WO2016150135A1 - 一种实现数据处理的方法、系统及中继节点 - Google Patents

一种实现数据处理的方法、系统及中继节点 Download PDF

Info

Publication number
WO2016150135A1
WO2016150135A1 PCT/CN2015/090947 CN2015090947W WO2016150135A1 WO 2016150135 A1 WO2016150135 A1 WO 2016150135A1 CN 2015090947 W CN2015090947 W CN 2015090947W WO 2016150135 A1 WO2016150135 A1 WO 2016150135A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
coding
network coding
encoding
orthogonal
Prior art date
Application number
PCT/CN2015/090947
Other languages
English (en)
French (fr)
Inventor
王晓妮
张芳
袁熹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016150135A1 publication Critical patent/WO2016150135A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems

Definitions

  • the present application relates to, but is not limited to, the field of wireless communication technologies, and in particular, to a method, a system, and a relay node for implementing data processing.
  • wireless communication plays an increasingly important role in people's daily life.
  • system performance of wireless communication transmission rate and reliability is proposed. higher requirement.
  • limited spectrum resources, fading effects of wireless channels, interference between users, and low spectrum utilization of traditional orthogonal multiple access technologies limit system performance, making the reliability problem of high-rate data transmission become A research question.
  • NC Network Coding
  • Non-orthogonal multiple access (NOMA) technology uses non-orthogonal transmission at the transmitting end, and NOMA subchannel transmission still uses Orthogonal Frequency Division Multiplexing (OFDM) technology. It is orthogonal, but each subchannel is no longer only assigned to one user, but shared by multiple users. Different users on the same subchannel are transmitted by power multiplexing technology. The signal power of different users is according to the relevant algorithm. The allocation is performed such that the inter-user interference information is actively introduced. Since the signal power of each user arriving at the receiver is different, the receiver performs corresponding sorting according to the power of the user signal, and then through serial interference cancellation (SIC, Successive Interference). Cancellation) technology demodulates each one by one User information to achieve correct demodulation.
  • OFDM Orthogonal Frequency Division Multiplexing
  • NOMA superimposes multiple users in the power domain and allocates different transmit powers to different users, thereby improving the spectrum efficiency of the system, that is, achieving the purpose of providing system throughput.
  • demodulation is improved by serial interference cancellation.
  • the reliability of the receiver detection improves system performance.
  • wireless communication systems only increase the throughput of the system through PNC or NOMA.
  • the problem of system throughput will become more and more urgent. How to further improve system throughput is a problem that continues to be solved. In addition, how to ensure transmission reliability while improving throughput is also a problem that should be concerned.
  • Embodiments of the present invention provide a method, a system, and a relay node for implementing data processing, which can improve throughput and transmission reliability of a wireless communication system.
  • a method of implementing data processing including:
  • One or more relay nodes perform network coding on the simultaneously received source information to obtain first encoded information;
  • the source information is from a source node and/or a user equipment;
  • the method further includes:
  • Each destination node obtains first coded information by performing non-orthogonal decoding on the second coded information of the channel;
  • Each destination node separately obtains the output source information by performing network coding and decoding on the first encoded information.
  • the one or more relay nodes perform network coding on the simultaneously received source information to obtain the first encoded information, including:
  • the simultaneously received source information is S 1 , . . . , S P
  • the total number of transmit antennas of the one or more relay nodes is N, and P is the information sequence number of the network coding, 1 ⁇ P ⁇ N.
  • the performing network coding according to the determined information sequence includes:
  • the network coding is performed by using a complex domain network coding method.
  • performing network coding by using a multi-domain network coding manner includes:
  • the m is an m-th extension domain GF(2 m ) of GF(2);
  • Network coding using complex domain network coding includes:
  • performing non-orthogonal coding on the first encoding information to obtain the second encoding information includes:
  • ⁇ k is the coding coefficient of the kth relay node when non-orthogonal coding.
  • the non-orthogonal coding is superposition coding, and the second coding information
  • the method further includes:
  • Each destination node obtains first coded information by performing non-orthogonal decoding on the second coded information of the channel;
  • Each destination node separately obtains the output source information by decoding the first encoded information through network coding
  • the second encoded information of the pass channel is:
  • H k represents the channel gain coefficient of the kth relay node to the destination node
  • ⁇ k represents the Gaussian white noise between the transmit antenna of the kth relay node to the destination node receiving antenna, and the power of the Gaussian white noise
  • SINR k is the ratio of the effective signal to the interference plus noise of the kth relay node.
  • P k is the power of the kth relay node:
  • P j is the power of the jth relay node.
  • the performing non-orthogonal coding on the channel coding information includes:
  • the signal energy of ⁇ k R k is arranged in descending order, and the destination node uses the serial interference cancellation SIC receiver to perform non-orthogonal decoding on the channel coding information.
  • a system for implementing data processing comprising: one or more relay nodes, one or more destination nodes; wherein
  • the one or more relay nodes respectively include a first coding unit and a second coding and transmission unit;
  • the first coding unit is configured to perform network coding on the simultaneously received source information to obtain first coded information
  • the second encoding and transmitting unit is configured to perform non-orthogonal encoding on the first encoding information to obtain second encoding information, and send the obtained second encoding information to each destination node through the same time slot;
  • Each of the destination nodes includes a first decoding unit and a second decoding unit, respectively, wherein
  • the first decoding unit is configured to obtain the first encoded information by performing non-orthogonal decoding on the received second encoded information of the through channel;
  • the second decoding unit is configured to obtain, by using network coding and decoding, first source information to obtain output source information;
  • the source information is from a source node and/or a user equipment.
  • the first coding unit performs network coding on the simultaneously received source information to obtain the first coded information, where:
  • the simultaneously received source information is S 1 , . . . , S P
  • the total number of transmit antennas of the one or more relay nodes is N, and P is the information sequence number of the network coding, 1 ⁇ P ⁇ N.
  • the first coding unit performs network coding according to the determined information sequence, that is:
  • the first coding unit performs multi-domain network coding according to the determined information sequence.
  • Network coding or network coding using complex domain network coding.
  • the first coding unit performs network coding by using a multi-domain network coding manner:
  • the m is an m-th extension domain GF(2 m ) of GF(2);
  • the first coding unit performs network coding by using a complex domain network coding manner:
  • the first coded information R k , R k S ⁇ u k , which can be mapped one by one with the source information S 1 , . . . , S P .
  • the second encoding and transmitting unit performs non-orthogonal encoding on the first encoding information to obtain the second encoded information, where:
  • the second encoding and transmitting unit obtains second encoding information by using the first encoding information R k by non-orthogonal encoding;
  • ⁇ k is the coding coefficient of the kth relay node when non-orthogonal coding.
  • the non-orthogonal coding is superposition coding
  • the second coding information of the pass channel is:
  • H k represents the channel gain coefficient of the kth relay node to the destination node
  • ⁇ k represents the Gaussian white noise between the transmit antenna of the kth relay node to the destination node receiving antenna, and the power of the Gaussian white noise
  • SINR k is the ratio of the effective signal to the interference plus noise of the kth relay node.
  • P k is the power of the kth relay node:
  • P j is the power of the jth relay node.
  • the non-orthogonal decoding of the channel coding information by the first coding unit refers to:
  • the first decoding unit arranges the signal energy of ⁇ k R k in descending order, and performs non-orthogonal decoding on the second encoded information by using a serial interference cancellation SIC receiver.
  • a relay node comprising:
  • a first coding unit configured to perform network coding on the simultaneously received source information to obtain first coded information
  • the second encoding and transmitting unit is configured to perform non-orthogonal encoding on the first encoding information to obtain second encoding information, and send the obtained second encoding information to each destination node through the same time slot;
  • the source information is from a source node and/or a user equipment.
  • the embodiment of the present invention performs network coding on the simultaneously received source information, and performs non-orthogonal coding on the network-encoded information, thereby improving the throughput of the wireless communication system. Meanwhile, the network coding generates Redundant information brings coding gain, which improves the reliability of wireless communication systems.
  • FIG. 1 is a flowchart of a method for implementing data processing according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a system for implementing data processing according to an embodiment of the present invention
  • FIG. 3(a) is a schematic diagram of time slot occupancy analysis for implementing data processing in related art
  • FIG. 3(b) is a schematic diagram of time slot occupancy analysis for implementing data processing in related art
  • FIG. 3(c) is a schematic diagram of slot occupancy analysis for implementing data processing in Embodiment 1;
  • 4 is a comparison diagram of system capacity performance of uplink using non-orthogonal multiple access and orthogonal multiple access
  • FIG. 6 is a schematic diagram of a relay node according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for implementing data processing according to an embodiment of the present invention. As shown in FIG. 1, steps 100 and 101 are included:
  • Step 100 The one or more relay nodes perform network coding on the simultaneously received source information to obtain first encoded information.
  • the source information comes from the source node and/or the user equipment.
  • the one or more relay nodes perform network coding on the source information received at the same time to obtain the first encoded information, which may include:
  • the one or more relay nodes determine, according to the simultaneously received source information, a network coded information sequence corresponding to the source information, and perform network coding according to the determined information sequence to obtain the first coded information.
  • the received source information is S 1 ,...,S P
  • P is the participation network coding. The number of the information sequence;
  • the total number of transmit antennas of the one or more relay nodes is N, 1 ⁇ P ⁇ N.
  • the performing network coding according to the determined information sequence may include:
  • the network coding is performed by using a complex domain network coding method.
  • multi-domain network coding mode and the complex-domain network coding mode are only optional modes of the embodiments of the present invention.
  • Other network codings applicable to the method of the embodiment of the present invention may also be applied to the embodiments of the present invention.
  • step 100 may include:
  • m is the m-level extension domain GF(2 m ) of GF(2);
  • step 100 may include:
  • the P information sequences are network-encoded to generate N coding information, 1 ⁇ P ⁇ N, generated in the network coding process.
  • the redundant information generates coding gain, thereby improving the reliability of the wireless communication system.
  • Step 101 Non-orthogonal coding the first coded information to obtain second coded information, where the one or more relay nodes send the obtained second coded information to each destination node by using the same time slot;
  • the non-orthogonal coding of the first coding information to obtain the second coding information may include:
  • ⁇ k is the coding coefficient of the kth relay node when non-orthogonal coding.
  • Non-orthogonal coding is superposition coding, and second coding information
  • the embodiment of the present invention may further include steps 102 and 103.
  • Step 102 Each destination node obtains first coded information by performing non-orthogonal decoding on the second coded information of the channel.
  • the second coding information of the channel is:
  • H k represents the channel gain coefficient of the kth relay node to the destination node
  • ⁇ k represents the Gaussian white noise between the transmit antenna of the kth relay node to the destination node receiving antenna, and the power of the Gaussian white noise
  • SINR k is the ratio of the effective signal to the interference plus noise of the kth relay node.
  • P k is the power of the kth relay node:
  • P j is the power of the jth relay node.
  • non-orthogonal decoding of the second encoded information sent to each destination node itself includes:
  • the signal energy of ⁇ k R k is arranged in descending order, and the second coded information transmitted to each destination node itself is non-orthogonally decoded by the SIC receiver;
  • the decoding is performed by the SIC receiver, and the serial elimination is performed in the order of 1, ..., k, ..., N (the kth node is not subject to the eliminated 1, ..., The interference of signals on k-1 nodes), as k increases, the unremoved interference received decreases in turn, so that all node information can be detected one by one.
  • Step 103 Each destination node separately obtains source information of the first encoded information by network coding and decoding.
  • the embodiment of the invention performs network coding on the simultaneously received source information, performs non-orthogonal coding on the network coded information, improves the throughput rate of the wireless communication system, and brings redundant information generated by network coding.
  • the coding gain increases the reliability of the wireless communication system.
  • the method includes: one or more relay nodes 21, and one or more destination nodes 22;
  • the one or more relay nodes 21 respectively include a first encoding unit 211 and a second encoding and transmitting unit 212;
  • the first encoding unit 211 is configured to perform network coding on the simultaneously received source information to obtain first encoded information.
  • the first coding unit 211 performs network coding on the simultaneously received source information to obtain the first encoded information, which may be:
  • the first coding unit 211 determines, according to the simultaneously received source information, a network coded information sequence corresponding to the source information, and performs network coding according to the determined information sequence to obtain first coded information.
  • the simultaneously received source information is S 1 , . . . , S P
  • the total number of transmit antennas of the one or more relay nodes 21 is N, and P is the information sequence number of the network coding, 1 ⁇ P ⁇ N.
  • the network coding performed by the first coding unit 211 according to the determined information sequence may refer to:
  • the first coding unit 211 performs network coding by using a multi-domain network coding manner or network coding using a complex domain network coding manner according to the determined information sequence.
  • the network coding by using the multi-domain network coding mode by the first coding unit 211 may refer to:
  • m is the m-level extension domain GF(2 m ) of GF(2);
  • the network coding performed by the first coding unit 211 by using a complex domain network coding manner may be:
  • First encoded information R k , R k S ⁇ u k , which can be mapped one by one with the source information S 1 , . . . , S P is generated.
  • the second encoding and transmitting unit 212 is configured to perform non-orthogonal encoding on the first encoding information to obtain second encoding information, and send the obtained second encoding information to each destination node through the same time slot;
  • the second encoding and transmitting unit 212 performs non-orthogonal encoding on the first encoding information to obtain the second encoding information, which may be:
  • the second encoding and transmitting unit 212 obtains the second encoding information by using the first encoding information R k by non-orthogonal encoding;
  • ⁇ k is the coding coefficient of the kth relay node when non-orthogonal coding.
  • the non-orthogonal coding is superposition coding
  • Each of the destination nodes 22 includes a first decoding unit 221 and a second decoding unit 222;
  • the first decoding unit 221 is configured to obtain the first encoding information by performing non-orthogonal decoding on the received second encoding information of the channel;
  • the second encoded information of the pass channel is:
  • H k represents the channel gain coefficient of the kth relay node to the destination node
  • ⁇ k represents the Gaussian white noise between the transmit antenna of the kth relay node to the destination node receiving antenna, and the power of the Gaussian white noise
  • SINR k is the ratio of the effective signal to the interference plus noise of the kth relay node.
  • P k is the power of the kth relay node:
  • P j is the power of the jth relay node.
  • the non-orthogonal decoding of the channel coding information by the first decoding unit 221 may refer to:
  • the first decoding unit 221 arranges the signal energy of ⁇ k R k in descending order, and performs non-orthogonal decoding on the channel coding information by using the SIC receiver.
  • the second decoding unit 222 is configured to obtain, by using network coding and decoding, first source information to obtain output source information;
  • the source information is from a source node and/or a user equipment.
  • This embodiment describes the slot occupancy of the network coding in the related art and the embodiment of the present invention from the slot occupancy angle.
  • FIG. 3(a) is a schematic diagram of time slot occupancy analysis for implementing data processing in the related art.
  • the source node (or destination node) S1 and the destination node (or letter) are mainly involved.
  • the relay node receives the information X 1 sent by S1 in time slot 1, and forwards X 1 to S1 and S2 in time slot 2 , and the relay node R receives the information X 2 sent by S2 in time slot 3, and the relay node R is in time.
  • Slot 4 forwards X 2 to S1 and S2; the relay node needs 4 slots to complete X 1 and X 2 forwarding.
  • FIG. 3(b) is a schematic diagram of time slot occupancy analysis for implementing data processing in the related art.
  • the relay node R uses a network coding structure, receives and stores the information X1 sent by S1 in time slot 1 .
  • the relay node R receives and stores the information X 2 transmitted by the S2, encodes the received stored X 1 and X 2 , and forwards the X 1 + X 2 code to the S1 and S2 after the time slot 3 is completed. It takes 3 time slots for the relay node to forward X 1 and X 2 .
  • FIG. 3(c) is a schematic diagram of slot occupancy analysis for implementing data processing according to Embodiment 1 of the present invention.
  • the relay node R simultaneously receives S1 transmission in time slot 1 according to the solution of the embodiment of the present invention.
  • X 1 and S2 send X 2 ;
  • the relay node forwards the X 1 , X 2 encoded coded information X 1 +X 2 to S1 and S2, thus completing the information interaction between S1 and S2 only needs 2 time slots.
  • the solution of the embodiment of the present invention saves 1/2 time slot directly compared to FIG. 3( a ), and saves 1/3 of the transmission time slot by the related art network coding.
  • the solution of the embodiment improves the throughput of the system.
  • multiple source nodes and relay nodes may be included in relay forwarding, but the operations performed are similar for each source node and relay node, so only the pictures are given in the figure. The case of a relay node.
  • Figure 4 is a comparison of system capacity performance of uplink using non-orthogonal multiple access and orthogonal multiple access.
  • non-orthogonal multiple access and orthogonal multiple access in the figure use two source nodes or The two user equipments process
  • the dotted line in the figure uses non-orthogonal multiple access for information processing
  • the solid line uses orthogonal multiple access for information processing.
  • P 1 + P 2 P and degrees of freedom are assigned ⁇ ⁇ [0, 1]
  • the degree of freedom of the ratio ⁇ is assigned to node 1 (or user 1)
  • the coding method based on orthogonal multiple access only reaches the total capacity at point C.
  • the weak signal node 1 or user 1
  • node 1 or user is given at point A.
  • the highest possible rate of 1 is the fairest. It can also be clearly seen from the figure that the performance of the non-orthogonal multiple access scheme is better than that of the orthogonal multiple access scheme.
  • FIG. 5 is a schematic diagram of a method for implementing example 2.
  • P source nodes N relay nodes R, and a destination node.
  • D and the relay node R is a single antenna structure, and the destination node D is a single antenna or a multi-antenna structure.
  • the solid line in the figure indicates that in the time slot 1, the relay node simultaneously receives the source information sent by the self-confident source node.
  • the relay node R determines the information sequence [S 1 , . . . , S P ], performs network coding on the determined [S 1 , . . .
  • the encoded information X is obtained; the dotted line indicates that in the time slot 2, the relay node forwards the encoded information X to the destination node, and after receiving the encoded information Y forwarded by the relay node received by the destination node, it first passes through the SIC demodulation module to obtain The information encoded by the relay node network is then decoded by the network coding and decoding module to obtain the output source information.
  • FIG. 6 is a schematic diagram of a relay node according to an embodiment of the present invention. As shown in FIG. 6, the method includes:
  • the first encoding unit 61 is configured to perform network coding on the simultaneously received source information to obtain first encoding information; the source information is from a source node and/or a user equipment;
  • the second encoding and transmitting unit 62 is configured to perform non-orthogonal encoding on the first encoding information to obtain second encoding information, and send the obtained second encoding information to each destination node through the same time slot.
  • the first encoding unit 61 performs network coding on the simultaneously received source information to obtain the first encoded information, which may be:
  • the first encoding unit 61 determines a network-coded information sequence corresponding to the source information according to the simultaneously received source information, and performs network coding according to the determined information sequence to obtain first encoded information.
  • the simultaneously received source information is S 1 , . . . , S P
  • the total number of transmit antennas of the one or more relay nodes 21 is N, and P is the information sequence number of the network coding, 1 ⁇ P ⁇ N.
  • the network coding performed by the first coding unit 61 according to the determined information sequence may refer to:
  • the first encoding unit 61 performs network coding by using a multi-domain network coding method or network coding using a complex domain network coding method according to the determined information sequence.
  • the network coding by using the multi-domain network coding mode by the first coding unit 61 may refer to:
  • m is the m-level extension domain GF(2 m ) of GF(2);
  • the network coding by using the complex domain network coding mode by the first coding unit 61 may refer to:
  • First encoded information R k , R k S ⁇ u k , which can be mapped one by one with the source information S 1 , . . . , S P is generated.
  • the second encoding and transmitting unit 62 performs non-orthogonal encoding on the first encoding information to obtain the second encoding information, which may be:
  • the second encoding and transmitting unit 62 obtains the second encoding information by using the first encoding information R k by non-orthogonal encoding;
  • ⁇ k is the coding coefficient of the kth relay node when non-orthogonal coding.
  • the non-orthogonal coding is superposition coding
  • the embodiment of the present invention performs network coding on the simultaneously received source information, and performs non-orthogonal coding on the network-encoded information, thereby improving the throughput of the wireless communication system. Meanwhile, the network coding generates Redundant information brings coding gain, which improves the reliability of wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种实现数据处理的方法、系统及中继节点,方法包括:一个或一个以上中继节点将同时接收到的信源信息进行网络编码获得第一编码信息;对第一编码信息进行非正交编码获得第二编码信息,所有中继节点通过同一时隙将获得的第二编码信息发往各目的节点。

