WO2016151966A1 - Infant monitoring device, infant monitoring method, and infant monitoring program - Google Patents

Infant monitoring device, infant monitoring method, and infant monitoring program Download PDF

Info

Publication number
WO2016151966A1
WO2016151966A1 PCT/JP2015/085599 JP2015085599W WO2016151966A1 WO 2016151966 A1 WO2016151966 A1 WO 2016151966A1 JP 2015085599 W JP2015085599 W JP 2015085599W WO 2016151966 A1 WO2016151966 A1 WO 2016151966A1
Authority
WO
WIPO (PCT)
Prior art keywords
infant
sign
acquired
respiratory
captured image
Prior art date
Application number
PCT/JP2015/085599
Other languages
French (fr)
Japanese (ja)
Inventor
靖和 田中
安川 徹
Original Assignee
ノーリツプレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノーリツプレシジョン株式会社 filed Critical ノーリツプレシジョン株式会社
Priority to JP2017507343A priority Critical patent/JPWO2016151966A1/en
Publication of WO2016151966A1 publication Critical patent/WO2016151966A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to an infant monitoring apparatus, an infant monitoring method, and an infant monitoring program.
  • SIDS sudden infant death syndrome
  • Patent Document 1 proposes a motion detector that detects the respiratory motion of an infant in order to detect signs of SIDS in the infant. According to this motion detector, it is possible to detect that the infant is in an apneic state, thereby preventing the infant from suddenly dying while sleeping.
  • Patent Document 2 proposes a system for watching an infant who is sleeping by photographing the infant with a camera and analyzing image data obtained thereby.
  • the obtained image data is analyzed to detect a high-risk movement of the infant related to SIDS. Thereby, the sign of SIDS of the infant can be detected.
  • the present invention has been made in consideration of such points, and an object thereof is to provide a system that can appropriately detect a sign of SIDS appearing in an infant.
  • the present invention adopts the following configuration in order to solve the above-described problems.
  • the infant monitoring apparatus is an image acquisition that captures a captured image that is a captured image of a sleeping infant and that includes depth data indicating the depth of each pixel in the captured image.
  • a vital information acquisition unit that acquires vital information including a pulse rate and a breathing state of the infant, and a person area in which the infant appears in the acquired captured image, and each of the extracted person areas includes With reference to the depth of the pixel, a sleeping state analyzing unit that analyzes the body movement and sleeping posture of the infant, the pulse rate and the respiratory state indicated by the acquired vital information, and the analyzed body movement and the Based on the sleeping posture, a sign determination unit that determines whether or not the infant has a sign of sudden infant death syndrome, and as a result of the determination, there is a sign of sudden infant death syndrome. If it is determined that the serial infants includes a notification unit that performs signs detection notification for notifying that the signs made to the sudden infant death syndrome in the infant, the.
  • the captured image acquired for analyzing the body movement and sleeping posture of the infant includes depth data indicating the depth of each pixel.
  • the depth of each pixel indicates the depth from the photographing apparatus to the subject. More specifically, the depth of the subject is acquired with respect to the surface of the subject. That is, if the depth data is used, the position of the subject surface in the real space can be specified. Therefore, by using this depth data, it is possible to analyze the physical movement of the infant in the real space (three-dimensional space) regardless of the visual field direction (viewpoint) of the photographing apparatus with respect to the infant.
  • the sleeping posture is a posture when the infant is sleeping, such as a supine posture (a supine position), a lateral posture (a lateral position), a prone posture (a prone position).
  • the information indicating the respiratory state included in the vital information may be appropriately selected according to the embodiment, and is, for example, the respiratory rate, the oxygen saturation (SpO 2 ) of arterial blood, or the like.
  • the respiration rate indicates the number of respirations per unit time.
  • the pulse rate indicates the number of pulses per unit time. The time for measuring the number of breaths and the number of pulses may be appropriately set according to the embodiment.
  • the infant has a sign of sudden infant death syndrome when the sign determination unit detects that the infant's sleeping posture is prone May be determined.
  • One of the risk factors for SIDS is lying down.
  • the infant monitoring apparatus according to the configuration detects that the sleeping posture of the infant is prone, the infant monitoring apparatus determines that the infant has a sign of sudden infant death syndrome. Therefore, according to the said structure, the prone sleep which is one of the risk factors of SIDS can be detected, and it can prevent appropriately the infant from becoming SIDS.
  • the sign determination unit the pulse rate indicated by the acquired vital information is higher than a normal pulse rate of the infant by a predetermined value or more,
  • the respiratory state indicated by the acquired vital information is shallower than a normal respiratory state of the infant by a predetermined amount or more, and the analyzed amount of body movement is more than the normal amount of body movement of the infant If it is detected that there is less than a predetermined value, it may be determined that the infant has a sign of sudden infant death syndrome.
  • SIDS In a study of SIDS, it is pointed out that if an infant is overheated while sleeping, the infant may develop SIDS. In a sleeping infant's body, as the sleep goes deeper, muscle tone decreases and the sympathetic response decreases. As a result, a decrease in heart rate and dilation of peripheral blood vessels occur, increasing the amount of heat released from the infant's body.
  • the body temperature decreases due to heat radiation, so the infant who felt cold enhances the response of the sympathetic nervous system, contracts the peripheral blood vessels, and releases heat. Decrease.
  • the infant's heart rate increases, muscle tension increases, and sleep decreases. Thereafter, if no stimulating stimulus is applied to the infant, the infant's body temperature rises and sleep becomes deeper again. Sleeping infants adjust body temperature while repeating such expansion and contraction of peripheral blood vessels.
  • the infant's body temperature does not decrease even if the amount of heat released from the infant's body increases. Therefore, the infant's sleep remains deep, the infant's response to the sympathetic nervous system continues to decrease, the muscle tone also decreases, and the state where the response to the stimulus is reduced continues. Then, the infant's breathing becomes shallow (or becomes apnea), and hypoxia progresses, eventually the infant can become SIDS.
  • the infant monitoring apparatus is such that the acquired pulse rate is higher than the normal pulse rate by a predetermined value or more, the acquired respiratory state is shallower than the normal respiratory state by a predetermined amount, and When it is detected that the analyzed body movement amount is smaller than the normal body movement amount by a predetermined value or more, it is determined that the infant has a sign of sudden infant death syndrome. Therefore, according to the said structure, it can detect that the sleeping infant falls into the above hypoxic states, and can prevent appropriately the said infant becoming SIDS.
  • the vital information acquisition unit is configured to be able to measure a pulse rate, and acquires the infant's pulse rate from a measuring device attached to the infant. Also good. According to the said structure, the vital information utilized in determining the sign of SIDS can be acquired appropriately.
  • the measuring device may be configured to be able to further measure the oxygen saturation of arterial blood
  • the vital information acquisition unit is information indicating the respiratory state
  • the oxygen saturation of the infant's arterial blood may be acquired from the measuring device.
  • the sign determination unit compares the acquired oxygen saturation of the arterial blood with a reference value of the arterial oxygen saturation at the normal time of the infant, and the acquired oxygen saturation of the arterial blood is determined by the infant.
  • the vital information utilized in determining the sign of SIDS can be acquired appropriately.
  • the measuring device may be configured to be able to further measure a respiratory rate
  • the vital information acquisition unit may use the infant as the information indicating the respiratory state. May be obtained from the measuring device.
  • the sign determination unit compares the acquired respiration rate with the normal breathing rate of the infant and determines that the acquired respiration rate is lower than a predetermined value than the normal respiration rate of the infant In this case, it may be detected that the respiratory state indicated by the acquired vital information is shallower than a predetermined level than the normal respiratory state of the infant.
  • the vital information utilized in determining the sign of SIDS can be acquired appropriately.
  • the vital information acquisition unit refers to the depth of each pixel included in the person area in the captured image, and the number of changes in the infant's rib cage By measuring the respiratory rate of the infant as information indicating the respiratory state. Then, the sign determination unit compares the acquired respiration rate with the normal breathing rate of the infant and determines that the acquired respiration rate is lower than a predetermined value than the normal respiration rate of the infant In this case, it may be detected that the respiratory state indicated by the acquired vital information is shallower than a predetermined level than the normal respiratory state of the infant. According to the said structure, the information which shows the infant's respiratory condition can be acquired noninvasively. Therefore, it is possible to reduce the number of devices attached to the infant and to reduce the possibility of an accident such as the wiring of such devices being entangled in the infant's neck.
  • an information processing system that realizes each of the above configurations, an information processing method, or a program may be used. It may be a storage medium that can be read by a computer, other devices, machines, or the like in which such a program is recorded.
  • the computer-readable recording medium is a medium that stores information such as programs by electrical, magnetic, optical, mechanical, or chemical action.
  • the information processing system may be realized by one or a plurality of information processing devices.
  • a computer captures a captured image obtained by capturing a sleeping infant and includes depth data indicating the depth of each pixel in the captured image.
  • a step of acquiring vital information including a pulse rate and a breathing state of the infant a step of extracting a person region in which the infant is captured in the acquired captured image, and each of the steps included in the extracted person region.
  • an infant monitoring program is a captured image obtained by capturing a sleeping infant on a computer, and includes a captured image including depth data indicating the depth of each pixel in the captured image. , Acquiring vital information including the infant's pulse rate and breathing state, extracting a person area in which the infant appears in the acquired captured image, and including the extracted person area Analyzing the body movement and sleeping posture of the infant with reference to the depth of each pixel, the pulse rate and the respiratory state indicated by the acquired vital information, and the analyzed body movement and the sleeping state Determining whether the infant has a sign of sudden infant death syndrome based on the posture; and, as a result of the determination, sudden infant death A step of performing a sign detection notification for notifying that the infant has a sign of sudden infant death syndrome when it is determined that there is a sign of a symptom group in the infant. It is.
  • FIG. 1 schematically illustrates a scene where the present invention is applied.
  • FIG. 2 illustrates a hardware configuration of the infant monitoring apparatus according to the embodiment.
  • FIG. 3 illustrates the relationship between the depth acquired by the camera according to the embodiment and the subject.
  • FIG. 4 illustrates a functional configuration of the infant monitoring apparatus according to the embodiment.
  • FIG. 5 exemplifies a processing procedure related to watching an infant by the infant monitoring apparatus according to the embodiment.
  • FIG. 6 illustrates a captured image acquired by the camera according to the embodiment.
  • FIG. 7 illustrates the coordinate relationship in the captured image according to the embodiment.
  • FIG. 8 illustrates the positional relationship between an arbitrary point (pixel) of the captured image and the camera in the real space according to the embodiment.
  • this embodiment will be described with reference to the drawings.
  • this embodiment described below is only an illustration of the present invention in all respects. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention. That is, in implementing the present invention, a specific configuration according to the embodiment may be adopted as appropriate.
  • data appearing in the present embodiment is described in a natural language, more specifically, it is specified by a pseudo language, a command, a parameter, a machine language, or the like that can be recognized by a computer.
  • FIG. 1 shows an example of a scene where the infant monitoring apparatus 1 according to the present embodiment is used.
  • the infant monitoring apparatus 1 according to the present embodiment photographs an infant with the camera 2 and analyzes the photographed image 3 obtained thereby to monitor the infant's state in the photographed image 3 and to watch over the infant.
  • An information processing apparatus to perform. Therefore, the infant monitoring apparatus 1 according to the present embodiment can be widely used in a scene where an infant to be watched over is watched over.
  • the infant monitoring apparatus 1 acquires a photographed image 3 obtained by photographing a sleeping infant from the camera 2.
  • the infant person to be watched over
  • the camera 2 is installed to photograph such an infant.
  • the infant need not always go to bed, and may be temporarily awakened.
  • the camera 2 is configured to be able to acquire the depth corresponding to each pixel in the captured image 3.
  • the camera 2 includes a depth sensor (a depth sensor 21 described later) that measures the depth of the subject so that the depth of each pixel can be acquired.
  • the infant monitoring apparatus 1 according to the present embodiment is connected to such a camera 2 and acquires a photographed image 3 obtained by photographing an infant to be monitored.
  • the acquired captured image 3 includes depth data indicating the depth obtained for each pixel, as illustrated in FIG.
  • the captured image 3 only needs to include data indicating the depth of the subject within the imaging range, and the data format can be appropriately selected according to the embodiment.
  • the captured image 3 may be data (for example, a depth map) in which the depth of the subject within the imaging range is two-dimensionally distributed.
  • the captured image 3 may include an RGB image together with the depth data.
  • the captured image 3 may be configured with a moving image or one or a plurality of still images as long as the physical motion of the infant can be analyzed.
  • the infant monitoring apparatus 1 acquires vital information including the infant's pulse rate and respiratory state.
  • Pulse rate and respiratory status may be measured in any way.
  • at least one of the pulse rate and the respiratory state may be measured by analyzing the captured image 3.
  • a measurement device capable of measuring at least one of the pulse rate and the respiratory state may be used for measuring at least one of the pulse rate and the respiratory state.
  • the pulse rate and the respiratory state are measured by the measuring device 4 attached to the infant.
  • the infant monitoring apparatus 1 according to the present embodiment acquires vital information from the measuring device 4.
  • the infant monitoring apparatus 1 extracts a person area in which the infant appears in the acquired photographed image 3.
  • the captured image 3 includes depth data indicating the depth of each pixel. Therefore, the infant monitoring apparatus 1 can specify the position of the subject in the captured image 3 in the real space by using this depth data. More specifically, the depth of the subject is acquired with respect to the surface of the subject. That is, the infant monitoring apparatus 1 can identify the position of the subject surface in the real space by referring to the depth of each pixel indicated by the depth data.
  • the infant monitoring apparatus 1 refers to the depth of each pixel included in the extracted person area and analyzes the body movement and sleeping posture of the infant shown in the photographed image 3. Furthermore, the infant monitoring apparatus 1 determines whether or not the infant has a sign of SIDS based on the pulse rate and respiratory state indicated by the acquired vital information and the analyzed body movement and sleeping posture.
  • the infant monitoring apparatus 1 determines that there is a sign of SIDS in the infant as a result of the determination, the infant monitoring apparatus 1 performs a sign detection notification for notifying that the infant has a sign of SIDS.
  • the infant monitoring apparatus 1 issues a warning for notifying the SIDS sign.
  • the physical movement (body movement and sleeping posture) of the infant is analyzed based on the captured image 3 including the depth data indicating the depth of each pixel.
  • the depth of each pixel is acquired with respect to the subject surface, the position of the subject surface in the real space can be specified by using the depth data. Therefore, by using this depth data, it is possible to analyze the physical movement of the infant in the real space (three-dimensional space) regardless of the viewing direction (viewpoint) of the camera 2 with respect to the infant.
  • the infant monitoring apparatus 1 provides an infant with signs of becoming SIDS based on vital information including not only the physical movement (body movement and sleeping posture) of the infant but also the pulse rate and respiratory state. It is determined whether or not there is. Therefore, according to the present embodiment, it is possible to determine from the multifaceted viewpoint whether or not the infant has a sign of SIDS.
  • a sign of SIDS can be appropriately detected, and a sleeping infant can be prevented from developing SIDS.
  • the sleeping posture is a posture when the infant is sleeping, such as a supine posture (a supine position), a lateral posture (a lateral position), a prone posture (a prone position).
  • the information indicating the respiratory state included in the vital information may be appropriately selected according to the embodiment, and is, for example, the respiratory rate, the oxygen saturation (SpO 2 ) of arterial blood, or the like.
  • the respiration rate indicates the number of respirations per unit time.
  • the pulse rate indicates the number of pulses per unit time. The time for measuring the number of breaths and the number of pulses may be appropriately set according to the embodiment.
  • the location of the infant monitoring device 1 can be determined as appropriate according to the embodiment as long as the captured image 3 can be acquired from the camera 2 and vital information can be acquired from the measuring device 4.
  • the infant monitoring apparatus 1 may be disposed so as to be close to the camera 2 as illustrated in FIG.
  • the infant monitoring apparatus 1 may be connected to the camera 2 and the measuring device 4 via a wireless and / or wired network, and may be arranged at a place completely different from the camera 2 and the measuring device 4.
  • FIG. 2 illustrates a hardware configuration of the infant monitoring apparatus 1 according to the present embodiment.
  • the infant monitoring apparatus 1 stores a control unit 11 including a CPU, a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, a program 5 executed by the control unit 11, and the like.
  • Unit 12 a touch panel display 13 for displaying and inputting images, a speaker 14 for outputting sound, an external interface 15 for connecting to an external device, a communication interface 16 for communicating via a network, and This is a computer to which a drive 17 for reading a program stored in the storage medium 6 is electrically connected.
  • the communication interface and the external interface are described as “communication I / F” and “external I / F”, respectively.
  • the components can be omitted, replaced, and added as appropriate according to the embodiment.
  • the control unit 11 may include a plurality of processors.
  • the touch panel display 13 may be replaced with an input device and a display device that are separately connected independently.
  • the speaker 14 may be omitted.
  • the speaker 14 may be connected to the infant monitoring apparatus 1 as an external apparatus instead of as an internal apparatus of the infant monitoring apparatus 1.
  • the infant monitoring apparatus 1 may incorporate a camera 2.
  • the camera 2 and the measuring device 4 are connected to the infant monitoring apparatus 1 via the external interface 15.
  • the camera 2 is installed around the infant to be monitored and photographs the infant.
  • the installation location of the camera 2 may be appropriately selected according to the embodiment.
  • the camera 2 may be arrange
  • the camera 2 includes a depth sensor 21 for measuring the depth of the subject in order to capture the captured image 3 including depth data.
  • the type and measurement method of the depth sensor 21 may be appropriately selected according to the embodiment.
  • the depth sensor 21 may be a sensor of TOF (TimeFOf Flight) method or the like.
  • the configuration of the camera 2 is not limited to such an example as long as the depth can be acquired, and can be appropriately selected according to the embodiment.
  • the camera 2 may be a stereo camera so that the depth of the subject within the shooting range can be specified. Since the stereo camera shoots the subject within the shooting range from a plurality of different directions, the depth of the subject can be recorded. Further, the camera 2 may be replaced with the depth sensor 21 as long as the depth of the subject within the shooting range can be specified.
  • the depth sensor 21 may be an infrared depth sensor that measures the depth based on infrared irradiation so that the depth can be acquired without being affected by the brightness of the shooting location.
  • relatively inexpensive imaging apparatuses including such an infrared depth sensor include Kinect from Microsoft, Xtion from ASUS, and CARMINE from PrimeSense.
  • FIG. 3 shows an example of a distance that can be handled as the depth according to the present embodiment.
  • the depth represents the depth of the subject.
  • the depth of the subject may be expressed by, for example, a straight line distance A between the camera 2 and the object, or a perpendicular distance B from the horizontal axis with respect to the subject of the camera 2. It may be expressed as
  • the depth according to the present embodiment may be the distance A or the distance B.
  • the distance B is treated as the depth.
  • the distance A and the distance B can be converted into each other based on, for example, the three-square theorem. Therefore, the following description using the distance B can be applied to the distance A as it is.
  • the infant monitoring apparatus 1 according to the present embodiment can analyze the state of the infant by using such a depth.
  • the measuring device 4 is configured to be able to measure at least one of a pulse rate and a respiratory state, and is attached to a body part such as a foot sole of an infant.
  • the pulse rate and the respiratory state may be measured with the same device, or may be measured with separate devices.
  • the index indicating the respiratory state may be appropriately selected according to the embodiment as long as the respiratory state of the infant can be specified.
  • the index indicating the respiratory state is, for example, the respiratory rate, arterial oxygen saturation (SpO 2 ), or the like.
  • the respiratory state may be represented by a plurality of indices. For example, both respiratory rate and arterial oxygen saturation may be used to indicate respiratory status.
  • a known measuring device such as a pulse oximeter, a respiration sensor, or a capnometer may be used as such a measuring device 4.
  • a measuring instrument capable of measuring the pulse rate and the oxygen saturation of arterial blood Nellcor Oxysensor III manufactured by Covidien may be mentioned.
  • a pulse oxy capnometer manufactured by Covidien Co., Ltd. can be used as a measuring instrument capable of measuring the pulse rate and the respiratory rate.
  • a known pulse oximeter capable of measuring the pulse rate and arterial blood oxygen saturation is used as the measuring device 4.
  • the storage unit 12 stores the program 5.
  • the program 5 is a program for causing the infant monitoring apparatus 1 to execute each process related to the infant watching described later, and corresponds to the “infant monitoring program” of the present invention.
  • the program 5 may be recorded on the storage medium 6.
  • the storage medium 6 stores information such as a program by an electrical, magnetic, optical, mechanical, or chemical action so that information such as a program recorded by a computer or other device or machine can be read. It is a medium to do.
  • the storage medium 6 corresponds to the “storage medium” of the present invention.
  • 2 illustrates a disk-type storage medium such as a CD (Compact Disk) or a DVD (Digital Versatile Disk) as an example of the storage medium 6.
  • the type of the storage medium 6 is not limited to the disk type and may be other than the disk type. Examples of the storage medium other than the disk type include a semiconductor memory such as a flash memory.
  • an infant monitoring apparatus 1 may be, for example, an apparatus designed exclusively for the provided service, or a general-purpose apparatus such as a PC (Personal Computer) or a tablet terminal. Furthermore, the infant monitoring apparatus 1 may be implemented by one or a plurality of computers.
  • a PC Personal Computer
  • the infant monitoring apparatus 1 may be implemented by one or a plurality of computers.
  • FIG. 4 illustrates a functional configuration of the infant monitoring apparatus 1 according to the present embodiment.
  • the control unit 11 of the infant monitoring apparatus 1 develops the program 5 stored in the storage unit 12 in the RAM.
  • the control part 11 interprets and runs the program 5 expand
  • the infant monitoring apparatus 1 functions as a computer including the image acquisition unit 51, the vital information acquisition unit 52, the sleeping state analysis unit 53, the sign determination unit 54, and the notification unit 55.
  • the image acquisition unit 51 acquires the captured image 3 captured by the camera 2.
  • the vital information acquisition unit 52 acquires vital information 40 including the pulse rate and the respiratory state measured by the measuring device 4.
  • the acquired captured image 3 includes depth data indicating the depth of each pixel. As described above, according to the depth data, the position of the subject in the captured image 3 in the real space, more specifically, the position of the subject surface in the real space can be specified.
  • the sleeping state analyzing unit 53 extracts a person region in which the infant is photographed in the acquired photographed image 3.
  • the sleeping state analysis unit 53 refers to the depth of each pixel included in the extracted person region, and analyzes the body movement and sleeping posture of the infant captured in the captured image 3.
  • the sign determination unit 54 determines whether or not there is a sign of SIDS in the infant imaged in the captured image 3 based on the pulse rate and respiratory state included in the acquired vital information 40 and the analyzed body movement and sleeping posture. Determine whether. Then, as a result of the determination, when it is determined that there is a sign of SIDS in the infant, the notification unit 55 performs a sign detection notification for notifying that the infant has the sign of SIDS.
  • FIG. 5 exemplifies a processing procedure relating to infant watching by the infant monitoring apparatus 1.
  • the processing procedure relating to infant watching described below corresponds to the “infant monitoring method” of the present invention.
  • the processing procedure related to watching over the infant described below is merely an example, and each processing may be changed as much as possible. Further, in the processing procedure described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.
  • Step S101 In step S ⁇ b> 101, the control unit 11 functions as the image acquisition unit 51 and acquires the captured image 3 captured by the camera 2. Then, after acquiring the captured image 3, the control unit 11 advances the processing to the next step S102.
  • the camera 2 includes a depth sensor 21. Therefore, the captured image 3 acquired in step S101 includes depth data indicating the depth of each pixel measured by the depth sensor 21.
  • the control unit 11 acquires the captured image 3 illustrated in FIG. 6 as the captured image 3 including the depth data.
  • FIG. 6 shows an example of the captured image 3 including depth data.
  • the captured image 3 illustrated in FIG. 6 is an image in which the gray value of each pixel is determined according to the depth of each pixel.
  • a black pixel is closer to the camera 2.
  • a white pixel is farther from the camera 2.
