WO2016152012A1 - Member manufacturing method, method for manufacturing members of various types, member manufacturing device, and system for manufacturing members of various types - Google Patents

Member manufacturing method, method for manufacturing members of various types, member manufacturing device, and system for manufacturing members of various types Download PDF

Info

Publication number
WO2016152012A1
WO2016152012A1 PCT/JP2016/000849 JP2016000849W WO2016152012A1 WO 2016152012 A1 WO2016152012 A1 WO 2016152012A1 JP 2016000849 W JP2016000849 W JP 2016000849W WO 2016152012 A1 WO2016152012 A1 WO 2016152012A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
manufacturing
hole
shape
injection
Prior art date
Application number
PCT/JP2016/000849
Other languages
French (fr)
Japanese (ja)
Inventor
繁彦 鬼頭
井上 智紀
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015243935A external-priority patent/JP2016183405A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016152012A1 publication Critical patent/WO2016152012A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the present disclosure relates to a method for manufacturing a member, a method for manufacturing a multi-product member having a common part that forms a common shape among multi-product members, and a feature part that has a different shape, a device manufacturing apparatus, and a system for manufacturing a multi-product member It is about.
  • Patent Document 1 discloses a fuel injection in which a portion having a nozzle hole of a fuel injection valve is processed as a separate member by metal powder injection molding, and the portion having the nozzle hole and a substantially cylindrical valve body are diffusion bonded. A method for manufacturing the valve is described.
  • the injection hole is processed by perforating a green body processed by injection molding.
  • the inner edge of the inner opening of the nozzle hole is curved or the cross-sectional area of the nozzle hole is changed.
  • a nozzle hole is required.
  • such a complicated injection hole cannot be processed.
  • An object of the present disclosure is to provide a method for manufacturing a member that improves the degree of freedom of the shape of the member.
  • the method for manufacturing a member according to an aspect of the present disclosure is a method for manufacturing a member having a through hole, and includes a forming step for forming the member and a removing step for removing the core.
  • the laminated powder or wire is partially heated, or the core is The powder or wire of the material forming the member is laminated while being heated in the placed case, and a cored member that is a member having the core inserted through the through hole is formed.
  • the removal step removes the core from the cored member after the molding step.
  • the member manufacturing method of the present disclosure first, powder or wire of the material forming the member is laminated and heated in the case where the core formed in the shape of the through hole is placed, and the inside of the through hole is inserted. A member with a core, which is a member through which the child is inserted, is formed. Thereafter, when the core is removed from the cored member, a through hole is formed at a portion where the core of the member has been removed. Since the through hole is formed so as to follow the shape of the core in the forming step, the injection hole can be formed into a shape that is difficult to achieve by conventional cutting. Therefore, in the member manufacturing method of the present disclosure, the degree of freedom of the shape of the through hole of the member can be improved.
  • the through hole is formed along the shape of the core, the shape of the through hole can be changed only by changing the shape of the core. Thereby, the freedom degree of the shape of a through-hole can further be improved.
  • FIG. 1 It is a schematic diagram of a fuel injection valve provided with a nozzle body manufactured by a nozzle body manufacturing system according to a first embodiment of the present disclosure
  • FIG. 3 is an enlarged cross-sectional view of a nozzle body manufactured by a nozzle body manufacturing system according to the first embodiment of the present disclosure; It is a sectional view of a nozzle body manufactured by a nozzle body manufacturing system according to the first embodiment of the present disclosure, It is a schematic diagram of a nozzle body manufacturing system according to the first embodiment of the present disclosure, It is a flowchart of the manufacturing method of the nozzle body according to the first embodiment of the present disclosure, FIG.
  • FIG. 6 is a schematic diagram illustrating a molding process for manufacturing an injection unit in the nozzle body manufacturing method according to the first embodiment of the present disclosure; It is a perspective view of a core used in the manufacturing method of the nozzle body according to the first embodiment of the present disclosure, It is an expanded sectional view of a nozzle body manufactured in a manufacturing method of a nozzle body according to the second embodiment of the present disclosure, FIG. 5 is an enlarged cross-sectional view of a nozzle body manufactured in a nozzle body manufacturing method according to a third embodiment of the present disclosure; FIG.
  • FIG. 9 is a schematic diagram illustrating a molding process for manufacturing an injection unit in a nozzle body manufacturing method according to a fourth embodiment of the present disclosure. It is a schematic diagram of a nozzle body manufacturing system as a reference example of the present disclosure, It is a flowchart of a manufacturing method of a nozzle body as a reference example of the present disclosure, It is a schematic diagram explaining the process process which processes the injection part in the manufacturing method of the nozzle body as a reference example of this indication.
  • FIG. 1 shows a fuel injection valve 90 for diesel fuel.
  • the fuel injection valve 90 includes a nozzle body 91 as a multi-product member, a needle 92 provided so as to be able to be separated and abutted on a valve seat 911 included in the nozzle body 91, and an electromagnetic drive capable of driving the needle 92 in the axial direction.
  • the unit 93 is provided.
  • a suck chamber 910 is defined between the needle 92 and the nozzle body 91 that are in contact with the valve seat 911 (see FIG. 2).
  • the nozzle body 91 has nozzle holes 94 as a plurality of through holes that communicate the outside of the nozzle body 91 and the sac chamber 910.
  • the nozzle body 91 has six injection holes 94, and the inner edge portion 912 of the inner opening of each injection hole 94 is formed in a curved shape as shown in FIG.
  • the fuel introduced into the nozzle body 91 is supplied to the sac chamber 910 when the needle 92 moves away from the valve seat 911 and is injected from the injection hole 94 into a combustion chamber of an internal combustion engine (not shown).
  • the main body portion 95 as a common portion which is one of the two portions, refers to a portion having a common shape that all of the plurality of types of nozzle bodies have when compared.
  • the main body portion 95 is a substantially cylindrical portion that is formed so that the outer diameter decreases from the first end portion 951 toward the second end portion 952.
  • the other part of the two parts indicates a part having a different shape when a plurality of nozzle bodies are compared. That is, the injection part 96 is a part having a characteristic shape different from that of the other nozzle bodies in the nozzle body 91.
  • the injection unit 96 is a lid-like portion provided to close the opening of the second end portion 952 of the main body portion 95 in each of the plurality of types of nozzle bodies.
  • the injection part 96 is different from the other nozzle bodies except for the nozzle body 91 among a plurality of types of nozzle bodies in the number of injection holes 94 and, for example, the shape of the inner edge part 912 as shown in FIG. That is, a plurality of types of nozzle bodies 91 having different injection units 96 correspond to a variety of members.
  • the boundary between the main body portion 95 and the injection portion 96 is indicated by a virtual line VL1.
  • the nozzle body manufacturing system 1 includes a first processing device 11 as a common portion processing device, a second processing device 12, a core processing device 13 as a core removing unit, a control unit 14 as a control device, and the like. ing.
  • FIG. 4 shows the columnar member 15 before being processed into the nozzle body 91, and movement of the member to be processed in the nozzle body manufacturing system 1 is indicated by white arrows M11 to M18.
  • the 2nd processing apparatus 12 and the core processing apparatus 13 are corresponded to the manufacturing apparatus of a member.
  • 1st processing apparatus 11 is an apparatus which processes the columnar member 15 formed from the metal to the main-body part 95 by cutting, such as turning and drilling, for example.
  • the second processing device 12 directly forms the injection portion 96 at a predetermined position of the main body portion 95 processed by the first processing device 11.
  • the 2nd processing apparatus 12 is an apparatus which manufactures a metal member by what is called a metal additive manufacturing method.
  • the injection unit 96 is formed by selective laser sintering (SLS).
  • the second processing apparatus 12 includes a laser oscillator 121 as a heating unit, a galvanometer 122, a case 123, a recoater 124, a core 25, and the like.
  • the laser oscillator 121 oscillates a laser capable of melting the metal material powder 10 forming the injection unit 96 toward the galvanometer 122.
  • the galvanometer 122 scans so that the laser oscillated by the laser oscillator 121 can be applied to the entire region in the case 123.
  • the powder of the material forming the member is referred to as the metal powder 10.
  • the case 123 is a bottomed cylindrical member having a space 120 opened to the galvanometer 122 side.
  • the case 123 can be filled with the metal powder 10.
  • the case 123 has a hole 125 into which the main body 95 can be inserted at the bottom.
  • the space 120 corresponds to the inside of the case 123.
  • the recoater 124 is provided so as to be movable relative to the case 123.
  • the recoater 124 can level the surface of the metal powder layer supplied in the case 123 and spread the metal powder 10 in the case 123 while supplying the metal powder 10 in the case 123.
  • the core 25 is, for example, a linear member made of a metal that is relatively easy to melt.
  • the core 25 is set in the case 123.
  • the core 25 defines the shape of the injection unit 96.
  • the core processing device 13 can heat or disassemble a member in which the main body 95, the injection unit 96, and the core 25 sent from the second processing device 12 are integrated.
  • the control unit 14 includes a microcomputer and the like, and includes a CPU, a ROM, an I / O, and a bus line for connecting them.
  • the control unit 14 is electrically connected to the first processing device 11 and the second processing device 12.
  • the control unit 14 controls the operations of the first processing apparatus 11 and the second processing apparatus 12 based on information regarding the shape of the nozzle body 91 input from the outside.
  • the main body 95 and the injection unit 96 are set in the nozzle body 91.
  • Information regarding the shapes of the main body 95 and the injection unit 96 set as shown in FIG. 3 is input to the control unit 14.
  • the control unit 14 controls the operations of the first processing device 11 and the second processing device 12 so as to form the nozzle body 91 based on the input information regarding the shape of the nozzle body 91.
  • the main body part 95 is manufactured. Specifically, as shown in FIG. 4, in the first processing device 11, the primary processing member 16 is formed by processing the columnar member 15 so that the outer shape of the columnar member 15 becomes the outer shape of the nozzle body 91. Next, a through hole 161 is formed in the longitudinal direction of the primary processing member 16. Thereby, the substantially cylindrical main-body part 95 is manufactured.
  • FIG. 6 shows how the injection unit 96 is manufactured in the second processing apparatus 12.
  • a part of the metal powder 10 is omitted while making the size of the metal powder 10 filled in the case 123 larger than the actual size.
  • 103 corresponds to a molding process.
  • the main body 95 processed in 102 is inserted into the hole 125 of the case 123 whose relative position is fixed with respect to the main body 95. Specifically, as shown in FIG. 6, the main body portion 95 is inserted so that the second end portion 952 on the side where the injection portion 96 is provided is positioned in the case 123. After the second end portion 952 of the main body portion 95 is set in the case 123, the case 123 is positioned such that a specific portion of the core 25 is located in the injection hole 94 of the injection portion 96 manufactured directly on the main body portion 95. The core 25 is set inside.
  • FIG. 7 shows a perspective view of the core 25 set in the space 120.
  • the core 25 is formed of a plurality of linear members extending in the radial direction from the approximate center of the core 25.
  • the core 25 includes an inner support portion 251, an intermediate portion 252 as a plurality of through-hole corresponding portions, and an outer support portion 253 as a plurality of support portions.
  • the core 25 has six intermediate portions 252 and six outer support portions 253 so as to correspond to the six injection holes 94 of the injection portion 96.
  • the inner support portion 251 is a portion where six linear portions are arranged radially.
  • the inner support portion 251 is formed so as not to contact the inner wall of the injection portion 96 manufactured at 103.
  • the inner support portion 251 supports the intermediate portion 252 so as to fix the relative position of the intermediate portion 252 with respect to the injection portion 96 inside the injection portion 96 processed in 103.
  • the six intermediate portions 252 are connected to respective end portions of the six linear portions of the inner support portion 251.
  • the six intermediate portions 252 are each formed to have the shape of the nozzle hole 94.
  • the intermediate part 252 is located in the injection hole 94.
  • the six outer support portions 253 are provided at the ends of the six intermediate portions 252 opposite to the side connected to the inner support portion 251.
  • the outer support part 253 is formed so as not to contact the outer wall of the injection part 96.
  • the end of the outer support 253 opposite to the side connected to the intermediate part 252 is in contact with the bottom surface 126 of the case 123 as shown in FIG. Thereby, the outer side support part 253 supports the intermediate part 252 so that the relative position of the intermediate part 252 with respect to the case 123 is fixed outside the injection part 96 manufactured in 103.
  • the metal powder 10 is supplied to the space 120 in the case 123. After the metal powder 10 is supplied, when the surface of the metal powder layer in the case 123 is smoothed by the reciprocating movement of the recoater 124 (outlined arrow F12 in FIG. 6), the injection previously input to the control unit 14 Laser is irradiated based on the shape of the portion 96. At this time, the position where the laser is irradiated is controlled based on the shape of the injection unit 96 input in advance to the control unit 14. The metal powder 10 irradiated with the laser is melted and sintered with the adjacent metal powder 10. Thereby, the injection part 96 in a state where the core 25 is inserted into the injection hole 94 is manufactured on the second end part 952. The injection part 96 in a state where the core 25 is inserted through the injection hole 94 is referred to as a core-injection part 961 as a core-attached member.
  • the core injection unit 961 when the core injection unit 961 is manufactured on the main body 95, the main body 95 and the core injection unit 961 are integrated using the core processing device 13 in 104 as a member manufacturing method.
  • the core 25 is removed from the bottomed cylindrical member 97.
  • Examples of a method for removing the core 25 from the bottomed cylindrical member 97 include a method for heating the core 25 and a method for disassembling the core 25.
  • the bottomed cylindrical member 97 is at a temperature that can improve the hardness of the injection portion 96 and the core 25 can be melted.
  • the bottomed tubular member 97 is heated to a temperature.
  • disassembles the core 25 in the core processing apparatus 13, it is the gas or liquid which does not damage the main-body part 95 or the injection part 96, and can decompose
  • the bottomed cylindrical member 97 is placed in gas or liquid, and the core 25 is disassembled.
  • the core 25 is removed from the injection unit 96 by these methods.
  • 104 corresponds to a removal process.
  • the metal powder 10 laminated in the case 123 in which the core 25 is placed in 103 is heated based on the shape of the injection unit 96.
  • the metal powder 10 in contact with the intermediate portion 252 of the core 25 is melted along the outer peripheral wall surface 254 of the intermediate portion 252 and then sintered.
  • the cored injection section 961 that is the injection section 96 with the core 25 inserted through the nozzle hole 94 is heated, only the core 25 is melted. The child 25 is removed.
  • the metal powder 10 that has been sintered after being melted along the outer peripheral wall surface 254 of the intermediate portion 252 is a jet having an inner edge portion 912 formed in a curved surface and a smooth inner wall surface 913 (see FIG. 2) having no step. Hole 94 is formed.
  • the metal powder 10 that forms the nozzle hole 94 is disposed in the intermediate portion 252 while the core 25 is used so that the metal powder 10 is not filled in the position corresponding to the nozzle hole 94.