Description

一种实现数据处理的方法、系统及中继节点 技术领域
本申请涉及但不限于无线通信技术领域,尤指一种实现数据处理的方法、系统及中继节点。
背景技术
随着无线通信技术的发展,无线通信在人们的日常生活中扮演着越来越重要的角色;同时,伴随着用户日益增长的应用需求,对无线通信的传输速率和可靠性等系统性能提出了更高的要求。但是,有限的频谱资源、无线信道的衰落效应、用户之间的干扰及传统的正交多址技术的频谱利用率不高等因素限制了系统性能的提高,使得高速率数据传输的可靠性问题成为了一个研究问题。
网络编码(NC,Network Coding)技术的出现改变了传统的网络传输机制,中继节点不再仅仅转发所收到的信息,而是将接收到的信息编码后再进行转发,这样增加了中继节点每次发送给目的节点的信息量,从而提高了网络的吞吐量。其中,物理层网络编码(PNC,Physical-layer Network Coding)是在物理层将电磁波叠加,然后中继节点对叠加的数据包进行编码,转发给目的节点,这样进一步降低了中继节点数据通信所需时间,同时也进一步提高了网络的吞吐量;另外,通过网络编码产生的冗余信息带来编码增益,从而提高了信息传输的可靠性。
非正交多址(NOMA,Non-orthogonal Multiple Access)技术在发送端采用非正交传输,NOMA子信道传输依然采用正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)技术,子信道之间是正交的,但是每个子信道上不再只分配给一个用户,而是多个用户共享,对同一子信道上的不同用户采用功率复用技术进行发送,不同用户的信号功率按照相关的算法进行分配,这样主动引入用户间干扰信息,由于到达接收机的每个用户的信号功率都不一样,接收机再根据用户信号功率大小进行相应的排序,然后通过串行干扰消除(SIC,Successive Interference Cancellation)技术逐个解调出每个用 户的信息,以实现正确解调。NOMA在功率域叠加多个用户,对不同的用户分配不同的发射功率,从而提高了系统的频谱效率,即达到了提供系统吞吐量的目的;另外,通过串行干扰消除进行解调,提高了接收机检测的可靠性,从而提高了系统性能。
目前,无线通信系统仅通过PNC或NOMA来提高系统的吞吐量,随着无线通信系统应用需求的增长,系统吞吐量的问题将越来越紧迫,如何进一步提高系统吞吐量是一个继续解决的问题,另外,在提高吞吐量的同时如何保证传输可靠性也是应该关注的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种实现数据处理的方法、系统及中继节点,能够提高无线通信系统的吞吐量及传输可靠性。
本发明实施例采用如下技术方案。
一种实现数据处理的方法,包括:
一个或一个以上中继节点将同时接收到的信源信息进行网络编码获得第一编码信息;所述信源信息来自信源节点和/或用户设备;
对所述第一编码信息进行非正交编码获得第二编码信息,所述一个或一个以上中继节点通过同一时隙将获得的第二编码信息发往每个目的节点。
可选地,所有中继节点通过同一时隙将获得的第二编码信息发往每个目的节点后还包括:
每个目的节点将通过信道的第二编码信息进行非正交译码后获得第一编码信息;
每个目的节点分别对所述第一编码信息通过网络编码译码获得输出的信源信息。
可选地,所述一个或一个以上中继节点将同时接收到的信源信息进行网络编码获得第一编码信息包括:
所述一个或一个以上中继节点根据所述同时接收到的信源信息,确定与信源信息相对应的网络编码的信息序列;根据确定的信息序列进行网络编码,获得第一编码信息;
所述同时接收到的信源信息为S1,...,SP,所述与信源信息相对应的网络编码的信息序列为S=[S1,...,SP];
其中,所述一个或一个以上中继节点的发射天线总数为N,P为参与网络编码的信息序列编号,1<P≤N。
可选地,所述根据确定的信息序列进行网络编码包括:
根据确定的信息序列,采用多元域网络编码方式进行网络编码;或,
根据确定的信息序列,采用复数域网络编码方式进行网络编码。
可选地,采用多元域网络编码方式进行网络编码包括:
构造伽罗华域GF(2m)上N×N维柯西矩阵G,其中,m为满足公式
Figure PCTCN2015090947-appb-000001
中取值的最小值;设置每个中继节点上的编码向量gk,k=1,...,N为柯西矩阵G中的一个列向量;
根据所述柯西矩阵G对确定的信息序列进行网络编码获得第一编码信息Rk
所述m为GF(2)的m级扩展域GF(2m);
Figure PCTCN2015090947-appb-000002
采用复数域网络编码方式进行网络编码包括:
构造编码矩阵的秩大于或等于P的复数域网络编码矩阵uk,k=1,...,N,根据复数域网络编码矩阵对确定的信息序列进行网络编码,生成与信源信息S1,...,SP之间能够一一映射的第一编码信息Rk,Rk=S·uk
可选地,所述对第一编码信息进行非正交编码获得第二编码信息包括:
将所述第一编码信息Rk通过非正交编码获得第二编码信息;
所述第二编码信息
Figure PCTCN2015090947-appb-000003
其中,αk为非正交编码时第k个中继节点的编码系数。
可选地,当αk=1,k=1,...,N时,
所述非正交编码为叠加编码,所述第二编码信息
Figure PCTCN2015090947-appb-000004
可选地,所有中继节点通过同一时隙将获得的第二编码信息发往每个目的节点后还包括:
每个目的节点将通过信道的第二编码信息进行非正交译码后获得第一编码信息;
每个目的节点分别对所述第一编码信息通过网络编码译码获得输出的信源信息;
所述通过信道的第二编码信息为:
Figure PCTCN2015090947-appb-000005
其中,Hk表示第k个中继节点到目的节点的信道增益系数,ωk表示第k个中继节点的发射天线到目的节点接收天线之间的高斯白噪声,所述高斯白噪声的功率谱密度为N0
Figure PCTCN2015090947-appb-000006
为来自第k+1,...,N个中继节点的高斯白噪声;第k个中继节点达到的速率Rk=log(1+SINRk);
SINRk为译码第k个中继节点的有效信号与干扰加噪声之比
Figure PCTCN2015090947-appb-000007
Pk为第k个中继节点的功率:Pj为第j个中继节点的功率。
可选地,所述对信道编码信息进行非正交译码包括:
将αkRk的信号能量按降序排列,目的节点采用串行干扰消除SIC接收机 对信道编码信息进行非正交译码。
一种实现数据处理的系统,包括:一个或一个以上中继节点、一个或多个目的节点;其中,
所述一个或一个以上中继节点分别包括第一编码单元和第二编码及发送单元;其中,
所述第一编码单元设置成将同时接收到的信源信息进行网络编码获得第一编码信息;
所述第二编码及发送单元设置成对第一编码信息进行非正交编码获得第二编码信息,通过同一时隙将获得的第二编码信息发往每个目的节点;
每个所述目的节点分别包括第一译码单元及第二译码单元;其中,
所述第一译码单元设置成将接收的通过信道的第二编码信息进行非正交译码后获得第一编码信息;
所述第二译码单元设置成对第一编码信息通过网络编码译码获得输出的信源信息;
所述信源信息来自信源节点和/或用户设备。
可选地,所述第一编码单元将同时接收到的信源信息进行网络编码获得第一编码信息是指:
所述第一编码单元根据所述同时接收到的信源信息,确定与信源信息相对应的网络编码的信息序列;根据确定的信息序列进行网络编码获得第一编码信息;
所述同时接收到的信源信息为S1,...,SP,所述与信源信息相对应的网络编码的信息序列为S=[S1,...,SP];
其中,所述一个或一个以上中继节点的发射天线总数为N,P为参与网络编码的信息序列编号,1<P≤N。
可选地,所述第一编码单元根据确定的信息序列进行网络编码是指:
所述第一编码单元根据确定的信息序列,采用多元域网络编码方式进行 网络编码,或采用复数域网络编码方式进行网络编码。
可选地,所述第一编码单元采用多元域网络编码方式进行网络编码是指:
所述第一编码单元构造GF(2m)上N×N维柯西矩阵G,其中,m为满足公式
Figure PCTCN2015090947-appb-000008
中取值的最小值;设置各中继节点上的编码向量gk,k=1,...,N为柯西矩阵G中的一个列向量;
根据所述柯西矩阵G对确定的信息序列进行网络编码获得第一编码信息Rk
所述m为GF(2)的m级扩展域GF(2m);
Figure PCTCN2015090947-appb-000009
所述第一编码单元采用复数域网络编码方式进行网络编码是指:
所述第一编码单元构造编码矩阵的秩大于或等于P的复数域网络编码矩阵uk,k=1,...,N,根据复数域网络编码矩阵对确定的信息序列进行网络编码,生成与信源信息S1,...,SP之间能够一一映射的第一编码信息Rk,Rk=S·uk
