WO2016151640A1 - Learning system, method, and program - Google Patents

Learning system, method, and program Download PDF

Info

Publication number
WO2016151640A1
WO2016151640A1 PCT/JP2015/001745 JP2015001745W WO2016151640A1 WO 2016151640 A1 WO2016151640 A1 WO 2016151640A1 JP 2015001745 W JP2015001745 W JP 2015001745W WO 2016151640 A1 WO2016151640 A1 WO 2016151640A1
Authority
WO
WIPO (PCT)
Prior art keywords
actual value
data
reservations
learning
time
Prior art date
Application number
PCT/JP2015/001745
Other languages
French (fr)
Japanese (ja)
Inventor
紗和子 見上
洋介 本橋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2015/001745 priority Critical patent/WO2016151640A1/en
Priority to JP2017507117A priority patent/JPWO2016151640A1/en
Publication of WO2016151640A1 publication Critical patent/WO2016151640A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • the present invention relates to a learning system, a learning method, and a learning program that generate a learning model, and more particularly to a learning system, a learning method, and a learning program that generate a learning model used for predicting the number of customers in a facility.
  • Patent Document 1 describes a method for calculating the expected number of visitors to the venue. In the method described in Patent Document 1, a number obtained by adding the number of ticket sales to the number of visitors is set as the expected number of entrances.
  • Patent Document 2 describes a system for predicting the number of transportation reservations.
  • the system described in Patent Document 2 determines an optimum reservation pattern from one or more reservation patterns stored in a reservation pattern database based on the accumulated result of reservation status. Then, the system calculates the final reservation number of the transportation facility based on the function of the reservation pattern and the stored reservation situation.
  • the system described in Patent Document 2 calculates the coefficient of the curve function of the reservation pattern by multiple regression analysis or the like based on the past reservation results.
  • the number of customers can be accurately predicted at various facilities such as movie theaters. For example, if the number of customers can be accurately predicted, convenience such as easy determination of the amount of products (for example, snacks such as popcorn in the case of movie theaters) prepared for sale to customers in the facility can be obtained.
  • convenience such as easy determination of the amount of products (for example, snacks such as popcorn in the case of movie theaters) prepared for sale to customers in the facility can be obtained.
  • an object of the present invention is to provide a learning system, a learning method, and a learning program that can solve the technical problem of enabling generation of a learning model with high customer number prediction accuracy.
  • the learning system includes a data storage means for storing a set of data in which the actual value of the number of customers of the facility is associated with information related to the reservation for the facility prior to the time corresponding to the actual value;
  • a learning model for predicting the number of customers in a facility comprising learning model generation means for generating a learning model using information specified from reservation information as an explanatory variable using a set of data as learning data It is characterized by.
  • the learning method according to the present invention comprises a learning system comprising a data storage means for storing a set of data in which the actual value of the number of customers in the facility is associated with the information related to the reservation for the facility prior to the time corresponding to the actual value.
  • the learning program according to the present invention is a computer provided with data storage means for storing a set of data in which the actual value of the number of customers of the facility is associated with the information related to the reservation for the facility before the time corresponding to the actual value.
  • a learning program installed on a computer which is a learning model for predicting the number of customers of a facility at the time of prediction, and that uses information specified from information related to reservation as an explanatory variable, A learning model generation process for generating a set using learning data is executed.
  • the technical means of the present invention can generate a learning model with high customer number prediction accuracy.
  • FIG. FIG. 1 is a block diagram illustrating a configuration example of a learning system according to the present invention.
  • the learning system 1 of the present invention includes, for example, a data storage unit 2, a learning unit 3, and a prediction unit 4.
  • the data storage unit 2 stores a set of data in which the actual value of the number of customers of the facility (in this example, a movie theater) is associated with information related to the reservation for the movie theater before the time corresponding to the actual value.
  • the time point corresponding to the actual value means the time point when the actual value is measured, and can also be referred to as the actual value measurement time point.
  • the time point corresponding to the actual value is the day when the actual value is measured, and is hereinafter referred to as the actual value measurement date.
  • FIG. 2 is a schematic diagram showing an example of a set of data stored in the data storage unit 2.
  • the unit of time for measuring the actual value is “1 day”. Therefore, in the example shown in FIG. 2, the actual value of the number of customers in the movie theater is associated with the information related to the reservation for the movie theater before the actual value measurement date every day. However, not only information related to the reservation is associated with the actual value, but also other information may be associated with the actual value in addition to the information regarding the reservation.
  • FIG. 2 exemplifies data in which the actual value of the number of customers, the number of movie theater reservations 9 days before the actual value measurement date, the day of the week of the actual value measurement date, and the like are associated with each other every day. Each day corresponds to the actual value measurement date.
  • the number of movie theater reservations 9 days before the actual value measurement date is the number of people who have made reservations to use the movie theater 9 days before the actual value measurement date. For example, the number of reservations 9 days ago associated with the actual value on December 24 is 1000 (see FIG. 2). This means that there were 1000 people who made a reservation to use the movie theater on December 24th on December 15th (9 days before December 24th). The same applies to other date data.
  • a reservation may be made without specifying a use date.
  • the number of persons who have reserved the use of the facility without specifying the use date nine days before the actual value measurement date may be the number of reservations nine days before the actual value measurement date. This also applies to each embodiment described later.
  • the number of reservations 9 days before the actual value measurement date is shown. “9 days ago” is an example, and there is no particular limitation on when the number of reservation users before the actual value measurement date is stored in the data storage unit 2.
  • information on the day of the week of the actual value measurement date is also associated.
  • forecast values such as the weather and temperature of a performance value measurement day, may be matched with a performance value.
  • information other than information related to the reservation may be associated with the actual value.
  • the day of the week is illustrated, but what information is associated with the actual value as information other than information related to the reservation is not particularly limited.
  • an administrator of the learning system 1 prepares data in which the actual number of customers, the number of reservations 9 days ago, the day of the week, and the like are associated with each other.
  • a set of data is stored in the data storage unit 2.
  • the administrator stores a set of data in the data storage unit 2
  • an aspect in which the set of data is stored in the data storage unit 2 will be described. Is not particularly limited.
  • the learning unit 3 uses a set of data stored in the data storage unit 2 (see FIG. 2) as learning data to generate a learning model for predicting the number of customers in the movie theater.
  • the learning model is used to predict the number of customers in the movie theater at the prediction target time point (in this example, the prediction target date).
  • each future day may be set as the prediction target day.
  • the learning unit 3 generates a learning model having information specified from information related to reservation as an explanatory variable.
  • the information specified from the information related to the reservation may be information related to the reservation itself, or may be information obtained by performing an operation on the information related to the reservation. In the present embodiment, it is assumed that the number of reservations 9 days before the prediction target date is given when the number of customers is predicted.
  • the learning part 3 shall generate
  • the explanatory variables used in the learning model are not limited to the number of reservations 9 days before the prediction target date, and other items are also used as explanatory variables.
  • learning data including day information is used as shown in FIG. 2, the day of the week is also used as an explanatory variable in the learning model.
  • variable representing data used as a parameter in prediction is called an “explanatory variable”, and a variable representing a prediction target is called an “object variable”.
  • the method by which the learning unit 3 generates the learning model is not particularly limited.
  • the learning unit 3 may generate a learning model by regression analysis using learning data.
  • the learning unit 3 may generate a learning model using another machine learning algorithm. This also applies to each embodiment described later.
  • the learning model may be, for example, a prediction formula for calculating the value of the objective variable.
  • a prediction formula for calculating the value of the objective variable may be, for example, a prediction formula represented by the following formula (1).
  • the format of the learning model is not limited to the format of the prediction formula.
  • y is an objective variable representing a predicted value.
  • y represents the predicted value of the number of customers in the movie theater on the prediction target date.
  • x 1 to x n are explanatory variables.
  • a 1 ⁇ a n are coefficients of the explanatory variables.
  • b is a constant term. The value of a 1 ⁇ a n and b are based on training data, as determined by the learning unit 3.
  • each day is a prediction target day
  • the value of each explanatory variable used for prediction of the number of customers in the movie theater on the prediction target day is input to the prediction unit 4 from the administrator for each day.
  • the number of movie theater reservations, the day of the week, etc. 9 days before the prediction target date are input for each prediction target date.
  • the number of movie theater reservations 9 days before the prediction target date is the number of people who have made reservations to use the movie theater on the prediction target date 9 days before the prediction target date.
  • the number of persons who have reserved the use of the facility without specifying the use date 9 days before the prediction target day may be the number of reservations 9 days before the prediction target date. This also applies to each embodiment described later.
  • the prediction unit 4 calculates the predicted value y of the number of customers in the movie theater on the prediction target day by applying the value of each input explanatory variable to the learning model.
  • the prediction unit 4 sets values for x 1 to x n in the prediction expression according to the value of the input explanatory variable. Is used to calculate the predicted value y.
  • an operation in which the prediction unit 4 substitutes values for x 1 to x n in the prediction formula according to the value of the explanatory variable will be described.
  • Continuous variables take numerical values. For example, the number of reservations 9 days before the prediction target date is a continuous variable.
  • Categorical variables take items as values. For example, the day of the week is a categorical variable.
  • One continuous variable corresponds to one of the explanatory variables x 1 to x n in the prediction formula.
  • the prediction unit 4 assigns the value (numerical value) of the explanatory variable corresponding to the continuous variable to the corresponding explanatory variable in the prediction formula. For example, it is assumed that among explanatory variables x 1 to x n in the prediction formula, x 2 corresponds to the number of reservations 9 days ago. In that case, the prediction unit 4 substitutes the number of subscriber 9 days prior to the prediction target date x 2.
  • Each value of one categorical variable corresponds to one of the explanatory variables x 1 to x n in the prediction formula.
  • each possible value of the categorical variable “day of the week” corresponds to one of the explanatory variables x 1 to x n in the prediction formula, respectively.
  • the prediction unit 4 substitutes one of two values (in this example, 0 and 1) for each explanatory variable in the prediction formula corresponding to each value of the categorical variable. For example, it is assumed that the value of “day of the week” that has been input is “Monday”. In this case, the prediction unit 4 substitutes 1 for the explanatory variable in the prediction formula corresponding to Monday, and substitutes 0 for each explanatory variable in the prediction formula corresponding to each day of the week other than Monday.
  • the prediction unit 4 substitutes values for x 1 to x n in the prediction formula in accordance with the value of the given explanatory variable, thereby obtaining the predicted value y of the number of customers of the movie theater on the prediction target day. calculate.
  • the learning unit 3 and the prediction unit 4 are realized by a CPU of a computer that operates according to a learning program, for example.
  • the CPU reads a learning program from a program recording medium such as a program storage device (not shown in FIG. 1) of the computer, and operates as the learning unit 3 and the prediction unit 4 according to the learning program.
  • the learning unit 3 and the prediction unit 4 may be realized by different hardware.
  • the learning system 1 may have a configuration in which two or more physically separated devices are connected by wire or wirelessly.
  • the prediction unit 4 may be provided separately as a predictor outside the learning system 1.
  • the learning system 1 may include the data storage unit 2 and the learning unit 3 without including the prediction unit 4.
  • the data storage unit 2 and the learning unit 3 shown in FIG. 3 are the same as the data storage unit 2 and the learning unit 3 shown in FIG.
  • FIG. 4 is a flowchart showing an example of processing progress in which the learning system 1 generates a learning model.
  • the learning unit 3 reads a set of data (see FIG. 2) stored in advance in the data storage unit 2 (step S1). Subsequently, the learning unit 3 uses the set of data as learning data to generate a learning model in which the number of reservations 9 days before the prediction target date is an explanatory variable (step S2). Note that the learning unit 3 may generate a learning model that uses not only the number of reservations 9 days before the prediction target date but also other items (for example, day of the week) as explanatory variables. As already described, the method by which the learning unit 3 generates the learning model is not particularly limited.
  • the prediction unit 4 applies the value to the learning model, so Calculate the predicted number of customers. Since the operation of the prediction unit 4 has already been described by taking as an example the case where the learning model is a prediction equation, description thereof is omitted here.
  • the data stored in the data storage unit 2 and the explanatory variables used in the learning model are different from those in the first embodiment, but a learning model is generated.
  • the progress of the process to be performed can be represented by the flowchart shown in FIG. Accordingly, in each of the embodiments described later and modifications of each embodiment, the flowchart is not shown.
  • the learning unit 3 generates a learning model that uses information related to reservation (in the present embodiment, the number of reservation persons a certain period before the prediction target date) as an explanatory variable. Therefore, the learning system 1 can generate a learning model that can accurately predict the number of customers.
  • the data storage unit 2 may store a set of data in which the actual number of customers in the movie theater is associated with the number of reservations for each attribute of the reservations.
  • FIG. 5 is a schematic diagram illustrating an example of a set of data stored in the data storage unit 2 according to the modification of the first embodiment.
  • the attributes of the reservation person are classified into “general”, “student”, and “infant”.
  • the actual value of the number of customers is associated with the number of reservations of each attribute before a certain period of time on the actual value measurement date (9 days before in the example shown in FIG. 5).
  • the actual value on December 24 corresponds to the number of reservations corresponding to “general” 9 days before the actual value measurement date (December 15) and “student” 9 days before the actual value measurement date.
  • the number of reservations and the number of reservations corresponding to “infant” 9 days before the actual value measurement date are associated with each other.
  • FIG. 5 for ease of explanation, only three types of reservation person attributes are shown. However, more types of reservation person attributes are used in accordance with the types of tickets reserved by the reservation person. May be classified. For example, instead of “student”, more detailed attributes such as “high school student / university student” and “elementary school student / junior high school student” may be used.
  • FIG. 5 illustrates the case where the day of week information is also associated with the actual value, as in the case illustrated in FIG. 2.
  • the learning unit 3 generates a learning model using a set of data (see FIG. 5) stored in the data storage unit 2 as learning data.
  • the learning unit 3 matches the learning data (see FIG. 2) with the number of reservations corresponding to “general” 9 days before the prediction date, the number of reservations corresponding to “student” 9 days before the prediction date, A learning model is generated in which the number of reservations corresponding to “infant” 9 days before the prediction target date is an explanatory variable. Further, when learning data including day information is used as shown in FIG. 5, the day of the week is also used as an explanatory variable in the learning model.
  • the prediction unit 4 includes the number of reservations corresponding to “general” 9 days before the prediction date, the number of reservations corresponding to “student” 9 days before the prediction date, and the “infant” ”And information such as the day of the week to be predicted are input.
  • the prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
  • the number of predictors before a certain period before the prediction target date is not set as one explanatory variable, but is divided into different explanatory variables according to attributes. Therefore, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
  • the data storage unit 2 stores data similar to that in the first modification.
  • the data storage unit 2 stores, for example, a set of data illustrated in FIG.
  • the learning unit 3 generates a learning model using a set of data stored in the data storage unit 2 (see FIG. 5) as learning data. However, the learning unit 3 uses the number of reservations of each attribute 9 days before the actual value measurement date to measure the actual value for the sum of the number of reservations of each attribute 9 days before the actual value measurement date. The ratio of the number of reservations of a specific attribute 9 days before the day is calculated. Here, it is assumed that the specific attribute is “general”. For example, regarding the number of reservations of each attribute associated with the actual value on December 24, the learning unit 3 sets “700” for “general” and “250” for “student”. The ratio of the “general” number of reservations “700” to the sum of the number of reservations “50” (see FIG. 5) of “infant” is calculated.
  • the learning unit 3 performs the same calculation with respect to data of other actual value measurement dates.
  • the learning unit 3 uses the above-mentioned ratio obtained for each actual value measurement date, the day of the week of each actual value measurement date, and the actual value, each attribute before a prediction target day (9 days in this example).
  • a learning model is generated in which the ratio of the number of reservations of a specific attribute (“general” in this example) to the sum of the number of reservations is an explanatory variable. Further, when learning data including day information is used as shown in FIG. 5, the day of the week is also used as an explanatory variable in the learning model.
  • the prediction unit 4 includes information such as the ratio of the number of “general” reservations 9 days before the prediction target date to the sum of the number of reservations of each attribute 9 days before the prediction target date, and the day of the week for the prediction target date. Entered.
  • the prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
  • the ratio of the number of reservations with a specific attribute to the total number of reservations may be particularly effective in predicting the number of customers.
  • the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
  • the actual value used as learning data may be the number of specific customers (for example, the number of customers who purchased the same day ticket without making a reservation). For example, it is assumed that there is a high correlation between the number of customers who purchased the same day ticket without making a reservation and the ratio of the number of reservations with a specific attribute to the total number of reservations. In such a case, the second modified example is particularly effective.
  • the learning unit 3 may generate a learning model for each admission mode of a customer, such as a learning model for predicting the number of customers who purchased the same day ticket without making a reservation.
  • the prediction part 4 may calculate the predicted value of the number of customers of each entrance aspect for every learning model, and may calculate the total number of customers of a prediction object day as the sum total.
  • Embodiment 2 Similar to the learning system of the first embodiment, the learning system of the second embodiment of the present invention can be represented by the block diagram shown in FIG. Hereinafter, a second embodiment will be described with reference to FIG. Explanation of matters similar to those in the first embodiment will be omitted as appropriate.
  • FIG. 6 is a schematic diagram illustrating an example of a set of data stored in the data storage unit 2 in the second embodiment.
  • the actual value of the number of customers the number of reservations before a certain period of time on the actual value measurement date (in this embodiment, 9 days before as an example), and the actual value measurement for each day.
  • the day one year before the actual value measurement date is referred to as the same day of the previous year as the actual value measurement date.
  • a day one year before the prediction target date is referred to as the same day of the previous year as the prediction target date.
  • the number of reservations 9 days before the actual value measurement date is the number of persons who have made a reservation to use the movie theater 9 days before the actual value measurement date.
  • the number of reservations 9 days before the same day of the actual value measurement date is the number of reservations made on the same day of the actual value measurement day 9 days before the same day of the actual value measurement day. Is the number of
  • the number of reservations 9 days before the actual value measurement date and the number of reservations 9 days prior to the same day of the actual value measurement date are the number of persons who have simply reserved to use the facility without specifying the use date. May be.
  • the actual number of customers, the number of reservations 9 days before the actual value measurement date, the actual value of the number of customers the same day of the previous year of the actual value measurement date, the number of reservations 9 days before the same day of the actual value measurement date, and the day of the week For example, the manager prepares the associated data every day (every actual value measurement date), and stores a set of data for each day in the data storage unit 2.
  • the learning unit 3 uses a set of data stored in the data storage unit 2 (see FIG. 6) as learning data, and generates a learning model for predicting the number of customers in the movie theater.
  • the learning unit 3 calculates, for each day, the ratio of the number of reservations 9 days before the actual value measurement date to the number of reservations 9 days before the same day of the previous year on the actual value measurement date. For example, with respect to the data of the actual value measurement date “December 24” shown in FIG. 6, the number of reservations “700” 9 days before the same day of the actual value measurement date is 9 days before the actual value measurement date. The ratio of the number “1000” is calculated. That is, the learning unit 3 calculates 1000/700.
  • the learning unit 3 performs the same calculation with respect to data of other actual value measurement dates. And the learning part 3 produces
  • the learning model generation method is not particularly limited.
  • the learning unit 3 may generate a learning model by regression analysis, or may generate a learning model by another machine learning algorithm.
  • the prediction unit 4 includes the ratio of the number of reservations 9 days before the prediction target day to the number of reservations 9 days before the same day of the prediction target day, the actual value of the number of customers on the same day of the prediction target day, and the prediction date Information such as day of the week is input.
  • the prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
  • the learning unit 3 determines the ratio of the number of reservations before a certain period of the prediction target day to the number of reservations before the fixed period on the same day of the previous prediction date, A learning model using the actual number of customers as an explanatory variable is generated. Accordingly, when the situation of the actual value fluctuation is similar to the situation of the actual value fluctuation in the same period of the previous year, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved. .
  • the data storage unit 2 adds the number of reservations for a certain period before the actual value measurement date (in this example, 9 days in advance) for each attribute of the reservation to the actual value of the number of customers in the theater.
  • a set of data is stored in which the actual value of the number of customers on the same day of the previous year of the actual value measurement date and the number of reservations 9 days before the same day of the previous year of the actual value measurement date are associated.
  • FIG. 7 is a schematic diagram illustrating an example of data stored in the data storage unit 2 according to a modification of the second embodiment.
  • the attributes of the reservation person are classified into “general”, “student”, and “infant”.
  • the type of attribute of the reservation person is not limited to this example.
  • the type of the attribute of the reservation may be classified into more types according to the type of ticket reserved by the reservation.
  • the reservation person corresponding to “general” 9 days before the actual value measurement date (December 15)
  • the actual value of the number of customers on the actual value measurement date “December 24” includes the number of reservations “250” corresponding to “students” 9 days before the actual value measurement date
  • the actual value “700” of the number of customers corresponding to “student” is associated with the number of reservations “160” corresponding to “student” 9 days before the same day of the actual value measurement date (see FIG. 7).
  • the actual value of the number of customers on the actual value measurement date “December 24” includes the number of reservations “50” corresponding to “infant” 9 days before the actual value measurement date
  • the actual value “200” of the number of customers corresponding to “Infant” is associated with the number of reservations “40” corresponding to “Infant” 9 days before the same day of the previous year on the actual value measurement date (see FIG. 7). .
  • FIG. 7 illustrates the case where the day of week information is also associated with the actual value, as in the case shown in FIG.
  • an administrator prepares data in which various types of information are associated with the actual number of customers as described above, and a set of these data is stored in the data storage unit 2.
  • the learning unit 3 generates a learning model using a set of data stored in the data storage unit 2 (see FIG. 7) as learning data.
  • the learning unit 3 compares the number of reservations corresponding to “general” 9 days before the actual value measurement date with respect to the number of reservations corresponding to “general” 9 days before the same day of the previous year of the actual value measurement date. Calculate the percentage of. For example, the learning unit 3 calculates 700/500 for the data of the actual value measurement date “December 24” shown in FIG.
  • the learning unit 3 compares the number of reservations corresponding to “students” 9 days before the actual value measurement date with respect to the number of reservations corresponding to “students” 9 days prior to the same day of the previous year on the actual value measurement day. Calculate the percentage of. For example, the learning unit 3 calculates 250/160 for the data of the actual value measurement date “December 24” shown in FIG.
  • the learning unit 3 compares the number of reservations corresponding to “infant” 9 days before the actual value measurement date with respect to the number of reservations corresponding to “infant” 9 days before the same day of the previous year on the actual value measurement day. Calculate the percentage of. For example, the learning unit 3 calculates 50/40 for the data of the actual value measurement date “December 24” shown in FIG.
  • the learning unit 3 performs the same calculation for each attribute with respect to data of other actual value measurement dates.
  • the learning unit 3 calculates, for each attribute, the ratio of the number of reservations 9 days before the actual value measurement date to the number of reservations 9 days prior to the same day the previous year on the actual value measurement date,
  • the learning model is generated using the actual value, the day of each measurement value measurement day, the actual value, and the like.
  • the learning unit 3 generates a learning model having the following items as explanatory variables. (1) The ratio of the number of reservations corresponding to “general” nine days before the prediction target day to the number of reservations corresponding to “general” nine days before the same day of the prediction target date. (2) Actual value of the number of customers corresponding to “general” on the same day of the previous year as the prediction target date.
  • the learning unit 3 may generate a learning model in which the items (1) to (7) are used as explanatory variables, and other items are also used as explanatory variables.
  • the information such as (1) to (7) above is input to the prediction unit 4.
  • the prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
  • the ratio of the number of reservations in a certain period before the prediction target date to the number of reservations in the fixed period on the same day of the previous year on the prediction target date, and the actual value on the same day of the previous year on the prediction target day Individual explanatory variables. Therefore, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
  • FIG. 3 The learning system of the third embodiment of the present invention can be represented by the block diagram shown in FIG. 1 or FIG. 3, similarly to the learning system of the first embodiment.
  • a third embodiment will be described with reference to FIG. Explanation of matters similar to those in the first embodiment will be omitted as appropriate.
  • a plurality of predetermined periods are determined in advance as a predetermined period that goes back in the past from the actual value measurement date and the prediction target date.
  • the plurality of predetermined periods are defined as first to nth predetermined periods.
  • n is an integer of 2 or more.
  • the predetermined periods from the first to the n-th are determined so that the lengths are in descending order. That is, the first predetermined period is the longest and the nth predetermined period is the shortest.
  • the first predetermined period is 14 days
  • the second predetermined period is 12 days
  • the third predetermined period is 9 days
  • the types of the predetermined period are not limited to three types and may be two or more types.
  • the lengths of 14th, 12th, 9th, etc. are examples, and the length of each predetermined period may not be the illustrated length.
  • FIG. 8 is a schematic diagram illustrating an example of a set of data stored in the data storage unit 2 in the third embodiment.
