WO2016151933A1 - Composition and optical functional film including same - Google Patents

Composition and optical functional film including same Download PDF

Info

Publication number
WO2016151933A1
WO2016151933A1 PCT/JP2015/081515 JP2015081515W WO2016151933A1 WO 2016151933 A1 WO2016151933 A1 WO 2016151933A1 JP 2015081515 W JP2015081515 W JP 2015081515W WO 2016151933 A1 WO2016151933 A1 WO 2016151933A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
ligand
substituted
nanoparticles
Prior art date
Application number
PCT/JP2015/081515
Other languages
French (fr)
Japanese (ja)
Inventor
恵美子 御子柴
福坂 潔
北 弘志
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017507331A priority Critical patent/JP6729554B2/en
Publication of WO2016151933A1 publication Critical patent/WO2016151933A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a composition and an optical functional film containing the composition.
  • the quantum dots can control the emission wavelength according to the size of the dots, that is, can perform color conversion according to the emission wavelength.
  • excitation light emitted from a blue LED or the like is applied to a quantum dot having a specific particle diameter, green light emission or red light emission is emitted, and white light having a narrow spectrum peak of three primary colors can be obtained.
  • the white light is obtained by concentrating a large amount of visible energy in the narrow wavelength region of the three primary colors of red, green, and blue, that is, it generates little light outside the narrow wavelength region. Therefore, clear colors and high efficiency can be obtained.
  • quantum dots have the characteristic of concentrating a large amount of visible energy in the narrow wavelength region of the three primary colors red, green, and blue, so that quantum dots with green and red emission spectra diffuse into the polymer.
  • QD quantum dots
  • its application is expected for various optical functional films such as a color filter and a color tone conversion filter.
  • the above-described color gamut expansion film is expected to improve the color tone (spectrum) of the backlight by applying it to a liquid crystal display, and greatly improve the colors that can be displayed on the liquid crystal display.
  • the conventional general liquid crystal display can express only about 20% to 30% of colors that can be identified by humans, but it can be reduced to about 60% by applying a color gamut expansion film as an optical functional film. It can be raised.
  • quantum dots As described above, optical functional films to which quantum dots are applied are highly expected from the viewpoints of light emission efficiency and the like for the various uses described above.
  • quantum dots deteriorate due to oxygen, light, and heat, and emit light.
  • the intensity (luminous efficiency) decreases.
  • the quantum dots have surface atoms that serve as ligand sites, and thus have high reactivity and are likely to cause aggregation of particles.
  • Patent Document 1 US Patent Application Publication No. 2014/275431.
  • the quantum dots have extremely high luminance and are less likely to be discolored by excitation light compared to organic fluorescent dyes and fluorescent proteins. Therefore, high-sensitivity fluorescence observation over a long time is possible. In addition, it is easy to observe with multi-color fluorescence after excitation at one wavelength, and it is possible to develop multi-color fluorescent probes in cells or living bodies by modifying the quantum dots with antibodies and ligands for receptors. .
  • the water solubilization method includes a method of exchanging the hydrophobic capping agent with an amphiphilic thiol compound (ligand exchange method) and a method of coating with an amphiphilic polymer while leaving the hydrophobic capping agent (encapsulation). Law).
  • Patent Document 2 Japanese Translation of PCT International Publication No. 2010-523557.
  • Patent Document 3 Japanese Translation of PCT International Publication No. 2014-523634 describes a light-emitting device incorporated in a transparent poly (meth) acrylate encapsulating medium, but does not describe a ligand of inorganic nanoparticles.
  • the present invention is intended to solve the problem by combining the inorganic ligand with the specific ligand of the present invention, so that both water-soluble and oil-soluble compositions are possible.
  • An object of the present invention is to provide a composition and an optical functional film that are excellent in various characteristics of wavelength peak stability and further excellent in suppressing deterioration of the binder resin.
  • the present inventors have conducted intensive research to solve the above problems.
  • it contains an inorganic nanoparticle and a ligand having at least one adsorbing group that adsorbs to the inorganic nanoparticle, the ligand is a nonionic organic compound or an oxide compound, and the adsorbing group is a central atom
  • the ligand is a nonionic organic compound or an oxide compound
  • the adsorbing group is a central atom
  • the present invention includes inorganic nanoparticles; and a ligand having at least one adsorbing group adsorbed on the inorganic nanoparticles, wherein the ligand is a nonionic organic compound or an oxide compound, and the adsorption A composition and an optically functional film containing a compound in which the group is a residue of an oxo acid whose central atom is a sulfur atom or a phosphorus atom or an N-oxide group.
  • both water-soluble and oil-soluble are possible, excellent luminous properties, durability, and various characteristics such as stability of emission wavelength peak, and excellent heat resistance and binder resin deterioration suppression.
  • a functional membrane can be provided.
  • the color gamut expansion film As described above, when the above-described color gamut expansion film is applied to a liquid crystal display as an optical functional film, the color tone (spectrum) of the backlight is improved, and the displayable color of the liquid crystal display is remarkably improved. It is expected that. Therefore, hereinafter, a color gamut expansion film which is an embodiment of the present invention will be described.
  • the optical functional film since the present invention is characterized in that a specific ligand is used, the optical functional film is not limited to the color gamut expansion film of the following embodiment, and the color filter as described above. It can be used in various applications such as a color tone conversion filter as an optical functional film.
  • the color gamut expanding film of the present embodiment includes inorganic nanoparticles; and a ligand having at least one adsorbing group that is adsorbed on the inorganic nanoparticles, and the ligand is a nonionic organic compound or It is an oxide compound, and the adsorbing group has an optical functional film formed by using a composition containing a compound having an oxo acid residue or N-oxide group whose central atom is a sulfur atom or a phosphorus atom.
  • the color gamut expansion film of the present embodiment has improved luminous efficiency, heat resistance, and oxidation resistance.
  • the present inventors diligently studied the cause of the conventional optical functional film not being excellent in various properties.
  • the ligand coordination element when oxygen is present in the vicinity, the ligand coordination element is oxidized by oxygen, resulting in a decrease in the electron density of the coordination element and coordination with the inorganic nanoparticles. I thought that my position would be weak.
  • the coordinating power is weakened, in some cases, the ligand is desorbed from the inorganic nanoparticles, and defective portions of the inorganic nanoparticles exposed by the desorption are damaged by oxidation or the like. I guessed it might have led to deterioration.
  • the fact that the ligand is oxidized by oxygen means that electrons are attracted to the assigned oxygen atom, and the ⁇ -characteristic of the coordination element is lowered. Enthalpy is reduced. Or, the energy level of the changed structure is changed due to oxygen oxidation, and the relationship of the good energy level with the quantum dot is broken, and the LUMO of the ligand deepens, acting as an electron trapping agent, or coordination It is considered that the HOMO of the child becomes shallow, and an adverse effect of acting as a hole trapping agent occurs.
  • the structure is changed by oxygen oxidation, and it is no longer susceptible to oxygen oxidation in order to avoid desorption due to weak coordination force and change in energy level balance (that is, structural change). It is the present invention that has been solved by adopting the ligand of inorganic nanoparticles as a difficult) and further increasing the complex stability constant by the entropy effect.
  • the mechanism is based on speculation, and the present invention is not limited to the mechanism.
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • composition is a combination of inorganic nanoparticles and a ligand having at least one adsorbing group that adsorbs to the inorganic nanoparticles.
  • the inorganic nanoparticles are inorganic fine particles having a particle size of about several nm to several hundred nm.
  • the average particle diameter is preferably 1 to 200 nm, more preferably 1 to 100 nm, and still more preferably 1 to 50 nm.
  • the following explanation of the average particle diameter of the semiconductor nanoparticles is applied to the description of the method for measuring the average particle diameter of the inorganic nanoparticles.
  • Examples of the inorganic nanoparticles include semiconductor nanoparticles, metal oxide nanoparticles, and metal nanoparticles.
  • the semiconductor nanoparticle is a particle having a predetermined size that is composed of a crystal of a semiconductor material and has a quantum confinement effect, and is a fine particle having a particle size of about several nanometers to several tens of nanometers.
  • the quantum dot effect shown in FIG. In the present specification, “semiconductor nanoparticles” capable of obtaining the quantum dot effect may be simply referred to as “quantum dots”.
  • the shape of the semiconductor nanoparticles is not particularly limited, such as dots, rods, wires, squares, tetrapots, and stars.
  • the energy level E of such semiconductor nanoparticles is generally expressed by the following formula (1) when the Planck constant is “h”, the effective mass of electrons is “m”, and the radius of the semiconductor nanoparticles is “R”. ).
  • the band gap of the semiconductor nanoparticles increases in proportion to “R ⁇ 2 ”, and a so-called quantum dot effect is obtained.
  • the band gap value of the semiconductor nanoparticles can be controlled by controlling and defining the particle diameter of the semiconductor nanoparticles. That is, by controlling and defining the particle size of the fine particles, it is possible to provide diversity not found in ordinary atoms. Therefore, it can be excited by light, or converted into light having a desired wavelength and emitted.
  • a light-emitting semiconductor nanoparticle material is defined as a semiconductor nanoparticle.
  • the average particle size of the semiconductor nanoparticles is about several nm to several tens of nm, and is set to an average particle size corresponding to the target emission color.
  • the average particle size of the semiconductor nanoparticles is preferably set within a range of 3.0 to 20 nm.
  • the particle size is preferably set in the range of 1.5 to 10 nm, and when blue light emission is desired, the average particle size of the semiconductor nanoparticles may be set in the range of 1.0 to 3.0 nm. preferable.
  • the average particle diameter of the semiconductor nanoparticles can be controlled by a known method.
  • a known method can be used as a method for measuring the average particle diameter.
  • a method of observing semiconductor nanoparticles using a transmission electron microscope (TEM) and determining the number average particle size of the particle size distribution therefrom, or a method of determining an average particle size using an electron force microscope (AFM) The particle size can be measured using a particle size measuring apparatus using a dynamic light scattering method, for example, “ZETASIZER Nano Series Nano-ZS” manufactured by Malvern.
  • a transmission electron microscope A method of obtaining an average particle diameter using TEM is preferable.
  • a simple substance of a long-period periodic table group 14 element such as carbon, silicon, germanium, or tin
  • a simple substance of a long-period periodic table group 15 element such as phosphorus (black phosphorus) , Selenium, tellurium and other long-period periodic table group 16 element simple substance
  • silicon carbide (SiC) and other long-period periodic table group 14 element compounds tin (IV) (SnO 2 ), Tin sulfide (II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tellurium
  • Long-period periodic table group 14 elements such as tin (II) fluoride (SnTe), lead sulfide (II) (P
  • Long period type periodic table group 15 element and long period type periodic table group 16 element compound copper (I) (Cu 2 O), copper selenide (I) (Cu 2 Se), etc. long period Periodic Table Group 11 elements And a compound of Group 16 element of the long-period type periodic table; copper chloride (I) (CuCl), copper bromide (I) (CuBr), copper iodide (I) (CuI), silver chloride (AgCl), odor
  • a compound of a long-period periodic table group 11 element such as silver halide (AgBr) and a long-period periodic table group 17 element
  • a long-period periodic table group 10 element such as nickel oxide (II) (NiO); Long Periodic Periodic Table Group 16 Element; Long Periodic Periodic Group 9 Element such as Cobalt (II) Oxide (CoO), Cobalt Sulfide (CoS) and Long Periodic Periodic Group 16
  • a compound of a long-period periodic table group 4 element and a long-period periodic table group 16 element such as titanium oxide (TiO 2 , Ti 2 O 5 , Ti 2 O 3 , Ti 5 O 9, etc.); magnesium sulfide (MgS), magnesium selenide (MgSe) long period type periodic table group 2 elements and long period type periodic table group 16 elements; cadmium (II) chromium (III) (CdCr 2 O 4 ) , Cadmium selenide (I ) Chromium (III) (CdCr 2 Se 4 ), copper sulfide (II) chromium (III) (CuCr 2 S 4 ), chalcogen spinels such as mercury selenide (II) chromium (III) (HgCr 2 Se 4 ), Examples include barium titanate (BaTiO 3 ).
  • compounds of group 14 elements of the long periodic table such as SnS 2 , SnS, SnSe, SnTe, PbS, PbSe, PbTe, and group 16 elements of the long period periodic table, GaN, GaP, GaAs, GaSb III-V compound semiconductors such as InN, InP, InAs, InSb, Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 , a compound of a group 13 element of a long periodic table such as In 2 Te 3 and a group 16 element of a long periodic table; ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS II-VI compound semiconductors such as HgSe, HgTe, As 2 O 3 , As 2 S 3 , As 2 Se 3 , As 2 Te 3
  • Compounds with group elements compounds with long-period periodic table group 2 elements such as MgS and MgSe and long-period periodic table group 16 elements are preferred, among which Si, Ge, GaN, GaP, InN, InP, Ga 2 O 3 , Ga 2 S 3 , In 2 O 3 , In 2 S 3 , ZnO, ZnS, ZnSe, CdO, CdS, and CdSe are more preferable.
  • these substances do not contain highly toxic negative elements, they are excellent in environmental pollution resistance and safety to living organisms, and because a pure spectrum can be stably obtained in the visible light region, light emitting devices Is advantageous for the formation of Of these materials, InP, CdSe, ZnSe, and CdS are preferable in terms of light emission stability. From the viewpoints of luminous efficiency, high refractive index, safety and economy, ZnO and ZnS semiconductor nanoparticles are preferred. Moreover, said material may be used by 1 type and may be used in combination of 2 or more type.
  • the semiconductor nanoparticles described above can be doped with trace amounts of various elements as impurities as necessary. By adding such a doping substance, the emission characteristics can be greatly improved.
  • the semiconductor nanoparticles used in this embodiment preferably have a core / shell structure.
  • a quantum well is formed and the luminance is improved by the quantum confinement effect.
  • the core / shell structure is preferably formed of at least two kinds of compounds, and a gradient structure (gradient structure) may be formed of two or more kinds of compounds.
  • the materials mentioned above can be mentioned.
  • the shell part any material can be used as long as it functions as a protective film for the core part.
  • the shell part preferably includes a semiconductor having a band gap (forbidden band width) larger than that of the core part. By using such a semiconductor for the shell portion, an energy barrier is formed in the semiconductor nanoparticles, and good light emission performance can be obtained.
  • the semiconductor material preferably used for the shell depends on the band gap of the core used, but for example, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaAs
  • One or more semiconductors selected from the group consisting of GaSb, HgO, HgS, HgSe, HgTe, InAs, InN, InP, InSb, AlAs, AlN, AlP, and AlSb, or alloys or mixed crystals thereof are preferable.
  • ZnS, ZnSe, ZnTe, and CdSe are preferable from the viewpoint of improving luminance.
  • the semiconductor nanoparticles having a core / shell structure are also simply referred to as “core-shell semiconductor nanoparticles”.
  • core-shell semiconductor nanoparticles as a notation method of the semiconductor nanoparticles having a core / shell structure, for example, when the core portion is CdSe and the shell portion is ZnS, it may be expressed as “CdSe / ZnS”.
  • the core-shell semiconductor nanoparticles may be referred to as “CdSe / ZnS core-shell semiconductor nanoparticles”.
  • the emission color can be controlled by the average particle diameter of the semiconductor nanoparticles, and if the thickness of the coating is within the above range, the thickness of the coating can be reduced from the thickness corresponding to several atoms.
  • the thickness is less than one particle, the semiconductor nanoparticles can be filled with high density, and a sufficient amount of light emission can be obtained.
  • the presence of the coating can suppress non-luminous electron energy transfer due to defects existing on the particle surfaces of the core particles and electron traps on the dangling bonds, thereby suppressing a decrease in quantum efficiency.
  • a known method for example, a method for obtaining an average particle size using an electron force microscope (AFM), a particle size measuring device by a dynamic light scattering method (for example, Use a method of measurement using ZETASIZER Nanos Nano-ZS manufactured by Malvern, a method of deriving a particle size distribution from a spectrum obtained by a small-angle X-ray scattering method using a particle size distribution simulation calculation of semiconductor nanoparticles, and the like. Can do.
  • semiconductor nanoparticles are observed with a transmission electron microscope (TEM), and the number average particle size (hereinafter referred to as particle size) of the particle size distribution is expressed therefrom.
  • TEM transmission electron microscope
  • the average volume particle size of the core-shell semiconductor nanoparticles used in the present embodiment is preferably in the range of 1 to 20 nm, and more preferably in the range of 1 to 10 nm.
  • the particle size of the core part is preferably 1 to 8 nm, and more preferably 2 to 5 nm.
  • the constituent material of the semiconductor nanoparticles described above can be doped with a small amount of various elements as impurities as necessary. By adding such a doping substance, the light emission characteristics can be further improved.
  • Method for producing semiconductor nanoparticles any conventionally known method such as a liquid phase method and a gas phase method can be used.
  • the liquid phase method includes a precipitation method such as a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method.
  • a precipitation method such as a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method.
  • reverse micelle method, supercritical hydrothermal synthesis method, hot soap method and the like are also excellent methods for producing nanoparticles (for example, JP 2002-322468 A, JP 2005-239775 A, (See JP-A-10-310770, JP-A-2000-104058, etc.).
  • a raw material semiconductor facing each other is evaporated by the first high temperature plasma generated between the electrodes, and is passed through the second high temperature plasma generated by electrodeless discharge in a reduced pressure atmosphere.
  • a method of separating and removing nanoparticles from an anode made of a raw material semiconductor by electrochemical etching for example, see JP-A-2003-515458
  • a laser ablation method for example, JP No. 2004-356163
  • a method of synthesizing a powder containing particles by reacting a raw material gas in a gas phase in a low pressure state is also preferably used.
  • a production method by a liquid phase method is preferred.
  • the semiconductor nanoparticles used in the present embodiment may contain other components such as a stabilizer, a surfactant, a solvent and the like that can be used in the synthesis process as long as the function as a phosphor is not impaired.
  • the metal oxide nanoparticles are not particularly limited, and examples thereof include oxides containing a desired metal in the finally formed metal oxide-containing layer.
  • the type of metal is not particularly limited, and examples thereof include Group 1 to Group 12 elements, Group 13 aluminum, gallium, indium, thallium, Group 14 tin, lead, and Group 15 bismuth.
  • the metal oxide in the metal oxide nanoparticles may contain only one kind of these metals or may be a composite oxide containing two or more kinds in any combination and ratio.
  • scandium oxide, titanium oxide, zirconium oxide, vanadium oxide, chromium oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, zinc oxide, indium oxide, gallium oxide, aluminum oxide, tin oxide or lead oxide Is mentioned.
  • metal nanoparticles have a high binding property resulting from a fine particle size, and bonding between particles occurs at a temperature much lower than the melting point of the metal constituting the metal nanoparticles.
  • the structural strength of the resulting conjugate is expected to be maintained up to near the melting point of the metal.
  • the metal constituting the metal nanoparticle include those containing at least one transition metal such as Au, Ag, Cu, Pt, Pd, Ni, Rh, Co, Ru, Fe, and Mo.
  • the metal nanoparticles are generally used as organic-metal composite nanoparticles having a structure in which the metal nanoparticles are coated with an organic shell (in the present invention, a ligand). At room temperature, the organic shell (ligand) can prevent the nanoparticles from self-aggregating and maintain an independently dispersed form.
  • semiconductor nanoparticles and metal oxide nanoparticles are preferable, and semiconductor nanoparticles are more preferable.
  • semiconductor nanoparticles are names from physical properties
  • metal oxide nanoparticles and metal nanoparticles are names from structural formulas, so these specific examples may overlap each other.
  • a ligand having at least one kind of adsorption group is adsorbed on the inorganic nanoparticles.
  • the ligand has a function of protecting the inorganic nanoparticles from the external environment and suppressing the deterioration of the inorganic nanoparticles due to oxygen or the like. Therefore, the color gamut expansion film having inorganic nanoparticles adsorbed with the ligand has improved durability and stability of emission wavelength.
  • the ligand is an oxoacid residue-containing nonionic organic compound or N-oxide compound whose central atom is a sulfur atom or a phosphorus atom. Since these compounds are less susceptible to oxygen oxidation and the structure is less likely to change, it is thought that these compounds are stably adsorbed on inorganic nanoparticles.
  • nonionic is defined as follows. That is, in this specification, a molecule having no positively charged cation moiety and negatively charged anion moiety in the molecule is defined as “nonionic”.
  • the ligand has an oxo acid residue having a central atom which is a sulfur atom or a phosphorus atom, or an N-oxide group as an adsorbing group. Therefore, it is difficult to undergo structural changes due to oxygen oxidation as described above, and inorganic nanoparticles can be stably protected.
  • the ligand is preferably a ligand having at least two adsorbing groups, a so-called multidentate ligand. That is, the ligand is preferably a multidentate ligand having at least two adsorbing groups. If it is a multidentate ligand, it can be strongly adsorbed by inorganic nanoparticles, and the durability of the color gamut expanding film and the stability of the emission wavelength are further improved.
  • the ligand according to the present invention specifically has the following structure as an adsorptive group adsorbed on the inorganic nanoparticles:
  • each R is independently a hydrogen atom or a monovalent organic group, and * is a bonding point), and preferably has at least one selected from the group consisting of:
  • the bonding points form a single ring or a condensed ring with each other.
  • the single ring and the condensed ring may have a substituent described below.
  • at least one heteroatom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom may be interposed.
  • the monovalent organic group is a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • the alkyl group may be linear or cyclic.
  • the alkyl group preferably has 1 to 24 carbon atoms, and preferably has a long-chain alkyl group in the molecule from the viewpoints of dispersion stability and aggregation suppression.