可选地,所述第二编码及发送单元对第一编码信息进行非正交编码获得第二编码信息是指:
所述第二编码及发送单元将第一编码信息Rk通过非正交编码获得第二编码信息;
获得第二编码信息后,通过同一时隙将第二编码信息发往每个目的节点;
所述第二编码信息
Figure PCTCN2015090947-appb-000010
其中,αk为非正交编码时第k个中继节点的编码系数。
可选地,当αk=1,k=1,...,N时,所述非正交编码为叠加编码,所述第二编码信息
Figure PCTCN2015090947-appb-000011
可选地,所述通过信道的第二编码信息为:
Figure PCTCN2015090947-appb-000012
其中,Hk表示第k个中继节点到目的节点的信道增益系数,ωk表示第k个中继节点的发射天线到目的节点接收天线之间的高斯白噪声,所述高斯白噪声的功率谱密度为N0
Figure PCTCN2015090947-appb-000013
为来自第k+1,...,N个中继节点的高斯白噪声;第k个中继节点达到的速率Rk=log(1+SINRk);
SINRk为译码第k个中继节点的有效信号与干扰加噪声之比
Figure PCTCN2015090947-appb-000014
Pk为第k个中继节点的功率:Pj为第j个中继节点的功率。
可选地,所述第一译码单元对信道编码信息进行非正交译码是指:
所述第一译码单元将αkRk的信号能量按降序排列,采用串行干扰消除SIC接收机对第二编码信息进行非正交译码。
一种中继节点,包括:
第一编码单元,设置成将同时接收到的信源信息进行网络编码获得第一编码信息;
第二编码及发送单元,设置成对第一编码信息进行非正交编码获得第二编码信息,通过同一时隙将获得的第二编码信息发往每个目的节点;
所述信源信息来自信源节点和/或用户设备。
与相关技术相比,本发明实施例通过对同时接收到的信源信息进行网络编码,对网络编码后的信息进行非正交编码,提高了无线通信系统的吞吐率;同时,网络编码产生的冗余信息带来编码增益,从而提高了无线通信系统的可靠性。
在阅读并理解了附图和详细描述后,可以明白其它方面。
附图概述
图1为本发明实施例的实现数据处理的方法的流程图;
图2为本发明实施例的实现数据处理的系统的结构框图;
图3(a)为相关技术实现数据处理的时隙占用分析示意图;
图3(b)为相关技术实现数据处理的时隙占用分析示意图;
图3(c)为实施示例1实现数据处理的时隙占用分析示意图;
图4为上行链路采用非正交多址和正交多址的系统容量性能对比图;
图5为实施示例2的方法示意图;
图6为本发明实施例的中继节点的示意图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本发明实施例实现数据处理的方法的流程图,如图1所示,包括步骤100和101:
步骤100、一个或一个以上中继节点将同时接收到的信源信息进行网络编码获得第一编码信息;
这里,信源信息来自信源节点和/或用户设备。
本步骤中,所述一个或一个以上中继节点将同时接收到的信源信息进行网络编码获得第一编码信息可以包括:
所述一个或一个以上中继节点根据所述同时接收到的信源信息,确定与信源信息相对应的网络编码的信息序列;根据确定的信息序列进行网络编码获得第一编码信息。
同时接收的信源信息为S1,...,SP,与信源信息相对应的网络编码的信息序列为S=[S1,...,SP];P为参与网络编码的信息序列的编号;
所述一个或一个以上中继节点的发射天线总数为N,1<P≤N。
本步骤中,所述根据确定的信息序列进行网络编码可以包括:
根据确定的信息序列,采用多元域网络编码方式进行网络编码;或,
根据确定的信息序列,采用复数域网络编码方式进行网络编码。
需要说明的是,多元域网络编码方式和复数域网络编码方式只是本发明实施例的可选方式,其他适用于本发明实施例方法的网络编码也可以应用于本发明实施例。
可选的,
当采用多元域网络编码方式进行网络编码时,步骤100可以包括:
构造伽罗华域(GF,Galois Field)(2m)上N×N维柯西矩阵G,其中,m为满足公式
Figure PCTCN2015090947-appb-000015
中取值的最小值;设置每个中继节点上的编码向量gk,k=1,...,N为柯西矩阵G中的一个列向量;
根据柯西矩阵G对确定的信息序列进行网络编码获得第一编码信息Rk
m为GF(2)的m级扩展域GF(2m);
Figure PCTCN2015090947-appb-000016
当采用复数域网络编码方式进行网络编码时,步骤100可以包括:
构造编码矩阵的秩大于或等于P的复数域网络编码矩阵uk,k=1,...,N,根据复数域网络编码矩阵对确定的信息序列进行网络编码,生成与信源信息S1,...,SP之间能够一一映射的第一编码信息Rk,Rk=S·uk
需要说明的是,通过构造编码矩阵的秩大于或等于P的网络编码矩阵使编码处理时,P个信息序列进行网络编码后生成N个编码信息,1<P≤N,网络编码过程中生成的冗余信息产生编码增益,从而提高了无线通信系统的可靠性。
步骤101、对第一编码信息进行非正交编码获得第二编码信息,所述一个或一个以上中继节点通过同一时隙将获得的第二编码信息发往各目的节点;
本步骤中,所述对第一编码信息进行非正交编码获取第二编码信息可以包括:
将第一编码信息Rk通过非正交编码获得第二编码信息;
所述第二编码信息
Figure PCTCN2015090947-appb-000017
其中,αk为非正交编码时第k个中继节点的编码系数。
当αk=1,k=1,...,N时,
非正交编码为叠加编码,第二编码信息
Figure PCTCN2015090947-appb-000018
可选地,本发明实施例还可以包括步骤102和103。
步骤102、每个目的节点将通过信道的第二编码信息进行非正交译码后获得第一编码信息;
本步骤中,通过信道的第二编码信息为:
Figure PCTCN2015090947-appb-000019
其中,Hk表示第k个中继节点到目的节点的信道增益系数,ωk表示第k个中继节点的发射天线到目的节点接收天线之间的高斯白噪声,所述高斯白噪声的功率谱密度为N0
Figure PCTCN2015090947-appb-000020
为来自第k+1,...,N个中继节点的高斯白噪声;第k个中继节点达到的速率Rk=log(1+SINRk);
SINRk为译码第k个中继节点的有效信号与干扰加噪声之比
Figure PCTCN2015090947-appb-000021
Pk为第k个中继节点的功率:Pj为第j个中继节点的功率。
需要说明的是,由于来自第1,·,k-1个中继节点的干扰
Figure PCTCN2015090947-appb-000022
已译码完成,并已从每个目的节点获取发送给自身的第二编码信息中减去。
可选的,对发送给每个目的节点自身的第二编码信息进行非正交译码包括:
将αkRk的信号能量按降序排列,采用SIC接收机对发送给各目的节点自身的第二编码信息进行非正交译码;
需要说明的是,采用SIC接收机进行译码,按照1,...,k,...,N的顺序进行串行消除(第k个节点不会受到被消除的1,...,k-1个节点上信号的干扰),随着k的增大,受到的未消除干扰依次减少,从而可以逐次检测出所有的节点信息。
步骤103、每个目的节点分别对第一编码信息通过网络编码译码获得输出的信源信息。
本发明实施例通过对同时接收到的信源信息进行网络编码,对网络编码后的信息进行非正交编码,提高了无线通信系统的吞吐率;另外,通过网络编码产生的冗余信息带来编码增益,从而提高了无线通信系统的可靠性。
图2为本发明实施例实现数据处理的系统的结构框图,如图2所示,包括:一个或一个以上中继节点21、一个或多个目的节点22;其中,
所述一个或一个以上中继节点21分别包括第一编码单元211和第二编码及发送单元212;其中,
所述第一编码单元211用于将同时接收到的信源信息进行网络编码获得第一编码信息;
所述第一编码单元211将同时接收到的信源信息进行网络编码获得第一编码信息可以是指:
所述第一编码单元211根据所述同时接收到的信源信息,确定与信源信息相对应的网络编码的信息序列;根据确定的信息序列进行网络编码获得第一编码信息;
所述同时接收到的信源信息为S1,...,SP,所述与信源信息相对应的网络编码的信息序列为S=[S1,...,SP];
其中,所述一个或一个以上中继节点21的发射天线总数为N,P为参与网络编码的信息序列编号,1<P≤N。
所述第一编码单元211根据确定的信息序列进行网络编码可以是指:
所述第一编码单元211根据确定的信息序列,采用多元域网络编码方式进行网络编码或采用复数域网络编码方式进行网络编码。
所述第一编码单元211采用多元域网络编码方式进行网络编码可以是指:
所述第一编码单元211构造GF域(2m)上N×N维柯西矩阵G,其中,m为满足公式
Figure PCTCN2015090947-appb-000023