  • the control unit 11 can specify the position of each pixel in the real space. That is, the control unit 11 can specify the position in the three-dimensional space (real space) of the subject captured in each pixel from the coordinates (two-dimensional information) and the depth of each pixel in the captured image 3. .
  • FIGS. 7 and 8 a calculation example in which the control unit 11 specifies the position of each pixel in the real space will be described with reference to FIGS. 7 and 8.
  • FIG. 7 schematically illustrates the coordinate relationship in the captured image 3.
  • FIG. 8 schematically illustrates a positional relationship between an arbitrary pixel (point s) of the captured image 3 and the camera 2 in the real space. 7 corresponds to a direction perpendicular to the paper surface of FIG. That is, the length of the captured image 3 shown in FIG. 8 corresponds to the length in the vertical direction (H pixels) illustrated in FIG. Further, the length in the horizontal direction (W pixels) illustrated in FIG. 7 corresponds to the length in the direction perpendicular to the paper surface of the captured image 3 that does not appear in FIG.
  • the coordinates of an arbitrary pixel (point s) of the captured image 3 are (x s , y s ), the horizontal field angle of the camera 2 is V x , and the vertical direction Let the angle of view be V y .
  • the number of pixels in the horizontal direction of the captured image 3 is W
  • the number of pixels in the vertical direction is H
  • the coordinates of the center point (pixel) of the captured image 3 are (0, 0).
  • the control unit 11 can acquire information indicating the angle of view (V x , V y ) of the camera 2 from the camera 2. Further, the control unit 11 may acquire information indicating the angle of view (V x , V y ) of the camera 2 based on a user input or may be acquired as a preset setting value. Further, the control unit 11 can acquire the coordinates (x s , y s ) of the point s and the number of pixels (W ⁇ H) of the captured image 3 from the captured image 3. Furthermore, the control unit 11 can acquire the depth Ds of the point s by referring to the depth data included in the captured image 3.
  • the control unit 11 can specify the position of each pixel (point s) in the real space by using these pieces of information. For example, the control unit 11 performs vector S (S x , S y , S z) from the camera 2 to the point s in the camera coordinate system illustrated in FIG. , 1) can be calculated. Thereby, the position of the point s in the two-dimensional coordinate system in the captured image 3 and the position of the point s in the camera coordinate system can be mutually converted.
  • the vector S is a vector of a three-dimensional coordinate system centered on the camera 2.
  • the camera 2 may be inclined with respect to a horizontal plane (ground). That is, the camera coordinate system may be tilted from the world coordinate system of a three-dimensional space with respect to the horizontal plane (ground). Therefore, the control unit 11 applies the projective transformation using the roll angle, pitch angle ( ⁇ in FIG. 8), and yaw angle of the camera 2 to the vector S, so that the vector S of the camera coordinate system is converted to the world coordinate system. And the position of the point s in the world coordinate system may be calculated.
  • Each of the camera coordinates and the world coordinates is a coordinate system representing a real space. In this way, the control unit 11 can specify the position of the subject in the captured image 3 in the real space by using the depth data.
  • the acquired captured image 3 may be composed of a moving image or may be composed of one or a plurality of still images. Further, the control unit 11 may acquire the captured image 3 in synchronization with the video signal of the camera 2 in order to monitor the infant. And the control part 11 may perform immediately with respect to the picked-up image 3 which acquired the process of each step mentioned later.
  • the infant monitoring apparatus 1 can perform real-time image processing by continuously executing such an operation continuously, and can monitor the infant existing in the photographing range of the camera 2 in real time.
  • Step S102 Returning to FIG. 5, in the next step S ⁇ b> 102, the control unit 11 functions as the vital information acquisition unit 52 and acquires vital information 40 including the infant's pulse rate and respiratory state. And the control part 11 advances a process to the following step S103, after acquiring the vital information 40.
  • FIG. 1 the control unit 11 functions as the vital information acquisition unit 52 and acquires vital information 40 including the infant's pulse rate and respiratory state.
  • the control part 11 advances a process to the following step S103, after acquiring the vital information 40.
  • the measuring device 4 is attached to an infant. Therefore, the control unit 11 acquires vital information 40 from the measurement device 4.
  • the well-known pulse oximeter which can measure a pulse rate and the oxygen saturation of arterial blood is utilized as the measuring apparatus 4 with which an infant is equipped. Therefore, the control unit 11 acquires vital information 40 including the oxygen saturation level of arterial blood as information indicating the respiratory state.
  • the vital information 40 may include information on other types of vital signs in addition to the pulse rate and the respiratory state. Further, this step S102 may be executed before step S101, or may be executed at an arbitrary timing before step S104 described later. The timing for executing step S102 may be appropriately set according to the embodiment.
  • Step S103 In the next step S103, the control unit 11 functions as the sleeping state analysis unit 53, and extracts a person region in which an infant is photographed as illustrated in FIG. 6 from the captured image 3 acquired in step S101. Then, the control unit 11 extracts a person area from the captured image 3 and then proceeds to the next step S104.
  • the control unit 11 may extract a person region in the captured image 3 by performing image analysis such as pattern detection and graphic element detection based on the shape of the infant.
  • the control unit 11 may extract the person region by detecting the three-dimensional shape (contour) of the infant using the depth data.
  • the control part 11 may extract a person area
  • control unit 11 may extract the fluctuating area as a person area based on the background difference method.
  • the control unit 11 acquires a background image used for the background subtraction method.
  • This background image may be acquired by an arbitrary method, and is set as appropriate according to the embodiment.
  • the control unit 11 may acquire a photographed image before an infant exists in the photographing range of the camera 2, in other words, a photographed image without an infant as a background image.
  • the control part 11 calculates the difference of the picked-up image 3 acquired at the time of the said step S101, and a background image, and extracts the foreground area
  • the foreground region is a region where a change has occurred from the background image, and is a region where a fluctuating object (moving object) is captured.
  • the control unit 11 may recognize the foreground area as a person area.
  • the control unit 11 may extract a person area from the foreground area by pattern detection or the like.
  • the process for extracting the foreground area is merely a process for calculating the difference between the captured image 3 and the background image. Therefore, according to the process, the control unit 11 (infant monitoring device 1) can narrow the range in which the person area is detected without using advanced image processing. Therefore, according to the processing, the processing load in step S103 can be reduced.
  • the background subtraction method applicable to the present embodiment is not limited to the above example.
  • Other types of background subtraction methods include, for example, a method of separating the background and the foreground using three different images, and a method of separating the background and the foreground by applying a statistical model. . With these methods, the control unit 11 may extract a person region.
  • Step S104 In the next step S104, the control unit 11 functions as the sleeping state analysis unit 53, refers to the depth of each pixel included in the person area extracted in step S103, and the body movement and sleeping of the infant in the captured image 3 Analyze posture. And the control part 11 advances a process to following step S105, after analyzing the body movement and sleeping posture of an infant.
  • the analysis of the infant's body movement and sleeping posture may be performed by an arbitrary method.
  • the body motion analysis may be performed by the following method.
  • the control unit 11 continuously specifies the position of each pixel included in the person area in the real space using the depth of each pixel included in the person area. Thereby, the control unit 11 can plot the position of each pixel included in the person area on the real space coordinates.
  • each pixel included in the person region corresponds to the contour of the infant in real space. Therefore, data obtained by plotting the position of each pixel included in the person area on the real space coordinates (hereinafter also referred to as measurement data) indicates a change in the contour of the infant, that is, the body movement of the infant. Therefore, the control unit 11 can measure the body movement of the infant by plotting the position of each pixel included in the person region on the real space coordinates.
  • the control unit 11 can analyze the body movement of the infant by determining whether or not a predetermined pattern appears in the measurement data by pattern matching or the like, for example. Further, the control unit 11 can analyze the body movement of the infant by calculating the amount of body movement of the infant based on the measurement data.
  • the target range for observing body movements may be the entire person region or a part of the person region. Further, the amount of body movement may be expressed by an average value of displacements of pixels included in the target range, or may be expressed by a total sum of displacements of pixels included in the target range. A method for analyzing body movement may be appropriately selected according to the embodiment.
  • the sleeping posture analysis may be performed by the following method.
  • the control unit 11 specifies the position and orientation of each body part such as an infant's face, shoulder, and chest that appear in the person area by pattern matching or the like.
  • Microsoft's Kinect is adopted as the camera 2
  • the position and orientation of each body part can be specified by using, for example, the FaceFTracking function.
  • control part 11 determines the sleeping posture of the infant according to the direction of the body with respect to the bed. Specifically, it is assumed that the infant is sleeping on the bed. For this reason, the control unit 11 determines that the sleeping posture of the infant is a supine posture (a supine position) when the body parts such as the identified face, shoulder, and chest are facing vertically upward.
  • the control unit 11 determines that the sleeping posture of the infant is the horizontal posture (side-down position). . In addition, the control unit 11 determines that the sleeping posture of the infant is a prone posture (prone position) when the body parts such as the identified face, shoulder, and chest are vertically downward.
  • the sleeping posture of an infant can be analyzed.
  • the method of analyzing the sleeping posture is not limited to such an example, and may be appropriately selected according to the embodiment.
  • the types of sleeping postures to be analyzed need not be limited to the above three types.
  • the control unit 11 may omit the determination of the horizontal posture and specify the sleeping posture of the infant as either the supine posture or the prone posture.
  • the control unit 11 may set postures other than the above three types as analysis targets.
  • Step S105 In the next step S105, the control unit 11 functions as the sign determination unit 54, and based on the pulse rate and the respiratory state indicated by the vital information 40 acquired in step S102, and the body movement and sleeping posture analyzed in step S104. Then, it is determined whether or not an SIDS sign appears in the infant imaged in the photographed image 3.
  • control unit 11 proceeds to the next step S106.
  • control unit 11 omits the process of the next step S106 and ends the process according to this operation example.
  • Each condition of the pulse rate, the respiratory state, the body movement, and the sleeping posture for detecting the signs of SIDS may be appropriately set according to the embodiment.
  • the control unit 11 detects two types of states, a lying-down state and a hypoxic state, as signs of SIDS.
  • a lying-down state and a hypoxic state, as signs of SIDS.
  • control unit 11 determines that the infant has a sign of SIDS.
  • the control unit 11 detects in step S104 that the sleeping posture of the infant shown in the captured image 3 is a supine posture (a supine position) or a lateral posture (a laterally lying position)
  • the infant is informed of the SIDS. It is determined that there is no sign. This makes it possible to detect prone sleep, which is one of the risk factors for SIDS, and appropriately prevent infants from becoming SIDS.
  • the control unit 11 detects this hypoxia state based on the pulse rate and the respiratory state indicated by the vital information 40 acquired in step S102 and the body movement of the infant analyzed in step S104. To do.
  • the control unit 11 determines whether or not the pulse rate, the respiratory state, and the body motion acquired in Step S102 and Step S104 satisfy the following conditions.
  • the control unit 11 compares the pulse rate indicated by the vital information 40 acquired in step S102 with the normal pulse rate of the infant. When the control unit 11 determines that the pulse rate acquired in step S102 is higher than the normal pulse rate by a predetermined value or more, the pulse rate indicated by the acquired vital information 40 is the normal pulse rate. It is detected that it is higher than a predetermined value.
  • the pulse rate at the normal time may be appropriately set according to the embodiment.
  • the infant's pulse rate measured with a measuring device or tactile sense may be set as the normal pulse rate.
  • the method for measuring the pulse rate at the normal time can be appropriately selected according to the embodiment.
  • the predetermined value for determining that the pulse rate has increased excessively may be appropriately set according to the embodiment.
  • the predetermined value may be given by a normal pulse rate magnification. For example, assume that the normal pulse rate is set to 120 times per minute and the magnification is set to 1.2 times. In this case, when the control unit 11 determines that the pulse rate acquired in step S102 is 144 times or more, the pulse rate indicated by the acquired vital information 40 is equal to or greater than the normal pulse rate. Detect high.
  • control unit 11 determines that the pulse rate indicated by the acquired vital information 40 is the normal pulse rate when the acquired pulse rate is lower than the normal pulse rate by a predetermined value or more for a predetermined time. It may be detected that it is higher than a predetermined value.
  • the value of the predetermined time serving as a reference for the detection may be appropriately set according to the embodiment. Accordingly, it is possible to consider the time during which the state in which the pulse rate has excessively increased continues for SIDS sign detection.
  • the control part 11 acquires the oxygen saturation of arterial blood as information which shows a respiratory state in step S102. Therefore, the control unit 11 determines the infant's respiratory state based on the oxygen saturation of arterial blood. Specifically, the control unit 11 compares the arterial oxygen saturation acquired in step S102 with the reference value of the arterial oxygen saturation at normal time of the infant. When the control unit 11 determines that the oxygen saturation level of the arterial blood acquired in step S102 is lower than the reference value of the arterial blood oxygen saturation level at the normal time, the respiratory state indicated by the acquired vital information 40 Is detected to be shallower than the normal breathing state.
  • the reference value of the oxygen saturation level of arterial blood in normal times may be set as appropriate according to the embodiment.
  • the reference value may be set as appropriate with a value of 94% or less.
  • the control unit 11 determines that the oxygen saturation of the arterial blood acquired in step S102 is 94% or less, and the respiration indicated by the acquired vital information 40 It is detected that the state is shallower than the normal breathing state.
  • the control unit 11 determines that the respiratory state indicated by the acquired vital information 40 is higher than the normal respiratory state.
  • the shallowness may be detected.
  • the value of the predetermined time serving as a reference for the detection may be appropriately set according to the embodiment. Accordingly, it is possible to consider the time during which the state of the child is excessively shallow in the SIDS sign detection.
  • the control unit 11 compares the amount of body movement analyzed in step S104 with the amount of body movement at normal time of the infant. When the control unit 11 determines that the amount of body motion analyzed in step S104 is smaller than the normal amount of body motion by a predetermined value or more, the amount of body motion analyzed in step S104 is normal. It is detected that the amount of body movement is less than a predetermined value.
  • the amount of normal body movement may be appropriately set according to the embodiment.
  • the baby is photographed by the camera 2 when the baby is sleeping without abnormality.
  • the control part 11 may set the amount of body movement obtained by analyzing the acquired picked-up image by the method similar to said step S104 as a body movement amount in normal time.
  • the method for measuring the amount of body movement at normal time can be appropriately selected according to the embodiment.
  • the predetermined value for determining that the amount of body movement has excessively decreased may be set as appropriate according to the embodiment.
  • the control unit 11 determines that the amount of body motion analyzed in step S104 is normal when the analyzed amount of body motion is lower than the normal amount of body motion by a predetermined value or more for a predetermined time. It may be detected that the amount of movement is less than a predetermined value.
  • the value of the predetermined time serving as a reference for the detection may be appropriately set according to the embodiment. Accordingly, it is possible to consider the time during which the amount of body movement is excessively decreased in detecting the sign of SIDS.
  • the control unit 11 has a pulse rate acquired in step S102 that is higher than the normal pulse rate by a predetermined value or more, the respiratory state acquired in step S102 is shallower than the normal respiratory state by a predetermined amount, and If it is detected that the amount of body movement analyzed in step S104 is smaller than the amount of body movement at the normal time by a predetermined value or more, it is determined that the infant has a sign of SIDS. On the other hand, when the control unit 11 detects that any one of the three conditions is not satisfied, the control unit 11 determines that the infant has no sign of SIDS. As a result, it is possible to accurately detect that the sleeping infant falls into the low oxygen state as described above, and appropriately prevent the infant from becoming SIDS.
  • control unit 11 can detect a sign of SIDS that appears in an infant. If the controller 11 detects either the prone state or the hypoxic state in step S105, the control unit 11 proceeds to the next step S106. On the other hand, if the control unit 11 does not detect the state of lying down or hypoxia in step S105, the control unit 11 omits the next step S106 and ends the process according to the operation example. .
  • the infant state detected as a sign of SIDS is not limited to the above-mentioned lying-down state and hypoxic state, and may be appropriately selected according to the embodiment.
  • the control unit 11 detects in step S104 that the sleeping posture of the infant shown in the photographed image 3 has changed from the supine posture (the supine position) to the horizontal posture (the laterally lying position)
  • the control unit 11 applies the SIDS to the infant. It may be determined that there are signs. Further, for example, any of the above-mentioned lying-down state and hypoxic state may be excluded from the detection target.
  • the state of the infant to be detected as a sign of SIDS may be selected by the user or may be set in advance.
  • the control unit 11 may recognize that the infant is in a normal state. Then, the control unit 11 may notify the user of the infant monitoring apparatus 1 that the infant is in a normal state. For example, the control unit 11 may perform the notification by displaying that the infant is in a normal state on the touch panel display 13.
  • Step S106 In the next step S106, the control unit 11 functions as the notification unit 55, and when it is determined that there is a sign of SIDS in the infant as a result of the determination in step S105, the sign of the SIDS is given to the infant. A sign detection notification is made to notify that there is something. Thereby, the processing according to this operation example is completed.
  • the means by which the control unit 11 performs the sign detection notification can be appropriately selected according to the embodiment.
  • the infant monitoring apparatus 1 when used in a facility such as a hospital, the infant monitoring apparatus 1 can be connected to equipment such as a nurse call system via the external interface 15.
  • the control unit 11 may perform sign detection notification in cooperation with the equipment such as the nurse call system. That is, the control unit 11 may control the nurse call system via the external interface 15. And the control part 11 may perform the call by the said nurse call system as a sign detection notification. Accordingly, it is possible to appropriately notify a nurse or the like who watches the infant that the risk of becoming SIDS is approaching the target infant.
  • control unit 11 may display a screen on the touch panel display 13 for notifying that a sign of SIDS that has appeared in an infant has been detected as a sign detection notification. Further, for example, the control unit 11 may perform the sign detection notification by outputting a predetermined sound from the speaker 14 connected to the infant monitoring apparatus 1. By installing the touch panel display 13 and the speaker 14 in the bedroom or the like of the infant's parents, it is possible to appropriately notify the parents that the risk of becoming SIDS is approaching the target infant.
  • control unit 11 may perform such a sign detection notification using an e-mail, a short message service, a push notification, or the like.
  • the e-mail address, telephone number, and the like of the user terminal that is the notification destination may be registered in advance in the storage unit 12. Then, the control unit 11 may perform sign detection notification using the pre-registered e-mail address, telephone number, and the like.
  • the infant monitoring apparatus 1 analyzes the physical movement (body movement and sleeping posture) of the infant based on the captured image 3 including the depth data indicating the depth of each pixel. As described above, since the depth of each pixel is acquired with respect to the subject surface, the position of the subject surface in the real space can be specified by using the depth data.
  • the control unit 11 can specify the vertical movement of the infant. Therefore, according to the present embodiment, by using the depth data, it is possible to analyze the physical movement of the infant in the real space (three-dimensional space) regardless of the viewing direction (viewpoint) of the camera 2 with respect to the infant. it can.
  • the infant monitoring apparatus 1 has an indication that an indication of SIDS is based on vital information 40 including not only the physical movement (body movement and sleeping posture) of the infant but also the pulse rate and respiratory state. It is determined whether or not. Therefore, according to the present embodiment, it is possible to determine from the multifaceted viewpoint whether or not the infant has an indication of SIDS, such as the hypoxic state.
  • a sign of SIDS can be appropriately detected, and a sleeping infant can be prevented from developing SIDS.
  • the control unit 11 acquires the oxygen saturation of arterial blood as information indicating the respiratory state in step S102.
  • the information indicating the breathing state is not limited to such an example, and may be appropriately selected according to the embodiment.
  • the information indicating the respiratory state may be an infant's respiratory rate.
  • the method for measuring the respiratory rate may be appropriately selected according to the embodiment.
  • the control unit 11 acquires the infant's respiratory rate from the measuring device 4 as information indicating the respiratory state in step S102. May be. Thereby, vital information used for judging the sign of SIDS can be acquired appropriately.
  • control unit 11 may acquire the respiratory rate of the infant by performing image analysis on the captured image 3 acquired in step S101 instead of from the measuring device 4.
  • control unit 11 functions as the vital information acquisition unit 52 and refers to the depth of each pixel included in the person region of the captured image 3 to measure the number of changes in the infant's rib cage.
  • the position of the rib cage may be arbitrarily set within the person area.
  • the position of the thorax may be set in the person area by designation by the user of the infant monitoring apparatus 1.
  • the control unit 11 may specify the position of the thorax in the person region by pattern matching or the like.
  • the control part 11 can measure the fluctuation
  • the control unit 11 counts the number of peaks or valleys appearing within a predetermined time in the measured changes in the rib cage, thereby measuring the number of chest ribs of the infant and measuring the chest fluctuation measured during the predetermined time. The number of times can be acquired as the respiratory rate of the infant.
  • the respiratory rate when the respiratory rate is measured by analyzing the captured image 3, information indicating the respiratory state of the infant can be acquired non-invasively. Therefore, in this case, the number of devices to be attached to the infant can be reduced, and the possibility of an accident such as the wiring of such devices being entangled in the infant's neck can be reduced.
  • the control part 11 when acquiring a respiratory rate as information which shows a respiratory state, the control part 11 is based on the respiratory rate in the said step S105, and the respiratory state shown by the acquired vital information 40 is from the normal respiratory state of the infant. It is possible to detect whether it is shallower than a predetermined depth. Specifically, the control unit 11 compares the acquired respiration rate with the normal respiration rate. When the control unit 11 determines that the acquired respiration rate is lower than the normal respiration rate by a predetermined value or more, the respiration state indicated by the acquired vital information 40 is lower than the normal respiration state of the infant. Detect that it is shallower than a predetermined depth.
  • the normal respiratory rate may be set as appropriate according to the embodiment.
  • the respiratory rate of the infant measured with a measuring device or visually may be set as the normal respiratory rate.
  • the method for measuring the respiration rate at the normal time can be appropriately selected according to the embodiment.
  • the predetermined value for determining that the breathing state has become shallower than a predetermined value may be set as appropriate according to the embodiment. Further, the predetermined value may be given as a rate of decrease in the respiration rate at the normal time. For example, it is assumed that the normal respiration rate is set to 30 times per minute and the decrease rate for detecting that the respiration state is shallow is set to 30%. In this case, when the control unit 11 determines that the acquired respiratory rate is 21 times or less per minute, the respiratory state indicated by the acquired vital information 40 is greater than or equal to the normal respiratory state of the infant. Detect shallowness.
  • the control unit 11 determines that the respiration state indicated by the acquired vital information 40 is the normal respiration of the infant. You may detect that it is shallower than a predetermined state.
  • the value of the predetermined time serving as a reference for the detection may be appropriately set according to the embodiment. Accordingly, it is possible to consider the time during which the shallow breathing state or the apnea state is continued in the detection of the SIDS sign.
  • the pulse rate is measured by the measuring device 4 attached to the infant.
  • the method for measuring the pulse rate is not limited to such an example, and can be appropriately selected according to the embodiment.
  • the control unit 11 may acquire the infant's pulse rate by analyzing the captured image 3 acquired in step S101.
  • Measurement of the pulse rate by image analysis may be performed by a known method.
  • the color of the skin such as the face surface changes due to blood flow.
  • the amount of hemoglobin increases in the portion where the blood flows.
  • the blood flow decreases, the amount of hemoglobin decreases at the part where the blood flows.
  • hemoglobin has a characteristic of absorbing light such as infrared light and green light. Therefore, when the blood flow volume increases, light such as infrared light and green light is easily absorbed, and the light becomes thin in the acquired captured image 3.
  • the control unit 11 can measure the pulse rate by measuring the number of times such light shading is repeated in the acquired captured image 3.

Abstract

Provided is a system that can appropriately keep watch over an infant. The infant monitoring device according to one aspect of the present invention is provided with: an image acquisition unit that acquires photographed images that capture an infant sleeping and that include depth data that indicates the depth of each pixel in the photographed images; a vital information acquisition unit that acquires vital information that includes the pulse rate and the breathing state of the infant; a sleeping state analysis unit that extracts a person region that is the region in which the infant appears in the photographed images, references the depth of the pixels included in the extracted person region, and analyzes the body movements and the sleeping position of the infant; a warning-sign determination unit that determines, on the basis of the pulse rate, the breathing state, the body movements, and the sleeping position, whether the infant shows a warning sign of sudden infant death syndrome; and a notification unit that, when the determination results have determined that the infant shows a warning sign of sudden infant death syndrome, performs warning-sign detection notification that is for making it known that a warning sign of sudden infant death syndrome is present.

Description

乳幼児監視装置、乳幼児監視方法、及び、乳幼児監視プログラムInfant monitoring apparatus, infant monitoring method, and infant monitoring program
 本発明は、乳幼児監視装置、乳幼児監視方法、及び、乳幼児監視プログラムに関する。 The present invention relates to an infant monitoring apparatus, an infant monitoring method, and an infant monitoring program.
 近年、乳幼児が突然死する乳幼児突然死症候群(sudden infant death syndrome。以下、「SIDS」とも記載する)への対策が活発化しており、乳幼児のSIDSの兆候を検知するためのシステムが様々開発されている。 In recent years, countermeasures against sudden infant death syndrome (sudden infant death syndrome, hereinafter also referred to as “SIDS”) have been activated, and various systems for detecting signs of SIDS in infants have been developed. ing.
 例えば、特許文献1では、乳幼児のSIDSの兆候を検知するために乳幼児の呼吸運動を検出する運動検出器が提案されている。この運動検出器によれば、乳幼児が無呼吸状態になったことを検知することができ、これによって、乳幼児が睡眠している間に突然死んでしまうことを防ぐことができる。 For example, Patent Document 1 proposes a motion detector that detects the respiratory motion of an infant in order to detect signs of SIDS in the infant. According to this motion detector, it is possible to detect that the infant is in an apneic state, thereby preventing the infant from suddenly dying while sleeping.
 また、例えば、特許文献2では、カメラにより乳幼児を撮影し、これにより得られた画像データを解析することで就寝中の乳幼児を見守るシステムが提案されている。このシステムでは、得られた画像データを解析することで、SIDSに関連する乳幼児の危険度の高い動きを検出する。これによって、乳幼児のSIDSの兆候を検知することができる。 Also, for example, Patent Document 2 proposes a system for watching an infant who is sleeping by photographing the infant with a camera and analyzing image data obtained thereby. In this system, the obtained image data is analyzed to detect a high-risk movement of the infant related to SIDS. Thereby, the sign of SIDS of the infant can be detected.
特開平05-176898号公報JP 05-176898 A 特表2007-534032号公報Special table 2007-534032 gazette
 しかしながら、特許文献1に例示される運動検出器では、ピエゾ電気結晶変換器の面に加わる力に基づいて乳幼児の呼吸状態を解析するため、運動検出器が乳幼児に十分に接触していない場合には、乳幼児の呼吸状態を正確に測定することができなかった。そのため、このような運動検出器では、乳幼児のSIDSの兆候を適切に検知することができない可能性があった。加えて、このような運動検出器では、乳幼児の就寝姿勢を特定することはできず、SIDSの危険因子であるうつ伏せ寝を検知することが困難であった。 However, in the motion detector exemplified in Patent Document 1, since the respiratory state of the infant is analyzed based on the force applied to the surface of the piezoelectric crystal converter, the motion detector is not sufficiently in contact with the infant. Was unable to accurately measure the infant's respiratory status. Therefore, such a motion detector may not be able to properly detect the signs of SIDS in infants. In addition, with such a motion detector, the sleeping posture of the infant cannot be specified, and it has been difficult to detect prone sleep, which is a risk factor for SIDS.
 また、特許文献2に例示されるシステムでは、乳幼児の動きを検出するのに二次元画像が利用されている。そのため、乳幼児に対するカメラの視野方向(視点)によっては、乳幼児の動きが二次元画像に十分に反映されない場合があり、この場合には、乳幼児の動きを検出することができなかった。したがって、このようなシステムでも、SIDSの兆候を適切に検知することができない可能性があった。 In the system exemplified in Patent Document 2, a two-dimensional image is used to detect the movement of the infant. Therefore, depending on the viewing direction (viewpoint) of the camera with respect to the infant, the movement of the infant may not be sufficiently reflected in the two-dimensional image. In this case, the movement of the infant cannot be detected. Therefore, even with such a system, there is a possibility that a sign of SIDS cannot be properly detected.
 本発明は、一側面では、このような点を考慮してなされたものであり、乳幼児に現れるSIDSの兆候を適切に検知することのできるシステムを提供することを目的とする。 In one aspect, the present invention has been made in consideration of such points, and an object thereof is to provide a system that can appropriately detect a sign of SIDS appearing in an infant.
 本発明は、上述した課題を解決するために、以下の構成を採用する。 The present invention adopts the following configuration in order to solve the above-described problems.
 すなわち、本発明の一側面に係る乳幼児監視装置は、就寝している乳幼児を撮影した撮影画像であって、当該撮影画像内の各画素の深度を示す深度データを含む撮影画像を取得する画像取得部と、前記乳幼児の脈拍数及び呼吸状態を含むバイタル情報を取得するバイタル情報取得部と、取得した前記撮影画像内で前記乳幼児の写る人物領域を抽出し、抽出した前記人物領域に含まれる各画素の深度を参照して、前記乳幼児の体動及び就寝姿勢を解析する就寝状態解析部と、取得された前記バイタル情報により示される前記脈拍数及び前記呼吸状態並びに解析された前記体動及び前記就寝姿勢に基づいて、乳幼児突然死症候群になる兆候が前記乳幼児にあるか否かを判定する兆候判定部と、前記判定の結果、乳幼児突然死症候群になる兆候が前記乳幼児にあると判定された場合には、当該乳幼児突然死症候群になる兆候が前記乳幼児にあることを知らせるための兆候検知通知を行う通知部と、を備える。 That is, the infant monitoring apparatus according to one aspect of the present invention is an image acquisition that captures a captured image that is a captured image of a sleeping infant and that includes depth data indicating the depth of each pixel in the captured image. A vital information acquisition unit that acquires vital information including a pulse rate and a breathing state of the infant, and a person area in which the infant appears in the acquired captured image, and each of the extracted person areas includes With reference to the depth of the pixel, a sleeping state analyzing unit that analyzes the body movement and sleeping posture of the infant, the pulse rate and the respiratory state indicated by the acquired vital information, and the analyzed body movement and the Based on the sleeping posture, a sign determination unit that determines whether or not the infant has a sign of sudden infant death syndrome, and as a result of the determination, there is a sign of sudden infant death syndrome. If it is determined that the serial infants includes a notification unit that performs signs detection notification for notifying that the signs made to the sudden infant death syndrome in the infant, the.
 上記構成によれば、乳幼児の体動及び就寝姿勢を解析するために取得される撮影画像には各画素の深度を示す深度データが含まれている。この各画素の深度は、撮影装置から被写体までの深さを示す。より詳細には、被写体の深度は、当該被写体の表面に対して取得される。すなわち、深度データを利用すれば、実空間上における被写体表面の位置を特定することができる。そのため、この深度データを利用すれば、乳幼児に対する撮影装置の視野方向(視点)によらず、実空間(三次元空間)における乳幼児の身体的な動作を解析することができる。 According to the above configuration, the captured image acquired for analyzing the body movement and sleeping posture of the infant includes depth data indicating the depth of each pixel. The depth of each pixel indicates the depth from the photographing apparatus to the subject. More specifically, the depth of the subject is acquired with respect to the surface of the subject. That is, if the depth data is used, the position of the subject surface in the real space can be specified. Therefore, by using this depth data, it is possible to analyze the physical movement of the infant in the real space (three-dimensional space) regardless of the visual field direction (viewpoint) of the photographing apparatus with respect to the infant.
 また、当該構成によれば、乳幼児の身体的な動作(体動及び就寝姿勢)だけではなく、脈拍数及び呼吸状態を含むバイタル情報に基づいて、SIDSになる兆候が乳幼児にあるか否かを判定する。そのため、SIDSになる兆候が当該乳幼児にあるか否かの判定を多面的な視点で行うことができる。 Moreover, according to the said structure, not only the infant's physical movement (body movement and sleeping posture) but also whether the infant has signs of becoming SIDS based on vital information including the pulse rate and breathing state. judge. Therefore, it can be determined from a multifaceted viewpoint whether or not the infant has a sign of SIDS.
 したがって、これらの理由により、当該構成によれば、乳幼児に現れるSIDSの兆候を適切に検知可能なシステムを提供することができる。なお、就寝姿勢とは、乳幼児が就寝している際の姿勢であり、例えば、仰向け姿勢(仰臥位)、横向き姿勢(側臥位)、うつ伏せ姿勢(伏臥位)等である。また、バイタル情報に含まれる呼吸状態を示す情報は、実施の形態に応じて適宜選択されてよく、例えば、呼吸数、動脈血の酸素飽和度(SpO2)等である。呼吸数は、単位時間当たりの呼吸の回数を示す。また、脈拍数は、単位時間当たりの脈拍の回数を示す。呼吸の回数及び脈拍の回数それぞれを測定する時間は、実施の形態に応じて適宜設定されてよい。 Therefore, for these reasons, according to this configuration, it is possible to provide a system that can appropriately detect the signs of SIDS appearing in infants. The sleeping posture is a posture when the infant is sleeping, such as a supine posture (a supine position), a lateral posture (a lateral position), a prone posture (a prone position). The information indicating the respiratory state included in the vital information may be appropriately selected according to the embodiment, and is, for example, the respiratory rate, the oxygen saturation (SpO 2 ) of arterial blood, or the like. The respiration rate indicates the number of respirations per unit time. The pulse rate indicates the number of pulses per unit time. The time for measuring the number of breaths and the number of pulses may be appropriately set according to the embodiment.
 また、上記一側面に係る乳幼児監視装置の別の形態として、前記兆候判定部は、前記乳幼児の就寝姿勢がうつ伏せであることを検知した場合に、乳幼児突然死症候群になる兆候が前記乳幼児にあると判定してもよい。SIDSの危険因子の一つとして、うつ伏せ寝が挙げられる。当該構成に係る乳幼児監視装置は、乳幼児の就寝姿勢がうつ伏せであることを検知した場合に、乳幼児突然死症候群になる兆候が当該乳幼児にあると判定する。そのため、当該構成によれば、SIDSの危険因子の一つであるうつ伏せ寝を検知し、乳幼児がSIDSになるのを適切に防止することができる。 As another form of the infant monitoring apparatus according to the above aspect, the infant has a sign of sudden infant death syndrome when the sign determination unit detects that the infant's sleeping posture is prone May be determined. One of the risk factors for SIDS is lying down. When the infant monitoring apparatus according to the configuration detects that the sleeping posture of the infant is prone, the infant monitoring apparatus determines that the infant has a sign of sudden infant death syndrome. Therefore, according to the said structure, the prone sleep which is one of the risk factors of SIDS can be detected, and it can prevent appropriately the infant from becoming SIDS.
 また、上記一側面に係る乳幼児監視装置の別の形態として、前記兆候判定部は、取得された前記バイタル情報により示される前記脈拍数が前記乳幼児の通常時の脈拍数よりも所定値以上高く、取得された前記バイタル情報により示される前記呼吸状態が前記乳幼児の通常時の呼吸状態よりも所定以上浅く、かつ、解析された前記体動の量が前記乳幼児の通常時の体動の量よりも所定値以上少ないことを検知した場合に、乳幼児突然死症候群になる兆候が前記乳幼児にあると判定してもよい。 Further, as another form of the infant monitoring apparatus according to the above aspect, the sign determination unit, the pulse rate indicated by the acquired vital information is higher than a normal pulse rate of the infant by a predetermined value or more, The respiratory state indicated by the acquired vital information is shallower than a normal respiratory state of the infant by a predetermined amount or more, and the analyzed amount of body movement is more than the normal amount of body movement of the infant If it is detected that there is less than a predetermined value, it may be determined that the infant has a sign of sudden infant death syndrome.
 SIDSの研究において、乳幼児を就寝中に過度に温めると、当該乳幼児がSIDSを発症する可能性があることが指摘されている。睡眠中の乳幼児の身体では、睡眠が深くなるにつれて、筋肉の緊張が低下すると共に交感神経系の応答が低下する。その結果、心拍数の減少及び末梢血管の拡張が起き、乳幼児の身体からの放熱量が増加する。 In a study of SIDS, it is pointed out that if an infant is overheated while sleeping, the infant may develop SIDS. In a sleeping infant's body, as the sleep goes deeper, muscle tone decreases and the sympathetic response decreases. As a result, a decrease in heart rate and dilation of peripheral blood vessels occur, increasing the amount of heat released from the infant's body.
 この際に、乳幼児が適度な温度に維持されている場合には、放熱によって体温が低下するため、寒さを感じた乳幼児は、交感神経系の応答を亢進させ、末梢血管を収縮させ、放熱量を減少させる。同時に、当該乳幼児の心拍数は増加し、筋肉の緊張が高まり、睡眠が浅くなる。この後、覚醒するような刺激が乳幼児に加えられなければ、乳幼児の体温が上昇し、再び睡眠が深くなる。就寝中の乳幼児は、このような末梢血管の拡張と収縮とを繰り返しながら、体温の調節を行っている。 At this time, if the infant is maintained at an appropriate temperature, the body temperature decreases due to heat radiation, so the infant who felt cold enhances the response of the sympathetic nervous system, contracts the peripheral blood vessels, and releases heat. Decrease. At the same time, the infant's heart rate increases, muscle tension increases, and sleep decreases. Thereafter, if no stimulating stimulus is applied to the infant, the infant's body temperature rises and sleep becomes deeper again. Sleeping infants adjust body temperature while repeating such expansion and contraction of peripheral blood vessels.
 一方、乳幼児が過度に温められている場合には、乳幼児の身体からの放熱量が増加しても、乳幼児の体温が低下しない。そのため、乳幼児の睡眠は深いままとなり、乳幼児の交感神経系の応答は低下し続け、筋肉の緊張も低下し、刺激に対する応答が低下した状態が持続する。そうすると、乳幼児の呼吸は浅くなり(又は、無呼吸になり)、低酸素状態が進行し、最終的には、この乳幼児はSIDSになる可能性がある。 On the other hand, when the infant is overheated, the infant's body temperature does not decrease even if the amount of heat released from the infant's body increases. Therefore, the infant's sleep remains deep, the infant's response to the sympathetic nervous system continues to decrease, the muscle tone also decreases, and the state where the response to the stimulus is reduced continues. Then, the infant's breathing becomes shallow (or becomes apnea), and hypoxia progresses, eventually the infant can become SIDS.
 すなわち、乳幼児の呼吸が過度に浅くなり、脈拍数が過度に上昇し、かつ、体動の量が過度に低下した場合には、この乳幼児は、低酸素状態が進行して、SIDSを発症する可能性がある。これに対して、当該構成に係る乳幼児監視装置は、取得された脈拍数が通常時の脈拍数よりも所定値以上高く、取得された呼吸状態が通常時の呼吸状態よりも所定以上浅く、かつ、解析された体動の量が通常時の体動の量よりも所定値以上少ないことを検知した場合に、乳幼児突然死症候群になる兆候が当該乳幼児にあると判定する。そのため、当該構成によれば、就寝中の乳幼児が上記のような低酸素状態に陥っていることを検知することができ、当該乳幼児がSIDSになるのを適切に防止することができる。 That is, if an infant's breathing becomes excessively shallow, the pulse rate increases excessively, and the amount of body movement decreases excessively, the infant develops hypoxia and develops SIDS there is a possibility. On the other hand, the infant monitoring apparatus according to the configuration is such that the acquired pulse rate is higher than the normal pulse rate by a predetermined value or more, the acquired respiratory state is shallower than the normal respiratory state by a predetermined amount, and When it is detected that the analyzed body movement amount is smaller than the normal body movement amount by a predetermined value or more, it is determined that the infant has a sign of sudden infant death syndrome. Therefore, according to the said structure, it can detect that the sleeping infant falls into the above hypoxic states, and can prevent appropriately the said infant becoming SIDS.
 また、上記一側面に係る乳幼児監視装置の別の形態として、前記バイタル情報取得部は、脈拍数を測定可能に構成され、前記乳幼児に装着された測定機器から前記乳幼児の脈拍数を取得してもよい。当該構成によれば、SIDSの兆候を判定するのに利用するバイタル情報を適切に取得することができる。 As another form of the infant monitoring apparatus according to the above aspect, the vital information acquisition unit is configured to be able to measure a pulse rate, and acquires the infant's pulse rate from a measuring device attached to the infant. Also good. According to the said structure, the vital information utilized in determining the sign of SIDS can be acquired appropriately.
 また、上記一側面に係る乳幼児監視装置の別の形態として、前記測定機器は、動脈血の酸素飽和度を更に測定可能に構成されてよく、前記バイタル情報取得部は、前記呼吸状態を示す情報として、前記乳幼児の動脈血の酸素飽和度を前記測定機器から取得してもよい。そして、前記兆候判定部は、取得された前記動脈血の酸素飽和度と前記乳幼児の通常時における動脈血の酸素飽和度の基準値とを比較し、取得された前記動脈血の酸素飽和度が前記乳幼児の通常時における動脈血の酸素飽和度の基準値よりも低いと判定した場合に、取得された前記バイタル情報により示される前記呼吸状態が前記乳幼児の通常時の呼吸状態よりも所定以上浅いことを検知してもよい。当該構成によれば、SIDSの兆候を判定するのに利用するバイタル情報を適切に取得することができる。 Further, as another form of the infant monitoring apparatus according to the above aspect, the measuring device may be configured to be able to further measure the oxygen saturation of arterial blood, and the vital information acquisition unit is information indicating the respiratory state The oxygen saturation of the infant's arterial blood may be acquired from the measuring device. The sign determination unit compares the acquired oxygen saturation of the arterial blood with a reference value of the arterial oxygen saturation at the normal time of the infant, and the acquired oxygen saturation of the arterial blood is determined by the infant. When it is determined that the oxygen saturation level of arterial blood in the normal time is lower than the reference value, it is detected that the respiratory state indicated by the acquired vital information is shallower than a predetermined level than the normal respiratory state of the infant May be. According to the said structure, the vital information utilized in determining the sign of SIDS can be acquired appropriately.
 また、上記一側面に係る乳幼児監視装置の別の形態として、前記測定機器は、呼吸数を更に測定可能に構成されてよく、前記バイタル情報取得部は、前記呼吸状態を示す情報として、前記乳幼児の呼吸数を前記測定機器から取得してもよい。そして、前記兆候判定部は、取得された呼吸数と前記乳幼児の通常時の呼吸数とを比較し、取得された呼吸数が前記乳幼児の通常時の呼吸数よりも所定値以上低いと判定した場合に、取得された前記バイタル情報により示される前記呼吸状態が前記乳幼児の通常時の呼吸状態よりも所定以上浅いことを検知してもよい。当該構成によれば、SIDSの兆候を判定するのに利用するバイタル情報を適切に取得することができる。 As another form of the infant monitoring apparatus according to the above aspect, the measuring device may be configured to be able to further measure a respiratory rate, and the vital information acquisition unit may use the infant as the information indicating the respiratory state. May be obtained from the measuring device. Then, the sign determination unit compares the acquired respiration rate with the normal breathing rate of the infant and determines that the acquired respiration rate is lower than a predetermined value than the normal respiration rate of the infant In this case, it may be detected that the respiratory state indicated by the acquired vital information is shallower than a predetermined level than the normal respiratory state of the infant. According to the said structure, the vital information utilized in determining the sign of SIDS can be acquired appropriately.
 また、上記一側面に係る乳幼児監視装置の別の形態として、前記バイタル情報取得部は、前記撮影画像内の前記人物領域に含まれる各画素の深度を参照して、前記乳幼児の胸郭の変動回数を計測することで、前記呼吸状態を示す情報として、前記乳幼児の呼吸数を取得してもよい。そして、前記兆候判定部は、取得された呼吸数と前記乳幼児の通常時の呼吸数とを比較し、取得された呼吸数が前記乳幼児の通常時の呼吸数よりも所定値以上低いと判定した場合に、取得された前記バイタル情報により示される前記呼吸状態が前記乳幼児の通常時の呼吸状態よりも所定以上浅いことを検知してもよい。当該構成によれば、乳幼児の呼吸状態を示す情報を非侵襲に取得することができる。そのため、乳幼児に装着する機器の数を減らすことができ、そのような機器の配線が乳幼児の首に絡まる等の事故の発生する可能性を低減することができる。 As another form of the infant monitoring apparatus according to the above aspect, the vital information acquisition unit refers to the depth of each pixel included in the person area in the captured image, and the number of changes in the infant's rib cage By measuring the respiratory rate of the infant as information indicating the respiratory state. Then, the sign determination unit compares the acquired respiration rate with the normal breathing rate of the infant and determines that the acquired respiration rate is lower than a predetermined value than the normal respiration rate of the infant In this case, it may be detected that the respiratory state indicated by the acquired vital information is shallower than a predetermined level than the normal respiratory state of the infant. According to the said structure, the information which shows the infant's respiratory condition can be acquired noninvasively. Therefore, it is possible to reduce the number of devices attached to the infant and to reduce the possibility of an accident such as the wiring of such devices being entangled in the infant's neck.
 なお、上記各形態に係る乳幼児監視装置の別の形態として、以上の各構成を実現する情報処理システムであってもよいし、情報処理方法であってもよいし、プログラムであってもよいし、このようなプログラムを記録したコンピュータその他装置、機械等が読み取り可能な記憶媒体であってもよい。ここで、コンピュータ等が読み取り可能な記録媒体とは、プログラム等の情報を、電気的、磁気的、光学的、機械的、又は、化学的作用によって蓄積する媒体である。また、情報処理システムは、1又は複数の情報処理装置によって実現されてもよい。 In addition, as another form of the infant monitoring apparatus according to each of the above forms, an information processing system that realizes each of the above configurations, an information processing method, or a program may be used. It may be a storage medium that can be read by a computer, other devices, machines, or the like in which such a program is recorded. Here, the computer-readable recording medium is a medium that stores information such as programs by electrical, magnetic, optical, mechanical, or chemical action. The information processing system may be realized by one or a plurality of information processing devices.
 例えば、本発明の一側面に係る乳幼児監視方法は、コンピュータが、就寝している乳幼児を撮影した撮影画像であって、当該撮影画像内の各画素の深度を示す深度データを含む撮影画像を取得するステップと、前記乳幼児の脈拍数及び呼吸状態を含むバイタル情報を取得するステップと、取得した前記撮影画像内で前記乳幼児の写る人物領域を抽出するステップと、抽出した前記人物領域に含まれる各画素の深度を参照して、前記乳幼児の体動及び就寝姿勢を解析するステップと、取得された前記バイタル情報により示される前記脈拍数及び前記呼吸状態並びに解析された前記体動及び前記就寝姿勢に基づいて、乳幼児突然死症候群になる兆候が前記乳幼児にあるか否かを判定するステップと、前記判定の結果、乳幼児突然死症候群になる兆候が前記乳幼児にあると判定された場合には、当該乳幼児突然死症候群になる兆候が前記乳幼児にあることを知らせるための兆候検知通知を行うステップと、を実行する情報処理方法である。 For example, in the infant monitoring method according to one aspect of the present invention, a computer captures a captured image obtained by capturing a sleeping infant and includes depth data indicating the depth of each pixel in the captured image. A step of acquiring vital information including a pulse rate and a breathing state of the infant, a step of extracting a person region in which the infant is captured in the acquired captured image, and each of the steps included in the extracted person region The step of analyzing the body movement and sleeping posture of the infant with reference to the pixel depth, the pulse rate and the breathing state indicated by the acquired vital information, and the analyzed body movement and sleeping posture. And determining whether or not the infant has a sign of sudden infant death syndrome, and the result of the determination is sudden infant death syndrome. If the weather is determined to be in the infant is an information processing method indications made to the sudden infant death syndrome executes, and performing signs detection notification for notifying that it is in the infant.
 また、例えば、本発明の一側面に係る乳幼児監視プログラムは、コンピュータに、就寝している乳幼児を撮影した撮影画像であって、当該撮影画像内の各画素の深度を示す深度データを含む撮影画像を取得するステップと、前記乳幼児の脈拍数及び呼吸状態を含むバイタル情報を取得するステップと、取得した前記撮影画像内で前記乳幼児の写る人物領域を抽出するステップと、抽出した前記人物領域に含まれる各画素の深度を参照して、前記乳幼児の体動及び就寝姿勢を解析するステップと、取得された前記バイタル情報により示される前記脈拍数及び前記呼吸状態並びに解析された前記体動及び前記就寝姿勢に基づいて、乳幼児突然死症候群になる兆候が前記乳幼児にあるか否かを判定するステップと、前記判定の結果、乳幼児突然死症候群になる兆候が前記乳幼児にあると判定された場合には、当該乳幼児突然死症候群になる兆候が前記乳幼児にあることを知らせるための兆候検知通知を行うステップと、を実行させるためのプログラムである。 Further, for example, an infant monitoring program according to one aspect of the present invention is a captured image obtained by capturing a sleeping infant on a computer, and includes a captured image including depth data indicating the depth of each pixel in the captured image. , Acquiring vital information including the infant's pulse rate and breathing state, extracting a person area in which the infant appears in the acquired captured image, and including the extracted person area Analyzing the body movement and sleeping posture of the infant with reference to the depth of each pixel, the pulse rate and the respiratory state indicated by the acquired vital information, and the analyzed body movement and the sleeping state Determining whether the infant has a sign of sudden infant death syndrome based on the posture; and, as a result of the determination, sudden infant death A step of performing a sign detection notification for notifying that the infant has a sign of sudden infant death syndrome when it is determined that there is a sign of a symptom group in the infant. It is.
 本発明によれば、SIDSの兆候を適切に検知することのできるシステムを提供することが可能である。 According to the present invention, it is possible to provide a system capable of appropriately detecting a sign of SIDS.
図1は、本発明が適用される場面を模式的に例示する。FIG. 1 schematically illustrates a scene where the present invention is applied. 図2は、実施の形態に係る乳幼児監視装置のハードウェア構成を例示する。FIG. 2 illustrates a hardware configuration of the infant monitoring apparatus according to the embodiment. 図3は、実施の形態に係るカメラにより取得される深度と被写体との関係を例示する。FIG. 3 illustrates the relationship between the depth acquired by the camera according to the embodiment and the subject. 図4は、実施の形態に係る乳幼児監視装置の機能構成を例示する。FIG. 4 illustrates a functional configuration of the infant monitoring apparatus according to the embodiment. 図5は、実施の形態に係る乳幼児監視装置による乳幼児の見守りに関する処理手順を例示する。FIG. 5 exemplifies a processing procedure related to watching an infant by the infant monitoring apparatus according to the embodiment. 図6は、実施の形態に係るカメラにより取得される撮影画像を例示する。FIG. 6 illustrates a captured image acquired by the camera according to the embodiment. 図7は、実施の形態に係る撮影画像内の座標関係を例示する。FIG. 7 illustrates the coordinate relationship in the captured image according to the embodiment. 図8は、実施の形態に係る撮影画像の任意の点(画素)とカメラとの実空間内での位置関係を例示する。FIG. 8 illustrates the positional relationship between an arbitrary point (pixel) of the captured image and the camera in the real space according to the embodiment.
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。ただし、以下で説明する本実施形態は、あらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、本発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。なお、本実施形態において登場するデータを自然言語により説明しているが、より具体的には、コンピュータが認識可能な疑似言語、コマンド、パラメタ、マシン語等で指定される。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter also referred to as “this embodiment”) will be described with reference to the drawings. However, this embodiment described below is only an illustration of the present invention in all respects. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention. That is, in implementing the present invention, a specific configuration according to the embodiment may be adopted as appropriate. Although data appearing in the present embodiment is described in a natural language, more specifically, it is specified by a pseudo language, a command, a parameter, a machine language, or the like that can be recognized by a computer.
 §1 適用場面
 まず、図1を用いて、本発明が適用される場面について説明する。図1は、本実施形態に係る乳幼児監視装置1が用いられる場面の一例を示す。本実施形態に係る乳幼児監視装置1は、カメラ2によって乳幼児を撮影し、これにより得られた撮影画像3を解析することで、撮影画像3に写る乳幼児の状態を監視し、当該乳幼児の見守りを行う情報処理装置である。そのため、本実施形態に係る乳幼児監視装置1は、見守りの対象となる乳幼児を見守る場面で広く利用可能である。
