 2009-12-17 リライアント・ファーマシューティカルズ・インコーポレイテッド Compositions containing omega-3 fatty acids and their use to treat peripheral arterial injury and intermittent claudication
US20140050807A1 (en) * 2010-09-17 2014-02-20 Harry J. Leighton Compositions containing omega-3 oil with an anti-inflammatory agent and uses thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAZUO NAKAMOTO ET AL.: "Antinociceptive Effect of Docosahexaenoic Acid (DHA) through Long Fatty Acid Receptor G Protein-coupled Receptor 40 (GPR40", YAKUGAKU ZASSHI, vol. 134, no. 3, 1 March 2014 (2014-03-01), pages 397 - 403 *
LAWSON D. LARRY ET AL.: "HUMAN ABSORPTION OF FISH OIL FATTY ACIDS AS TRIACYLGLYCEROLS, FREE ACIDS, OR ETHYL ESTERS", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 152, no. 1, 15 April 1988 (1988-04-15), pages 328 - 335, XP055316822 *
NAKAMOTO,KAZUO ET AL.: "Antinociceptive Effects of Docosahexaenoic Acid against Various Pain Stimuli in Mice", BIOL. PHARM. BULL., vol. 33, no. 6, 2010, pages 1070 - 1072, XP008136227 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3744323A4 (en) * 2018-01-26 2021-12-29 Ajinomoto Co., Inc. Composition for preventing or improving nociceptive pain
US11730713B2 (en) 2018-01-26 2023-08-22 Ajinomoto Co., Inc. Composition for preventing or improving nociceptive pain
WO2019244140A1 (en) * 2018-06-21 2019-12-26 マルハニチロ株式会社 Kidney function maintenance and protection agent, and method for evaluating effect thereof
JP2020002125A (en) * 2018-06-21 2020-01-09 マルハニチロ株式会社 Agent for maintaining and protecting kidney function, and method for evaluating its effect
GB2590868A (en) * 2018-06-21 2021-07-07 Maruha Nichiro Corp Kidney function maintenance and protection agent, and method for evaluating effect thereof
JP7013416B2 (en) 2018-06-21 2022-01-31 マルハニチロ株式会社 Renal function maintenance and protective agents, and methods for evaluating their effects
WO2021074118A1 (en) * 2019-10-15 2021-04-22 Hermes Arzneimittel Gmbh Liquid omega-3 fatty acid compositions for direct oral administration

Similar Documents

Publication Publication Date Title
WO2016152054A1 (en) Pain prevention and alleviation effects of ω3 fatty acid glyceride
EP0342956A2 (en) Use of phytic acid or its salts for the treatment of hyperlipemia, obesity and obesity-related diseases
JP5443979B2 (en) Novel leukotriene receptor antagonist
WO2006070856A1 (en) Sesamin/episesamin compositions
WO2001010989A1 (en) Fat compositions
EP1481675A1 (en) Body temperature elevating agents
TWI389697B (en) Improve the composition of lipid metabolism
JPH01294631A (en) Remedy and preventive for diabetic disease, food and drink and table luxury
US20220273600A1 (en) Lithium salts of n-substituted glycine compounds and uses thereof
JP2010132631A (en) Composition having inverse agonist and antagonist activities of cannabinoid receptor
TW202110427A (en) Compositions for improving liver functions
JPS63104917A (en) Oral administration composition
JP2010184914A (en) Composition having proton pump inhibitory activity
US11198893B2 (en) Method for producing omega 3 and omega 6 unsaturated fatty acid oxides
US7579374B2 (en) Agent for improving bone metabolism
KR20140095167A (en) Pharmaceutical composition for the prevention or treatment of fatty liver diseases comprising honokiol and magnolol as an effective ingredient
JP7016071B2 (en) Appetite suppressant
EP2484358B1 (en) Agent for inhibiting decrease of visceral fat in patient with parkinson's disease
JP4152818B2 (en) Antihypertensive agent containing conjugated fatty acid as active ingredient and use thereof
JP2009173556A (en) Prostaglandin e2 receptor, ep4 agonist and composition containing the same
WO2015137500A1 (en) Anti-obesity agent
WO2006046402A1 (en) Triglyceride metabolism controlling agent and containing the same, food, drink, food additive and pharmaceutical
JP5099946B2 (en) Method for producing antitumor composition
JP2008038011A (en) Method for producing highly pure phospholipid
KR20160150619A (en) Pharmaceutical composition for the prevention or treatment of fatty liver diseases comprising honokiol and magnolol as an effective ingredient

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP