WO2016149977A1 - 磁场调节器 - Google Patents

磁场调节器 Download PDF

Info

Publication number
WO2016149977A1
WO2016149977A1 PCT/CN2015/077188 CN2015077188W WO2016149977A1 WO 2016149977 A1 WO2016149977 A1 WO 2016149977A1 CN 2015077188 W CN2015077188 W CN 2015077188W WO 2016149977 A1 WO2016149977 A1 WO 2016149977A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting coil
stage
coil
stage superconducting
magnetic field
Prior art date
Application number
PCT/CN2015/077188
Other languages
English (en)
French (fr)
Inventor
高琦
Original Assignee
北京原力辰超导技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京原力辰超导技术有限公司 filed Critical 北京原力辰超导技术有限公司
Publication of WO2016149977A1 publication Critical patent/WO2016149977A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Definitions

  • the present invention relates to the field of electromagnetic compatibility, and in particular to a magnetic field regulator.
  • Electromagnetic noise is particularly serious around high-voltage lines, large electrical appliances, and large steel structures. Magnetic field cancellation is a common guarantee technology for many precision sciences. In some extreme measurement environments: high-precision atomic clock electron beam imaging devices, mass spectrometers, and micro-micro Sub-detection is widely quoted. In some biomagnetic measurements, the signal to be measured is mostly on the order of 10 pT (1 x 10-11) or even lower. The environmental noise magnetic field is 3-6 orders of magnitude larger. Removing noise signals is an essential part of this type of measurement.
  • the shielding system uses a high magnetic permeability material to construct a closed cavity, which will be enclosed by the protected object.
  • Commonly used high magnetic permeability materials such as soft iron, silicon steel, permalloy and so on.
  • the shielding quality is large, the weight is heavy, and the shielding magnetic field is optically opaque. There are also some offset shielding systems.
  • the prior art provides a shielding device based on a closed superconducting coil assembly structure whose basic structure is formed by electrical connection of a superconducting coil group having a specific radius ratio and a turns ratio.
  • this kind of shielding device can only shield the broad-spectrum dynamic uniform external field first, but not the uneven external field and DC magnetic field.
  • the most important thing is that the shielding system is a broad-spectrum shielding system. It is completely uncontrollable for the shielding magnetic field spectrum, which results in shielding the frequency domain of the noise magnetic field and shielding the frequency domain of the information magnetic field, which greatly limits the scope of use of the shielding system. .
  • the present invention aims to provide a portable magnetic field regulator for realizing dynamic and uniform magnetic fields and non-uniform magnetic fields, as well as adjustment of a DC magnetic field, to achieve adjustment of a specific frequency domain magnetic field.
  • the invention provides a magnetic field regulator comprising:
  • K is a positive integer greater than 1;
  • the K-stage superconducting coil is placed inside and outside, and the superconducting coils of different stages in the K-stage superconducting coil are connected in series to form a closed coil, and the K-stage superconducting coil is connected in series with the first electronic component, the K-level a second electronic component is soldered between each of the at least one winding turns of at least one of the superconducting coils, the position adjuster being disposed under the K-stage superconducting coil for adjusting the a relative position between different stages of superconducting coils in a K-stage superconducting coil, the biasing circuit being composed of a bias coil and a bias power source for generating a DC magnetic field, the superconducting switch being placed in the closed coil Upper, for regulating the working state of the K-level superconducting coil;
  • the first electronic component and the second electronic component are resistors, or the first electronic component and the second electronic component are capacitors.
  • the magnetic field adjuster adjusts the relative position between the superconducting coils of different grades in the K-level superconducting coil, and adjusts the radius and the number of turns of the K-level superconducting coil to realize the external Adjustment of a dynamic magnetic field; adjustment of a magnetic field in a specific frequency domain by the first electronic component and at least one second electronic component; adjustment of a DC magnetic field by a bias circuit coupled with a superconducting switch on the coil, relative to
  • the magnetic field regulator provided by the invention realizes the adjustment of the uneven external field, realizes the adjustment of the DC magnetic field, and realizes the adjustment of the magnetic field in a specific frequency domain, and greatly expands the function of the magnetic field regulator.
  • FIG. 1 is a schematic structural view of an embodiment of a magnetic field regulator according to the present invention.
  • FIG. 2 is a schematic diagram showing the spectral characteristics of another embodiment of a magnetic field adjuster according to the present invention.
  • FIG. 3 is a schematic diagram showing the spectral characteristics of still another embodiment of a magnetic field adjuster according to the present invention.
  • FIG. 4 is a schematic structural view of still another embodiment of a magnetic field adjuster (other than a position adjuster) according to the present invention.