  • the nozzle hole which has a shape difficult by cutting can be formed with high precision. Therefore, in the nozzle body manufacturing method according to the first embodiment, the degree of freedom of the shape of the injection hole 94 of the injection unit 96 can be improved.
  • the shape of the nozzle hole 94 can be changed only by changing the shape of the core 25. Thereby, the freedom degree of the shape of the nozzle hole 94 can further be improved.
  • the injection unit 96 is directly processed on the second end portion 952 of the main body unit 95 provided in the case 123. Thereby, the process of joining the main-body part 95 and the injection part 96 can be made unnecessary.
  • the main body portion 95 and the injection portion 96 are processed in separate steps.
  • the apparatus 11 can process all the main body portions of a plurality of types of nozzle bodies.
  • the injection unit 96 performs processing according to the shape of the injection unit 96 by the selective laser sintering method in the second processing apparatus 12.
  • the metal powder 10 in the case 123 is partially heated and sintered based on information regarding the shape of the nozzle body 91 input to the control unit 14. Thereby, even if the shape of a nozzle body is changed, the injection part 96 can be processed, without changing the specification of a processing apparatus.
  • the setup change due to the difference in the shape of the nozzle body becomes unnecessary, and therefore, the man-hours required for manufacturing the nozzle body can be reduced.
  • the nozzle body manufacturing system 1 can process nozzle bodies having different shapes by one type of first processing device 11 and one type of second processing device 12. Thereby, since the change of the specification of the processing apparatus by the difference in the shape of a nozzle body becomes unnecessary, the installation cost of a nozzle body manufacturing system can be reduced.
  • FIG. 8 shows an enlarged cross-sectional view of the injection unit 96 manufactured in the second processing apparatus according to the second embodiment.
  • the core 35 inserted through the injection hole 98 of the injection unit 96 is indicated by a dotted line.
  • the core 35 includes an inner support portion 251, a plurality of intermediate portions 352 as a plurality of through hole corresponding portions, and a plurality of outer support portions 253.
  • virtual lines VL21 and VL22 that indicate boundaries between the inner support portion 251, the intermediate portion 352, and the outer support portion 253 that form the core 35 are shown.
  • the intermediate part 352 is formed to have the shape of the nozzle hole 98. Specifically, the intermediate portion 352 has a reduced diameter portion 354 formed on the side connected to the inner support portion 251 so as to follow the curved shape of the inner edge portion 982 of the injection hole 98. The intermediate portion 352 is formed so that the outer diameter increases from the reduced diameter portion 354 toward the end portion 355 on the side connected to the outer support portion 253.
  • the injection hole 98 is formed so that the inner diameter increases from the inner side to the outer side of the injection unit 96.
  • the injection hole 98 is formed such that the inner diameter D98 on the inner side of the injection unit 96 is smaller than 0.4 mm, for example, and the length L98 is longer than 2.0 mm, for example.
  • the core 35 is formed so that the cross-sectional area of the intermediate portion 352 inserted through the nozzle hole 98 changes.
  • the injection hole 98 can be made into the desired shape from which the cross-sectional area becomes large toward the downstream from the upstream of a fuel. Therefore, the second embodiment has the same effect as the first embodiment.
  • FIG. 9 shows an enlarged cross-sectional view of the injection unit 96 manufactured in the second processing apparatus according to the third embodiment.
  • the core 45 inserted through the injection hole 99 of the injection unit 96 is indicated by a dotted line.
  • the core 45 includes an inner support portion 251, intermediate portions 452 as a plurality of through hole corresponding portions, and a plurality of outer support portions 253.
  • virtual lines VL ⁇ b> 31 and VL ⁇ b> 32 that indicate boundaries between the inner support portion 251, the intermediate portion 452, and the outer support portion 253 that form the core 45 are shown.
  • the intermediate part 452 is formed to have the shape of the injection hole 99. Specifically, the intermediate portion 452 has a reduced diameter portion 454 formed on the side connected to the inner support portion 251 so as to follow the curved shape of the inner edge portion 992 of the injection hole 98.
  • the intermediate portion 452 is formed so that the outer diameter is substantially constant from the reduced diameter portion 454 to the central portion 455, while moving toward the end portion 456 on the side connected to the outer support portion 253 from the central portion 455.
  • the outer diameter is formed to be large.
  • the injection hole 99 is formed so that the inner diameter increases from the approximate center of the injection hole 99 toward the outside of the injection part 96.
  • the injection hole 99 is formed so that the inner diameter D99 on the inner side of the injection unit 96 is smaller than 0.4 mm, for example.
  • the injection hole 99 is formed so that the length L991 of the portion having a constant inner diameter from the inner side of the injection unit 96 is longer than, for example, 0.5 mm, and the inner diameter increases toward the outer side of the injection unit 96.
  • the length L992 of the part is formed to be longer than 0.5 mm, for example.
  • the core 45 is formed such that the cross-sectional area of the intermediate portion 352 inserted through the nozzle hole 99 changes.
  • the injection hole 99 can be made into the desired shape from which the cross-sectional area changes toward the downstream from the upstream of a fuel. Therefore, the third embodiment has the same effect as the first embodiment.
  • FIG. 10 shows a state of processing of the injection unit 96 in the second processing apparatus 22.
  • the second processing device 22 directly forms the injection portion 96 at a predetermined position of the main body portion 95 processed by the first processing device 11.
  • the second processing apparatus 22 includes a laser oscillator 121, a galvanometer 122, a case 223, a recoater 124, a core 25, and the like.
  • the case 223 is formed integrally with the main body portion 95. Specifically, the case 223 includes a bottom portion 224 formed on the outer peripheral wall surface 953 of the second end portion 952 of the main body portion 95 so as to extend radially outward, and an outer edge portion of the bottom portion 224 on the side opposite to the main body portion 95. It has the cylinder part 225 formed so that it may stand up. A space 220 opened to the galvanometer 122 side is formed by the bottom portion 224 and the cylindrical portion 225. In the present embodiment, the space 220 corresponds to the inside of the case 223.
  • the outer surface of the core 25 is formed on the inner bottom surface 226 of the bottom portion 224.
  • the core 25 is set so that the support portion 253 contacts. Thereby, the core 25 is set so that the intermediate part 252 is positioned in the injection hole 94 of the injection part 96.
  • the metal powder 10 is supplied to the space 220.
  • the amount of the metal powder 10 to be supplied is smaller than that in the first embodiment, as shown in FIG.
  • the case 223 is filled with a metal powder 10 in such an amount that a part of the injection unit 96 can be molded.
  • the surface of the metal powder layer in the case 223 is smoothed by the reciprocating movement of the recoater 124 (open arrow F22 in FIG. 10), and the injection unit 96 input in advance to the control unit 14.
  • the laser is irradiated based on the shape.
  • the position where the laser is irradiated is controlled based on the shape of the injection unit 96 input in advance to the control unit 14.
  • the length of the laser irradiation direction (direction of solid line arrow L22 shown in FIG. 10) that can be processed by one laser irradiation is shorter than that in the first embodiment.
  • the main body part 95 moves to such an extent that a part of the jet part 96 to be processed next to a part of the jet part 96 that has already been processed comes to a position where laser irradiation is possible.
  • the metal powder 10 is supplied again onto a part of the injection part 96 already formed by the recoater 124, and the laser is irradiated.
  • the injection unit 96 is processed in a plurality of times from the main body unit 95 side, and the injection unit 961 with the core, which is the injection unit 96 in a state where the core 25 is inserted into the injection hole 94, is the second. Manufactured on end 952.
  • the core 25 is removed from 97.
  • finish grinding is performed at 105.
  • the case 223 integrated with the main body 95 is also removed from the main body 95 by cutting, and the nozzle body 91 is completed.
  • the main body part 95 and the case 223 are moved a plurality of times in the direction away from the recoater 124, and the injection part 96 is formed on the main body part 95.
  • the outer support portion 253 of the core 25 is in contact with the case 223 integrated with the main body portion 95, the relative position of the intermediate portion 252 with respect to the main body portion 95 is unlikely to change.
  • 4th embodiment can shape
  • the nozzle body manufacturing system 5 of the reference example includes a first processing device 11, a second processing device 72, a control unit 14, and the like as shown in FIG. In FIG. 11, movement of members to be processed in the nozzle body manufacturing system 5 is indicated by white arrows M51 to M56.
  • the second processing device 72 processes the injection unit 96 at a predetermined position of the main body portion 95 processed by the first processing device 11.
  • the 2nd processing apparatus 72 is an apparatus which shape
  • FIG. 12 the flowchart of the manufacturing method of the nozzle body 91 of a reference example is shown.
  • the main body portion 95 and the injection portion 96 are set in the nozzle body 91 as in 101 of the first embodiment.
  • the main body portion 95 is manufactured in the same manner as 502 in the first embodiment.
  • FIG. 13 shows how the injection unit 96 is manufactured in the second processing apparatus 72.
  • a part of the metal powder 10 filled in the case 123 is omitted for easy understanding of the shape of the injection unit 96 in the case 123.
  • the second end portion 952 of the main body portion 95 processed in 502 is inserted into the hole 125 included in the case 123 of the second processing apparatus 12.
  • the metal powder 10 is supplied to the space 120 in the case 123.
  • the laser oscillator 121 is moved into the case 123.
  • the metal powder 10 is irradiated with a laser.
  • the position where the laser is irradiated is controlled based on the shape of the injection unit 96 input in advance to the control unit 14.
  • the metal powder 10 irradiated with the laser is melted and sintered. Thereby, the injection unit 96 is processed on the second end portion 952.
  • the length of the laser irradiation direction (in the direction of the solid line arrow L52 shown in FIG. 13) that can be processed by one laser irradiation is the length of the laser irradiation direction L52 of the injection unit 96. Short compared to the length. For this reason, in the reference example, the injection part 96 is processed so that a part of the injection part 96 is stacked in order from the main body part 95 side. Specifically, after a part of the injection portion 96 is processed on the second end portion 952, the main body portion 95 moves in a direction to be extracted from the case 123.
  • the main body part 95 moves to such an extent that a part of the jet part 96 to be processed next to a part of the jet part 96 that has already been processed comes to a position where laser irradiation is possible.
  • the metal powder 10 is again supplied to the space 120 by the recoater 124 and irradiated with a laser. In 503, in this way, the injection unit 96 is processed in multiple steps from the main body unit 95 side.
  • the injection unit 96 is manufactured by a selective laser sintering method. Thereby, even a bottomed cylindrical member having a complicated shape on the inner side and difficult to cut can be manufactured. Therefore, the degree of freedom of the shape of the nozzle body 91 can be improved. Moreover, since the injection part 96 is directly processed on the 2nd end part 952 of the main-body part 95 provided in the case 123, the process of joining the main-body part 95 and the injection part 96 may become unnecessary. it can.
  • the nozzle body manufacturing method as a method for manufacturing a variety of members including a member manufacturing method has been described.
  • the manufacturing method to which the member manufacturing method is applied is not limited to this. You may manufacture the member which has a through-hole only with the manufacturing method of a member.
  • the multi-product member to which the manufacturing method of the multi-product member is applied is not limited to the nozzle body. What is necessary is just a member which has the common part which makes a common shape between multiple types of members, and the characteristic part which makes a different shape between multiple types of members.
  • the core inserted through the nozzle hole is removed from the injection unit by melting by heating or decomposition by chemical reaction.
  • the method of removing the core from the injection unit is not limited to this.
  • the core has the intermediate portion formed to have the shape of the nozzle hole, and the inner support portion and the outer support portion that support the intermediate portion.
  • the part which comprises a core is not limited to this. What is necessary is just to be formed so that it may become a shape of a nozzle hole.
  • the second processing apparatus processes the injection portion by the selective laser sintering method (SLS) of the metal additive manufacturing method.
  • SLS selective laser sintering method
  • the method by which the second processing apparatus processes the injection portion is not limited to this.
  • Laser direct laminating method (LENS) in which metal powder is directly sprayed and sintered in the molten pool on the surface of the main body or the jet section on the main body heated by a laser, or the wire of the metal material forming the jet section You may process an injection part by the melt deposition method (FDM) etc. which fuse
  • FDM melt deposition method
  • the nozzle body manufacturing system as a manufacturing system for a wide variety of members including a member manufacturing apparatus processes the bottomed cylindrical nozzle body of the fuel injection valve.
  • the members manufactured by the manufacturing system for multi-product members are not limited to this. What is necessary is just the member formed from the characteristic part which makes a different shape between the common part which makes the common shape which several members have, and several members.
  • the member manufacturing apparatus may be configured to be able to manufacture a member having a through hole alone, and a case in which powder or wire of a material forming the member can be laminated inside, a through hole placed inside the case A core formed in the shape of the material, a material supply part capable of supplying powder or wire of the material forming the member in the case, a heating part capable of heating the powder or wire of the material forming the member, and a through hole It is only necessary to have a core removing portion that can remove the core from the core-attached member that is a member into which the core is inserted.
  • the injection unit is manufactured by the second processing apparatus of the first embodiment. However, you may manufacture an injection part with the 2nd processing apparatus of 4th embodiment.
  • the inner edge of the nozzle hole of the nozzle body is formed in a curved surface.
  • the shape of the inner edge is not limited to this. Any shape may be used as long as the fuel spray state in the fuel injection valve is highly controlled. Further, the shape of the nozzle hole is not limited to the above embodiment.
  • the central axis may have a curved shape, or a shape that decreases after the cross-sectional area increases.
  • the first processing device as the above-mentioned common part processing device processes the main body by cutting such as turning or drilling.
  • the processing method of the main body is not limited to this.
  • the second processing apparatus as the member manufacturing apparatus includes a laser oscillator, a galvanometer, a case, a recoater, a core, a heat treatment unit, and the like.
  • the structure of the member manufacturing apparatus is not limited to this.
  • the material filled in the case of the second processing apparatus is metal.
  • the material filled in the case is not limited to metal.
  • the member is formed of a resin, it may be a resin.
  • the second processing apparatus has a laser oscillator as a heating unit for heating the metal powder.
  • the heating unit is not limited to this. Arc discharge may be used.
  • the present disclosure is not limited to the above embodiment, and can be implemented in various forms without departing from the gist thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A method for manufacturing a member (96) having through-holes (94, 98, 99), said member manufacturing method including: a molding step wherein a powder (10) of a material or wire for forming the member is stacked inside a case (123, 223) in which a core (25, 35, 45) formed in the shape of the through-holes is placed, after which the stacked powder or wire is partially heated, or the material or powder for forming the member is heated while being stacked inside a case in which a core has been placed, thereby molding a core-equipped member (961), which is a member in which the core is inserted into the through-holes; and a removal step wherein the core is removed from the core-equipped member after the molding step.