  • the actual value of the number of customers, the number of reservations before the first predetermined period (14 days before) from the actual value measurement date, and the second predetermined period from the actual value measurement date for each day Exemplified data associating the previous (12 days ago) number of reservations, the number of reservations before the third predetermined period (9 days before) the actual value measurement date, the day of the week, etc. Yes. Each day corresponds to the actual value measurement date.
  • the number of reservations before the first predetermined period (14 days before) from the actual value measurement date is the number of persons who have made a reservation to use the movie theater on the actual value measurement date 14 days before the actual value measurement date. It is. Similarly, the number of reservations before the second predetermined period (12 days before) the actual value measurement date is reserved to use the movie theater on the actual value measurement date 12 days before the actual value measurement date. Number of people. Similarly, the number of reservations before the third predetermined period (9 days before) the actual value measurement date is reserved to use the movie theater on the actual value measurement date 9 days before the actual value measurement date. Number of people. Alternatively, the number of each reservation person may be the number of persons who have reserved the use of the facility without specifying the use date.
  • Data in which the actual number of customers, the number of reservations 14 days before the actual value measurement date, the number of reservations 12 days before the actual value measurement date, the number of reservations 9 days before the actual value measurement date, the day of the week, etc.
  • the administrator prepares every day (actual value measurement date), and stores a set of data for each day in the data storage unit 2.
  • the learning unit 3 uses the set of data stored in the data storage unit 2 (see FIG. 8) as learning data to generate a learning model for predicting the number of customers in the movie theater.
  • the learning data 3 includes, according to the learning data, the number of reservations before the first predetermined period (14 days before) from the prediction target date, the number of reservations before the second predetermined period (12 days before) from the prediction target date, and A learning model is generated in which the number of reservations before the third predetermined period (9 days ago) from the prediction target date, the day of the week of the prediction target date, and the like are explanatory variables.
  • the learning model generation method is not particularly limited.
  • the learning unit 3 may generate a learning model by regression analysis, or may generate a learning model by another machine learning algorithm.
  • the prediction unit 4 has information such as the number of reservations 14 days before the prediction target date, the number of reservations 12 days before the prediction target date, the number of reservations 9 days before the prediction target date, and the day of the prediction target day. Entered.
  • the prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
  • the learning unit 3 generates a learning model in which the number of reservations at a plurality of time points before the prediction target date is an explanatory variable. Therefore, more information is used as information used for predicting the number of customers on the prediction target day than in the first embodiment of the present invention. Therefore, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
  • the actual value of the number of customers, the number of reservations before the first predetermined period (14 days before) the actual value measurement date, and the second predetermined period from the actual value measurement date A set of data in which the number of previous reservations (12 days ago), the number of reservations before the third predetermined period (9 days before) the actual value measurement date, the day of the week, etc. of the actual measurement date It is stored in the storage unit 2.
  • a moving average value of the number of reservations at the time before each predetermined period based on the actual value measurement date may be used.
  • the manager may prepare data in which the day of the week or the like is associated with the value measurement date, and the data storage unit 2 may store the set of data.
  • the learning data 3 includes the moving average value of the number of reservations at the time before the first predetermined period (14 days before) the prediction target date and the second predetermined period before the prediction target date according to the learning data.
  • the moving average value of the number of reservations as of (12 days ago), the moving average value of the number of reservations as of the third predetermined period (9 days ago) from the prediction target date, the day of the prediction target day, and the like A learning model is generated as an explanatory variable.
  • the data storage unit 2 measures the actual value of the number of customers in the movie theater, the number of reservations and the actual value measurement before the first predetermined period (14 days before) the actual value measurement date for each attribute of the reservation.
  • a set of data in which the number of reservations before the second predetermined period of the day (12 days before) and the number of reservations before the third predetermined period (9 days before) of the actual value measurement date are stored is stored.
  • FIG. 9 is a schematic diagram illustrating an example of data stored in the data storage unit 2 in a modification of the third embodiment.
  • the attributes of the reservation person are classified into “general”, “student”, and “infant”.
  • the type of attribute of the reservation person is not limited to this example.
  • the type of the attribute of the reservation may be classified into more types according to the type of ticket reserved by the reservation.
  • the actual value of the number of customers on the actual value measurement date “December 24” includes the number of reservations “50” corresponding to “general” 14 days before the actual value measurement date, The number of reservations “180” corresponding to “general” 12 days before the value measurement date and the number of reservations “700” corresponding to “general” 9 days before the actual value measurement date are associated with each other.
  • the actual value of the number of customers on the actual value measurement date “December 24” includes the number of reservations “40” corresponding to “students” 14 days before the actual value measurement date,
  • the number of reservations “100” corresponding to “student” is associated with the number of reservations “250” corresponding to “student” 9 days before the actual value measurement date.
  • the actual value of the number of customers on the actual value measurement date “December 24” includes the number of reservations “10” corresponding to “infant” 14 days before the actual value measurement date,
  • the number of reservation persons “20” corresponding to “Infant” is associated with the number of reservation persons “50” corresponding to “Infant” 9 days before the actual value measurement date.
  • FIG. 9 illustrates the case where the day of week information is also associated with the actual value as in the case shown in FIG.
  • an administrator prepares data in which various types of information are associated with the actual value of the number of customers, and stores a set of these data in the data storage unit 2.
  • the learning unit 3 generates a learning model using a set of data stored in the data storage unit 2 (see FIG. 9) as learning data.
  • the learning data 3 includes the number of reservations corresponding to “general” before the first predetermined period (14 days ago) from the prediction target date and the second predetermined period (12 days before the prediction target date) in accordance with the learning data.
  • the number of reservations corresponding to “general” and the number of reservations corresponding to “general” before the third predetermined period (9 days) before the forecast date and “students” before the first predetermined period from the prediction date The number of reservations corresponding to, the number of reservations corresponding to “students” in the second predetermined period before the forecast date, the number of reservations corresponding to “students” in the third predetermined period before the prediction date.
  • the forecasting unit 4 sets the number of reservations corresponding to “general” before the first predetermined period (14 days before) from the prediction target date, and “general” before the second predetermined period (12 days before) from the prediction target date. Number of applicable reservations, number of reservations corresponding to “general” before the third predetermined period (9 days) before the target date of prediction, and reservations corresponding to “students” before the first predetermined period from the target date of prediction Number, number of reservations corresponding to “student” in the second predetermined period before the prediction target date, number of reservations corresponding to “student” in the third predetermined period before the prediction target date, first from the prediction target date.
  • the number of reservations corresponding to “infant” before the predetermined period of time, the number of reservations corresponding to “infant” before the second predetermined period from the prediction target date, and the number of reservation persons before the third predetermined period from the prediction target date Number of reservations that fall under the category “Infants” and forecast targets Information such as the day of the week is input.
  • the prediction unit 4
  • the number of reservations before each predetermined period from the prediction target date is an individual explanatory variable for each attribute. Therefore, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
  • the moving average value of the number of reservations at the time before each predetermined period based on the actual value measurement date May be used. For example, for each day, the actual value of the number of customers, the moving average value of the number of reservations corresponding to “general” at the time before the first predetermined period (14 days before) the actual value measurement date, the actual value measurement date The moving average value of the number of reservations corresponding to “general” at the time before the second predetermined period (12 days before), the “3” before the third predetermined period (9 days before) from the actual measurement date.
  • the moving average value of the number of reservations corresponding to “general”, the moving average value of the number of reservations corresponding to “students” as of the first predetermined period before the date of measurement of the actual value, and the date of measurement of the actual value Moving average value of the number of reservations corresponding to “students” as of 2 before the predetermined period, and movement of the number of reservations corresponding to “students” as of the 3rd period before the measurement date Average value, moving average value of the number of reservations corresponding to “infant” at the time before the first predetermined period from the actual value measurement date
  • the moving average value of the number of reservations corresponding to “Infants” at the time before the second predetermined period from the actual value measurement date, and “Infants” at the time before the third predetermined period from the actual value measurement date The administrator may prepare data in which the moving average value of the corresponding number of reservation users and the day of the week of the actual value measurement date are associated with each other, and the data storage unit 2 may store the set of data.
  • the learning data 3 is based on the learning data, the moving average value of the number of reservations corresponding to “general” at the time before the first predetermined period (14 days before) from the prediction target date, and the prediction target date.
  • Moving average value of the number of reservations corresponding to “general” at the time before the second predetermined period (12 days before), “general” at the time before the third predetermined period (9 days before) from the prediction target date The moving average value of the corresponding number of reservations, the moving average value of the number of reservations corresponding to “students” at the time before the first predetermined period from the prediction target date, the time before the second predetermined period from the prediction target date.
  • the moving average value of the number of reservations corresponding to “students” in Japan, the moving average value of the number of reservations corresponding to “students” as of the third predetermined period before the prediction target date, and the first from the prediction target date The moving average value of the number of reservations corresponding to “infant” at the time before the predetermined period of, the second place from the forecast
  • Embodiment 4 FIG.
  • the learning system of the third embodiment of the present invention can be represented by the block diagram shown in FIG. 1 or FIG. 3, similarly to the learning system of the first embodiment.
  • a fourth embodiment will be described with reference to FIG. Explanation of matters similar to those in the first embodiment will be omitted as appropriate.
  • a plurality of predetermined periods are determined in advance as predetermined periods that go back in the past from the actual value measurement date and the prediction target date.
  • the plurality of predetermined periods are defined as the first to nth predetermined periods. n is an integer of 2 or more.
  • the predetermined periods from the first to the n-th are determined so that the lengths are in descending order. That is, the first predetermined period is the longest and the nth predetermined period is the shortest.
  • the third predetermined period is 9 days
  • the types of the predetermined period are not limited to three types and may be two or more types.
  • the lengths of 14th, 12th, 9th, etc. are examples, and the length of each predetermined period may not be the illustrated length.
  • the data storage unit 2 of the fourth embodiment stores the same data set as the data storage unit 2 of the third embodiment.
  • the data storage unit 2 of the fourth embodiment stores a set of data illustrated in FIG. Since the data stored in the data storage unit 2 of the fourth embodiment is the same as the data stored in the data storage unit 2 of the third embodiment, detailed description thereof is omitted.
  • the learning unit 3 uses the set of data stored in the data storage unit 2 (see FIG. 8) as learning data to generate a learning model for predicting the number of customers in the movie theater.
  • the learning unit 3 calculates the actual value from the actual value measurement date for the number of reservations before the m ⁇ 1 predetermined period from the actual value measurement date when m is an integer from 2 to n.
  • the ratio of the number of reservations before the m-th predetermined period is calculated for each actual value measurement date.
  • the learning part 3 produces
  • the learning unit 3 sets the mth predetermined number from the prediction target date for the number of reservations before the m ⁇ 1th predetermined period from the prediction target date when m is an integer from 2 to n.
  • a learning model is generated in which the ratio of the number of reservations before the period is an explanatory variable, and the day of the week is also an explanatory variable in accordance with the learning data.
  • the learning unit 3 calculates the ratio of the number of reservations “300” 12 days before the actual value measurement date to the number of reservations “100” 14 days before the actual value measurement date (that is, 300/100). Further, the learning unit 3 calculates the ratio of the number of reservations “1000” 9 days before the actual value measurement date to the number of reservations “300” 12 days before the actual value measurement date (that is, 1000/300). The learning unit 3 performs the same calculation for other days.
  • the learning unit 3 generates a learning model using the ratios calculated for each day in this way and the actual values and days of the week included in the learning data.
  • the prediction unit 4 has a ratio of the number of reservations 12 days before the prediction target date to the number of reservations 14 days before the prediction target date, and 9 days before the prediction target date for the number of reservations 12 days before the prediction target date. Information such as the ratio of the number of reservations and the day of the week to be predicted is input. The prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
  • a learning model is generated in which the rate of change in the number of reservations in a period before the prediction target date is used as an explanatory variable. Therefore, the predicted value of the number of customers can be obtained with high accuracy using the learning model.
  • the data storage unit 2 stores the same set of data as the data storage unit 2 in the modification of the third embodiment.
  • the data storage unit 2 in the modification of the fourth embodiment stores a set of data illustrated in FIG. Since the data stored in the data storage unit 2 in the modification of the fourth embodiment is the same as the data stored in the data storage unit 2 in the modification of the third embodiment, detailed description thereof is omitted.
  • the learning unit 3 uses a set of data stored in the data storage unit 2 (see FIG. 9) as learning data to generate a learning model for predicting the number of customers in the movie theater.
  • the learning unit 3 calculates the actual value from the actual value measurement date for the number of reservations before the m ⁇ 1 predetermined period from the actual value measurement date when m is an integer from 2 to n.
  • the ratio of the number of reservations before the m-th predetermined period is calculated for each attribute of the reservations.
  • the learning part 3 calculates those ratios for every performance value measurement day.
  • the learning part 3 produces
  • the learning unit 3 predicts the number of reservation users for a predetermined period of the (m-1) th period before the prediction target date for each attribute of the reservation person, where m is an integer from 2 to n.
  • a learning model is generated in which the ratio of the number of reservations before the mth predetermined period from the target date is an explanatory variable. Further, in accordance with the learning model, days of the week and the like are also used as explanatory variables in the learning model.
  • n 3
  • the learning unit 3 calculates the above ratios when m is set to 2 and 3, respectively.
  • the learning unit 3 sets the reservation person who corresponds to the “infant” in the second predetermined period before the actual value measurement date for the number of reservation persons corresponding to the “infant” in the first predetermined period before the actual value measurement date. Calculate the percentage of numbers.
  • the learning unit 3 reserves a person who corresponds to the “infant” in the third predetermined period before the actual value measurement date for the number of reservation persons corresponding to the “infant” in the second predetermined period before the actual value measurement date. Calculate the percentage of numbers.
  • the learning unit 3 calculates these ratios for each actual value measurement date.
  • the learning unit 3 has a ratio of the number of reservations “180” corresponding to “general” 12 days before the actual value measurement date to the number of reservations “50” corresponding to “general” 14 days before the actual value measurement date (that is, , 180/50). Similarly, the learning unit 3 sets the number of reservation persons “100” corresponding to “students” 12 days before the actual value measurement date to the number of reservations “40” corresponding to “students” 14 days before the actual value measurement date. The ratio (ie 100/40) is calculated.
  • the learning unit 3 sets the number of reservation persons “20” corresponding to “toddlers” 12 days before the actual value measurement date to “10” reservation persons corresponding to “infant” 14 days before the actual value measurement date.
  • the ratio (ie 20/10) is calculated.
  • the learning unit 3 determines the ratio of the number of reservations “700” corresponding to “general” 9 days before the actual value measurement date to the number of reservations “180” corresponding to “general” 12 days before the actual value measurement date. (Ie 700/180) is calculated. Similarly, the learning unit 3 sets the number of reservations “250” corresponding to “students” 9 days before the actual value measurement date for the number of reservations “100” corresponding to “students” 12 days before the actual value measurement date. The ratio (ie 250/100) is calculated. Similarly, the learning unit 3 sets the number of reservation persons “50” corresponding to “Infant” 9 days before the actual value measurement date to the number “20 infants” corresponding to “Infant” 12 days before the actual value measurement date. The ratio (ie 50/20) is calculated.
  • the learning unit 3 performs the same calculation for other days.
  • the learning unit 3 generates a learning model by using the ratios calculated for each day in this way and the actual values and days of the week included in the learning data.
  • the learning unit 3 generates a learning model having the following items as explanatory variables.
  • B The ratio of the number of reservations corresponding to “students” before the second predetermined period from the prediction target date to the number of reservations corresponding to “students” before the first predetermined period from the prediction target date.
  • (C) The ratio of the number of reservation users corresponding to “infant” in the second predetermined period before the prediction target date to the number of reservation persons corresponding to “infant” in the first predetermined period before the prediction target date.
  • (D) Reservation corresponding to “general” in the third predetermined period (9 days ago) from the prediction target date for the number of reservations corresponding to “general” in the second predetermined period (12 days) before the prediction target date Percentage of people.
  • (E) The ratio of the number of reservations corresponding to “students” before the third predetermined period from the prediction target date to the number of reservations corresponding to “students” before the second predetermined period from the prediction target date.
  • the learning unit 3 may generate a learning model in which the items (a) to (g) are used as explanatory variables and other items are also used as explanatory variables.
  • the information such as (a) to (g) described above is input to the prediction unit 4.
  • the prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
  • the rate of change in the number of reservations in the period before the prediction target date is an individual explanatory variable for each attribute. Therefore, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
  • the target of prediction is that of various facilities that can be reserved such as amusement parks and theme parks. It may be the number of customers.
  • FIG. 10 is a schematic block diagram showing a configuration example of a computer according to each embodiment of the present invention.
  • the computer 1000 includes a CPU 1001, a main storage device 1002, an auxiliary storage device 1003, an interface 1004, and an input device 1006.
  • the learning system 1 of the present invention is implemented in a computer 1000.
  • the operation of the learning system 1 is stored in the auxiliary storage device 1003 in the form of a program.
  • the CPU 1001 reads out the program from the auxiliary storage device 1003, develops it in the main storage device 1002, and executes the above processing according to the program.
  • the auxiliary storage device 1003 is an example of a tangible medium that is not temporary.
  • Other examples of the non-temporary tangible medium include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory connected via the interface 1004.
  • this program is distributed to the computer 1000 via a communication line, the computer 1000 that has received the distribution may develop the program in the main storage device 1002 and execute the above processing.
  • the program may be for realizing a part of the above-described processing.
  • the program may be a differential program that realizes the above-described processing in combination with another program already stored in the auxiliary storage device 1003.
  • FIG. 11 is a block diagram showing an outline of the learning system of the present invention.
  • the learning system of the present invention includes data storage means 71 and learning model generation means 72.
  • the data storage means 71 (for example, the data storage unit 2) stores a set of data in which the actual value of the number of customers of the facility is associated with information related to the reservation for the facility before the time corresponding to the actual value.
  • the learning model generation means 72 (for example, the learning unit 3) is a learning model for predicting the number of customers of a facility at a prediction target time point, and uses a learning model having information specified from information related to reservation as an explanatory variable, Generate a set of data as learning data.
  • Such a configuration makes it possible to generate a learning model with high customer number prediction accuracy.
  • the data storage means which memorize
  • the data storage means stores a set of data in which the actual value of the number of customers in the facility is associated with the number of reservations at a certain time before the time corresponding to the actual value, and a learning model is generated
  • the learning system according to appendix 1, wherein the means uses the set of data as learning data to generate a learning model in which the number of reservations at the time before the certain period before the prediction target time is an explanatory variable.
  • the data storage means is a set of data in which the actual value of the number of customers in the facility is associated with the number of reservations for each attribute of the reservation at a time before a certain period before the time corresponding to the actual value
  • the learning model generation means generates a learning model using the set of data as learning data and using the number of reservations for each attribute at a time before the predetermined period from the prediction target time as an explanatory variable.
  • the learning system according to Supplementary Note 1 or Supplementary Note 2.
  • the data storage means is a set of data in which the actual value of the number of customers of the facility is associated with the number of reservation persons for each attribute of the reservation person at a certain time before the time corresponding to the actual value
  • the learning model generation means uses the set of data as learning data, and the number of reservations of a specific attribute with respect to the sum of the number of reservations for each attribute at the time before the predetermined period from the prediction target time
  • the learning system according to supplementary note 1, wherein a learning model having the ratio of the above as an explanatory variable is generated.
  • the data storage means includes the actual value of the number of customers of the facility, the number of reservations at a certain period before the time corresponding to the actual value, and the time one year before the time corresponding to the actual value
  • the learning system according to supplementary note 1, wherein a learning model is generated in which a ratio of the number of reservations at a point before a certain period of time is an explanatory variable.
  • the data storage means includes the actual value of the number of customers in the facility, the number of reservations at a certain period before the time corresponding to the actual value, and the time corresponding to the actual value for each attribute of the reservation
  • a set of data in which the actual value of the number of customers corresponding to a point in time one year ago and the number of reservations at a point in time before the predetermined period from the point in time one year ago are stored, and learning model generation means Using the set of data as learning data, the actual value of the number of customers for each attribute corresponding to the time point one year before the prediction target time point, and the time point one year before the prediction target time point for each attribute
  • the learning system according to appendix 1 or appendix 5, wherein a learning model is generated in which a ratio of the number of reservations at a time before the prediction target time to the number of reservations at a time before the fixed period is an explanatory variable.
  • the data storage means includes the actual value of the number of customers in the facility, and the reservation person at the time before each predetermined period from the first to the n-th (n is an integer of 2 or more) from the time corresponding to the actual value.
  • a set of data associated with the number is stored, and the learning model generation unit uses the set of data as learning data, and uses the first to nth predetermined time periods before the prediction target time point as the learning data.
  • the learning system according to appendix 1, which generates a learning model having the number of reservations as an explanatory variable.
  • the data storage means is a predetermined period from the 1st to the n-th (n is an integer of 2 or more) from the time corresponding to the actual value of the actual number of customers of the facility and the reservation person.
  • a set of data associated with the number of reservations at the previous time point is stored, and the learning model generation unit uses the set of data as learning data, and uses the first time from the prediction target time point for each attribute.
  • the learning system according to supplementary note 1 or supplementary note 7, wherein a learning model is generated in which the number of reservations at a time before each predetermined period up to the nth is an explanatory variable.
  • the data storage means includes the actual value of the number of customers of the facility and the reservation person at the time before each predetermined period from the first to the n-th (n is an integer of 2 or more) from the time corresponding to the actual value
  • the learning model generating means stores a set of data in which the number is associated, and the learning model generation unit corresponds to the number of reservation persons before a prediction target time point m ⁇ 1 when m is an integer from 2 to n.
  • the learning system according to appendix 1, wherein a learning model is generated in which the ratio of the number of reservations before the m-th predetermined period is an explanatory variable.
  • a data storage means is each predetermined period from the 1st to nth (n is an integer greater than or equal to 2) from the time corresponding to the said actual value for every actual number of customers of a facility, and a reservation person's attribute.
  • a set of data associated with the number of reservations at the previous time point is stored, and the learning model generation unit is configured to determine the number of predictions for each attribute when m is an integer from 2 to n.
  • the learning system according to appendix 1 or appendix 9, wherein a learning model is generated in which a ratio of the number of reservations before the mth predetermined period to the number of reservations before the predetermined period of m ⁇ 1 is an explanatory variable.
  • the data storage means includes the actual value of the number of customers in the facility and the reservation person at the time before each predetermined period from the first time to the nth (n is an integer of 2 or more) from the time corresponding to the actual value.
  • a set of data associated with the moving average value of the number is stored, and the learning model generating means uses the set of data as learning data, and uses each of the first to nth periods before the prediction target time point.
  • the learning system according to appendix 1, which generates a learning model having the moving average value of the number of reservations at the time of as an explanatory variable.
  • the data storage means is a predetermined period from the 1st to the nth (n is an integer of 2 or more) from the time corresponding to the actual value of the number of customers in the facility and the attribute of the reservation person.
  • a set of data associated with the moving average value of the number of reservations at the previous time point is stored, and the learning model generation unit uses the set of data as learning data, from each prediction target time point for each attribute.
  • the learning system according to supplementary note 1 or supplementary note 11, wherein a learning model is generated in which the moving average value of the number of reservations at a time before each of the first to nth predetermined periods is an explanatory variable.
  • a learning program which is a learning model for predicting the number of customers of the facility at a prediction target time point, the learning model having information specified from the information related to the reservation as an explanatory variable.
  • the present invention is preferably applied to a learning system that generates a learning model used for predicting the number of customers of a facility that can be reserved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Provided is a learning system capable of generating learning models having high number-of-clients prediction accuracy. A data storage means 71 stores sets of data that have associated therein a result value for the number of clients at a facility and information relating to reservations for the facility from prior to a point in time corresponding to the result value. A learning model generation means 72 uses the data sets as learning data and generates learning models for predicting the number of clients at the facility at a target point in time for prediction, said learning models using, as explanatory variables, information specified from reservation information.

Description

学習システム、方法およびプログラムLearning system, method and program
 本発明は、学習モデルを生成する学習システム、学習方法および学習プログラムに関し、特に、施設の客数予測に用いられる学習モデルを生成する学習システム、学習方法および学習プログラムに関する。 The present invention relates to a learning system, a learning method, and a learning program that generate a learning model, and more particularly to a learning system, a learning method, and a learning program that generate a learning model used for predicting the number of customers in a facility.
 会場への入場見込み数を算出する方法が特許文献1に記載されている。特許文献1に記載された方法では、入場者数にチケット販売数を加算した数を入場見込み数とする。 Patent Document 1 describes a method for calculating the expected number of visitors to the venue. In the method described in Patent Document 1, a number obtained by adding the number of ticket sales to the number of visitors is set as the expected number of entrances.
 また、交通機関の予約数を予測するシステムが特許文献2に記載されている。特許文献2に記載されたシステムは、予約状況の累積結果に基づいて、予約パターンデータベースに記憶されている1以上の予約パターンから最適な予約パターンを決定する。そして、そのシステムは、その予約パターンの関数と、記憶されている予約状況に基づいて、交通機関の最終予約数を算出する。また、特許文献2に記載されたシステムは、予約パターンの曲線関数の係数を、過去の予約実績に基づいて重回帰分析等によって算出する。 Also, Patent Document 2 describes a system for predicting the number of transportation reservations. The system described in Patent Document 2 determines an optimum reservation pattern from one or more reservation patterns stored in a reservation pattern database based on the accumulated result of reservation status. Then, the system calculates the final reservation number of the transportation facility based on the function of the reservation pattern and the stored reservation situation. The system described in Patent Document 2 calculates the coefficient of the curve function of the reservation pattern by multiple regression analysis or the like based on the past reservation results.
特開2003-303361号公報JP 2003-303361 A 特開2004-295532号公報JP 2004-295532 A
 映画館等の種々の施設で、客数を精度よく予測できることが好ましい。例えば、客数を精度よく予測できれば、施設内で顧客に販売するために用意しておく商品(例えば、映画館の場合にはポップコーン等の軽食)の量を決めやすい等の利便性が得られる。 It is preferable that the number of customers can be accurately predicted at various facilities such as movie theaters. For example, if the number of customers can be accurately predicted, convenience such as easy determination of the amount of products (for example, snacks such as popcorn in the case of movie theaters) prepared for sale to customers in the facility can be obtained.
 そこで、本発明は、客数予測の精度が高い学習モデルを生成できるようにするという技術課題を解決することができる学習システム、学習方法および学習プログラムを提供することを目的とする。 Therefore, an object of the present invention is to provide a learning system, a learning method, and a learning program that can solve the technical problem of enabling generation of a learning model with high customer number prediction accuracy.
 本発明による学習システムは、施設の客数の実績値と、実績値に対応する時点より前の施設に対する予約に関する情報とを対応付けたデータの集合を記憶するデータ記憶手段と、予測対象時点での施設の客数の予測のための学習モデルであって、予約に関する情報から特定される情報を説明変数とする学習モデルを、データの集合を学習データとして用いて生成する学習モデル生成手段とを備えることを特徴とする。 The learning system according to the present invention includes a data storage means for storing a set of data in which the actual value of the number of customers of the facility is associated with information related to the reservation for the facility prior to the time corresponding to the actual value; A learning model for predicting the number of customers in a facility, comprising learning model generation means for generating a learning model using information specified from reservation information as an explanatory variable using a set of data as learning data It is characterized by.
 また、本発明による学習方法は、施設の客数の実績値と、実績値に対応する時点より前の施設に対する予約に関する情報とを対応付けたデータの集合を記憶するデータ記憶手段を備えた学習システムに適用される学習方法において、予測対象時点での施設の客数の予測のための学習モデルであって、予約に関する情報から特定される情報を説明変数とする学習モデルを、データの集合を学習データとして用いて生成することを特徴とする。 Further, the learning method according to the present invention comprises a learning system comprising a data storage means for storing a set of data in which the actual value of the number of customers in the facility is associated with the information related to the reservation for the facility prior to the time corresponding to the actual value. A learning model for predicting the number of customers in a facility at the time of prediction, and a learning model that uses information specified from reservation information as explanatory variables, and a set of data as learning data It is characterized by generating using.
 また、本発明による学習プログラムは、施設の客数の実績値と、実績値に対応する時点より前の施設に対する予約に関する情報とを対応付けたデータの集合を記憶するデータ記憶手段を備えたコンピュータに搭載される学習プログラムであって、コンピュータに、予測対象時点での施設の客数の予測のための学習モデルであって、予約に関する情報から特定される情報を説明変数とする学習モデルを、データの集合を学習データとして用いて生成する学習モデル生成処理を実行させることを特徴とする。 Further, the learning program according to the present invention is a computer provided with data storage means for storing a set of data in which the actual value of the number of customers of the facility is associated with the information related to the reservation for the facility before the time corresponding to the actual value. A learning program installed on a computer, which is a learning model for predicting the number of customers of a facility at the time of prediction, and that uses information specified from information related to reservation as an explanatory variable, A learning model generation process for generating a set using learning data is executed.
 本発明の技術手段により、客数予測の精度が高い学習モデルを生成することができる。 The technical means of the present invention can generate a learning model with high customer number prediction accuracy.
本発明の学習システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the learning system of this invention. データ記憶部に記憶されるデータの集合の例を示す模式図である。It is a schematic diagram which shows the example of the collection of the data memorize | stored in a data storage part. 予測部を含まない場合の学習システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the learning system in case a prediction part is not included. 学習システムが学習モデルを生成する処理経過の例を示すフローチャートである。It is a flowchart which shows the example of process progress in which a learning system produces | generates a learning model. 第1の実施形態の変形例でデータ記憶部が記憶するデータの集合の例を示す模式図である。It is a schematic diagram which shows the example of the collection of data which a data storage part memorize | stores in the modification of 1st Embodiment. 第2の実施形態においてデータ記憶部に記憶されるデータの集合の例を示す模式図である。It is a schematic diagram which shows the example of the collection of data memorize | stored in a data storage part in 2nd Embodiment. 第2の実施形態の変形例でデータ記憶部が記憶するデータの例を示す模式図である。It is a schematic diagram which shows the example of the data which a data storage part memorize | stores in the modification of 2nd Embodiment. 第3の実施形態においてデータ記憶部に記憶されるデータの集合の例を示す模式図である。It is a schematic diagram which shows the example of the collection of data memorize | stored in a data storage part in 3rd Embodiment. 第3の実施形態の変形例でデータ記憶部が記憶するデータの例を示す模式図である。It is a schematic diagram which shows the example of the data which a data storage part memorize | stores in the modification of 3rd Embodiment. 本発明の各実施形態に係るコンピュータの構成例を示す概略ブロック図である。It is a schematic block diagram which shows the structural example of the computer which concerns on each embodiment of this invention. 本発明の学習システムの概要を示すブロック図である。It is a block diagram which shows the outline | summary of the learning system of this invention.
 以下、本発明の実施形態を図面を参照して説明する。以下に示す各実施形態では、映画館の1日当たりの客数を予測する場合を例にして説明するが、客数予測の対象となる施設は映画館に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each embodiment described below, a case where the number of customers per day in a movie theater is predicted will be described as an example, but the facility for which the number of customers is predicted is not limited to a movie theater.
実施形態1.
 図1は、本発明の学習システムの構成例を示すブロック図である。本発明の学習システム1は、例えば、データ記憶部2と、学習部3と、予測部4とを備える。
Embodiment 1. FIG.
FIG. 1 is a block diagram illustrating a configuration example of a learning system according to the present invention. The learning system 1 of the present invention includes, for example, a data storage unit 2, a learning unit 3, and a prediction unit 4.
 データ記憶部2は、施設(本例では、映画館)の客数の実績値と、その実績値に対応する時点より前の、その映画館に対する予約に関する情報とを対応付けたデータの集合を記憶する記憶装置である。実績値に対応する時点とは、その実績値が測定された時点を意味し、実績値測定時点と称することもできる。また、各実施形態では、「1日」を単位として、客数の実績値を測定する場合を例にして説明する。従って、以下に示す例では、実績値に対応する時点とは、その実績値が測定された日であり、以下、実績値測定日と記す。 The data storage unit 2 stores a set of data in which the actual value of the number of customers of the facility (in this example, a movie theater) is associated with information related to the reservation for the movie theater before the time corresponding to the actual value. Storage device. The time point corresponding to the actual value means the time point when the actual value is measured, and can also be referred to as the actual value measurement time point. In each embodiment, a case where the actual value of the number of customers is measured in units of “1 day” will be described as an example. Therefore, in the example shown below, the time point corresponding to the actual value is the day when the actual value is measured, and is hereinafter referred to as the actual value measurement date.
 図2は、データ記憶部2に記憶されるデータの集合の例を示す模式図である。各実施形態では、実績値を測定する時間の単位は「1日」である。従って、図2に示す例では、1日毎に、映画館の客数の実績値と、その実績値測定日より前の映画館に対する予約に関する情報とが対応付けられている。ただし、予約に関する情報だけが実績値に対応付けられるとは限らず、予約に関する情報に加え、他の情報も実績値に対応付けられていてよい。 FIG. 2 is a schematic diagram showing an example of a set of data stored in the data storage unit 2. In each embodiment, the unit of time for measuring the actual value is “1 day”. Therefore, in the example shown in FIG. 2, the actual value of the number of customers in the movie theater is associated with the information related to the reservation for the movie theater before the actual value measurement date every day. However, not only information related to the reservation is associated with the actual value, but also other information may be associated with the actual value in addition to the information regarding the reservation.
 図2では、1日毎に、客数の実績値と、その実績値測定日の9日前の映画館の予約者数と、実績値測定日の曜日等を対応付けたデータを例示している。それぞれの日が実績値測定日に該当する。実績値測定日の9日前の映画館の予約者数は、その実績値測定日の9日前においてその実績値測定日に映画館を利用することを予約している者の数である。例えば、12月24日の実績値に対応付けられた9日前の予約者数は1000人である(図2参照)。このことは、12月24日に映画館を利用することを予約した者が、12月15日(12月24日の9日前)に1000人いたことを表している。他の日付のデータでも同様である。ただし、施設の種類によっては、利用日を指定せずに予約する場合もあり得る。その場合には、実績値測定日の9日前において、利用日指定なしで単に施設を利用することを予約している者の数を、実績値測定日の9日前の予約者数としてもよい。この点は、後述の各実施形態においても同様である。 FIG. 2 exemplifies data in which the actual value of the number of customers, the number of movie theater reservations 9 days before the actual value measurement date, the day of the week of the actual value measurement date, and the like are associated with each other every day. Each day corresponds to the actual value measurement date. The number of movie theater reservations 9 days before the actual value measurement date is the number of people who have made reservations to use the movie theater 9 days before the actual value measurement date. For example, the number of reservations 9 days ago associated with the actual value on December 24 is 1000 (see FIG. 2). This means that there were 1000 people who made a reservation to use the movie theater on December 24th on December 15th (9 days before December 24th). The same applies to other date data. However, depending on the type of facility, a reservation may be made without specifying a use date. In that case, the number of persons who have reserved the use of the facility without specifying the use date nine days before the actual value measurement date may be the number of reservations nine days before the actual value measurement date. This also applies to each embodiment described later.
 図2に示す例では、実績値測定日の9日前の予約者数を示した。「9日前」は例示であり、実績値測定日より前のいつの時点の予約者数をデータ記憶部2に記憶させるかは、特に限定されない。 In the example shown in FIG. 2, the number of reservations 9 days before the actual value measurement date is shown. “9 days ago” is an example, and there is no particular limitation on when the number of reservation users before the actual value measurement date is stored in the data storage unit 2.
 また、図2に示す例では、予約に関する情報(9日前の予約者数)に加えて、実績値測定日の曜日の情報も対応付けられている場合を例示している。また、実績値測定日の天候や気温等の予報値が、実績値に対応付けられていてもよい。このように、予約に関する情報以外の情報が実績値に対応付けられていてよい。図2では、曜日を例示しているが、予約に関する情報以外の情報としてどのような情報が実績値に対応付けられるかは、特に限定されない。 In addition, in the example shown in FIG. 2, in addition to information related to the reservation (the number of reservations 9 days ago), information on the day of the week of the actual value measurement date is also associated. Moreover, forecast values, such as the weather and temperature of a performance value measurement day, may be matched with a performance value. In this way, information other than information related to the reservation may be associated with the actual value. In FIG. 2, the day of the week is illustrated, but what information is associated with the actual value as information other than information related to the reservation is not particularly limited.
 例えば、学習システム1の管理者(以下、単に管理者と記す。)が、客数の実績値、9日前の予約者数、および曜日等を対応付けたデータを1日毎に用意し、1日毎のデータの集合をデータ記憶部2に記憶させておく。以下の各実施形態では、説明を簡単にするために、管理者がデータの集合をデータ記憶部2に記憶させる場合を例にして説明するが、データ記憶部2にデータの集合を記憶させる態様は特に限定されない。 For example, an administrator of the learning system 1 (hereinafter simply referred to as an administrator) prepares data in which the actual number of customers, the number of reservations 9 days ago, the day of the week, and the like are associated with each other. A set of data is stored in the data storage unit 2. In the following embodiments, in order to simplify the description, an example will be described in which the administrator stores a set of data in the data storage unit 2, but an aspect in which the set of data is stored in the data storage unit 2 will be described. Is not particularly limited.
 学習部3は、データ記憶部2に記憶されているデータの集合(図2参照)を学習データとして用いて、映画館の客数を予測するための学習モデルを生成する。学習モデルは、予測対象時点(本例では、予測対象日)での映画館の客数を予測するために用いられる。なお、例えば、将来のそれぞれの日を予測対象日としてもよい。また、学習部3は、予約に関する情報から特定される情報を説明変数とする学習モデルを生成する。予約に関する情報から特定される情報とは、予約に関する情報そのものであってもよく、あるいは、予約に関する情報に対して演算を行って得られる情報であってもよい。本実施形態では、客数予測の際に、予測対象日の9日前の予約者数が与えられるものとする。そして、学習部3は、学習データ(図2参照)に合わせて、予測対象日の9日前の映画館の予約者数を説明変数とする学習モデルを生成するものとする。ただし、学習モデルで用いられる説明変数は、予測対象日の9日前の予約者数だけに限らず、他の事項も説明変数として用いられる。例えば、図2に示すように曜日の情報も含む学習データを用いた場合、学習モデルにおいて曜日も説明変数として用いられる。 The learning unit 3 uses a set of data stored in the data storage unit 2 (see FIG. 2) as learning data to generate a learning model for predicting the number of customers in the movie theater. The learning model is used to predict the number of customers in the movie theater at the prediction target time point (in this example, the prediction target date). In addition, for example, each future day may be set as the prediction target day. In addition, the learning unit 3 generates a learning model having information specified from information related to reservation as an explanatory variable. The information specified from the information related to the reservation may be information related to the reservation itself, or may be information obtained by performing an operation on the information related to the reservation. In the present embodiment, it is assumed that the number of reservations 9 days before the prediction target date is given when the number of customers is predicted. And the learning part 3 shall generate | occur | produce the learning model which uses the number of reservation persons of the movie theater 9 days before a prediction object day as an explanatory variable according to learning data (refer FIG. 2). However, the explanatory variables used in the learning model are not limited to the number of reservations 9 days before the prediction target date, and other items are also used as explanatory variables. For example, when learning data including day information is used as shown in FIG. 2, the day of the week is also used as an explanatory variable in the learning model.
 なお、予測の際にパラメータとして用いるデータを表す変数を「説明変数」と呼び、予測対象を表す変数を「目的変数」と呼ぶ。 Note that a variable representing data used as a parameter in prediction is called an “explanatory variable”, and a variable representing a prediction target is called an “object variable”.
 学習部3が学習モデルを生成する方法は、特に限定されない。例えば、学習部3は、学習データを用いて回帰分析によって学習モデルを生成してもよい。あるいは、学習部3は、他の機械学習アルゴリズムによって学習モデルを生成してもよい。この点は、後述の各実施形態においても同様である。 The method by which the learning unit 3 generates the learning model is not particularly limited. For example, the learning unit 3 may generate a learning model by regression analysis using learning data. Alternatively, the learning unit 3 may generate a learning model using another machine learning algorithm. This also applies to each embodiment described later.
 学習モデルは、例えば、目的変数の値を算出するための予測式であってもよい。以下、説明を簡単にするために、学習モデルが以下の式(1)で表される予測式である場合を例にして説明する。ただし、学習モデルの形式は、予測式の形式に限定されない。 The learning model may be, for example, a prediction formula for calculating the value of the objective variable. Hereinafter, in order to simplify the explanation, a case where the learning model is a prediction formula represented by the following formula (1) will be described as an example. However, the format of the learning model is not limited to the format of the prediction formula.
 y=a+a+・・・+a+b   式(1) y = a 1 x 1 + a 2 x 2 + ··· + a n x n + b formula (1)
 yは、予測値を表す目的変数である。本例では、yは、予測対象日の映画館の客数の予測値を表す。x~xは、説明変数である。a~aは、説明変数の係数である。bは定数項である。a~aおよびbの値は、学習データに基づいて、学習部3によって決定される。 y is an objective variable representing a predicted value. In this example, y represents the predicted value of the number of customers in the movie theater on the prediction target date. x 1 to x n are explanatory variables. a 1 ~ a n are coefficients of the explanatory variables. b is a constant term. The value of a 1 ~ a n and b are based on training data, as determined by the learning unit 3.
 各実施形態では、それぞれの日を予測対象日とする場合を例にして説明する。予測部4には、日毎に、管理者から、予測対象日の映画館の客数の予測に用いる各説明変数の値が入力される。本実施形態では、学習データ(図2参照)に合わせて、予測対象日の9日前の映画館の予約者数や曜日等が、予測対象日毎に入力される。なお、予測対象日の9日前の映画館の予約者数は、その予測対象日の9日前においてその予測対象日に映画館を利用することを予約している者の数である。ただし、前述のように、施設の種類によっては、利用日を指定せずに予約する場合もあり得る。その場合には、予測対象日の9日前において、利用日指定なしで単に施設を利用することを予約している者の数を、予測対象日の9日前の予約者数としてもよい。この点は、後述の各実施形態においても同様である。 In each embodiment, a case where each day is a prediction target day will be described as an example. The value of each explanatory variable used for prediction of the number of customers in the movie theater on the prediction target day is input to the prediction unit 4 from the administrator for each day. In the present embodiment, in accordance with the learning data (see FIG. 2), the number of movie theater reservations, the day of the week, etc. 9 days before the prediction target date are input for each prediction target date. The number of movie theater reservations 9 days before the prediction target date is the number of people who have made reservations to use the movie theater on the prediction target date 9 days before the prediction target date. However, as described above, depending on the type of facility, it may be possible to make a reservation without specifying a use date. In that case, the number of persons who have reserved the use of the facility without specifying the use date 9 days before the prediction target day may be the number of reservations 9 days before the prediction target date. This also applies to each embodiment described later.
 予測部4は、入力された各説明変数の値を学習モデルに適用することによって、予測対象日の映画館の客数の予測値yを算出する。本例のように、学習モデルが式(1)に示す予測式で表される場合、予測部4は、入力された説明変数の値に応じて、予測式内のx~xに値を代入することによって、予測値yを算出する。以下、説明変数の値に応じて、予測部4が予測式内のx~xに値を代入する動作について説明する。 The prediction unit 4 calculates the predicted value y of the number of customers in the movie theater on the prediction target day by applying the value of each input explanatory variable to the learning model. As in this example, when the learning model is represented by the prediction expression shown in Expression (1), the prediction unit 4 sets values for x 1 to x n in the prediction expression according to the value of the input explanatory variable. Is used to calculate the predicted value y. Hereinafter, an operation in which the prediction unit 4 substitutes values for x 1 to x n in the prediction formula according to the value of the explanatory variable will be described.
 説明変数の種類として、連続型変数とカテゴリ型変数がある。 ・ ・ ・ There are continuous type and categorical type as explanatory variable types.
 連続型変数は値として数値をとる。例えば、予測対象日の9日前の予約者数は、連続型変数である。 * Continuous variables take numerical values. For example, the number of reservations 9 days before the prediction target date is a continuous variable.
 カテゴリ型変数は値として項目をとる。例えば、曜日はカテゴリ型変数である。 Categorical variables take items as values. For example, the day of the week is a categorical variable.
 1つの連続型変数は、予測式内の説明変数x~xのうちの1つに対応する。予測部4は、連続型変数に該当する説明変数の値(数値)を、予測式内の対応する説明変数に代入する。例えば、予測式内の説明変数x~xのうち、xが9日前の予約者数に対応しているとする。その場合、予測部4は、予測対象日の9日前の予約者数をxに代入する。 One continuous variable corresponds to one of the explanatory variables x 1 to x n in the prediction formula. The prediction unit 4 assigns the value (numerical value) of the explanatory variable corresponding to the continuous variable to the corresponding explanatory variable in the prediction formula. For example, it is assumed that among explanatory variables x 1 to x n in the prediction formula, x 2 corresponds to the number of reservations 9 days ago. In that case, the prediction unit 4 substitutes the number of subscriber 9 days prior to the prediction target date x 2.
 また、1つのカテゴリ型変数の各値は、予測式内の説明変数x~xのうちの1つに対応する。例えば、カテゴリ型変数である「曜日」の取り得る各値(「日曜日」、「月曜日」等の各項目)は、それぞれ、予測式内の説明変数x~xのうちの1つに対応する。予測部4は、カテゴリ型変数の各値に対応する予測式内の各説明変数に、二値(本例では、0と1とする。)のうちいずれかの値を代入する。例えば、入力された予測対象日の「曜日」の値が「月曜日」であるとする。この場合、予測部4は、月曜日に対応する予測式内の説明変数に1を代入し、月曜日以外の各曜日に対応する予測式内の各説明変数に0を代入する。 Each value of one categorical variable corresponds to one of the explanatory variables x 1 to x n in the prediction formula. For example, each possible value of the categorical variable “day of the week” (each item such as “Sunday”, “Monday”) corresponds to one of the explanatory variables x 1 to x n in the prediction formula, respectively. To do. The prediction unit 4 substitutes one of two values (in this example, 0 and 1) for each explanatory variable in the prediction formula corresponding to each value of the categorical variable. For example, it is assumed that the value of “day of the week” that has been input is “Monday”. In this case, the prediction unit 4 substitutes 1 for the explanatory variable in the prediction formula corresponding to Monday, and substitutes 0 for each explanatory variable in the prediction formula corresponding to each day of the week other than Monday.
 上記のように、予測部4は、与えられた説明変数の値に応じて予測式内のx~xに値を代入することよって、予測対象日の映画館の客数の予測値yを算出する。 As described above, the prediction unit 4 substitutes values for x 1 to x n in the prediction formula in accordance with the value of the given explanatory variable, thereby obtaining the predicted value y of the number of customers of the movie theater on the prediction target day. calculate.
 学習部3および予測部4は、例えば、学習プログラムに従って動作するコンピュータのCPUによって実現される。この場合、CPUは、例えば、そのコンピュータのプログラム記憶装置(図1において図示略)等のプログラム記録媒体から学習プログラムを読み込み、その学習プログラムに従って、学習部3および予測部4として動作する。また、学習部3および予測部4がそれぞれ別のハードウェアによって実現されていてもよい。 The learning unit 3 and the prediction unit 4 are realized by a CPU of a computer that operates according to a learning program, for example. In this case, for example, the CPU reads a learning program from a program recording medium such as a program storage device (not shown in FIG. 1) of the computer, and operates as the learning unit 3 and the prediction unit 4 according to the learning program. Further, the learning unit 3 and the prediction unit 4 may be realized by different hardware.
 また、学習システム1は、2つ以上の物理的に分離した装置が有線または無線で接続されている構成であってもよい。 Further, the learning system 1 may have a configuration in which two or more physically separated devices are connected by wire or wirelessly.
 また、予測部4は、学習システム1の外部に予測器として別個に設けられていてもよい。この場合、学習システム1は、図3に示すように、予測部4を含まず、データ記憶部2および学習部3を備える構成であってもよい。図3に示すデータ記憶部2および学習部3は、図1に示すデータ記憶部2および学習部3と同様である。 Further, the prediction unit 4 may be provided separately as a predictor outside the learning system 1. In this case, as illustrated in FIG. 3, the learning system 1 may include the data storage unit 2 and the learning unit 3 without including the prediction unit 4. The data storage unit 2 and the learning unit 3 shown in FIG. 3 are the same as the data storage unit 2 and the learning unit 3 shown in FIG.
 これらの点は、後述の各実施形態でも同様である。 These points are the same in each embodiment described later.
 図4は、学習システム1が学習モデルを生成する処理経過の例を示すフローチャートである。学習部3は、データ記憶部2に予め記憶されているデータの集合(図2参照)を読み込む(ステップS1)。続いて、学習部3は、そのデータの集合を学習データとして用いて、予測対象日の9日前の予約者数を説明変数とする学習モデルを生成する(ステップS2)。なお、学習部3は、予測対象日の9日前の予約者数だけでなく、他の事項(例えば、曜日等)も説明変数とする学習モデルを生成してもよい。既に説明したように、学習部3が学習モデルを生成する方法は、特に限定されない。 FIG. 4 is a flowchart showing an example of processing progress in which the learning system 1 generates a learning model. The learning unit 3 reads a set of data (see FIG. 2) stored in advance in the data storage unit 2 (step S1). Subsequently, the learning unit 3 uses the set of data as learning data to generate a learning model in which the number of reservations 9 days before the prediction target date is an explanatory variable (step S2). Note that the learning unit 3 may generate a learning model that uses not only the number of reservations 9 days before the prediction target date but also other items (for example, day of the week) as explanatory variables. As already described, the method by which the learning unit 3 generates the learning model is not particularly limited.
 なお、予測部4は、ステップS2で生成された学習モデルにおいて説明変数となっている各事項の値が入力されると、その値を学習モデルに適用することによって、予測対象日の映画館の客数の予測値を算出する。予測部4の動作に関しては、学習モデルが予測式である場合を例にして既に説明したので、ここでは説明を省略する。 In addition, when the value of each item that is an explanatory variable in the learning model generated in step S2 is input, the prediction unit 4 applies the value to the learning model, so Calculate the predicted number of customers. Since the operation of the prediction unit 4 has already been described by taking as an example the case where the learning model is a prediction equation, description thereof is omitted here.
 なお、後述の各実施形態や、各実施形態の変形例では、データ記憶部2に予め記憶されているデータや学習モデルで用いられる説明変数は第1の実施形態と異なるが、学習モデルを生成する処理経過は、図4に示すフローチャートで表すことができる。従って、後述の各実施形態や、各実施形態の変形例では、フローチャートの図示を省略する。 In each of the embodiments described below and modifications of each embodiment, the data stored in the data storage unit 2 and the explanatory variables used in the learning model are different from those in the first embodiment, but a learning model is generated. The progress of the process to be performed can be represented by the flowchart shown in FIG. Accordingly, in each of the embodiments described later and modifications of each embodiment, the flowchart is not shown.
 本実施形態によれば、学習部3は、予約に関する情報(本実施形態では、予測対象日よりも一定期間前の予約者数)を説明変数とする学習モデルを生成する。従って、学習システム1は、客数を精度よく予測することができる学習モデルを生成できる。 According to the present embodiment, the learning unit 3 generates a learning model that uses information related to reservation (in the present embodiment, the number of reservation persons a certain period before the prediction target date) as an explanatory variable. Therefore, the learning system 1 can generate a learning model that can accurately predict the number of customers.
 次に、第1の実施形態の変形例について説明する。既に説明した事項と同様の事項については、説明を省略する。第1の実施形態の各変形例における学習システム1の構成は、既に説明した構成(図1または図3参照)と同様であり、説明を省略する。 Next, a modification of the first embodiment will be described. Explanation of matters similar to those already described is omitted. The configuration of the learning system 1 in each modification of the first embodiment is the same as the configuration already described (see FIG. 1 or FIG. 3), and the description is omitted.
 まず、第1の実施形態の第1の変形例について説明する。
 データ記憶部2は、映画館の客数の実績値に、予約者の属性毎の予約者数を対応付けたデータの集合を記憶していてもよい。図5は、第1の実施形態の変形例でデータ記憶部2が記憶するデータの集合の例を示す模式図である。図5に示す例では、予約者の属性を「一般」、「学生」、「幼児」に分類している。そして、1日毎に、客数の実績値と、実績値測定日の一定期間前(図5に示す例では9日前)におけるそれぞれの属性の予約者数が対応付けられている。例えば、12月24日の実績値には、実績値測定日の9日前(12月15日)における「一般」に該当する予約者数、実績値測定日の9日前における「学生」に該当する予約者数、および実績値測定日の9日前における「幼児」に該当する予約者数が対応付けられている。図5に示す例では説明を簡単にするために、予約者の属性を3種類のみ示したが、予約者の属性の種類を、予約者が予約したチケットの種別に合わせて、より多くの種類に分類してもよい。例えば、「学生」の代わりに、「高校生・大学生」、「小学生・中学生」という、より細分化した属性を用いてもよい。
First, a first modification of the first embodiment will be described.
The data storage unit 2 may store a set of data in which the actual number of customers in the movie theater is associated with the number of reservations for each attribute of the reservations. FIG. 5 is a schematic diagram illustrating an example of a set of data stored in the data storage unit 2 according to the modification of the first embodiment. In the example shown in FIG. 5, the attributes of the reservation person are classified into “general”, “student”, and “infant”. Each day, the actual value of the number of customers is associated with the number of reservations of each attribute before a certain period of time on the actual value measurement date (9 days before in the example shown in FIG. 5). For example, the actual value on December 24 corresponds to the number of reservations corresponding to “general” 9 days before the actual value measurement date (December 15) and “student” 9 days before the actual value measurement date. The number of reservations and the number of reservations corresponding to “infant” 9 days before the actual value measurement date are associated with each other. In the example shown in FIG. 5, for ease of explanation, only three types of reservation person attributes are shown. However, more types of reservation person attributes are used in accordance with the types of tickets reserved by the reservation person. May be classified. For example, instead of “student”, more detailed attributes such as “high school student / university student” and “elementary school student / junior high school student” may be used.
 また、予約に関する情報(9日前の各属性の予約者数)以外の情報も、実績値に対応付けられていてもよい。図5では、図2に示す場合と同様に、曜日の情報も実績値に対応付けられている場合を例示している。 Also, information other than information related to the reservation (the number of reservations of each attribute 9 days ago) may be associated with the actual value. FIG. 5 illustrates the case where the day of week information is also associated with the actual value, as in the case illustrated in FIG. 2.
 本変形例において、学習部3は、データ記憶部2に記憶されているデータの集合(図5参照)を学習データとして用いて、学習モデルを生成する。学習部3は、学習データ(図2参照)に合わせて、予測対象日の9日前における「一般」に該当する予約者数、予測対象日の9日前における「学生」に該当する予約者数、および予測対象日の9日前における「幼児」に該当する予約者数をそれぞれ説明変数とする学習モデルを生成する。また、図5に示すように曜日の情報も含む学習データを用いた場合、学習モデルにおいて曜日も説明変数として用いられる。 In the present modification, the learning unit 3 generates a learning model using a set of data (see FIG. 5) stored in the data storage unit 2 as learning data. The learning unit 3 matches the learning data (see FIG. 2) with the number of reservations corresponding to “general” 9 days before the prediction date, the number of reservations corresponding to “student” 9 days before the prediction date, A learning model is generated in which the number of reservations corresponding to “infant” 9 days before the prediction target date is an explanatory variable. Further, when learning data including day information is used as shown in FIG. 5, the day of the week is also used as an explanatory variable in the learning model.
 予測部4には、予測対象日の9日前における「一般」に該当する予約者数、予測対象日の9日前における「学生」に該当する予約者数、および予測対象日の9日前における「幼児」に該当する予約者数、並びに予測対象日の曜日等の情報が入力される。予測部4は、それらの情報を学習モデルに適用することによって、予測対象日の客数の予測値を算出する。 The prediction unit 4 includes the number of reservations corresponding to “general” 9 days before the prediction date, the number of reservations corresponding to “student” 9 days before the prediction date, and the “infant” ”And information such as the day of the week to be predicted are input. The prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
 本変形例によれば、予測対象日の一定期間前の予測者数を1つの説明変数とせずに、属性に応じて別々の説明変数に分けている。従って、学習モデルを用いて算出される客数の予測値の精度をより向上させることができる。 According to this modification, the number of predictors before a certain period before the prediction target date is not set as one explanatory variable, but is divided into different explanatory variables according to attributes. Therefore, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
 次に、第1の実施形態の第2の変形例について説明する。
 第1の実施形態の第2の変形例では、データ記憶部2は、上記の第1の変形例と同様のデータを記憶する。データ記憶部2は、例えば、図5に例示するデータの集合を記憶する。
Next, a second modification of the first embodiment will be described.
In the second modification of the first embodiment, the data storage unit 2 stores data similar to that in the first modification. The data storage unit 2 stores, for example, a set of data illustrated in FIG.
 学習部3は、データ記憶部2に記憶されているデータの集合(図5参照)を学習データとして用いて、学習モデルを生成する。ただし、学習部3は、日毎に、実績値測定日の9日前における各属性の予約者数を用いて、実績値測定日の9日前における各属性の予約者数の和に対する、その実績値測定日の9日前における特定の属性の予約者数の割合を算出する。ここでは、特定の属性が、「一般」であるものとして説明する。例えば、学習部3は、12月24日の実績値に対応付けられた各属性の予約者数に関して、「一般」の予約者数“700”と、「学生」の予約者数“250”と、「幼児」の予約者数“50”(図5参照)の和に対する、「一般」の予約者数“700”の割合を算出する。すなわち、学習部3は、700/(700+250+50)=700/1000を算出する。学習部3は、他の実績値測定日のデータに関しても同様の演算を行う。そして、学習部3は、実績値測定日毎に求めた上記の割合や、各実績値測定日の曜日や実績値を用いて、予測対象日より一定期間前(本例では9日前)の各属性の予約者数の和に対する特定の属性(本例では「一般」)の予約者数の割合を説明変数とする学習モデルを生成する。また、図5に示すように曜日の情報も含む学習データを用いた場合、学習モデルにおいて曜日も説明変数として用いられる。 The learning unit 3 generates a learning model using a set of data stored in the data storage unit 2 (see FIG. 5) as learning data. However, the learning unit 3 uses the number of reservations of each attribute 9 days before the actual value measurement date to measure the actual value for the sum of the number of reservations of each attribute 9 days before the actual value measurement date. The ratio of the number of reservations of a specific attribute 9 days before the day is calculated. Here, it is assumed that the specific attribute is “general”. For example, regarding the number of reservations of each attribute associated with the actual value on December 24, the learning unit 3 sets “700” for “general” and “250” for “student”. The ratio of the “general” number of reservations “700” to the sum of the number of reservations “50” (see FIG. 5) of “infant” is calculated. That is, the learning unit 3 calculates 700 / (700 + 250 + 50) = 700/1000. The learning unit 3 performs the same calculation with respect to data of other actual value measurement dates. Then, the learning unit 3 uses the above-mentioned ratio obtained for each actual value measurement date, the day of the week of each actual value measurement date, and the actual value, each attribute before a prediction target day (9 days in this example). A learning model is generated in which the ratio of the number of reservations of a specific attribute (“general” in this example) to the sum of the number of reservations is an explanatory variable. Further, when learning data including day information is used as shown in FIG. 5, the day of the week is also used as an explanatory variable in the learning model.
 予測部4には、予測対象日より9日前の各属性の予約者数の和に対する、予測対象日より9日前の「一般」の予約者数の割合、および予測対象日の曜日等の情報が入力される。予測部4は、それらの情報を学習モデルに適用することによって、予測対象日の客数の予測値を算出する。 The prediction unit 4 includes information such as the ratio of the number of “general” reservations 9 days before the prediction target date to the sum of the number of reservations of each attribute 9 days before the prediction target date, and the day of the week for the prediction target date. Entered. The prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
 予約者数全体に対する特定の属性の予約者数の割合が、客数予測に特に有効である場合がある。そのような場合、第2の変形例では、学習モデルを用いて算出される客数の予測値の精度をより向上させることができる。 The ratio of the number of reservations with a specific attribute to the total number of reservations may be particularly effective in predicting the number of customers. In such a case, in the second modification, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
 また、第2の変形例において、学習データとして用いられる実績値は、特定の客の数(例えば、予約を行わずに当日券を購入した客の数)であってもよい。そして、例えば、予約を行わずに当日券を購入した客の数と、予約者数全体に対する特定の属性の予約者数の割合との間の相関性が高いとする。そのような場合、上記の第2の変形例は特に有効である。また、学習部3は、予約を行わずに当日券を購入した客の数を予測するための学習モデル等のように、客の入場態様毎に学習モデルを生成してもよい。そして、予測部4は、学習モデル毎に、各入場態様の客数の予測値を算出し、その総和として、予測対象日の総客数を算出してもよい。 In the second modification, the actual value used as learning data may be the number of specific customers (for example, the number of customers who purchased the same day ticket without making a reservation). For example, it is assumed that there is a high correlation between the number of customers who purchased the same day ticket without making a reservation and the ratio of the number of reservations with a specific attribute to the total number of reservations. In such a case, the second modified example is particularly effective. In addition, the learning unit 3 may generate a learning model for each admission mode of a customer, such as a learning model for predicting the number of customers who purchased the same day ticket without making a reservation. And the prediction part 4 may calculate the predicted value of the number of customers of each entrance aspect for every learning model, and may calculate the total number of customers of a prediction object day as the sum total.
実施形態2.
 本発明の第2の実施形態の学習システムは、第1の実施形態の学習システムと同様に、図1または図3に示すブロック図で表すことができる。以下、図1を参照して、第2の実施形態を説明する。第1の実施形態と同様の事項については、適宜説明を省略する。
Embodiment 2. FIG.
Similar to the learning system of the first embodiment, the learning system of the second embodiment of the present invention can be represented by the block diagram shown in FIG. Hereinafter, a second embodiment will be described with reference to FIG. Explanation of matters similar to those in the first embodiment will be omitted as appropriate.
 図6は、第2の実施形態においてデータ記憶部2に記憶されるデータの集合の例を示す模式図である。図6に示す例では、1日毎に、客数の実績値と、その実績値測定日の一定期間前(本実施形態では、9日前を例にする。)の予約者数と、その実績値測定日の1年前の日の客数の実績値と、当該1年前の日よりも一定期間前(9日前)の予約者数と、その実績値測定日の曜日等を対応付けたデータを例示している。それぞれの日が実績値測定日に該当する。 FIG. 6 is a schematic diagram illustrating an example of a set of data stored in the data storage unit 2 in the second embodiment. In the example shown in FIG. 6, the actual value of the number of customers, the number of reservations before a certain period of time on the actual value measurement date (in this embodiment, 9 days before as an example), and the actual value measurement for each day. Example of data that correlates the actual value of the number of customers on the day one year before the day, the number of reservations a certain period before (9 days before) the day one year ago, the day of the week, etc. is doing. Each day corresponds to the actual value measurement date.
 以下、実績値測定日の1年前の日を、実績値測定日の前年同日と記す。同様に、予測対象日の1年前の日を、予測対象日の前年同日と記す。 Hereafter, the day one year before the actual value measurement date is referred to as the same day of the previous year as the actual value measurement date. Similarly, a day one year before the prediction target date is referred to as the same day of the previous year as the prediction target date.
 実績値測定日の9日前の予約者数は、その実績値測定日の9日前においてその実績値測定日に映画館を利用することを予約している者の数である。 The number of reservations 9 days before the actual value measurement date is the number of persons who have made a reservation to use the movie theater 9 days before the actual value measurement date.
 また、実績値測定日の前年同日の9日前の予約者数は、実績値測定日の前年同日の9日前において、実績値測定日の前年同日に映画館を利用することを予約していた者の数である。 In addition, the number of reservations 9 days before the same day of the actual value measurement date is the number of reservations made on the same day of the actual value measurement day 9 days before the same day of the actual value measurement day. Is the number of
 実績値測定日の9日前の予約者数や、実績値測定日の前年同日の9日前の予約者数は、利用日指定なしで単に施設を利用することを予約している者の数であってもよい。 The number of reservations 9 days before the actual value measurement date and the number of reservations 9 days prior to the same day of the actual value measurement date are the number of persons who have simply reserved to use the facility without specifying the use date. May be.
 客数の実績値、実績値測定日の9日前の予約者数、実績値測定日の前年同日の客数の実績値、および実績値測定日の前年同日の9日前の予約者数、並びに曜日等を対応付けたデータを、例えば、管理者が1日毎(実績値測定日毎)に用意し、1日毎のデータの集合をデータ記憶部2に記憶させておく。 The actual number of customers, the number of reservations 9 days before the actual value measurement date, the actual value of the number of customers the same day of the previous year of the actual value measurement date, the number of reservations 9 days before the same day of the actual value measurement date, and the day of the week For example, the manager prepares the associated data every day (every actual value measurement date), and stores a set of data for each day in the data storage unit 2.
 学習部3は、データ記憶部2に記憶されているデータの集合(図6参照)を学習データとして用いて、映画館の客数を予測するための学習モデルを生成する。第2の実施形態では、学習部3は、日毎に、実績値測定日の前年同日の9日前の予約者数に対する実績値測定日の9日前の予約者数の割合を算出する。例えば、図6に示す実績値測定日「12月24日」のデータ関して、実績値測定日の前年同日の9日前の予約者数“700”に対する、実績値測定日の9日前の予約者数“1000”の割合を算出する。すなわち、学習部3は、1000/700を算出する。学習部3は、他の実績値測定日のデータに関しても同様の演算を行う。そして、学習部3は、実績値測定日毎に求めた上記の割合、各実績値測定日の前年同日の客数の実績値、各実績値測定日の曜日、実績値を用いて、学習モデルを生成する。このとき、学習部3は、予測対象日の前年同日の一定期間前(9日前)の予約者数に対する予測対象日の一定期間前(9日前)の予約者数の割合、予測対象日の前年同日の客数の実績値、予測対象日の曜日等をそれぞれ説明変数とする学習モデルを生成する。 The learning unit 3 uses a set of data stored in the data storage unit 2 (see FIG. 6) as learning data, and generates a learning model for predicting the number of customers in the movie theater. In the second embodiment, the learning unit 3 calculates, for each day, the ratio of the number of reservations 9 days before the actual value measurement date to the number of reservations 9 days before the same day of the previous year on the actual value measurement date. For example, with respect to the data of the actual value measurement date “December 24” shown in FIG. 6, the number of reservations “700” 9 days before the same day of the actual value measurement date is 9 days before the actual value measurement date. The ratio of the number “1000” is calculated. That is, the learning unit 3 calculates 1000/700. The learning unit 3 performs the same calculation with respect to data of other actual value measurement dates. And the learning part 3 produces | generates a learning model using said ratio calculated | required for every actual value measurement day, the actual value of the number of customers of the previous year same day of each actual value measurement day, the day of the week of each actual value measurement day, and an actual value To do. At this time, the learning unit 3 calculates the ratio of the number of reservations before a certain period (9 days ago) to the number of reservations before a certain period (9 days ago) on the same day of the previous year as the prediction target, A learning model is generated in which the actual value of the number of customers on the same day, the day of the week to be predicted, and the like are explanatory variables.
 第1の実施形態と同様に、学習モデルの生成方法は、特に限定されない。学習部3は、例えば、回帰分析によって学習モデルを生成してもよく、あるいは、他の機械学習アルゴリズムによって学習モデルを生成してもよい。 As in the first embodiment, the learning model generation method is not particularly limited. For example, the learning unit 3 may generate a learning model by regression analysis, or may generate a learning model by another machine learning algorithm.
 予測部4には、予測対象日の前年同日の9日前の予約者数に対する予測対象日の9日前の予約者数の割合、予測対象日の前年同日の客数の実績値、および予測対象日の曜日等の情報が入力される。予測部4は、それらの情報を学習モデルに適用することによって、予測対象日の客数の予測値を算出する。 The prediction unit 4 includes the ratio of the number of reservations 9 days before the prediction target day to the number of reservations 9 days before the same day of the prediction target day, the actual value of the number of customers on the same day of the prediction target day, and the prediction date Information such as day of the week is input. The prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
 第2の実施形態によれば、学習部3は、予測対象日の前年同日の一定期間前の予約者数に対する予測対象日の一定期間前の予約者数の割合、予測対象日の前年同日の客数の実績値を説明変数とする学習モデルを生成する。従って、実績値の変動の状況が、前年の同時期における実績値の変動の状況と類似している場合に、学習モデルを用いて算出される客数の予測値の精度をより向上させることができる。 According to the second embodiment, the learning unit 3 determines the ratio of the number of reservations before a certain period of the prediction target day to the number of reservations before the fixed period on the same day of the previous prediction date, A learning model using the actual number of customers as an explanatory variable is generated. Accordingly, when the situation of the actual value fluctuation is similar to the situation of the actual value fluctuation in the same period of the previous year, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved. .
 次に、第2の実施形態の変形例について説明する。
 本変形例では、データ記憶部2は、映画館の客数の実績値に、予約者の属性毎の、実績値測定日の一定期間前(本例では9日前とする。)の予約者数、実績値測定日の前年同日の客数の実績値、実績値測定日の前年同日の9日前の予約者数を対応付けたデータの集合を記憶する。
Next, a modification of the second embodiment will be described.
In the present modification, the data storage unit 2 adds the number of reservations for a certain period before the actual value measurement date (in this example, 9 days in advance) for each attribute of the reservation to the actual value of the number of customers in the theater. A set of data is stored in which the actual value of the number of customers on the same day of the previous year of the actual value measurement date and the number of reservations 9 days before the same day of the previous year of the actual value measurement date are associated.
 図7は、第2の実施形態の変形例でデータ記憶部2が記憶するデータの例を示す模式図である。図7に示す例では、予約者の属性を「一般」、「学生」、「幼児」に分類している。ただし、既に説明したように、予約者の属性の種類は本例に限定されない。予約者の属性の種類を、予約者が予約したチケットの種別に合わせて、より多くの種類に分類してもよい。 FIG. 7 is a schematic diagram illustrating an example of data stored in the data storage unit 2 according to a modification of the second embodiment. In the example shown in FIG. 7, the attributes of the reservation person are classified into “general”, “student”, and “infant”. However, as already described, the type of attribute of the reservation person is not limited to this example. The type of the attribute of the reservation may be classified into more types according to the type of ticket reserved by the reservation.
 図7に例示するように、例えば、実績値測定日「12月24日」の客数の実績値には、実績値測定日の9日前(12月15日)における「一般」に該当する予約者数“700”、実績値測定日の前年同日における「一般」に該当する客数の実績値“2000”、および、実績値測定日の前年同日の9日前(前年の12月15日)における「一般」に該当する予約者数“500”が対応付けられている。 As illustrated in FIG. 7, for example, for the actual value of the number of customers on the actual value measurement date “December 24”, the reservation person corresponding to “general” 9 days before the actual value measurement date (December 15) The number “700”, the actual value “2000” of the number of customers corresponding to “general” on the same day of the previous year of the actual value measurement date, and the “general” on 9 days before the same day of the actual value measurement date (December 15 of the previous year) ”Is associated with the number of reservation users“ 500 ”.
 同様に、実績値測定日「12月24日」の客数の実績値には、実績値測定日の9日前における「学生」に該当する予約者数“250”、実績値測定日の前年同日における「学生」に該当する客数の実績値“700”、および、実績値測定日の前年同日の9日前における「学生」に該当する予約者数“160”が対応付けられている(図7参照)。 Similarly, the actual value of the number of customers on the actual value measurement date “December 24” includes the number of reservations “250” corresponding to “students” 9 days before the actual value measurement date, The actual value “700” of the number of customers corresponding to “student” is associated with the number of reservations “160” corresponding to “student” 9 days before the same day of the actual value measurement date (see FIG. 7). .
 同様に、実績値測定日「12月24日」の客数の実績値には、実績値測定日の9日前における「幼児」に該当する予約者数“50”、実績値測定日の前年同日における「幼児」に該当する客数の実績値“200”、および、実績値測定日の前年同日の9日前における「幼児」に該当する予約者数“40”が対応付けられている(図7参照)。 Similarly, the actual value of the number of customers on the actual value measurement date “December 24” includes the number of reservations “50” corresponding to “infant” 9 days before the actual value measurement date, The actual value “200” of the number of customers corresponding to “Infant” is associated with the number of reservations “40” corresponding to “Infant” 9 days before the same day of the previous year on the actual value measurement date (see FIG. 7). .
 また、図7では、図6に示す場合と同様に、曜日の情報も実績値に対応付けられている場合を例示している。 FIG. 7 illustrates the case where the day of week information is also associated with the actual value, as in the case shown in FIG.
 上記のように客数の実績値に各種情報が対応付けられたデータを、例えば、管理者が1日毎に用意し、それらのデータの集合を、データ記憶部2に記憶させておく。 As described above, for example, an administrator prepares data in which various types of information are associated with the actual number of customers as described above, and a set of these data is stored in the data storage unit 2.
 学習部3は、データ記憶部2に記憶されているデータの集合(図7参照)を学習データとして用いて、学習モデルを生成する。 The learning unit 3 generates a learning model using a set of data stored in the data storage unit 2 (see FIG. 7) as learning data.
 ここで、学習部3は、日毎に、実績値測定日の前年同日の9日前における「一般」に該当する予約者数に対する、実績値測定日の9日前における「一般」に該当する予約者数の割合を算出する。例えば、学習部3は、図7に示す実績値測定日「12月24日」のデータ関して、700/500を算出する。 Here, for each day, the learning unit 3 compares the number of reservations corresponding to “general” 9 days before the actual value measurement date with respect to the number of reservations corresponding to “general” 9 days before the same day of the previous year of the actual value measurement date. Calculate the percentage of. For example, the learning unit 3 calculates 700/500 for the data of the actual value measurement date “December 24” shown in FIG.
 同様に、学習部3は、日毎に、実績値測定日の前年同日の9日前における「学生」に該当する予約者数に対する、実績値測定日の9日前における「学生」に該当する予約者数の割合を算出する。例えば、学習部3は、図7に示す実績値測定日「12月24日」のデータ関して、250/160を算出する。 Similarly, the learning unit 3 compares the number of reservations corresponding to “students” 9 days before the actual value measurement date with respect to the number of reservations corresponding to “students” 9 days prior to the same day of the previous year on the actual value measurement day. Calculate the percentage of. For example, the learning unit 3 calculates 250/160 for the data of the actual value measurement date “December 24” shown in FIG.
 同様に、学習部3は、日毎に、実績値測定日の前年同日の9日前における「幼児」に該当する予約者数に対する、実績値測定日の9日前における「幼児」に該当する予約者数の割合を算出する。例えば、学習部3は、図7に示す実績値測定日「12月24日」のデータ関して、50/40を算出する。 Similarly, the learning unit 3 compares the number of reservations corresponding to “infant” 9 days before the actual value measurement date with respect to the number of reservations corresponding to “infant” 9 days before the same day of the previous year on the actual value measurement day. Calculate the percentage of. For example, the learning unit 3 calculates 50/40 for the data of the actual value measurement date “December 24” shown in FIG.
 学習部3は、他の実績値測定日のデータに関しても、属性毎に同様の演算を行う。 The learning unit 3 performs the same calculation for each attribute with respect to data of other actual value measurement dates.
 学習部3は、属性毎に求めた、実績値測定日の前年同日の9日前の予約者数に対する実績値測定日の9日前の予約者数の割合、各属性における実績値測定日の前年同日の実績値、各実績値測定日の曜日、実績値等を用いて、学習モデルを生成する。このとき、学習部3は、以下の事項を説明変数とする学習モデルを生成する。
(1)予測対象日の前年同日の9日前における「一般」に該当する予約者数に対する、予測対象日の9日前における「一般」に該当する予約者数の割合。
(2)予測対象日の前年同日における「一般」に該当する客数の実績値。
(3)予測対象日の前年同日の9日前における「学生」に該当する予約者数に対する、予測対象日の9日前における「学生」に該当する予約者数の割合。
(4)予測対象日の前年同日における「学生」に該当する客数の実績値。
(5)予測対象日の前年同日の9日前における「幼児」に該当する予約者数に対する、予測対象日の9日前における「幼児」に該当する予約者数の割合。
(6)予測対象日の前年同日における「幼児」に該当する客数の実績値。
(7)予測対象日の曜日。
The learning unit 3 calculates, for each attribute, the ratio of the number of reservations 9 days before the actual value measurement date to the number of reservations 9 days prior to the same day the previous year on the actual value measurement date, The learning model is generated using the actual value, the day of each measurement value measurement day, the actual value, and the like. At this time, the learning unit 3 generates a learning model having the following items as explanatory variables.
(1) The ratio of the number of reservations corresponding to “general” nine days before the prediction target day to the number of reservations corresponding to “general” nine days before the same day of the prediction target date.
(2) Actual value of the number of customers corresponding to “general” on the same day of the previous year as the prediction target date.
(3) The ratio of the number of reservations corresponding to “students” nine days before the prediction target day to the number of reservations corresponding to “students” nine days before the same day of the prediction target date.
(4) The actual value of the number of customers corresponding to “students” on the same day of the previous year as the prediction target date.
(5) The ratio of the number of reservations corresponding to “infant” 9 days before the prediction target day to the number of reservations corresponding to “infant” 9 days before the same day of the prediction target day.
(6) The actual value of the number of customers corresponding to “infants” on the same day of the previous year as the prediction target date.
(7) Day of the week to be predicted.
 なお、学習部3は、上記の(1)~(7)の事項を説明変数としているとともに、他の事項も説明変数としている学習モデルを生成してもよい。 Note that the learning unit 3 may generate a learning model in which the items (1) to (7) are used as explanatory variables, and other items are also used as explanatory variables.
 予測部4には、上記の(1)~(7)等の情報が入力される。予測部4は、それらの情報を学習モデルに適用することによって、予測対象日の客数の予測値を算出する。 The information such as (1) to (7) above is input to the prediction unit 4. The prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
 本変形例によれば、予測対象日の前年同日の一定期間における予約者数に対する、予測対象日の一定期間前における予約者数の割合や、予測対象日の前年同日の実績値を、属性毎に個別の説明変数としている。従って、学習モデルを用いて算出される客数の予測値の精度をより向上させることができる。 According to this modification, the ratio of the number of reservations in a certain period before the prediction target date to the number of reservations in the fixed period on the same day of the previous year on the prediction target date, and the actual value on the same day of the previous year on the prediction target day Individual explanatory variables. Therefore, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
実施形態3.
 本発明の第3の実施形態の学習システムは、第1の実施形態の学習システムと同様に、図1または図3に示すブロック図で表すことができる。以下、図1を参照して、第3の実施形態を説明する。第1の実施形態と同様の事項については、適宜説明を省略する。
Embodiment 3. FIG.
The learning system of the third embodiment of the present invention can be represented by the block diagram shown in FIG. 1 or FIG. 3, similarly to the learning system of the first embodiment. Hereinafter, a third embodiment will be described with reference to FIG. Explanation of matters similar to those in the first embodiment will be omitted as appropriate.
 第3の実施形態では、実績値測定日および予測対象日から過去にさかのぼる所定期間として、複数の所定期間が予め定められる。以下、この複数の所定期間を第1から第nまでの各所定期間とする。nは、2以上の整数である。また、第1から第nまでの各所定期間は、長さが降順になるように定められているものとする。すなわち、第1の所定期間が最も長く、第nの所定期間が最も短いものとする。 In the third embodiment, a plurality of predetermined periods are determined in advance as a predetermined period that goes back in the past from the actual value measurement date and the prediction target date. Hereinafter, the plurality of predetermined periods are defined as first to nth predetermined periods. n is an integer of 2 or more. In addition, it is assumed that the predetermined periods from the first to the n-th are determined so that the lengths are in descending order. That is, the first predetermined period is the longest and the nth predetermined period is the shortest.
 本実施形態では説明を簡単にするため、第1から第3までの3つの所定期間が定められている場合を例にして説明する。また、第1の所定期間が14日であり、第2の所定期間が12日であり、第3の所定期間が9日である場合を例にして説明する。ただし、所定期間の種類は3種類に限定されず、2種類以上であればよい。また、14日、12日、9日等の長さは例示であり、各所定期間の長さは、例示した長さでなくてもよい。 In this embodiment, in order to simplify the description, a case where three predetermined periods from the first to the third are defined will be described as an example. Further, the case where the first predetermined period is 14 days, the second predetermined period is 12 days, and the third predetermined period is 9 days will be described as an example. However, the types of the predetermined period are not limited to three types and may be two or more types. Moreover, the lengths of 14th, 12th, 9th, etc. are examples, and the length of each predetermined period may not be the illustrated length.
 図8は、第3の実施形態においてデータ記憶部2に記憶されるデータの集合の例を示す模式図である。図8に示す例では、1日毎に、客数の実績値と、その実績値測定日より第1の所定期間前(14日前)の予約者数と、その実績値測定日より第2の所定期間前(12日前)の予約者数と、その実績値測定日より第3の所定期間前(9日前)の予約者数と、その実績値測定日の曜日等を対応付けたデータを例示している。それぞれの日が実績値測定日に該当する。 FIG. 8 is a schematic diagram illustrating an example of a set of data stored in the data storage unit 2 in the third embodiment. In the example shown in FIG. 8, the actual value of the number of customers, the number of reservations before the first predetermined period (14 days before) from the actual value measurement date, and the second predetermined period from the actual value measurement date for each day Exemplified data associating the previous (12 days ago) number of reservations, the number of reservations before the third predetermined period (9 days before) the actual value measurement date, the day of the week, etc. Yes. Each day corresponds to the actual value measurement date.
 実績値測定日より第1の所定期間前(14日前)の予約者数は、その実績値測定日の14日前においてその実績値測定日に映画館を利用することを予約している者の数である。同様に、実績値測定日より第2の所定期間前(12日前)の予約者数は、その実績値測定日の12日前においてその実績値測定日に映画館を利用することを予約している者の数である。同様に、実績値測定日より第3の所定期間前(9日前)の予約者数は、その実績値測定日の9日前においてその実績値測定日に映画館を利用することを予約している者の数である。あるいは、これらの各予約者数は、利用日指定なしで単に施設を利用することを予約している者の数であってもよい。 The number of reservations before the first predetermined period (14 days before) from the actual value measurement date is the number of persons who have made a reservation to use the movie theater on the actual value measurement date 14 days before the actual value measurement date. It is. Similarly, the number of reservations before the second predetermined period (12 days before) the actual value measurement date is reserved to use the movie theater on the actual value measurement date 12 days before the actual value measurement date. Number of people. Similarly, the number of reservations before the third predetermined period (9 days before) the actual value measurement date is reserved to use the movie theater on the actual value measurement date 9 days before the actual value measurement date. Number of people. Alternatively, the number of each reservation person may be the number of persons who have reserved the use of the facility without specifying the use date.
 客数の実績値、実績値測定日の14日前の予約者数、実績値測定日の12日前の予約者数、および実績値測定日の9日前の予約者数、並びに曜日等を対応付けたデータを、例えば、管理者が1日毎(実績値測定日毎)に用意し、1日毎のデータの集合をデータ記憶部2に記憶させておく。 Data in which the actual number of customers, the number of reservations 14 days before the actual value measurement date, the number of reservations 12 days before the actual value measurement date, the number of reservations 9 days before the actual value measurement date, the day of the week, etc. For example, the administrator prepares every day (actual value measurement date), and stores a set of data for each day in the data storage unit 2.
 学習部3は、データ記憶部2に記憶されているデータの集合(図8参照)を学習データとして用いて、映画館の客数を予測するための学習モデルを生成する。学習データ3は、学習データに合わせて、予測対象日より第1の所定期間前(14日前)の予約者数、予測対象日より第2の所定期間前(12日前)の予約者数、および予測対象日より第3の所定期間前(9日前)の予約者数、並びに予測対象日の曜日等を説明変数とする学習モデルを生成する。 The learning unit 3 uses the set of data stored in the data storage unit 2 (see FIG. 8) as learning data to generate a learning model for predicting the number of customers in the movie theater. The learning data 3 includes, according to the learning data, the number of reservations before the first predetermined period (14 days before) from the prediction target date, the number of reservations before the second predetermined period (12 days before) from the prediction target date, and A learning model is generated in which the number of reservations before the third predetermined period (9 days ago) from the prediction target date, the day of the week of the prediction target date, and the like are explanatory variables.
 第1の実施形態と同様に、学習モデルの生成方法は、特に限定されない。学習部3は、例えば、回帰分析によって学習モデルを生成してもよく、あるいは、他の機械学習アルゴリズムによって学習モデルを生成してもよい。 As in the first embodiment, the learning model generation method is not particularly limited. For example, the learning unit 3 may generate a learning model by regression analysis, or may generate a learning model by another machine learning algorithm.
 予測部4には、予測対象日の14日前の予約者数、予測対象日の12日前の予約者数、および予測対象日の9日前の予約者数、並びに予測対象日の曜日等の情報が入力される。予測部4は、それらの情報を学習モデルに適用することによって、予測対象日の客数の予測値を算出する。 The prediction unit 4 has information such as the number of reservations 14 days before the prediction target date, the number of reservations 12 days before the prediction target date, the number of reservations 9 days before the prediction target date, and the day of the prediction target day. Entered. The prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
 第3の実施形態では、学習部3は、予測対象日より前の複数の時点での予約者数をそれぞれ説明変数とする学習モデルを生成する。従って、予測対象日の客数の予測に用いる情報として、本発明の第1の実施形態よりも多くの情報を用いる。従って、学習モデルを用いて算出される客数の予測値の精度をより向上させることができる。 In the third embodiment, the learning unit 3 generates a learning model in which the number of reservations at a plurality of time points before the prediction target date is an explanatory variable. Therefore, more information is used as information used for predicting the number of customers on the prediction target day than in the first embodiment of the present invention. Therefore, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
 また、上記の第3の実施形態では、客数の実績値と、その実績値測定日より第1の所定期間前(14日前)の予約者数と、その実績値測定日より第2の所定期間前(12日前)の予約者数と、その実績値測定日より第3の所定期間前(9日前)の予約者数と、その実績値測定日の曜日等を対応付けたデータの集合をデータ記憶部2に記憶させる。実績値測定日を基準とする各所定期間前の予約者数の代わりに、実績値測定日を基準とする各所定期間前の時点での予約者数の移動平均値を用いてもよい。例えば、日毎に、客数の実績値と、その実績値測定日より第1の所定期間前(14日前)の時点での予約者数の移動平均値と、その実績値測定日より第2の所定期間前(12日前)の時点での予約者数の移動平均値と、その実績値測定日より第3の所定期間前(9日前)の時点での予約者数の移動平均値と、その実績値測定日の曜日等を対応付けたデータを、管理者が用意し、データ記憶部2が、そのデータの集合を記憶していてもよい。 In the third embodiment, the actual value of the number of customers, the number of reservations before the first predetermined period (14 days before) the actual value measurement date, and the second predetermined period from the actual value measurement date A set of data in which the number of previous reservations (12 days ago), the number of reservations before the third predetermined period (9 days before) the actual value measurement date, the day of the week, etc. of the actual measurement date It is stored in the storage unit 2. Instead of the number of reservations before each predetermined period based on the actual value measurement date, a moving average value of the number of reservations at the time before each predetermined period based on the actual value measurement date may be used. For example, for each day, the actual value of the number of customers, the moving average value of the number of reservations at the time before the first predetermined period (14 days before) from the actual value measurement date, and the second predetermined value from the actual value measurement date The moving average value of the number of reservations before the period (12 days ago), the moving average value of the number of reservations before the third predetermined period (9 days ago) from the actual value measurement date, and the actual results The manager may prepare data in which the day of the week or the like is associated with the value measurement date, and the data storage unit 2 may store the set of data.
 この場合、学習データ3は、学習データに合わせて、予測対象日より第1の所定期間前(14日前)の時点での予約者数の移動平均値、予測対象日より第2の所定期間前(12日前)の時点での予約者数の移動平均値、予測対象日より第3の所定期間前(9日前)の時点での予約者数の移動平均値、並びに予測対象日の曜日等を説明変数とする学習モデルを生成する。 In this case, the learning data 3 includes the moving average value of the number of reservations at the time before the first predetermined period (14 days before) the prediction target date and the second predetermined period before the prediction target date according to the learning data. The moving average value of the number of reservations as of (12 days ago), the moving average value of the number of reservations as of the third predetermined period (9 days ago) from the prediction target date, the day of the prediction target day, and the like A learning model is generated as an explanatory variable.
 上記のように移動平均値を用いる場合にも、第3の実施形態と同様の効果が得られる。 Even when the moving average value is used as described above, the same effect as in the third embodiment can be obtained.
 次に、第3の実施形態の変形例について説明する。
 本変形例では、データ記憶部2は、映画館の客数の実績値に、予約者の属性毎の、実績値測定日の第1の所定期間前(14日前)の予約者数、実績値測定日の第2の所定期間前(12日前)の予約者数、実績値測定日の第3の所定期間前(9日前)の予約者数を対応付けたデータの集合を記憶する。
Next, a modification of the third embodiment will be described.
In this modified example, the data storage unit 2 measures the actual value of the number of customers in the movie theater, the number of reservations and the actual value measurement before the first predetermined period (14 days before) the actual value measurement date for each attribute of the reservation. A set of data in which the number of reservations before the second predetermined period of the day (12 days before) and the number of reservations before the third predetermined period (9 days before) of the actual value measurement date are stored is stored.
 図9は、第3の実施形態の変形例でデータ記憶部2が記憶するデータの例を示す模式図である。図9に示す例では、予約者の属性を「一般」、「学生」、「幼児」に分類している。ただし、既に説明したように、予約者の属性の種類は本例に限定されない。予約者の属性の種類を、予約者が予約したチケットの種別に合わせて、より多くの種類に分類してもよい。 FIG. 9 is a schematic diagram illustrating an example of data stored in the data storage unit 2 in a modification of the third embodiment. In the example shown in FIG. 9, the attributes of the reservation person are classified into “general”, “student”, and “infant”. However, as already described, the type of attribute of the reservation person is not limited to this example. The type of the attribute of the reservation may be classified into more types according to the type of ticket reserved by the reservation.
 図9に例示するように、例えば、実績値測定日「12月24日」の客数の実績値には、実績値測定日の14日前における「一般」に該当する予約者数“50”、実績値測定日の12日前における「一般」に該当する予約者数“180”、実績値測定日の9日前における「一般」に該当する予約者数“700”が対応付けられている。 As illustrated in FIG. 9, for example, the actual value of the number of customers on the actual value measurement date “December 24” includes the number of reservations “50” corresponding to “general” 14 days before the actual value measurement date, The number of reservations “180” corresponding to “general” 12 days before the value measurement date and the number of reservations “700” corresponding to “general” 9 days before the actual value measurement date are associated with each other.
 同様に、実績値測定日「12月24日」の客数の実績値には、実績値測定日の14日前における「学生」に該当する予約者数“40”、実績値測定日の12日前における「学生」に該当する予約者数“100”、実績値測定日の9日前における「学生」に該当する予約者数“250”が対応付けられている。 Similarly, the actual value of the number of customers on the actual value measurement date “December 24” includes the number of reservations “40” corresponding to “students” 14 days before the actual value measurement date, The number of reservations “100” corresponding to “student” is associated with the number of reservations “250” corresponding to “student” 9 days before the actual value measurement date.
 同様に、実績値測定日「12月24日」の客数の実績値には、実績値測定日の14日前における「幼児」に該当する予約者数“10”、実績値測定日の12日前における「幼児」に該当する予約者数“20”、実績値測定日の9日前における「幼児」に該当する予約者数“50”が対応付けられている。 Similarly, the actual value of the number of customers on the actual value measurement date “December 24” includes the number of reservations “10” corresponding to “infant” 14 days before the actual value measurement date, The number of reservation persons “20” corresponding to “Infant” is associated with the number of reservation persons “50” corresponding to “Infant” 9 days before the actual value measurement date.
 また、図9では、図8に示す場合と同様に、曜日の情報も実績値に対応付けられている場合を例示している。 FIG. 9 illustrates the case where the day of week information is also associated with the actual value as in the case shown in FIG.
 上記のように客数の実績値に各種情報が対応付けられたデータを、例えば、管理者が1日毎に用意し、それらのデータの集合をデータ記憶部2に記憶させておく。 As described above, for example, an administrator prepares data in which various types of information are associated with the actual value of the number of customers, and stores a set of these data in the data storage unit 2.
 学習部3は、データ記憶部2に記憶されているデータの集合(図9参照)を学習データとして用いて、学習モデルを生成する。学習データ3は、学習データに合わせて、予測対象日より第1の所定期間前(14日前)における「一般」に該当する予約者数、予測対象日より第2の所定期間前(12日前)における「一般」に該当する予約者数、予測対象日より第3の所定期間前(9日前)における「一般」に該当する予約者数、予測対象日より第1の所定期間前における「学生」に該当する予約者数、予測対象日より第2の所定期間前における「学生」に該当する予約者数、予測対象日より第3の所定期間前における「学生」に該当する予約者数、予測対象日より第1の所定期間前における「幼児」に該当する予約者数、予測対象日より第2の所定期間前における「幼児」に該当する予約者数、および、予測対象日より第3の所定期間前における「幼児」に該当する予約者数、並びに予測対象日の曜日等を説明変数とする学習モデルを生成する。 The learning unit 3 generates a learning model using a set of data stored in the data storage unit 2 (see FIG. 9) as learning data. The learning data 3 includes the number of reservations corresponding to “general” before the first predetermined period (14 days ago) from the prediction target date and the second predetermined period (12 days before the prediction target date) in accordance with the learning data. The number of reservations corresponding to “general” and the number of reservations corresponding to “general” before the third predetermined period (9 days) before the forecast date and “students” before the first predetermined period from the prediction date The number of reservations corresponding to, the number of reservations corresponding to “students” in the second predetermined period before the forecast date, the number of reservations corresponding to “students” in the third predetermined period before the prediction date The number of reservations corresponding to “infant” before the first predetermined period from the target date, the number of reservations corresponding to “infant” before the second predetermined period from the prediction target date, and the third from the prediction target date Scheduled to fall under “Infant” before the specified period Number of interrupted, as well as to generate a learning model for the explanatory variables the day of the week, etc. of the prediction target date.
 予測部4には、予測対象日より第1の所定期間前(14日前)における「一般」に該当する予約者数、予測対象日より第2の所定期間前(12日前)における「一般」に該当する予約者数、予測対象日より第3の所定期間前(9日前)における「一般」に該当する予約者数、予測対象日より第1の所定期間前における「学生」に該当する予約者数、予測対象日より第2の所定期間前における「学生」に該当する予約者数、予測対象日より第3の所定期間前における「学生」に該当する予約者数、予測対象日より第1の所定期間前における「幼児」に該当する予約者数、予測対象日より第2の所定期間前における「幼児」に該当する予約者数、および、予測対象日より第3の所定期間前における「幼児」に該当する予約者数、並びに予測対象日の曜日等の情報が入力される。予測部4は、それらの情報を学習モデルに適用することによって、予測対象日の客数の予測値を算出する。 The forecasting unit 4 sets the number of reservations corresponding to “general” before the first predetermined period (14 days before) from the prediction target date, and “general” before the second predetermined period (12 days before) from the prediction target date. Number of applicable reservations, number of reservations corresponding to “general” before the third predetermined period (9 days) before the target date of prediction, and reservations corresponding to “students” before the first predetermined period from the target date of prediction Number, number of reservations corresponding to “student” in the second predetermined period before the prediction target date, number of reservations corresponding to “student” in the third predetermined period before the prediction target date, first from the prediction target date The number of reservations corresponding to “infant” before the predetermined period of time, the number of reservations corresponding to “infant” before the second predetermined period from the prediction target date, and the number of reservation persons before the third predetermined period from the prediction target date Number of reservations that fall under the category “Infants” and forecast targets Information such as the day of the week is input. The prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
 本変形例によれば、予測対象日より各所定期間前の予約者数を、属性毎に個別の説明変数としている。従って、学習モデルを用いて算出される客数の予測値の精度をより向上させることができる。 According to this modification, the number of reservations before each predetermined period from the prediction target date is an individual explanatory variable for each attribute. Therefore, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
 また、本変形例でも、実績値測定日を基準とする各所定期間前の予約者数の代わりに、実績値測定日を基準とする各所定期間前の時点での予約者数の移動平均値を用いてもよい。例えば、日毎に、客数の実績値と、その実績値測定日より第1の所定期間前(14日前)の時点での「一般」に該当する予約者数の移動平均値、その実績値測定日より第2の所定期間前(12日前)の時点での「一般」に該当する予約者数の移動平均値、その実績値測定日より第3の所定期間前(9日前)の時点での「一般」に該当する予約者数の移動平均値、その実績値測定日より第1の所定期間前の時点での「学生」に該当する予約者数の移動平均値、その実績値測定日より第2の所定期間前の時点での「学生」に該当する予約者数の移動平均値、その実績値測定日より第3の所定期間前の時点での「学生」に該当する予約者数の移動平均値、その実績値測定日より第1の所定期間前の時点での「幼児」に該当する予約者数の移動平均値、その実績値測定日より第2の所定期間前の時点での「幼児」に該当する予約者数の移動平均値、その実績値測定日より第3の所定期間前の時点での「幼児」に該当する予約者数の移動平均値、および、その実績値測定日の曜日等を対応付けたデータを、管理者が用意し、データ記憶部2がそのデータの集合を記憶していてもよい。 Also in this modification, instead of the number of reservations before each predetermined period based on the actual value measurement date, the moving average value of the number of reservations at the time before each predetermined period based on the actual value measurement date May be used. For example, for each day, the actual value of the number of customers, the moving average value of the number of reservations corresponding to “general” at the time before the first predetermined period (14 days before) the actual value measurement date, the actual value measurement date The moving average value of the number of reservations corresponding to “general” at the time before the second predetermined period (12 days before), the “3” before the third predetermined period (9 days before) from the actual measurement date. The moving average value of the number of reservations corresponding to “general”, the moving average value of the number of reservations corresponding to “students” as of the first predetermined period before the date of measurement of the actual value, and the date of measurement of the actual value Moving average value of the number of reservations corresponding to “students” as of 2 before the predetermined period, and movement of the number of reservations corresponding to “students” as of the 3rd period before the measurement date Average value, moving average value of the number of reservations corresponding to “infant” at the time before the first predetermined period from the actual value measurement date The moving average value of the number of reservations corresponding to “Infants” at the time before the second predetermined period from the actual value measurement date, and “Infants” at the time before the third predetermined period from the actual value measurement date The administrator may prepare data in which the moving average value of the corresponding number of reservation users and the day of the week of the actual value measurement date are associated with each other, and the data storage unit 2 may store the set of data.
 この場合、学習データ3は、学習データに合わせて、予測対象日より第1の所定期間前(14日前)の時点での「一般」に該当する予約者数の移動平均値、予測対象日より第2の所定期間前(12日前)の時点での「一般」に該当する予約者数の移動平均値、予測対象日より第3の所定期間前(9日前)の時点での「一般」に該当する予約者数の移動平均値、予測対象日より第1の所定期間前の時点での「学生」に該当する予約者数の移動平均値、予測対象日より第2の所定期間前の時点での「学生」に該当する予約者数の移動平均値、予測対象日より第3の所定期間前の時点での「学生」に該当する予約者数の移動平均値、予測対象日より第1の所定期間前の時点での「幼児」に該当する予約者数の移動平均値、予測対象日より第2の所定期間前の時点での「幼児」に該当する予約者数の移動平均値、および、予測対象日より第3の所定期間前の時点での「幼児」に該当する予約者数の移動平均値、並びに、予測対象日の曜日等を説明変数とする学習モデルを生成する。 In this case, the learning data 3 is based on the learning data, the moving average value of the number of reservations corresponding to “general” at the time before the first predetermined period (14 days before) from the prediction target date, and the prediction target date. Moving average value of the number of reservations corresponding to “general” at the time before the second predetermined period (12 days before), “general” at the time before the third predetermined period (9 days before) from the prediction target date The moving average value of the corresponding number of reservations, the moving average value of the number of reservations corresponding to “students” at the time before the first predetermined period from the prediction target date, the time before the second predetermined period from the prediction target date The moving average value of the number of reservations corresponding to “students” in Japan, the moving average value of the number of reservations corresponding to “students” as of the third predetermined period before the prediction target date, and the first from the prediction target date The moving average value of the number of reservations corresponding to “infant” at the time before the predetermined period of, the second place from the forecast date The moving average value of the number of reservations corresponding to “Infant” at the time before the period, and the moving average value of the number of reservations corresponding to “Infant” at the time before the third predetermined period from the prediction target date, In addition, a learning model is generated in which the day of the week to be predicted is an explanatory variable.
 上記のように移動平均値を用いる場合にも、第3の実施形態の変形例と同様の効果が得られる。 Even when the moving average value is used as described above, the same effect as that of the modified example of the third embodiment can be obtained.
実施形態4.
 本発明の第3の実施形態の学習システムは、第1の実施形態の学習システムと同様に、図1または図3に示すブロック図で表すことができる。以下、図1を参照して、第4の実施形態を説明する。第1の実施形態と同様の事項については、適宜説明を省略する。
Embodiment 4 FIG.
The learning system of the third embodiment of the present invention can be represented by the block diagram shown in FIG. 1 or FIG. 3, similarly to the learning system of the first embodiment. Hereinafter, a fourth embodiment will be described with reference to FIG. Explanation of matters similar to those in the first embodiment will be omitted as appropriate.
 第4の実施形態では、第3の実施形態と同様に、実績値測定日および予測対象日から過去にさかのぼる所定期間として、複数の所定期間が予め定められる。第3の実施形態と同様に、この複数の所定期間を第1から第nまでの各所定期間とする。nは、2以上の整数である。また、第1から第nまでの各所定期間は、長さが降順になるように定められているものとする。すなわち、第1の所定期間が最も長く、第nの所定期間が最も短いものとする。 In the fourth embodiment, as in the third embodiment, a plurality of predetermined periods are determined in advance as predetermined periods that go back in the past from the actual value measurement date and the prediction target date. As in the third embodiment, the plurality of predetermined periods are defined as the first to nth predetermined periods. n is an integer of 2 or more. In addition, it is assumed that the predetermined periods from the first to the n-th are determined so that the lengths are in descending order. That is, the first predetermined period is the longest and the nth predetermined period is the shortest.
 説明を簡単にするために、第3の実施形態と同様に、第1から第3までの3つの所定期間が定められている場合を例にして説明する。また、第1の所定期間が14日であり、第2の所定期間が12日であり、第3の所定期間が9日である場合を例にして説明する。ただし、所定期間の種類は3種類に限定されず、2種類以上であればよい。また、14日、12日、9日等の長さは例示であり、各所定期間の長さは、例示した長さでなくてもよい。 In order to simplify the description, a case where three predetermined periods from the first to the third are defined as in the third embodiment will be described as an example. Further, the case where the first predetermined period is 14 days, the second predetermined period is 12 days, and the third predetermined period is 9 days will be described as an example. However, the types of the predetermined period are not limited to three types and may be two or more types. Moreover, the lengths of 14th, 12th, 9th, etc. are examples, and the length of each predetermined period may not be the illustrated length.
 第4の実施形態のデータ記憶部2は、第3の実施形態のデータ記憶部2と同様のデータの集合を記憶する。例えば、第4の実施形態のデータ記憶部2は、図8に例示するデータの集合を記憶する。第4の実施形態のデータ記憶部2に記憶されるデータは、第3の実施形態のデータ記憶部2に記憶されるデータと同様であるので、詳細な説明を省略する。 The data storage unit 2 of the fourth embodiment stores the same data set as the data storage unit 2 of the third embodiment. For example, the data storage unit 2 of the fourth embodiment stores a set of data illustrated in FIG. Since the data stored in the data storage unit 2 of the fourth embodiment is the same as the data stored in the data storage unit 2 of the third embodiment, detailed description thereof is omitted.
 学習部3は、データ記憶部2に記憶されているデータの集合(図8参照)を学習データとして用いて、映画館の客数を予測するための学習モデルを生成する。 The learning unit 3 uses the set of data stored in the data storage unit 2 (see FIG. 8) as learning data to generate a learning model for predicting the number of customers in the movie theater.
 学習モデルを生成する際、学習部3は、mを2からnまでの各整数とした場合に、実績値測定日より第m-1の所定期間前の予約者数に対する、実績値測定日より第mの所定期間前の予約者数の割合をそれぞれ、実績値測定日毎に算出する。そして、学習部3は、それらの算出結果と、学習データに含まれる各日の実績値や曜日等を用いて、学習モデルを生成する。具体的には、学習部3は、mを2からnまでの各整数とした場合における、予測対象日より第m-1の所定期間前の予約者数に対する、予測対象日より第mの所定期間前の予約者数の割合をそれぞれ説明変数とするとともに、学習データに合わせて曜日等も説明変数とする学習モデルを生成する。 When generating the learning model, the learning unit 3 calculates the actual value from the actual value measurement date for the number of reservations before the m−1 predetermined period from the actual value measurement date when m is an integer from 2 to n. The ratio of the number of reservations before the m-th predetermined period is calculated for each actual value measurement date. And the learning part 3 produces | generates a learning model using those calculation results, the actual value of each day, a day of the week, etc. which are contained in learning data. Specifically, the learning unit 3 sets the mth predetermined number from the prediction target date for the number of reservations before the m−1th predetermined period from the prediction target date when m is an integer from 2 to n. A learning model is generated in which the ratio of the number of reservations before the period is an explanatory variable, and the day of the week is also an explanatory variable in accordance with the learning data.
 本例では、3種類の所定期間が定められているので、n=3である。従って、学習部3は、mを2,3とした場合における上記の割合をそれぞれ算出する。すなわち、学習部3は、m=2として、実績値測定日より第1の所定期間前(14日前)の予約者数に対する実績値測定日より第2の所定期間前(12日前)の予約者数の割合を算出する。同様に、学習部3は、m=3として、実績値測定日より第2の所定期間前(12日前)の予約者数に対する実績値測定日より第3の所定期間前(9日前)の予約者数の割合を算出する。学習部3は、これらの割合を、実績値測定日毎に算出する。 In this example, since three types of predetermined periods are defined, n = 3. Therefore, the learning unit 3 calculates the above ratios when m is set to 2 and 3, respectively. That is, the learning unit 3 sets m = 2, and the reservation person before the second predetermined period (12 days before) the actual value measurement date for the number of reservations before the first predetermined period (14 days before) the actual value measurement date. Calculate the percentage of numbers. Similarly, the learning unit 3 sets m = 3, and reserves before the third predetermined period (9 days ago) from the actual value measurement date for the number of reservations before the second predetermined period (12 days ago) from the actual value measurement date. Calculate the percentage of people. The learning unit 3 calculates these ratios for each actual value measurement date.
 図8に示す実績値測定日「12月24日」を例にして説明する。学習部3は、実績値測定日より14日前の予約者数“100”に対する実績値測定日より12日前の予約者数“300”の割合(すなわち、300/100)を算出する。また、学習部3は、実績値測定日より12日前の予約者数“300”に対する実績値測定日より9日前の予約者数“1000”の割合(すなわち、1000/300)を算出する。学習部3は、他の日に関しても、同様の演算を行う。 An explanation will be given taking the actual value measurement date “December 24” shown in FIG. 8 as an example. The learning unit 3 calculates the ratio of the number of reservations “300” 12 days before the actual value measurement date to the number of reservations “100” 14 days before the actual value measurement date (that is, 300/100). Further, the learning unit 3 calculates the ratio of the number of reservations “1000” 9 days before the actual value measurement date to the number of reservations “300” 12 days before the actual value measurement date (that is, 1000/300). The learning unit 3 performs the same calculation for other days.
 学習部3は、このように日毎に算出した各割合と、学習データに含まれる各日の実績値や曜日等を用いて、学習モデルを生成する。本例では、学習部3は、m=2,3とした場合における、予測対象日より第m-1の所定期間前の予約者数に対する予測対象日より第mの所定期間前の予約者数の割合を、それぞれ説明変数とするとともに、曜日等も説明変数とする学習モデルを生成する。より具体定期には、学習部3は、予測対象日より14日前の予約者数に対する予測対象日より12日前の予約者数の割合、および、予測対象日より12日前の予約者数に対する予測対象日より9日前の予約者数の割合、並びに、予測対象日の曜日等を説明変数とする学習モデルを生成する。 The learning unit 3 generates a learning model using the ratios calculated for each day in this way and the actual values and days of the week included in the learning data. In this example, the learning unit 3 sets the number of reservation persons before the mth predetermined period from the prediction target date to the number of reservation persons before the m−1 predetermined period from the prediction target date when m = 2, 3. Is used as an explanatory variable, and a learning model is generated in which the day of the week is also an explanatory variable. More specifically, the learning unit 3 determines the ratio of the number of reservations 12 days before the prediction target date to the number of reservations 14 days before the prediction target date, and the prediction target for the number of reservations 12 days before the prediction target date. A learning model is generated in which the ratio of the number of reservations 9 days before the date and the day of the week to be predicted are explanatory variables.
 予測部4には、予測対象日より14日前の予約者数に対する予測対象日より12日前の予約者数の割合、および、予測対象日より12日前の予約者数に対する予測対象日より9日前の予約者数の割合、並びに、予測対象日の曜日等の情報が入力される。予測部4は、それらの情報を学習モデルに適用することによって、予測対象日の客数の予測値を算出する。 The prediction unit 4 has a ratio of the number of reservations 12 days before the prediction target date to the number of reservations 14 days before the prediction target date, and 9 days before the prediction target date for the number of reservations 12 days before the prediction target date. Information such as the ratio of the number of reservations and the day of the week to be predicted is input. The prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
 第4の実施形態では、予測対象日より前の期間での予約者数の変化の割合を説明変数とする学習モデルを生成する。従って、学習モデルを用いて、精度よく客数の予測値を得ることができる。 In the fourth embodiment, a learning model is generated in which the rate of change in the number of reservations in a period before the prediction target date is used as an explanatory variable. Therefore, the predicted value of the number of customers can be obtained with high accuracy using the learning model.
 次に、第4の実施形態の変形例について説明する。第4の実施形態の変形例において、データ記憶部2は、第3の実施形態の変形例におけるデータ記憶部2と同様のデータの集合を記憶する。例えば、第4の実施形態の変形例におけるデータ記憶部2は、図9に例示するデータの集合を記憶する。4の実施形態の変形例におけるデータ記憶部2に記憶されるデータは、第3の実施形態の変形例におけるデータ記憶部2に記憶されるデータと同様であるので、詳細な説明を省略する。 Next, a modification of the fourth embodiment will be described. In the modification of the fourth embodiment, the data storage unit 2 stores the same set of data as the data storage unit 2 in the modification of the third embodiment. For example, the data storage unit 2 in the modification of the fourth embodiment stores a set of data illustrated in FIG. Since the data stored in the data storage unit 2 in the modification of the fourth embodiment is the same as the data stored in the data storage unit 2 in the modification of the third embodiment, detailed description thereof is omitted.
 学習部3は、データ記憶部2に記憶されているデータの集合(図9参照)を学習データとして用いて、映画館の客数を予測するための学習モデルを生成する。 The learning unit 3 uses a set of data stored in the data storage unit 2 (see FIG. 9) as learning data to generate a learning model for predicting the number of customers in the movie theater.
 学習モデルを生成する際、学習部3は、mを2からnまでの各整数とした場合に、実績値測定日より第m-1の所定期間前の予約者数に対する、実績値測定日より第mの所定期間前の予約者数の割合をそれぞれ、予約者の属性毎に算出する。また、学習部3は、それらの割合を実績値測定日毎に算出する。 When generating the learning model, the learning unit 3 calculates the actual value from the actual value measurement date for the number of reservations before the m−1 predetermined period from the actual value measurement date when m is an integer from 2 to n. The ratio of the number of reservations before the m-th predetermined period is calculated for each attribute of the reservations. Moreover, the learning part 3 calculates those ratios for every performance value measurement day.