  • FIG. 5 is a schematic structural view of still another embodiment of a magnetic field adjuster (other than a position adjuster) according to the present invention.
  • FIG. 6 is a schematic structural view of still another embodiment of a magnetic field adjuster (except for a position adjuster) according to the present invention.
  • this embodiment discloses a magnetic field adjuster, including:
  • the K-stage superconducting coil 1 is placed inside and outside, and the superconducting coils of different stages in the K-stage superconducting coil 1 are connected in series to form a closed coil, and the K-stage superconducting coil 1 is connected in series with the first electronic component 3, a second electronic component 4 is soldered between each of the at least one winding turns of at least one of the superconducting coils of the K-stage superconducting coil 1 , and the position adjuster 5 is placed in the K-stage superconducting coil 1 below, for adjusting a relative position between different stages of superconducting coils in the K-stage superconducting coil 1, the bias circuit 6 being composed of a bias coil and a bias power source for generating a DC magnetic field, a superconducting switch 2 disposed on the closed coil for regulating an operating state of the K-stage superconducting coil 1;
  • the first electronic component 3 and the second electronic component 4 are resistors, or the first electronic component 3 and the second electronic component 4 are capacitors.
  • the magnetic field adjuster adjusts the relative position between the superconducting coils of different grades in the K-level superconducting coil, and adjusts the radius and the number of turns of the K-level superconducting coil to realize the external Adjustment of a dynamic magnetic field; adjustment of a magnetic field in a specific frequency domain by the first electronic component and at least one second electronic component; adjustment of a DC magnetic field by a bias circuit coupled with a superconducting switch on the coil, relative to
  • the magnetic field regulator provided by the invention realizes the adjustment of the uneven external field, realizes the adjustment of the DC magnetic field, and realizes the adjustment of the magnetic field in a specific frequency domain, and greatly expands the function of the magnetic field regulator.
  • the resistor is an adjustable resistor
  • the capacitor is a tunable capacitor
  • the ability to adjust the magnetic field in a specific frequency domain can be achieved.
  • the superconducting switch comprises: an exciting coil wound on the closed coil or a heater wound on the closed coil, a power source, and switch.
  • the K is equal to 2
  • the K-stage superconducting coil comprises a first-stage superconducting coil and a second-stage superconducting coil
  • the first stage The superconducting coil and the second-stage superconducting coil are planar circular coils
  • the first-stage superconducting coil is placed in the second-stage superconducting coil
  • the radius of the first-stage superconducting coil is adjusted according to Determining the size of the region and the uniformity of the adjusted region, the number of turns of the first-stage superconducting coil is greater than a preset first threshold
  • the radius of the second-stage superconducting coil is higher than the first-order super
  • the ratio of the radius of the lead coil is greater than a second threshold
  • the number of turns of the second-stage superconducting coil is determined according to a preset number of turns of the first-stage superconducting coil and a preset magnetic field adjustment ratio
  • the K is equal to 2
  • the K-stage superconducting coil comprises a first-stage superconducting coil and a second-stage superconducting coil
  • the first stage The superconducting coil and the second-stage superconducting coil are planar circular coils
  • the first-stage superconducting coil is placed in the second-stage superconducting coil
  • the radius of the first-stage superconducting coil is adjusted according to Determining the size of the region and the uniformity of the adjusted region
  • the number of turns of the first-stage superconducting coil is greater than a preset second threshold
  • the radius of the second-stage superconducting coil is higher than the first-order super
  • the ratio of the radius of the lead coil is greater than a second threshold
  • the number of turns of the second-stage superconducting coil is determined according to a preset number of turns of the first-stage superconducting coil and a preset magnetic field adjustment ratio
  • the K is equal to 2
  • the K-stage superconducting coil comprises a first-stage superconducting coil and a second-stage superconducting coil
  • the first stage The superconducting coil adopts a solenoid structure
  • the second-stage superconducting coil is a planar circular coil
  • the first-stage superconducting coil is placed in the second-stage superconducting coil
  • the radius of the lead coil is determined according to the size of the adjusted area and the uniformity of the adjusted area
  • the number of turns of the first-stage superconducting coil is greater than a preset third threshold
  • the ratio is greater than the second threshold
  • the number of turns of the second-stage superconducting coil is determined according to a preset number of turns of the first-stage superconducting coil and a preset magnetic field adjustment ratio
  • the K is equal to 2
  • the K-stage superconducting coil comprises two first-stage superconducting coils and one second-stage superconducting coil
  • the first-stage superconducting coil and the second-stage superconducting coil are planar circular coils, and the projection of the first-stage superconducting coil on the second-stage superconducting coil is in the second-stage superconducting coil
  • the first stage superconducting coil is placed within the second stage superconducting coil, and the second stage superconducting coil winding is connected in parallel with the at least one second electronic component.