Description

部材の製造方法、多品種部材の製造方法、部材の製造装置、及び、多品種部材の製造システムMANUFACTURING METHOD FOR MEMBER, MANUFACTURING METHOD FOR MULTI-TYPE MEMBER, EQUIPMENT MANUFACTURING APPARATUS, AND PRODUCT SYSTEM FOR MULTI-TYPE 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年3月25日に出願された日本特許出願番号2015-62711号と、2015年12月15日に出願された日本特許出願番号2015-243935号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-62711 filed on March 25, 2015 and Japanese Patent Application No. 2015-243935 filed on December 15, 2015. The description is incorporated.
 本開示は、部材の製造方法、多品種部材間において共通形状をなす共通部と異なる形状をなす特徴部とを有する多品種部材の製造方法、部材の製造装置、及び、多品種部材の製造システムに関するものである。 The present disclosure relates to a method for manufacturing a member, a method for manufacturing a multi-product member having a common part that forms a common shape among multi-product members, and a feature part that has a different shape, a device manufacturing apparatus, and a system for manufacturing a multi-product member It is about.
 近年、内燃機関の燃焼室における燃料の噴霧状態を制御し、内燃機関の燃焼効率を向上することが求められている。このため、内燃機関の仕様に応じて燃料噴射弁が有する噴孔の形状を変更する必要があり、噴孔の形状が異なる複数の燃料噴射弁を効率的に製造可能な製造方法が求められている。例えば、特許文献1には、金属粉末の射出成形によって燃料噴射弁の噴孔を有する部位を別部材として加工し、当該噴孔を有する部位と略筒状の弁本体とを拡散接合する燃料噴射弁の製造方法が記載されている。 In recent years, it has been required to control the fuel spray state in the combustion chamber of the internal combustion engine to improve the combustion efficiency of the internal combustion engine. For this reason, it is necessary to change the shape of the injection hole of the fuel injection valve according to the specifications of the internal combustion engine, and a manufacturing method capable of efficiently manufacturing a plurality of fuel injection valves having different injection hole shapes is required. Yes. For example, Patent Document 1 discloses a fuel injection in which a portion having a nozzle hole of a fuel injection valve is processed as a separate member by metal powder injection molding, and the portion having the nozzle hole and a substantially cylindrical valve body are diffusion bonded. A method for manufacturing the valve is described.
特開平9-079114号公報Japanese Patent Laid-Open No. 9-079114
 特許文献1に記載の燃料噴射弁の製造方法では、射出成形によって加工されたグリーンボディに穿孔加工を行うことによって噴孔を加工している。しかしながら、燃料噴射弁における燃料の噴霧状態を高度に制御するためには、例えば、噴孔の内側開口の内縁部を曲面状にしたり、噴孔の断面積を変化させたりするなど複雑な形状の噴孔が求められる。特許文献1に記載の燃料噴射弁の製造方法では、このような複雑な形状の噴孔を加工することができない。 In the method of manufacturing a fuel injection valve described in Patent Document 1, the injection hole is processed by perforating a green body processed by injection molding. However, in order to highly control the fuel spray state in the fuel injection valve, for example, the inner edge of the inner opening of the nozzle hole is curved or the cross-sectional area of the nozzle hole is changed. A nozzle hole is required. In the fuel injection valve manufacturing method described in Patent Document 1, such a complicated injection hole cannot be processed.
 本開示の目的は、部材の形状の自由度を向上する部材の製造方法を提供することにある。 An object of the present disclosure is to provide a method for manufacturing a member that improves the degree of freedom of the shape of the member.
 本開示の一態様による部材の製造方法は、通孔を有する部材の製造方法であって、部材を成形する成形工程、及び、中子を除去する除去工程を含む。 The method for manufacturing a member according to an aspect of the present disclosure is a method for manufacturing a member having a through hole, and includes a forming step for forming the member and a removing step for removing the core.
 成形工程では、通孔の形状に形成されている中子が置かれているケース内に部材を形成する材料の粉末またはワイヤを積層した後に積層した粉末またはワイヤを部分加熱、または、中子が置かれているケース内で部材を形成する材料の粉末またはワイヤを加熱しつつ積層し、通孔に中子が挿通された部材である中子付部材を成形する。 In the molding process, after the powder or wire of the material forming the member is laminated in the case where the core formed in the shape of the through hole is placed, the laminated powder or wire is partially heated, or the core is The powder or wire of the material forming the member is laminated while being heated in the placed case, and a cored member that is a member having the core inserted through the through hole is formed.
 除去工程は、成形工程の後、中子付部材から中子を除去する。 The removal step removes the core from the cored member after the molding step.
 本開示の部材の製造方法では、最初に、通孔の形状に形成されている中子が置かれているケース内で部材を形成する材料の粉末またはワイヤを積層及び加熱し、通孔に中子が挿通されている部材である中子付部材を成形する。その後、中子付部材から中子を除去すると、部材の中子が除去された部位に通孔が形成される。通孔は成形工程において中子の形状に沿うよう成形されるため、噴孔を従来の切削加工では困難な形状に成形することができる。したがって、本開示の部材の製造方法では、部材が有する通孔の形状の自由度を向上することができる。 In the member manufacturing method of the present disclosure, first, powder or wire of the material forming the member is laminated and heated in the case where the core formed in the shape of the through hole is placed, and the inside of the through hole is inserted. A member with a core, which is a member through which the child is inserted, is formed. Thereafter, when the core is removed from the cored member, a through hole is formed at a portion where the core of the member has been removed. Since the through hole is formed so as to follow the shape of the core in the forming step, the injection hole can be formed into a shape that is difficult to achieve by conventional cutting. Therefore, in the member manufacturing method of the present disclosure, the degree of freedom of the shape of the through hole of the member can be improved.
 また、通孔は、中子の形状に沿って形成されるため、中子の形状を変更するだけで通孔の形状を変更することができる。これにより、通孔の形状の自由度をさらに向上することができる。 Also, since the through hole is formed along the shape of the core, the shape of the through hole can be changed only by changing the shape of the core. Thereby, the freedom degree of the shape of a through-hole can further be improved.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
本開示の第一実施形態によるノズルボディ製造システムによって製造されるノズルボディを備える燃料噴射弁の模式図であり、 本開示の第一実施形態によるノズルボディ製造システムによって製造されるノズルボディの拡大断面図であり、 本開示の第一実施形態によるノズルボディ製造システムによって製造されるノズルボディの断面図であり、 本開示の第一実施形態によるノズルボディ製造システムの模式図であり、 本開示の第一実施形態によるノズルボディの製造方法のフローチャートであり、 本開示の第一実施形態によるノズルボディの製造方法における噴射部を製造する成形工程を説明する模式図であり、 本開示の第一実施形態によるノズルボディの製造方法において用いる中子の斜視図であり、 本開示の第二実施形態によるノズルボディの製造方法において製造されるノズルボディの拡大断面図であり、 本開示の第三実施形態によるノズルボディの製造方法において製造されるノズルボディの拡大断面図であり、 本開示の第四実施形態によるノズルボディの製造方法における噴射部を製造する成形工程を説明する模式図であり、 本開示の参考例としてのノズルボディ製造システムの模式図であり、 本開示の参考例としてのノズルボディの製造方法のフローチャートであり、 本開示の参考例としてのノズルボディの製造方法における噴射部を加工する加工工程を説明する模式図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is a schematic diagram of a fuel injection valve provided with a nozzle body manufactured by a nozzle body manufacturing system according to a first embodiment of the present disclosure, FIG. 3 is an enlarged cross-sectional view of a nozzle body manufactured by a nozzle body manufacturing system according to the first embodiment of the present disclosure; It is a sectional view of a nozzle body manufactured by a nozzle body manufacturing system according to the first embodiment of the present disclosure, It is a schematic diagram of a nozzle body manufacturing system according to the first embodiment of the present disclosure, It is a flowchart of the manufacturing method of the nozzle body according to the first embodiment of the present disclosure, FIG. 6 is a schematic diagram illustrating a molding process for manufacturing an injection unit in the nozzle body manufacturing method according to the first embodiment of the present disclosure; It is a perspective view of a core used in the manufacturing method of the nozzle body according to the first embodiment of the present disclosure, It is an expanded sectional view of a nozzle body manufactured in a manufacturing method of a nozzle body according to the second embodiment of the present disclosure, FIG. 5 is an enlarged cross-sectional view of a nozzle body manufactured in a nozzle body manufacturing method according to a third embodiment of the present disclosure; FIG. 9 is a schematic diagram illustrating a molding process for manufacturing an injection unit in a nozzle body manufacturing method according to a fourth embodiment of the present disclosure; It is a schematic diagram of a nozzle body manufacturing system as a reference example of the present disclosure, It is a flowchart of a manufacturing method of a nozzle body as a reference example of the present disclosure, It is a schematic diagram explaining the process process which processes the injection part in the manufacturing method of the nozzle body as a reference example of this indication.
 本開示の複数の実施形態を図に基づき説明する。 A plurality of embodiments of the present disclosure will be described with reference to the drawings.
 (第一実施形態)
 本開示の第一実施形態による部材の製造方法、多品種部材の製造方法、部材の製造装置、及び、多品種部材の製造システムを図1~7に基づいて説明する。
(First embodiment)
A member manufacturing method, a multi-product member manufacturing method, a member manufacturing apparatus, and a multi-product member manufacturing system according to a first embodiment of the present disclosure will be described with reference to FIGS.
 最初に、第一実施形態による多品種部材の製造システムとしてのノズルボディ製造システム1によって製造される燃料噴射弁90の構成を説明する。図1に、ディーゼル燃料用の燃料噴射弁90を示す。燃料噴射弁90は、多品種部材としてのノズルボディ91、ノズルボディ91が有する弁座911に離間及び当接可能に設けられているニードル92、及び、ニードル92を軸方向へ駆動可能な電磁駆動部93などを備えている。 First, the structure of the fuel injection valve 90 manufactured by the nozzle body manufacturing system 1 as a manufacturing system for multi-product members according to the first embodiment will be described. FIG. 1 shows a fuel injection valve 90 for diesel fuel. The fuel injection valve 90 includes a nozzle body 91 as a multi-product member, a needle 92 provided so as to be able to be separated and abutted on a valve seat 911 included in the nozzle body 91, and an electromagnetic drive capable of driving the needle 92 in the axial direction. The unit 93 is provided.
 弁座911に当接しているニードル92とノズルボディ91との間には、サック室910が区画形成される(図2参照)。ノズルボディ91は、ノズルボディ91の外側とサック室910とを連通する複数の通孔としての噴孔94を有する。第一実施形態では、ノズルボディ91は、噴孔94を六個有し、それぞれの噴孔94の内側開口の内縁部912は、図2に示すように、曲面状に形成されている。ノズルボディ91内に導入される燃料は、ニードル92が弁座911から離間するときサック室910に供給され噴孔94から図示しない内燃機関の燃焼室に噴射される。 A suck chamber 910 is defined between the needle 92 and the nozzle body 91 that are in contact with the valve seat 911 (see FIG. 2). The nozzle body 91 has nozzle holes 94 as a plurality of through holes that communicate the outside of the nozzle body 91 and the sac chamber 910. In the first embodiment, the nozzle body 91 has six injection holes 94, and the inner edge portion 912 of the inner opening of each injection hole 94 is formed in a curved shape as shown in FIG. The fuel introduced into the nozzle body 91 is supplied to the sac chamber 910 when the needle 92 moves away from the valve seat 911 and is injected from the injection hole 94 into a combustion chamber of an internal combustion engine (not shown).
 ここで、ノズルボディ製造システム1によって製造されるノズルボディ91に設定される二つの部位を図3に基づいて説明する。 Here, two parts set in the nozzle body 91 manufactured by the nozzle body manufacturing system 1 will be described with reference to FIG.
 二つの部位のうち一方の部位である、共通部としての本体部95は、複数種のノズルボディを比較したとき複数種のノズルボディの全てが有している共通形状をなす部位を指す。第一実施形態では、本体部95は、図3に示すように、第1端部951から第2端部952に向かうに従って外径が小さくなるよう形成されている略筒状の部位である。 The main body portion 95 as a common portion, which is one of the two portions, refers to a portion having a common shape that all of the plurality of types of nozzle bodies have when compared. In the first embodiment, as shown in FIG. 3, the main body portion 95 is a substantially cylindrical portion that is formed so that the outer diameter decreases from the first end portion 951 toward the second end portion 952.