 そして、学習部3は、それらの算出結果と、学習データに含まれる各日の実績値や曜日等を用いて、学習モデルを生成する。具体的には、学習部3は、mを2からnまでの各整数とした場合における、予約者の属性毎の、予測対象日より第m-1の所定期間前の予約者数に対する、予測対象日より第mの所定期間前の予約者数の割合をそれぞれ説明変数とする学習モデルを生成する。また、学習モデルに合わせて、学習モデルでは曜日等も説明変数として用いられる。 And the learning part 3 produces | generates a learning model using those calculation results, the actual value of each day, a day of the week, etc. which are contained in learning data. Specifically, the learning unit 3 predicts the number of reservation users for a predetermined period of the (m-1) th period before the prediction target date for each attribute of the reservation person, where m is an integer from 2 to n. A learning model is generated in which the ratio of the number of reservations before the mth predetermined period from the target date is an explanatory variable. Further, in accordance with the learning model, days of the week and the like are also used as explanatory variables in the learning model.
 本例では、3種類の所定期間が定められているので、n=3である。従って、学習部3は、mを2,3とした場合の上記の割合をそれぞれ算出する。 In this example, since three types of predetermined periods are defined, n = 3. Accordingly, the learning unit 3 calculates the above ratios when m is set to 2 and 3, respectively.
 まず、学習部3は、m=2として、実績値測定日より第1の所定期間前(14日前)における「一般」に該当する予約者数に対する実績値測定日より第2の所定期間前(12日前)における「一般」に該当する予約者数の割合を算出する。同様に、学習部3は、実績値測定日より第1の所定期間前における「学生」に該当する予約者数に対する実績値測定日より第2の所定期間前における「学生」に該当する予約者数の割合を算出する。同様に、学習部3は、実績値測定日より第1の所定期間前における「幼児」に該当する予約者数に対する実績値測定日より第2の所定期間前における「幼児」に該当する予約者数の割合を算出する。 First, the learning unit 3 sets m = 2, and before the second predetermined period from the actual value measurement date for the number of reservations corresponding to “general” before the first predetermined period (14 days before) from the actual value measurement date ( The ratio of the number of reservations corresponding to “general” 12 days ago) is calculated. Similarly, the learning unit 3 reserves persons corresponding to “students” in the second predetermined period before the actual value measurement date for the number of reservation persons corresponding to “students” in the first predetermined period before the actual value measurement date. Calculate the percentage of numbers. Similarly, the learning unit 3 sets the reservation person who corresponds to the “infant” in the second predetermined period before the actual value measurement date for the number of reservation persons corresponding to the “infant” in the first predetermined period before the actual value measurement date. Calculate the percentage of numbers.
 また、学習部3は、m=3として、実績値測定日より第2の所定期間前(12日前)における「一般」に該当する予約者数に対する実績値測定日より第3の所定期間前(9日前)における「一般」に該当する予約者数の割合を算出する。同様に、学習部3は、実績値測定日より第2の所定期間前における「学生」に該当する予約者数に対する実績値測定日より第3の所定期間前における「学生」に該当する予約者数の割合を算出する。同様に、学習部3は、実績値測定日より第2の所定期間前における「幼児」に該当する予約者数に対する実績値測定日より第3の所定期間前における「幼児」に該当する予約者数の割合を算出する。 Further, the learning unit 3 sets m = 3, and before the third predetermined period from the actual value measurement date for the number of reservations corresponding to “general” before the second predetermined period (12 days before) from the actual value measurement date ( The ratio of the number of reservations corresponding to “general” in (9 days ago) is calculated. Similarly, the learning unit 3 reserves persons corresponding to “students” in the third predetermined period before the actual value measurement date for the number of reservation persons corresponding to “students” in the second predetermined period before the actual value measurement date. Calculate the percentage of numbers. Similarly, the learning unit 3 reserves a person who corresponds to the “infant” in the third predetermined period before the actual value measurement date for the number of reservation persons corresponding to the “infant” in the second predetermined period before the actual value measurement date. Calculate the percentage of numbers.
 学習部3は、これらの割合を、実績値測定日毎に算出する。 The learning unit 3 calculates these ratios for each actual value measurement date.
 図9に示す実績値測定日「12月24日」のデータを参照して、上記の各割合の算出例を示す。学習部3は、実績値測定日より14日前における「一般」に該当する予約者数“50”に対する実績値測定日より12日前における「一般」に該当する予約者数“180”の割合(すなわち、180/50)を算出する。同様に、学習部3は、実績値測定日より14日前における「学生」に該当する予約者数“40”に対する実績値測定日より12日前における「学生」に該当する予約者数“100”の割合(すなわち、100/40)を算出する。同様に、学習部3は、実績値測定日より14日前における「幼児」に該当する予約者数“10”に対する実績値測定日より12日前における「幼児」に該当する予約者数“20”の割合(すなわち、20/10)を算出する。 Referring to the data of the actual value measurement date “December 24” shown in FIG. The learning unit 3 has a ratio of the number of reservations “180” corresponding to “general” 12 days before the actual value measurement date to the number of reservations “50” corresponding to “general” 14 days before the actual value measurement date (that is, , 180/50). Similarly, the learning unit 3 sets the number of reservation persons “100” corresponding to “students” 12 days before the actual value measurement date to the number of reservations “40” corresponding to “students” 14 days before the actual value measurement date. The ratio (ie 100/40) is calculated. Similarly, the learning unit 3 sets the number of reservation persons “20” corresponding to “toddlers” 12 days before the actual value measurement date to “10” reservation persons corresponding to “infant” 14 days before the actual value measurement date. The ratio (ie 20/10) is calculated.
 また、学習部3は、実績値測定日より12日前における「一般」に該当する予約者数“180”に対する実績値測定日より9日前における「一般」に該当する予約者数“700”の割合(すなわち、700/180)を算出する。同様に、学習部3は、実績値測定日より12日前における「学生」に該当する予約者数“100”に対する実績値測定日より9日前における「学生」に該当する予約者数“250”の割合(すなわち、250/100)を算出する。同様に、学習部3は、実績値測定日より12日前における「幼児」に該当する予約者数“20”に対する実績値測定日より9日前における「幼児」に該当する予約者数“50”の割合(すなわち、50/20)を算出する。 In addition, the learning unit 3 determines the ratio of the number of reservations “700” corresponding to “general” 9 days before the actual value measurement date to the number of reservations “180” corresponding to “general” 12 days before the actual value measurement date. (Ie 700/180) is calculated. Similarly, the learning unit 3 sets the number of reservations “250” corresponding to “students” 9 days before the actual value measurement date for the number of reservations “100” corresponding to “students” 12 days before the actual value measurement date. The ratio (ie 250/100) is calculated. Similarly, the learning unit 3 sets the number of reservation persons “50” corresponding to “Infant” 9 days before the actual value measurement date to the number “20 infants” corresponding to “Infant” 12 days before the actual value measurement date. The ratio (ie 50/20) is calculated.
 学習部3は、他の日に関しても、同様の演算を行う。 The learning unit 3 performs the same calculation for other days.
 学習部3は、このように日毎に算出した各割合と、学習データに含まれる各日の実績値や曜日等を用いて、学習モデルを生成する。本例では、学習部3は、以下の事項を説明変数とする学習モデルを生成する。
(a)予測対象日より第1の所定期間前(14日前)における「一般」に該当する予約者数に対する予測対象日より第2の所定期間前(12日前)における「一般」に該当する予約者数の割合。
(b)予測対象日より第1の所定期間前における「学生」に該当する予約者数に対する予測対象日より第2の所定期間前における「学生」に該当する予約者数の割合。
(c)予測対象日より第1の所定期間前における「幼児」に該当する予約者数に対する予測対象日より第2の所定期間前における「幼児」に該当する予約者数の割合。
(d)予測対象日より第2の所定期間前(12日前)における「一般」に該当する予約者数に対する予測対象日より第3の所定期間前(9日前)における「一般」に該当する予約者数の割合。
(e)予測対象日より第2の所定期間前における「学生」に該当する予約者数に対する予測対象日より第3の所定期間前における「学生」に該当する予約者数の割合。
(f)予測対象日より第2の所定期間前における「幼児」に該当する予約者数に対する予測対象日より第3の所定期間前における「幼児」に該当する予約者数の割合。
(g)予測対象日の曜日。
The learning unit 3 generates a learning model by using the ratios calculated for each day in this way and the actual values and days of the week included in the learning data. In this example, the learning unit 3 generates a learning model having the following items as explanatory variables.
(A) Reservation corresponding to “general” in the second predetermined period (12 days ago) from the prediction target date for the number of reservation persons corresponding to “general” in the first predetermined period (14 days before) from the prediction target date Percentage of people.
(B) The ratio of the number of reservations corresponding to “students” before the second predetermined period from the prediction target date to the number of reservations corresponding to “students” before the first predetermined period from the prediction target date.
(C) The ratio of the number of reservation users corresponding to “infant” in the second predetermined period before the prediction target date to the number of reservation persons corresponding to “infant” in the first predetermined period before the prediction target date.
(D) Reservation corresponding to “general” in the third predetermined period (9 days ago) from the prediction target date for the number of reservations corresponding to “general” in the second predetermined period (12 days) before the prediction target date Percentage of people.
(E) The ratio of the number of reservations corresponding to “students” before the third predetermined period from the prediction target date to the number of reservations corresponding to “students” before the second predetermined period from the prediction target date.
(F) The ratio of the number of reservation persons corresponding to “infant” in the third predetermined period before the prediction target day to the number of reservation persons corresponding to “infant” in the second predetermined period before the prediction target day.
(G) The day of the week to be predicted.
 なお、学習部3は、上記の(a)~(g)の事項を説明変数としているとともに、他の事項も説明変数としている学習モデルを生成してもよい。 The learning unit 3 may generate a learning model in which the items (a) to (g) are used as explanatory variables and other items are also used as explanatory variables.
 予測部4には、上記の(a)~(g)等の情報が入力される。予測部4は、それらの情報を学習モデルに適用することによって、予測対象日の客数の予測値を算出する。 The information such as (a) to (g) described above is input to the prediction unit 4. The prediction unit 4 calculates the predicted value of the number of customers on the prediction target day by applying such information to the learning model.
 本変形例によれば、予測対象日より前の期間での予約者数の変化の割合を、属性毎に個別の説明変数としている。従って、学習モデルを用いて算出される客数の予測値の精度をより向上させることができる。 According to this modification, the rate of change in the number of reservations in the period before the prediction target date is an individual explanatory variable for each attribute. Therefore, the accuracy of the predicted value of the number of customers calculated using the learning model can be further improved.
 上記の各実施形態やその変形例では、映画館の1日当たりの客数を予測対象とする場合を例にして説明したが、予測対象は、遊園地、テーマパーク等の予約可能な種々の施設の客数であってもよい。 In each of the above-described embodiments and modifications thereof, the case where the number of customers per day in the movie theater is the target of prediction has been described as an example, but the target of prediction is that of various facilities that can be reserved such as amusement parks and theme parks. It may be the number of customers.
 上記の各実施形態やその変形例では、「1日」を単位として実績値の測定や客数の予測を行う場合を例にして説明した。実績値の測定や客数の予測を行う場合に単位とする時間の長さは、特に限定されず、「1日」でなくてもよい。 In each of the above-described embodiments and modifications thereof, the case where the actual value is measured and the number of customers is predicted with “one day” as a unit has been described as an example. The length of time used as a unit when measuring the actual value or predicting the number of customers is not particularly limited, and may not be “one day”.
 図10は、本発明の各実施形態に係るコンピュータの構成例を示す概略ブロック図である。コンピュータ1000は、CPU1001と、主記憶装置1002と、補助記憶装置1003と、インタフェース1004と、入力デバイス1006とを備える。 FIG. 10 is a schematic block diagram showing a configuration example of a computer according to each embodiment of the present invention. The computer 1000 includes a CPU 1001, a main storage device 1002, an auxiliary storage device 1003, an interface 1004, and an input device 1006.
 本発明の学習システム1は、コンピュータ1000に実装される。学習システム1の動作は、プログラムの形式で補助記憶装置1003に記憶されている。CPU1001は、プログラムを補助記憶装置1003から読み出して主記憶装置1002に展開し、そのプログラムに従って上記の処理を実行する。 The learning system 1 of the present invention is implemented in a computer 1000. The operation of the learning system 1 is stored in the auxiliary storage device 1003 in the form of a program. The CPU 1001 reads out the program from the auxiliary storage device 1003, develops it in the main storage device 1002, and executes the above processing according to the program.
 補助記憶装置1003は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例として、インタフェース1004を介して接続される磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等が挙げられる。また、このプログラムが通信回線によってコンピュータ1000に配信される場合、配信を受けたコンピュータ1000がそのプログラムを主記憶装置1002に展開し、上記の処理を実行してもよい。 The auxiliary storage device 1003 is an example of a tangible medium that is not temporary. Other examples of the non-temporary tangible medium include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory connected via the interface 1004. When this program is distributed to the computer 1000 via a communication line, the computer 1000 that has received the distribution may develop the program in the main storage device 1002 and execute the above processing.
 また、プログラムは、前述の処理の一部を実現するためのものであってもよい。さらに、プログラムは、補助記憶装置1003に既に記憶されている他のプログラムとの組み合わせで前述の処理を実現する差分プログラムであってもよい。 Further, the program may be for realizing a part of the above-described processing. Furthermore, the program may be a differential program that realizes the above-described processing in combination with another program already stored in the auxiliary storage device 1003.
 次に、本発明の概要について説明する。図11は、本発明の学習システムの概要を示すブロック図である。本発明の学習システムは、データ記憶手段71と、学習モデル生成手段72とを備える。 Next, the outline of the present invention will be described. FIG. 11 is a block diagram showing an outline of the learning system of the present invention. The learning system of the present invention includes data storage means 71 and learning model generation means 72.
 データ記憶手段71(例えば、データ記憶部2)は、施設の客数の実績値と、実績値に対応する時点より前の施設に対する予約に関する情報とを対応付けたデータの集合を記憶する。 The data storage means 71 (for example, the data storage unit 2) stores a set of data in which the actual value of the number of customers of the facility is associated with information related to the reservation for the facility before the time corresponding to the actual value.
 学習モデル生成手段72(例えば、学習部3)は、予測対象時点での施設の客数の予測のための学習モデルであって、予約に関する情報から特定される情報を説明変数とする学習モデルを、データの集合を学習データとして用いて生成する。 The learning model generation means 72 (for example, the learning unit 3) is a learning model for predicting the number of customers of a facility at a prediction target time point, and uses a learning model having information specified from information related to reservation as an explanatory variable, Generate a set of data as learning data.
 そのような構成により、客数予測の精度が高い学習モデルを生成することができる。 Such a configuration makes it possible to generate a learning model with high customer number prediction accuracy.
 上記の各実施形態は、以下の付記のようにも記載され得るが、以下に限定されるわけではない。 The above embodiments can be described as in the following supplementary notes, but are not limited to the following.
(付記1)施設の客数の実績値と、前記実績値に対応する時点より前の前記施設に対する予約に関する情報とを対応付けたデータの集合を記憶するデータ記憶手段と、予測対象時点での前記施設の客数の予測のための学習モデルであって、前記予約に関する情報から特定される情報を説明変数とする学習モデルを、前記データの集合を学習データとして用いて生成する学習モデル生成手段とを備えることを特徴とする学習システム。 (Additional remark 1) The data storage means which memorize | stores the collection of the data which matched the track record value of the number of customers of a facility, and the information regarding the reservation with respect to the said facilities before the time corresponding to the said track record value, and the said time in prediction object Learning model generation means for predicting the number of customers of a facility, wherein a learning model is generated using information specified from the information related to the reservation as an explanatory variable, using the set of data as learning data; A learning system characterized by comprising.
(付記2)データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より一定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点より前記一定期間前の時点での予約者数を説明変数とする学習モデルを生成する付記1に記載の学習システム。 (Supplementary note 2) The data storage means stores a set of data in which the actual value of the number of customers in the facility is associated with the number of reservations at a certain time before the time corresponding to the actual value, and a learning model is generated The learning system according to appendix 1, wherein the means uses the set of data as learning data to generate a learning model in which the number of reservations at the time before the certain period before the prediction target time is an explanatory variable.
(付記3)データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より一定期間前の時点での、予約者の属性毎の予約者数とを対応付けたデータの集合を記憶し、学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点より前記一定期間前の時点での前記属性毎の予約者数を説明変数とする学習モデルを生成する付記1または付記2に記載の学習システム。 (Supplementary Note 3) The data storage means is a set of data in which the actual value of the number of customers in the facility is associated with the number of reservations for each attribute of the reservation at a time before a certain period before the time corresponding to the actual value The learning model generation means generates a learning model using the set of data as learning data and using the number of reservations for each attribute at a time before the predetermined period from the prediction target time as an explanatory variable. The learning system according to Supplementary Note 1 or Supplementary Note 2.
(付記4)データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より一定期間前の時点での、予約者の属性毎の予約者数とを対応付けたデータの集合を記憶し、学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点より前記一定期間前の時点での前記属性毎の予約者数の和に対する特定の属性の予約者数の割合を説明変数とする学習モデルを生成する付記1に記載の学習システム。 (Supplementary note 4) The data storage means is a set of data in which the actual value of the number of customers of the facility is associated with the number of reservation persons for each attribute of the reservation person at a certain time before the time corresponding to the actual value The learning model generation means uses the set of data as learning data, and the number of reservations of a specific attribute with respect to the sum of the number of reservations for each attribute at the time before the predetermined period from the prediction target time The learning system according to supplementary note 1, wherein a learning model having the ratio of the above as an explanatory variable is generated.
(付記5)データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より一定期間前の時点での予約者数と、前記実績値に対応する時点の1年前の時点に対応する客数の実績値と、前記1年前の時点より前記一定期間前の時点での予約者数を対応付けたデータの集合を記憶し、学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点の1年前の時点に対応する客数の実績値と、前記予測対象時点の1年前の時点より前記一定期間前の時点での予約者数に対する前記予測対象時点の一定期間前の時点での予約者数の割合とを説明変数とする学習モデルを生成する付記1に記載の学習システム。 (Supplementary note 5) The data storage means includes the actual value of the number of customers of the facility, the number of reservations at a certain period before the time corresponding to the actual value, and the time one year before the time corresponding to the actual value A set of data in which the actual value of the number of customers corresponding to the number and the number of reservations at a time before the predetermined period from the time point one year ago are stored, and the learning model generation means learns the data set Use as data, the actual value of the number of customers corresponding to the time point one year before the prediction target time point, and the prediction target time point relative to the number of reservations at a time point a certain period before the time point one year before the prediction target time point The learning system according to supplementary note 1, wherein a learning model is generated in which a ratio of the number of reservations at a point before a certain period of time is an explanatory variable.
(付記6)データ記憶手段は、施設の客数の実績値と、予約者の属性毎の、前記実績値に対応する時点より一定期間前の時点での予約者数、前記実績値に対応する時点の1年前の時点に対応する客数の実績値、および、前記1年前の時点より前記一定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点の1年前の時点に対応する属性毎の客数の実績値と、前記属性毎の前記予測対象時点の1年前の時点より前記一定期間前の時点での予約者数に対する前記予測対象時点の一定期間前の時点での予約者数の割合とを説明変数とする学習モデルを生成する付記1または付記5に記載の学習システム。 (Supplementary note 6) The data storage means includes the actual value of the number of customers in the facility, the number of reservations at a certain period before the time corresponding to the actual value, and the time corresponding to the actual value for each attribute of the reservation A set of data in which the actual value of the number of customers corresponding to a point in time one year ago and the number of reservations at a point in time before the predetermined period from the point in time one year ago are stored, and learning model generation means Using the set of data as learning data, the actual value of the number of customers for each attribute corresponding to the time point one year before the prediction target time point, and the time point one year before the prediction target time point for each attribute The learning system according to appendix 1 or appendix 5, wherein a learning model is generated in which a ratio of the number of reservations at a time before the prediction target time to the number of reservations at a time before the fixed period is an explanatory variable.
(付記7)データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点より前記第1から第nまでの各所定期間前の時点での予約者数を説明変数とする学習モデルを生成する付記1に記載の学習システム。 (Supplementary note 7) The data storage means includes the actual value of the number of customers in the facility, and the reservation person at the time before each predetermined period from the first to the n-th (n is an integer of 2 or more) from the time corresponding to the actual value. A set of data associated with the number is stored, and the learning model generation unit uses the set of data as learning data, and uses the first to nth predetermined time periods before the prediction target time point as the learning data. The learning system according to appendix 1, which generates a learning model having the number of reservations as an explanatory variable.
(付記8)データ記憶手段は、施設の客数の実績値と、予約者の属性毎の、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、学習モデル生成手段は、前記データの集合を学習データとして用いて、前記属性毎の、予測対象時点より前記第1から第nまでの各所定期間前の時点での予約者数を説明変数とする学習モデルを生成する付記1または付記7に記載の学習システム。 (Additional remark 8) The data storage means is a predetermined period from the 1st to the n-th (n is an integer of 2 or more) from the time corresponding to the actual value of the actual number of customers of the facility and the reservation person. A set of data associated with the number of reservations at the previous time point is stored, and the learning model generation unit uses the set of data as learning data, and uses the first time from the prediction target time point for each attribute. The learning system according to supplementary note 1 or supplementary note 7, wherein a learning model is generated in which the number of reservations at a time before each predetermined period up to the nth is an explanatory variable.
(付記9)データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、学習モデル生成手段は、mを2からnまでの各整数とした場合における、予測対象時点より第m-1の所定期間前の予約者数に対する第mの所定期間前の予約者数の割合をそれぞれ説明変数とする学習モデルを生成する付記1に記載の学習システム。 (Supplementary note 9) The data storage means includes the actual value of the number of customers of the facility and the reservation person at the time before each predetermined period from the first to the n-th (n is an integer of 2 or more) from the time corresponding to the actual value The learning model generating means stores a set of data in which the number is associated, and the learning model generation unit corresponds to the number of reservation persons before a prediction target time point m−1 when m is an integer from 2 to n. The learning system according to appendix 1, wherein a learning model is generated in which the ratio of the number of reservations before the m-th predetermined period is an explanatory variable.
(付記10)データ記憶手段は、施設の客数の実績値と、予約者の属性毎の、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、学習モデル生成手段は、mを2からnまでの各整数とした場合における、前記属性毎の、予測対象時点より第m-1の所定期間前の予約者数に対する第mの所定期間前の予約者数の割合をそれぞれ説明変数とする学習モデルを生成する付記1または付記9に記載の学習システム。 (Additional remark 10) A data storage means is each predetermined period from the 1st to nth (n is an integer greater than or equal to 2) from the time corresponding to the said actual value for every actual number of customers of a facility, and a reservation person's attribute. A set of data associated with the number of reservations at the previous time point is stored, and the learning model generation unit is configured to determine the number of predictions for each attribute when m is an integer from 2 to n. The learning system according to appendix 1 or appendix 9, wherein a learning model is generated in which a ratio of the number of reservations before the mth predetermined period to the number of reservations before the predetermined period of m−1 is an explanatory variable.
(付記11)データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数の移動平均値とを対応付けたデータの集合を記憶し、学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点より前記第1から第nまでの各所定期間前の時点での予約者数の移動平均値を説明変数とする学習モデルを生成する付記1に記載の学習システム。 (Supplementary Note 11) The data storage means includes the actual value of the number of customers in the facility and the reservation person at the time before each predetermined period from the first time to the nth (n is an integer of 2 or more) from the time corresponding to the actual value. A set of data associated with the moving average value of the number is stored, and the learning model generating means uses the set of data as learning data, and uses each of the first to nth periods before the prediction target time point The learning system according to appendix 1, which generates a learning model having the moving average value of the number of reservations at the time of as an explanatory variable.
(付記12)データ記憶手段は、施設の客数の実績値と、予約者の属性毎の、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数の移動平均値とを対応付けたデータの集合を記憶し、学習モデル生成手段は、前記データの集合を学習データとして用いて、前記属性毎の、予測対象時点より前記第1から第nまでの各所定期間前の時点での予約者数の移動平均値を説明変数とする学習モデルを生成する付記1または付記11に記載の学習システム。 (Additional remark 12) The data storage means is a predetermined period from the 1st to the nth (n is an integer of 2 or more) from the time corresponding to the actual value of the number of customers in the facility and the attribute of the reservation person. A set of data associated with the moving average value of the number of reservations at the previous time point is stored, and the learning model generation unit uses the set of data as learning data, from each prediction target time point for each attribute. The learning system according to supplementary note 1 or supplementary note 11, wherein a learning model is generated in which the moving average value of the number of reservations at a time before each of the first to nth predetermined periods is an explanatory variable.
(付記13)施設の客数の実績値と、前記実績値に対応する時点より前の前記施設に対する予約に関する情報とを対応付けたデータの集合を記憶するデータ記憶手段を備えた学習システムに適用される学習方法において、予測対象時点での前記施設の客数の予測のための学習モデルであって、前記予約に関する情報から特定される情報を説明変数とする学習モデルを、前記データの集合を学習データとして用いて生成することを特徴とする学習方法。 (Additional remark 13) It is applied to the learning system provided with the data storage means which memorize | stores the collection of the data which matched the actual value of the number of customers of a facility, and the information regarding the reservation with respect to the said facility before the time corresponding to the said actual value. In the learning method, a learning model for predicting the number of customers of the facility at the prediction target time point, the learning model having information specified from the information related to the reservation as an explanatory variable, the set of data as learning data A learning method characterized by generating using.
(付記14)施設の客数の実績値と、前記実績値に対応する時点より前の前記施設に対する予約に関する情報とを対応付けたデータの集合を記憶するデータ記憶手段を備えたコンピュータに搭載される学習プログラムであって、前記コンピュータに、予測対象時点での前記施設の客数の予測のための学習モデルであって、前記予約に関する情報から特定される情報を説明変数とする学習モデルを、前記データの集合を学習データとして用いて生成する学習モデル生成処理を実行させるための学習プログラム。 (Additional remark 14) It mounts in the computer provided with the data storage means which memorize | stores the collection of the data which matched the actual value of the customer number of facilities, and the information regarding the reservation with respect to the said facility before the time corresponding to the said actual value. A learning program, which is a learning model for predicting the number of customers of the facility at a prediction target time point, the learning model having information specified from the information related to the reservation as an explanatory variable. A learning program for executing learning model generation processing for generating a set of learning data as learning data.
産業上の利用の可能性Industrial applicability
 本発明は、予約可能な施設の客数予測に用いられる学習モデルを生成する学習システムに好適に適用される。 The present invention is preferably applied to a learning system that generates a learning model used for predicting the number of customers of a facility that can be reserved.
 1 学習システム
 2 データ記憶部
 3 学習部
4 予測部
DESCRIPTION OF SYMBOLS 1 Learning system 2 Data storage part 3 Learning part 4 Prediction part