§1 Application scene First, the scene where the present invention is applied will be described with reference to FIG. FIG. 1 shows an example of a scene where the infant monitoring apparatus 1 according to the present embodiment is used. The infant monitoring apparatus 1 according to the present embodiment photographs an infant with the camera 2 and analyzes the photographed image 3 obtained thereby to monitor the infant's state in the photographed image 3 and to watch over the infant. An information processing apparatus to perform. Therefore, the infant monitoring apparatus 1 according to the present embodiment can be widely used in a scene where an infant to be watched over is watched over.
 具体的には、まず、本実施形態に係る乳幼児監視装置1は、就寝している乳幼児を撮影した撮影画像3をカメラ2から取得する。図1で例示される場面では、乳幼児(見守り対象者)はカメラ2の撮影範囲内のベッド上で就寝している。カメラ2は、このような乳幼児を撮影するために設置されている。ただし、乳幼児は、常に就寝している必要はなく、一時的に覚醒していてもよい。 Specifically, first, the infant monitoring apparatus 1 according to the present embodiment acquires a photographed image 3 obtained by photographing a sleeping infant from the camera 2. In the scene illustrated in FIG. 1, the infant (person to be watched over) is sleeping on the bed within the shooting range of the camera 2. The camera 2 is installed to photograph such an infant. However, the infant need not always go to bed, and may be temporarily awakened.
 カメラ2は、撮影画像3内の各画素に対応する深度を取得可能に構成される。本実施形態では、カメラ2は、各画素の深度を取得可能なように、被写体の深度を測定する深度センサ(後述する深度センサ21)を含んでいる。本実施形態に係る乳幼児監視装置1は、このようなカメラ2と接続し、状態を監視する対象となる乳幼児を撮影した撮影画像3を取得する。 The camera 2 is configured to be able to acquire the depth corresponding to each pixel in the captured image 3. In the present embodiment, the camera 2 includes a depth sensor (a depth sensor 21 described later) that measures the depth of the subject so that the depth of each pixel can be acquired. The infant monitoring apparatus 1 according to the present embodiment is connected to such a camera 2 and acquires a photographed image 3 obtained by photographing an infant to be monitored.
 取得される撮影画像3は、後述する図6に例示されるように、画素毎に得られる深度を示す深度データを含んでいる。この撮影画像3は、撮影範囲内の被写体の深度を示すデータを含んでいればよく、そのデータ形式は実施の形態に応じて適宜選択可能である。例えば、撮影画像3は、撮影範囲内の被写体の深度が二次元状に分布したデータ(例えば、深度マップ)であってもよい。また、例えば、撮影画像3は、深度データとともに、RGB画像を含んでもよい。更に、例えば、撮影画像3は、乳幼児の身体的な動作を解析可能であれば、動画像で構成されてもよいし、1又は複数枚の静止画像で構成されてもよい。 The acquired captured image 3 includes depth data indicating the depth obtained for each pixel, as illustrated in FIG. The captured image 3 only needs to include data indicating the depth of the subject within the imaging range, and the data format can be appropriately selected according to the embodiment. For example, the captured image 3 may be data (for example, a depth map) in which the depth of the subject within the imaging range is two-dimensionally distributed. For example, the captured image 3 may include an RGB image together with the depth data. Furthermore, for example, the captured image 3 may be configured with a moving image or one or a plurality of still images as long as the physical motion of the infant can be analyzed.
 また、本実施形態に係る乳幼児監視装置1は、乳幼児の脈拍数及び呼吸状態を含むバイタル情報を取得する。脈拍数及び呼吸状態は、任意の方法で測定されてよい。例えば、撮影画像3を画像解析することで、脈拍数及び呼吸状態の少なくとも一方が測定されてもよい。また、脈拍数及び呼吸状態の少なくとも一方の測定に、当該脈拍数及び呼吸状態の少なくとも一方を測定可能な測定機器が利用されてもよい。図1の場面では、乳幼児に装着された測定機器4によって、脈拍数及び呼吸状態が測定される。本実施形態に係る乳幼児監視装置1は、測定機器4からバイタル情報を取得する。 In addition, the infant monitoring apparatus 1 according to the present embodiment acquires vital information including the infant's pulse rate and respiratory state. Pulse rate and respiratory status may be measured in any way. For example, at least one of the pulse rate and the respiratory state may be measured by analyzing the captured image 3. In addition, a measurement device capable of measuring at least one of the pulse rate and the respiratory state may be used for measuring at least one of the pulse rate and the respiratory state. In the scene of FIG. 1, the pulse rate and the respiratory state are measured by the measuring device 4 attached to the infant. The infant monitoring apparatus 1 according to the present embodiment acquires vital information from the measuring device 4.
 次に、乳幼児監視装置1は、取得した撮影画像3内において乳幼児の写る人物領域を抽出する。上記のとおり、撮影画像3は、各画素の深度を示す深度データを含んでいる。そのため、乳幼児監視装置1は、この深度データを利用することで、撮影画像3内に写る被写体の実空間上の位置を特定することができる。より詳細には、被写体の深度は、当該被写体の表面に対して取得される。すなわち、乳幼児監視装置1は、深度データの示す各画素の深度を参照することで、実空間上における被写体表面の位置を特定することができる。 Next, the infant monitoring apparatus 1 extracts a person area in which the infant appears in the acquired photographed image 3. As described above, the captured image 3 includes depth data indicating the depth of each pixel. Therefore, the infant monitoring apparatus 1 can specify the position of the subject in the captured image 3 in the real space by using this depth data. More specifically, the depth of the subject is acquired with respect to the surface of the subject. That is, the infant monitoring apparatus 1 can identify the position of the subject surface in the real space by referring to the depth of each pixel indicated by the depth data.
 そこで、乳幼児監視装置1は、抽出した人物領域に含まれる各画素の深度を参照して、撮影画像3に写る乳幼児の体動及び就寝姿勢を解析する。更に、乳幼児監視装置1は、取得されたバイタル情報により示される脈拍数及び呼吸状態並びに解析された体動及び就寝姿勢に基づいて、当該乳幼児にSIDSになる兆候があるか否かを判定する。 Therefore, the infant monitoring apparatus 1 refers to the depth of each pixel included in the extracted person area and analyzes the body movement and sleeping posture of the infant shown in the photographed image 3. Furthermore, the infant monitoring apparatus 1 determines whether or not the infant has a sign of SIDS based on the pulse rate and respiratory state indicated by the acquired vital information and the analyzed body movement and sleeping posture.
 そして、乳幼児監視装置1は、当該判定の結果、SIDSになる兆候が乳幼児にあると判定された場合には、SIDSになる兆候が当該乳幼児にあることを知らせるための兆候検知通知を行う。すなわち、乳幼児監視装置1は、撮影画像3に写る乳幼児にSIDSの兆候が現れた際には、当該SIDSの兆候を知らせるための警報を行う。これによって、本実施形態に係る乳幼児監視装置1の利用者は、カメラ2の撮影範囲に存在する乳幼児にSIDSの兆候が現れたことを知ることができ、当該乳幼児を適切に見守ることができる。 If the infant monitoring apparatus 1 determines that there is a sign of SIDS in the infant as a result of the determination, the infant monitoring apparatus 1 performs a sign detection notification for notifying that the infant has a sign of SIDS. In other words, when a sign of SIDS appears in the infant imaged in the captured image 3, the infant monitoring apparatus 1 issues a warning for notifying the SIDS sign. Thereby, the user of the infant monitoring apparatus 1 according to the present embodiment can know that the sign of SIDS has appeared in the infant existing in the imaging range of the camera 2, and can appropriately watch the infant.
 このように、本実施形態によれば、各画素の深度を示す深度データを含む撮影画像3に基づいて乳幼児の身体的な動作(体動及び就寝姿勢)が解析される。上記のとおり、各画素の深度は被写体表面に対して取得されるため、深度データを利用することで、実空間上の被写体表面の位置を特定することができる。そのため、この深度データを利用すれば、乳幼児に対するカメラ2の視野方向(視点)によらず、実空間(三次元空間)における乳幼児の身体的な動作を解析することができる。 As described above, according to the present embodiment, the physical movement (body movement and sleeping posture) of the infant is analyzed based on the captured image 3 including the depth data indicating the depth of each pixel. As described above, since the depth of each pixel is acquired with respect to the subject surface, the position of the subject surface in the real space can be specified by using the depth data. Therefore, by using this depth data, it is possible to analyze the physical movement of the infant in the real space (three-dimensional space) regardless of the viewing direction (viewpoint) of the camera 2 with respect to the infant.
 また、本実施形態に係る乳幼児監視装置1は、乳幼児の身体的な動作(体動及び就寝姿勢)だけではなく、脈拍数及び呼吸状態を含むバイタル情報に基づいて、SIDSになる兆候が乳幼児にあるか否かを判定する。そのため、本実施形態によれば、SIDSになる兆候が当該乳幼児にあるか否かの判定を多面的な視点で行うことができる。 In addition, the infant monitoring apparatus 1 according to the present embodiment provides an infant with signs of becoming SIDS based on vital information including not only the physical movement (body movement and sleeping posture) of the infant but also the pulse rate and respiratory state. It is determined whether or not there is. Therefore, according to the present embodiment, it is possible to determine from the multifaceted viewpoint whether or not the infant has a sign of SIDS.
 したがって、本実施形態によれば、SIDSの兆候を適切に検知することのでき、就寝している乳幼児がSIDSを発症してしまうのを防止することができる。 Therefore, according to the present embodiment, a sign of SIDS can be appropriately detected, and a sleeping infant can be prevented from developing SIDS.
 なお、就寝姿勢とは、乳幼児が就寝している際の姿勢であり、例えば、仰向け姿勢(仰臥位)、横向き姿勢(側臥位)、うつ伏せ姿勢(伏臥位)等である。また、バイタル情報に含まれる呼吸状態を示す情報は、実施の形態に応じて適宜選択されてよく、例えば、呼吸数、動脈血の酸素飽和度(SpO2)等である。呼吸数は、単位時間当たりの呼吸の回数を示す。また、脈拍数は、単位時間当たりの脈拍の回数を示す。呼吸の回数及び脈拍の回数それぞれを測定する時間は、実施の形態に応じて適宜設定されてよい。 The sleeping posture is a posture when the infant is sleeping, such as a supine posture (a supine position), a lateral posture (a lateral position), a prone posture (a prone position). The information indicating the respiratory state included in the vital information may be appropriately selected according to the embodiment, and is, for example, the respiratory rate, the oxygen saturation (SpO 2 ) of arterial blood, or the like. The respiration rate indicates the number of respirations per unit time. The pulse rate indicates the number of pulses per unit time. The time for measuring the number of breaths and the number of pulses may be appropriately set according to the embodiment.
 また、乳幼児監視装置1の配置場所は、カメラ2から撮影画像3を取得可能で、かつ、測定機器4からバイタル情報を取得可能あれば、実施の形態に応じて適宜決定可能である。例えば、乳幼児監視装置1は、図1に例示されるように、カメラ2に近接するように配置されてもよい。また、乳幼児監視装置1は、無線及び/又は有線のネットワークを介してカメラ2及び測定機器4と接続してもよく、当該カメラ2及び測定機器4とは全く異なる場所に配置されてもよい。 Also, the location of the infant monitoring device 1 can be determined as appropriate according to the embodiment as long as the captured image 3 can be acquired from the camera 2 and vital information can be acquired from the measuring device 4. For example, the infant monitoring apparatus 1 may be disposed so as to be close to the camera 2 as illustrated in FIG. In addition, the infant monitoring apparatus 1 may be connected to the camera 2 and the measuring device 4 via a wireless and / or wired network, and may be arranged at a place completely different from the camera 2 and the measuring device 4.
 §2 構成例
 <ハードウェア構成>
 次に、図2を用いて、乳幼児監視装置1のハードウェア構成を説明する。図2は、本実施形態に係る乳幼児監視装置1のハードウェア構成を例示する。乳幼児監視装置1は、図2に例示されるように、CPU、RAM(Random Access Memory)、ROM(Read Only Memory)等を含む制御部11、制御部11で実行するプログラム5等を記憶する記憶部12、画像の表示と入力を行うためのタッチパネルディスプレイ13、音声を出力するためのスピーカ14、外部装置と接続するための外部インタフェース15、ネットワークを介して通信を行うための通信インタフェース16、及び記憶媒体6に記憶されたプログラムを読み込むためのドライブ17が電気的に接続されたコンピュータである。図2では、通信インタフェース及び外部インタフェースは、それぞれ、「通信I/F」及び「外部I/F」と記載されている。
§2 Configuration example <Hardware configuration>
Next, the hardware configuration of the infant monitoring apparatus 1 will be described with reference to FIG. FIG. 2 illustrates a hardware configuration of the infant monitoring apparatus 1 according to the present embodiment. As illustrated in FIG. 2, the infant monitoring apparatus 1 stores a control unit 11 including a CPU, a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, a program 5 executed by the control unit 11, and the like. Unit 12, a touch panel display 13 for displaying and inputting images, a speaker 14 for outputting sound, an external interface 15 for connecting to an external device, a communication interface 16 for communicating via a network, and This is a computer to which a drive 17 for reading a program stored in the storage medium 6 is electrically connected. In FIG. 2, the communication interface and the external interface are described as “communication I / F” and “external I / F”, respectively.
 なお、乳幼児監視装置1の具体的なハードウェア構成に関して、実施形態に応じて、適宜、構成要素の省略、置換、及び追加が可能である。例えば、制御部11は、複数のプロセッサを含んでもよい。また、例えば、タッチパネルディスプレイ13は、それぞれ別個独立に接続される入力装置及び表示装置に置き換えられてもよい。また、例えば、スピーカ14は省略されてもよい。また、例えば、スピーカ14は、乳幼児監視装置1の内部装置としてではなく、外部装置として乳幼児監視装置1に接続されてもよい。また、乳幼児監視装置1はカメラ2を内蔵してもよい。 It should be noted that regarding the specific hardware configuration of the infant monitoring apparatus 1, the components can be omitted, replaced, and added as appropriate according to the embodiment. For example, the control unit 11 may include a plurality of processors. In addition, for example, the touch panel display 13 may be replaced with an input device and a display device that are separately connected independently. For example, the speaker 14 may be omitted. Further, for example, the speaker 14 may be connected to the infant monitoring apparatus 1 as an external apparatus instead of as an internal apparatus of the infant monitoring apparatus 1. The infant monitoring apparatus 1 may incorporate a camera 2.
 本実施形態では、カメラ2及び測定機器4が、外部インタフェース15を介して乳幼児監視装置1に接続している。このうち、カメラ2は、監視する対象となる乳幼児の周辺に設置され、当該乳幼児を撮影する。カメラ2の設置場所は、実施の形態に応じて適宜選択されてよい。カメラ2は、例えば、乳幼児が就寝するベッドの柵等に当該乳幼児を撮影可能なように配置されてよい。 In the present embodiment, the camera 2 and the measuring device 4 are connected to the infant monitoring apparatus 1 via the external interface 15. Among these, the camera 2 is installed around the infant to be monitored and photographs the infant. The installation location of the camera 2 may be appropriately selected according to the embodiment. The camera 2 may be arrange | positioned so that the said infant can be image | photographed on the fence etc. of the bed where an infant sleeps, for example.
 このカメラ2は、深度データを含む撮影画像3を撮影するために、被写体の深度を測定するための深度センサ21を備えている。この深度センサ21の種類及び測定方法は、実施の形態に応じて適宜選択されてよい。例えば、深度センサ21として、TOF(Time Of Flight)方式等のセンサを挙げることができる。 The camera 2 includes a depth sensor 21 for measuring the depth of the subject in order to capture the captured image 3 including depth data. The type and measurement method of the depth sensor 21 may be appropriately selected according to the embodiment. For example, the depth sensor 21 may be a sensor of TOF (TimeFOf Flight) method or the like.
 ただし、カメラ2の構成は、深度を取得可能であれば、このような例に限定されず、実施の形態に応じて適宜選択可能である。例えば、カメラ2は、撮影範囲内の被写体の深度を特定することが可能なように、ステレオカメラであってもよい。ステレオカメラは、撮影範囲内の被写体を複数の異なる方向から撮影するため、当該被写体の深度を記録することができる。また、カメラ2は、撮影範囲内の被写体の深度を特定可能であれば、深度センサ21単体に置き換わってもよい。 However, the configuration of the camera 2 is not limited to such an example as long as the depth can be acquired, and can be appropriately selected according to the embodiment. For example, the camera 2 may be a stereo camera so that the depth of the subject within the shooting range can be specified. Since the stereo camera shoots the subject within the shooting range from a plurality of different directions, the depth of the subject can be recorded. Further, the camera 2 may be replaced with the depth sensor 21 as long as the depth of the subject within the shooting range can be specified.
 なお、就寝している乳幼児を撮影するため、当該乳幼児を撮影する場所は基本的には暗いものと想定される。そこで、撮影場所の明るさに影響されずに深度を取得可能なように、深度センサ21は、赤外線の照射に基づいて深度を測定する赤外線深度センサであってもよい。このような赤外線深度センサを含む比較的安価な撮影装置として、例えば、マイクロソフト社のKinect、ASUS社のXtion、PrimeSense社のCARMINEを挙げることができる。 In addition, in order to photograph a sleeping infant, it is assumed that the place where the infant is photographed is basically dark. Therefore, the depth sensor 21 may be an infrared depth sensor that measures the depth based on infrared irradiation so that the depth can be acquired without being affected by the brightness of the shooting location. Examples of relatively inexpensive imaging apparatuses including such an infrared depth sensor include Kinect from Microsoft, Xtion from ASUS, and CARMINE from PrimeSense.
 ここで、図3を用いて、本実施形態に係る深度センサ21によって測定される深度を詳細に説明する。図3は、本実施形態に係る深度として扱うことが可能な距離の一例を示す。当該深度は、被写体の深さを表現する。図3で例示されるように、被写体の深さは、例えば、カメラ2と対象物との直線の距離Aで表現されてもよいし、カメラ2の被写体に対する水平軸から下ろした垂線の距離Bで表現されてもよい。 Here, the depth measured by the depth sensor 21 according to the present embodiment will be described in detail with reference to FIG. FIG. 3 shows an example of a distance that can be handled as the depth according to the present embodiment. The depth represents the depth of the subject. As exemplified in FIG. 3, the depth of the subject may be expressed by, for example, a straight line distance A between the camera 2 and the object, or a perpendicular distance B from the horizontal axis with respect to the subject of the camera 2. It may be expressed as
 すなわち、本実施形態に係る深度は、距離Aであってもよいし、距離Bであってもよい。本実施形態では、距離Bを深度として扱うことにする。ただし、距離A及び距離Bは、例えば、三平方の定理等に基づいて、互いに変換可能である。そのため、距離Bを用いた以降の説明は、そのまま、距離Aに適用することが可能である。本実施形態に係る乳幼児監視装置1は、このような深度を利用することで、乳幼児の状態を解析することができる。 That is, the depth according to the present embodiment may be the distance A or the distance B. In the present embodiment, the distance B is treated as the depth. However, the distance A and the distance B can be converted into each other based on, for example, the three-square theorem. Therefore, the following description using the distance B can be applied to the distance A as it is. The infant monitoring apparatus 1 according to the present embodiment can analyze the state of the infant by using such a depth.
 また、測定機器4は、脈拍数及び呼吸状態の少なくとも一方を測定可能に構成され、乳幼児の足底等の身体部位に装着される。脈拍数及び呼吸状態は、同一の機器で測定されてもよいし、別個の機器でそれぞれ測定されてもよい。また、呼吸状態を表す指標は、乳幼児の呼吸の状態を特定可能であれば、実施の形態に応じて適宜選択されてよい。呼吸状態を表す指標は、例えば、呼吸数、動脈血の酸素飽和度(SpO2)等である。呼吸状態は、複数の指標で表されてもよい。例えば、呼吸数及び動脈血の酸素飽和度を両方用いて、呼吸状態が示されてもよい。 The measuring device 4 is configured to be able to measure at least one of a pulse rate and a respiratory state, and is attached to a body part such as a foot sole of an infant. The pulse rate and the respiratory state may be measured with the same device, or may be measured with separate devices. In addition, the index indicating the respiratory state may be appropriately selected according to the embodiment as long as the respiratory state of the infant can be specified. The index indicating the respiratory state is, for example, the respiratory rate, arterial oxygen saturation (SpO 2 ), or the like. The respiratory state may be represented by a plurality of indices. For example, both respiratory rate and arterial oxygen saturation may be used to indicate respiratory status.
 なお、このような測定機器4には、パルスオキシメータ、呼吸センサ、カプノメータ等の公知の測定機器が利用されてもよい。例えば、脈拍数及び動脈血の酸素飽和度を測定可能な測定機器として、コヴィディエン社製のネルコアオキシセンサIIIを挙げることができる。また、例えば、脈拍数及び呼吸数を測定可能な測定機器として、コヴィディエン社製のパルスオキシ・カプノメータを挙げることができる。以下で説明する本実施形態の一形態では、測定機器4として、脈拍数及び動脈血の酸素飽和度を測定可能な公知のパルスオキシメータを利用するものとする。 It should be noted that a known measuring device such as a pulse oximeter, a respiration sensor, or a capnometer may be used as such a measuring device 4. For example, as a measuring instrument capable of measuring the pulse rate and the oxygen saturation of arterial blood, Nellcor Oxysensor III manufactured by Covidien may be mentioned. Further, for example, a pulse oxy capnometer manufactured by Covidien Co., Ltd. can be used as a measuring instrument capable of measuring the pulse rate and the respiratory rate. In one form of this embodiment described below, a known pulse oximeter capable of measuring the pulse rate and arterial blood oxygen saturation is used as the measuring device 4.
 また、本実施形態では、記憶部12は、プログラム5を格納する。このプログラム5は、乳幼児監視装置1に後述する乳幼児の見守りに関する各処理を実行させるためのプログラムであり、本発明の「乳幼児監視プログラム」に相当する。このプログラム5は記憶媒体6に記録されていてもよい。 In the present embodiment, the storage unit 12 stores the program 5. The program 5 is a program for causing the infant monitoring apparatus 1 to execute each process related to the infant watching described later, and corresponds to the “infant monitoring program” of the present invention. The program 5 may be recorded on the storage medium 6.
 記憶媒体6は、コンピュータその他装置、機械等が記録されたプログラム等の情報を読み取り可能なように、当該プログラム等の情報を、電気的、磁気的、光学的、機械的又は化学的作用によって蓄積する媒体である。記憶媒体6は、本発明の「記憶媒体」に相当する。なお、図2は、記憶媒体6の一例として、CD(Compact Disk)、DVD(Digital Versatile Disk)等のディスク型の記憶媒体を例示している。しかしながら、記憶媒体6の種類は、ディスク型に限定される訳ではなく、ディスク型以外であってもよい。ディスク型以外の記憶媒体として、例えば、フラッシュメモリ等の半導体メモリを挙げることができる。 The storage medium 6 stores information such as a program by an electrical, magnetic, optical, mechanical, or chemical action so that information such as a program recorded by a computer or other device or machine can be read. It is a medium to do. The storage medium 6 corresponds to the “storage medium” of the present invention. 2 illustrates a disk-type storage medium such as a CD (Compact Disk) or a DVD (Digital Versatile Disk) as an example of the storage medium 6. However, the type of the storage medium 6 is not limited to the disk type and may be other than the disk type. Examples of the storage medium other than the disk type include a semiconductor memory such as a flash memory.
 なお、このような乳幼児監視装置1は、例えば、提供されるサービス専用に設計された装置であってもよいし、PC(Personal Computer)、タブレット端末等の汎用の装置であってもよい。更に、乳幼児監視装置1は、1又は複数のコンピュータにより実装されてもよい。 Note that such an infant monitoring apparatus 1 may be, for example, an apparatus designed exclusively for the provided service, or a general-purpose apparatus such as a PC (Personal Computer) or a tablet terminal. Furthermore, the infant monitoring apparatus 1 may be implemented by one or a plurality of computers.
 <機能構成例>
 次に、図4を用いて、乳幼児監視装置1の機能構成を説明する。図4は、本実施形態に係る乳幼児監視装置1の機能構成を例示する。本実施形態では、乳幼児監視装置1の制御部11は、記憶部12に記憶されたプログラム5をRAMに展開する。そして、制御部11は、RAMに展開されたプログラム5をCPUにより解釈及び実行して、各構成要素を制御する。これにより、乳幼児監視装置1は、画像取得部51、バイタル情報取得部52、就寝状態解析部53、兆候判定部54及び通知部55を備えるコンピュータとして機能する。
<Functional configuration example>
Next, the functional configuration of the infant monitoring apparatus 1 will be described with reference to FIG. FIG. 4 illustrates a functional configuration of the infant monitoring apparatus 1 according to the present embodiment. In the present embodiment, the control unit 11 of the infant monitoring apparatus 1 develops the program 5 stored in the storage unit 12 in the RAM. And the control part 11 interprets and runs the program 5 expand | deployed by RAM by CPU, and controls each component. Thereby, the infant monitoring apparatus 1 functions as a computer including the image acquisition unit 51, the vital information acquisition unit 52, the sleeping state analysis unit 53, the sign determination unit 54, and the notification unit 55.
 画像取得部51は、カメラ2によって撮影された撮影画像3を取得する。また、バイタル情報取得部52は、測定機器4によって測定された脈拍数及び呼吸状態を含むバイタル情報40を取得する。取得される撮影画像3には、各画素の深度を示す深度データが含まれている。上記のとおり、この深度データによれば、撮影画像3内に写る被写体の実空間上の位置、より詳細には、実空間上における被写体表面の位置を特定することができる。 The image acquisition unit 51 acquires the captured image 3 captured by the camera 2. The vital information acquisition unit 52 acquires vital information 40 including the pulse rate and the respiratory state measured by the measuring device 4. The acquired captured image 3 includes depth data indicating the depth of each pixel. As described above, according to the depth data, the position of the subject in the captured image 3 in the real space, more specifically, the position of the subject surface in the real space can be specified.
 そこで、就寝状態解析部53は、取得した撮影画像3内で、乳幼児の写る人物領域を抽出する。また、就寝状態解析部53は、抽出した人物領域に含まれる各画素の深度を参照して、撮影画像3に写る乳幼児の体動及び就寝姿勢を解析する。 Therefore, the sleeping state analyzing unit 53 extracts a person region in which the infant is photographed in the acquired photographed image 3. In addition, the sleeping state analysis unit 53 refers to the depth of each pixel included in the extracted person region, and analyzes the body movement and sleeping posture of the infant captured in the captured image 3.
 更に、兆候判定部54は、取得されたバイタル情報40に含まれる脈拍数及び呼吸状態並びに解析された体動及び就寝姿勢に基づいて、SIDSになる兆候が撮影画像3に写る乳幼児にあるか否かを判定する。そして、当該判定の結果、SIDSになる兆候が乳幼児にあると判定された場合、通知部55は、当該SIDSになる兆候が乳幼児にあることを知らせるための兆候検知通知を行う。 Further, the sign determination unit 54 determines whether or not there is a sign of SIDS in the infant imaged in the captured image 3 based on the pulse rate and respiratory state included in the acquired vital information 40 and the analyzed body movement and sleeping posture. Determine whether. Then, as a result of the determination, when it is determined that there is a sign of SIDS in the infant, the notification unit 55 performs a sign detection notification for notifying that the infant has the sign of SIDS.
 なお、本実施形態では、これらの機能がいずれも汎用のCPUによって実現される例を説明している。しかしながら、これらの機能の一部又は全部が、1又は複数の専用のプロセッサにより実現されてもよい。また、乳幼児監視装置1の機能構成に関して、実施形態に応じて、適宜、機能の省略、置換、及び追加が行われてもよい。各機能に関しては後述する動作例で詳細に説明する。 In the present embodiment, an example is described in which all of these functions are realized by a general-purpose CPU. However, some or all of these functions may be realized by one or more dedicated processors. Further, regarding the functional configuration of the infant monitoring apparatus 1, functions may be omitted, replaced, and added as appropriate according to the embodiment. Each function will be described in detail in an operation example described later.
 §3 動作例
 次に、図5を用いて、乳幼児監視装置1の動作例を説明する。図5は、乳幼児監視装置1による乳幼児の見守りに関する処理手順を例示する。なお、以下で説明する乳幼児の見守りに関する処理手順は、本発明の「乳幼児監視方法」に相当する。ただし、以下で説明する乳幼児の見守りに関する処理手順は一例にすぎず、各処理は可能な限り変更されてもよい。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換、及び追加が可能である。
§3 Operation Example Next, an operation example of the infant monitoring apparatus 1 will be described with reference to FIG. FIG. 5 exemplifies a processing procedure relating to infant watching by the infant monitoring apparatus 1. It should be noted that the processing procedure relating to infant watching described below corresponds to the “infant monitoring method” of the present invention. However, the processing procedure related to watching over the infant described below is merely an example, and each processing may be changed as much as possible. Further, in the processing procedure described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.
 (ステップS101)
 ステップS101では、制御部11は、画像取得部51として機能し、カメラ2により撮影された撮影画像3を取得する。そして、制御部11は、撮影画像3を取得した後に、次のステップS102に処理を進める。
(Step S101)
In step S <b> 101, the control unit 11 functions as the image acquisition unit 51 and acquires the captured image 3 captured by the camera 2. Then, after acquiring the captured image 3, the control unit 11 advances the processing to the next step S102.
 本実施形態では、カメラ2は、深度センサ21を備えている。そのため、本ステップS101において取得される撮影画像3には、当該深度センサ21により測定された各画素の深度を示す深度データが含まれる。制御部11は、この深度データを含む撮影画像3として、例えば、図6で例示される撮影画像3を取得する。 In the present embodiment, the camera 2 includes a depth sensor 21. Therefore, the captured image 3 acquired in step S101 includes depth data indicating the depth of each pixel measured by the depth sensor 21. For example, the control unit 11 acquires the captured image 3 illustrated in FIG. 6 as the captured image 3 including the depth data.
 図6は、深度データを含む撮影画像3の一例を示す。図6で例示される撮影画像3は、各画素の濃淡値が当該各画素の深度に応じて定められた画像である。黒色の画素ほど、カメラ2に近いことを示す。一方、白色の画素ほど、カメラ2から遠いことを示す。制御部11は、この深度データに基づいて、各画素の写る対象の実空間での位置を特定することができる。すなわち、制御部11は、撮影画像3内の各画素の座標(二次元情報)と深度とから、当該各画素内に写る被写体の三次元空間(実空間)での位置を特定することができる。以下、図7及び図8を用いて、制御部11が各画素の実空間上での位置を特定する計算例を示す。 FIG. 6 shows an example of the captured image 3 including depth data. The captured image 3 illustrated in FIG. 6 is an image in which the gray value of each pixel is determined according to the depth of each pixel. A black pixel is closer to the camera 2. On the other hand, a white pixel is farther from the camera 2. Based on the depth data, the control unit 11 can specify the position of each pixel in the real space. That is, the control unit 11 can specify the position in the three-dimensional space (real space) of the subject captured in each pixel from the coordinates (two-dimensional information) and the depth of each pixel in the captured image 3. . Hereinafter, a calculation example in which the control unit 11 specifies the position of each pixel in the real space will be described with reference to FIGS. 7 and 8.
 図7は、撮影画像3内の座標関係を模式的に例示する。また、図8は、撮影画像3の任意の画素(点s)とカメラ2との実空間内での位置関係を模式的に例示する。なお、図7の左右方向は、図8の紙面に垂直な方向に対応する。すなわち、図8で表れている撮影画像3の長さは、図7で例示される縦方向の長さ(Hピクセル)に対応する。また、図7で例示される横方向の長さ(Wピクセル)は、図1で表れていない撮影画像3の紙面垂直方向の長さに対応する。 FIG. 7 schematically illustrates the coordinate relationship in the captured image 3. FIG. 8 schematically illustrates a positional relationship between an arbitrary pixel (point s) of the captured image 3 and the camera 2 in the real space. 7 corresponds to a direction perpendicular to the paper surface of FIG. That is, the length of the captured image 3 shown in FIG. 8 corresponds to the length in the vertical direction (H pixels) illustrated in FIG. Further, the length in the horizontal direction (W pixels) illustrated in FIG. 7 corresponds to the length in the direction perpendicular to the paper surface of the captured image 3 that does not appear in FIG.
 ここで、図7で例示されるように、撮影画像3の任意の画素(点s)の座標を(xs,ys)とし、カメラ2の横方向の画角をVx、縦方向の画角をVyとする。また、撮影画像3の横方向のピクセル数をWとし、縦方向のピクセル数をHとし、撮影画像3の中心点(画素)の座標を(0,0)とする。 Here, as illustrated in FIG. 7, the coordinates of an arbitrary pixel (point s) of the captured image 3 are (x s , y s ), the horizontal field angle of the camera 2 is V x , and the vertical direction Let the angle of view be V y . The number of pixels in the horizontal direction of the captured image 3 is W, the number of pixels in the vertical direction is H, and the coordinates of the center point (pixel) of the captured image 3 are (0, 0).
 制御部11は、カメラ2の画角(Vx、Vy)を示す情報をカメラ2から取得することができる。また、制御部11は、このカメラ2の画角(Vx、Vy)を示す情報を、ユーザ入力に基づき取得してもよいし、予め設定されている設定値として取得してもよい。また、制御部11は、点sの座標(xs,ys)及び撮影画像3のピクセル数(W×H)を撮影画像3から取得することができる。更に、制御部11は、撮影画像3に含まれる深度データを参照することによって、点sの深度Dsを取得することができる。 The control unit 11 can acquire information indicating the angle of view (V x , V y ) of the camera 2 from the camera 2. Further, the control unit 11 may acquire information indicating the angle of view (V x , V y ) of the camera 2 based on a user input or may be acquired as a preset setting value. Further, the control unit 11 can acquire the coordinates (x s , y s ) of the point s and the number of pixels (W × H) of the captured image 3 from the captured image 3. Furthermore, the control unit 11 can acquire the depth Ds of the point s by referring to the depth data included in the captured image 3.
 制御部11は、これらの情報を利用することで、当該各画素(点s)の実空間上の位置を特定することができる。例えば、制御部11は、以下の数1~3で示される関係式に基づいて、図8に例示されるカメラ座標系におけるカメラ2から点sまでのベクトルS(Sx,Sy,Sz,1)の各値を算出することができる。これにより、撮影画像3内の二次元座標系における点sの位置とカメラ座標系における点sの位置とは相互に変換可能になる。 The control unit 11 can specify the position of each pixel (point s) in the real space by using these pieces of information. For example, the control unit 11 performs vector S (S x , S y , S z) from the camera 2 to the point s in the camera coordinate system illustrated in FIG. , 1) can be calculated. Thereby, the position of the point s in the two-dimensional coordinate system in the captured image 3 and the position of the point s in the camera coordinate system can be mutually converted.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ただし、上記ベクトルSは、カメラ2を中心とした三次元座標系のベクトルである。このカメラ2は、図8に例示されるように、水平面(地面)に対して傾いている場合がある。すなわち、カメラ座標系は、水平面(地面)を基準とする三次元空間のワールド座標系から傾いている場合がある。そのため、制御部11は、カメラ2のロール角、ピッチ角(図8のα)及びヨー角を用いた射影変換を上記ベクトルSに適用することによって、上記カメラ座標系のベクトルSをワールド座標系のベクトルに変換し、ワールド座標系における点sの位置を算出してもよい。このカメラ座標及びワールド座標はそれぞれ、実空間を表す座標系である。制御部11は、このようにして、深度データを利用することで、撮影画像3に写る被写体の実空間上の位置を特定することができる。 However, the vector S is a vector of a three-dimensional coordinate system centered on the camera 2. As illustrated in FIG. 8, the camera 2 may be inclined with respect to a horizontal plane (ground). That is, the camera coordinate system may be tilted from the world coordinate system of a three-dimensional space with respect to the horizontal plane (ground). Therefore, the control unit 11 applies the projective transformation using the roll angle, pitch angle (α in FIG. 8), and yaw angle of the camera 2 to the vector S, so that the vector S of the camera coordinate system is converted to the world coordinate system. And the position of the point s in the world coordinate system may be calculated. Each of the camera coordinates and the world coordinates is a coordinate system representing a real space. In this way, the control unit 11 can specify the position of the subject in the captured image 3 in the real space by using the depth data.
 なお、取得される撮影画像3は、動画像で構成されてもよいし、1又は複数枚の静止画像で構成されてもよい。また、制御部11は、乳幼児のモニタリングを行うため、カメラ2のビデオ信号に同期させて撮影画像3を取得してもよい。そして、制御部11は、後述する各ステップの処理を取得した撮影画像3に対して即座に実行してもよい。乳幼児監視装置1は、このような動作を絶え間なく連続して実行することにより、リアルタイム画像処理を実現し、カメラ2の撮影範囲に存在する乳幼児の見守りをリアルタイムに行うことができる。 The acquired captured image 3 may be composed of a moving image or may be composed of one or a plurality of still images. Further, the control unit 11 may acquire the captured image 3 in synchronization with the video signal of the camera 2 in order to monitor the infant. And the control part 11 may perform immediately with respect to the picked-up image 3 which acquired the process of each step mentioned later. The infant monitoring apparatus 1 can perform real-time image processing by continuously executing such an operation continuously, and can monitor the infant existing in the photographing range of the camera 2 in real time.
 (ステップS102)
 図5に戻り、次のステップS102では、制御部11は、バイタル情報取得部52として機能し、乳幼児の脈拍数及び呼吸状態を含むバイタル情報40を取得する。そして、制御部11は、バイタル情報40を取得した後に、次のステップS103に処理を進める。
(Step S102)
Returning to FIG. 5, in the next step S <b> 102, the control unit 11 functions as the vital information acquisition unit 52 and acquires vital information 40 including the infant's pulse rate and respiratory state. And the control part 11 advances a process to the following step S103, after acquiring the vital information 40. FIG.
 本実施形態では、測定機器4が乳幼児に装着されている。そのため、制御部11は、この測定機器4からバイタル情報40を取得する。また、本実施形態の一形態では、乳幼児に装着する測定機器4として、脈拍数及び動脈血の酸素飽和度を測定可能な公知のパルスオキシメータが利用される。そのため、制御部11は、呼吸状態を示す情報として、動脈血の酸素飽和度を含むバイタル情報40を取得する。 In this embodiment, the measuring device 4 is attached to an infant. Therefore, the control unit 11 acquires vital information 40 from the measurement device 4. Moreover, in one form of this embodiment, the well-known pulse oximeter which can measure a pulse rate and the oxygen saturation of arterial blood is utilized as the measuring apparatus 4 with which an infant is equipped. Therefore, the control unit 11 acquires vital information 40 including the oxygen saturation level of arterial blood as information indicating the respiratory state.
 なお、バイタル情報40は、脈拍数及び呼吸状態の他、他種のバイタルサインに関する情報を含んでいてもよい。また、本ステップS102は、上記ステップS101よりも先に実行されてもよいし、後述するステップS104よりも前の任意のタイミングで実行されてもよい。本ステップS102を実行するタイミングは実施の形態に応じて適宜設定されてよい。 The vital information 40 may include information on other types of vital signs in addition to the pulse rate and the respiratory state. Further, this step S102 may be executed before step S101, or may be executed at an arbitrary timing before step S104 described later. The timing for executing step S102 may be appropriately set according to the embodiment.
 (ステップS103)
 次のステップS103では、制御部11は、就寝状態解析部53として機能し、ステップS101で取得した撮影画像3内で、図6で例示されるような乳幼児の写る人物領域を抽出する。そして、制御部11は、撮影画像3内で人物領域を抽出した後に、次のステップS104に処理を進める。
(Step S103)
In the next step S103, the control unit 11 functions as the sleeping state analysis unit 53, and extracts a person region in which an infant is photographed as illustrated in FIG. 6 from the captured image 3 acquired in step S101. Then, the control unit 11 extracts a person area from the captured image 3 and then proceeds to the next step S104.
 なお、人物領域を抽出する方法は、種々の公知の方法があり、実施の形態に応じて適宜選択されてよい。例えば、制御部11は、乳幼児の形状に基づいて、パターン検出、図形要素検出等の画像解析を行うことによって、撮影画像3内で人物領域を抽出してもよい。この場合、制御部11は、深度データを利用して、乳幼児の三次元形状(輪郭)をパターン検出等することで、人物領域を抽出してもよい。また、制御部11は、深度データを利用せずに、乳幼児の二次元形状をパターン検出等することで、人物領域を抽出してもよい。 Note that there are various known methods for extracting a person region, and the method may be appropriately selected according to the embodiment. For example, the control unit 11 may extract a person region in the captured image 3 by performing image analysis such as pattern detection and graphic element detection based on the shape of the infant. In this case, the control unit 11 may extract the person region by detecting the three-dimensional shape (contour) of the infant using the depth data. Moreover, the control part 11 may extract a person area | region by carrying out pattern detection etc. of the infant's two-dimensional shape, without using depth data.
 また、例えば、乳幼児は、実空間上で動いている。そのため、撮影画像3内で、人物領域は変動する。このような変動する領域は、背景差分法によって抽出することができる。そこで、制御部11は、背景差分法に基づいて、この変動する領域を人物領域として抽出してもよい。 Also, for example, infants are moving in real space. Therefore, the person area varies in the captured image 3. Such a fluctuating region can be extracted by the background subtraction method. Therefore, the control unit 11 may extract the fluctuating area as a person area based on the background difference method.
 より詳細には、まず、制御部11は、背景差分法に用いる背景画像を取得する。この背景画像は、任意の方法で取得されてよく、実施の形態に応じて適宜設定される。例えば、制御部11は、カメラ2の撮影範囲に乳幼児が存在する前の撮影画像、換言すると、乳幼児の写っていない撮影画像を背景画像として取得してもよい。そして、制御部11は、上記ステップS101の時点で取得した撮影画像3と背景画像との差分を算出し、当該撮影画像3の前景領域を抽出する。この前景領域は、背景画像から変化の生じた領域であり、変動する物体(動体)の写る領域である。 More specifically, first, the control unit 11 acquires a background image used for the background subtraction method. This background image may be acquired by an arbitrary method, and is set as appropriate according to the embodiment. For example, the control unit 11 may acquire a photographed image before an infant exists in the photographing range of the camera 2, in other words, a photographed image without an infant as a background image. And the control part 11 calculates the difference of the picked-up image 3 acquired at the time of the said step S101, and a background image, and extracts the foreground area | region of the said picked-up image 3. FIG. The foreground region is a region where a change has occurred from the background image, and is a region where a fluctuating object (moving object) is captured.
 そのため、制御部11は、抽出した前景領域が閾値以上の面積を有する場合に、当該前景領域を人物領域として認識してもよい。又は、制御部11は、当該前景領域からパターン検出等によって人物領域を抽出してもよい。この前景領域を抽出するための処理は、撮影画像3と背景画像との差分を計算する処理に過ぎない。そのため、当該処理によれば、制御部11(乳幼児監視装置1)は、高度な画像処理を利用せずに、人物領域を検出する範囲を絞ることができる。よって、当該処理によれば、本ステップS103における処理の負荷を低減することができる。 Therefore, when the extracted foreground area has an area equal to or larger than the threshold, the control unit 11 may recognize the foreground area as a person area. Alternatively, the control unit 11 may extract a person area from the foreground area by pattern detection or the like. The process for extracting the foreground area is merely a process for calculating the difference between the captured image 3 and the background image. Therefore, according to the process, the control unit 11 (infant monitoring device 1) can narrow the range in which the person area is detected without using advanced image processing. Therefore, according to the processing, the processing load in step S103 can be reduced.
 なお、背景差分法には様々な種類が存在し、本実施形態に適用可能な背景差分法は上記のような例に限られる訳ではない。その他の種類の背景差分法として、例えば、異なる3枚の画像を用いて背景と前景とを分離する方法、及び統計的モデルを適用することで背景と前景とを分離する方法を挙げることができる。これらの方法によって、制御部11は、人物領域を抽出してもよい。 Note that there are various types of background subtraction methods, and the background subtraction method applicable to the present embodiment is not limited to the above example. Other types of background subtraction methods include, for example, a method of separating the background and the foreground using three different images, and a method of separating the background and the foreground by applying a statistical model. . With these methods, the control unit 11 may extract a person region.
 (ステップS104)
 次のステップS104では、制御部11は、就寝状態解析部53として機能し、ステップS103で抽出した人物領域に含まれる各画素の深度を参照して、撮影画像3に写る乳幼児の体動及び就寝姿勢を解析する。そして、制御部11は、乳幼児の体動及び就寝姿勢を解析した後、次のステップS105に処理を進める。
(Step S104)
In the next step S104, the control unit 11 functions as the sleeping state analysis unit 53, refers to the depth of each pixel included in the person area extracted in step S103, and the body movement and sleeping of the infant in the captured image 3 Analyze posture. And the control part 11 advances a process to following step S105, after analyzing the body movement and sleeping posture of an infant.
 乳幼児の体動及び就寝姿勢の解析は任意の方法で行われてもよい。例えば、体動の解析は、次の方法で行われてもよい。制御部11は、人物領域に含まれる各画素の深度を利用し、人物領域に含まれる各画素の実空間上の位置を継続的に特定する。これによって、制御部11は、人物領域に含まれる各画素の位置を実空間座標上でプロットすることができる。 The analysis of the infant's body movement and sleeping posture may be performed by an arbitrary method. For example, the body motion analysis may be performed by the following method. The control unit 11 continuously specifies the position of each pixel included in the person area in the real space using the depth of each pixel included in the person area. Thereby, the control unit 11 can plot the position of each pixel included in the person area on the real space coordinates.
 ここで、上記のとおり、各画素の深度は被写体表面に対して取得されるため、人物領域に含まれる各画素は、実空間上の乳幼児の輪郭に相当する。そのため、人物領域に含まれる各画素の位置を実空間座標上でプロットしたデータ(以下、測定データとも記載する)は、乳幼児の輪郭の変動、すなわち、乳幼児の体動を示す。したがって、制御部11は、人物領域に含まれる各画素の位置を実空間座標上でプロットすることで、乳幼児の体動を測定することができる。 Here, as described above, since the depth of each pixel is acquired with respect to the subject surface, each pixel included in the person region corresponds to the contour of the infant in real space. Therefore, data obtained by plotting the position of each pixel included in the person area on the real space coordinates (hereinafter also referred to as measurement data) indicates a change in the contour of the infant, that is, the body movement of the infant. Therefore, the control unit 11 can measure the body movement of the infant by plotting the position of each pixel included in the person region on the real space coordinates.
 そして、制御部11は、例えば、パターンマッチング等によって、測定データに所定のパターンが現れているか否かを判定することで、乳幼児の体動を解析することができる。また、制御部11は、測定データに基づいて、乳幼児の体動の量を算出することで、乳幼児の体動を解析することができる。なお、体動を観測する対象範囲は、人物領域全体でもよいし、人物領域の一部分であってもよい。また、体動の量は、当該対象範囲に含まれる画素の変位の平均値で表されてもよいし、当該対象範囲に含まれる画素の変位の総和で表されてもよい。体動を解析する方法は、実施の形態に応じて適宜選択されてよい。 Then, the control unit 11 can analyze the body movement of the infant by determining whether or not a predetermined pattern appears in the measurement data by pattern matching or the like, for example. Further, the control unit 11 can analyze the body movement of the infant by calculating the amount of body movement of the infant based on the measurement data. Note that the target range for observing body movements may be the entire person region or a part of the person region. Further, the amount of body movement may be expressed by an average value of displacements of pixels included in the target range, or may be expressed by a total sum of displacements of pixels included in the target range. A method for analyzing body movement may be appropriately selected according to the embodiment.
 また、例えば、就寝姿勢の解析は、次の方法で行われてもよい。制御部11は、パターンマッチング等によって、人物領域に写る乳幼児の顔、肩、胸などの各身体部位の位置及び向きを特定する。カメラ2としてマイクロソフト社のKinectを採用した場合には、例えば、Face Tracking機能等を用いることで、各身体部位の位置及び向きを特定することができる。 Also, for example, the sleeping posture analysis may be performed by the following method. The control unit 11 specifies the position and orientation of each body part such as an infant's face, shoulder, and chest that appear in the person area by pattern matching or the like. When Microsoft's Kinect is adopted as the camera 2, the position and orientation of each body part can be specified by using, for example, the FaceFTracking function.
 そして、制御部11は、ベッドに対する身体の向きに応じて、乳幼児の就寝姿勢を判定する。具体的には、乳幼児はベッド上で寝ていると想定される。そのため、制御部11は、特定した顔、肩、胸等の各身体部位が鉛直上方向を向いている場合には、乳幼児の就寝姿勢は仰向け姿勢(仰臥位)であると判定する。 And the control part 11 determines the sleeping posture of the infant according to the direction of the body with respect to the bed. Specifically, it is assumed that the infant is sleeping on the bed. For this reason, the control unit 11 determines that the sleeping posture of the infant is a supine posture (a supine position) when the body parts such as the identified face, shoulder, and chest are facing vertically upward.
 また、制御部11は、特定した顔、肩、胸等の各身体部位が横方向(水平方向)を向いている場合には、乳幼児の就寝姿勢は横向き姿勢(側臥位)であると判定する。また、制御部11は、特定した顔、肩、胸等の各身体部位が鉛直下方向である場合には、乳幼児の就寝姿勢はうつ伏せ姿勢(伏臥位)であると判定する。 In addition, when the body parts such as the identified face, shoulder, and chest are facing in the horizontal direction (horizontal direction), the control unit 11 determines that the sleeping posture of the infant is the horizontal posture (side-down position). . In addition, the control unit 11 determines that the sleeping posture of the infant is a prone posture (prone position) when the body parts such as the identified face, shoulder, and chest are vertically downward.
 このようにして、乳幼児の就寝姿勢を解析することができる。なお、就寝姿勢を解析する方法は、このような例に限られなくてもよく、実施の形態に応じて適宜選択されてよい。また、解析対象とする就寝姿勢の種類は、上記の3種類に限られなくてもよい。例えば、制御部11は、横向き姿勢の判定を省略し、乳幼児の就寝姿勢を仰向け姿勢及びうつ伏せ姿勢のいずれかに特定してもよい。また、例えば、制御部11は、上記3種類以外の姿勢を解析対象としてもよい。 In this way, the sleeping posture of an infant can be analyzed. Note that the method of analyzing the sleeping posture is not limited to such an example, and may be appropriately selected according to the embodiment. Also, the types of sleeping postures to be analyzed need not be limited to the above three types. For example, the control unit 11 may omit the determination of the horizontal posture and specify the sleeping posture of the infant as either the supine posture or the prone posture. For example, the control unit 11 may set postures other than the above three types as analysis targets.
 (ステップS105)
 次のステップS105では、制御部11は、兆候判定部54として機能し、ステップS102で取得したバイタル情報40により示される脈拍数及び呼吸状態並びにステップS104で解析された体動及び就寝姿勢に基づいて、撮影画像3に写る乳幼児にSIDSの兆候が現れているか否かを判定する。
(Step S105)
In the next step S105, the control unit 11 functions as the sign determination unit 54, and based on the pulse rate and the respiratory state indicated by the vital information 40 acquired in step S102, and the body movement and sleeping posture analyzed in step S104. Then, it is determined whether or not an SIDS sign appears in the infant imaged in the photographed image 3.
 そして、当該判定の結果、乳幼児にSIDSの兆候が現れていると判定した場合には、制御部11は、次のステップS106に処理を進める。一方、乳幼児にSIDSの兆候が現れていない場合には、制御部11は、次のステップS106の処理を省略し、本動作例に係る処理を終了する。 And as a result of the determination, if it is determined that a sign of SIDS appears in the infant, the control unit 11 proceeds to the next step S106. On the other hand, when no sign of SIDS appears in the infant, the control unit 11 omits the process of the next step S106 and ends the process according to this operation example.
 SIDSの兆候を検知するための脈拍数、呼吸状態、体動及び就寝姿勢の各条件は、実施の形態に応じて適宜設定されてよい。本実施形態では、制御部11は、SIDSの兆候として、うつ伏せ寝状態及び低酸素状態の2種類の状態を検知する。以下、各状態を検知するための条件の一例を説明する。 Each condition of the pulse rate, the respiratory state, the body movement, and the sleeping posture for detecting the signs of SIDS may be appropriately set according to the embodiment. In the present embodiment, the control unit 11 detects two types of states, a lying-down state and a hypoxic state, as signs of SIDS. Hereinafter, an example of conditions for detecting each state will be described.
 (A)うつ伏せ寝状態
 まず、うつ伏せ寝状態について説明する。SIDSの研究の成果として、乳幼児がうつ伏せで寝ることがSIDSの危険因子の一つとして知られている。そこで、本実施形態では、制御部11は、上記ステップS104で解析した乳幼児の就寝姿勢に基づいて、乳幼児のうつ伏せ寝を検知する。
(A) Prone sleeping state First, the lying prone state will be described. As a result of SIDS research, it is known that infants sleep on their face as one of the risk factors for SIDS. Therefore, in the present embodiment, the control unit 11 detects the infant lying on the basis of the sleeping posture of the infant analyzed in step S104.
 例えば、制御部11は、上記ステップS104において、撮影画像3に写る乳幼児の就寝姿勢がうつ伏せ姿勢(伏臥位)であることを検知した場合には、当該乳幼児にSIDSの兆候があると判定する。他方、制御部11は、上記ステップS104において、撮影画像3に写る乳幼児の就寝姿勢が仰向け姿勢(仰臥位)又は横向き姿勢(側臥位)であることを検知した場合には、当該乳幼児にはSIDSの兆候がないと判定する。これによって、SIDSの危険因子の一つであるうつ伏せ寝を検知し、乳幼児がSIDSになるのを適切に防止することができる。 For example, when the control unit 11 detects in step S104 that the sleeping position of the infant shown in the captured image 3 is a prone position (prone position), the control unit 11 determines that the infant has a sign of SIDS. On the other hand, if the control unit 11 detects in step S104 that the sleeping posture of the infant shown in the captured image 3 is a supine posture (a supine position) or a lateral posture (a laterally lying position), the infant is informed of the SIDS. It is determined that there is no sign. This makes it possible to detect prone sleep, which is one of the risk factors for SIDS, and appropriately prevent infants from becoming SIDS.
 (B)低酸素状態
 次に、低酸素状態について説明する。上記のとおり、SIDSの研究の成果として、乳幼児を就寝中に過度に温めると、睡眠中の乳幼児の身体では低酸素状態が進行し、最終的には、この乳幼児はSIDSになってしまう可能性があることが指摘されている。そこで、本実施形態では、制御部11は、上記ステップS102で取得したバイタル情報40により示される脈拍数及び呼吸状態並びに上記ステップS104で解析した乳幼児の体動に基づいて、この低酸素状態を検知する。
(B) Low oxygen state Next, the low oxygen state will be described. As mentioned above, as a result of SIDS research, if an infant is overheated during sleep, hypoxia will progress in the sleeping infant's body, and this infant may eventually become SIDS. It has been pointed out that there is. Therefore, in the present embodiment, the control unit 11 detects this hypoxia state based on the pulse rate and the respiratory state indicated by the vital information 40 acquired in step S102 and the body movement of the infant analyzed in step S104. To do.
 具体的には、睡眠中の乳幼児が低酸素状態に陥った場合には、呼吸が過度に浅くなり(又は、無呼吸になり)、低下した血中の酸素濃度を補うために脈拍数が過度に上昇し、かつ、体動の量が過度に低下すると想定される。そのため、制御部11は、ステップS102及びステップS104で取得した脈拍数、呼吸状態及び体動が次のような条件を満たすか否かを判定する。 Specifically, if a sleeping infant falls into hypoxia, breathing becomes excessively shallow (or apnea) and the pulse rate is excessive to compensate for the decreased blood oxygen level. It is assumed that the amount of body movement increases excessively. Therefore, the control unit 11 determines whether or not the pulse rate, the respiratory state, and the body motion acquired in Step S102 and Step S104 satisfy the following conditions.
 まず、脈拍数について説明する。制御部11は、ステップS102で取得されたバイタル情報40により示される脈拍数と当該乳幼児の通常時の脈拍数とを比較する。そして、制御部11は、ステップS102で取得された脈拍数が通常時の脈拍数よりも所定値以上高いと判定した場合に、取得されたバイタル情報40により示される脈拍数が通常時の脈拍数よりも所定値以上高いことを検知する。 First, the pulse rate will be explained. The control unit 11 compares the pulse rate indicated by the vital information 40 acquired in step S102 with the normal pulse rate of the infant. When the control unit 11 determines that the pulse rate acquired in step S102 is higher than the normal pulse rate by a predetermined value or more, the pulse rate indicated by the acquired vital information 40 is the normal pulse rate. It is detected that it is higher than a predetermined value.
 なお、通常時の脈拍数は、実施の形態に応じて適宜設定されてよい。例えば、乳幼児が覚醒している際に、測定機器又は触知で計測した当該乳幼児の脈拍数を通常時の脈拍数として設定してもよい。通常時の脈拍数を計測する方法は、実施の形態に応じて適宜選択可能である。 In addition, the pulse rate at the normal time may be appropriately set according to the embodiment. For example, when the infant is awake, the infant's pulse rate measured with a measuring device or tactile sense may be set as the normal pulse rate. The method for measuring the pulse rate at the normal time can be appropriately selected according to the embodiment.
 また、脈拍数が過度に上昇したことを判定するための上記所定値は、実施の形態に応じて適宜設定されてよい。また、当該所定値は、通常時の脈拍数の倍率で与えられてもよい。例えば、通常時の脈拍数が1分間に120回と設定され、当該倍率が1.2倍と設定されているとする。この場合、制御部11は、ステップS102で取得された脈拍数が144回以上であると判定した場合に、取得されたバイタル情報40により示される脈拍数が通常時の脈拍数よりも所定値以上高いことを検知する。 Further, the predetermined value for determining that the pulse rate has increased excessively may be appropriately set according to the embodiment. The predetermined value may be given by a normal pulse rate magnification. For example, assume that the normal pulse rate is set to 120 times per minute and the magnification is set to 1.2 times. In this case, when the control unit 11 determines that the pulse rate acquired in step S102 is 144 times or more, the pulse rate indicated by the acquired vital information 40 is equal to or greater than the normal pulse rate. Detect high.
 また、制御部11は、取得された脈拍数が通常時の脈拍数よりも所定値以上低い状況が所定時間継続した場合に、取得されたバイタル情報40により示される脈拍数が通常時の脈拍数よりも所定値以上高いことを検知してもよい。当該検知の基準となる所定時間の値は、実施の形態に応じて適宜設定されてよい。これによって、SIDSの予兆検知に、脈拍数が過度に上昇した状態が継続した時間を考慮することができる。 In addition, the control unit 11 determines that the pulse rate indicated by the acquired vital information 40 is the normal pulse rate when the acquired pulse rate is lower than the normal pulse rate by a predetermined value or more for a predetermined time. It may be detected that it is higher than a predetermined value. The value of the predetermined time serving as a reference for the detection may be appropriately set according to the embodiment. Accordingly, it is possible to consider the time during which the state in which the pulse rate has excessively increased continues for SIDS sign detection.