 二つの部位のうち他方の部位である、部材及び特徴部としての噴射部96は、複数のノズルボディを比較したとき異なる形状をなす部位を指す。すなわち、噴射部96は、ノズルボディ91において他のノズルボディとは異なる特徴的な形状を有している部位である。第一実施形態では、噴射部96は、複数種のノズルボディのそれぞれにおいて本体部95の第2端部952の開口を塞ぐよう設けられる蓋状の部位である。噴射部96は、噴孔94の数や、例えば、図2に示したような内縁部912の形状などが複数種のノズルボディのうちノズルボディ91を除く他のノズルボディと異なっている。すなわち、噴射部96が異なる複数種のノズルボディ91が多品種部材に相当する。なお、図3には、本体部95と噴射部96との境界を仮想線VL1で示している。 The other part of the two parts, the injection part 96 as a member and a characteristic part, indicates a part having a different shape when a plurality of nozzle bodies are compared. That is, the injection part 96 is a part having a characteristic shape different from that of the other nozzle bodies in the nozzle body 91. In the first embodiment, the injection unit 96 is a lid-like portion provided to close the opening of the second end portion 952 of the main body portion 95 in each of the plurality of types of nozzle bodies. The injection part 96 is different from the other nozzle bodies except for the nozzle body 91 among a plurality of types of nozzle bodies in the number of injection holes 94 and, for example, the shape of the inner edge part 912 as shown in FIG. That is, a plurality of types of nozzle bodies 91 having different injection units 96 correspond to a variety of members. In FIG. 3, the boundary between the main body portion 95 and the injection portion 96 is indicated by a virtual line VL1.
 次に、ノズルボディ製造システム1の構成について図4に基づいて説明する。ノズルボディ製造システム1は、共通部加工装置としての第一加工装置11、第二加工装置12、中子除去部としての中子処理装置13、及び、制御装置としての制御部14などから構成されている。図4には、ノズルボディ91に加工される前の柱状部材15を示し、ノズルボディ製造システム1における加工される部材の移動を白抜き矢印M11~M18で示す。第二加工装置12及び中子処理装置13は、部材の製造装置に相当する。 Next, the configuration of the nozzle body manufacturing system 1 will be described with reference to FIG. The nozzle body manufacturing system 1 includes a first processing device 11 as a common portion processing device, a second processing device 12, a core processing device 13 as a core removing unit, a control unit 14 as a control device, and the like. ing. FIG. 4 shows the columnar member 15 before being processed into the nozzle body 91, and movement of the member to be processed in the nozzle body manufacturing system 1 is indicated by white arrows M11 to M18. The 2nd processing apparatus 12 and the core processing apparatus 13 are corresponded to the manufacturing apparatus of a member.
 第一加工装置11は、金属から形成されている柱状部材15を、例えば、旋削や穴あけなどの切削によって本体部95に加工する装置である。 1st processing apparatus 11 is an apparatus which processes the columnar member 15 formed from the metal to the main-body part 95 by cutting, such as turning and drilling, for example.
 第二加工装置12は、第一加工装置11において加工された本体部95の所定の位置に噴射部96を直接成形する。第二加工装置12は、いわゆる、金属積層造形法によって金属部材を製造する装置である。第一実施形態では、選択的レーザ焼結法(SLS)によって噴射部96を成形する。第二加工装置12は、加熱部としてのレーザ発振器121、ガルバノメータ122、ケース123、リコータ124、中子25などを備える。 The second processing device 12 directly forms the injection portion 96 at a predetermined position of the main body portion 95 processed by the first processing device 11. The 2nd processing apparatus 12 is an apparatus which manufactures a metal member by what is called a metal additive manufacturing method. In the first embodiment, the injection unit 96 is formed by selective laser sintering (SLS). The second processing apparatus 12 includes a laser oscillator 121 as a heating unit, a galvanometer 122, a case 123, a recoater 124, a core 25, and the like.
 レーザ発振器121は、噴射部96を形成する金属材料の粉末10を溶融可能なレーザをガルバノメータ122に向けて発振する。ガルバノメータ122は、レーザ発振器121が発振するレーザをケース123内の全域に照射可能なよう走査する。本実施形態では、部材を形成する材料の粉末は、金属粉末10という。 The laser oscillator 121 oscillates a laser capable of melting the metal material powder 10 forming the injection unit 96 toward the galvanometer 122. The galvanometer 122 scans so that the laser oscillated by the laser oscillator 121 can be applied to the entire region in the case 123. In the present embodiment, the powder of the material forming the member is referred to as the metal powder 10.
 ケース123は、ガルバノメータ122側に開口する空間120を有する有底筒状の部材である。ケース123内には、金属粉末10を充填可能である。ケース123は、底部に本体部95を挿入可能な穴125を有する。本実施形態では、空間120は、ケース123の内部に相当する。 The case 123 is a bottomed cylindrical member having a space 120 opened to the galvanometer 122 side. The case 123 can be filled with the metal powder 10. The case 123 has a hole 125 into which the main body 95 can be inserted at the bottom. In the present embodiment, the space 120 corresponds to the inside of the case 123.
 リコータ124は、ケース123に対して相対移動可能に設けられている。リコータ124は、ケース123内に金属粉末10を供給しつつ、ケース123内に供給された金属粉末層の表面をならしケース123内に金属粉末10を敷き詰めることが可能である。 The recoater 124 is provided so as to be movable relative to the case 123. The recoater 124 can level the surface of the metal powder layer supplied in the case 123 and spread the metal powder 10 in the case 123 while supplying the metal powder 10 in the case 123.
 中子25は、例えば、比較的溶融しやすい金属で構成される線状の部材である。噴射部96を成形するとき、中子25は、ケース123内にセットされる。中子25は、噴射部96の形状を規定する。 The core 25 is, for example, a linear member made of a metal that is relatively easy to melt. When the injection unit 96 is molded, the core 25 is set in the case 123. The core 25 defines the shape of the injection unit 96.
 中子処理装置13は、第二加工装置12から送られる本体部95、噴射部96、及び、中子25が一体となった部材を加熱または分解することが可能である。 The core processing device 13 can heat or disassemble a member in which the main body 95, the injection unit 96, and the core 25 sent from the second processing device 12 are integrated.
 制御部14は、マイクロコンピュータなどから構成され、内部にCPU、ROM、I/O、及び、これらを接続するバスラインなどを備える。制御部14は、第一加工装置11及び第二加工装置12と電気的に接続されている。制御部14は、外部から入力されるノズルボディ91の形状に関する情報に基づいて第一加工装置11及び第二加工装置12の作動を制御する。 The control unit 14 includes a microcomputer and the like, and includes a CPU, a ROM, an I / O, and a bus line for connecting them. The control unit 14 is electrically connected to the first processing device 11 and the second processing device 12. The control unit 14 controls the operations of the first processing apparatus 11 and the second processing apparatus 12 based on information regarding the shape of the nozzle body 91 input from the outside.
 次に、第一実施形態による多品種部材の製造方法としてのノズルボディの製造方法について図3~7に基づいて説明する。 Next, a method for manufacturing a nozzle body as a method for manufacturing multi-product members according to the first embodiment will be described with reference to FIGS.
 最初に、101において、ノズルボディ91に本体部95及び噴射部96が設定される。図3に示すように設定された本体部95及び噴射部96の形状に関する情報は、制御部14に入力される。制御部14は、この後の102、103において、入力されたノズルボディ91の形状に関する情報に基づいてノズルボディ91を成形するよう第一加工装置11及び第二加工装置12の作動を制御する。 First, in 101, the main body 95 and the injection unit 96 are set in the nozzle body 91. Information regarding the shapes of the main body 95 and the injection unit 96 set as shown in FIG. 3 is input to the control unit 14. In subsequent 102 and 103, the control unit 14 controls the operations of the first processing device 11 and the second processing device 12 so as to form the nozzle body 91 based on the input information regarding the shape of the nozzle body 91.
 次に、共通部を加工する加工工程としての102において、本体部95が製造される。具体的には、図4に示すように、第一加工装置11において、柱状部材15の外形がノズルボディ91の外形となるよう加工され一次加工部材16が成形される。次に、一次加工部材16の長手方向に貫通孔161が形成される。これにより、略筒状の本体部95が製造される。 Next, in 102 as a processing step for processing the common part, the main body part 95 is manufactured. Specifically, as shown in FIG. 4, in the first processing device 11, the primary processing member 16 is formed by processing the columnar member 15 so that the outer shape of the columnar member 15 becomes the outer shape of the nozzle body 91. Next, a through hole 161 is formed in the longitudinal direction of the primary processing member 16. Thereby, the substantially cylindrical main-body part 95 is manufactured.
 次に、部材の製造方法としての103において、噴射部96が製造される。図6に第二加工装置12における噴射部96の製造の様子を示す。なお、図6では、ケース123内の噴射部96の形状をわかりやすくするため、ケース123内に充填される金属粉末10の大きさを実際より大きくしつつ、金属粉末10の一部を省略している。本実施形態では、103は、成形工程に相当する。 Next, at 103 as a member manufacturing method, the injection unit 96 is manufactured. FIG. 6 shows how the injection unit 96 is manufactured in the second processing apparatus 12. In FIG. 6, in order to make the shape of the injection portion 96 in the case 123 easier to understand, a part of the metal powder 10 is omitted while making the size of the metal powder 10 filled in the case 123 larger than the actual size. ing. In the present embodiment, 103 corresponds to a molding process.
 103では、最初に、本体部95に対して相対位置が固定されているケース123が有する穴125に102において加工した本体部95が挿入される。具体的には、図6に示すように、本体部95は、噴射部96が設けられる側の第2端部952がケース123内に位置するよう挿入される。本体部95の第2端部952がケース123内にセットされた後、中子25の特定の部位が本体部95上に直接製造される噴射部96が有する噴孔94に位置するようケース123内に中子25がセットされる。 In 103, first, the main body 95 processed in 102 is inserted into the hole 125 of the case 123 whose relative position is fixed with respect to the main body 95. Specifically, as shown in FIG. 6, the main body portion 95 is inserted so that the second end portion 952 on the side where the injection portion 96 is provided is positioned in the case 123. After the second end portion 952 of the main body portion 95 is set in the case 123, the case 123 is positioned such that a specific portion of the core 25 is located in the injection hole 94 of the injection portion 96 manufactured directly on the main body portion 95. The core 25 is set inside.
 図7に、空間120にセットされている中子25の斜視図を示す。中子25は、中子25の略中央から径方向に延びる複数の線状部材から形成されている。第一実施形態では、中子25は、内側支持部251、複数の通孔対応部としての中間部252、及び、複数の支持部としての外側支持部253を有する。第一実施形態では、中子25は、噴射部96が有する六個の噴孔94に対応するよう六本の中間部252及び六本の外側支持部253を有する。 FIG. 7 shows a perspective view of the core 25 set in the space 120. The core 25 is formed of a plurality of linear members extending in the radial direction from the approximate center of the core 25. In the first embodiment, the core 25 includes an inner support portion 251, an intermediate portion 252 as a plurality of through-hole corresponding portions, and an outer support portion 253 as a plurality of support portions. In the first embodiment, the core 25 has six intermediate portions 252 and six outer support portions 253 so as to correspond to the six injection holes 94 of the injection portion 96.
 内側支持部251は、六本の線状部が放射状に配置されている部位である。内側支持部251は、103において製造される噴射部96の内壁に当接しないよう形成されている。内側支持部251は、103において加工される噴射部96の内側において噴射部96に対する中間部252の相対位置を固定するよう中間部252を支持する。 The inner support portion 251 is a portion where six linear portions are arranged radially. The inner support portion 251 is formed so as not to contact the inner wall of the injection portion 96 manufactured at 103. The inner support portion 251 supports the intermediate portion 252 so as to fix the relative position of the intermediate portion 252 with respect to the injection portion 96 inside the injection portion 96 processed in 103.
 六本の中間部252は、内側支持部251が有する六本の線状部のそれぞれの端部に接続している。六本の中間部252は、それぞれ噴孔94の形状となるよう形成されている。103において噴射部96が製造されるとき、中間部252は、噴孔94内に位置する。 The six intermediate portions 252 are connected to respective end portions of the six linear portions of the inner support portion 251. The six intermediate portions 252 are each formed to have the shape of the nozzle hole 94. When the injection part 96 is manufactured at 103, the intermediate part 252 is located in the injection hole 94.
 六本の外側支持部253は、六本の中間部252のそれぞれにおいて内側支持部251と接続する側とは反対側の端部に設けられている。外側支持部253は、噴射部96の外壁に当接しないよう形成されている。外側支持部253の中間部252と接続する側とは反対側の端部は、図6に示すように、ケース123の底面126に当接している。これにより、外側支持部253は、103において製造される噴射部96の外側においてケース123に対する中間部252の相対位置を固定するよう中間部252を支持する。 The six outer support portions 253 are provided at the ends of the six intermediate portions 252 opposite to the side connected to the inner support portion 251. The outer support part 253 is formed so as not to contact the outer wall of the injection part 96. The end of the outer support 253 opposite to the side connected to the intermediate part 252 is in contact with the bottom surface 126 of the case 123 as shown in FIG. Thereby, the outer side support part 253 supports the intermediate part 252 so that the relative position of the intermediate part 252 with respect to the case 123 is fixed outside the injection part 96 manufactured in 103.
 ケース123内の空間120に金属粉末10を供給する。金属粉末10が供給された後、リコータ124の往復移動(図6の白抜き矢印F12)によってケース123内の金属粉末層の表面がならされると、制御部14に事前に入力されている噴射部96の形状に基づいてレーザが照射される。このとき、制御部14に事前に入力されている噴射部96の形状に基づいてレーザが照射される位置が制御される。レーザが照射された金属粉末10は溶融し隣り合う金属粉末10と焼結する。これにより、中子25が噴孔94に挿通された状態の噴射部96が第2端部952上に製造される。この中子25が噴孔94に挿通された状態の噴射部96を中子付部材としての中子付噴射部961とする。 The metal powder 10 is supplied to the space 120 in the case 123. After the metal powder 10 is supplied, when the surface of the metal powder layer in the case 123 is smoothed by the reciprocating movement of the recoater 124 (outlined arrow F12 in FIG. 6), the injection previously input to the control unit 14 Laser is irradiated based on the shape of the portion 96. At this time, the position where the laser is irradiated is controlled based on the shape of the injection unit 96 input in advance to the control unit 14. The metal powder 10 irradiated with the laser is melted and sintered with the adjacent metal powder 10. Thereby, the injection part 96 in a state where the core 25 is inserted into the injection hole 94 is manufactured on the second end part 952. The injection part 96 in a state where the core 25 is inserted through the injection hole 94 is referred to as a core-injection part 961 as a core-attached member.