  • the long-chain alkyl group preferably has 3 or more carbon atoms, more preferably 6 or more, and still more preferably 8 or more.
  • alkyl group examples are not particularly limited, but are methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, tert-pentyl group.
  • the number of carbon atoms of the aryl group is preferably 6-20, and more preferably 6-10.
  • aryl group examples are not particularly limited, but a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenylyl group, a benzhydryl group, a trityl group, a pyrenyl group, and the like are preferable.
  • the heteroaryl group refers to a group in which part of the carbon atoms in the aryl group is substituted with a heteroatom (oxygen atom, nitrogen atom or sulfur atom), for example, a pyridine group, a pyrrole group, a furan group, or a pyran group.
  • a heteroatom oxygen atom, nitrogen atom or sulfur atom
  • a pyridine group for example, a pyridine group, a pyrrole group, a furan group, or a pyran group.
  • Imidazole group, pyrazole group, oxazole group, pyridazine group, pyrimidine group, purine group, triazine, triazole and the like are preferable.
  • the ligand is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkylthio group, substituted or unsubstituted. Or at least one group selected from the group consisting of a substituted or unsubstituted heteroaryl group, or a structure in which the at least one group is bonded to each other.
  • alkyl group, aryl group and heteroaryl group are as described above.
  • the alkoxy group has a structure of “—O—X”, and “X” is the alkyl group.
  • the alkylthio group has a structure of “—S—X”, and “X” is the above alkyl group.
  • the alkoxycarbonyl group has a structure of “—COO—X”, and “X” is the alkyl group.
  • n is, for example, 1 to 24. It has the following structure.
  • substituents are each independently an alkyl group, aryl group, heteroaryl group, alkoxy group, acid amide group, alkylthio group, carboxyl group, hydroxyl group, alkoxycarbonyl group, and ethylenic group. Examples thereof include at least one selected from the group consisting of saturated bonding groups.
  • the acid amide group has a structure of “—NHCO—X”, and “X” is the alkyl group.
  • the ethylenically unsaturated bond group is a group in which a part of the alkyl group has at least one of a double bond and a triple bond.
  • the ligand is a polymer having at least one structural unit containing the adsorbing group.
  • the adsorbing group may be in the main chain or in the side chain.
  • n 100.
  • n 100.
  • n 100.
  • n 100.
  • the obtained oil component was dissolved in 30 ml of dichloromethane, 1.32 g of hydrogen peroxide urea was added, and the mixture was stirred while cooling to 0 ° C. Next, 2.81 g of trifluoroacetic anhydride was slowly added dropwise while maintaining the temperature at 0 ° C. After stirring for 2 hours as it was, the temperature was raised to room temperature and the reaction was continued for another 24 hours. After completion of the reaction, an aqueous solution in which 1.7 g of sodium sulfite was dissolved in 10 ml of water was added, and the mixture was vigorously stirred at 40 ° C. to quench the excess oxidizing agent.
  • ligands can also be synthesized by appropriately referring to the above synthesis examples or by combining conventionally known knowledge.
  • the ligands may be used alone or in combination of two or more.
  • the content of the inorganic nanoparticles in the inorganic nanoparticle dispersion is preferably 1 mg / ml to 100 mg / ml, more preferably 3 mg / ml to 40 mg / ml.
  • the content of the ligand in the dispersion when the compound of the present invention is coordinated to the inorganic nanoparticles is preferably 10 mmol / l to 5000 mmol / l with respect to the total volume of the inorganic nanoparticle dispersion.
  • the binder resin that can be used in combination with the composition according to the present invention is not particularly limited, and may be a water-soluble binder resin or a hydrophobic binder resin.
  • polyester thermoplastic polyester elastomer
  • TAC Acetylcellulose
  • DAC diacetylcellulose
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyimide
  • PA polyamide
  • PA polyamide
  • aramid polyethylene
  • PE polyacrylate
  • polyethersulfone poly Sulphone
  • PP polypropylene
  • polystyrene cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate petrate, cellulose Cetate propionate butyrate, cellulose benzoate
  • polyvinyl chloride acrylic resin (eg, polyacrylic acid), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), poly-N-viny
  • polyester triacetyl cellulose (TAC), diacetyl cellulose (DAC), polystyrene, cellulose acetate propionate, polymethyl methacrylate (PMMA), polycarbonate (PC), alicyclic polyolefin, PVA and polyvinyl pyrrolidone are preferred.
  • the content of the binder resin is preferably 30 to 99% by mass, more preferably 50 to 98% by mass based on the total mass of the optical functional film (for example, color gamut expansion film).
  • the color gamut expansion film of this embodiment contains an antioxidant. By including an antioxidant, durability and stability of the emission wavelength are further improved.
  • the “antioxidant” in the present invention uses a singlet oxygen quencher or a secondary antioxidant in addition to a compound having an ultraviolet absorption function, a radical scavenging function (radical quencher), or a peroxide decomposition function.
  • a singlet oxygen quencher or a secondary antioxidant in addition to a compound having an ultraviolet absorption function, a radical scavenging function (radical quencher), or a peroxide decomposition function.
  • a radical scavenging function radical scavenging function
  • peroxide decomposition function Specifically, the following known antioxidants and the like can be used.
  • antioxidants can be used alone or in admixture of two or more.
  • the content of the antioxidant is preferably 0.1 to 50% by mass, more preferably 1 to 35% by mass, based on the total mass of the optical functional film (eg, color gamut expanding film). preferable. In this example, it was 10 to 30% by mass.
  • the color gamut expanding film of the present embodiment preferably contains fine particles in order to improve slipperiness.
  • examples of inorganic compounds include, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydration Mention may be made of calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Further, fine particles of an organic compound can also be preferably used.
  • organic compounds include polytetrafluoroethylene, cellulose acetate, polystyrene, polymethyl methacrylate, polypropyl methacrylate, polymethyl acrylate, polyethylene carbonate, acrylic styrene resin, silicone resin, polycarbonate resin, benzoguanamine resin, melamine
  • organic polymer compounds such as resins, polyolefin-based powders, polyester-based resins, polyamide-based resins, polyimide-based resins, polyfluorinated ethylene-based resins, and starches.
  • a high molecular compound synthesized by a suspension polymerization method, a high molecular compound made spherical by a spray drying method or a dispersion method, or an inorganic compound can be used.
  • Fine particles containing silicon are preferable from the viewpoint of low turbidity, and silicon dioxide is particularly preferable.
  • the average primary particle size of the fine particles is preferably 5 to 400 nm, more preferably 10 to 300 nm.
  • These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 ⁇ m, and may be contained as primary particles without being aggregated if the particles have an average particle size of 100 to 400 nm. preferable.
  • the content of these fine particles in the optical functional film is preferably 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass. In this example, it was 0.3% by mass.
  • Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil (registered trademark) R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). can do.
  • Aerosil registered trademark
  • R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 manufactured by Nippon Aerosil Co., Ltd.
  • Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil (registered trademark) R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.).
  • Examples of the polymer include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) Are commercially available and can be used.
  • Aerosil 200V and Aerosil R972V are particularly preferred because they have a large effect of reducing the friction coefficient while keeping the turbidity of the optical film low.
  • additives may be batch-added to the main dope (dope solution) for forming the optical functional film, or an additive solution may be separately prepared and added in-line.
  • an additive solution may be separately prepared and added in-line.
  • the optical functional film for example, color gamut expansion film
  • the optical functional film of the present invention may contain other components such as a plasticizer, a hydrolysis inhibitor, and an ultraviolet absorber in addition to the above effects. Good.
  • the thickness of the optical functional film (for example, color gamut expanding film) of the present invention is preferably 20 to 500 ⁇ m, more preferably 50 to 300 ⁇ m, and still more preferably 70 to 150 ⁇ m.
  • the production method of the optical functional film (for example, color gamut expansion film) of the present invention is not particularly limited, and a known method such as a melt-flow method or a solution-flow method can be used.
  • a manufacturing method including mixing other components in a solvent as necessary to prepare a dope solution and then casting (casting) the dope solution on a support such as glass and drying is preferable.
  • Examples of the solvent (or dispersion medium) that can be used for mixing each component include hydrocarbon solvents such as water, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons; Examples include ether solvents such as aliphatic ethers and alicyclic ethers; alcohol solvents; ketone solvents; ester solvents; polar solvents and the like.
  • hydrocarbon solvents such as pentane, hexane, octadecene, cyclohexane, toluene, xylene, solvesso, terpene, methylene chloride and trichloroethane; ether solvents such as dibutyl ether, 1,4-dioxane and tetrahydrofuran (THF) Methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2- Propanol, 2,2,3,3,3-pentafluoro-1-prop-prop
  • the dope solution may be prepared by a method of adding each component to a solvent and mixing, or by preparing a solution or dispersion of each component and mixing the solution or dispersion. .
  • an air doctor coater As a casting method, an air doctor coater, blade coater, knife coater, rod coater, squeeze coater, impregnation coater, gravure coater, kiss roll coater, die coater, reverse roll coater, transfer roll coater, spray coater, etc. were used. The method can be used.
  • the conditions during drying are not particularly limited, and the amount of residual solvent after drying can be set as appropriate.
  • the residual solvent amount is defined by the following equation as the residual solvent amount of the film.
  • Residual solvent amount (%) (mass before heat treatment of film ⁇ mass after heat treatment of film) / (mass after heat treatment of film) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount means a heat treatment at 115 ° C. for 1 hour.
  • the method for drying the film may be a method of drying with hot air, infrared rays, a heating roller, microwave, or the like, and a method of drying with hot air is preferable because it is simple.
  • the optical functional film of the present invention can be suitably used for, for example, a color gamut expansion film, a color tone conversion filter, and a color filter that are preferably used in a display backlight unit or the like.
  • Example 1-1 (Synthesis of Semiconductor Nanoparticle A: Synthesis of InP / ZnS Semiconductor Nanoparticle A) While adding 1.5 mmol of indium myristate, 1.5 mmol of myristic acid, 1.5 mmol of trimethylsilylphosphine, 1.5 mmol of dodecanethiol, and 1.5 mmol of zinc undecylenate together with 120 ml of octadecene, while refluxing in a nitrogen atmosphere It heated at 300 degreeC for 1 hour, and the octadecene solution containing InP / ZnS (semiconductor nanoparticle A) was obtained.
  • the InP / ZnS semiconductor nanoparticles A synthesized by this synthesis method had a core part particle size of 2.1 to 3.8 nm and a core part particle size distribution of 6 to 40%.
  • a JEM-2100 transmission electron microscope manufactured by JEOL Ltd. was used for the observation.
  • the core-shell particle diameter of the InP / ZnS semiconductor nanoparticles A is 3.0 to 8.3 nm.
  • the optical properties of InP / ZnS semiconductor nanoparticles A were measured using the octadecene solution containing the semiconductor nanoparticles A obtained above. It was confirmed that the emission peak wavelength was 430 to 720 nm and the emission half width was 35 to 90 nm. The luminous efficiency reached a maximum of 70.9%.
  • a fluorescence spectrophotometer FluoroMax-4 manufactured by JOBIN YVON is used to measure the emission characteristics of InP / ZnS semiconductor nanoparticles A, and the stock spectrum is used to measure the absorption spectrum of InP / ZnS semiconductor fine particle phosphor.
  • a spectrophotometer U-4100 manufactured by Hitachi High-Technologies Corporation was used.
  • the semiconductor nanoparticles A obtained above were separated by adjusting the particle size according to the centrifugal separation method.
  • Semiconductor nanoparticles A are surface modified with myristic acid.
  • the synthesis of the semiconductor nanoparticles B was performed using the semiconductor nanoparticles A from which the green light-emitting particle components were separated in advance by a centrifugal separation method.
  • a toluene solution (concentration: 40 mM) of the compound (L-4) of the present invention and an octadecene solution (concentration: 5 mg / ml) of semiconductor nanoparticles A were mixed at a mass ratio of 1: 1, and the mixture was mixed in a glove box in a dark place. The mixture was stirred overnight, then centrifuged (6000 rpm, about 1 minute), and the supernatant was drained. Repeated washing with methanol, and then redispersed in toluene (15 mL) to obtain a dispersion 1-1 of InP / ZnS semiconductor nanoparticles having a core-shell structure surface-modified with the compound (L-4) of the present invention. . The surface modification state was measured by FTIR and NMR, and it was confirmed that the surface of InP / ZnS semiconductor nanoparticles was modified with the compound (L-4) of the present invention.
  • the core-shell particle size of the semiconductor nanoparticles B obtained by centrifuging the semiconductor nanoparticles A was 3.0 to 5.0 nm.
  • Fine particles (average primary particle size: 16 nm) (Aerosil (registered trademark) R972V, manufactured by Nippon Aerosil Co., Ltd.) 9 parts by mass Ethanol 89 parts by mass Fine particles and ethanol were mixed at the above ratio using a dissolver for 50 minutes, and then Menton A fine particle dispersion was prepared by dispersing with gorin.
  • ⁇ Preparation of color gamut expansion film 101> The obtained dope solution was flowed on a glass stage, and a blade coater that was movable relative to the stage at a predetermined interval was pulled and cast (cast). The solvent in the cast film is evaporated until the residual solvent amount reaches 75% by mass, and the obtained film is peeled off from the glass stage and dried to obtain a color gamut expanding film 101 (hereinafter simply referred to as “film 101”). Also referred to as).
  • the film thickness of the film 101 was 100 ⁇ m.
  • Example 1-2 to 1-10 Production of color gamut expansion films 102 to 110
  • Color gamut expanding films 102 to 110 were produced in the same manner as in Example 1 except that the compound (L-4) of the present invention was changed to those shown in Table 1.
  • Example 1-11 Production of color gamut expansion film 113
  • a color gamut expansion film 113 (film 113) was produced in the same manner as in Example 1 except that the compound (L-4) of the present invention was changed to that shown in Table 1.
  • Example 2-1 Methylene chloride: 15ml Cellulose acetate propionate CAP482 as binder resin -20 (weight average molecular weight 215,000, Eastman Chemical Co.): 3g Semiconductor nanoparticle dispersion 2-1: 15 ml Antioxidant (AO-1): 0.3g Fine particle additive solution: 0.18 g The above methylene chloride and antioxidant (AO-1) were dissolved, and then the semiconductor nanoparticle dispersion 2-1 was mixed. Thereafter, the cellulose acetate propionate and the fine particle addition liquid prepared above were added while stirring, and the mixture was stirred and completely dissolved in the dark to prepare a dope solution.
  • the semiconductor nanoparticle dispersion 2-1 was prepared in the same manner as the semiconductor nanoparticle dispersion 1-1 except that the compound (L-4) of the present invention was changed to the compound (L-48) of the present invention. did.
  • ⁇ Preparation of color gamut expansion film 201> The obtained dope solution was allowed to flow on a glass stage, and a blade coater that was able to move relatively horizontally with a predetermined interval with respect to this stage was drawn and cast to obtain a film.
  • the solvent in the cast film is evaporated until the residual solvent amount reaches 75% by mass, and the obtained film is peeled off from the glass stage and dried to obtain a color gamut expanding film 201 (hereinafter simply referred to as “film 201”). Obtained).
  • the film thickness was 100 ⁇ m.
  • Example 2-2 to 2-12 Except that the compound of the present invention (L-48) and the antioxidant (AO-1) were changed to the compounds shown in Table 2 below, in the same manner as in Example 2-1, the color gamut expansion films 202 to 212 (films 202 to 212) were produced.
  • Examples 2-13 to 2-15) Except that the compound of the present invention (L-48) and the antioxidant (AO-1) were changed to the compounds shown in Table 2 below, in the same manner as in Example 2-1, the color gamut expansion films 215 to 217 (films 215 to 217) were produced.
  • Example 3-1 Methylene chloride: 15ml CAP482-20: 3g Semiconductor nanoparticle dispersion 3-1: 15 ml Antioxidant (AO-1): 0.3g Antioxidant (AO-6): 0.3 g Antioxidant (AO-11): 0.3 g Fine particle additive solution: 0.18 g
  • AO-1 0.3g Antioxidant
  • AO-6 0.3g Antioxidant
  • AO-11 0.3 g
  • Fine particle additive solution 0.18 g
  • the methylene chloride and the antioxidant were mixed and dissolved, and then the semiconductor nanoparticle dispersion 3-1 was mixed. Thereafter, the above-mentioned CAP482-20 as a binder resin and the fine particle addition liquid prepared above were added with stirring, and were stirred and completely dissolved in a dark place to prepare a dope solution.
  • the semiconductor nanoparticle dispersion 3-1 was prepared in the same manner as the semiconductor nanoparticle dispersion 1-1 except that the compound (L-4) of the present invention was changed
  • ⁇ Preparation of color gamut expansion film 301> The obtained dope solution was flowed on a glass stage, and a blade coater that was movable relative to the stage at a predetermined interval was pulled and cast (cast). The solvent in the cast dope solution film is evaporated until the residual solvent amount reaches 75% by mass, and the obtained film is peeled off from the glass stage and dried to obtain a color gamut expanding film 301 (hereinafter simply referred to as “film 301”. Is also called).
  • the film thickness was 100 ⁇ m.
  • Example 3-2 to 3-12 Except that the compound of the present invention (L-44), binder resin (CAP482-20), and antioxidant (AO-1, AO-6, AO-11) were changed to the compounds shown in Table 3 below, In the same manner as in Example 3-1, color gamut expansion films 302 to 312 (films 302 to 312) were produced.
  • Examples 3-13 to 3-15 Except that the compound of the present invention (L-44), binder resin (CAP482-20), and antioxidant (AO-1, AO-6, AO-11) were changed to the compounds shown in Table 3 below, In the same manner as in Example 3-1, color gamut expansion films 315 to 317 (films 315 to 317) were produced.
  • a light emission measurement system MCPD-7000 manufactured by Otsuka Electronics Co., Ltd. was used.
  • Relative luminous efficiency is 125 or more ⁇ : Relative luminous efficiency is 115 or more and less than 125 ⁇ ⁇ : Relative luminous efficiency is 105 or more and less than 115 ⁇ : Relative luminous efficiency is 95 or more and less than 105 ⁇ ⁇ : Relative luminous efficiency is 85 or more and less than 95 x: Relative luminous efficiency is less than 85.
  • the color gamut expansion film produced above was subjected to an accelerated deterioration treatment for 1000 hours in an environment of 85 ° C. and 85% RH. Thereafter, the respective light emission efficiencies are measured by the same method as the evaluation of the light emission characteristics, and the ratio of the light emission efficiency after the accelerated deterioration process to the light emission efficiency before the accelerated deterioration process (light emission efficiency after the accelerated deterioration process / before the accelerated deterioration process). The light emission efficiency) was determined, and the durability was evaluated according to the following criteria.
  • Ratio value is 0.95 or more ⁇ : Ratio value is 0.85 or more and less than 0.95 ⁇ : Ratio value is 0.75 or more and less than 0.85 ⁇ : Ratio value Is 0.50 or more and less than 0.75 x: The value of the ratio is less than 0.50.
  • the emission wavelength peak was measured when the color gamut expanding film was excited with 405 nm blue-violet light. Thereafter, the same color gamut expansion film was subjected to an accelerated deterioration treatment for 1000 hours in an environment of 85 ° C. and 85% RH, and then measured in the same manner as the measurement of the emission wavelength peak. The value of the shift of the wavelength peak after accelerated deterioration treatment relative to (the emission wavelength peak after accelerated deterioration treatment ⁇ the emission wavelength peak before accelerated deterioration treatment) was determined, and the stability of the emission wavelength peak was evaluated according to the following criteria.
  • A The deviation value is less than 5 nm.
  • B The deviation value is 5 nm or more and less than 10 nm.
  • The deviation value is 10 nm or more and less than 15 nm.
  • X The deviation value is 15 nm or more.
  • the color gamut expansion films of the examples are excellent in luminous efficiency, heat resistance, and oxidation resistance.
  • Example 4-1 An aqueous solution (concentration 40 mM) of the compound (L-69) of the present invention and an octadecene solution (concentration: 5 mg / ml) containing the semiconductor nanoparticles A were mixed at a mass ratio of 1: 1 and stirred at room temperature for 3 hours. . Thereafter, the octadecene layer was removed, tetrahydrofuran was added to the remaining aqueous layer, and the oil-out component was collected by decantation.
  • a light emission measurement system MCPD-7000 manufactured by Otsuka Electronics Co., Ltd. was used.
  • the relative luminous efficiency when the octadecene solution containing the semiconductor nanoparticles A (concentration: 5 mg / ml) was measured as 100 was determined, and the relative luminous efficiency as the luminous characteristics was evaluated according to the following criteria.
  • Relative luminous efficiency is 90 or more
  • Example 4-2 to 4-3 Compositions 402 to 403 were prepared in the same manner as in Example 4-1, except that the compound of the present invention (L-69) was changed to a compound as shown in Table 4 below. Then, FT-IR and luminous efficiency were measured.
  • Compositions 404 to 405 were prepared in the same manner as in Example 4-1, except that Comparative Compound 3 and Comparative Compound 4 were used instead of the compound (L-69) of the present invention.
  • Example 4-1 FT-IR and luminous efficiency were measured in the same manner as described above.
  • Comparative compound 3 mercaptopropionic acid Comparative compound 4: polyethyleneimine (branched, MW 1,800, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Example 5-1 An aqueous solution (concentration 40 mM) of the compound (L-62) of the present invention and a titanium oxide aqueous dispersion (X-ray particle size 20 nm, STS-21 manufactured by Ishihara Sangyo Co., Ltd.) were mixed at a mass ratio of 1: 1 for 3 hours. Stir at room temperature. Thereafter, a part of the mixed solution was extracted, the water was dried, and the FT-IR of the remaining solid was measured. A peak not observed in L-62 and titanium oxide was observed, and the metal oxide nanoparticles and It was confirmed that interaction with the compound of the present invention was expressed.
  • the mixture was sufficiently defoamed and then defoamed, poured onto a glass plate so that the thickness after drying was 70 ⁇ m, and dried at 80 ° C. to produce an optical functional film 501.
  • the color of the produced film was visually observed and evaluated according to the following 4 levels.
  • Film coloring (appearance) A: White or colorless, no coloration is observed. B: Light yellow, almost no coloration. ⁇ : Yellow to yellowish brown, slightly colored. ⁇ : Brown to reddish brown, clearly colored.
  • Example 5-3 Optical functional films 502 to 503 were produced in the same manner as in Example 5-1, except that the compound of the present invention (L-62) was changed to the compounds shown in Table 5 below.
  • Comparative Examples 5-1 and 5-2 Optical functional films 504 to 505 were produced in the same manner as in Example 5-1, except that the comparative compound 5 was used instead of the compound (L-62) of the present invention or a blank was used.
  • the ligand has a strong interaction with titanium oxide (using the strong interaction between the nanoparticles and the ligand), which has an adverse effect on PVA. It is suggested that can be suppressed.

Abstract

[Problem] To provide: a composition which can be either water-soluble or oil-soluble, is excellent in terms of various properties including luminescent efficiency, durability, and stability of an emission wavelength peak, has excellent heat resistance, and is highly inhibited from suffering binder resin deterioration; and an optical functional film. [Solution] A composition which comprises inorganic nanoparticles and a ligand adsorbed on the inorganic nanoparticles and having at least one adsorbable group, wherein the ligand is a nonionic organic compound or an oxide compound and the adsorbable group is either an oxoacid residue which contains a sulfur or phosphorus atom as a central atom or an N-oxide group.

Description

組成物及びそれを含有する光学機能性膜Composition and optical functional film containing the same
 本発明は、組成物及びそれを含有する光学機能性膜に関する。 The present invention relates to a composition and an optical functional film containing the composition.
 金属や半導体などのサイズがナノ領域になってくると、バルクとは異なった物理的、化学的特性、例えば、溶融温度・焼成温度の大幅な低下、蛍光発光、触媒の高効率化・新規反応などを示すようになることが知られている。これらは高表面積を持つことによる原子の移動・拡散・溶解性の増大、量子サイズ効果、あるいは表面や界面の影響によると考えられている。例えば、半導体である酸化チタンの表面に光が当たると、酸化チタン中で電子が伝導帯に、正孔が荷電子帯に生成する。特に正孔は酸化力が強いので、汚染物質(NOx、ホルムアルデヒドなど)の除去、電気化学的太陽電池、電子写真などへの応用が試みられている。光触媒として比表面積を増大させることが活性向上につながるので、粒径の小さい超微粒子やナノ粒子の利用が有効である。 When the size of metals and semiconductors is in the nano-range, physical and chemical properties that are different from those of bulk, such as drastic reduction in melting and firing temperatures, fluorescence emission, higher catalyst efficiency, and new reactions It is known to show such as. These are thought to be due to an increase in the movement, diffusion, and solubility of atoms due to the high surface area, the quantum size effect, or the influence of the surface and interface. For example, when light hits the surface of titanium oxide, which is a semiconductor, electrons are generated in the conduction band and holes are generated in the valence band in titanium oxide. In particular, since holes have strong oxidizing power, attempts are being made to remove contaminants (NOx, formaldehyde, etc.), electrochemical solar cells, and electrophotography. Increasing the specific surface area as a photocatalyst leads to an improvement in activity, so it is effective to use ultrafine particles or nanoparticles having a small particle size.
 量子ドット(QD)は、半導体などの物質の励起子が三次元空間全方位で閉じ込められている。その結果、そのような物質はバルク半導体と離散分子系の中間的な電子物性を持つ。量子ドットはドットのサイズによって発光波長を制御することができ、すなわち、発光波長に応じた色変換をすることができる。青色LED等から放たれる励起光を特定の粒径の量子ドットに当てると、緑色発光や赤色発光を放ち、三原色の狭いスペクトルピークによる白色光を得ることができる。その白色光は、赤色、緑色、青色の三原色の狭い波長領域に多くの可視エネルギーを集中させることによって得られているので、つまり、その狭い波長領域以外の部分には、ほとんど光を生成しないように調整することが可能なため、鮮明な色と高い効率を得ることができる。 In the quantum dot (QD), excitons of a substance such as a semiconductor are confined in all directions in a three-dimensional space. As a result, such materials have intermediate electronic properties between bulk semiconductors and discrete molecular systems. The quantum dots can control the emission wavelength according to the size of the dots, that is, can perform color conversion according to the emission wavelength. When excitation light emitted from a blue LED or the like is applied to a quantum dot having a specific particle diameter, green light emission or red light emission is emitted, and white light having a narrow spectrum peak of three primary colors can be obtained. The white light is obtained by concentrating a large amount of visible energy in the narrow wavelength region of the three primary colors of red, green, and blue, that is, it generates little light outside the narrow wavelength region. Therefore, clear colors and high efficiency can be obtained.
 このように、量子ドット(QD)は、赤色、緑色、青色の三原色の狭い波長領域に多くの可視エネルギーを集中させる特性を有するため、緑色や赤色の発光スペクトルを有する量子ドットがポリマー内に拡散されてなる色域拡大フィルムの他、カラーフィルタ、色調変換フィルタなど様々な光学機能性膜としての用途でその応用が期待されている。 In this way, quantum dots (QD) have the characteristic of concentrating a large amount of visible energy in the narrow wavelength region of the three primary colors red, green, and blue, so that quantum dots with green and red emission spectra diffuse into the polymer. In addition to the color gamut expansion film thus formed, its application is expected for various optical functional films such as a color filter and a color tone conversion filter.
 中でも、前述の色域拡大フィルムは、液晶ディスプレイに適用することによって、バックライトの色調(スペクトル)が向上し、液晶ディスプレイの表示可能な色が格段に向上することが期待されている。 In particular, the above-described color gamut expansion film is expected to improve the color tone (spectrum) of the backlight by applying it to a liquid crystal display, and greatly improve the colors that can be displayed on the liquid crystal display.
 従来の一般的な液晶ディスプレイでは、人間が識別できる色のうちの2割から3割程度しか表現できていないが、光学機能性膜として色域拡大フィルムを適用することによってそれを6割程度まで引き上げることが可能になる。 The conventional general liquid crystal display can express only about 20% to 30% of colors that can be identified by humans, but it can be reduced to about 60% by applying a color gamut expansion film as an optical functional film. It can be raised.
 上述のように、量子ドットを適用した光学機能性膜は、上記様々な用途で、発光効率等の観点で非常に期待されているが、量子ドットは、酸素、光、熱により劣化し、発光強度(発光効率)が低下してしまうという問題がある。その原因の一つに、量子ドットは、配位子サイトとなる表面原子を有するため、反応性が高く、粒子の凝集が起こりやすくなるということが挙げられると考えられている。 As described above, optical functional films to which quantum dots are applied are highly expected from the viewpoints of light emission efficiency and the like for the various uses described above. However, quantum dots deteriorate due to oxygen, light, and heat, and emit light. There is a problem that the intensity (luminous efficiency) decreases. One of the causes is considered that the quantum dots have surface atoms that serve as ligand sites, and thus have high reactivity and are likely to cause aggregation of particles.
 かような問題を解決すべく、表面原子を保護基(配位子)でキャッピングし、不動化しようとする技術は存在する(特許文献1:米国特許出願公開第2014/275431号明細書)。 In order to solve such a problem, there exists a technique for capping surface atoms with a protecting group (ligand) to immobilize them (Patent Document 1: US Patent Application Publication No. 2014/275431).
 しかしながら、現状は、十分には安定化はされず、酸素、光、熱による劣化は抑制できておらず、従来の光学機能性膜では、発光効率、耐久性および発光波長ピークの安定性といった各種特性が十分ではなかった。また、量子ドットは、有機蛍光色素や蛍光蛋白質などに比べ非常に高輝度でかつ励起光による退色が起こりにくい。そのため長時間での高感度な蛍光観察が可能である。また、1つの波長で励起して多色蛍光で観測することも容易であり、量子ドットへ抗体やレセプターに対するリガンドを修飾することにより、細胞あるいは生体でのマルチカラー蛍光プローブの開発が可能である。生体ラベリング用に作用させるには、水に可溶であることが必要とされるが量子ドット自体は水に可溶ではなく、非極性溶媒中で疎水性キャッピング剤を用いて合成されていて、生体分子と共有結合する官能基を有さない。水溶化する方法には、疎水性キャッピング剤を両親媒性のチオール化合物などで交換する方法(配位子交換法)と疎水性キャッピング剤を残したまま両親媒性ポリマーで被覆する方法(カプセル化法)の二種類がある。しかし、前者の場合、量子収率の低下、凝集などの発光特性の劣化が起こり、後者の場合、分子量の大きい両親媒性ポリマーで表面修飾するため生成した水溶性量子ドットの粒径が大きくなるという欠点があり、十分ではなかった(特許文献2:特表2010-523557号公報)。 However, at present, it is not sufficiently stabilized, and deterioration due to oxygen, light, and heat cannot be suppressed, and conventional optical functional films have various properties such as light emission efficiency, durability, and stability of light emission wavelength peak. The characteristics were not sufficient. In addition, the quantum dots have extremely high luminance and are less likely to be discolored by excitation light compared to organic fluorescent dyes and fluorescent proteins. Therefore, high-sensitivity fluorescence observation over a long time is possible. In addition, it is easy to observe with multi-color fluorescence after excitation at one wavelength, and it is possible to develop multi-color fluorescent probes in cells or living bodies by modifying the quantum dots with antibodies and ligands for receptors. . In order to work for biological labeling, it is necessary to be soluble in water, but the quantum dot itself is not soluble in water and is synthesized using a hydrophobic capping agent in a nonpolar solvent, It does not have a functional group that is covalently bonded to a biomolecule. The water solubilization method includes a method of exchanging the hydrophobic capping agent with an amphiphilic thiol compound (ligand exchange method) and a method of coating with an amphiphilic polymer while leaving the hydrophobic capping agent (encapsulation). Law). However, in the former case, emission characteristics such as a decrease in quantum yield and agglomeration occur, and in the latter case, the particle size of the generated water-soluble quantum dots increases because of surface modification with an amphiphilic polymer having a large molecular weight. However, it was not sufficient (Patent Document 2: Japanese Translation of PCT International Publication No. 2010-523557).
 また、特許文献3:特表2014-523634号公報には、透明なポリ(メタ)クリレート封入媒体に組み込んだ発光デバイスが記載されているが、無機ナノ粒子の配位子に関する記述はない。 In addition, Patent Document 3: Japanese Translation of PCT International Publication No. 2014-523634 describes a light-emitting device incorporated in a transparent poly (meth) acrylate encapsulating medium, but does not describe a ligand of inorganic nanoparticles.
 そこで、本発明が解決しようとするところは、無機ナノ粒子に本発明の特定の配位子を組み合わせることで、水溶性、油溶性どちらの組成物も可能であり、発光効率、耐久性および発光波長ピークの安定性の各種特性に優れ、更には、バインダ樹脂の劣化抑制にも優れた組成物および光学機能性膜を提供しようというところにある。 Therefore, the present invention is intended to solve the problem by combining the inorganic ligand with the specific ligand of the present invention, so that both water-soluble and oil-soluble compositions are possible. An object of the present invention is to provide a composition and an optical functional film that are excellent in various characteristics of wavelength peak stability and further excellent in suppressing deterioration of the binder resin.
 本発明者らは、上記の課題を解決すべく、鋭意研究を行った。その結果、無機ナノ粒子と前記無機ナノ粒子に吸着する少なくとも一種の吸着基を有する配位子を含み、前記配位子が非イオン性有機化合物またはオキシド化合物であり、前記吸着基が、中心原子が硫黄原子もしくはリン原子であるオキソ酸残基またはNオキシド基である化合物を含む組成物および光学機能性膜によって解決することが出来ることを見出し、本発明の完成に至った。 The present inventors have conducted intensive research to solve the above problems. As a result, it contains an inorganic nanoparticle and a ligand having at least one adsorbing group that adsorbs to the inorganic nanoparticle, the ligand is a nonionic organic compound or an oxide compound, and the adsorbing group is a central atom Has been found to be able to be solved by a composition comprising an oxo acid residue in which sulfur atom or phosphorus atom or an N oxide group is included, and an optical functional film, and the present invention has been completed.
 本発明は、無機ナノ粒子と;前記無機ナノ粒子に吸着する、少なくとも一種の吸着基を有する配位子とを含み、前記配位子が、非イオン性有機化合物またはオキシド化合物であり、前記吸着基が、中心原子が硫黄原子もしくはリン原子であるオキソ酸の残基またはN-オキシド基である化合物を含む組成物および光学機能性膜である。 The present invention includes inorganic nanoparticles; and a ligand having at least one adsorbing group adsorbed on the inorganic nanoparticles, wherein the ligand is a nonionic organic compound or an oxide compound, and the adsorption A composition and an optically functional film containing a compound in which the group is a residue of an oxo acid whose central atom is a sulfur atom or a phosphorus atom or an N-oxide group.
 本発明によれば、水溶性、油溶性どちらも可能であり、発光効率、耐久性および発光波長ピークの安定性の各種特性にすぐれ、耐熱性、バインダ樹脂劣化抑制にもすぐれた組成物および光学機能性膜を提供することが出来る。 According to the present invention, both water-soluble and oil-soluble are possible, excellent luminous properties, durability, and various characteristics such as stability of emission wavelength peak, and excellent heat resistance and binder resin deterioration suppression. A functional membrane can be provided.
 上記のように、前述の色域拡大フィルムは、光学機能性膜として、液晶ディスプレイに適用することによって、バックライトの色調(スペクトル)が向上し、液晶ディスプレイの表示可能な色が格段に向上することが期待されている。そこで、以下では、本発明の一実施形態である色域拡大フィルムについて説明する。無論、本発明は、特定の配位子を使用する点に特徴があるため、光学機能性膜が、下記の実施形態の色域拡大フィルムにのみに制限されず、上記のような、カラーフィルタ、色調変換フィルタなど様々な光学機能性膜としての用途で使用することができる。 As described above, when the above-described color gamut expansion film is applied to a liquid crystal display as an optical functional film, the color tone (spectrum) of the backlight is improved, and the displayable color of the liquid crystal display is remarkably improved. It is expected that. Therefore, hereinafter, a color gamut expansion film which is an embodiment of the present invention will be described. Of course, since the present invention is characterized in that a specific ligand is used, the optical functional film is not limited to the color gamut expansion film of the following embodiment, and the color filter as described above. It can be used in various applications such as a color tone conversion filter as an optical functional film.
 本実施形態の色域拡大フィルムは、無機ナノ粒子と;前記無機ナノ粒子に吸着する、少なくとも一種の吸着基を有する配位子と;を含み、前記配位子が、非イオン性有機化合物またはオキシド化合物であり、前記吸着基が、中心原子が硫黄原子もしくはリン原子であるオキソ酸の残基またはN-オキシド基である化合物を含む組成物を用いて形成された光学機能性膜を有する。このような構成を有することにより、本実施形態の色域拡大フィルムは、発光効率、耐熱性、および耐酸化性が向上する。 The color gamut expanding film of the present embodiment includes inorganic nanoparticles; and a ligand having at least one adsorbing group that is adsorbed on the inorganic nanoparticles, and the ligand is a nonionic organic compound or It is an oxide compound, and the adsorbing group has an optical functional film formed by using a composition containing a compound having an oxo acid residue or N-oxide group whose central atom is a sulfur atom or a phosphorus atom. By having such a configuration, the color gamut expansion film of the present embodiment has improved luminous efficiency, heat resistance, and oxidation resistance.
 上記のように、従来の光学機能性膜が、各種特性に優れていなかった原因について、本発明者らは鋭意検討を行った。その過程で、配位子の配位元素について着目した。従来提案されている配位子では、付近に酸素が存在すると、配位子の配位元素が、酸素酸化されてしまい、その結果、配位元素の電子密度が下がり、無機ナノ粒子との配位力が弱くなってしまうのではないかと考えた。配位力が弱くなると、場合によっては当該配位子が無機ナノ粒子から脱離して、その脱離によって露出した無機ナノ粒子の欠陥部が酸化等のダメージを受けてしまい、それが各種特性の悪化に繋がっているのではないかと推測した。 As described above, the present inventors diligently studied the cause of the conventional optical functional film not being excellent in various properties. In the process, we focused on ligand coordination elements. In the conventionally proposed ligand, when oxygen is present in the vicinity, the ligand coordination element is oxidized by oxygen, resulting in a decrease in the electron density of the coordination element and coordination with the inorganic nanoparticles. I thought that my position would be weak. When the coordinating power is weakened, in some cases, the ligand is desorbed from the inorganic nanoparticles, and defective portions of the inorganic nanoparticles exposed by the desorption are damaged by oxidation or the like. I guessed it might have led to deterioration.
 上記のように、配位子が酸素酸化されるということは、付与された酸素原子に電子が引き寄せられ、配位元素のδ-性が下がってしまい、配位子と、無機ナノ粒子とのエンタルピーが小さくなる。もしくは、酸素酸化され、変化した構造のエネルギーレベルが変化して、量子ドットとの良好なエネルギーレベルの関係が崩れてしまい、配位子のLUMOが深くなり電子トラップ剤として作用したり、配位子のHOMOが浅くなり、ホールトラップ剤として作用したりするという弊害が発生してしまうと考えられる。 As described above, the fact that the ligand is oxidized by oxygen means that electrons are attracted to the assigned oxygen atom, and the δ-characteristic of the coordination element is lowered. Enthalpy is reduced. Or, the energy level of the changed structure is changed due to oxygen oxidation, and the relationship of the good energy level with the quantum dot is broken, and the LUMO of the ligand deepens, acting as an electron trapping agent, or coordination It is considered that the HOMO of the child becomes shallow, and an adverse effect of acting as a hole trapping agent occurs.
 よって、酸素酸化によって構造が変わり、配位力が弱くなることで脱離してしまうことや、エネルギーレベルのバランスの変化を回避すべく、構造的に酸素酸化をもはや受けにくい(つまり、構造変化し難い)無機ナノ粒子の配位子に採用することによって、更にはエントロピー効果により錯安定度定数を上げることで、解決したのが本発明である。 Therefore, the structure is changed by oxygen oxidation, and it is no longer susceptible to oxygen oxidation in order to avoid desorption due to weak coordination force and change in energy level balance (that is, structural change). It is the present invention that has been solved by adopting the ligand of inorganic nanoparticles as a difficult) and further increasing the complex stability constant by the entropy effect.
 ただし、上記メカニズムは推測によるものであり、本発明は上記メカニズムに何ら拘泥されるものではない。 However, the mechanism is based on speculation, and the present invention is not limited to the mechanism.
 以下、本発明の好ましい実施形態を詳しく説明する。なお、本発明は、以下の実施形態のみには限定されない。 Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, this invention is not limited only to the following embodiment.
 本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 <<組成物>>
 本発明において組成物とは、無機ナノ粒子と前記無機ナノ粒子に吸着する少なくとも一種の吸着基を有する配位子を組み合わせたものである。
<< Composition >>
In the present invention, the composition is a combination of inorganic nanoparticles and a ligand having at least one adsorbing group that adsorbs to the inorganic nanoparticles.
 <無機ナノ粒子>
 本明細書において、無機ナノ粒子は、その粒径が数nm~数百nm程度の無機微粒子である。その平均粒径は、好ましくは1~200nmであり、より好ましくは1~100nmであり、さらに好ましくは1~50nmである。無機ナノ粒子の平均粒径の測定方法の説明は、下記の半導体ナノ粒子の平均粒径の説明が適用される。
<Inorganic nanoparticles>
In the present specification, the inorganic nanoparticles are inorganic fine particles having a particle size of about several nm to several hundred nm. The average particle diameter is preferably 1 to 200 nm, more preferably 1 to 100 nm, and still more preferably 1 to 50 nm. The following explanation of the average particle diameter of the semiconductor nanoparticles is applied to the description of the method for measuring the average particle diameter of the inorganic nanoparticles.
 無機ナノ粒子としては、半導体ナノ粒子、金属酸化物ナノ粒子、金属ナノ粒子等が挙げられる。 Examples of the inorganic nanoparticles include semiconductor nanoparticles, metal oxide nanoparticles, and metal nanoparticles.
 [半導体ナノ粒子]
 本明細書において、半導体ナノ粒子とは、半導体材料の結晶で構成され、量子閉じ込め効果を有する所定の大きさの粒子をいい、その粒径が数nm~数十nm程度の微粒子であり、下記に示す量子ドット効果が得られるものをいう。本明細書では、量子ドット効果を得ることができる「半導体ナノ粒子」を、単に「量子ドット」と称する場合がある。
[Semiconductor nanoparticles]
In this specification, the semiconductor nanoparticle is a particle having a predetermined size that is composed of a crystal of a semiconductor material and has a quantum confinement effect, and is a fine particle having a particle size of about several nanometers to several tens of nanometers. The quantum dot effect shown in FIG. In the present specification, “semiconductor nanoparticles” capable of obtaining the quantum dot effect may be simply referred to as “quantum dots”.
 半導体ナノ粒子の形状としては、ドット、ロッド、ワイヤー、スクエア、テトラポット、スター等、特に制限はない。 The shape of the semiconductor nanoparticles is not particularly limited, such as dots, rods, wires, squares, tetrapots, and stars.
 このような半導体ナノ粒子のエネルギー準位Eは、一般に、プランク定数を「h」と、電子の有効質量を「m」と、半導体ナノ粒子の半径を「R」としたとき、下式(1)で表される。 The energy level E of such semiconductor nanoparticles is generally expressed by the following formula (1) when the Planck constant is “h”, the effective mass of electrons is “m”, and the radius of the semiconductor nanoparticles is “R”. ).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)で示されるように、半導体ナノ粒子のバンドギャップは、「R-2」に比例して大きくなり、いわゆる、量子ドット効果が得られる。このように、半導体ナノ粒子の粒径を制御、規定することによって、半導体ナノ粒子のバンドギャップ値を制御することができる。すなわち、微粒子の粒径を制御、規定することにより、通常の原子にはない多様性を持たせることができる。そのため、光によって励起させたり、光を所望の波長の光に変換して出射させたりすることができる。本明細書では、このような発光性の半導体ナノ粒子材料を半導体ナノ粒子と定義する。 As shown by the formula (1), the band gap of the semiconductor nanoparticles increases in proportion to “R −2 ”, and a so-called quantum dot effect is obtained. Thus, the band gap value of the semiconductor nanoparticles can be controlled by controlling and defining the particle diameter of the semiconductor nanoparticles. That is, by controlling and defining the particle size of the fine particles, it is possible to provide diversity not found in ordinary atoms. Therefore, it can be excited by light, or converted into light having a desired wavelength and emitted. In this specification, such a light-emitting semiconductor nanoparticle material is defined as a semiconductor nanoparticle.
 半導体ナノ粒子の平均粒径は、上述したように、数nm~数十nm程度であるが、目的とする発光色に対応する平均粒径に設定する。例えば、赤色発光を得たい場合には、半導体ナノ粒子の平均粒径としては、3.0~20nmの範囲内に設定することが好ましく、緑色発光を得たい場合には、半導体ナノ粒子の平均粒径を1.5~10nmの範囲内に設定することが好ましく、青色発光を得たい場合には、半導体ナノ粒子の平均粒径を1.0~3.0nmの範囲内に設定することが好ましい。この半導体ナノ粒子の平均粒径は、公知の方法により制御することができる。 As described above, the average particle size of the semiconductor nanoparticles is about several nm to several tens of nm, and is set to an average particle size corresponding to the target emission color. For example, when it is desired to obtain red light emission, the average particle size of the semiconductor nanoparticles is preferably set within a range of 3.0 to 20 nm. The particle size is preferably set in the range of 1.5 to 10 nm, and when blue light emission is desired, the average particle size of the semiconductor nanoparticles may be set in the range of 1.0 to 3.0 nm. preferable. The average particle diameter of the semiconductor nanoparticles can be controlled by a known method.
 平均粒径の測定方法としては、公知の方法を用いることができる。例えば、透過型電子顕微鏡(TEM)により半導体ナノ粒子の粒子観察を行い、そこから粒径分布の数平均粒径として求める方法や、電子間力顕微鏡(AFM)を用いて平均粒径を求める方法、動的光散乱法による粒径測定装置、例えば、Malvern社製、「ZETASIZERNano Series Nano-ZS」を用いて測定することができる。その他にも、X線小角散乱法により得られたスペクトルから半導体ナノ粒子の粒径分布シミュレーション計算を用いて粒径分布を導出する方法などが挙げられるが、本発明においては、透過型電子顕微鏡(TEM)を用いて平均粒径を求める方法が好ましい。 A known method can be used as a method for measuring the average particle diameter. For example, a method of observing semiconductor nanoparticles using a transmission electron microscope (TEM) and determining the number average particle size of the particle size distribution therefrom, or a method of determining an average particle size using an electron force microscope (AFM) The particle size can be measured using a particle size measuring apparatus using a dynamic light scattering method, for example, “ZETASIZER Nano Series Nano-ZS” manufactured by Malvern. In addition, there is a method of deriving the particle size distribution from the spectrum obtained by the X-ray small angle scattering method using the particle size distribution simulation calculation of the semiconductor nanoparticles. In the present invention, a transmission electron microscope ( A method of obtaining an average particle diameter using TEM) is preferable.
 半導体ナノ粒子の構成材料としては、例えば、炭素、ケイ素、ゲルマニウム、スズ等の長周期型周期表第14族元素の単体;リン(黒リン)等の長周期型周期表第15族元素の単体、セレン、テルル等の長周期型周期表第16族元素の単体;炭化ケイ素(SiC)等の複数の長周期型周期表第14族元素からなる化合物;酸化スズ(IV)(SnO)、硫化スズ(II、IV)(Sn(II)Sn(IV)S)、硫化スズ(IV)(SnS)、硫化スズ(II)(SnS)、セレン化スズ(II)(SnSe)、テルル化スズ(II)(SnTe)、硫化鉛(II)(PbS)、セレン化鉛(II)(PbSe)、テルル化鉛(II)(PbTe)等の長周期型周期表第14族元素と長周期型周期表第16族元素との化合物;窒化ホウ素(BN)、リン化ホウ素(BP)、ヒ化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、ヒ化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、ヒ化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、ヒ化インジウム(InAs)、アンチモン化インジウム(InSb)等の長周期型周期表第13族元素と周期表第15族元素との化合物(あるいはIII-V族化合物半導体);硫化アルミニウム(Al)、セレン化アルミニウム(AlSe)、硫化ガリウム(Ga)、セレン化ガリウム(GaSe)、テルル化ガリウム(GaTe)、酸化インジウム(In)、硫化インジウム(In)、セレン化インジウム(InSe)、テルル化インジウム(InTe)等の長周期型周期表第13族元素と長周期型周期表第16族元素との化合物;塩化タリウム(I)(TlCl)、臭化タリウム(I)(TlBr)、ヨウ化タリウム(I)(TlI)等の長周期型周期表第13族元素と長周期型周期表第17族元素との化合物;酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等の長周期型周期表第12族元素と長周期型周期表第16族元素との化合物(あるいはII-VI族化合物半導体)、硫化ヒ素(III)(As)、セレン化ヒ素(III)(AsSe)、テルル化ヒ素(III)(AsTe)、硫化アンチモン(III)(Sb)、セレン化アンチモン(III)(SbSe)、テルル化アンチモン(III)(SbTe)、硫化ビスマス(III)(Bi)、セレン化ビスマス(III)(BiSe)、テルル化ビスマス(III)(BiTe)等の長周期型周期表第15族元素と長周期型周期表第16族元素との化合物;酸化銅(I)(CuO)、セレン化銅(I)(CuSe)等の長周期型周期表第11族元素と長周期型周期表第16族元素との化合物;塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、塩化銀(AgCl)、臭化銀(AgBr)等の長周期型周期表第11族元素と長周期型周期表第17族元素との化合物;酸化ニッケル(II)(NiO)等の長周期型周期表第10族元素と長周期型周期表第16族元素との化合物;酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)等の長周期型周期表第9族元素と長周期型周期表第16族元素との化合物、四酸化三鉄(Fe)、硫化鉄(II)(FeS)等の長周期型周期表第8族元素と長周期型周期表第16族元素との化合物;酸化マンガン(II)(MnO)等の長周期型周期表第7族元素と長周期型周期表第16族元素との化合物;硫化モリブデン(IV)(MoS)、酸化タングステン(IV)(WO)等の長周期型周期表第6族元素と長周期型周期表第16族元素との化合物;酸化バナジウム(II)(VO)、酸化バナジウム(IV)(VO)、酸化タンタル(V)(Ta)等の長周期型周期表第5族元素と長周期型周期表第16族元素との化合物;酸化チタン(TiO、Ti、Ti、Ti等)等の長周期型周期表第4族元素と長周期型周期表第16族元素との化合物;硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe)等の長周期型周期表第2族元素と長周期型周期表第16族元素との化合物;酸化カドミウム(II)クロム(III)(CdCr)、セレン化カドミウム(II)クロム(III)(CdCrSe)、硫化銅(II)クロム(III)(CuCr)、セレン化水銀(II)クロム(III)(HgCrSe)等のカルコゲンスピネル類、バリウムチタネート(BaTiO)等が挙げられる。 As a constituent material of the semiconductor nanoparticle, for example, a simple substance of a long-period periodic table group 14 element such as carbon, silicon, germanium, or tin; a simple substance of a long-period periodic table group 15 element such as phosphorus (black phosphorus) , Selenium, tellurium and other long-period periodic table group 16 element simple substance; silicon carbide (SiC) and other long-period periodic table group 14 element compounds; tin (IV) (SnO 2 ), Tin sulfide (II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tellurium Long-period periodic table group 14 elements such as tin (II) fluoride (SnTe), lead sulfide (II) (PbS), lead selenide (II) (PbSe), lead telluride (II) (PbTe) Compound with periodic group 16 element; nitriding Boron (BN), boron phosphide (BP), boron arsenide (BAs), aluminum nitride (AlN), aluminum phosphide (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride ( GaN, gallium phosphide (GaP), gallium arsenide (GaAs), gallium antimonide (GaSb), indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), indium antimonide (InSb) Compounds of Group 13 elements and Group 15 elements of the periodic table (or Group III-V compound semiconductor) such as aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), gallium sulfide (Ga 2 S 3), gallium selenide (Ga 2 Se 3), telluride gallium (Ga 2 Te 3), indium oxide (In 2 O 3), indium sulfide (In 2 S 3), indium selenide (In 2 Se 3), the long-form periodic such telluride, indium (In 2 Te 3) Compounds of Group 13 elements and Group 16 elements of the Long Periodic Periodic Table; lengths of thallium chloride (I) (TlCl), thallium bromide (I) (TlBr), thallium iodide (I) (TlI), etc. Compound of periodic group 13 element and long periodic group 17 element; zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium oxide (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (H gTe) and other long-period periodic table group 12 elements and long-period periodic table group 16 elements (or II-VI compound semiconductors), arsenic sulfide (III) (As 2 S 3 ), selenization Arsenic (III) (As 2 Se 3 ), Arsenic telluride (III) (As 2 Te 3 ), Antimony (III) sulfide (Sb 2 S 3 ), Antimony selenide (III) (Sb 2 Se 3 ), Tellurium Antimony (III) iodide (Sb 2 Te 3 ), bismuth sulfide (III) (Bi 2 S 3 ), bismuth selenide (III) (Bi 2 Se 3 ), bismuth telluride (III) (Bi 2 Te 3 ), etc. Long period type periodic table group 15 element and long period type periodic table group 16 element compound; copper (I) (Cu 2 O), copper selenide (I) (Cu 2 Se), etc. long period Periodic Table Group 11 elements And a compound of Group 16 element of the long-period type periodic table; copper chloride (I) (CuCl), copper bromide (I) (CuBr), copper iodide (I) (CuI), silver chloride (AgCl), odor A compound of a long-period periodic table group 11 element such as silver halide (AgBr) and a long-period periodic table group 17 element; a long-period periodic table group 10 element such as nickel oxide (II) (NiO); Long Periodic Periodic Table Group 16 Element; Long Periodic Periodic Group 9 Element such as Cobalt (II) Oxide (CoO), Cobalt Sulfide (CoS) and Long Periodic Periodic Group 16 A compound with an element, a compound of a Group 8 element of a long-period periodic table and a Group 16 element of a long-period periodic table, such as triiron tetroxide (Fe 3 O 4 ), iron (II) sulfide (FeS); A long-period periodic table group 7 element such as manganese (II) (MnO) and a long-period periodic table group 16 element Compound: Compound of long-period periodic table group 6 element such as molybdenum sulfide (IV) (MoS 2 ), tungsten oxide (IV) (WO 2 ), etc .; long-period periodic table group 16 element; vanadium oxide (II) ) (VO), vanadium oxide (IV) (VO 2 ), long period periodic table group 5 element such as tantalum oxide (V) (Ta 2 O 5 ), etc. and long period periodic table group 16 element A compound of a long-period periodic table group 4 element and a long-period periodic table group 16 element such as titanium oxide (TiO 2 , Ti 2 O 5 , Ti 2 O 3 , Ti 5 O 9, etc.); magnesium sulfide (MgS), magnesium selenide (MgSe) long period type periodic table group 2 elements and long period type periodic table group 16 elements; cadmium (II) chromium (III) (CdCr 2 O 4 ) , Cadmium selenide (I ) Chromium (III) (CdCr 2 Se 4 ), copper sulfide (II) chromium (III) (CuCr 2 S 4 ), chalcogen spinels such as mercury selenide (II) chromium (III) (HgCr 2 Se 4 ), Examples include barium titanate (BaTiO 3 ).
 これらの中でも、SnS、SnS、SnSe、SnTe、PbS、PbSe、PbTe等の長周期型周期表第14族元素と長周期型周期表第16族元素との化合物、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb等のIII-V族化合物半導体、Ga、Ga、GaSe、GaTe、In、In、InSe、InTe等の長周期型周期表第13族元素と長周期型周期表第16族元素との化合物;ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、HgO、HgS、HgSe、HgTe等のII-VI族化合物半導体、As、As、AsSe、AsTe、Sb、Sb、SbSe、SbTe、Bi、Bi、BiSe、BiTe等の長周期型周期表第15族元素と長周期型周期表第16族元素との化合物;MgS、MgSe等の長周期型周期表第2族元素と長周期型周期表第16族元素との化合物が好ましく、中でも、Si、Ge、GaN、GaP、InN、InP、Ga、Ga、In、In、ZnO、ZnS、ZnSe、CdO、CdS、CdSeがより好ましい。これらの物質は、毒性の高い陰性元素を含まないので耐環境汚染性や生物への安全性に優れており、また、可視光領域で純粋なスペクトルを安定して得ることができるので、発光デバイスの形成に有利である。これらの材料のうち、InP、CdSe、ZnSe、CdSは、発光の安定性の点で好ましい。発光効率、高屈折率、安全性、経済性の観点から、ZnO、ZnSの半導体ナノ粒子が好ましい。また、上記の材料は、1種で用いるものであってもよいし、2種以上を組み合わせて用いてもよい。 Among these, compounds of group 14 elements of the long periodic table such as SnS 2 , SnS, SnSe, SnTe, PbS, PbSe, PbTe, and group 16 elements of the long period periodic table, GaN, GaP, GaAs, GaSb III-V compound semiconductors such as InN, InP, InAs, InSb, Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 , a compound of a group 13 element of a long periodic table such as In 2 Te 3 and a group 16 element of a long periodic table; ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS II-VI compound semiconductors such as HgSe, HgTe, As 2 O 3 , As 2 S 3 , As 2 Se 3 , As 2 Te 3 , Sb 2 O 3 , Sb 2 S 3 , Sb 2 Se 3 , Sb 2 Te 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 Se 3 , Bi 2 Te 3, etc. Compounds with group elements; compounds with long-period periodic table group 2 elements such as MgS and MgSe and long-period periodic table group 16 elements are preferred, among which Si, Ge, GaN, GaP, InN, InP, Ga 2 O 3 , Ga 2 S 3 , In 2 O 3 , In 2 S 3 , ZnO, ZnS, ZnSe, CdO, CdS, and CdSe are more preferable. Since these substances do not contain highly toxic negative elements, they are excellent in environmental pollution resistance and safety to living organisms, and because a pure spectrum can be stably obtained in the visible light region, light emitting devices Is advantageous for the formation of Of these materials, InP, CdSe, ZnSe, and CdS are preferable in terms of light emission stability. From the viewpoints of luminous efficiency, high refractive index, safety and economy, ZnO and ZnS semiconductor nanoparticles are preferred. Moreover, said material may be used by 1 type and may be used in combination of 2 or more type.
 なお、上述した半導体ナノ粒子には、必要に応じて微量の各種元素を不純物としてドープすることができる。このようなドープ物質を添加することにより発光特性を大きく向上させることができる。 The semiconductor nanoparticles described above can be doped with trace amounts of various elements as impurities as necessary. By adding such a doping substance, the emission characteristics can be greatly improved.
 本実施形態で用いる半導体ナノ粒子は、コア/シェル構造を有することが好ましい。コア/シェル構造を有することにより、量子井戸が形成され量子閉じ込め効果により輝度が向上する。 The semiconductor nanoparticles used in this embodiment preferably have a core / shell structure. By having the core / shell structure, a quantum well is formed and the luminance is improved by the quantum confinement effect.
 このコア・シェル構造は、少なくとも2種類の化合物で形成されていることが好ましく、2種類以上の化合物でグラジエント構造(傾斜構造)を形成していてもよい。 The core / shell structure is preferably formed of at least two kinds of compounds, and a gradient structure (gradient structure) may be formed of two or more kinds of compounds.
 コア部の材料としては、上記で挙げた材料が挙げられる。 As the material of the core part, the materials mentioned above can be mentioned.
 シェル部としては、コア部の保護膜として機能する材料であれば、特に制限はなく使用できる。シェル部は、バンドギャップ(禁制帯幅)が、コア部のバンドギャップよりも大きな半導体を含むことが好ましい。シェル部にこのような半導体を用いることによって、半導体ナノ粒子にエネルギー的な障壁が形成され、良好な発光性能を得ることができる。 As the shell part, any material can be used as long as it functions as a protective film for the core part. The shell part preferably includes a semiconductor having a band gap (forbidden band width) larger than that of the core part. By using such a semiconductor for the shell portion, an energy barrier is formed in the semiconductor nanoparticles, and good light emission performance can be obtained.
 シェルに好ましく用いられる半導体材料は、用いられるコアのバンドギャップにも依存するが、例えば、ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgS、MgSe、GaAs、GaN、GaP、GaAs、GaSb、HgO、HgS、HgSe、HgTe、InAs、InN、InP、InSb、AlAs、AlN、AlP、AlSbからなる群から選択される1種またはそれ以上の半導体、またはそれらの合金もしくは混晶が好ましく用いられる。これらシェル部の材料の中でも、輝度向上の観点から、ZnS、ZnSe、ZnTe、CdSeが好ましい。 The semiconductor material preferably used for the shell depends on the band gap of the core used, but for example, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaAs One or more semiconductors selected from the group consisting of GaSb, HgO, HgS, HgSe, HgTe, InAs, InN, InP, InSb, AlAs, AlN, AlP, and AlSb, or alloys or mixed crystals thereof are preferable. Used. Among these materials for the shell portion, ZnS, ZnSe, ZnTe, and CdSe are preferable from the viewpoint of improving luminance.
 なお、本明細書中、コア/シェル構造を有する半導体ナノ粒子を、単に「コアシェル半導体ナノ粒子」とも称する。また、本明細書中、コア/シェル構造を有する半導体ナノ粒子の表記法として、例えば、コア部がCdSe、シェル部がZnSの場合、「CdSe/ZnS」と表記する場合があり、このようなコア・シェル半導体ナノ粒子を、「CdSe/ZnSコア・シェル半導体ナノ粒子」と称する場合がある。 In the present specification, the semiconductor nanoparticles having a core / shell structure are also simply referred to as “core-shell semiconductor nanoparticles”. Further, in this specification, as a notation method of the semiconductor nanoparticles having a core / shell structure, for example, when the core portion is CdSe and the shell portion is ZnS, it may be expressed as “CdSe / ZnS”. The core-shell semiconductor nanoparticles may be referred to as “CdSe / ZnS core-shell semiconductor nanoparticles”.
 一般に、半導体ナノ粒子の平均粒径により発光色を制御することができ、被膜の厚さが上記範囲内の値であれば、被膜の厚さが原子数個分に相当する厚さから半導体ナノ粒子1個に満たない厚さであり、半導体ナノ粒子を高密度で充填することができ、十分な発光量が得られる。また、被膜の存在により、お互いのコア粒子の粒子表面に存在する欠陥、ダングリングボンドへの電子トラップによる非発光の電子エネルギーの転移を抑制でき、量子効率の低下を抑えることができる。 In general, the emission color can be controlled by the average particle diameter of the semiconductor nanoparticles, and if the thickness of the coating is within the above range, the thickness of the coating can be reduced from the thickness corresponding to several atoms. The thickness is less than one particle, the semiconductor nanoparticles can be filled with high density, and a sufficient amount of light emission can be obtained. In addition, the presence of the coating can suppress non-luminous electron energy transfer due to defects existing on the particle surfaces of the core particles and electron traps on the dangling bonds, thereby suppressing a decrease in quantum efficiency.
 コアシェル半導体ナノ粒子の平均粒径の測定方法としては、公知の方法、例えば、電子間力顕微鏡(AFM)を用いて平均粒径を求める方法、動的光散乱法による粒径測定装置(例えば、Malvern社製ZETASIZERNano Series Nano-ZS)を用いて測定する方法、X線小角散乱法により得られたスペクトルから半導体ナノ粒子の粒径分布シミュレーション計算を用いて粒径分布を導出する方法などを用いることができる。本明細書においては、透過型電子顕微鏡(TEM)により半導体ナノ粒子の粒子観察を行い、そこから粒径分布の数平均粒径(以下粒径と記す)で表している。本実施形態で用いるコアシェル半導体ナノ粒子の平均体積粒径としては、具体的には1~20nmの範囲内であることが好ましく、1~10nmの範囲内であることがより好ましい。なお、コア部の粒径は、1~8nmであることが好ましく、2~5nmであることがより好ましい。 As a method for measuring the average particle size of the core-shell semiconductor nanoparticles, a known method, for example, a method for obtaining an average particle size using an electron force microscope (AFM), a particle size measuring device by a dynamic light scattering method (for example, Use a method of measurement using ZETASIZER Nanos Nano-ZS manufactured by Malvern, a method of deriving a particle size distribution from a spectrum obtained by a small-angle X-ray scattering method using a particle size distribution simulation calculation of semiconductor nanoparticles, and the like. Can do. In the present specification, semiconductor nanoparticles are observed with a transmission electron microscope (TEM), and the number average particle size (hereinafter referred to as particle size) of the particle size distribution is expressed therefrom. Specifically, the average volume particle size of the core-shell semiconductor nanoparticles used in the present embodiment is preferably in the range of 1 to 20 nm, and more preferably in the range of 1 to 10 nm. The particle size of the core part is preferably 1 to 8 nm, and more preferably 2 to 5 nm.
 なお、上述した半導体ナノ粒子の構成材料には、必要に応じて微量の各種元素を不純物としてドープすることができる。このようなドープ物質を添加することにより発光特性をより向上させることができる。 The constituent material of the semiconductor nanoparticles described above can be doped with a small amount of various elements as impurities as necessary. By adding such a doping substance, the light emission characteristics can be further improved.
 〔半導体ナノ粒子の製造方法〕
 半導体ナノ粒子の製造方法としては、液相法、気相法等、従来行われている公知の任意の方法を用いることができる。
[Method for producing semiconductor nanoparticles]
As a method for producing semiconductor nanoparticles, any conventionally known method such as a liquid phase method and a gas phase method can be used.
 液相法の製造方法としては、沈殿法である、共沈法、ゾル-ゲル法、均一沈殿法、還元法などがある。そのほかに、逆ミセル法、超臨界水熱合成法、ホットソープ法などもナノ粒子を作製する上で優れた方法である(例えば、特開2002-322468号公報、特開2005-239775号公報、特開平10-310770号公報、特開2000-104058号公報等を参照)。 The liquid phase method includes a precipitation method such as a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method. In addition, reverse micelle method, supercritical hydrothermal synthesis method, hot soap method and the like are also excellent methods for producing nanoparticles (for example, JP 2002-322468 A, JP 2005-239775 A, (See JP-A-10-310770, JP-A-2000-104058, etc.).
 気相法の製造方法としては、対向する原料半導体を電極間で発生させた第一の高温プラズマによって蒸発させ、減圧雰囲気中において無電極放電で発生させた第二の高温プラズマ中に通過させる方法(例えば特開平6-279015号公報参照)、電気化学的エッチングによって、原料半導体からなる陽極からナノ粒子を分離・除去する方法(例えば特表2003-515459号公報参照)、レーザーアブレーション法(例えば特開2004-356163号参照)などが用いられる。また、原料ガスを低圧状態で気相反応させて、粒子を含む粉末を合成する方法も好ましく用いられる。 As a manufacturing method of the gas phase method, a raw material semiconductor facing each other is evaporated by the first high temperature plasma generated between the electrodes, and is passed through the second high temperature plasma generated by electrodeless discharge in a reduced pressure atmosphere. (See, for example, JP-A-6-279015), a method of separating and removing nanoparticles from an anode made of a raw material semiconductor by electrochemical etching (for example, see JP-A-2003-515458), a laser ablation method (for example, JP No. 2004-356163) is used. In addition, a method of synthesizing a powder containing particles by reacting a raw material gas in a gas phase in a low pressure state is also preferably used.
 半導体ナノ粒子の製造方法としては、液相法による製造方法が好ましい。 As a method for producing semiconductor nanoparticles, a production method by a liquid phase method is preferred.
 また、本実施形態で用いる半導体ナノ粒子は、蛍光体としての機能を損なわない限り、合成過程で用いうる安定剤、界面活性剤、溶媒等、他の成分を含んでいてもよい。 Further, the semiconductor nanoparticles used in the present embodiment may contain other components such as a stabilizer, a surfactant, a solvent and the like that can be used in the synthesis process as long as the function as a phosphor is not impaired.
 [金属酸化物ナノ粒子]
 金属酸化物ナノ粒子は、特段の制限はなく、最終的に形成する金属酸化物含有層の所望の金属を含む酸化物が挙げられる。金属の種類は特に限定されず、第1族~第12族の元素、第13族のアルミニウム、ガリウム、インジウム、タリウム、第14族のスズ、鉛、第15族のビスマス等が挙げられる。金属酸化物ナノ粒子における金属酸化物はこれらの金属を1種のみ含むものであっても、2種以上が任意の組み合わせおよび比率で含まれる複合酸化物であってもよい。例えば、酸化スカンジウム、酸化チタン、酸化ジルコニウム、酸化バナジウム、酸化クロム、酸化マンガン、酸化鉄、酸化コバルト、酸化ニッケル、酸化銅、酸化亜鉛、酸化インジウム、酸化ガリウム、酸化アルミニウム、酸化スズまたは酸化鉛等が挙げられる。
[Metal oxide nanoparticles]
The metal oxide nanoparticles are not particularly limited, and examples thereof include oxides containing a desired metal in the finally formed metal oxide-containing layer. The type of metal is not particularly limited, and examples thereof include Group 1 to Group 12 elements, Group 13 aluminum, gallium, indium, thallium, Group 14 tin, lead, and Group 15 bismuth. The metal oxide in the metal oxide nanoparticles may contain only one kind of these metals or may be a composite oxide containing two or more kinds in any combination and ratio. For example, scandium oxide, titanium oxide, zirconium oxide, vanadium oxide, chromium oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, zinc oxide, indium oxide, gallium oxide, aluminum oxide, tin oxide or lead oxide Is mentioned.
 [金属ナノ粒子]
 金属ナノ粒子は、微細な粒径からもたらされる高い結合性を有し、金属ナノ粒子を構成する金属の融点よりもはるかに低い温度で粒子間の結合が生じることが確認されている。また、得られる結合体の構造的強度は、その金属の融点付近まで保たれることが期待される。金属ナノ粒子を構成する金属として、例えば、Au、Ag、Cu、Pt、Pd、Ni、Rh、Co、Ru、Fe、Mo等の遷移金属を少なくとも一成分を含むものなどが列挙される。
[Metal nanoparticles]
It has been confirmed that metal nanoparticles have a high binding property resulting from a fine particle size, and bonding between particles occurs at a temperature much lower than the melting point of the metal constituting the metal nanoparticles. In addition, the structural strength of the resulting conjugate is expected to be maintained up to near the melting point of the metal. Examples of the metal constituting the metal nanoparticle include those containing at least one transition metal such as Au, Ag, Cu, Pt, Pd, Ni, Rh, Co, Ru, Fe, and Mo.
 金属ナノ粒子は一般に、有機殻(本発明では、配位子)で金属ナノ粒子を被覆した構造を有する有機-金属複合ナノ粒子として用いる。室温においては有機殻(配位子)がナノ粒子の自己凝集を防止し、独立分散した形態を維持することができる。 The metal nanoparticles are generally used as organic-metal composite nanoparticles having a structure in which the metal nanoparticles are coated with an organic shell (in the present invention, a ligand). At room temperature, the organic shell (ligand) can prevent the nanoparticles from self-aggregating and maintain an independently dispersed form.
 本発明の配位子との相互作用の強さの点から、好ましくは、半導体ナノ粒子、金属酸化物ナノ粒子であり、さらに好ましくは半導体ナノ粒子である。 From the viewpoint of strength of interaction with the ligand of the present invention, semiconductor nanoparticles and metal oxide nanoparticles are preferable, and semiconductor nanoparticles are more preferable.
 なお、半導体ナノ粒子は、物性からの名称であり、金属酸化物ナノ粒子および金属ナノ粒子は、構造式からの名称であるため、これら具体例は、互いに重複している場合がある。 Note that semiconductor nanoparticles are names from physical properties, and metal oxide nanoparticles and metal nanoparticles are names from structural formulas, so these specific examples may overlap each other.
 [配位子]
 本実施形態の色域拡大フィルムにおいては、無機ナノ粒子に、少なくとも一種の吸着基を有する配位子が吸着している。該配位子は、無機ナノ粒子を外部環境から保護し、酸素等による無機ナノ粒子の劣化を抑制する機能を有する。よって、該配位子が吸着した無機ナノ粒子を有する色域拡大フィルムは、耐久性および発光波長の安定性が向上する。
[Ligand]
In the color gamut expansion film of this embodiment, a ligand having at least one kind of adsorption group is adsorbed on the inorganic nanoparticles. The ligand has a function of protecting the inorganic nanoparticles from the external environment and suppressing the deterioration of the inorganic nanoparticles due to oxygen or the like. Therefore, the color gamut expansion film having inorganic nanoparticles adsorbed with the ligand has improved durability and stability of emission wavelength.
 該配位子は、中心原子が硫黄原子もしくはリン原子であるオキソ酸の残基含有非イオン性有機化合物またはN-オキシド化合物である。これら化合物は酸素酸化を受けにくく、構造が変化しにくいため、安定して無機ナノ粒子に吸着すると考えられる。なお、本発明において「非イオン性」とは、以下のように定義する。すなわち、本明細書においては分子内に、正電荷を帯びたカチオン部位と負電荷を帯びたアニオン部位を持たないものを、「非イオン性」とする。 The ligand is an oxoacid residue-containing nonionic organic compound or N-oxide compound whose central atom is a sulfur atom or a phosphorus atom. Since these compounds are less susceptible to oxygen oxidation and the structure is less likely to change, it is thought that these compounds are stably adsorbed on inorganic nanoparticles. In the present invention, “nonionic” is defined as follows. That is, in this specification, a molecule having no positively charged cation moiety and negatively charged anion moiety in the molecule is defined as “nonionic”.
 また、当該配位子は、吸着基として、中心原子が硫黄原子もしくはリン原子であるオキソ酸の残基、またはN-オキシド基を有する。よって、上記のように酸素酸化による構造変化を受けにくく、安定的に無機ナノ粒子を保護することができる。 In addition, the ligand has an oxo acid residue having a central atom which is a sulfur atom or a phosphorus atom, or an N-oxide group as an adsorbing group. Therefore, it is difficult to undergo structural changes due to oxygen oxidation as described above, and inorganic nanoparticles can be stably protected.
 本発明の好ましい形態によれば、配位子は、吸着基を少なくとも2つ有する配位子、いわゆる多座配位子であることが好ましい。すなわち、前記配位子が、少なくとも二つの吸着基を有する、多座配位子であることが好ましい。多座配位子であれば、無機ナノ粒子により強固に吸着することができ、色域拡大フィルムの耐久性および発光波長の安定性をより向上させる。 According to a preferred embodiment of the present invention, the ligand is preferably a ligand having at least two adsorbing groups, a so-called multidentate ligand. That is, the ligand is preferably a multidentate ligand having at least two adsorbing groups. If it is a multidentate ligand, it can be strongly adsorbed by inorganic nanoparticles, and the durability of the color gamut expanding film and the stability of the emission wavelength are further improved.
 本発明に係る配位子は、具体的には、無機ナノ粒子に吸着する吸着基として、下記構造: The ligand according to the present invention specifically has the following structure as an adsorptive group adsorbed on the inorganic nanoparticles:
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (上記構造中、Rは、それぞれ独立して、水素原子または一価の有機基であり、*は、結合点である)、からなる群から選択される少なくとも一種を有することが好ましい。 (In the above structure, each R is independently a hydrogen atom or a monovalent organic group, and * is a bonding point), and preferably has at least one selected from the group consisting of:
 また、本発明の一形態によると、前記結合点が、互いに単環または縮合環を形成している。また、単環、縮合環には、下記で説明する置換基を有していてもよい。互いに単環または縮合環を形成する際、酸素原子、硫黄原子および窒素原子からなる群から選択される少なくとも1つのヘテロ原子を介在させてもよい。 Further, according to one embodiment of the present invention, the bonding points form a single ring or a condensed ring with each other. Moreover, the single ring and the condensed ring may have a substituent described below. When forming a single ring or a condensed ring with each other, at least one heteroatom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom may be interposed.
 また、本発明の一形態によると、前記一価の有機基が、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、または、置換もしくは無置換のヘテロアリール基である。 According to one embodiment of the present invention, the monovalent organic group is a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
 アルキル基としては、直鎖状、環状であってもよい。また、アルキル基の炭素数としては1~24であることが好ましく、分散安定性、凝集抑制性の観点から、分子内に長鎖アルキル基を持つことが好ましい。長鎖アルキル基としては、好ましくは炭素数3以上であり、より好ましくは6以上であり、さらに好ましくは8以上である。 The alkyl group may be linear or cyclic. The alkyl group preferably has 1 to 24 carbon atoms, and preferably has a long-chain alkyl group in the molecule from the viewpoints of dispersion stability and aggregation suppression. The long-chain alkyl group preferably has 3 or more carbon atoms, more preferably 6 or more, and still more preferably 8 or more.
 アルキル基の具体例としては、特に制限されないが、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、2-エチルヘキシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘンエイコシル基、ドコシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、2-ヘキシルデシル基などが好適である。 Specific examples of the alkyl group are not particularly limited, but are methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, tert-pentyl group. Group, neopentyl group, hexyl group, isohexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, 2-ethylhexyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group A group, nonadecyl group, eicosyl group, heneicosyl group, docosyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, 2-hexyldecyl group and the like are preferable.
 アリール基の炭素数としては6~20であることが好ましく、6~10であることがさらに好ましい。 The number of carbon atoms of the aryl group is preferably 6-20, and more preferably 6-10.
 アリール基の具体例としては、特に制限されないが、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニリル基、ベンズヒドリル基、トリチル基、ピレニル基などが好適である。 Specific examples of the aryl group are not particularly limited, but a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenylyl group, a benzhydryl group, a trityl group, a pyrenyl group, and the like are preferable.
 ヘテロアリール基としては、上記アリール基における炭素原子の一部が、ヘテロ原子(酸素原子、窒素原子または硫黄原子)によって置換されたものを言い、例えば、ピリジン基、ピロール基、フラン基、ピラン基、イミダゾール基、ピラゾール基、オキサゾール基、ピリダジン基、ピリミジン基、プリン基、トリアジン、トリアゾールなどが好適である。 The heteroaryl group refers to a group in which part of the carbon atoms in the aryl group is substituted with a heteroatom (oxygen atom, nitrogen atom or sulfur atom), for example, a pyridine group, a pyrrole group, a furan group, or a pyran group. Imidazole group, pyrazole group, oxazole group, pyridazine group, pyrimidine group, purine group, triazine, triazole and the like are preferable.
 本発明の好ましい形態によると、前記配位子が、置換または無置換のアルキル基、置換または無置換のアルコキシ基、置換または無置換のアリール基、置換または無置換のアルキルチオ基、置換または無置換のアルコキシカルボニル基、および、置換または無置換のヘテロアリール基からなる群から選択される少なくとも一種の基、または、当該少なくとも一種の基が互いに結合している構造を有する。 According to a preferred embodiment of the present invention, the ligand is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkylthio group, substituted or unsubstituted. Or at least one group selected from the group consisting of a substituted or unsubstituted heteroaryl group, or a structure in which the at least one group is bonded to each other.
 アルキル基、アリール基およびヘテロアリール基については、上記述べたとおりである。 The alkyl group, aryl group and heteroaryl group are as described above.
 アルコキシ基は、「-O-X」との構造を有し、「X」が、上記アルキル基である。 The alkoxy group has a structure of “—O—X”, and “X” is the alkyl group.
 アルキルチオ基は、「-S-X」との構造を有し、「X」が、上記アルキル基である。 The alkylthio group has a structure of “—S—X”, and “X” is the above alkyl group.
 アルコキシカルボニル基は、「-COO-X」との構造を有し、「X」が、上記アルキル基である。 The alkoxycarbonyl group has a structure of “—COO—X”, and “X” is the alkyl group.
 ここで、「当該少なくとも一種の基が互いに結合している構造」について例を挙げて説明する。例えば、アルコキシ基と、アルコキシ基とが互いに結合している構造とは、以下: Here, the “structure in which the at least one group is bonded to each other” will be described with an example. For example, the structure in which an alkoxy group and an alkoxy group are bonded to each other is as follows:
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
nは、例えば、1~24である、
の構造を有する。
n is, for example, 1 to 24.
It has the following structure.
 また、上記置換基としては、それぞれ独立して、上記で説明した、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、酸アミド基、アルキルチオ基、カルボキシル基、水酸基、アルコキシカルボニル基およびエチレン性不飽和結合基からなる群から選択される少なくとも一種などが挙げられる。 In addition, the above substituents are each independently an alkyl group, aryl group, heteroaryl group, alkoxy group, acid amide group, alkylthio group, carboxyl group, hydroxyl group, alkoxycarbonyl group, and ethylenic group. Examples thereof include at least one selected from the group consisting of saturated bonding groups.
 ここで、酸アミド基は、「-NHCO-X」との構造を有し、「X」が、上記アルキル基である。 Here, the acid amide group has a structure of “—NHCO—X”, and “X” is the alkyl group.
 エチレン性不飽和結合基とは、上記アルキル基の一部が、二重結合および三重結合の少なくとも一つを有する基である。 The ethylenically unsaturated bond group is a group in which a part of the alkyl group has at least one of a double bond and a triple bond.
 また、本発明の好ましい形態においては、前記配位子が、前記吸着基を含有する構成単位を少なくとも一つ有するポリマーである。なお、前記吸着基は、主鎖にあっても、側鎖にあってもよい。 Further, in a preferred embodiment of the present invention, the ligand is a polymer having at least one structural unit containing the adsorbing group. The adsorbing group may be in the main chain or in the side chain.
 以上より、配位子として、以下のようなものが挙げられる。 From the above, the following can be cited as ligands.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 なお、上記L-48の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The compound L-48 is a copolymer containing m = 5 to 95 structural units and n = 5 to 95 structural units. Note that m + n = 100.
 なお、上記L-50の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The L-50 compound is a copolymer containing m = 5 to 95 structural units and n = 5 to 95 structural units. Note that m + n = 100.
 なお、上記L-51の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The compound of L-51 is a copolymer containing m = 5 to 95 structural units and n = 5 to 95 structural units. Note that m + n = 100.
 なお、上記L-54の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The compound of L-54 is a copolymer containing m = 5 to 95 structural units and n = 5 to 95 structural units. Note that m + n = 100.
 なお、上記L-56の化合物は、m=5~85の構成単位と、n=5~85の構成単位と、o=5~85の構成単位とを含む共重合体である。なおm+n+o=100である。 The compound of L-56 is a copolymer containing structural units of m = 5 to 85, structural units of n = 5 to 85, and structural units of o = 5 to 85. Note that m + n + o = 100.
 なお、上記L-57の化合物は、m=5~85の構成単位と、n=5~85の構成単位と、o=5~85の構成単位とを含む共重合体である。なおm+n+o=100である。 The compound of L-57 is a copolymer containing a structural unit of m = 5 to 85, a structural unit of n = 5 to 85, and a structural unit of o = 5 to 85. Note that m + n + o = 100.
 なお、上記L-58の化合物は、m=5~85の構成単位と、n=5~85の構成単位と、o=5~85の構成単位とを含む共重合体である。なおm+n+o=100である。 The compound of L-58 is a copolymer containing a structural unit of m = 5 to 85, a structural unit of n = 5 to 85, and a structural unit of o = 5 to 85. Note that m + n + o = 100.
 なお、上記L-59の化合物は、m=5~85の構成単位と、n=5~85の構成単位と、o=5~85の構成単位とを含む共重合体である。なおm+n+o=100である。 The compound of L-59 is a copolymer containing a structural unit of m = 5 to 85, a structural unit of n = 5 to 85, and a structural unit of o = 5 to 85. Note that m + n + o = 100.
 なお、上記L-68の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The L-68 compound is a copolymer containing m = 5 to 95 structural units and n = 5 to 95 structural units. Note that m + n = 100.
 なお、上記L-69の化合物は、nが100である。 In the above compound L-69, n is 100.
 なお、上記L-74の化合物は、nが100である。 In the above compound L-74, n is 100.
 なお、上記L-75の化合物は、nが100である。 In the above L-75 compound, n is 100.
 なお、上記L-77の化合物は、nが100である。 In the above L-77 compound, n is 100.
 なお、L-69、74、75、77はホモポリマーなので、質量%は100となる。 Since L-69, 74, 75 and 77 are homopolymers, the mass% is 100.
 なお、上記L-78の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The compound L-78 is a copolymer containing m = 5 to 95 structural units and n = 5 to 95 structural units. Note that m + n = 100.
 なお、上記L-79の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The compound of L-79 is a copolymer containing m = 5 to 95 structural units and n = 5 to 95 structural units. Note that m + n = 100.
 なお、上記L-80の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The compound of L-80 is a copolymer containing structural units of m = 5 to 95 and structural units of n = 5 to 95. Note that m + n = 100.
 なお、上記L-82の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The L-82 compound is a copolymer containing m = 5 to 95 structural units and n = 5 to 95 structural units. Note that m + n = 100.
 なお、上記L-83の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The compound of L-83 is a copolymer containing m = 5 to 95 structural units and n = 5 to 95 structural units. Note that m + n = 100.
 なお、上記L-84の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The compound of L-84 is a copolymer containing m = 5 to 95 structural units and n = 5 to 95 structural units. Note that m + n = 100.
 なお、上記L-85の化合物は、m=5~95の構成単位と、n=5~95の構成単位とを含む共重合体である。なおm+n=100である。 The compound of L-85 is a copolymer containing m = 5 to 95 structural units and n = 5 to 95 structural units. Note that m + n = 100.
 上記の配位子は、当業者であれば、市販の原料を用いて、過度の試行錯誤なく、合成することができる。以下に、代表化合物としてL-68の合成処方を記載する。 Those skilled in the art can synthesize the above ligands using commercially available raw materials without undue trial and error. The synthetic formulation of L-68 is described below as a representative compound.
 <L-68の合成例>
 窒素置換した100mlの3頭コルベンに、メタクリル酸2-(ジメチルアミノ)エチル1.5g、メタクリル酸ドデシル1.95gを量り取り、脱酸素トルエン15mlを加えて溶解した後、AIBN 1.17gを加え、窒素雰囲気下、90℃で7時間撹拌して、重合反応を行った。その後、還流まで昇温してさらに1時間撹拌した。放冷した後、メタノール300mlを激しく撹拌している中へ、前記反応溶液を滴下した。しばらく撹拌した後、オイルアウト成分をデカンテーションにより分離した。
<Synthesis Example of L-68>
Weigh 1.5 g of 2- (dimethylamino) ethyl methacrylate and 1.95 g of dodecyl methacrylate in 100 ml of three-headed Kolben substituted with nitrogen, dissolve it by adding 15 ml of deoxygenated toluene, and then add 1.17 g of AIBN. The polymerization reaction was carried out by stirring at 90 ° C. for 7 hours under a nitrogen atmosphere. Then, it heated up to recirculation | reflux and stirred for further 1 hour. After allowing to cool, the reaction solution was dropped into 300 ml of methanol that was vigorously stirred. After stirring for a while, the oil-out component was separated by decantation.
 得られたオイル成分をジクロロメタン30mlに溶解して、過酸化水素尿素1.32gを加え、0℃に冷却しながら撹拌した。次に無水トリフルオロ酢酸2.81gを0℃に保ちながらゆっくり滴下した。そのまま2時間撹拌した後、室温まで昇温してさらに24時間反応させた。反応終了後、亜硫酸ナトリウム1.7gを水10mlに溶解した水溶液を加え、40℃で激しく撹拌して過剰の酸化剤をクエンチ処理した。その後、ジクロロメタンを減圧留去してTHFを加え抽出して、炭酸水素ナトリウム水で洗い、pHを中性にした。抽出したTHFを一度減圧留去して、再度THFに溶解して不溶物をろ過除去した。その後、THF溶液を、激しく撹拌しているメタノール中に滴下してしばらく撹拌した。オイルアウト成分をデカンテーションにより分離して、L-68 1.1gを得た。構造はNMRにより確認出来た。 The obtained oil component was dissolved in 30 ml of dichloromethane, 1.32 g of hydrogen peroxide urea was added, and the mixture was stirred while cooling to 0 ° C. Next, 2.81 g of trifluoroacetic anhydride was slowly added dropwise while maintaining the temperature at 0 ° C. After stirring for 2 hours as it was, the temperature was raised to room temperature and the reaction was continued for another 24 hours. After completion of the reaction, an aqueous solution in which 1.7 g of sodium sulfite was dissolved in 10 ml of water was added, and the mixture was vigorously stirred at 40 ° C. to quench the excess oxidizing agent. Thereafter, dichloromethane was distilled off under reduced pressure, and THF was added for extraction, followed by washing with aqueous sodium hydrogen carbonate to neutralize the pH. The extracted THF was once distilled off under reduced pressure, dissolved again in THF, and insolubles were removed by filtration. Thereafter, the THF solution was added dropwise into vigorously stirred methanol and stirred for a while. The oil-out component was separated by decantation to obtain 1.1 g of L-68. The structure could be confirmed by NMR.
 他の配位子も、上記合成例を適宜参照したり、あるいは、従来公知の知見を組み合わせることで合成することができる。 Other ligands can also be synthesized by appropriately referring to the above synthesis examples or by combining conventionally known knowledge.
 なお、m、n、oは質量%を表す。 Note that m, n, and o represent mass%.
 該配位子は、単独でもまたは2種以上組み合わせて用いてもよい。 The ligands may be used alone or in combination of two or more.
 無機ナノ粒子分散液中の無機ナノ粒子の含有量は、1mg/ml~100mg/mlであることが好ましく、3mg/ml~40mg/mlであることがより好ましい。 The content of the inorganic nanoparticles in the inorganic nanoparticle dispersion is preferably 1 mg / ml to 100 mg / ml, more preferably 3 mg / ml to 40 mg / ml.
 本発明化合物を無機ナノ粒子に表面配位させる際の分散液中の配位子の含有量は、無機ナノ粒子分散液の全体積に対し、10mmol/l~5000mmol/lであることが望ましい。 The content of the ligand in the dispersion when the compound of the present invention is coordinated to the inorganic nanoparticles is preferably 10 mmol / l to 5000 mmol / l with respect to the total volume of the inorganic nanoparticle dispersion.
 [バインダ樹脂]
 本発明に係る組成物と、組み合わせて用いることができるバインダ樹脂としては、特に制限されず、水溶性バインダ樹脂でも、疎水性バインダ樹脂でもよく、例えば、ポリエステル、熱可塑性ポリエステルエラストマー(TPEE)、トリアセチルセルロース(TAC)、ジアセチルセルロース(DAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ポリスチレン、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートプチレート、セルロースアセテートプロピオネートブチレート、セルロースベンゾエート、ポリ塩化ビニル、アクリル樹脂(例えば、ポリアクリル酸)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、ポリ-N-ビニルアセトアミド、ポリメチルメタクリレート(PMMA)(ポリメタクリル酸)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、脂環式ポリオレフィン、フェノール樹脂、アクリロニトリル・ブタジエン・スチレン共重合体、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)などが挙げられる。これらバインダ樹脂は単独でも、または2種以上組み合わせても用いることができる。
[Binder resin]
The binder resin that can be used in combination with the composition according to the present invention is not particularly limited, and may be a water-soluble binder resin or a hydrophobic binder resin. For example, polyester, thermoplastic polyester elastomer (TPEE), Acetylcellulose (TAC), diacetylcellulose (DAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), aramid, polyethylene (PE), polyacrylate, polyethersulfone, poly Sulphone, polypropylene (PP), polystyrene, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate petrate, cellulose Cetate propionate butyrate, cellulose benzoate, polyvinyl chloride, acrylic resin (eg, polyacrylic acid), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), poly-N-vinylacetamide, polymethyl methacrylate (PMMA) (Polymethacrylic acid), polycarbonate (PC), epoxy resin, urea resin, urethane resin, melamine resin, cycloaliphatic polyolefin, phenol resin, acrylonitrile-butadiene-styrene copolymer, cycloolefin polymer (COP), cycloolefin copolymer (COC) and the like. These binder resins can be used alone or in combination of two or more.
 これらの中でも、溶解性の観点から、ポリエステル、トリアセチルセルロース(TAC)、ジアセチルセルロース(DAC)、ポリスチレン、セルロースアセテートプロピオネート、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、脂環式ポリオレフィン、PVA、ポリビニルピロリドンが好ましい。 Among these, from the viewpoint of solubility, polyester, triacetyl cellulose (TAC), diacetyl cellulose (DAC), polystyrene, cellulose acetate propionate, polymethyl methacrylate (PMMA), polycarbonate (PC), alicyclic polyolefin, PVA and polyvinyl pyrrolidone are preferred.
 バインダ樹脂の含有量は、光学機能性膜(例えば、色域拡大フィルム)の全質量を基準として、30~99質量%であることが好ましく、50~98質量%であることがより好ましい。 The content of the binder resin is preferably 30 to 99% by mass, more preferably 50 to 98% by mass based on the total mass of the optical functional film (for example, color gamut expansion film).
 [酸化防止剤]
 本実施形態の色域拡大フィルムは、酸化防止剤を含むことが好ましい。酸化防止剤を含むことにより、耐久性や発光波長の安定性がより向上する。
[Antioxidant]
It is preferable that the color gamut expansion film of this embodiment contains an antioxidant. By including an antioxidant, durability and stability of the emission wavelength are further improved.
 本発明における「酸化防止剤」とは、紫外線吸収機能、ラジカル捕捉機能(ラジカルクエンチャー)、または過酸化物分解機能を有する化合物の他に、一重項酸素クエンチャー、2次酸化防止剤を使用することができ、具体的には、以下のような公知の酸化防止剤等が使用できる。 The “antioxidant” in the present invention uses a singlet oxygen quencher or a secondary antioxidant in addition to a compound having an ultraviolet absorption function, a radical scavenging function (radical quencher), or a peroxide decomposition function. Specifically, the following known antioxidants and the like can be used.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 これらの酸化防止剤は、単独でもまたは2種以上混合して用いることができる。 These antioxidants can be used alone or in admixture of two or more.
 酸化防止剤の含有量は、光学機能性膜(例えば、色域拡大フィルム)の全質量を基準として、0.1~50質量%であることが好ましく、1~35質量%であることがより好ましい。なお、本実施例では、10~30質量%であった。 The content of the antioxidant is preferably 0.1 to 50% by mass, more preferably 1 to 35% by mass, based on the total mass of the optical functional film (eg, color gamut expanding film). preferable. In this example, it was 10 to 30% by mass.
 [微粒子]
 本実施形態の色域拡大フィルムは、滑り性を良くするために微粒子を含有することが好ましい。
[Fine particles]
The color gamut expanding film of the present embodiment preferably contains fine particles in order to improve slipperiness.
 本発明に使用される微粒子としては、無機化合物の例として、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。また、有機化合物の微粒子も好ましく使用することができる。有機化合物の例としては、ポリテトラフルオロエチレン、セルロースアセテート、ポリスチレン、ポリメチルメタクリレート、ポリプピルメタクリレート、ポリメチルアクリレート、ポリエチレンカーボネート、アクリルスチレン系樹脂、シリコーン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂、ポリオレフィン系粉末、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、またはポリフッ化エチレン系樹脂、澱粉等の有機高分子化合物の粉砕分級物もあげられる。あるいは懸濁重合法で合成した高分子化合物、スプレードライ法もしくは分散法等により球型にした高分子化合物、または無機化合物を用いることができる。 As fine particles used in the present invention, examples of inorganic compounds include, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydration Mention may be made of calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Further, fine particles of an organic compound can also be preferably used. Examples of organic compounds include polytetrafluoroethylene, cellulose acetate, polystyrene, polymethyl methacrylate, polypropyl methacrylate, polymethyl acrylate, polyethylene carbonate, acrylic styrene resin, silicone resin, polycarbonate resin, benzoguanamine resin, melamine Examples thereof include pulverized and classified products of organic polymer compounds such as resins, polyolefin-based powders, polyester-based resins, polyamide-based resins, polyimide-based resins, polyfluorinated ethylene-based resins, and starches. Alternatively, a high molecular compound synthesized by a suspension polymerization method, a high molecular compound made spherical by a spray drying method or a dispersion method, or an inorganic compound can be used.
 微粒子はケイ素を含むものが、濁度が低くなる点で好ましく、特に二酸化ケイ素が好ましい。 Fine particles containing silicon are preferable from the viewpoint of low turbidity, and silicon dioxide is particularly preferable.
 微粒子の一次粒子の平均粒径は5~400nmが好ましく、10~300nmがより好ましい。 The average primary particle size of the fine particles is preferably 5 to 400 nm, more preferably 10 to 300 nm.
 これらは主に粒径0.05~0.3μmの二次凝集体として含有されていてもよく、平均粒径100~400nmの粒子であれば凝集せずに一次粒子として含まれていることも好ましい。 These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 μm, and may be contained as primary particles without being aggregated if the particles have an average particle size of 100 to 400 nm. preferable.
 光学機能性膜(例えば、色域拡大フィルム)中のこれらの微粒子の含有量は0.01~1質量%であることが好ましく、0.05~0.5質量%がより好ましい。なお、本実施例では、0.3質量%であった。 The content of these fine particles in the optical functional film (for example, color gamut expansion film) is preferably 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass. In this example, it was 0.3% by mass.
 二酸化ケイ素の微粒子は、例えば、アエロジル(登録商標)R972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。 Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil (registered trademark) R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). can do.
 酸化ジルコニウムの微粒子は、例えば、アエロジル(登録商標)R976およびR811(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。 Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil (registered trademark) R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.).
 ポリマーの例として、シリコーン樹脂、フッ素樹脂およびアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120および同240(以上東芝シリコーン株式会社製)の商品名で市販されており、使用することができる。 Examples of the polymer include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) Are commercially available and can be used.
 これらの中でもアエロジル200V、アエロジルR972Vが光学フィルムの濁度を低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。 Among these, Aerosil 200V and Aerosil R972V are particularly preferred because they have a large effect of reducing the friction coefficient while keeping the turbidity of the optical film low.
 各種添加剤は光学機能性膜を形成するための主ドープ(ドープ溶液)にバッチ添加してもよいし、添加剤溶解液を別途用意してインライン添加してもよい。特に微粒子はろ過材への負荷を減らすために、一部または全量をインライン添加することが好ましい。 Various additives may be batch-added to the main dope (dope solution) for forming the optical functional film, or an additive solution may be separately prepared and added in-line. In particular, it is preferable to add a part or all of the fine particles in-line in order to reduce the load on the filter medium.
 〔他の成分〕
 本発明の光学機能性膜(例えば、色域拡大フィルム)は、上記効果を損なわない限り、上記の他に、可塑剤、加水分解抑制剤、紫外線吸収剤等、他の成分を含んでいてもよい。
[Other ingredients]
In addition to the above, the optical functional film (for example, color gamut expansion film) of the present invention may contain other components such as a plasticizer, a hydrolysis inhibitor, and an ultraviolet absorber in addition to the above effects. Good.
 本発明の光学機能性膜(例えば、色域拡大フィルム)の厚さは、好ましくは20~500μm、より好ましくは50~300μm、さらに好ましくは70~150μmである。 The thickness of the optical functional film (for example, color gamut expanding film) of the present invention is preferably 20 to 500 μm, more preferably 50 to 300 μm, and still more preferably 70 to 150 μm.
 〔光学機能性膜(例えば、色域拡大フィルム)の製造方法〕
 本発明の光学機能性膜(例えば、色域拡大フィルム)の製造方法としては、特に制限なく、溶融流涎法や溶液流涎法など公知の手法を用いることができるが、本発明に係る組成物と、必要に応じて他の成分を溶媒中で混合しドープ溶液を調製した後、ドープ溶液をガラス等の支持体上に流延(キャスト)し乾燥することを含む製造方法が好ましい。
[Method for producing optical functional film (for example, color gamut expansion film)]
The production method of the optical functional film (for example, color gamut expansion film) of the present invention is not particularly limited, and a known method such as a melt-flow method or a solution-flow method can be used. A manufacturing method including mixing other components in a solvent as necessary to prepare a dope solution and then casting (casting) the dope solution on a support such as glass and drying is preferable.
 各成分の混合に用いることができる上記溶媒(あるいは分散媒)としては、例えば、水、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ハロゲン化炭化水素等の炭化水素系溶媒;脂肪族エーテル、脂環式エーテル等のエーテル系溶媒;アルコール系溶媒;ケトン系溶媒;エステル系溶媒;極性溶媒等が挙げられる。さらに具体的には、ペンタン、ヘキサン、オクタデセン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターペン、メチレンクロライド、トリクロロエタン等の炭化水素系溶媒;ジブチルエーテル、1,4-ジオキサン、テトラヒドロフラン(THF)等エーテル系溶媒;メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール等のアルコール系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒;酢酸メチル、酢酸エチル、酢酸アミル、ギ酸エチル等のエステル系溶媒;N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ニトロエタン等の極性溶媒、等が挙げられる。これらの溶媒は単独でも、または2種以上を混合しても用いることができる。なお、実施例5の配位子は水溶性である。 Examples of the solvent (or dispersion medium) that can be used for mixing each component include hydrocarbon solvents such as water, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons; Examples include ether solvents such as aliphatic ethers and alicyclic ethers; alcohol solvents; ketone solvents; ester solvents; polar solvents and the like. More specifically, hydrocarbon solvents such as pentane, hexane, octadecene, cyclohexane, toluene, xylene, solvesso, terpene, methylene chloride and trichloroethane; ether solvents such as dibutyl ether, 1,4-dioxane and tetrahydrofuran (THF) Methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2- Propanol, 2,2,3,3,3-pentafluoro-1-propyl Alcohol solvents such as panol; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone; ester solvents such as methyl acetate, ethyl acetate, amyl acetate, ethyl formate; N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO) , Polar solvents such as nitroethane, and the like. These solvents can be used alone or in admixture of two or more. The ligand of Example 5 is water soluble.
 ドープ溶液の調製は、溶媒に各成分を添加し混合する方法で行ってもよいし、各成分の溶液や分散液をそれぞれ用意して、その溶液または分散液を混合する方法で行ってもよい。 The dope solution may be prepared by a method of adding each component to a solvent and mixing, or by preparing a solution or dispersion of each component and mixing the solution or dispersion. .
 流延の方法としては、エアドクターコーター、ブレードコーター、ナイフコーター、ロッドコーター、スクイズコーター、含浸コーター、グラビアコーター、キスロールコーター、ダイコーター、リバースロールコーター、トランスファーロールコーター、スプレーコーターなどを用いた方法を使用することができる。 As a casting method, an air doctor coater, blade coater, knife coater, rod coater, squeeze coater, impregnation coater, gravure coater, kiss roll coater, die coater, reverse roll coater, transfer roll coater, spray coater, etc. were used. The method can be used.
 乾燥時の条件も、特に制限されず、乾燥後の残留溶媒量は適宜設定することができる。なお、残留溶媒量は、フィルムの残留溶媒量は、下記式で定義される。 The conditions during drying are not particularly limited, and the amount of residual solvent after drying can be set as appropriate. The residual solvent amount is defined by the following equation as the residual solvent amount of the film.
 残留溶媒量(%)=(フィルムの加熱処理前質量-フィルムの加熱処理後質量)/(フィルムの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理は、115℃で1時間の加熱処理を意味する。
Residual solvent amount (%) = (mass before heat treatment of film−mass after heat treatment of film) / (mass after heat treatment of film) × 100
Note that the heat treatment for measuring the residual solvent amount means a heat treatment at 115 ° C. for 1 hour.
 フィルムの乾燥方法は、熱風、赤外線、加熱ローラー、またはマイクロ波等で乾燥する方法であってよく、簡便であることから熱風で乾燥する方法が好ましい。 The method for drying the film may be a method of drying with hot air, infrared rays, a heating roller, microwave, or the like, and a method of drying with hot air is preferable because it is simple.
 [用途]
 本発明の光学機能性膜は、上記のように、例えば、ディスプレーバックライトユニット等に好適に用いられる色域拡大フィルム、色調変換フィルタ、カラーフィルタに好適に使用されうる。
[Usage]
As described above, the optical functional film of the present invention can be suitably used for, for example, a color gamut expansion film, a color tone conversion filter, and a color filter that are preferably used in a display backlight unit or the like.
 以下、具体的な実施例および比較例について説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、下記操作において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で行う。 Hereinafter, specific examples and comparative examples will be described. However, the technical scope of the present invention is not limited only to the following examples. Further, in the following operations, unless otherwise specified, operations and physical properties are measured under the conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 (実施例1-1)
 (半導体ナノ粒子Aの合成:InP/ZnS半導体ナノ粒子Aの合成)
 ミリスチン酸インジウム 1.5mmol、ミリスチン酸 1.5mmol、トリメチルシリルホスフィン 1.5mmol、ドデカンチオール 1.5mmol、およびウンデシレン酸亜鉛1.5mmolを、オクタデセン120mlとともに三口フラスコに入れ、窒素雰囲気下で還流を行いながら300℃で1時間加熱し、InP/ZnS(半導体ナノ粒子A)を含むオクタデセン溶液を得た。次に、真空下で乾燥して、InP/ZnS半導体ナノ粒子Aの粉末を得た。なお、本明細書中において、コアシェル構造を有する半導体ナノ粒子の表記方法として、例えば、コアがInPであり、シェルがZnSである場合には、InP/ZnSと表記する。
Example 1-1
(Synthesis of Semiconductor Nanoparticle A: Synthesis of InP / ZnS Semiconductor Nanoparticle A)
While adding 1.5 mmol of indium myristate, 1.5 mmol of myristic acid, 1.5 mmol of trimethylsilylphosphine, 1.5 mmol of dodecanethiol, and 1.5 mmol of zinc undecylenate together with 120 ml of octadecene, while refluxing in a nitrogen atmosphere It heated at 300 degreeC for 1 hour, and the octadecene solution containing InP / ZnS (semiconductor nanoparticle A) was obtained. Next, it was dried under vacuum to obtain a powder of InP / ZnS semiconductor nanoparticles A. Note that in this specification, as a notation method of semiconductor nanoparticles having a core-shell structure, for example, when the core is InP and the shell is ZnS, it is expressed as InP / ZnS.
 得られた半導体ナノ粒子Aを透過型電子顕微鏡により直接観察することで、InPコア部の表面をZnSシェルが覆ったコアシェル構造であることを確認することができた。また、当該観察により、本合成方法で合成したInP/ZnS半導体ナノ粒子Aは、コア部の粒径が2.1~3.8nm、コア部の粒径分布が6~40%であった。ここで、当該観察には、日本電子株式会社製の透過型電子顕微鏡JEM-2100を用いた。 By directly observing the obtained semiconductor nanoparticles A with a transmission electron microscope, it was possible to confirm that the surface of the InP core part was a core-shell structure covered with a ZnS shell. Further, according to this observation, the InP / ZnS semiconductor nanoparticles A synthesized by this synthesis method had a core part particle size of 2.1 to 3.8 nm and a core part particle size distribution of 6 to 40%. Here, a JEM-2100 transmission electron microscope manufactured by JEOL Ltd. was used for the observation.
 なお、InP/ZnS半導体ナノ粒子Aのコアシェル粒径は、3.0~8.3nmである。 Note that the core-shell particle diameter of the InP / ZnS semiconductor nanoparticles A is 3.0 to 8.3 nm.
 また、上記で得られた半導体ナノ粒子Aを含むオクタデセン溶液を用いて、InP/ZnS半導体ナノ粒子Aの光学特性を測定した。発光ピーク波長が430~720nmであり、発光半値幅が35~90nmであることを確認した。発光効率が、最大で70.9%に達した。本発明において、InP/ZnS半導体ナノ粒子Aの発光特性の測定には、JOBIN YVON社製の蛍光分光光度計FluoroMax-4を使用し、InP/ZnS半導体微粒子蛍光体の吸収スペクトル測定には、株式会社日立ハイテクノロジーズ社製の分光光度計U-4100を用いた。 Also, the optical properties of InP / ZnS semiconductor nanoparticles A were measured using the octadecene solution containing the semiconductor nanoparticles A obtained above. It was confirmed that the emission peak wavelength was 430 to 720 nm and the emission half width was 35 to 90 nm. The luminous efficiency reached a maximum of 70.9%. In the present invention, a fluorescence spectrophotometer FluoroMax-4 manufactured by JOBIN YVON is used to measure the emission characteristics of InP / ZnS semiconductor nanoparticles A, and the stock spectrum is used to measure the absorption spectrum of InP / ZnS semiconductor fine particle phosphor. A spectrophotometer U-4100 manufactured by Hitachi High-Technologies Corporation was used.
 上記で得られた半導体ナノ粒子Aを、遠心分離法に従い、粒径を調整し分離した。 The semiconductor nanoparticles A obtained above were separated by adjusting the particle size according to the centrifugal separation method.
 半導体ナノ粒子Aはミリスチン酸で表面修飾されている。 Semiconductor nanoparticles A are surface modified with myristic acid.
 (半導体ナノ粒子Bの合成:本発明に係る配位子が配位したInP/ZnS半導体ナノ粒子Bの合成))
 上記で得られた半導体ナノ粒子Aを、遠心分離法により、緑色発光を呈するナノ粒子成分を分離し、粒径を調整した。
(Synthesis of Semiconductor Nanoparticle B: Synthesis of InP / ZnS Semiconductor Nanoparticle B Coordinated with the Ligand According to the Present Invention)
The semiconductor nanoparticles A obtained above were subjected to centrifugal separation to separate the nanoparticle components exhibiting green light emission, and the particle size was adjusted.
 半導体ナノ粒子Bの合成は、事前に遠心分離法により緑色発光粒子成分を分離させた半導体ナノ粒子Aを用いて実施した。 The synthesis of the semiconductor nanoparticles B was performed using the semiconductor nanoparticles A from which the green light-emitting particle components were separated in advance by a centrifugal separation method.
 本発明化合物(L-4)のトルエン溶液(濃度:40mM)と半導体ナノ粒子Aのオクタデセン溶液(濃度:5mg/ml)とを1:1の質量比で混合し、グローブボックス中、暗所で一晩攪拌して、その後遠心分離(6000rpm、約1分間)し、上澄みを排液した。メタノールによる洗浄を繰り返し、その後、トルエン(15mL)中に再分散させて、本発明化合物(L-4)で表面修飾されたコアシェル構造のInP/ZnS半導体ナノ粒子の分散液1-1を得た。表面修飾の状態は、FTIR、NMRで測定し、InP/ZnS半導体ナノ粒子の表面が本発明化合物(L-4)によって修飾されていることを確認した。 A toluene solution (concentration: 40 mM) of the compound (L-4) of the present invention and an octadecene solution (concentration: 5 mg / ml) of semiconductor nanoparticles A were mixed at a mass ratio of 1: 1, and the mixture was mixed in a glove box in a dark place. The mixture was stirred overnight, then centrifuged (6000 rpm, about 1 minute), and the supernatant was drained. Repeated washing with methanol, and then redispersed in toluene (15 mL) to obtain a dispersion 1-1 of InP / ZnS semiconductor nanoparticles having a core-shell structure surface-modified with the compound (L-4) of the present invention. . The surface modification state was measured by FTIR and NMR, and it was confirmed that the surface of InP / ZnS semiconductor nanoparticles was modified with the compound (L-4) of the present invention.
 なお、半導体ナノ粒子Aを遠心分離した半導体ナノ粒子Bのコアシェル粒径は、3.0~5.0nmであった。 The core-shell particle size of the semiconductor nanoparticles B obtained by centrifuging the semiconductor nanoparticles A was 3.0 to 5.0 nm.
 <微粒子分散液の調製>
 微粒子(平均一次粒径:16nm)(アエロジル(登録商標)R972V 日本アエロジル株式会社製) 9質量部
 エタノール         89質量部
 微粒子およびエタノールを上記の割合で、ディゾルバーを用いて50分間攪拌混合した後、マントンゴーリンで分散させて、微粒子分散液を調製した。
<Preparation of fine particle dispersion>
Fine particles (average primary particle size: 16 nm) (Aerosil (registered trademark) R972V, manufactured by Nippon Aerosil Co., Ltd.) 9 parts by mass Ethanol 89 parts by mass Fine particles and ethanol were mixed at the above ratio using a dissolver for 50 minutes, and then Menton A fine particle dispersion was prepared by dispersing with gorin.
 <微粒子添加液の調製>
 メチレンクロライド       89質量部
 微粒子分散液          98質量部(上記微粒子分散液全量)
 メチレンクロライドを容器に投入し、上記で調製した微粒子分散液を上記の添加量で、十分攪拌しながらゆっくりと添加した。次いで、微粒子の二次粒子の粒径が所定の大きさとなるようにアトライターにて分散させた後、ファインメット(登録商標)NF(日本精線株式会社製)でろ過して、微粒子添加液を得た。
<Preparation of fine particle additive solution>
Methylene chloride 89 parts by mass Fine particle dispersion 98 parts by mass (total amount of the fine particle dispersion)
Methylene chloride was put into a container, and the fine particle dispersion prepared above was slowly added at the above addition amount with sufficient stirring. Subsequently, after being dispersed with an attritor so that the particle size of the secondary particles of the fine particles becomes a predetermined size, the fine particles are filtered through Finemet (registered trademark) NF (manufactured by Nippon Seisen Co., Ltd.) Got.
 <ドープ溶液の調製>
 メチレンクロライド:                   15ml
 バインダ樹脂としてセルロースアセテートプロピオネート CAP482
-20(重量平均分子量215000、イーストマンケミカル社製):  
                                3g
 半導体ナノ粒子の分散液1-1:              15ml
 微粒子添加液:                     0.18g
 上記メチレンクロライドと半導体ナノ粒子の分散液1-1とを混合した。次いで、バインダ樹脂である上記セルロースアセテートプロピオネート、および上記で調製した微粒子添加液を攪拌しながら投入し、暗所で、攪拌して完全に溶解させ、ドープ溶液を調製した。
<Preparation of dope solution>
Methylene chloride: 15ml
Cellulose acetate propionate CAP482 as binder resin
-20 (weight average molecular weight 215000, manufactured by Eastman Chemical Co.):
3g
Semiconductor nanoparticle dispersion 1-1: 15 ml
Fine particle additive solution: 0.18 g