 次に、呼吸状態について説明する。本実施形態の一形態では、上記のとおり、制御部11は、ステップS102において、呼吸状態を示す情報として、動脈血の酸素飽和度を取得する。そこで、制御部11は、動脈血の酸素飽和度に基づいて乳幼児の呼吸状態を判定する。具体的には、制御部11は、ステップS102で取得された動脈血の酸素飽和度と当該乳幼児の通常時における動脈血の酸素飽和度の基準値とを比較する。そして、制御部11は、ステップS102で取得された動脈血の酸素飽和度が通常時における動脈血の酸素飽和度の基準値よりも低いと判定した場合に、取得されたバイタル情報40により示される呼吸状態が通常時の呼吸状態よりも所定以上浅いことを検知する。 Next, the respiratory state will be described. In one form of this embodiment, as above-mentioned, the control part 11 acquires the oxygen saturation of arterial blood as information which shows a respiratory state in step S102. Therefore, the control unit 11 determines the infant's respiratory state based on the oxygen saturation of arterial blood. Specifically, the control unit 11 compares the arterial oxygen saturation acquired in step S102 with the reference value of the arterial oxygen saturation at normal time of the infant. When the control unit 11 determines that the oxygen saturation level of the arterial blood acquired in step S102 is lower than the reference value of the arterial blood oxygen saturation level at the normal time, the respiratory state indicated by the acquired vital information 40 Is detected to be shallower than the normal breathing state.
 なお、通常時における動脈血の酸素飽和度の基準値は、実施の形態に応じて適宜設定されてよい。例えば、乳幼児の通常時における動脈血の酸素飽和度は、凡そ95%以上であることが一般的に知られている。そこで、当該基準値は、94%以下の値で適宜設定されてよい。例えば、基準値が94%と設定された場合、制御部11は、ステップS102で取得した動脈血の酸素飽和度が94%以下であると判定した場合に、取得されたバイタル情報40により示される呼吸状態が通常時の呼吸状態よりも所定以上浅いことを検知する。 It should be noted that the reference value of the oxygen saturation level of arterial blood in normal times may be set as appropriate according to the embodiment. For example, it is generally known that the arterial oxygen saturation in normal times of infants is approximately 95% or more. Therefore, the reference value may be set as appropriate with a value of 94% or less. For example, when the reference value is set to 94%, the control unit 11 determines that the oxygen saturation of the arterial blood acquired in step S102 is 94% or less, and the respiration indicated by the acquired vital information 40 It is detected that the state is shallower than the normal breathing state.
 また、制御部11は、取得された動脈血の酸素飽和度が基準値よりも低い状況が所定時間継続した場合に、取得されたバイタル情報40により示される呼吸状態が通常時の呼吸状態よりも所定以上浅いことを検知してもよい。当該検知の基準となる所定時間の値は、実施の形態に応じて適宜設定されてよい。これによって、SIDSの予兆検知に、子中状態が過度に浅い状態が継続した時間を考慮することができる。 In addition, when the state in which the oxygen saturation of the acquired arterial blood is lower than the reference value continues for a predetermined time, the control unit 11 determines that the respiratory state indicated by the acquired vital information 40 is higher than the normal respiratory state. The shallowness may be detected. The value of the predetermined time serving as a reference for the detection may be appropriately set according to the embodiment. Accordingly, it is possible to consider the time during which the state of the child is excessively shallow in the SIDS sign detection.
 次に、体動について説明する。制御部11は、ステップS104で解析された体動の量と乳幼児の通常時の体動の量とを比較する。そして、制御部11は、ステップS104で解析された体動の量が通常時の体動の量よりも所定値以上少ないと判定した場合に、ステップS104で解析された体動の量が通常時の体動の量よりも所定値以上少ないことを検知する。 Next, body movement will be described. The control unit 11 compares the amount of body movement analyzed in step S104 with the amount of body movement at normal time of the infant. When the control unit 11 determines that the amount of body motion analyzed in step S104 is smaller than the normal amount of body motion by a predetermined value or more, the amount of body motion analyzed in step S104 is normal. It is detected that the amount of body movement is less than a predetermined value.
 なお、通常時の体動の量は、実施の形態に応じて適宜設定されてよい。例えば、乳幼児が異常なく就寝している際に、カメラ2で乳幼児を撮影する。そして、制御部11は、得られた撮影画像を上記ステップS104と同様の方法で解析することで得られる体動の量を通常時の体動の量として設定してもよい。通常時の体動の量を計測する方法は、実施の形態に応じて適宜選択可能である。 It should be noted that the amount of normal body movement may be appropriately set according to the embodiment. For example, the baby is photographed by the camera 2 when the baby is sleeping without abnormality. And the control part 11 may set the amount of body movement obtained by analyzing the acquired picked-up image by the method similar to said step S104 as a body movement amount in normal time. The method for measuring the amount of body movement at normal time can be appropriately selected according to the embodiment.
 また、体動の量が過度に低下したことを判定するための上記所定値は、実施の形態に応じて適宜設定されてよい。また、制御部11は、解析された体動の量が通常時の体動の量よりも所定値以上低い状況が所定時間継続した場合に、ステップS104で解析された体動の量が通常時の体動の量よりも所定値以上少ないことを検知してもよい。当該検知の基準となる所定時間の値は、実施の形態に応じて適宜設定されてよい。これによって、SIDSの予兆検知に、体動の量が過度に低下した状態が継続した時間を考慮することができる。 Further, the predetermined value for determining that the amount of body movement has excessively decreased may be set as appropriate according to the embodiment. The control unit 11 determines that the amount of body motion analyzed in step S104 is normal when the analyzed amount of body motion is lower than the normal amount of body motion by a predetermined value or more for a predetermined time. It may be detected that the amount of movement is less than a predetermined value. The value of the predetermined time serving as a reference for the detection may be appropriately set according to the embodiment. Accordingly, it is possible to consider the time during which the amount of body movement is excessively decreased in detecting the sign of SIDS.
 そして、制御部11は、ステップS102で取得された脈拍数が通常時の脈拍数よりも所定値以上高く、ステップS102で取得された呼吸状態が通常時の呼吸状態よりも所定以上浅く、かつ、ステップS104で解析された体動の量が通常時の体動の量よりも所定値以上少ないことを検知した場合には、当該乳幼児にSIDSの兆候があると判定する。他方、制御部11は、上記3つの条件のうちのいずれかの条件が満たされないことを検知した場合には、当該乳幼児にはSIDSの兆候がないと判定する。これによって、就寝中の乳幼児が上記のような低酸素状態に陥っていることを的確に検知することができ、当該乳幼児がSIDSになるのを適切に防止することができる。 Then, the control unit 11 has a pulse rate acquired in step S102 that is higher than the normal pulse rate by a predetermined value or more, the respiratory state acquired in step S102 is shallower than the normal respiratory state by a predetermined amount, and If it is detected that the amount of body movement analyzed in step S104 is smaller than the amount of body movement at the normal time by a predetermined value or more, it is determined that the infant has a sign of SIDS. On the other hand, when the control unit 11 detects that any one of the three conditions is not satisfied, the control unit 11 determines that the infant has no sign of SIDS. As a result, it is possible to accurately detect that the sleeping infant falls into the low oxygen state as described above, and appropriately prevent the infant from becoming SIDS.
 (C)まとめ
 以上のようにして、制御部11は、乳幼児に現れるSIDSの兆候を検知することができる。制御部11は、本ステップS105において、上記うつ伏せ寝状態及び低酸素状態のいずれかの状態を検知した場合には、次のステップS106に処理を進める。一方、制御部11は、本ステップS105において、上記うつ伏せ寝状態及び低酸素状態のいずれの状態も検知しなかった場合には、次のステップS106を省略し、本動作例に係る処理を終了する。
(C) Summary As described above, the control unit 11 can detect a sign of SIDS that appears in an infant. If the controller 11 detects either the prone state or the hypoxic state in step S105, the control unit 11 proceeds to the next step S106. On the other hand, if the control unit 11 does not detect the state of lying down or hypoxia in step S105, the control unit 11 omits the next step S106 and ends the process according to the operation example. .
 なお、SIDSの兆候として検知する乳幼児の状態は、上記うつ伏せ寝状態及び低酸素状態に限られず、実施の形態に応じて適宜選択されてよい。例えば、乳幼児の就寝姿勢が仰向け姿勢(仰臥位)から横向き姿勢(側臥位)に変化した場合には、当該乳幼児の就寝姿勢がうつ伏せ姿勢(伏臥位)になる蓋然性が高いと想定される。そこで、制御部11は、上記ステップS104において、撮影画像3に写る乳幼児の就寝姿勢が仰向け姿勢(仰臥位)から横向き姿勢(側臥位)に変化したことを検知した場合に、当該乳幼児にSIDSの兆候があると判定してもよい。また、例えば、上記うつ伏せ寝状態及び低酸素状態のいずれかの状態は検知対象から除外されてもよい。更に、SIDSの兆候として検知対象とする乳幼児の状態は、利用者によって選択されてもよいし、予め設定されてもよい。 It should be noted that the infant state detected as a sign of SIDS is not limited to the above-mentioned lying-down state and hypoxic state, and may be appropriately selected according to the embodiment. For example, when the sleeping posture of an infant changes from a supine posture (a supine position) to a lateral posture (a lateral position), it is assumed that there is a high probability that the sleeping posture of the infant becomes a prone posture (a prone position). Therefore, when the control unit 11 detects in step S104 that the sleeping posture of the infant shown in the photographed image 3 has changed from the supine posture (the supine position) to the horizontal posture (the laterally lying position), the control unit 11 applies the SIDS to the infant. It may be determined that there are signs. Further, for example, any of the above-mentioned lying-down state and hypoxic state may be excluded from the detection target. Furthermore, the state of the infant to be detected as a sign of SIDS may be selected by the user or may be set in advance.
 また、本ステップS105において、上記うつ伏せ寝状態及び低酸素状態のいずれの状態も検知しなかった場合には、制御部11は、当該乳幼児は正常状態にあると認識してもよい。そして、制御部11は、当該乳幼児が正常状態にあることを、乳幼児監視装置1の利用者に報知してもよい。例えば、制御部11は、タッチパネルディスプレイ13上で当該乳幼児が正常状態にあることを表示することで、当該報知を行ってもよい。 Further, in this step S105, when neither the prone sleep state nor the hypoxic state is detected, the control unit 11 may recognize that the infant is in a normal state. Then, the control unit 11 may notify the user of the infant monitoring apparatus 1 that the infant is in a normal state. For example, the control unit 11 may perform the notification by displaying that the infant is in a normal state on the touch panel display 13.
 (ステップS106)
 次のステップS106では、制御部11は、通知部55として機能し、上記ステップS105での判定の結果、SIDSになる兆候が乳幼児にあると判定された場合に、当該SIDSになる兆候が乳幼児にあることを知らせるための兆候検知通知を行う。これによって、本動作例に係る処理が終了する。なお、制御部11が、当該兆候検知通知を行う手段は、実施の形態に応じて適宜選択可能である。
(Step S106)
In the next step S106, the control unit 11 functions as the notification unit 55, and when it is determined that there is a sign of SIDS in the infant as a result of the determination in step S105, the sign of the SIDS is given to the infant. A sign detection notification is made to notify that there is something. Thereby, the processing according to this operation example is completed. The means by which the control unit 11 performs the sign detection notification can be appropriately selected according to the embodiment.
 例えば、乳幼児監視装置1が病院等の施設で利用される場合、当該乳幼児監視装置1は、外部インタフェース15を介して、ナースコールシステム等の設備と接続することができる。この場合、制御部11は、当該ナースコールシステム等の設備と連携して、兆候検知通知を行ってもよい。すなわち、制御部11は、外部インタフェース15を介して、当該ナースコールシステムを制御してもよい。そして、制御部11は、兆候検知通知として、当該ナースコールシステムによる呼び出しを行ってもよい。これによって、SIDSになる危険性が対象の乳幼児に迫っていることを当該乳幼児の見守りを行う看護師等に適切に知らせることができる。 For example, when the infant monitoring apparatus 1 is used in a facility such as a hospital, the infant monitoring apparatus 1 can be connected to equipment such as a nurse call system via the external interface 15. In this case, the control unit 11 may perform sign detection notification in cooperation with the equipment such as the nurse call system. That is, the control unit 11 may control the nurse call system via the external interface 15. And the control part 11 may perform the call by the said nurse call system as a sign detection notification. Accordingly, it is possible to appropriately notify a nurse or the like who watches the infant that the risk of becoming SIDS is approaching the target infant.
 また、例えば、制御部11は、タッチパネルディスプレイ13上に、兆候検知通知として、乳幼児に現れたSIDSの兆候を検知したことを知らせるための画面を表示させてもよい。また、例えば、制御部11は、乳幼児監視装置1に接続されるスピーカ14から所定の音声を出力することにより、兆候検知通知を行ってもよい。このタッチパネルディスプレイ13及びスピーカ14をそれぞれ当該乳幼児の両親の寝室等に設置することで、SIDSになる危険性が対象の乳幼児に迫っていることを当該両親に適切に知らせることができる。 Further, for example, the control unit 11 may display a screen on the touch panel display 13 for notifying that a sign of SIDS that has appeared in an infant has been detected as a sign detection notification. Further, for example, the control unit 11 may perform the sign detection notification by outputting a predetermined sound from the speaker 14 connected to the infant monitoring apparatus 1. By installing the touch panel display 13 and the speaker 14 in the bedroom or the like of the infant's parents, it is possible to appropriately notify the parents that the risk of becoming SIDS is approaching the target infant.
 また、例えば、制御部11は、電子メール、ショートメッセージサービス、プッシュ通知等を利用して、このような兆候検知通知を行ってもよい。このような兆候検知通知を行う場合には、通知先となるユーザ端末の電子メールアドレス、電話番号等は記憶部12に予め登録されていてもよい。そして、制御部11は、この予め登録されている電子メールアドレス、電話番号等を利用して、兆候検知通知を行ってもよい。 Further, for example, the control unit 11 may perform such a sign detection notification using an e-mail, a short message service, a push notification, or the like. When performing such sign detection notification, the e-mail address, telephone number, and the like of the user terminal that is the notification destination may be registered in advance in the storage unit 12. Then, the control unit 11 may perform sign detection notification using the pre-registered e-mail address, telephone number, and the like.
 (作用・効果)
 以上のように、本実施形態に係る乳幼児監視装置1は、各画素の深度を示す深度データを含む撮影画像3に基づいて乳幼児の身体的な動作(体動及び就寝姿勢)を解析する。上記のとおり、各画素の深度は被写体表面に対して取得されるため、深度データを利用することで、実空間上の被写体表面の位置を特定することができる。
(Action / Effect)
As described above, the infant monitoring apparatus 1 according to the present embodiment analyzes the physical movement (body movement and sleeping posture) of the infant based on the captured image 3 including the depth data indicating the depth of each pixel. As described above, since the depth of each pixel is acquired with respect to the subject surface, the position of the subject surface in the real space can be specified by using the depth data.
 例えば、カメラが乳幼児の鉛直上方に設置され、取得される撮影画像が二次元画像である場合、この二次元画像により乳幼児の鉛直方向の動作を特定するのは難しい。これに対して、本実施形態では、各画素の深度を示す深度データが撮影画像3に含まれているため、制御部11は、乳幼児の鉛直方向の動作を特定することができる。そのため、本実施形態によれば、深度データを利用することにより、乳幼児に対するカメラ2の視野方向(視点)によらず、実空間(三次元空間)における乳幼児の身体的な動作を解析することができる。 For example, when the camera is installed vertically above the infant and the acquired captured image is a two-dimensional image, it is difficult to specify the vertical movement of the infant from the two-dimensional image. On the other hand, in the present embodiment, since the captured image 3 includes depth data indicating the depth of each pixel, the control unit 11 can specify the vertical movement of the infant. Therefore, according to the present embodiment, by using the depth data, it is possible to analyze the physical movement of the infant in the real space (three-dimensional space) regardless of the viewing direction (viewpoint) of the camera 2 with respect to the infant. it can.
 また、本実施形態に係る乳幼児監視装置1は、乳幼児の身体的な動作(体動及び就寝姿勢)だけではなく、脈拍数及び呼吸状態を含むバイタル情報40に基づいて、SIDSになる兆候が乳幼児にあるか否かを判定する。そのため、本実施形態によれば、上記低酸素状態等、SIDSになる兆候が当該乳幼児にあるか否かの判定を多面的な視点で行うことができる。 In addition, the infant monitoring apparatus 1 according to the present embodiment has an indication that an indication of SIDS is based on vital information 40 including not only the physical movement (body movement and sleeping posture) of the infant but also the pulse rate and respiratory state. It is determined whether or not. Therefore, according to the present embodiment, it is possible to determine from the multifaceted viewpoint whether or not the infant has an indication of SIDS, such as the hypoxic state.
 したがって、本実施形態によれば、SIDSの兆候を適切に検知することのでき、就寝している乳幼児がSIDSを発症してしまうのを防止することができる。 Therefore, according to the present embodiment, a sign of SIDS can be appropriately detected, and a sleeping infant can be prevented from developing SIDS.
 §4 変形例
 以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。
§4 Modifications Embodiments of the present invention have been described in detail above, but the above description is merely an illustration of the present invention in all respects. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention.
 (1)呼吸状態を示す情報
 例えば、上記実施形態では、制御部11は、ステップS102において、呼吸状態を示す情報として、動脈血の酸素飽和度を取得する。しかしながら、呼吸状態を示す情報は、このような例に限られず、実施の形態に応じて適宜選択されてよい。例えば、呼吸状態を示す情報は、乳幼児の呼吸数であってもよい。
(1) Information indicating respiratory state For example, in the above-described embodiment, the control unit 11 acquires the oxygen saturation of arterial blood as information indicating the respiratory state in step S102. However, the information indicating the breathing state is not limited to such an example, and may be appropriately selected according to the embodiment. For example, the information indicating the respiratory state may be an infant's respiratory rate.
 この場合、呼吸数を測定する方法は、実施の形態に応じて適宜選択されてよい。例えば、測定機器4が乳幼児の呼吸数を測定可能に構成されている場合には、制御部11は、上記ステップS102において、測定機器4から、呼吸状態を示す情報として、乳幼児の呼吸数を取得してもよい。これにより、SIDSの兆候を判定するのに利用するバイタル情報を適切に取得することができる。 In this case, the method for measuring the respiratory rate may be appropriately selected according to the embodiment. For example, when the measuring device 4 is configured to be able to measure the infant's respiratory rate, the control unit 11 acquires the infant's respiratory rate from the measuring device 4 as information indicating the respiratory state in step S102. May be. Thereby, vital information used for judging the sign of SIDS can be acquired appropriately.
 また、例えば、制御部11は、測定機器4からではなく、ステップS101で取得した撮影画像3を画像解析することで、乳幼児の呼吸数を取得してもよい。具体的には、制御部11は、バイタル情報取得部52として機能し、撮影画像3の人物領域に含まれる各画素の深度を参照して、乳幼児の胸郭の変動回数を計測する。 For example, the control unit 11 may acquire the respiratory rate of the infant by performing image analysis on the captured image 3 acquired in step S101 instead of from the measuring device 4. Specifically, the control unit 11 functions as the vital information acquisition unit 52 and refers to the depth of each pixel included in the person region of the captured image 3 to measure the number of changes in the infant's rib cage.
 胸郭の位置は、人物領域内で任意に設定されてよい。例えば、乳幼児監視装置1の利用者による指定によって、人物領域内で胸郭の位置が設定されてよい。また、例えば、制御部11は、パターンマッチング等によって人物領域内で胸郭の位置を特定してもよい。そして、制御部11は、人物領域内の胸郭の写る範囲に含まれる各画素の深度をプロットすることで、当該乳幼児の胸郭の変動を測定することができる。 The position of the rib cage may be arbitrarily set within the person area. For example, the position of the thorax may be set in the person area by designation by the user of the infant monitoring apparatus 1. Further, for example, the control unit 11 may specify the position of the thorax in the person region by pattern matching or the like. And the control part 11 can measure the fluctuation | variation of the said infant's rib cage by plotting the depth of each pixel contained in the range which the rib cage in a person area shows.
 ここで、胸郭の変動は呼吸に起因するものと想定されるため、測定される胸郭の変動は、山と谷とが交互に繰り返される波で表現される。そのため、制御部11は、測定された胸郭の変動において所定時間内に現れる山又は谷の数を数えることで、当該乳幼児の胸郭の変動回数を計測し、所定時間の間に計測した胸郭の変動回数を乳幼児の呼吸数として取得することができる。 Here, since the change in the thorax is assumed to be caused by respiration, the change in the measured thorax is expressed by a wave in which peaks and troughs are alternately repeated. Therefore, the control unit 11 counts the number of peaks or valleys appearing within a predetermined time in the measured changes in the rib cage, thereby measuring the number of chest ribs of the infant and measuring the chest fluctuation measured during the predetermined time. The number of times can be acquired as the respiratory rate of the infant.
 このように、撮影画像3を画像解析することで呼吸数を測定する場合には、乳幼児の呼吸状態を示す情報を非侵襲に取得することができる。そのため、この場合には、乳幼児に装着する機器の数を減らすことができ、そのような機器の配線が乳幼児の首に絡まる等の事故の発生する可能性を低減することができる。 As described above, when the respiratory rate is measured by analyzing the captured image 3, information indicating the respiratory state of the infant can be acquired non-invasively. Therefore, in this case, the number of devices to be attached to the infant can be reduced, and the possibility of an accident such as the wiring of such devices being entangled in the infant's neck can be reduced.
 また、呼吸状態を示す情報として呼吸数を取得する場合、制御部11は、上記ステップS105において、呼吸数に基づいて、取得したバイタル情報40により示される呼吸状態が乳幼児の通常時の呼吸状態よりも所定以上浅いか否かを検知することができる。具体的には、制御部11は、取得された呼吸数と通常時の呼吸数とを比較する。そして、制御部11は、取得された呼吸数が通常時の呼吸数よりも所定値以上低いと判定した場合に、取得したバイタル情報40により示される呼吸状態が乳幼児の通常時の呼吸状態よりも所定以上浅いことを検知する。 Moreover, when acquiring a respiratory rate as information which shows a respiratory state, the control part 11 is based on the respiratory rate in the said step S105, and the respiratory state shown by the acquired vital information 40 is from the normal respiratory state of the infant. It is possible to detect whether it is shallower than a predetermined depth. Specifically, the control unit 11 compares the acquired respiration rate with the normal respiration rate. When the control unit 11 determines that the acquired respiration rate is lower than the normal respiration rate by a predetermined value or more, the respiration state indicated by the acquired vital information 40 is lower than the normal respiration state of the infant. Detect that it is shallower than a predetermined depth.
 なお、通常時の呼吸数は、実施の形態に応じて適宜設定されてよい。例えば、乳幼児が覚醒している際に、測定機器又は目視で計測した乳幼児の呼吸数を通常時の呼吸数として設定してもよい。通常時の呼吸数を計測する方法は、実施の形態に応じて適宜選択可能である。 Note that the normal respiratory rate may be set as appropriate according to the embodiment. For example, when the infant is awake, the respiratory rate of the infant measured with a measuring device or visually may be set as the normal respiratory rate. The method for measuring the respiration rate at the normal time can be appropriately selected according to the embodiment.
 また、呼吸状態が所定以上に浅くなったことを判定するための上記所定値は、実施の形態に応じて適宜設定されてよい。また、当該所定値は、通常時の呼吸数の低下率で与えられてもよい。例えば、通常時の呼吸数が1分間に30回と設定され、呼吸状態が浅いことを検知するための低下率が30%と設定されているとする。この場合、制御部11は、取得された呼吸数が1分間に21回以下であると判定した場合に、取得したバイタル情報40により示される呼吸状態が乳幼児の通常時の呼吸状態よりも所定以上浅いことを検知する。 Further, the predetermined value for determining that the breathing state has become shallower than a predetermined value may be set as appropriate according to the embodiment. Further, the predetermined value may be given as a rate of decrease in the respiration rate at the normal time. For example, it is assumed that the normal respiration rate is set to 30 times per minute and the decrease rate for detecting that the respiration state is shallow is set to 30%. In this case, when the control unit 11 determines that the acquired respiratory rate is 21 times or less per minute, the respiratory state indicated by the acquired vital information 40 is greater than or equal to the normal respiratory state of the infant. Detect shallowness.
 また、制御部11は、取得された呼吸数が通常時の呼吸数よりも所定値以上低い状況が所定時間継続した場合に、取得したバイタル情報40により示される呼吸状態が乳幼児の通常時の呼吸状態よりも所定以上浅いことを検知してもよい。当該検知の基準となる所定時間の値は、実施の形態に応じて適宜設定されてよい。これによって、SIDSの予兆検知に、呼吸の浅い状態又は無呼吸状態が継続した時間を考慮することができる。 In addition, when the acquired respiration rate is lower than the normal respiration rate by a predetermined value or more for a predetermined time, the control unit 11 determines that the respiration state indicated by the acquired vital information 40 is the normal respiration of the infant. You may detect that it is shallower than a predetermined state. The value of the predetermined time serving as a reference for the detection may be appropriately set according to the embodiment. Accordingly, it is possible to consider the time during which the shallow breathing state or the apnea state is continued in the detection of the SIDS sign.
 (2)脈拍数の取得方法
 また、例えば、上記実施形態では、乳幼児に装着された測定機器4によって脈拍数が測定される。しかしながら、脈拍数を測定する方法は、このような例に限られなくてもよく、実施の形態に応じて適宜選択可能である。例えば、制御部11は、ステップS101で取得した撮影画像3を画像解析することで、乳幼児の脈拍数を取得してもよい。
(2) Pulse rate acquisition method For example, in the above-described embodiment, the pulse rate is measured by the measuring device 4 attached to the infant. However, the method for measuring the pulse rate is not limited to such an example, and can be appropriately selected according to the embodiment. For example, the control unit 11 may acquire the infant's pulse rate by analyzing the captured image 3 acquired in step S101.
 画像解析による脈拍数の計測は、公知の方法によって行われてよい。例えば、血流によって顔表面等の皮膚の色が変化する。具体的には、血液の脈動によって血流量が増えたときには、その血液が流れる部分でヘモグロビンの量が増える。一方、血流量が減ったときには、その血液が流れる部分でヘモグロビンの量が減る。ここで、ヘモグロビンは、赤外線光、緑色光等の光を吸収する特性を有している。そのため、血流量が増えた時には、赤外線光、緑色光等の光が吸収されやすくなり、取得される撮影画像3内でその光が薄くなる。一方、血流量が減った時には、赤外線光、緑色光等の光が吸収され難くなり、取得される撮影画像3内でその光が濃くなる。制御部11は、取得される撮影画像3内でそのような光の濃淡が繰り返される回数を計測することで、脈拍数を測定することができる。 Measurement of the pulse rate by image analysis may be performed by a known method. For example, the color of the skin such as the face surface changes due to blood flow. Specifically, when the blood flow volume increases due to blood pulsation, the amount of hemoglobin increases in the portion where the blood flows. On the other hand, when the blood flow decreases, the amount of hemoglobin decreases at the part where the blood flows. Here, hemoglobin has a characteristic of absorbing light such as infrared light and green light. Therefore, when the blood flow volume increases, light such as infrared light and green light is easily absorbed, and the light becomes thin in the acquired captured image 3. On the other hand, when the blood flow is reduced, light such as infrared light and green light is not easily absorbed, and the light becomes dark in the captured image 3 to be acquired. The control unit 11 can measure the pulse rate by measuring the number of times such light shading is repeated in the acquired captured image 3.
 1…乳幼児監視装置、
 2…カメラ、21…深度センサ、
 3…撮影画像、4…測定機器、
 5…プログラム、6…記憶媒体、
11…制御部、12…記憶部、13…タッチパネルディスプレイ、
14…スピーカ、15…外部インタフェース、16…通信インタフェース、
17…ドライブ、
51…画像取得部、52…バイタル情報取得部、53…就寝状態解析部、
54…兆候判定部、55…通知部
1 ... Infant monitoring device,
2 ... Camera, 21 ... Depth sensor,
3 ... taken image, 4 ... measuring instrument,
5 ... Program, 6 ... Storage medium,
11 ... Control unit, 12 ... Storage unit, 13 ... Touch panel display,
14 ... Speaker, 15 ... External interface, 16 ... Communication interface,
17 ... drive,
51 ... Image acquisition unit, 52 ... Vital information acquisition unit, 53 ... Sleeping state analysis unit,
54 ... sign determination unit, 55 ... notification unit