 103において、本体部95上に中子付噴射部961が製造されると、部材の製造方法としての104において、中子処理装置13を用いて本体部95と中子付噴射部961とが一体となった有底筒状部材97から中子25を除去する。有底筒状部材97から中子25を除去する方法として、中子25を加熱する方法と中子25を分解する方法などがあげられる。中子25を加熱する加熱処理を行う場合、中子処理装置13では、有底筒状部材97を噴射部96の硬度を向上させることが可能な温度であってかつ中子25が溶融可能な温度まで有底筒状部材97を加熱する。また、中子25を分解する分解処理を行う場合、中子処理装置13では、本体部95や噴射部96にダメージを与えない気体または液体であってかつ中子25を化学反応によって分解可能な気体または液体の中に有底筒状部材97を置き、中子25を分解する。中子25は、これらの方法によって噴射部96から除去される。本実施形態では、104は、除去工程に相当する。 103, when the core injection unit 961 is manufactured on the main body 95, the main body 95 and the core injection unit 961 are integrated using the core processing device 13 in 104 as a member manufacturing method. The core 25 is removed from the bottomed cylindrical member 97. Examples of a method for removing the core 25 from the bottomed cylindrical member 97 include a method for heating the core 25 and a method for disassembling the core 25. In the case where the heat treatment for heating the core 25 is performed, in the core processing apparatus 13, the bottomed cylindrical member 97 is at a temperature that can improve the hardness of the injection portion 96 and the core 25 can be melted. The bottomed tubular member 97 is heated to a temperature. Moreover, when performing the decomposition | disassembly process which decomposes | disassembles the core 25, in the core processing apparatus 13, it is the gas or liquid which does not damage the main-body part 95 or the injection part 96, and can decompose | disassemble the core 25 by chemical reaction. The bottomed cylindrical member 97 is placed in gas or liquid, and the core 25 is disassembled. The core 25 is removed from the injection unit 96 by these methods. In the present embodiment, 104 corresponds to a removal process.
 最後に、105において、仕上げの研削加工を行い、ノズルボディ91が完成する。 Finally, in 105, the finish grinding is performed, and the nozzle body 91 is completed.
 従来の切削加工では、第一実施形態のノズルボディ91が有する噴孔94の内縁部912のような有底筒状の部材の内側の複雑な形状の加工は困難であった。また、ケース内に堆積された金属粉末を選択的レーザ焼結法などによって焼結させる方法でも、噴孔を形成する内壁面に焼結した金属粉末による段差が生じやすく、所望の形状の噴孔を形成することは困難であった。 In the conventional cutting process, it is difficult to process a complicated shape inside a bottomed cylindrical member such as the inner edge 912 of the nozzle hole 94 of the nozzle body 91 of the first embodiment. In addition, even in a method in which the metal powder deposited in the case is sintered by a selective laser sintering method or the like, a step due to the sintered metal powder is likely to occur on the inner wall surface forming the nozzle hole, and the nozzle hole of a desired shape It was difficult to form.
 第一実施形態によるノズルボディの製造方法では、103において中子25が置かれたケース123内に積層された金属粉末10を噴射部96の形状に基づいて加熱する。加熱溶融された金属粉末10のうち中子25の中間部252に当接している金属粉末10は、中間部252の外周壁面254に沿って溶融したのち焼結する。その後、104において、噴孔94に中子25が挿通されたままの噴射部96である中子付噴射部961を加熱すると、中子25のみが溶融するため、中子付噴射部961から中子25が除去される。これにより、中間部252の外周壁面254に沿って溶融したのち焼結した金属粉末10は、曲面状に形成される内縁部912や段差がない滑らかな内壁面913(図2参照)を有する噴孔94を形成する。 In the nozzle body manufacturing method according to the first embodiment, the metal powder 10 laminated in the case 123 in which the core 25 is placed in 103 is heated based on the shape of the injection unit 96. Of the heated and melted metal powder 10, the metal powder 10 in contact with the intermediate portion 252 of the core 25 is melted along the outer peripheral wall surface 254 of the intermediate portion 252 and then sintered. Thereafter, in 104, when the cored injection section 961 that is the injection section 96 with the core 25 inserted through the nozzle hole 94 is heated, only the core 25 is melted. The child 25 is removed. As a result, the metal powder 10 that has been sintered after being melted along the outer peripheral wall surface 254 of the intermediate portion 252 is a jet having an inner edge portion 912 formed in a curved surface and a smooth inner wall surface 913 (see FIG. 2) having no step. Hole 94 is formed.
 このように、ノズルボディの製造方法では、中子25を用いて噴孔94に対応する位置に金属粉末10が充填されないようにしつつ、かつ、噴孔94を形成する金属粉末10を中間部252の外周壁面254に沿って溶融し焼結させる。これにより、切削加工では困難な形状を有する噴孔を高精度に形成することができる。したがって、第一実施形態によるノズルボディの製造方法では、噴射部96が有する噴孔94の形状の自由度を向上することができる。 As described above, in the method of manufacturing the nozzle body, the metal powder 10 that forms the nozzle hole 94 is disposed in the intermediate portion 252 while the core 25 is used so that the metal powder 10 is not filled in the position corresponding to the nozzle hole 94. Are melted and sintered along the outer peripheral wall surface 254 of the steel plate. Thereby, the nozzle hole which has a shape difficult by cutting can be formed with high precision. Therefore, in the nozzle body manufacturing method according to the first embodiment, the degree of freedom of the shape of the injection hole 94 of the injection unit 96 can be improved.
 また、噴孔94は、中子25の形状に沿って形成されるため、中子25の形状を変更するだけで噴孔94の形状を変更することができる。これにより、噴孔94の形状の自由度をさらに向上することができる。 Moreover, since the nozzle hole 94 is formed along the shape of the core 25, the shape of the nozzle hole 94 can be changed only by changing the shape of the core 25. Thereby, the freedom degree of the shape of the nozzle hole 94 can further be improved.
 第一実施形態によるノズルボディの製造方法では、噴射部96は、ケース123内に設けられている本体部95の第2端部952上に直接加工される。これにより、本体部95と噴射部96とを接合する工程を不要とすることができる。 In the nozzle body manufacturing method according to the first embodiment, the injection unit 96 is directly processed on the second end portion 952 of the main body unit 95 provided in the case 123. Thereby, the process of joining the main-body part 95 and the injection part 96 can be made unnecessary.
 また、第一実施形態によるノズルボディの製造方法では、本体部95と噴射部96とを別々の工程において加工している。 Further, in the nozzle body manufacturing method according to the first embodiment, the main body portion 95 and the injection portion 96 are processed in separate steps.
 本体部95は、複数種のノズルボディを比較したとき複数種のノズルボディの全てが有する共通形状をなしている部位であるため、複数種のノズルボディを加工するときでも一種類の第一加工装置11によって複数種のノズルボディが有する本体部を全て加工することができる。 Since the main body 95 is a part having a common shape that all of the plurality of types of nozzle bodies have when compared with a plurality of types of nozzle bodies, one type of first processing is performed even when processing a plurality of types of nozzle bodies. The apparatus 11 can process all the main body portions of a plurality of types of nozzle bodies.
 噴射部96は、第二加工装置12における選択的レーザ焼結法によって噴射部96の形状に合わせた加工を行う。選択的レーザ焼結法では、制御部14に入力されたノズルボディ91の形状に関する情報に基づいてケース123内の金属粉末10を部分加熱し、焼結する。これにより、ノズルボディの形状が変更されても加工装置の仕様を変更することなく、噴射部96を加工することができる。 The injection unit 96 performs processing according to the shape of the injection unit 96 by the selective laser sintering method in the second processing apparatus 12. In the selective laser sintering method, the metal powder 10 in the case 123 is partially heated and sintered based on information regarding the shape of the nozzle body 91 input to the control unit 14. Thereby, even if the shape of a nozzle body is changed, the injection part 96 can be processed, without changing the specification of a processing apparatus.
 このように、ノズルボディの製造方法では、ノズルボディの形状の違いによる段取り替えが不要となるため、ノズルボディの製造に必要な工数を低減することができる。 As described above, in the method of manufacturing the nozzle body, the setup change due to the difference in the shape of the nozzle body becomes unnecessary, and therefore, the man-hours required for manufacturing the nozzle body can be reduced.
 また、ノズルボディ製造システム1は、一種類の第一加工装置11及び一種類の第二加工装置12によって形状が異なるノズルボディを加工することができる。これにより、ノズルボディの形状の違いによる加工装置の仕様の変更が不要となるため、ノズルボディ製造システムの設備コストを低減することができる。 Further, the nozzle body manufacturing system 1 can process nozzle bodies having different shapes by one type of first processing device 11 and one type of second processing device 12. Thereby, since the change of the specification of the processing apparatus by the difference in the shape of a nozzle body becomes unnecessary, the installation cost of a nozzle body manufacturing system can be reduced.
 (第二実施形態)
 次に、本開示の第二実施形態による部材の製造装置を図8に基づいて説明する。第二実施形態は、中子の形状が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
(Second embodiment)
Next, a member manufacturing apparatus according to the second embodiment of the present disclosure will be described with reference to FIG. The second embodiment is different from the first embodiment in the shape of the core. In addition, the same code | symbol is attached | subjected to the site | part substantially the same as 1st embodiment, and description is abbreviate | omitted.
 図8に第二実施形態による第二加工装置において製造される噴射部96の拡大断面図を示す。図8には、噴射部96が有する噴孔98に挿通されている中子35を点線で示している。 FIG. 8 shows an enlarged cross-sectional view of the injection unit 96 manufactured in the second processing apparatus according to the second embodiment. In FIG. 8, the core 35 inserted through the injection hole 98 of the injection unit 96 is indicated by a dotted line.
 中子35は、内側支持部251、複数の通孔対応部としての中間部352、及び、複数の外側支持部253を有する。なお、図8には、便宜的に、中子35を形成する内側支持部251、中間部352、及び、外側支持部253の境界を示す仮想線VL21、VL22を示す。 The core 35 includes an inner support portion 251, a plurality of intermediate portions 352 as a plurality of through hole corresponding portions, and a plurality of outer support portions 253. In FIG. 8, for convenience, virtual lines VL21 and VL22 that indicate boundaries between the inner support portion 251, the intermediate portion 352, and the outer support portion 253 that form the core 35 are shown.
 中間部352は、噴孔98の形状となるよう形成されている。具体的には、中間部352の内側支持部251と接続する側には、噴孔98の内縁部982の曲面形状に沿うよう形成されている縮径部354を有する。また、中間部352は、縮径部354から外側支持部253に接続する側の端部355に向かって外径が大きくなるよう形成されている。 The intermediate part 352 is formed to have the shape of the nozzle hole 98. Specifically, the intermediate portion 352 has a reduced diameter portion 354 formed on the side connected to the inner support portion 251 so as to follow the curved shape of the inner edge portion 982 of the injection hole 98. The intermediate portion 352 is formed so that the outer diameter increases from the reduced diameter portion 354 toward the end portion 355 on the side connected to the outer support portion 253.
 噴孔98は、噴射部96の内部側から外部側に向かって内径が大きくなるよう形成されている。第二実施形態では、噴孔98は、噴射部96の内部側の内径D98が、例えば、0.4mmより小さく、長さL98が、例えば、2.0mmより長くなるよう形成されている。 The injection hole 98 is formed so that the inner diameter increases from the inner side to the outer side of the injection unit 96. In the second embodiment, the injection hole 98 is formed such that the inner diameter D98 on the inner side of the injection unit 96 is smaller than 0.4 mm, for example, and the length L98 is longer than 2.0 mm, for example.
 第二実施形態による第二加工装置では、中子35は、噴孔98に挿通される中間部352の断面積が変化するよう形成されている。これにより、噴孔98を燃料の上流から下流に向かって断面積が大きくなる所望の形状とすることができる。したがって、第二実施形態は、第一実施形態と同じ効果を奏する。 In the second processing apparatus according to the second embodiment, the core 35 is formed so that the cross-sectional area of the intermediate portion 352 inserted through the nozzle hole 98 changes. Thereby, the injection hole 98 can be made into the desired shape from which the cross-sectional area becomes large toward the downstream from the upstream of a fuel. Therefore, the second embodiment has the same effect as the first embodiment.
 (第三実施形態)
 次に、本開示の第三実施形態による部材の製造装置を図9に基づいて説明する。第三実施形態は、中子の形状が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
(Third embodiment)
Next, a member manufacturing apparatus according to a third embodiment of the present disclosure will be described with reference to FIG. The third embodiment is different from the first embodiment in the shape of the core. In addition, the same code | symbol is attached | subjected to the site | part substantially the same as 1st embodiment, and description is abbreviate | omitted.