Claims (14)

  1.  施設の客数の実績値と、前記実績値に対応する時点より前の前記施設に対する予約に関する情報とを対応付けたデータの集合を記憶するデータ記憶手段と、
     予測対象時点での前記施設の客数の予測のための学習モデルであって、前記予約に関する情報から特定される情報を説明変数とする学習モデルを、前記データの集合を学習データとして用いて生成する学習モデル生成手段とを備える
     ことを特徴とする学習システム。
    Data storage means for storing a set of data in which the actual value of the number of customers of the facility is associated with information related to the reservation for the facility prior to the time corresponding to the actual value;
    A learning model for predicting the number of customers of the facility at the time of prediction is generated using information specified from the information related to the reservation as an explanatory variable, using the set of data as learning data A learning system comprising learning model generation means.
  2.  データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より一定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、
     学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点より前記一定期間前の時点での予約者数を説明変数とする学習モデルを生成する
     請求項1に記載の学習システム。
    The data storage means stores a set of data in which the actual value of the number of customers of the facility is associated with the number of reservations at a certain time before the time corresponding to the actual value,
    2. The learning system according to claim 1, wherein the learning model generation unit generates a learning model using the set of data as learning data and having the number of reservations at a time before the predetermined period from the prediction target time as an explanatory variable. .
  3.  データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より一定期間前の時点での、予約者の属性毎の予約者数とを対応付けたデータの集合を記憶し、
     学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点より前記一定期間前の時点での前記属性毎の予約者数を説明変数とする学習モデルを生成する
     請求項1または請求項2に記載の学習システム。
    The data storage means stores a set of data in which the actual value of the number of customers of the facility is associated with the number of reservations for each attribute of the reservation at a certain time before the time corresponding to the actual value,
    The learning model generation means uses the set of data as learning data to generate a learning model that uses the number of reservations for each attribute at a time before the predetermined period from the prediction target time as an explanatory variable. The learning system according to claim 2.
  4.  データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より一定期間前の時点での、予約者の属性毎の予約者数とを対応付けたデータの集合を記憶し、
     学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点より前記一定期間前の時点での前記属性毎の予約者数の和に対する特定の属性の予約者数の割合を説明変数とする学習モデルを生成する
     請求項1に記載の学習システム。
    The data storage means stores a set of data in which the actual value of the number of customers of the facility is associated with the number of reservations for each attribute of the reservation at a certain time before the time corresponding to the actual value,
    The learning model generating means uses the set of data as learning data to explain the ratio of the number of reservations of a specific attribute to the sum of the number of reservations for each attribute at a time before the predetermined period from the prediction target time The learning system according to claim 1, wherein a learning model is generated as a variable.
  5.  データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より一定期間前の時点での予約者数と、前記実績値に対応する時点の1年前の時点に対応する客数の実績値と、前記1年前の時点より前記一定期間前の時点での予約者数を対応付けたデータの集合を記憶し、
     学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点の1年前の時点に対応する客数の実績値と、前記予測対象時点の1年前の時点より前記一定期間前の時点での予約者数に対する前記予測対象時点の一定期間前の時点での予約者数の割合とを説明変数とする学習モデルを生成する
     請求項1に記載の学習システム。
    The data storage means includes the actual value of the number of customers of the facility, the number of reservations at a certain time before the time corresponding to the actual value, and the number of customers corresponding to the time one year before the time corresponding to the actual value. A set of data that associates the actual value of No. 1 with the number of reservations at a time before the certain period from the time one year ago,
    The learning model generation means uses the set of data as learning data, the actual value of the number of customers corresponding to the time point one year before the prediction target time point, and the predetermined period before the time point one year before the prediction target time point. The learning system according to claim 1, wherein a learning model is generated in which a ratio of the number of reservations at a point in time before the prediction target time to the number of reservations at the point in time is an explanatory variable.
  6.  データ記憶手段は、施設の客数の実績値と、予約者の属性毎の、前記実績値に対応する時点より一定期間前の時点での予約者数、前記実績値に対応する時点の1年前の時点に対応する客数の実績値、および、前記1年前の時点より前記一定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、
     学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点の1年前の時点に対応する属性毎の客数の実績値と、前記属性毎の前記予測対象時点の1年前の時点より前記一定期間前の時点での予約者数に対する前記予測対象時点の一定期間前の時点での予約者数の割合とを説明変数とする学習モデルを生成する
     請求項1または請求項5に記載の学習システム。
    The data storage means includes the actual value of the number of customers of the facility, the number of reservations at a certain period before the time corresponding to the actual value, and one year before the time corresponding to the actual value, for each attribute of the reservation Storing a set of data that correlates the actual value of the number of customers corresponding to the time point and the number of reservations at the time point before the certain period from the time point one year ago,
    The learning model generation means uses the set of data as learning data, the actual value of the number of customers for each attribute corresponding to the time point one year before the prediction target time point, and the year before the prediction target time point for each attribute. 6. A learning model is generated in which the ratio of the number of reservations at a time before the prediction target time to the number of reservations at a time before the fixed period from the time of the point is an explanatory variable. The learning system described in.
  7.  データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、
     学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点より前記第1から第nまでの各所定期間前の時点での予約者数を説明変数とする学習モデルを生成する
     請求項1に記載の学習システム。
    The data storage means associates the actual value of the number of customers of the facility with the number of reservations at each of the first to n-th (n is an integer of 2 or more) before each predetermined period from the time corresponding to the actual value. Remember the set of attached data,
    The learning model generation unit generates a learning model using the set of data as learning data and using the number of reservations at each of the first to nth predetermined periods before the prediction target time as an explanatory variable. The learning system according to claim 1.
  8.  データ記憶手段は、施設の客数の実績値と、予約者の属性毎の、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、
     学習モデル生成手段は、前記データの集合を学習データとして用いて、前記属性毎の、予測対象時点より前記第1から第nまでの各所定期間前の時点での予約者数を説明変数とする学習モデルを生成する
     請求項1または請求項7に記載の学習システム。
    The data storage means is a time point before each predetermined period from the first to nth (n is an integer of 2 or more) from the time point corresponding to the actual value of the number of customers of the facility and the attribute of each reservation person. Store a set of data that correlates the number of reservations
    The learning model generation means uses the set of data as learning data, and uses the number of reservations for each attribute as the explanatory variable at a point in time before each of the first to nth periods from the prediction target point in time. The learning system according to claim 1 or 7, wherein a learning model is generated.
  9.  データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、
     学習モデル生成手段は、mを2からnまでの各整数とした場合における、予測対象時点より第m-1の所定期間前の予約者数に対する第mの所定期間前の予約者数の割合をそれぞれ説明変数とする学習モデルを生成する
     請求項1に記載の学習システム。
    The data storage means associates the actual value of the number of customers of the facility with the number of reservations at each of the first to n-th (n is an integer of 2 or more) before each predetermined period from the time corresponding to the actual value. Remember the set of attached data,
    The learning model generation means calculates the ratio of the number of reservations before the mth predetermined period to the number of reservations before the m−1 predetermined period from the prediction target time point when m is an integer from 2 to n. The learning system according to claim 1, wherein a learning model is generated as each explanatory variable.
  10.  データ記憶手段は、施設の客数の実績値と、予約者の属性毎の、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数とを対応付けたデータの集合を記憶し、
     学習モデル生成手段は、mを2からnまでの各整数とした場合における、前記属性毎の、予測対象時点より第m-1の所定期間前の予約者数に対する第mの所定期間前の予約者数の割合をそれぞれ説明変数とする学習モデルを生成する
     請求項1または請求項9に記載の学習システム。
    The data storage means is a time point before each predetermined period from the first to nth (n is an integer of 2 or more) from the time point corresponding to the actual value of the number of customers of the facility and the attribute of each reservation person. Store a set of data that correlates the number of reservations
    The learning model generation means reserves before the mth predetermined period with respect to the number of reservations before the m−1 predetermined period from the prediction target time for each attribute when m is each integer from 2 to n. The learning system according to claim 1 or 9, wherein a learning model is generated in which the ratio of the number of persons is an explanatory variable.
  11.  データ記憶手段は、施設の客数の実績値と、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数の移動平均値とを対応付けたデータの集合を記憶し、
     学習モデル生成手段は、前記データの集合を学習データとして用いて、予測対象時点より前記第1から第nまでの各所定期間前の時点での予約者数の移動平均値を説明変数とする学習モデルを生成する
     請求項1に記載の学習システム。
    The data storage means includes the actual value of the number of customers in the facility, and the moving average of the number of reservations at each of the first to n-th (n is an integer of 2 or more) before each predetermined period from the time corresponding to the actual value. Stores a set of data associated with values,
    The learning model generation means uses the set of data as learning data, and learns using the moving average value of the number of reservations at a time before each of the first to nth predetermined periods from the prediction target time as an explanatory variable. The learning system according to claim 1, wherein a model is generated.
  12.  データ記憶手段は、施設の客数の実績値と、予約者の属性毎の、前記実績値に対応する時点より第1から第n(nは2以上の整数)までの各所定期間前の時点での予約者数の移動平均値とを対応付けたデータの集合を記憶し、
     学習モデル生成手段は、前記データの集合を学習データとして用いて、前記属性毎の、予測対象時点より前記第1から第nまでの各所定期間前の時点での予約者数の移動平均値を説明変数とする学習モデルを生成する
     請求項1または請求項11に記載の学習システム。
    The data storage means is a time point before each predetermined period from the first to nth (n is an integer of 2 or more) from the time point corresponding to the actual value of the number of customers of the facility and the attribute of each reservation person. A set of data associated with a moving average value of the number of reservations of
    The learning model generation means uses the set of data as learning data, and calculates a moving average value of the number of reservations for each attribute at a point in time before each predetermined period from the prediction target time point to the first to nth time points. The learning system according to claim 1 or 11, wherein a learning model is generated as an explanatory variable.
  13.  施設の客数の実績値と、前記実績値に対応する時点より前の前記施設に対する予約に関する情報とを対応付けたデータの集合を記憶するデータ記憶手段を備えた学習システムに適用される学習方法において、
     予測対象時点での前記施設の客数の予測のための学習モデルであって、前記予約に関する情報から特定される情報を説明変数とする学習モデルを、前記データの集合を学習データとして用いて生成する
     ことを特徴とする学習方法。
    In a learning method applied to a learning system including a data storage unit that stores a set of data in which an actual value of the number of customers of a facility is associated with information related to a reservation for the facility prior to the time corresponding to the actual value ,
    A learning model for predicting the number of customers of the facility at the time of prediction is generated using information specified from the information related to the reservation as an explanatory variable, using the set of data as learning data A learning method characterized by that.
  14.  施設の客数の実績値と、前記実績値に対応する時点より前の前記施設に対する予約に関する情報とを対応付けたデータの集合を記憶するデータ記憶手段を備えたコンピュータに搭載される学習プログラムであって、
     前記コンピュータに、
     予測対象時点での前記施設の客数の予測のための学習モデルであって、前記予約に関する情報から特定される情報を説明変数とする学習モデルを、前記データの集合を学習データとして用いて生成する学習モデル生成処理
     を実行させるための学習プログラム。
    A learning program installed in a computer having data storage means for storing a set of data in which the actual value of the number of customers at a facility is associated with information related to a reservation for the facility prior to the time corresponding to the actual value. And
    In the computer,
    A learning model for predicting the number of customers of the facility at the time of prediction is generated using information specified from the information related to the reservation as an explanatory variable, using the set of data as learning data A learning program for executing the learning model generation process.
PCT/JP2015/001745 2015-03-26 2015-03-26 Learning system, method, and program WO2016151640A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/001745 WO2016151640A1 (en) 2015-03-26 2015-03-26 Learning system, method, and program
JP2017507117A JPWO2016151640A1 (en) 2015-03-26 2015-03-26 Learning system, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/001745 WO2016151640A1 (en) 2015-03-26 2015-03-26 Learning system, method, and program