The methylene chloride and the semiconductor nanoparticle dispersion 1-1 were mixed. Next, the cellulose acetate propionate as a binder resin and the fine particle additive solution prepared above were added while stirring, and were stirred and completely dissolved in a dark place to prepare a dope solution.
 <色域拡大フィルム101の作製>
 得られたドープ溶液を、ガラスステージ上に流し、このステージに対して所定の間隔を保って相対的に水平に移動可能なブレードコーターを引いて、流延(キャスト)した。このキャストした膜中の溶媒を、残留溶媒量が75質量%になるまで蒸発させ、得られた膜をガラスステージから剥離して乾燥させて、色域拡大フィルム101(以下、単に「膜101」とも称する)を得た。膜101の膜厚は、100μmであった。
<Preparation of color gamut expansion film 101>
The obtained dope solution was flowed on a glass stage, and a blade coater that was movable relative to the stage at a predetermined interval was pulled and cast (cast). The solvent in the cast film is evaporated until the residual solvent amount reaches 75% by mass, and the obtained film is peeled off from the glass stage and dried to obtain a color gamut expanding film 101 (hereinafter simply referred to as “film 101”). Also referred to as). The film thickness of the film 101 was 100 μm.
 (実施例1-2~1-10:色域拡大フィルム102~110の作製)
 本発明化合物(L-4)を表1に示すものに変更したこと以外は、実施例1と同様の方法で、色域拡大フィルム102~110(膜102~110)を作製した。
(Examples 1-2 to 1-10: Production of color gamut expansion films 102 to 110)
Color gamut expanding films 102 to 110 (films 102 to 110) were produced in the same manner as in Example 1 except that the compound (L-4) of the present invention was changed to those shown in Table 1.
 (比較例1-1~1-2(膜111~112))
 本発明化合物(L-4)の代わりに、比較化合物1(トリデカン酸)、比較化合物2を用いたこと以外は、実施例1-1と同様にして、色域拡大フィルム111(膜111)および色域拡大フィルム112(膜112)を作製した。
(Comparative Examples 1-1 to 1-2 (films 111 to 112))
In the same manner as in Example 1-1 except that Comparative Compound 1 (tridecanoic acid) and Comparative Compound 2 were used instead of the compound (L-4) of the present invention, the color gamut expanding film 111 (film 111) and A color gamut expansion film 112 (film 112) was produced.
 (実施例1-11:色域拡大フィルム113の作製)
 本発明化合物(L-4)を表1に示すものに変更したこと以外は、実施例1と同様の方法で、色域拡大フィルム113(膜113)を作製した。
(Example 1-11: Production of color gamut expansion film 113)
A color gamut expansion film 113 (film 113) was produced in the same manner as in Example 1 except that the compound (L-4) of the present invention was changed to that shown in Table 1.
 (実施例2-1)
 メチレンクロライド:                   15ml
 バインダ樹脂としてセルロースアセテートプロピオネート CAP482
-20(重量平均分子量215,000 イーストマンケミカル社製): 
                                3g
 半導体ナノ粒子分散液2-1:               15ml
 酸化防止剤(AO-1):                 0.3g
 微粒子添加液:                     0.18g
 上記メチレンクロライド、酸化防止剤(AO-1)を溶解し、次いで半導体ナノ粒子分散液2-1を混合した。その後、上記セルロースアセテートプロピオネート、および上記で調製した微粒子添加液を攪拌しながら投入し、暗所で攪拌して完全に溶解させ、ドープ溶液を調製した。
Example 2-1
Methylene chloride: 15ml
Cellulose acetate propionate CAP482 as binder resin
-20 (weight average molecular weight 215,000, Eastman Chemical Co.):
3g
Semiconductor nanoparticle dispersion 2-1: 15 ml
Antioxidant (AO-1): 0.3g
Fine particle additive solution: 0.18 g
The above methylene chloride and antioxidant (AO-1) were dissolved, and then the semiconductor nanoparticle dispersion 2-1 was mixed. Thereafter, the cellulose acetate propionate and the fine particle addition liquid prepared above were added while stirring, and the mixture was stirred and completely dissolved in the dark to prepare a dope solution.
 なお、半導体ナノ粒子分散液2-1は、本発明化合物(L-4)を本発明化合物(L-48)に変更した以外は、半導体ナノ粒子分散液1-1の作製と同様にして作製した。 The semiconductor nanoparticle dispersion 2-1 was prepared in the same manner as the semiconductor nanoparticle dispersion 1-1 except that the compound (L-4) of the present invention was changed to the compound (L-48) of the present invention. did.
 <色域拡大フィルム201の作製>
 得られたドープ溶液を、ガラスステージ上に流し、このステージに対して所定の間隔を保って相対的に水平に移動可能なブレードコーターを引いて、流延(キャスト)し膜を得た。このキャストした膜中の溶媒を、残留溶媒量が75質量%になるまで蒸発させ、得られた膜をガラスステージから剥離して乾燥させて色域拡大フィルム201(以下、単に「膜201」とも称するいう)を得た。膜厚は100μmであった。
<Preparation of color gamut expansion film 201>
The obtained dope solution was allowed to flow on a glass stage, and a blade coater that was able to move relatively horizontally with a predetermined interval with respect to this stage was drawn and cast to obtain a film. The solvent in the cast film is evaporated until the residual solvent amount reaches 75% by mass, and the obtained film is peeled off from the glass stage and dried to obtain a color gamut expanding film 201 (hereinafter simply referred to as “film 201”). Obtained). The film thickness was 100 μm.
 (実施例2-2~2-12)
 本発明化合物(L-48)、酸化防止剤(AO-1)を、下記表2に示すような化合物に変更したこと以外は、実施例2-1と同様にして、色域拡大フィルム202~212(膜202~212)を作製した。
(Examples 2-2 to 2-12)
Except that the compound of the present invention (L-48) and the antioxidant (AO-1) were changed to the compounds shown in Table 2 below, in the same manner as in Example 2-1, the color gamut expansion films 202 to 212 (films 202 to 212) were produced.
 (比較例2-1~2-2)
 本発明化合物(L-48)、酸化防止剤(AO-1)を、下記表2に示すような化合物に変更したこと以外は、実施例2-1と同様にして、色域拡大フィルム213~214を作製した。
(Comparative Examples 2-1 and 2-2)
In the same manner as in Example 2-1, except that the compound of the present invention (L-48) and the antioxidant (AO-1) were changed to the compounds shown in Table 2 below, the color gamut expanding films 213 to 214 was produced.
 (実施例2-13~2-15)
 本発明化合物(L-48)、酸化防止剤(AO-1)を、下記表2に示すような化合物に変更したこと以外は、実施例2-1と同様にして、色域拡大フィルム215~217(膜215~217)を作製した。
(Examples 2-13 to 2-15)
Except that the compound of the present invention (L-48) and the antioxidant (AO-1) were changed to the compounds shown in Table 2 below, in the same manner as in Example 2-1, the color gamut expansion films 215 to 217 (films 215 to 217) were produced.
 (実施例3-1)
 メチレンクロライド:           15ml
 CAP482-20:             3g
 半導体ナノ粒子分散液3-1:       15ml
 酸化防止剤(AO-1):         0.3g
 酸化防止剤(AO-6):         0.3g
 酸化防止剤(AO-11):        0.3g
 微粒子添加液:              0.18g
 上記メチレンクロライドと酸化防止剤とを混合して溶解し、次いで半導体ナノ粒子分散液3-1を混合した。その後、バインダ樹脂である上記CAP482-20、および上記で調製した微粒子添加液を攪拌しながら投入し、暗所で、攪拌して完全に溶解させ、ドープ溶液を調製した。なお、半導体ナノ粒子分散液3-1は、本発明化合物(L-4)を本発明化合物(L-44)に変更した以外は、半導体ナノ粒子分散液1-1の作製と同様にして作製した。
Example 3-1
Methylene chloride: 15ml
CAP482-20: 3g
Semiconductor nanoparticle dispersion 3-1: 15 ml
Antioxidant (AO-1): 0.3g
Antioxidant (AO-6): 0.3 g
Antioxidant (AO-11): 0.3 g
Fine particle additive solution: 0.18 g
The methylene chloride and the antioxidant were mixed and dissolved, and then the semiconductor nanoparticle dispersion 3-1 was mixed. Thereafter, the above-mentioned CAP482-20 as a binder resin and the fine particle addition liquid prepared above were added with stirring, and were stirred and completely dissolved in a dark place to prepare a dope solution. The semiconductor nanoparticle dispersion 3-1 was prepared in the same manner as the semiconductor nanoparticle dispersion 1-1 except that the compound (L-4) of the present invention was changed to the compound (L-44) of the present invention. did.
 <色域拡大フィルム301の作製>
 得られたドープ溶液を、ガラスステージ上に流し、このステージに対して所定の間隔を保って相対的に水平に移動可能なブレードコーターを引いて、流延(キャスト)した。このキャストしたドープ溶液膜中の溶媒を、残留溶媒量が75質量%になるまで蒸発させ、得られた膜をガラスステージから剥離して乾燥させて色域拡大フィルム301(以下、単に「膜301」ととも称する)を得た。膜厚は100μmであった。
<Preparation of color gamut expansion film 301>
The obtained dope solution was flowed on a glass stage, and a blade coater that was movable relative to the stage at a predetermined interval was pulled and cast (cast). The solvent in the cast dope solution film is evaporated until the residual solvent amount reaches 75% by mass, and the obtained film is peeled off from the glass stage and dried to obtain a color gamut expanding film 301 (hereinafter simply referred to as “film 301”. Is also called). The film thickness was 100 μm.
 (実施例3-2~3-12)
 本発明化合物(L-44)、バインダ樹脂(CAP482-20)、酸化防止剤(AO-1、AO-6、AO-11)を、下記表3に示すような化合物に変更したこと以外は、実施例3-1と同様にして、色域拡大フィルム302~312(膜302~312)を作製した。
(Examples 3-2 to 3-12)
Except that the compound of the present invention (L-44), binder resin (CAP482-20), and antioxidant (AO-1, AO-6, AO-11) were changed to the compounds shown in Table 3 below, In the same manner as in Example 3-1, color gamut expansion films 302 to 312 (films 302 to 312) were produced.
 (比較例3-1~3-2)
 本発明化合物(L-44)、バインダ樹脂(CAP482-20)、酸化防止剤(AO-1、AO-6、AO-11)を、下記表3に示すような化合物に変更したこと以外は、実施例3-1と同様にして、色域拡大フィルム313~314(膜313~314)を作製した。
(Comparative Examples 3-1 and 3-2)
Except that the compound of the present invention (L-44), binder resin (CAP482-20), and antioxidant (AO-1, AO-6, AO-11) were changed to the compounds shown in Table 3 below, In the same manner as in Example 3-1, color gamut expansion films 313 to 314 (films 313 to 314) were produced.
 (実施例3-13~3-15)
 本発明化合物(L-44)、バインダ樹脂(CAP482-20)、酸化防止剤(AO-1、AO-6、AO-11)を、下記表3に示すような化合物に変更したこと以外は、実施例3-1と同様にして、色域拡大フィルム315~317(膜315~317)を作製した。
(Examples 3-13 to 3-15)
Except that the compound of the present invention (L-44), binder resin (CAP482-20), and antioxidant (AO-1, AO-6, AO-11) were changed to the compounds shown in Table 3 below, In the same manner as in Example 3-1, color gamut expansion films 315 to 317 (films 315 to 317) were produced.
 <評価方法>
 上記のようにして作製した色域拡大フィルムについて、以下の評価を行った。
<Evaluation method>
The following evaluation was performed about the color gamut expansion film produced as mentioned above.
 (発光効率)
 色域拡大フィルムを405nmの青紫光で励起したとき、色温度が7000Kの白色発光のそれぞれの発光効率を測定した。
(Luminescence efficiency)
When the color gamut expansion film was excited with 405 nm blue-violet light, the respective light emission efficiency of white light emission with a color temperature of 7000 K was measured.
 なお、測定には、大塚電子株式会社製の発光測定システムMCPD-7000を用いた。 For the measurement, a light emission measurement system MCPD-7000 manufactured by Otsuka Electronics Co., Ltd. was used.
 また、得られた各発光効率の結果に対し、比較膜(比較1-1、比較2-1、比較3-1)の上記方法で測定した際の発光効率を100とした時の相対発光効率を求め、下記の基準に従って、発光特性としての相対発光効率を評価した。 Further, relative luminous efficiency when the luminous efficiency measured by the above method of the comparative films (Comparative 1-1, Comparative 2-1 and Comparative 3-1) is set to 100 for the obtained luminous efficiency results. And the relative luminous efficiency as the luminous characteristics was evaluated according to the following criteria.
 ◎ :相対発光効率が125以上である
 ○ :相対発光効率が115以上125未満である
 ○△:相対発光効率が105以上115未満である
 △ :相対発光効率が95以上105未満である
 △×:相対発光効率が85以上95未満である
 × :相対発光効率が85未満である。
◎: Relative luminous efficiency is 125 or more ○: Relative luminous efficiency is 115 or more and less than 125 ○ △: Relative luminous efficiency is 105 or more and less than 115 Δ: Relative luminous efficiency is 95 or more and less than 105 Δ ×: Relative luminous efficiency is 85 or more and less than 95 x: Relative luminous efficiency is less than 85.
 (耐久性)
 上記で作製した色域拡大フィルムを、85℃、85%RHの環境下で1000時間の加速劣化処理を施した。その後、上記発光特性の評価と同様の方法によりそれぞれの発光効率を測定し、加速劣化処理前の発光効率に対する加速劣化処理後の発光効率の比(加速劣化処理後の発光効率/加速劣化処理前の発光効率)の値を求め、下記の基準に従って、耐久性を評価した。
(durability)
The color gamut expansion film produced above was subjected to an accelerated deterioration treatment for 1000 hours in an environment of 85 ° C. and 85% RH. Thereafter, the respective light emission efficiencies are measured by the same method as the evaluation of the light emission characteristics, and the ratio of the light emission efficiency after the accelerated deterioration process to the light emission efficiency before the accelerated deterioration process (light emission efficiency after the accelerated deterioration process / before the accelerated deterioration process). The light emission efficiency) was determined, and the durability was evaluated according to the following criteria.
 ◎ :比の値が0.95以上である
 ○ :比の値が0.85以上0.95未満である
 △ :比の値が0.75以上0.85未満である
 △×:比の値が0.50以上0.75未満である
 × :比の値が0.50未満である。
◎: Ratio value is 0.95 or more ○: Ratio value is 0.85 or more and less than 0.95 △: Ratio value is 0.75 or more and less than 0.85 △: Ratio value Is 0.50 or more and less than 0.75 x: The value of the ratio is less than 0.50.
 (発光波長安定性)
 色域拡大フィルムを405nmの青紫光で励起したときの発光波長ピークを測定した。その後、同じ色域拡大フィルムを、85℃、85%RHの環境下で1000時間の加速劣化処理を施した後、上記発光波長ピークの測定と同様に測定し、加速劣化処理前の発光波長ピークに対する加速劣化処理後の波長ピークのズレ(加速劣化処理後の発光波長ピーク-加速劣化処理前の発光波長ピーク)の値を求め、下記の基準に従って、発光波長ピークの安定性を評価した。
(Emission wavelength stability)
The emission wavelength peak was measured when the color gamut expanding film was excited with 405 nm blue-violet light. Thereafter, the same color gamut expansion film was subjected to an accelerated deterioration treatment for 1000 hours in an environment of 85 ° C. and 85% RH, and then measured in the same manner as the measurement of the emission wavelength peak. The value of the shift of the wavelength peak after accelerated deterioration treatment relative to (the emission wavelength peak after accelerated deterioration treatment−the emission wavelength peak before accelerated deterioration treatment) was determined, and the stability of the emission wavelength peak was evaluated according to the following criteria.
 ◎ :ズレの値が5nm未満である
 ○ :ズレの値が5nm以上10nm未満である
 △ :ズレの値が10nm以上15nm未満である
 × :ズレの値が15nm以上である。
A: The deviation value is less than 5 nm. B: The deviation value is 5 nm or more and less than 10 nm. Δ: The deviation value is 10 nm or more and less than 15 nm. X: The deviation value is 15 nm or more.
 各実施例および比較例の構成および評価結果を、下記表1~3に示す。 The configurations and evaluation results of the examples and comparative examples are shown in Tables 1 to 3 below.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 なお、「CAP」と、「CAP482-20」とは、同じものである。 Note that “CAP” and “CAP482-20” are the same.
 上記表から明らかなように、実施例の色域拡大フィルムは、発光効率、耐熱性、および耐酸化性に優れる。 As is clear from the above table, the color gamut expansion films of the examples are excellent in luminous efficiency, heat resistance, and oxidation resistance.
 (実施例4-1)
 本発明化合物(L-69)の水溶液(濃度40mM)と、前記半導体ナノ粒子Aを含むオクタデセン溶液(濃度:5mg/ml)とを1:1の質量比で混合し、3時間室温で撹拌した。その後、オクタデセン層を除去して、残った水層にテトラヒドロフランを添加してオイルアウト成分をデカンテーションにより集めた。デカンテーションで集めた前記組成物401(オイル成分)のFT-IRを測定して、L-69と半導体ナノ粒子Aには見られないピークが観測され、半導体ナノ粒子と本発明化合物の相互作用が発現したことが確認された。次に前記オイル成分を水に再分散させて、発光効率を測定した。
Example 4-1
An aqueous solution (concentration 40 mM) of the compound (L-69) of the present invention and an octadecene solution (concentration: 5 mg / ml) containing the semiconductor nanoparticles A were mixed at a mass ratio of 1: 1 and stirred at room temperature for 3 hours. . Thereafter, the octadecene layer was removed, tetrahydrofuran was added to the remaining aqueous layer, and the oil-out component was collected by decantation. When the FT-IR of the composition 401 (oil component) collected by decantation was measured, a peak not observed in L-69 and the semiconductor nanoparticle A was observed, and the interaction between the semiconductor nanoparticle and the compound of the present invention was observed. It was confirmed that was expressed. Next, the oil component was redispersed in water, and the luminous efficiency was measured.
 なお、測定には、大塚電子株式会社製の発光測定システムMCPD-7000を用いた。 For the measurement, a light emission measurement system MCPD-7000 manufactured by Otsuka Electronics Co., Ltd. was used.
 半導体ナノ粒子Aを含むオクタデセン溶液(濃度:5mg/ml)を測定した際の発光効率を100とした時の相対発光効率を求め、下記の基準に従って、発光特性としての相対発光効率を評価した。 The relative luminous efficiency when the octadecene solution containing the semiconductor nanoparticles A (concentration: 5 mg / ml) was measured as 100 was determined, and the relative luminous efficiency as the luminous characteristics was evaluated according to the following criteria.
 ◎:相対発光効率が90以上
 ○:相対発光効率が75以上90未満
 △:相対発光効率が60以上75未満
 ×:相対発光効率が60未満。
A: Relative luminous efficiency is 90 or more B: Relative luminous efficiency is 75 or more and less than 90 Δ: Relative luminous efficiency is 60 or more and less than 75 ×: Relative luminous efficiency is less than 60
 (実施例4-2~4-3)
 本発明化合物(L-69)を下記表4に示すような化合物に変更したこと以外は、実施例4-1と同様にして組成物402~403を作製して、実施例4-1と同様にしてFT-IR、発光効率の測定を行った。
(Examples 4-2 to 4-3)
Compositions 402 to 403 were prepared in the same manner as in Example 4-1, except that the compound of the present invention (L-69) was changed to a compound as shown in Table 4 below. Then, FT-IR and luminous efficiency were measured.
 (比較例4-1~4-2)
 本発明化合物(L-69)の代わりに、比較化合物3、比較化合物4を用いたこと以外は、実施例4-1と同様にして組成物404~405を作製して、実施例4-1と同様にしてFT-IR、発光効率の測定を行った。
(Comparative Examples 4-1 to 4-2)
Compositions 404 to 405 were prepared in the same manner as in Example 4-1, except that Comparative Compound 3 and Comparative Compound 4 were used instead of the compound (L-69) of the present invention. Example 4-1 FT-IR and luminous efficiency were measured in the same manner as described above.
 比較化合物3:メルカプトプロピオン酸
 比較化合物4:ポリエチレンイミン(和光純薬工業社製 branched, M.W. 1,800)
Comparative compound 3: mercaptopropionic acid Comparative compound 4: polyethyleneimine (branched, MW 1,800, manufactured by Wako Pure Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 (実施例5-1)
 本発明化合物(L-62)の水溶液(濃度40mM)と、酸化チタン水分散液(X線粒径20nm、石原産業社製STS-21)とを1:1の質量比で混合し、3時間室温で撹拌した。その後、混合液の一部を抜き取り、水を乾燥させて、残った固体のFT-IRを測定して、L-62と酸化チタンには見られないピークが観測され、金属酸化物ナノ粒子と本発明化合物との相互作用が発現したことが確認された。
Example 5-1
An aqueous solution (concentration 40 mM) of the compound (L-62) of the present invention and a titanium oxide aqueous dispersion (X-ray particle size 20 nm, STS-21 manufactured by Ishihara Sangyo Co., Ltd.) were mixed at a mass ratio of 1: 1 for 3 hours. Stir at room temperature. Thereafter, a part of the mixed solution was extracted, the water was dried, and the FT-IR of the remaining solid was measured. A peak not observed in L-62 and titanium oxide was observed, and the metal oxide nanoparticles and It was confirmed that interaction with the compound of the present invention was expressed.
 次に、前記混合液と、PVA(和光純薬工業社製 (CH(OH)CH n=2000)分散水溶液(濃度10wt%)とを1:50の質量比で加えて、45℃で十分撹拌した後、脱泡し、ガラス板上に乾燥後の厚みが70μmになるように流涎し、80℃で乾燥して光学機能性膜501を作製した。 Next, the mixed solution and a PVA (Wako Pure Chemical Industries, Ltd. (CH (OH) CH 2 ) n n = 2000) dispersion aqueous solution (concentration: 10 wt%) were added at a mass ratio of 1:50, and 45 ° C. The mixture was sufficiently defoamed and then defoamed, poured onto a glass plate so that the thickness after drying was 70 μm, and dried at 80 ° C. to produce an optical functional film 501.
 作製した膜の着色を目視で観察して以下の4段階評価をした。 The color of the produced film was visually observed and evaluated according to the following 4 levels.
 膜の着色(外観)
 ◎:白色または無色で、着色は認められず
 ○:淡黄色で、着色はほとんどなし
 △:黄色~黄褐色で、わずかに着色が認められる
 ×:褐色~赤褐色で、明瞭に着色が認められる。
Film coloring (appearance)
A: White or colorless, no coloration is observed. B: Light yellow, almost no coloration. Δ: Yellow to yellowish brown, slightly colored. ×: Brown to reddish brown, clearly colored.
 (実施例5-2~5-3)
 本発明化合物(L-62)を下記表5に示すような化合物に変更したこと以外は、実施例5-1と同様にして光学機能性膜502~503を作製した。
(Examples 5-2 to 5-3)
Optical functional films 502 to 503 were produced in the same manner as in Example 5-1, except that the compound of the present invention (L-62) was changed to the compounds shown in Table 5 below.
 (比較例5-1~5-2)
 本発明化合物(L-62)の代わりに比較化合物5を用いた、またはブランクにしたこと以外は、実施例5-1と同様にして光学機能性膜504~505を作製した。
(Comparative Examples 5-1 and 5-2)
Optical functional films 504 to 505 were produced in the same manner as in Example 5-1, except that the comparative compound 5 was used instead of the compound (L-62) of the present invention or a blank was used.
 比較化合物5:トリエチルアミン Comparative compound 5: Triethylamine
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 上記の結果より、酸化チタン+配位子+PVAの構成で、配位子が酸化チタンと強い相互作用をすることにより(ナノ粒子と配位子の強い相互作用を利用し)、PVAへの悪影響を抑制することができる、ということが示唆される。 From the above results, in the structure of titanium oxide + ligand + PVA, the ligand has a strong interaction with titanium oxide (using the strong interaction between the nanoparticles and the ligand), which has an adverse effect on PVA. It is suggested that can be suppressed.
 なお、本出願は、2015年3月23日に出願された日本国特許出願第2015-059048号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2015-059048 filed on Mar. 23, 2015, the disclosure of which is incorporated by reference in its entirety.