 図9に第三実施形態による第二加工装置において製造される噴射部96の拡大断面図を示す。図9には、噴射部96が有する噴孔99に挿通されている中子45を点線で示している。 FIG. 9 shows an enlarged cross-sectional view of the injection unit 96 manufactured in the second processing apparatus according to the third embodiment. In FIG. 9, the core 45 inserted through the injection hole 99 of the injection unit 96 is indicated by a dotted line.
 中子45は、内側支持部251、複数の通孔対応部としての中間部452、及び、複数の外側支持部253を有する。なお、図9には、中子45を形成する内側支持部251、中間部452、及び、外側支持部253の境界を示す仮想線VL31、VL32を示す。 The core 45 includes an inner support portion 251, intermediate portions 452 as a plurality of through hole corresponding portions, and a plurality of outer support portions 253. In FIG. 9, virtual lines VL <b> 31 and VL <b> 32 that indicate boundaries between the inner support portion 251, the intermediate portion 452, and the outer support portion 253 that form the core 45 are shown.
 中間部452は、噴孔99の形状となるよう形成されている。具体的には、中間部452の内側支持部251と接続する側には、噴孔98の内縁部992の曲面形状に沿うよう形成されている縮径部454を有する。また、中間部452は、縮径部454から中央部455までは外径がほぼ一定となるよう形成されている一方、中央部455から外側支持部253に接続する側の端部456に向かって外径が大きくなるよう形成されている。 The intermediate part 452 is formed to have the shape of the injection hole 99. Specifically, the intermediate portion 452 has a reduced diameter portion 454 formed on the side connected to the inner support portion 251 so as to follow the curved shape of the inner edge portion 992 of the injection hole 98. The intermediate portion 452 is formed so that the outer diameter is substantially constant from the reduced diameter portion 454 to the central portion 455, while moving toward the end portion 456 on the side connected to the outer support portion 253 from the central portion 455. The outer diameter is formed to be large.
 噴孔99は、噴孔99の略中央から噴射部96の外部側に向かって内径が大きくなるよう形成されている。第三実施形態では、噴孔99は、噴射部96の内部側の内径D99が、例えば、0.4mmより小さくなるよう形成されている。また、噴孔99は、噴射部96の内部側から内径が一定の部分の長さL991が、例えば、0.5mmより長くなるよう形成され、噴射部96の外部側に向かって内径が大きくなる部分の長さL992が例えば、0.5mmより長くなるよう形成されている。 The injection hole 99 is formed so that the inner diameter increases from the approximate center of the injection hole 99 toward the outside of the injection part 96. In the third embodiment, the injection hole 99 is formed so that the inner diameter D99 on the inner side of the injection unit 96 is smaller than 0.4 mm, for example. Further, the injection hole 99 is formed so that the length L991 of the portion having a constant inner diameter from the inner side of the injection unit 96 is longer than, for example, 0.5 mm, and the inner diameter increases toward the outer side of the injection unit 96. The length L992 of the part is formed to be longer than 0.5 mm, for example.
 第三実施形態による第二加工装置では、中子45は、噴孔99に挿通される中間部352の断面積が変化するよう形成されている。これにより、噴孔99を燃料の上流から下流に向かって断面積が変化する所望の形状とすることができる。したがって、第三実施形態は、第一実施形態と同じ効果を奏する。 In the second processing apparatus according to the third embodiment, the core 45 is formed such that the cross-sectional area of the intermediate portion 352 inserted through the nozzle hole 99 changes. Thereby, the injection hole 99 can be made into the desired shape from which the cross-sectional area changes toward the downstream from the upstream of a fuel. Therefore, the third embodiment has the same effect as the first embodiment.
 (第四実施形態)
 次に、本開示の第四実施形態による部材の製造装置を図10に基づいて説明する。第四実施形態は、第二加工装置の構成が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
(Fourth embodiment)
Next, a member manufacturing apparatus according to the fourth embodiment of the present disclosure will be described with reference to FIG. The fourth embodiment is different from the first embodiment in the configuration of the second processing apparatus. In addition, the same code | symbol is attached | subjected to the site | part substantially the same as 1st embodiment, and description is abbreviate | omitted.
 図10に第二加工装置22における噴射部96の加工の様子を示す。第二加工装置22は、第一加工装置11において加工された本体部95の所定の位置に噴射部96を直接成形する。第二加工装置22は、レーザ発振器121、ガルバノメータ122、ケース223、リコータ124、中子25などを備える。 FIG. 10 shows a state of processing of the injection unit 96 in the second processing apparatus 22. The second processing device 22 directly forms the injection portion 96 at a predetermined position of the main body portion 95 processed by the first processing device 11. The second processing apparatus 22 includes a laser oscillator 121, a galvanometer 122, a case 223, a recoater 124, a core 25, and the like.
 ケース223は、本体部95と一体に形成されている。具体的には、ケース223は、本体部95の第2端部952の外周壁面953に径外方向に延びるよう形成される底部224、及び、底部224の外縁部から本体部95と反対側に立ち上がるよう形成される筒部225を有する。底部224及び筒部225によってガルバノメータ122側に開口する空間220を形成する。本実施形態では、空間220は、ケース223の内部に相当する。 The case 223 is formed integrally with the main body portion 95. Specifically, the case 223 includes a bottom portion 224 formed on the outer peripheral wall surface 953 of the second end portion 952 of the main body portion 95 so as to extend radially outward, and an outer edge portion of the bottom portion 224 on the side opposite to the main body portion 95. It has the cylinder part 225 formed so that it may stand up. A space 220 opened to the galvanometer 122 side is formed by the bottom portion 224 and the cylindrical portion 225. In the present embodiment, the space 220 corresponds to the inside of the case 223.
 第四実施形態によるノズルボディの製造方法では、第一実施形態によるノズルボディの製造方法の101、102の後に103として噴射部96を製造するとき、底部224の内底面226に中子25の外側支持部253が当接するよう中子25をセットする。これにより、中子25は、中間部252が噴射部96の噴孔94に位置するようセットされる。 In the nozzle body manufacturing method according to the fourth embodiment, when the injection unit 96 is manufactured as 103 after the nozzle body manufacturing method 101, 102 according to the first embodiment, the outer surface of the core 25 is formed on the inner bottom surface 226 of the bottom portion 224. The core 25 is set so that the support portion 253 contacts. Thereby, the core 25 is set so that the intermediate part 252 is positioned in the injection hole 94 of the injection part 96.
 次に、空間220に金属粉末10を供給する。このとき、供給される金属粉末10の量は、図10に示すように、第一実施形態に比べて少なくする。具体的には、噴射部96の一部が成形可能な程度の量の金属粉末10をケース223内に充填する。金属粉末10が充填された後、リコータ124の往復移動(図10の白抜き矢印F22)によってケース223内の金属粉末層の表面をならし、制御部14に事前に入力されている噴射部96の形状に基づいてレーザを照射する。このとき、制御部14に事前に入力されている噴射部96の形状に基づいてレーザが照射される位置が制御される。 Next, the metal powder 10 is supplied to the space 220. At this time, the amount of the metal powder 10 to be supplied is smaller than that in the first embodiment, as shown in FIG. Specifically, the case 223 is filled with a metal powder 10 in such an amount that a part of the injection unit 96 can be molded. After the metal powder 10 is filled, the surface of the metal powder layer in the case 223 is smoothed by the reciprocating movement of the recoater 124 (open arrow F22 in FIG. 10), and the injection unit 96 input in advance to the control unit 14. The laser is irradiated based on the shape. At this time, the position where the laser is irradiated is controlled based on the shape of the injection unit 96 input in advance to the control unit 14.
 第四実施形態で用いる選択的レーザ焼結法では、一度のレーザ照射で加工可能なレーザの照射方向(図10に示す実線矢印L22の方向)の長さを第一実施形態などと比べて短くし、本体部95側から順に噴射部96の一部を層状に積み重ねるよう製造する。具体的には、第2端部952上に噴射部96の一部が加工された後、本体部95とケース223とは、リコータ124から離れる方向に移動する。このとき、本体部95は、既に加工された噴射部96の一部の次に加工される噴射部96の一部がレーザを照射可能な位置にくる程度に移動する。本体部95が移動した後、リコータ124によって既に成形された噴射部96の一部の上に金属粉末10が再度供給されレーザが照射される。このようにして、噴射部96は、本体部95側から複数回に分けて加工され、噴孔94に中子25が挿通された状態の噴射部96である中子付噴射部961が第2端部952上に製造される。 In the selective laser sintering method used in the fourth embodiment, the length of the laser irradiation direction (direction of solid line arrow L22 shown in FIG. 10) that can be processed by one laser irradiation is shorter than that in the first embodiment. And it manufactures so that a part of injection part 96 may be stacked in order from the main-body part 95 side. Specifically, after a part of the injection part 96 is processed on the second end part 952, the main body part 95 and the case 223 move away from the recoater 124. At this time, the main body part 95 moves to such an extent that a part of the jet part 96 to be processed next to a part of the jet part 96 that has already been processed comes to a position where laser irradiation is possible. After the main body part 95 moves, the metal powder 10 is supplied again onto a part of the injection part 96 already formed by the recoater 124, and the laser is irradiated. In this way, the injection unit 96 is processed in a plurality of times from the main body unit 95 side, and the injection unit 961 with the core, which is the injection unit 96 in a state where the core 25 is inserted into the injection hole 94, is the second. Manufactured on end 952.
 次に、第一実施形態によるノズルボディ91の製造方法の104と同じように、中子処理装置13を用いて本体部95と中子付噴射部961とが一体となった有底筒状部材97から中子25を除去する。 Next, similarly to 104 of the manufacturing method of the nozzle body 91 according to the first embodiment, the bottomed cylindrical member in which the main body portion 95 and the core-injecting portion 961 are integrated using the core processing device 13. The core 25 is removed from 97.
 最後に、105において、仕上げの研削加工を行う。このとき、本体部95と一体となっていたケース223も切削によって本体部95から除去し、ノズルボディ91が完成する。 Finally, finish grinding is performed at 105. At this time, the case 223 integrated with the main body 95 is also removed from the main body 95 by cutting, and the nozzle body 91 is completed.
 第四実施形態では、本体部95及びケース223をリコータ124から離れる方向に複数回移動し、本体部95上に噴射部96を成形する。このとき、中子25の外側支持部253を本体部95と一体となっているケース223に当接させているため、中間部252の本体部95に対する相対位置が変化しにくい。これにより、第四実施形態は、第一実施形態の効果を奏するとともに、噴射部96における噴孔94の位置及び形状をさらに高精度を成形することができる。 In the fourth embodiment, the main body part 95 and the case 223 are moved a plurality of times in the direction away from the recoater 124, and the injection part 96 is formed on the main body part 95. At this time, since the outer support portion 253 of the core 25 is in contact with the case 223 integrated with the main body portion 95, the relative position of the intermediate portion 252 with respect to the main body portion 95 is unlikely to change. Thereby, while exhibiting the effect of 1st embodiment, 4th embodiment can shape | mold the position and shape of the nozzle hole 94 in the injection part 96 further with high precision.
 (参考例)
 次に、本開示の参考例としての多品種部材の製造システムを図11~13に基づいて説明する。参考例は、第二加工装置の構成が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
(Reference example)
Next, a multi-product member manufacturing system as a reference example of the present disclosure will be described with reference to FIGS. The reference example differs from the first embodiment in the configuration of the second processing apparatus. In addition, the same code | symbol is attached | subjected to the site | part substantially the same as 1st embodiment, and description is abbreviate | omitted.
 参考例のノズルボディ製造システム5は、図11に示すように、第一加工装置11、第二加工装置72、及び、制御部14などから構成されている。図11には、ノズルボディ製造システム5における加工される部材の移動を白抜き矢印M51~M56で示す。 The nozzle body manufacturing system 5 of the reference example includes a first processing device 11, a second processing device 72, a control unit 14, and the like as shown in FIG. In FIG. 11, movement of members to be processed in the nozzle body manufacturing system 5 is indicated by white arrows M51 to M56.
 第二加工装置72は、第一加工装置11において加工された本体部95の所定の位置に噴射部96を加工する。第二加工装置72は、金属積層造形法によって金属部材を成形する装置である。第二加工装置72は、図11に示すように、レーザ発振器121、ガルバノメータ122、ケース123、リコータ124などを備える。すなわち、第二加工装置72は、第一実施形態と異なり、中子を備えていない。 The second processing device 72 processes the injection unit 96 at a predetermined position of the main body portion 95 processed by the first processing device 11. The 2nd processing apparatus 72 is an apparatus which shape | molds a metal member with a metal additive manufacturing method. As shown in FIG. 11, the second processing device 72 includes a laser oscillator 121, a galvanometer 122, a case 123, a recoater 124, and the like. That is, unlike the first embodiment, the second processing device 72 does not include a core.