中取值的最小值;设置各中继节点上的编码向量gk,k=1,...,N为柯西矩阵G中的一个列向量;
根据柯西矩阵G对确定的信息序列进行网络编码获得第一编码信息Rk
m为GF(2)的m级扩展域GF(2m);
Figure PCTCN2015090947-appb-000024
所述第一编码单元211采用复数域网络编码方式进行网络编码可以是指:
所述第一编码单元211构造编码矩阵的秩大于或等于P的复数域网络编码矩阵uk,k=1,...,N,根据复数域网络编码矩阵对确定的信息序列进行网络编码,生成与信源信息S1,...,SP之间能够一一映射的第一编码信息Rk,Rk=S·uk
所述第二编码及发送单元212设置成对第一编码信息进行非正交编码获得第二编码信息,通过同一时隙将获得的第二编码信息发往各目的节点;
所述第二编码及发送单元212对第一编码信息进行非正交编码获得第二编码信息可以是指:
所述第二编码及发送单元212将第一编码信息Rk通过非正交编码获得第 二编码信息;
获得第二编码信息后,通过同一时隙将第二编码信息发往每个目的节点;
第二编码信息
Figure PCTCN2015090947-appb-000025
其中,αk为非正交编码时第k个中继节点的编码系数。
可选地,当αk=1,k=1,...,N时,所述非正交编码为叠加编码,所述第二编码信息
Figure PCTCN2015090947-appb-000026
每个所述目的节点22分别包括第一译码单元221及第二译码单元222;其中,
所述第一译码单元221设置成将接收的通过信道的第二编码信息进行非正交译码后获得第一编码信息;
所述通过信道的第二编码信息为:
Figure PCTCN2015090947-appb-000027
其中,Hk表示第k个中继节点到目的节点的信道增益系数,ωk表示第k个中继节点的发射天线到目的节点接收天线之间的高斯白噪声,所述高斯白噪声的功率谱密度为N0
Figure PCTCN2015090947-appb-000028
为来自第k+1,...,N个中继节点的高斯白噪声;第k个中继节点达到的速率Rk=log(1+SINRk);
SINRk为译码第k个中继节点的有效信号与干扰加噪声之比
Figure PCTCN2015090947-appb-000029
Pk为第k个中继节点的功率:Pj为第j个中继节点的功率。
所述第一译码单元221对信道编码信息进行非正交译码可以是指:
所述第一译码单元221将αkRk的信号能量按降序排列,采用SIC接收机 对信道编码信息进行非正交译码。
所述第二译码单元222设置成对第一编码信息通过网络编码译码获得输出的信源信息;
所述信源信息为来自信源节点和/或用户设备。
以下通过具体实施示例对本发明实施例进行清楚详细的说明。
实施示例1
本实施示例从时隙占用角度,对相关技术及本发明实施例网络编码的时隙占用情况进行说明。
图3(a)为相关技术实现数据处理的时隙占用分析示意图,如图3(a)所示,进行数据处理过程中,主要涉及信源节点(或目的节点)S1、目的节点(或信源节点)S2,中继节点R。中继节点在时隙1接收S1发送的信息X1,在时隙2将X1转发给S1和S2,中继节点R在时隙3接收S2发送的信息X2,中继节点R在时隙4将X2转发给S1和S2;中继节点转发完成X1和X2需要4个时隙。
图3(b)为相关技术实现数据处理的时隙占用分析示意图,如图3(b)所示,采用网络编码结构,中继节点R在时隙1接收并存储S1发送的信息X1,在时隙2,中继节点R接收并存储S2发送的信息X2,对接收存储的X1和X2进行编码,在时隙3将X1+X2编码完成后转发给S1和S2,中继节点转发完成X1和X2需要3个时隙。
图3(c)为本发明实施示例1实现数据处理的时隙占用分析示意图,如图3(c)所示,采用本发明实施例的方案,中继节点R在时隙1同时接收S1发送的X1和S2发送的X2;在时隙2,中继节点将X1、X2编码后的编码信息X1+X2转发给S1和S2,这样完成S1和S2的信息交互只需要2个时隙。
需要说明的是,本发明实施例的方案较图3(a)直接进行中继转发节省了1/2的时隙,比相关技术的网络编码节省了1/3的传输时隙,通过本发明实施例的方案,提高了系统的吞吐量。当然,在实际应用中,中继转发时可以包括多个信源节点和中继节点,但是对于每一个信源节点和中继节点,执行的操作是相似的,所以,在该图中只给出了一个中继节点的情况。
图4为上行链路采用非正交多址和正交多址的系统容量性能对比图,如图4所示,图中非正交多址和正交多址分别采用两个信源节点或两用户设备进行处理,图中虚线采用非正交多址进行信息处理,实线采用的正交多址进行信息处理。正交多址处理中,对于各种功率分配P1+P2=P和自由度分配α∈[0,1],将比例为α的自由度分配给节点1(或用户1)
所达到的速率
Figure PCTCN2015090947-appb-000030
Figure PCTCN2015090947-appb-000031
两节点或用户的信噪比分别为:P1/N0=0dB,P2/N0=15dB,由图中可知,基于正交多址接入的编码方式只在点C达到总容量,但是弱信号节点1(或用户1)在该点的速率极小,因此是一个极其不公平的工作点;在非正交多址的编码方式中,在点A处给出了节点1或用户1的最高可能速率,是最公平的。由图中还可以明显地看出,非正交多址方案性能优于正交多址方案性能。
实施示例2
图5为实施示例2的方法示意图,如图5所示,本实施示例提供的一种基于非正交多址方式的编码实例:P个信源节点、N个中继节点R和一个目的节点D,且中继节点R为单天线结构,目的节点D为单天线或多天线结构,图中实线表示在时隙1时,中继节点同时接收到来自信源节点发送的信源信息,中继节点R接收到信源信息后,确定信息序列[S1,...,SP],对确定的[S1,...,SP]先进行网络编码,然后进行非正交编码,得到编码信息X;虚线表示在时隙2时,中继节点将编码信息X转发给目的节点,目的节点接收到的中继节点转发的编码信息Y后,先经过SIC解调模块,得到中继节点网络编码后的信息,然后再经过网络编码译码模块进行译码,从而得到输出的信源信息。
图6为本发明实施例的中继节点的示意图,如图6所示,包括:
第一编码单元61,设置成将同时接收到的信源信息进行网络编码获得第一编码信息;所述信源信息来自信源节点和/或用户设备;
第二编码及发送单元62,设置成对第一编码信息进行非正交编码获得第二编码信息,通过同一时隙将获得的第二编码信息发往各目的节点。
所述第一编码单元61将同时接收到的信源信息进行网络编码获得第一编码信息可以是指:
所述第一编码单元61根据所述同时接收到的信源信息,确定与信源信息相对应的网络编码的信息序列;根据确定的信息序列进行网络编码获得第一编码信息;
所述同时接收到的信源信息为S1,...,SP,所述与信源信息相对应的网络编码的信息序列为S=[S1,...,SP];
其中,所述一个或一个以上中继节点21的发射天线总数为N,P为参与网络编码的信息序列编号,1<P≤N。
所述第一编码单元61根据确定的信息序列进行网络编码可以是指:
所述第一编码单元61根据确定的信息序列,采用多元域网络编码方式进行网络编码或采用复数域网络编码方式进行网络编码。
所述第一编码单元61采用多元域网络编码方式进行网络编码可以是指:
所述第一编码单元61构造GF域(2m)上N×N维柯西矩阵G,其中,m为满足公式
Figure PCTCN2015090947-appb-000032
中取值的最小值;设置各中继节点上的编码向量gk,k=1,...,N为柯西矩阵G中的一个列向量;
根据柯西矩阵G对确定的信息序列进行网络编码获得第一编码信息Rk
m为GF(2)的m级扩展域GF(2m);
Figure PCTCN2015090947-appb-000033
所述第一编码单元61采用复数域网络编码方式进行网络编码可以是指:
所述第一编码单元61构造编码矩阵的秩大于或等于P的复数域网络编码矩阵uk,k=1,...,N,根据复数域网络编码矩阵对确定的信息序列进行网络编码,生成与信源信息S1,...,SP之间能够一一映射的第一编码信息Rk,Rk=S·uk
所述第二编码及发送单元62对第一编码信息进行非正交编码获得第二编码信息可以是指:
所述第二编码及发送单元62将第一编码信息Rk通过非正交编码获得第二编码信息;
获得第二编码信息后,通过同一时隙将第二编码信息发往每个目的节点;
第二编码信息
Figure PCTCN2015090947-appb-000034
其中,αk为非正交编码时第k个中继节点的编码系数。
可选地,当αk=1,k=1,...,N时,所述非正交编码为叠加编码,所述第二编码信息
Figure PCTCN2015090947-appb-000035
工业实用性
与相关技术相比,本发明实施例通过对同时接收到的信源信息进行网络编码,对网络编码后的信息进行非正交编码,提高了无线通信系统的吞吐率;同时,网络编码产生的冗余信息带来编码增益,从而提高了无线通信系统的可靠性。