Claims (9)

  1.  就寝している乳幼児を撮影した撮影画像であって、当該撮影画像内の各画素の深度を示す深度データを含む撮影画像を取得する画像取得部と、
     前記乳幼児の脈拍数及び呼吸状態を含むバイタル情報を取得するバイタル情報取得部と、
     取得した前記撮影画像内で前記乳幼児の写る人物領域を抽出し、抽出した前記人物領域に含まれる各画素の深度を参照して、前記乳幼児の体動及び就寝姿勢を解析する就寝状態解析部と、
     取得された前記バイタル情報により示される前記脈拍数及び前記呼吸状態並びに解析された前記体動及び前記就寝姿勢に基づいて、乳幼児突然死症候群になる兆候が前記乳幼児にあるか否かを判定する兆候判定部と、
     前記判定の結果、乳幼児突然死症候群になる兆候が前記乳幼児にあると判定された場合には、当該乳幼児突然死症候群になる兆候が前記乳幼児にあることを知らせるための兆候検知通知を行う通知部と、
    を備える、
    乳幼児監視装置。
    An image acquisition unit that captures a captured image of a sleeping infant, and includes a captured image including depth data indicating the depth of each pixel in the captured image;
    A vital information acquisition unit that acquires vital information including the infant's pulse rate and respiratory state;
    A sleeping state analysis unit that extracts a person region in which the infant is photographed in the acquired captured image and analyzes a body movement and a sleeping posture of the infant with reference to the depth of each pixel included in the extracted person region; ,
    An indication for determining whether or not the infant has a sign of sudden infant death syndrome based on the pulse rate and the respiratory state indicated by the acquired vital information, and the analyzed body movement and sleeping posture. A determination unit;
    As a result of the determination, when it is determined that the infant has a sign of sudden infant death syndrome, a notification unit that performs a sign detection notification for notifying the infant that there is a sign of sudden infant death syndrome. When,
    Comprising
    Infant monitoring device.
  2.  前記兆候判定部は、前記乳幼児の就寝姿勢がうつ伏せであることを検知した場合に、乳幼児突然死症候群になる兆候が前記乳幼児にあると判定する、
    請求項1に記載の乳幼児監視装置。
    The sign determination unit determines that the infant has a sign of sudden infant death syndrome when detecting that the infant's sleeping posture is prone,
    The infant monitoring apparatus according to claim 1.
  3.  前記兆候判定部は、取得された前記バイタル情報により示される前記脈拍数が前記乳幼児の通常時の脈拍数よりも所定値以上高く、取得された前記バイタル情報により示される前記呼吸状態が前記乳幼児の通常時の呼吸状態よりも所定以上浅く、かつ、解析された前記体動の量が前記乳幼児の通常時の体動の量よりも所定値以上少ないことを検知した場合に、乳幼児突然死症候群になる兆候が前記乳幼児にあると判定する、
    請求項1又は2に記載の乳幼児監視装置。
    The symptom determination unit is configured such that the pulse rate indicated by the acquired vital information is higher than a normal pulse rate of the infant by a predetermined value or more, and the respiratory state indicated by the acquired vital information is that of the infant. Sudden infant death syndrome is detected when it is detected that the amount of body motion analyzed is shallower than a predetermined amount than the normal breathing state and the amount of the analyzed body motion is smaller than the normal amount of body motion of the infant by a predetermined value or more. Determining that the infant has the indication
    The infant monitoring apparatus according to claim 1 or 2.
  4.  前記バイタル情報取得部は、脈拍数を測定可能に構成され、前記乳幼児に装着された測定機器から前記乳幼児の脈拍数を取得する、
    請求項1から3のいずれか1項に記載の乳幼児監視装置。
    The vital information acquisition unit is configured to be able to measure a pulse rate, and acquires the infant's pulse rate from a measuring device attached to the infant.
    The infant monitoring apparatus according to any one of claims 1 to 3.
  5.  前記測定機器は、動脈血の酸素飽和度を更に測定可能に構成され、
     前記バイタル情報取得部は、前記呼吸状態を示す情報として、前記乳幼児の動脈血の酸素飽和度を前記測定機器から取得し、
     前記兆候判定部は、取得された前記動脈血の酸素飽和度と前記乳幼児の通常時における動脈血の酸素飽和度の基準値とを比較し、取得された前記動脈血の酸素飽和度が前記乳幼児の通常時における動脈血の酸素飽和度の基準値よりも低いと判定した場合に、取得された前記バイタル情報により示される前記呼吸状態が前記乳幼児の通常時の呼吸状態よりも所定以上浅いことを検知する、
    請求項4に記載の乳幼児監視装置。
    The measuring device is configured to further measure the oxygen saturation of arterial blood,
    The vital information acquisition unit acquires oxygen saturation of arterial blood of the infant from the measuring device as information indicating the respiratory state,
    The sign determination unit compares the acquired oxygen saturation of the arterial blood with a reference value of the arterial oxygen saturation at the normal time of the infant, and the acquired oxygen saturation of the arterial blood is the normal time of the infant Detecting that the respiratory state indicated by the acquired vital information is shallower than a normal respiratory state of the infant when it is determined that it is lower than a reference value of oxygen saturation of arterial blood in
    The infant monitoring apparatus according to claim 4.
  6.  前記測定機器は、呼吸数を更に測定可能に構成され、
     前記バイタル情報取得部は、前記呼吸状態を示す情報として、前記乳幼児の呼吸数を前記測定機器から取得し、
     前記兆候判定部は、取得された呼吸数と前記乳幼児の通常時の呼吸数とを比較し、取得された呼吸数が前記乳幼児の通常時の呼吸数よりも所定値以上低いと判定した場合に、取得された前記バイタル情報により示される前記呼吸状態が前記乳幼児の通常時の呼吸状態よりも所定以上浅いことを検知する、
    請求項4又は5に記載の乳幼児監視装置。
    The measuring device is configured to further measure the respiratory rate,
    The vital information acquisition unit acquires the infant respiratory rate from the measuring device as information indicating the respiratory state,
    The sign determination unit compares the acquired respiratory rate with the normal infant respiratory rate, and determines that the acquired respiratory rate is lower than the normal infant respiratory rate by a predetermined value or more. , Detecting that the respiratory state indicated by the acquired vital information is shallower than a normal respiratory state of the infant by a predetermined amount or more,
    The infant monitoring apparatus according to claim 4 or 5.
  7.  前記バイタル情報取得部は、前記撮影画像内の前記人物領域に含まれる各画素の深度を参照して、前記乳幼児の胸郭の変動回数を計測することで、前記呼吸状態を示す情報として、前記乳幼児の呼吸数を取得し、
     前記兆候判定部は、取得された呼吸数と前記乳幼児の通常時の呼吸数とを比較し、取得された呼吸数が前記乳幼児の通常時の呼吸数よりも所定値以上低いと判定した場合に、取得された前記バイタル情報により示される前記呼吸状態が前記乳幼児の通常時の呼吸状態よりも所定以上浅いことを検知する、
    請求項4又は5に記載の乳幼児監視装置。
    The vital information acquisition unit refers to the depth of each pixel included in the person region in the photographed image, and measures the number of changes in the infant's rib cage as information indicating the respiratory state, as the infant Get the respiratory rate of
    The sign determination unit compares the acquired respiratory rate with the normal infant respiratory rate, and determines that the acquired respiratory rate is lower than the normal infant respiratory rate by a predetermined value or more. , Detecting that the respiratory state indicated by the acquired vital information is shallower than a normal respiratory state of the infant by a predetermined amount or more,
    The infant monitoring apparatus according to claim 4 or 5.
  8.  コンピュータが、
     就寝している乳幼児を撮影した撮影画像であって、当該撮影画像内の各画素の深度を示す深度データを含む撮影画像を取得するステップと、
     前記乳幼児の脈拍数及び呼吸状態を含むバイタル情報を取得するステップと、
     取得した前記撮影画像内で前記乳幼児の写る人物領域を抽出するステップと、
     抽出した前記人物領域に含まれる各画素の深度を参照して、前記乳幼児の体動及び就寝姿勢を解析するステップと、
     取得された前記バイタル情報により示される前記脈拍数及び前記呼吸状態並びに解析された前記体動及び前記就寝姿勢に基づいて、乳幼児突然死症候群になる兆候が前記乳幼児にあるか否かを判定するステップと、
     前記判定の結果、乳幼児突然死症候群になる兆候が前記乳幼児にあると判定された場合には、当該乳幼児突然死症候群になる兆候が前記乳幼児にあることを知らせるための兆候検知通知を行うステップと、
    を実行する乳幼児監視方法。
    Computer
    A captured image obtained by photographing a sleeping infant, including a captured image including depth data indicating the depth of each pixel in the captured image;
    Obtaining vital information including the infant's pulse rate and respiratory status;
    Extracting a person region in which the infant appears in the acquired captured image;
    Analyzing the body movement and sleeping posture of the infant with reference to the depth of each pixel included in the extracted person region;
    A step of determining whether or not the infant has a sign of sudden infant death syndrome based on the pulse rate and the respiratory state indicated by the acquired vital information and the analyzed body movement and the sleeping posture. When,
    As a result of the determination, if it is determined that there is a sign of sudden infant death syndrome in the infant, performing a sign detection notification for notifying that the infant has the sign of sudden infant death syndrome; ,
    Perform infant monitoring method.
  9.  コンピュータに、
     就寝している乳幼児を撮影した撮影画像であって、当該撮影画像内の各画素の深度を示す深度データを含む撮影画像を取得するステップと、
     前記乳幼児の脈拍数及び呼吸状態を含むバイタル情報を取得するステップと、
     取得した前記撮影画像内で前記乳幼児の写る人物領域を抽出するステップと、
     抽出した前記人物領域に含まれる各画素の深度を参照して、前記乳幼児の体動及び就寝姿勢を解析するステップと、
     取得された前記バイタル情報により示される前記脈拍数及び前記呼吸状態並びに解析された前記体動及び前記就寝姿勢に基づいて、乳幼児突然死症候群になる兆候が前記乳幼児にあるか否かを判定するステップと、
     前記判定の結果、乳幼児突然死症候群になる兆候が前記乳幼児にあると判定された場合には、当該乳幼児突然死症候群になる兆候が前記乳幼児にあることを知らせるための兆候検知通知を行うステップと、
    を実行させるための乳幼児監視プログラム。
    On the computer,
    A captured image obtained by photographing a sleeping infant, including a captured image including depth data indicating the depth of each pixel in the captured image;
    Obtaining vital information including the infant's pulse rate and respiratory status;
    Extracting a person region in which the infant appears in the acquired captured image;
    Analyzing the body movement and sleeping posture of the infant with reference to the depth of each pixel included in the extracted person region;
    A step of determining whether or not the infant has a sign of sudden infant death syndrome based on the pulse rate and the respiratory state indicated by the acquired vital information and the analyzed body movement and the sleeping posture. When,
    As a result of the determination, if it is determined that there is a sign of sudden infant death syndrome in the infant, performing a sign detection notification for notifying that the infant has the sign of sudden infant death syndrome; ,
    Infant monitoring program for running.
PCT/JP2015/085599 2015-03-23 2015-12-21 Infant monitoring device, infant monitoring method, and infant monitoring program WO2016151966A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017507343A JPWO2016151966A1 (en) 2015-03-23 2015-12-21 Infant monitoring apparatus, infant monitoring method, and infant monitoring program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-059267 2015-03-23
JP2015059267 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016151966A1 true WO2016151966A1 (en) 2016-09-29