 次に、参考例のノズルボディ91の製造方法について図12、13に基づいて説明する。図12には、参考例のノズルボディ91の製造方法のフローチャートを示す。 Next, a method for manufacturing the nozzle body 91 of the reference example will be described with reference to FIGS. In FIG. 12, the flowchart of the manufacturing method of the nozzle body 91 of a reference example is shown.
 最初に、501において、第一実施形態の101と同じように、ノズルボディ91に本体部95及び噴射部96が設定される。 First, in 501, the main body portion 95 and the injection portion 96 are set in the nozzle body 91 as in 101 of the first embodiment.
 次に、共通部を加工する加工工程としての502において、第一実施形態の502と同じように、本体部95が製造される。 Next, in 502 as a processing step for processing the common portion, the main body portion 95 is manufactured in the same manner as 502 in the first embodiment.
 次に、503において、噴射部96が製造される。図13に第二加工装置72における噴射部96の製造の様子を示す。なお、図13では、ケース123内の噴射部96の形状をわかりやすくするため、ケース123内に充填される金属粉末10の一部を省略している。 Next, at 503, the injection unit 96 is manufactured. FIG. 13 shows how the injection unit 96 is manufactured in the second processing apparatus 72. In FIG. 13, a part of the metal powder 10 filled in the case 123 is omitted for easy understanding of the shape of the injection unit 96 in the case 123.
 503では、最初に、第二加工装置12のケース123が有する穴125に502において加工した本体部95の第2端部952が挿入される。本体部95の第2端部952がケース123内にセットされた後、ケース123内の空間120に金属粉末10が供給される。空間120に金属粉末10が供給された後、リコータ124の往復移動(図13の白抜き矢印F52)によってケース123内の金属粉末層の表面がならされると、レーザ発振器121がケース123内の金属粉末10にレーザを照射する。このとき、制御部14に事前に入力されている噴射部96の形状に基づいてレーザが照射される位置が制御される。レーザが照射された金属粉末10は溶融し焼結する。これにより、第2端部952上に噴射部96が加工される。 In 503, first, the second end portion 952 of the main body portion 95 processed in 502 is inserted into the hole 125 included in the case 123 of the second processing apparatus 12. After the second end 952 of the main body 95 is set in the case 123, the metal powder 10 is supplied to the space 120 in the case 123. After the metal powder 10 is supplied to the space 120, when the surface of the metal powder layer in the case 123 is smoothed by the reciprocating movement of the recoater 124 (the white arrow F52 in FIG. 13), the laser oscillator 121 is moved into the case 123. The metal powder 10 is irradiated with a laser. At this time, the position where the laser is irradiated is controlled based on the shape of the injection unit 96 input in advance to the control unit 14. The metal powder 10 irradiated with the laser is melted and sintered. Thereby, the injection unit 96 is processed on the second end portion 952.
 参考例で用いる選択的レーザ焼結法では、一度のレーザ照射で加工可能なレーザの照射方向(図13に示す実線矢印L52の方向)の長さは、噴射部96のレーザの照射方向L52の長さに比べて短い。このため、参考例では、噴射部96は、本体部95側から順に噴射部96の一部を層状に積み重ねるよう加工される。具体的には、第2端部952上に噴射部96の一部が加工された後、本体部95はケース123内から抜き出す方向に移動する。このとき、本体部95は、既に加工された噴射部96の一部の次に加工される噴射部96の一部がレーザを照射可能な位置にくる程度に移動する。本体部95が移動した後、リコータ124によって空間120に金属粉末10が再度供給されレーザが照射される。503では、このようにして、噴射部96は、本体部95側から複数回に分けて加工される。 In the selective laser sintering method used in the reference example, the length of the laser irradiation direction (in the direction of the solid line arrow L52 shown in FIG. 13) that can be processed by one laser irradiation is the length of the laser irradiation direction L52 of the injection unit 96. Short compared to the length. For this reason, in the reference example, the injection part 96 is processed so that a part of the injection part 96 is stacked in order from the main body part 95 side. Specifically, after a part of the injection portion 96 is processed on the second end portion 952, the main body portion 95 moves in a direction to be extracted from the case 123. At this time, the main body part 95 moves to such an extent that a part of the jet part 96 to be processed next to a part of the jet part 96 that has already been processed comes to a position where laser irradiation is possible. After the main body portion 95 moves, the metal powder 10 is again supplied to the space 120 by the recoater 124 and irradiated with a laser. In 503, in this way, the injection unit 96 is processed in multiple steps from the main body unit 95 side.
 503において、噴射部96が全て加工されると、最後に、504において、仕上げの研削加工を行い、ノズルボディ91が完成する。 In 503, when all of the injection portions 96 are processed, finally, in 504, finishing grinding is performed, and the nozzle body 91 is completed.
 参考例のノズルボディ91の製造方法では、選択的レーザ焼結法によって噴射部96が製造される。これにより、内部側に複雑な形状を有しており切削加工が困難な有底筒状の部材でも製造することができる。したがって、ノズルボディ91の形状の自由度を向上することができる。また、噴射部96は、ケース123内に設けられている本体部95の第2端部952上に直接加工されるため、本体部95と噴射部96とを接合する工程を不要とすることができる。 In the manufacturing method of the nozzle body 91 of the reference example, the injection unit 96 is manufactured by a selective laser sintering method. Thereby, even a bottomed cylindrical member having a complicated shape on the inner side and difficult to cut can be manufactured. Therefore, the degree of freedom of the shape of the nozzle body 91 can be improved. Moreover, since the injection part 96 is directly processed on the 2nd end part 952 of the main-body part 95 provided in the case 123, the process of joining the main-body part 95 and the injection part 96 may become unnecessary. it can.
 (他の実施形態)
 上述の実施形態では、部材の製造方法を含む多品種部材の製造方法としてのノズルボディの製造方法について説明した。しかしながら、部材の製造方法が適用される製造方法は、これに限定されない。部材の製造方法のみで通孔を有する部材を製造してもよい。また、多品種部材の製造方法が適用される多品種部材は、ノズルボディに限定されない。複数種の部材間において共通形状をなす共通部と複数種の部材間において異なる形状をなす特徴部とを有する部材であればよい。
(Other embodiments)
In the above-described embodiment, the nozzle body manufacturing method as a method for manufacturing a variety of members including a member manufacturing method has been described. However, the manufacturing method to which the member manufacturing method is applied is not limited to this. You may manufacture the member which has a through-hole only with the manufacturing method of a member. Further, the multi-product member to which the manufacturing method of the multi-product member is applied is not limited to the nozzle body. What is necessary is just a member which has the common part which makes a common shape between multiple types of members, and the characteristic part which makes a different shape between multiple types of members.
 上述の実施形態では、噴孔に挿通されている中子は、加熱による溶融、または、化学反応による分解によって噴射部から除去するとした。しかしながら、噴射部から中子を除去する方法はこれに限定されない。 In the above-described embodiment, the core inserted through the nozzle hole is removed from the injection unit by melting by heating or decomposition by chemical reaction. However, the method of removing the core from the injection unit is not limited to this.
 上述の実施形態では、中子は、噴孔の形状となるよう形成されている中間部、並びに、中間部を支持する内側支持部及び外側支持部を有するとした。しかしながら、中子を構成する部位はこれに限定されない。噴孔の形状となるよう形成されていればよい。 In the above-described embodiment, the core has the intermediate portion formed to have the shape of the nozzle hole, and the inner support portion and the outer support portion that support the intermediate portion. However, the part which comprises a core is not limited to this. What is necessary is just to be formed so that it may become a shape of a nozzle hole.
 上述の実施形態では、第二加工装置は、金属積層造形法の選択的レーザ焼結法(SLS)によって噴射部を加工するとした。しかしながら、第二加工装置が噴射部を加工する方法はこれに限定されない。レーザで加熱した本体部または本体部上の噴射部の表面の溶融池に金属粉末を直接噴射し焼結するレーザ直接積層法(LENS)や、噴射部を形成する金属材料のワイヤを本体部または本体部上の噴射部の表面に送り出しつつアーク放電により溶融する溶融物堆積法(FDM)などによって噴射部を加工してもよい。 In the above-described embodiment, the second processing apparatus processes the injection portion by the selective laser sintering method (SLS) of the metal additive manufacturing method. However, the method by which the second processing apparatus processes the injection portion is not limited to this. Laser direct laminating method (LENS) in which metal powder is directly sprayed and sintered in the molten pool on the surface of the main body or the jet section on the main body heated by a laser, or the wire of the metal material forming the jet section You may process an injection part by the melt deposition method (FDM) etc. which fuse | melt by arc discharge, sending out to the surface of the injection part on a main-body part.
 上述の実施形態では、部材の製造装置を含む多品種部材の製造システムとしてのノズルボディ製造システムは、燃料噴射弁が有する有底筒状のノズルボディを加工するとした。しかしながら、多品種部材の製造システムが製造する部材はこれに限定されない。複数の部材が有する共通形状をなす共通部と複数の部材間において異なる形状をなす特徴部から形成される部材であればよい。また、部材の製造装置は、単独で通孔を有する部材を製造可能な構成であればよく、内部に部材を形成する材料の粉末またはワイヤを積層可能なケース、ケースの内部に置かれ通孔の形状に形成されている中子、ケース内に部材を形成する材料の粉末またはワイヤを供給可能な材料供給部、部材を形成する材料の粉末またはワイヤを加熱可能な加熱部、及び、通孔に中子が挿通された部材である中子付部材から中子を除去可能な中子除去部を備えていればよい。 In the above-described embodiment, the nozzle body manufacturing system as a manufacturing system for a wide variety of members including a member manufacturing apparatus processes the bottomed cylindrical nozzle body of the fuel injection valve. However, the members manufactured by the manufacturing system for multi-product members are not limited to this. What is necessary is just the member formed from the characteristic part which makes a different shape between the common part which makes the common shape which several members have, and several members. Further, the member manufacturing apparatus may be configured to be able to manufacture a member having a through hole alone, and a case in which powder or wire of a material forming the member can be laminated inside, a through hole placed inside the case A core formed in the shape of the material, a material supply part capable of supplying powder or wire of the material forming the member in the case, a heating part capable of heating the powder or wire of the material forming the member, and a through hole It is only necessary to have a core removing portion that can remove the core from the core-attached member that is a member into which the core is inserted.
 第二、三実施形態は、第一実施形態の第二加工装置によって噴射部を製造するとした。しかしながら、第四実施形態の第二加工装置によって噴射部を製造してもよい。 In the second and third embodiments, the injection unit is manufactured by the second processing apparatus of the first embodiment. However, you may manufacture an injection part with the 2nd processing apparatus of 4th embodiment.
 上述の実施形態では、ノズルボディの噴孔の内縁部は曲面状に形成されるとした。しかしながら、内縁部の形状はこれに限定されない。燃料噴射弁における燃料の噴霧状態を高度に制御するための形状であればよい。また噴孔の形状も上述の実施形態には限定されない。中心軸が曲線状になっている形状や、断面積が大きくなったのちに小さくなる形状であってもよい。 In the above embodiment, the inner edge of the nozzle hole of the nozzle body is formed in a curved surface. However, the shape of the inner edge is not limited to this. Any shape may be used as long as the fuel spray state in the fuel injection valve is highly controlled. Further, the shape of the nozzle hole is not limited to the above embodiment. The central axis may have a curved shape, or a shape that decreases after the cross-sectional area increases.
 上述の共通部加工装置としての第一加工装置は、旋削や穴あけなどの切削によって本体部を加工するとした。しかしながら、本体部の加工方法はこれに限定されない。 Suppose that the first processing device as the above-mentioned common part processing device processes the main body by cutting such as turning or drilling. However, the processing method of the main body is not limited to this.
 上述の実施形態では、部材の製造装置としての第二加工装置は、レーザ発振器、ガルバノメータ、ケース、リコータ、中子、加熱処理部などを備えるとした。しかしながら、部材の製造装置の構成はこれに限定されない。 In the above-described embodiment, the second processing apparatus as the member manufacturing apparatus includes a laser oscillator, a galvanometer, a case, a recoater, a core, a heat treatment unit, and the like. However, the structure of the member manufacturing apparatus is not limited to this.
 上述の実施形態では、第二加工装置のケース内に充填される材料を金属とした。しかしながら、ケース内に充填される材料は金属に限定されない。部材が樹脂から形成される場合、樹脂であってもよい。 In the above-described embodiment, the material filled in the case of the second processing apparatus is metal. However, the material filled in the case is not limited to metal. When the member is formed of a resin, it may be a resin.
 上述の実施形態では、第二加工装置は、金属粉末を加熱する加熱部としてレーザ発振器を有するとした。しかしながら、加熱部はこれに限定されない。アーク放電であってもよい。 In the above-described embodiment, the second processing apparatus has a laser oscillator as a heating unit for heating the metal powder. However, the heating unit is not limited to this. Arc discharge may be used.
 このように、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。 As described above, the present disclosure is not limited to the above embodiment, and can be implemented in various forms without departing from the gist thereof.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 
 