Claims (18)

  1. 一种实现数据处理的方法,包括:
    一个或一个以上中继节点将同时接收到的信源信息进行网络编码获得第一编码信息;所述信源信息来自信源节点和/或用户设备;
    对所述第一编码信息进行非正交编码获得第二编码信息,所述一个或一个以上中继节点通过同一时隙将获得的第二编码信息发往每个目的节点。
  2. 根据权利要求1所述的方法,所有中继节点通过同一时隙将获得的第二编码信息发往每个目的节点后还包括:
    每个目的节点将通过信道的第二编码信息进行非正交译码后获得第一编码信息;
    每个目的节点分别对所述第一编码信息通过网络编码译码获得输出的信源信息。
  3. 根据权利要求1所述的方法,其中,所述一个或一个以上中继节点将同时接收到的信源信息进行网络编码获得第一编码信息包括:
    所述一个或一个以上中继节点根据所述同时接收到的信源信息,确定与信源信息相对应的网络编码的信息序列;根据确定的信息序列进行网络编码,获得第一编码信息;
    所述同时接收到的信源信息为S1,...,SP,所述与信源信息相对应的网络编码的信息序列为S=[S1,...,SP];
    其中,所述一个或一个以上中继节点的发射天线总数为N,P为参与网络编码的信息序列编号,1<P≤N。
  4. 根据权利要求3所述的方法,其中,所述根据确定的信息序列进行网络编码包括:
    根据确定的信息序列,采用多元域网络编码方式进行网络编码;或,
    根据确定的信息序列,采用复数域网络编码方式进行网络编码。
  5. 根据权利要求4所述的方法,其中,采用多元域网络编码方式进行网络编码包括:
    构造伽罗华域GF(2m)上N×N维柯西矩阵G,其中,m为满足公式
    Figure PCTCN2015090947-appb-100001
    中取值的最小值;设置每个中继节点上的编码向量gk,k=1,...,N为柯西矩阵G中的一个列向量;
    根据所述柯西矩阵G对确定的信息序列进行网络编码获得第一编码信息Rk
    所述m为GF(2)的m级扩展域GF(2m);
    Figure PCTCN2015090947-appb-100002
    采用复数域网络编码方式进行网络编码包括:
    构造编码矩阵的秩大于或等于P的复数域网络编码矩阵uk,k=1,...,N,根据复数域网络编码矩阵对确定的信息序列进行网络编码,生成与信源信息S1,...,SP之间能够一一映射的第一编码信息Rk,Rk=S·uk
  6. 根据权利要求5所述的方法,其中,所述对第一编码信息进行非正交编码获得第二编码信息包括:
    将所述第一编码信息Rk通过非正交编码获得第二编码信息;
    所述第二编码信息
    Figure PCTCN2015090947-appb-100003
    其中,αk为非正交编码时第k个中继节点的编码系数。
  7. 根据权利要求6所述的方法,其中,当αk=1,k=1,...,N时,
    所述非正交编码为叠加编码,所述第二编码信息
    Figure PCTCN2015090947-appb-100004
  8. 根据权利要求6或7所述的方法,所有中继节点通过同一时隙将获得的第二编码信息发往每个目的节点后还包括:
    每个目的节点将通过信道的第二编码信息进行非正交译码后获得第一编码信息;
    每个目的节点分别对所述第一编码信息通过网络编码译码获得输出的信源信息;
    所述通过信道的第二编码信息为:
    Figure PCTCN2015090947-appb-100005
    其中,Hk表示第k个中继节点到目的节点的信道增益系数,ωk表示第k个中继节点的发射天线到目的节点接收天线之间的高斯白噪声,所述高斯白噪声的功率谱密度为N0
    Figure PCTCN2015090947-appb-100006
    为来自第k+1,...,N个中继节点的高斯白噪声;第k个中继节点达到的速率Rk=log(1+SINRk);
    SINRk为译码第k个中继节点的有效信号与干扰加噪声之比
    Figure PCTCN2015090947-appb-100007
    Pk为第k个中继节点的功率:Pj为第j个中继节点的功率。
  9. 根据权利要求8所述的方法,其中,所述对信道编码信息进行非正交译码包括:
    将αkRk的信号能量按降序排列,目的节点采用串行干扰消除SIC接收机对信道编码信息进行非正交译码。
  10. 一种实现数据处理的系统,包括:一个或一个以上中继节点、一个或多个目的节点;其中,
    所述一个或一个以上中继节点分别包括第一编码单元和第二编码及发送单元;其中,
    所述第一编码单元设置成将同时接收到的信源信息进行网络编码获得第一编码信息;
    所述第二编码及发送单元设置成对第一编码信息进行非正交编码获得第二编码信息,通过同一时隙将获得的第二编码信息发往每个目的节点;
    每个所述目的节点分别包括第一译码单元及第二译码单元;其中,
    所述第一译码单元设置成将接收的通过信道的第二编码信息进行非正交译码后获得第一编码信息;
    所述第二译码单元设置成对第一编码信息通过网络编码译码获得输出的信源信息;
    所述信源信息来自信源节点和/或用户设备。
  11. 根据权利要求10所述的系统,其中,所述第一编码单元将同时接收到的信源信息进行网络编码获得第一编码信息是指:
    所述第一编码单元根据所述同时接收到的信源信息,确定与信源信息相对应的网络编码的信息序列;根据确定的信息序列进行网络编码获得第一编码信息;
    所述同时接收到的信源信息为S1,...,SP,所述与信源信息相对应的网络编码的信息序列为S=[S1,...,SP];
    其中,所述一个或一个以上中继节点的发射天线总数为N,P为参与网络编码的信息序列编号,1<P≤N。
  12. 根据权利要求11所述的系统,其中,所述第一编码单元根据确定的信息序列进行网络编码是指:
    所述第一编码单元根据确定的信息序列,采用多元域网络编码方式进行网络编码,或采用复数域网络编码方式进行网络编码。
  13. 根据权利要求12所述的系统,其中,
    所述第一编码单元采用多元域网络编码方式进行网络编码是指:
    所述第一编码单元构造GF(2m)上N×N维柯西矩阵G,其中,m为满足公式
    Figure PCTCN2015090947-appb-100008
    中取值的最小值;设置各中继节点上的编码向量gk,k=1,...,N为柯西矩阵G中的一个列向量;
    根据所述柯西矩阵G对确定的信息序列进行网络编码获得第一编码信息Rk
    所述m为GF(2)的m级扩展域GF(2m);
    Figure PCTCN2015090947-appb-100009
    所述第一编码单元采用复数域网络编码方式进行网络编码是指:
    所述第一编码单元构造编码矩阵的秩大于或等于P的复数域网络编码矩阵uk,k=1,...,N,根据复数域网络编码矩阵对确定的信息序列进行网络编码,生成与信源信息S1,...,SP之间能够一一映射的第一编码信息Rk,Rk=S·uk
  14. 根据权利要求13所述的系统,其中,所述第二编码及发送单元对第一编码信息进行非正交编码获得第二编码信息是指:
    所述第二编码及发送单元将第一编码信息Rk通过非正交编码获得第二编码信息;
    获得第二编码信息后,通过同一时隙将第二编码信息发往每个目的节点;
    所述第二编码信息
    Figure PCTCN2015090947-appb-100010
    其中,αk为非正交编码时第k个中继节点的编码系数。
  15. 根据权利要求14所述的系统,其中:
    当αk=1,k=1,...,N时,所述非正交编码为叠加编码,所述第二编码信息
    Figure PCTCN2015090947-appb-100011
  16. 根据权利要求14或15所述的系统,其中,所述通过信道的第二编码信息为:
    Figure PCTCN2015090947-appb-100012
    其中,Hk表示第k个中继节点到目的节点的信道增益系数,ωk表示第k个中继节点的发射天线到目的节点接收天线之间的高斯白噪声,所述高斯白噪声的功率谱密度为N0
    Figure PCTCN2015090947-appb-100013
    为来自第k+1,...,N个中继节点的高斯白噪声;第k个中继节点达到的速率Rk=log(1+SINRk);
    SINRk为译码第k个中继节点的有效信号与干扰加噪声之比
    Figure PCTCN2015090947-appb-100014
    Pk为第k个中继节点的功率:Pj为第j个中继节点的功率。
  17. 根据权利要求16所述的系统,其中,所述第一译码单元对信道编码信息进行非正交译码是指:
    所述第一译码单元将αkRk的信号能量按降序排列,采用串行干扰消除SIC接收机对第二编码信息进行非正交译码。
  18. 一种中继节点,包括:
    第一编码单元,设置成将同时接收到的信源信息进行网络编码获得第一编码信息;
    第二编码及发送单元,设置成对第一编码信息进行非正交编码获得第二编码信息,通过同一时隙将获得的第二编码信息发往每个目的节点;
    所述信源信息来自信源节点和/或用户设备。
PCT/CN2015/090947 2015-03-26 2015-09-28 一种实现数据处理的方法、系统及中继节点 WO2016150135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510136500.2 2015-03-26
CN201510136500.2A CN106160919A (zh) 2015-03-26 2015-03-26 一种实现数据处理的方法及系统