Family

ID=56978009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085599 WO2016151966A1 (en) 2015-03-23 2015-12-21 Infant monitoring device, infant monitoring method, and infant monitoring program

Country Status (2)

Country Link
JP (1) JPWO2016151966A1 (en)
WO (1) WO2016151966A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038673A (en) * 2015-08-18 2017-02-23 ノーリツプレシジョン株式会社 Respiration detection device, respiration detection method, and respiration detection program
JP6391858B1 (en) * 2017-06-30 2018-09-19 ユニファ株式会社 Sleep check system, sleep check program, and sleep check method
JP2019010522A (en) * 2018-08-21 2019-01-24 ユニファ株式会社 Sleep check system, sleep check program, and sleep check method
WO2019230308A1 (en) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 Monitoring support device and monitoring support method for supporting work of monitoring person monitoring a plurality of subjects by checking subjects successively
JP2019211467A (en) * 2018-05-30 2019-12-12 パナソニックIpマネジメント株式会社 Monitoring support apparatus and monitoring support method
CN110742617A (en) * 2019-10-28 2020-02-04 舒城县红叶五金塑料制品有限公司 Sleeping posture detection control method and device, storage medium and intelligent baby crib
KR20200080987A (en) * 2018-12-27 2020-07-07 세종대학교산학협력단 Method and system for analyzing baby behavior
JP2021005207A (en) * 2019-06-26 2021-01-14 EMC Healthcare株式会社 Information processing device, information processing method, and program
CN112294289A (en) * 2019-08-02 2021-02-02 四川华友企业管理服务有限公司 Face recognition sudden death prevention method for gymnasium
CN112438708A (en) * 2019-08-28 2021-03-05 技嘉科技股份有限公司 Personnel condition detection device
CN113516095A (en) * 2021-07-28 2021-10-19 宁波星巡智能科技有限公司 Infant sleep monitoring method, device, equipment and medium
JP2022501103A (en) * 2018-09-19 2022-01-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Devices, systems and methods for providing skeletal models
JP2022011939A (en) * 2020-06-30 2022-01-17 長野計器株式会社 Body motion detector
JP2022058687A (en) * 2018-08-21 2022-04-12 ユニファ株式会社 Sleep check system, sleep check program, and sleep check method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155755A (en) * 1996-11-25 1998-06-16 Pacesetter Ab Medical apparatus
JP2006507088A (en) * 2002-11-25 2006-03-02 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド Method and system for monitoring a subject's respiratory activity
JP2007229078A (en) * 2006-02-28 2007-09-13 Terumo Corp Infant health management/monitoring device
JP2008048819A (en) * 2006-08-23 2008-03-06 Fujifilm Corp Monitoring system and apparatus
JP2014008161A (en) * 2012-06-28 2014-01-20 Fukuda Denshi Co Ltd Biological information analyzing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208225A (en) * 2012-03-30 2013-10-10 Toshiba Corp Awakening induction device during suffocation
JP2014151120A (en) * 2013-02-13 2014-08-25 Hitachi Systems Ltd Sleep state monitoring system and sleep state monitoring program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155755A (en) * 1996-11-25 1998-06-16 Pacesetter Ab Medical apparatus
JP2006507088A (en) * 2002-11-25 2006-03-02 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド Method and system for monitoring a subject's respiratory activity
JP2007229078A (en) * 2006-02-28 2007-09-13 Terumo Corp Infant health management/monitoring device
JP2008048819A (en) * 2006-08-23 2008-03-06 Fujifilm Corp Monitoring system and apparatus
JP2014008161A (en) * 2012-06-28 2014-01-20 Fukuda Denshi Co Ltd Biological information analyzing device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038673A (en) * 2015-08-18 2017-02-23 ノーリツプレシジョン株式会社 Respiration detection device, respiration detection method, and respiration detection program
JP6391858B1 (en) * 2017-06-30 2018-09-19 ユニファ株式会社 Sleep check system, sleep check program, and sleep check method
WO2019003446A1 (en) * 2017-06-30 2019-01-03 ユニファ株式会社 Sleep checking system, sleep checking program, and sleep checking method
JP7373728B2 (en) 2018-05-30 2023-11-06 パナソニックIpマネジメント株式会社 Monitoring support device and monitoring support method
WO2019230308A1 (en) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 Monitoring support device and monitoring support method for supporting work of monitoring person monitoring a plurality of subjects by checking subjects successively
JP2019211467A (en) * 2018-05-30 2019-12-12 パナソニックIpマネジメント株式会社 Monitoring support apparatus and monitoring support method
CN111656457B (en) * 2018-05-30 2024-04-09 松下知识产权经营株式会社 Monitoring support device and monitoring support method for supporting work of monitor for monitoring by sequentially visiting a plurality of subjects
US11227475B2 (en) 2018-05-30 2022-01-18 Panasonic Intellectual Property Management Co., Ltd. Monitoring support apparatus and monitoring support method for supporting work of monitoring person who monitors plurality of subjects by sequentially visiting the plurality of subjects
US11615686B2 (en) 2018-05-30 2023-03-28 Panasonic Intellectual Property Management Co., Ltd. Monitoring support apparatus and monitoring support method for supporting work of monitoring person who monitors plurality of subjects by sequentially visiting the plurality of subjects
CN111656457A (en) * 2018-05-30 2020-09-11 松下知识产权经营株式会社 Monitoring assistance device and monitoring assistance method for assisting operation of a monitor who monitors by sequentially patrolling a plurality of subjects
JP2019010522A (en) * 2018-08-21 2019-01-24 ユニファ株式会社 Sleep check system, sleep check program, and sleep check method
JP7460058B2 (en) 2018-08-21 2024-04-02 ユニファ株式会社 Infant sleep check system, infant sleep check program, and infant sleep check method
JP7017760B2 (en) 2018-08-21 2022-02-09 ユニファ株式会社 Sleep check system, sleep check sensor, sleep check program and sleep check method
JP2022058687A (en) * 2018-08-21 2022-04-12 ユニファ株式会社 Sleep check system, sleep check program, and sleep check method
JP7138902B2 (en) 2018-08-21 2022-09-20 ユニファ株式会社 Sleep check system, sleep check program and sleep check method
JP2022184844A (en) * 2018-08-21 2022-12-13 ユニファ株式会社 Sleep check system, sleep check program, and sleep check method
JP2022501103A (en) * 2018-09-19 2022-01-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Devices, systems and methods for providing skeletal models
JP7372966B2 (en) 2018-09-19 2023-11-01 コーニンクレッカ フィリップス エヌ ヴェ Device, system, method of operating the device, and computer program for providing a skeletal model
KR102150623B1 (en) 2018-12-27 2020-09-01 세종대학교산학협력단 Method and system for analyzing baby behavior
KR20200080987A (en) * 2018-12-27 2020-07-07 세종대학교산학협력단 Method and system for analyzing baby behavior
JP2021005207A (en) * 2019-06-26 2021-01-14 EMC Healthcare株式会社 Information processing device, information processing method, and program
CN112294289A (en) * 2019-08-02 2021-02-02 四川华友企业管理服务有限公司 Face recognition sudden death prevention method for gymnasium
CN112438708A (en) * 2019-08-28 2021-03-05 技嘉科技股份有限公司 Personnel condition detection device
CN110742617A (en) * 2019-10-28 2020-02-04 舒城县红叶五金塑料制品有限公司 Sleeping posture detection control method and device, storage medium and intelligent baby crib
JP7171658B2 (en) 2020-06-30 2022-11-15 長野計器株式会社 Body motion detector
JP2022011939A (en) * 2020-06-30 2022-01-17 長野計器株式会社 Body motion detector
CN113516095A (en) * 2021-07-28 2021-10-19 宁波星巡智能科技有限公司 Infant sleep monitoring method, device, equipment and medium

Also Published As

Publication number Publication date
JPWO2016151966A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2016151966A1 (en) Infant monitoring device, infant monitoring method, and infant monitoring program
JP6115335B2 (en) Information processing apparatus, information processing method, and program
JP6371837B2 (en) Devices and methods for obtaining vital signs of subjects
RU2604701C2 (en) Method and apparatus for monitoring movement and breathing of multiple subjects in a common bed
Zhao et al. Remote measurements of heart and respiration rates for telemedicine
TWI546052B (en) Apparatus based on image for detecting heart rate activity and method thereof
US11776146B2 (en) Edge handling methods for associated depth sensing camera devices, systems, and methods
JP6167563B2 (en) Information processing apparatus, information processing method, and program
KR101070389B1 (en) System for monitoring patient condition
JP6737261B2 (en) Vital sign measuring device, vital sign measuring method, and vital sign measuring program
WO2015118953A1 (en) Information processing device, information processing method, and program
WO2013165550A1 (en) Methods and systems for measuring dynamic changes in the physiological parameters of a subject
JP6780641B2 (en) Image analysis device, image analysis method, and image analysis program
JP6504156B2 (en) INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND PROGRAM
JP6489117B2 (en) Information processing apparatus, information processing method, and program
WO2015125545A1 (en) Information processing device, information processing method, and program
JP6822328B2 (en) Watching support system and its control method
Alkali et al. Facial tracking in thermal images for real-time noncontact respiration rate monitoring
JP6607253B2 (en) Image analysis apparatus, image analysis method, and image analysis program
JP6565468B2 (en) Respiration detection device, respiration detection method, and respiration detection program
JP2019008515A (en) Watching support system and method for controlling the same
JP2019021002A (en) Watching support system, and control method thereof
TW202143908A (en) Multi-parameter physiological signal measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507343

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886518

Country of ref document: EP

Kind code of ref document: A1