Claims (8)

  1.  無機ナノ粒子と;
     前記無機ナノ粒子に吸着する、少なくとも一種の吸着基を有する配位子と
    を含み、
     前記配位子が、非イオン性有機化合物またはオキシド化合物であり、
     前記吸着基が、中心原子が硫黄原子もしくはリン原子であるオキソ酸の残基またはN-オキシド基である化合物を含む、組成物。
    With inorganic nanoparticles;
    A ligand having at least one adsorbing group adsorbed on the inorganic nanoparticles,
    The ligand is a nonionic organic compound or an oxide compound;
    A composition comprising a compound in which the adsorptive group is a residue of an oxo acid whose central atom is a sulfur atom or a phosphorus atom or an N-oxide group.
  2.  前記配位子が、少なくとも二つの吸着基を有する、請求項1に記載の組成物。 The composition according to claim 1, wherein the ligand has at least two adsorbing groups.
  3.  前記吸着基が、下記構造:
    Figure JPOXMLDOC01-appb-C000001
     
     上記構造中、
     Rは、それぞれ独立して、水素原子または一価の有機基であり、
     *は、結合点である、
    からなる群から選択される少なくとも一種を有する、請求項1または2に記載の組成物。
    The adsorbing group has the following structure:
    Figure JPOXMLDOC01-appb-C000001

    In the above structure,
    Each R is independently a hydrogen atom or a monovalent organic group;
    * Is the point of attachment,
    The composition of Claim 1 or 2 which has at least 1 type selected from the group which consists of.
  4.  前記一価の有機基が、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、または、置換もしくは無置換のヘテロアリール基である、請求項3に記載の組成物。 The composition according to claim 3, wherein the monovalent organic group is a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  5.  前記配位子が、置換または無置換のアルキル基、置換または無置換のアルコキシ基、置換または無置換のアリール基、置換または無置換のアルキルチオ基、置換または無置換のアルコキシカルボニル基、および、置換または無置換のヘテロアリール基からなる群から選択される少なくとも一種の基、または、当該少なくとも一種の基が互いに結合している構造を有する、請求項1~4のいずれか1項に記載の組成物。 The ligand is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkylthio group, a substituted or unsubstituted alkoxycarbonyl group, and a substituted The composition according to any one of claims 1 to 4, wherein the composition has at least one group selected from the group consisting of unsubstituted heteroaryl groups, or a structure in which the at least one group is bonded to each other. object.
  6.  前記配位子が、前記吸着基を含有する構成単位を少なくとも一つ有するポリマーである、請求項1~5のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 5, wherein the ligand is a polymer having at least one structural unit containing the adsorptive group.
  7.  前記請求項1~6のいずれか1項に記載の組成物とバインダ樹脂とを含有する光学機能性膜。 An optical functional film comprising the composition according to any one of claims 1 to 6 and a binder resin.
  8.  酸化防止剤を含む、請求項7に記載の光学機能性膜。 The optical functional film according to claim 7, comprising an antioxidant.
PCT/JP2015/081515 2015-03-23 2015-11-09 Composition and optical functional film including same WO2016151933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017507331A JP6729554B2 (en) 2015-03-23 2015-11-09 Composition and optically functional film containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015059048 2015-03-23
JP2015-059048 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016151933A1 true WO2016151933A1 (en) 2016-09-29

Family

ID=56977187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081515 WO2016151933A1 (en) 2015-03-23 2015-11-09 Composition and optical functional film including same

Country Status (2)

Country Link
JP (1) JP6729554B2 (en)
WO (1) WO2016151933A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117141A1 (en) * 2016-12-22 2018-06-28 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
WO2018235948A1 (en) * 2017-06-23 2018-12-27 住友化学株式会社 Composition, film, laminated structure, light-emitting device, display, and method for producing composition
WO2019022217A1 (en) * 2017-07-27 2019-01-31 Nsマテリアルズ株式会社 Quantum dot, wavelength conversion member using quantum dot, illumination member, backlight device, display device, and method for manufacturing quantum dot
JP2019026778A (en) * 2017-08-01 2019-02-21 Dic株式会社 Ink composition and method for producing the same, photoconversion layer and color filter
JP2019108410A (en) * 2017-12-15 2019-07-04 東洋インキScホールディングス株式会社 Semiconductor nanoparticle, dispersion including the particle, semiconductor layer, production method of laminate, and electroluminescence element
WO2019150824A1 (en) * 2018-01-30 2019-08-08 住友化学株式会社 Composition, film, laminate structure, light-emitting device, and display
JP2019131655A (en) * 2018-01-30 2019-08-08 住友化学株式会社 Composition, film, laminate structure, light-emitting device and display
WO2019186730A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186729A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
JPWO2019074083A1 (en) * 2017-10-12 2019-11-14 Nsマテリアルズ株式会社 Quantum dot manufacturing method
WO2020090431A1 (en) * 2018-10-31 2020-05-07 住友化学株式会社 Curable composition, film, laminate, and display device
JP2020531907A (en) * 2017-08-29 2020-11-05 ナージン テクノロジー コーポレーション リミテッドNajing Technology Corporation Limited Quantum dot composition, quantum dot light emitting material, manufacturing method thereof, and light emitting device containing the same.
CN112745826A (en) * 2019-10-30 2021-05-04 Tcl集团股份有限公司 Metal oxide nanoparticles, method for producing same and use thereof
CN113122230A (en) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 Quantum dot composite material and quantum dot light-emitting diode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103908A1 (en) * 2005-03-28 2006-10-05 Idemitsu Kosan Co., Ltd. Organic ligands for semiconductor nanocrystals
JP2008544936A (en) * 2005-05-12 2008-12-11 ジョージア テック リサーチ コーポレイション Coated metal oxide nanoparticles and method for producing the same
JP2011006412A (en) * 2002-08-15 2011-01-13 Moungi G Bawendi Stabilized semiconductor nanocrystal
US20110039105A1 (en) * 2009-08-13 2011-02-17 Zimmerman Paul A Non-aggregating nanoparticles and the use thereof
JP2011514879A (en) * 2007-09-12 2011-05-12 キユーデイー・ビジヨン・インコーポレーテツド Functionalized nanoparticles and methods
WO2013093631A2 (en) * 2011-12-22 2013-06-27 Nanoco Technologies, Inc. Surface modified nanoparticles
US9102576B1 (en) * 2012-05-31 2015-08-11 The United States Of America As Represented By The Secretary Of The Air Force Particulate-based reactive nanocomposites and methods of making and using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006412A (en) * 2002-08-15 2011-01-13 Moungi G Bawendi Stabilized semiconductor nanocrystal
WO2006103908A1 (en) * 2005-03-28 2006-10-05 Idemitsu Kosan Co., Ltd. Organic ligands for semiconductor nanocrystals
JP2008544936A (en) * 2005-05-12 2008-12-11 ジョージア テック リサーチ コーポレイション Coated metal oxide nanoparticles and method for producing the same
JP2011514879A (en) * 2007-09-12 2011-05-12 キユーデイー・ビジヨン・インコーポレーテツド Functionalized nanoparticles and methods
US20110039105A1 (en) * 2009-08-13 2011-02-17 Zimmerman Paul A Non-aggregating nanoparticles and the use thereof
WO2013093631A2 (en) * 2011-12-22 2013-06-27 Nanoco Technologies, Inc. Surface modified nanoparticles
US9102576B1 (en) * 2012-05-31 2015-08-11 The United States Of America As Represented By The Secretary Of The Air Force Particulate-based reactive nanocomposites and methods of making and using the same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114441B (en) * 2016-12-22 2022-09-13 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
JPWO2018117141A1 (en) * 2016-12-22 2019-10-31 住友化学株式会社 Composition, film, laminated structure, light emitting device, and display
CN110114441A (en) * 2016-12-22 2019-08-09 住友化学株式会社 Composition, film, laminate structure, light emitting device and display
WO2018117141A1 (en) * 2016-12-22 2018-06-28 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
WO2018235948A1 (en) * 2017-06-23 2018-12-27 住友化学株式会社 Composition, film, laminated structure, light-emitting device, display, and method for producing composition
JPWO2018235948A1 (en) * 2017-06-23 2020-05-21 住友化学株式会社 Composition, film, laminated structure, light emitting device, display, and method for producing composition
JP7096818B2 (en) 2017-06-23 2022-07-06 住友化学株式会社 Composition, film, laminated structure, light emitting device, display, and method for manufacturing the composition.
CN110945105A (en) * 2017-07-27 2020-03-31 Ns材料株式会社 Quantum dot, wavelength conversion member using quantum dot, illumination member, backlight device, display device, and method for manufacturing quantum dot
US11257981B2 (en) 2017-07-27 2022-02-22 Ns Materials Inc. Quantum dot and wavelength converting member, lighting member, back light unit, and display device using quantum dot, and method of producing quantum dot
JPWO2019022217A1 (en) * 2017-07-27 2020-03-19 Nsマテリアルズ株式会社 Quantum dot, wavelength conversion member using quantum dot, lighting member, backlight device, display device, and method for manufacturing quantum dot
WO2019022217A1 (en) * 2017-07-27 2019-01-31 Nsマテリアルズ株式会社 Quantum dot, wavelength conversion member using quantum dot, illumination member, backlight device, display device, and method for manufacturing quantum dot
JP2019026778A (en) * 2017-08-01 2019-02-21 Dic株式会社 Ink composition and method for producing the same, photoconversion layer and color filter
JP7013705B2 (en) 2017-08-01 2022-02-01 Dic株式会社 Ink composition and its manufacturing method, light conversion layer and color filter
JP7232817B2 (en) 2017-08-29 2023-03-03 ナージン テクノロジー コーポレーション リミテッド Quantum dot composition, quantum dot light emitting material, manufacturing method thereof, and light emitting device containing same
JP2020531907A (en) * 2017-08-29 2020-11-05 ナージン テクノロジー コーポレーション リミテッドNajing Technology Corporation Limited Quantum dot composition, quantum dot light emitting material, manufacturing method thereof, and light emitting device containing the same.
US11845890B2 (en) 2017-10-12 2023-12-19 Ns Materials Inc. Quantum dot and method of producing the same; and wavelength converting member, lighting member, back light unit, and display device using quantum dot
JPWO2019074083A1 (en) * 2017-10-12 2019-11-14 Nsマテリアルズ株式会社 Quantum dot manufacturing method
US11124703B2 (en) 2017-10-12 2021-09-21 Ns Materials Inc. Quantum dot and method of producing the same; and wavelength converting member, lighting member, back light unit, and display device using quantum dot
JP2019108410A (en) * 2017-12-15 2019-07-04 東洋インキScホールディングス株式会社 Semiconductor nanoparticle, dispersion including the particle, semiconductor layer, production method of laminate, and electroluminescence element
JP7003621B2 (en) 2017-12-15 2022-02-21 東洋インキScホールディングス株式会社 Semiconductor nanoparticles, dispersions containing the particles, semiconductor layers, methods for manufacturing laminates, and electroluminescent devices.
JP2019131656A (en) * 2018-01-30 2019-08-08 住友化学株式会社 Composition, film, laminate structure, light-emitting device and display
JP2019131655A (en) * 2018-01-30 2019-08-08 住友化学株式会社 Composition, film, laminate structure, light-emitting device and display
WO2019150824A1 (en) * 2018-01-30 2019-08-08 住友化学株式会社 Composition, film, laminate structure, light-emitting device, and display
CN111670240A (en) * 2018-01-30 2020-09-15 住友化学株式会社 Composition, film, laminate structure, light-emitting device, and display
CN111670240B (en) * 2018-01-30 2023-06-09 住友化学株式会社 Composition, film, laminate structure, light emitting device, and display
WO2019150823A1 (en) * 2018-01-30 2019-08-08 住友化学株式会社 Composition, film, laminate structure, light-emitting device, and display
WO2019186730A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186729A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2020090431A1 (en) * 2018-10-31 2020-05-07 住友化学株式会社 Curable composition, film, laminate, and display device
US11708476B2 (en) 2018-10-31 2023-07-25 Sumitomo Chemical Company, Limited Curable composition, film, laminated body, and display apparatus
CN112745826B (en) * 2019-10-30 2022-10-11 Tcl科技集团股份有限公司 Metal oxide nanoparticles, method for producing same and use thereof
CN112745826A (en) * 2019-10-30 2021-05-04 Tcl集团股份有限公司 Metal oxide nanoparticles, method for producing same and use thereof
CN113122230B (en) * 2019-12-31 2022-12-06 Tcl科技集团股份有限公司 Quantum dot composite material and quantum dot light-emitting diode
CN113122230A (en) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 Quantum dot composite material and quantum dot light-emitting diode

Also Published As

Publication number Publication date
JPWO2016151933A1 (en) 2018-01-11
JP6729554B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6729554B2 (en) Composition and optically functional film containing the same
CN107922832B (en) Perfluoroether stabilized quantum dots
Surana et al. Synthesis, characterization and application of CdSe quantum dots
KR101916288B1 (en) Surface-Modified Nanoparticles
TW201727961A (en) Quantum dot encapsulation techniques
JP6589318B2 (en) Color gamut expansion film
EP3126472A1 (en) Composite nanoparticles including a thioether ligand
EP3083879B1 (en) Composite nanoparticles including a malonic acid derivative
Imam et al. Environmentally friendly Zn0. 75Cd0. 25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra
EP3083878B1 (en) Composite nanoparticles including a phthalic acid derivative
Wang et al. Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and applications in light-emitting diodes and bioimaging
JP2023183420A (en) Molded article and nanostructured article
KR20110083718A (en) Fluorescent nanoparticles, method for preparing same, and application thereof in biological marking
CN113646403A (en) Method for chemical synthesis of inorganic nanostructures using molten salts
Mumin et al. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties
CN113366083A (en) Small molecule passivation of quantum dots to improve quantum yield
Zhang et al. Facile synthesis of CuInS 2/ZnS quantum dots with highly near-infrared photoluminescence via phosphor-free process
Cheng et al. Aqueous synthesis of high-fluorescence ZnTe quantum dots
Madhu et al. Synthesis and investigation of photonic properties of surface modified ZnO nanoparticles with imine linked receptor as coupling agent-for application in LEDs
CN113330095A (en) Thin shell quantum dots for enhanced blue light absorption
JP2017025220A (en) Oxidation preventive ligand-containing semiconductor nanoparticle and dispersion liquid comprising the same, and method for producing oxidation preventive ligand-containing semiconductor nanoparticle
Liao et al. Highly enhanced photoluminescence of AgInS2/ZnS quantum dots by hot-injection method
WO2022021655A1 (en) Quantum dot and manufacturing method therefor
JP2015151456A (en) Light-emitting particle, production method of light-emitting particle, optical member, method for manufacturing optical member, and optical device
Fu et al. Fabrication of transparent and photoluminescent poly (vinyl butyral)/carbon dots nanocomposite thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886485

Country of ref document: EP

Kind code of ref document: A1