Publications (1)

Publication Number Publication Date
WO2016151640A1 true WO2016151640A1 (en) 2016-09-29

Family

ID=56977126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001745 WO2016151640A1 (en) 2015-03-26 2015-03-26 Learning system, method, and program

Country Status (2)

Country Link
JP (1) JPWO2016151640A1 (en)
WO (1) WO2016151640A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218937A (en) * 2018-06-22 2019-12-26 株式会社日立製作所 Wind power generation system and method
JP2021033718A (en) * 2019-08-26 2021-03-01 国立大学法人京都大学 Demand prediction system, price determination system, information processing system and computer program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002073877A (en) * 2000-08-25 2002-03-12 Dainippon Printing Co Ltd Movie running contents setting system
JP2014149713A (en) * 2013-02-01 2014-08-21 Ntt Docomo Inc Image evaluation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002073877A (en) * 2000-08-25 2002-03-12 Dainippon Printing Co Ltd Movie running contents setting system
JP2014149713A (en) * 2013-02-01 2014-08-21 Ntt Docomo Inc Image evaluation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218937A (en) * 2018-06-22 2019-12-26 株式会社日立製作所 Wind power generation system and method
JP2021033718A (en) * 2019-08-26 2021-03-01 国立大学法人京都大学 Demand prediction system, price determination system, information processing system and computer program
JP7109027B2 (en) 2019-08-26 2022-07-29 国立大学法人京都大学 Demand forecasting system, pricing system, information processing system and computer program

Also Published As

Publication number Publication date
JPWO2016151640A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6761789B2 (en) People flow forecasters, systems and programs
Lee Modeling and forecasting hotel room demand based on advance booking information
Ma et al. Anticipating Chinese tourists arrivals in Australia: A time series analysis
Song et al. Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system
Marshall et al. A forecasting system for movie attendance
Ingolfsson et al. Accounting for time-varying queueing effects in workforce scheduling
Guo et al. Forecasting airport transfer passenger flow using real-time data and machine learning
JP6562373B2 (en) Prediction device and prediction method
JP6003736B2 (en) Information processing program, information processing method, and information processing apparatus
JP6973887B2 (en) Project management support equipment, project management support methods and programs
Viegas de Lima et al. Modeling framework and implementation of activity-and agent-based simulation: an application to the Greater Boston Area
JP2016126404A (en) Optimization system, optimization method, and optimization program
JP7063079B2 (en) Machine learning programs, machine learning methods and machine learning equipment
WO2016151640A1 (en) Learning system, method, and program
JPWO2020105279A1 (en) Work shift creation device and method, and work shift creation support device and method
Smirnov et al. Analytics for labor planning in systems with load-dependent service times
Tsai A self-learning advanced booking model for railway arrival forecasting
JP4987275B2 (en) Production scheduling apparatus, production scheduling method, and program
JP6170772B2 (en) Information processing system, information processing apparatus, information processing method, and information processing program
JP6896509B2 (en) Offer number prediction device, offer number prediction method and offer number prediction program
Mallouhy et al. Forecasting the number of firemen interventions using exponential smoothing methods: a case study
CN115049458A (en) Commodity pushing method and device based on user crowd modeling, medium and equipment
WO2016151639A1 (en) System for predicting number of people, method for predicting number of people, and program for predicting number of people
KR102308233B1 (en) Method for analyzing relationship between personal factors and types of visiting places and a method for recommending personalized contents using the same
Edwards et al. A mathematical model of cinematic box-office dynamics with geographic effects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507117

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886197

Country of ref document: EP

Kind code of ref document: A1