Publications (1)

Publication Number Publication Date
WO2016150135A1 true WO2016150135A1 (zh) 2016-09-29

Family

ID=56977278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090947 WO2016150135A1 (zh) 2015-03-26 2015-09-28 一种实现数据处理的方法、系统及中继节点

Country Status (2)

Country Link
CN (1) CN106160919A (zh)
WO (1) WO2016150135A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743768A (zh) * 2018-12-26 2019-05-10 南京邮电大学 基于非正交多址接入技术的双向中继通信方案
CN114337924A (zh) * 2021-12-28 2022-04-12 福州大学 一种物理层网络编码下映射设计方法
CN114337925A (zh) * 2021-12-28 2022-04-12 福州大学 非正交多址接入下基于极化码与物理层的联合编译码方法
WO2022199556A1 (zh) * 2021-03-23 2022-09-29 华为技术有限公司 一种数据发送方法、信号处理方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414865A (zh) * 2008-11-12 2009-04-22 东南大学 无线中继器辅助多用户接入系统的联合多用户发送方法
CN102075288B (zh) * 2010-12-20 2014-05-21 复旦大学 一种基于网络编码的自由空间光协作中继通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414865A (zh) * 2008-11-12 2009-04-22 东南大学 无线中继器辅助多用户接入系统的联合多用户发送方法
CN102075288B (zh) * 2010-12-20 2014-05-21 复旦大学 一种基于网络编码的自由空间光协作中继通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAI, XI ET AL.: "Optimized Design of Complex Field Network Coding Scheme in Non-Orthogonal Multiple Access Relay System", JOURNAL ON COMMUNICATIONS, vol. 33, no. 11, 30 November 2012 (2012-11-30), pages 67 - 73 *
CAI, XI ET AL.: "Optimized Design of Complex Field Network Coding Scheme in Non-Orthogonal Multiple Access Relay System", JOURNAL ON COMMUNICATIONS, vol. 33, no. 11, 30 November 2012 (2012-11-30), pages 68 *
YOUSSEF, R. ET AL.: "Distributed Serially Concatenated Codes for Multi-Source Cooperative Relay Networks", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 10, no. 1, 9 November 2010 (2010-11-09), pages 253 - 263, XP011342022, ISSN: 1536-1276 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743768A (zh) * 2018-12-26 2019-05-10 南京邮电大学 基于非正交多址接入技术的双向中继通信方案
CN109743768B (zh) * 2018-12-26 2022-04-15 南京邮电大学 基于非正交多址接入技术的双向中继通信方案
WO2022199556A1 (zh) * 2021-03-23 2022-09-29 华为技术有限公司 一种数据发送方法、信号处理方法及装置
CN114337924A (zh) * 2021-12-28 2022-04-12 福州大学 一种物理层网络编码下映射设计方法
CN114337925A (zh) * 2021-12-28 2022-04-12 福州大学 非正交多址接入下基于极化码与物理层的联合编译码方法
CN114337924B (zh) * 2021-12-28 2023-08-04 福州大学 一种物理层网络编码下映射设计方法
CN114337925B (zh) * 2021-12-28 2024-01-26 福州大学 非正交多址接入下基于极化码与物理层的联合编译码方法

Also Published As

Publication number Publication date
CN106160919A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
TWI648997B (zh) 聯合功率分配、預編碼與解碼方法及其基地台
Kim et al. Performance enhancement of downlink NOMA by combination with GSSK
Zhang et al. Performance analysis of cooperative relaying systems with power-domain non-orthogonal multiple access
RU2471295C1 (ru) Кодирование и мультиплексирование управляющей информации в системе беспроводной связи
Ren et al. Pattern matrix design of PDMA for 5G UL applications
CN105723623A (zh) 具有网络协助的干扰消除/抑制方法
KR101096309B1 (ko) 코드 블록 자원 요소 경계를 유지하기 위한 레이트 매칭을 위한 장치 및 방법
CN107431563B (zh) 网络节点、用户设备及其方法
Pan et al. Timely information update with nonorthogonal multiple access
WO2016150135A1 (zh) 一种实现数据处理的方法、系统及中继节点
US9166759B2 (en) Method and device for transmitting control information in wireless communication system
WO2016150246A1 (zh) 一种信号检测方法及装置
JP4971173B2 (ja) 通信システム
Kumar et al. A survey on NOMA techniques for 5G scenario
CN108737047A (zh) 一种信号处理方法、装置、基站及用户设备
Klimentyev et al. Detection of SCMA signal with channel estimation error
WO2014005474A1 (zh) 一种mu-mimo导频和数据发射方法、装置及系统
Jamali et al. Massive coded-NOMA for low-capacity channels: A low-complexity recursive approach
Ye et al. Rate‐Adaptive Multiple Access for Uplink Grant‐Free Transmission
Hejazi et al. Robust successive compute-and-forward over multiuser multirelay networks
CN107959520B (zh) 一种全双工基站蜂窝网络的时隙干扰对齐方法
CN108024371A (zh) 一种用于动态调度的ue、基站中的方法和装置
Zeng et al. Downlink power allocation optimization in pattern division multiple access
Cai et al. Design of Carrier Index Keying-Aided M-Ary Differential Chaos Cyclic Shift Keying for D2D Communications
KR101520575B1 (ko) 멀티 계층 시공간 부호에 기반한 안테나 자동 재전송을 이용한 송수신 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886057

Country of ref document: EP

Kind code of ref document: A1