 

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.




Claims (13)

  1.  通孔(94、98、99)を有する部材(96)の製造方法であって、
     前記通孔の形状に形成されている中子(25、35、45)が置かれているケース(123、223)内に前記部材を形成する材料の粉末(10)またはワイヤを積層した後に積層した粉末またはワイヤを部分加熱、または、前記中子が置かれている前記ケース内で前記部材を形成する材料の粉末またはワイヤを加熱しつつ積層し、前記通孔に前記中子が挿通された前記部材である中子付部材(961)を成形する成形工程と、
     前記成形工程の後、前記中子付部材から前記中子を除去する除去工程と、
     を含む部材の製造方法。
    A method for producing a member (96) having through holes (94, 98, 99),
    After the powder (10) or wire of the material forming the member is laminated in the case (123, 223) where the core (25, 35, 45) formed in the shape of the through hole is placed The powder or wire is partially heated or laminated while heating the powder or wire of the material forming the member in the case where the core is placed, and the core is inserted into the through hole. A molding step of molding the cored member (961) which is the member;
    After the molding step, a removing step of removing the core from the cored member;
    The manufacturing method of the member containing this.
  2.  前記除去工程において、前記中子は、前記中子が溶融可能な温度まで加熱される請求項1に記載の部材の製造方法。 The member manufacturing method according to claim 1, wherein in the removing step, the core is heated to a temperature at which the core can be melted.
  3.  前記除去工程において、前記中子は、化学分解される請求項1に記載の部材の製造方法。 The method for manufacturing a member according to claim 1, wherein in the removing step, the core is chemically decomposed.
  4.  前記通孔としての噴孔を有する前記部材としての燃料噴射弁のノズルボディを製造する請求項1~3のいずれか一項に記載の部材の製造方法。 The method for manufacturing a member according to any one of claims 1 to 3, wherein a nozzle body of a fuel injection valve as the member having the injection hole as the through hole is manufactured.
  5.  多品種部材(91)間において共通形状をなす共通部(95)と前記多品種部材間において異なる形状をなす前記部材としての特徴部(96)とを有する前記多品種部材を製造可能な多品種部材の製造方法であって、
     前記共通部を加工する加工工程と、
     前記加工工程の後に前記特徴部が有する前記通孔の形状に応じて前記中子を変更し、前記共通部上に前記特徴部を成形する請求項1~4のいずれか一項に記載の部材の製造方法と、
     を含む多品種部材の製造方法。
    Multi-variety capable of manufacturing the multi-variety member having the common part (95) having a common shape among the multi-variety members (91) and the characteristic part (96) as the member having a different shape between the multi-variety members. A method for manufacturing a member, comprising:
    A processing step of processing the common part;
    The member according to any one of claims 1 to 4, wherein after the processing step, the core is changed in accordance with a shape of the through hole of the feature portion, and the feature portion is formed on the common portion. A manufacturing method of
    A method for producing a variety of products including
  6.  前記中子は、前記通孔の形状に形成されている通孔対応部(252、352、452)、及び、前記共通部に対する前記通孔対応部の相対位置を固定可能な支持部(253)を有し、
     前記成形工程において、前記中子は、前記通孔に対応する位置に前記通孔対応部が位置するよう設けられる請求項5に記載の多品種部材の製造方法。
    The core includes a through hole corresponding portion (252, 352, 452) formed in the shape of the through hole, and a support portion (253) capable of fixing a relative position of the through hole corresponding portion with respect to the common portion. Have
    The method for manufacturing a multi-product member according to claim 5, wherein, in the molding step, the core is provided so that the through hole corresponding portion is positioned at a position corresponding to the through hole.
  7.  通孔(94、98、99)を有する部材(96)の製造装置であって、
     内部(120、220)に前記部材を形成する材料の粉末(10)またはワイヤを積層可能なケース(123、223)と、
     前記ケースの内部に置かれ、前記通孔の形状に形成されている中子(25、35、45)と、
     前記ケース内に前記部材を形成する材料の粉末またはワイヤを供給可能な材料供給部(124)と、
     前記部材を形成する材料の粉末またはワイヤを加熱可能な加熱部(121)と、
     前記通孔に前記中子が挿通された前記部材である中子付部材(961)から前記中子を除去可能な中子除去部(13)と、
     を備える部材の製造装置。
    An apparatus for producing a member (96) having through holes (94, 98, 99),
    A case (123, 223) capable of laminating powder (10) or wire of the material forming the member inside (120, 220);
    A core (25, 35, 45) placed inside the case and formed in the shape of the through hole;
    A material supply part (124) capable of supplying powder or wire of the material forming the member in the case;
    A heating section (121) capable of heating powder or wire of the material forming the member;
    A core removing portion (13) capable of removing the core from the cored member (961) which is the member through which the core is inserted into the through hole;
    A device manufacturing apparatus comprising:
  8.  前記中子除去部は、前記中子が溶融可能な温度まで前記中子付部材を加熱可能である請求項7に記載の部材の製造装置。 The member manufacturing apparatus according to claim 7, wherein the core removing unit is capable of heating the cored member to a temperature at which the core can be melted.
  9.  前記中子除去部は、前記中子付部材が有する前記中子を化学分解可能である請求項7に記載の部材の製造装置。 The member manufacturing apparatus according to claim 7, wherein the core removing unit is capable of chemically decomposing the core included in the core-attached member.
  10.  前記中子は、前記通孔の形状に沿って断面積が変化するよう形成されている通孔対応部(352、452)を有する請求項7~9のいずれか一項に記載の部材の製造装置。 The member manufacturing method according to any one of claims 7 to 9, wherein the core has a through hole corresponding portion (352, 452) formed so that a cross-sectional area changes along a shape of the through hole. apparatus.
  11.  前記通孔としての噴孔を有する前記部材としての燃料噴射弁のノズルボディを製造する請求項7~10のいずれか一項に記載の部材の製造装置。 The member manufacturing apparatus according to any one of claims 7 to 10, wherein a nozzle body of a fuel injection valve as the member having an injection hole as the through hole is manufactured.
  12.  多品種部材(91)間において共通形状をなす共通部(95)と前記多品種部材間において異なる形状をなす前記部材としての特徴部(96)とを有する前記多品種部材を製造する多品種部材の製造システムであって、
     前記共通部を加工する共通部加工装置(11)と、
     前記特徴部の形状に合わせて前記中子を変更可能に設けられ、前記特徴部を前記共通部上に成形する請求項7~11のいずれか一項に記載の部材の製造装置(12、13、22)と、
     前記多品種部材が有する前記共通部及び前記特徴部の形状に基づいて前記共通部加工装置及び前記部材の製造装置の作動を制御する制御装置(14)と、
     を備える多品種部材の製造システム。
    A multi-product member for manufacturing the multi-product member having a common part (95) having a common shape among the multi-product members (91) and a characteristic part (96) as the member having a different shape between the multi-product members A manufacturing system of
    A common part processing device (11) for processing the common part;
    The member manufacturing apparatus (12, 13) according to any one of claims 7 to 11, wherein the core is provided so as to be changeable according to a shape of the feature portion, and the feature portion is formed on the common portion. 22)
    A control device (14) for controlling the operation of the common part processing apparatus and the member manufacturing apparatus based on the shapes of the common part and the characteristic part of the multi-product member;
    A system for manufacturing various types of components.
  13.  前記中子は、前記通孔の形状に形成されている通孔対応部(252、352、452)、及び、前記共通部に対する前記通孔対応部の相対位置を固定可能な支持部(253)を有する請求項12に記載の多品種部材の製造システム。

     
    The core includes a through hole corresponding portion (252, 352, 452) formed in the shape of the through hole, and a support portion (253) capable of fixing a relative position of the through hole corresponding portion with respect to the common portion. The manufacturing system of the multi-product member according to claim 12.

PCT/JP2016/000849 2015-03-25 2016-02-18 Member manufacturing method, method for manufacturing members of various types, member manufacturing device, and system for manufacturing members of various types WO2016152012A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-062711 2015-03-25
JP2015062711 2015-03-25
JP2015243935A JP2016183405A (en) 2015-03-25 2015-12-15 Member production method, production method of various members, member production device and production system of various members
JP2015-243935 2015-12-15

Publications (1)

Publication Number Publication Date
WO2016152012A1 true WO2016152012A1 (en) 2016-09-29

Family

ID=56978299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000849 WO2016152012A1 (en) 2015-03-25 2016-02-18 Member manufacturing method, method for manufacturing members of various types, member manufacturing device, and system for manufacturing members of various types

Country Status (1)

Country Link
WO (1) WO2016152012A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108708810A (en) * 2017-03-31 2018-10-26 罗伯特·博世有限公司 The valve cage of injector and manufacturing method for the valve cage
EP3508288A1 (en) * 2018-01-08 2019-07-10 United Technologies Corporation Hybrid additive manufacturing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287003A (en) * 1996-04-23 1997-11-04 Toyota Motor Corp Production of hollow sintered body
JP2003214300A (en) * 2002-01-18 2003-07-30 Toyota Motor Corp Manufacturing method of injector nozzle
JP2005248217A (en) * 2004-03-02 2005-09-15 Yoshinobu Shimoitani Method for producing green compact and method for producing sintered compact
WO2008136224A1 (en) * 2007-05-02 2008-11-13 Hiroshima University Molding for powder sintered compact, powder sintered compact and process for producing them
WO2013145451A1 (en) * 2012-03-26 2013-10-03 日立オートモティブシステムズ株式会社 Spark-ignition type cylinder injection valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287003A (en) * 1996-04-23 1997-11-04 Toyota Motor Corp Production of hollow sintered body
JP2003214300A (en) * 2002-01-18 2003-07-30 Toyota Motor Corp Manufacturing method of injector nozzle
JP2005248217A (en) * 2004-03-02 2005-09-15 Yoshinobu Shimoitani Method for producing green compact and method for producing sintered compact
WO2008136224A1 (en) * 2007-05-02 2008-11-13 Hiroshima University Molding for powder sintered compact, powder sintered compact and process for producing them
WO2013145451A1 (en) * 2012-03-26 2013-10-03 日立オートモティブシステムズ株式会社 Spark-ignition type cylinder injection valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108708810A (en) * 2017-03-31 2018-10-26 罗伯特·博世有限公司 The valve cage of injector and manufacturing method for the valve cage
EP3508288A1 (en) * 2018-01-08 2019-07-10 United Technologies Corporation Hybrid additive manufacturing

Similar Documents

Publication Publication Date Title
US10035731B2 (en) Additive manufacturing hybrid core
CN110617373B (en) Member joining method and member joining apparatus
CN109414922B (en) Method for additive manufacturing and thin-walled reinforcement structure
WO2016152012A1 (en) Member manufacturing method, method for manufacturing members of various types, member manufacturing device, and system for manufacturing members of various types
CN109328121B (en) Method for additive manufacturing and multi-purpose powder removal component
EP3281730B1 (en) System and method for forming directionally solidified part from additively manufactured article
CN106061717A (en) Method for producing three-dimensionally shaped object
US20170095887A1 (en) Laser Sintering of Intricate Parts
WO2019021390A1 (en) Method for manufacturing metal member
EP2039457B1 (en) Molding die machining electrode, fabricating method of molding die, and molding die
KR101637638B1 (en) Casting product and manufacturing method thereof
CN112955267B (en) Method for producing hollow large-sized turbine component
JP2016183405A (en) Member production method, production method of various members, member production device and production system of various members
JP2017136687A (en) Resin pipe and method for producing the same
EP3326781B1 (en) Apparatus for forming plastic fuel tank for vehicle
US20220126365A1 (en) System and method for forming part from rapidly manufactured article
JP2019081947A (en) Movable wall for additive powder bed
US11426796B2 (en) Metal shaped article production method
CN109414845B (en) Sprue bush and method for producing same
WO2020110369A1 (en) Method for manufacturing resin pipe
EP3403802B1 (en) Method for producing mold for rubber articles
KR20170018528A (en) supply nozzle with spiral supply duct for three dimentional printer
WO2018043038A1 (en) Cooling block and runnerless injection molding device
JP2001041331A (en) Spool valve
JP2005120832A (en) Fuel injection nozzle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767925

Country of ref document: EP

Kind code of ref document: A1