  • the K is equal to 3
  • the K-stage superconducting coil comprises a first-stage superconducting coil, a second-stage superconducting coil, and a third-stage superconducting a coil
  • the first-stage superconducting coil, the second-stage superconducting coil, and the third-stage superconducting coil are planar circular coils
  • the first-stage superconducting coil is placed in the second-stage superconducting coil
  • the second-stage superconducting coil is placed in the third-stage superconducting coil
  • the radius of the first-stage superconducting coil is determined according to the size of the adjusted area and the uniformity of the adjusted area.
  • the number of turns of the first-stage superconducting coil is greater than a preset fourth threshold, and the second-stage superconducting coil windings are connected in parallel with the at least one second electronic component.
  • the K-stage superconducting coil is wound from a high temperature lanthanide superconductor or a high temperature lanthanide superconductor material.
  • the magnetic field regulator of the present invention is composed of a plurality of parallel winding closed superconducting coils.
  • the number of coils of the first stage is M1
  • the number of coils of the second stage is M2, and so on
  • the number of coils of the NK stage is MK, where M1 ⁇ 1, M2 ⁇ 1, ..., MK ⁇ 1.
  • Superconducting coils between different stages are connected to form a closed superconducting coil.
  • the superconducting coils of the same radius or the same length, that is, between the same stages may or may not be connected to each other.
  • the coils between the different stages are not coaxial, only in the special case of canceling the uniform external magnetic field.
  • Line coaxial setting The ratio of the radius or length of the Nkth coil to the radius or length of the N1th coil must be greater than 1.2.
  • a heater is wound around the series coil group, and the coil can be quenched by heating, and the DC magnetic field is offset by the magnetic field generated by the DC bias coil.
  • the heater can also be replaced by other forms of superconducting switches, such as quenching the superconducting coil by an external magnetic field.
  • the first-stage coil may be a single planar coil, a plurality of planar coils, a Helmholtz coil structure, or Long straight solenoid.
  • the first-stage coil is wound, and the number of turns is preset, and the number of turns T1 is generally >3.
  • the winding is continued from the end of the first-stage coil with the radius r2.
  • Secondary superconducting coil. Generally, r2/r1>1.2 is guaranteed.
  • the second-stage coil turns T2 adopts an online adjustment method, and is wound around, and is temporarily overlapped by an electrician clip to form a closed loop, and the adjusted magnetic field of the protected area is tested under the condition of artificially applying a uniform field.
  • the adjustable resistor is welded between the head and the tail to form a closed loop.
  • an adjustable resistor is soldered between the first stage coil, or the second stage coil, or both the first stage coil and the second stage coil winding.
  • a vital feature of this kind of magnetic field regulator is that it has the function of actively selecting the frequency to cancel the external magnetic field, which can strongly cancel the magnetic field of a specific frequency band, and has the ability to pass the magnetic field outside the frequency band, and can also be used for a specific frequency band.
  • the magnetic field has the ability to pass, and the magnetic field outside the band has the ability to cancel.
  • the larger the resistance in the series loop the weaker the low-frequency cancellation capability, and the effect of the low-frequency magnetic field passing.
  • the principle is that at low frequencies, the resistance in the superconductor is much smaller than the parallel resistance, and the induced current in the coil will generate a circulating current along a given number of turns, resulting in a predetermined The adjustment factor under the number of turns.
  • a coupling current is generated between the turns, and the multi-turn coil is coupled into a single-turn coil through a parallel resistor, so that the adjustment coefficient changes.
  • the smaller the resistance in the parallel circuit the easier it is to couple at high frequencies.
  • the DC bias coil is at the outermost side of the system to provide a reverse magnetic field that counteracts the external DC magnetic field or to provide a background magnetic field.
  • the bias coil is equipped with a bias supply that provides a reverse magnetic field based on the measured DC bias magnetic field.
  • Biasing magnetic field loading must be matched to heating on the superconducting coil Or other types of superconducting switches.
  • the heating coil is required to return the superconducting coil to the normal state, cancel in the normal state, or provide a background magnetic field, then turn off the heater to return the coil to the superconducting state, and lock the bias magnetic field in the protected area.
  • the magnetic field regulator provided by the invention realizes the adjustment of the uneven external field, realizes the adjustment of the DC magnetic field, and realizes the adjustment of the magnetic field in a specific frequency domain, which greatly expands the magnetic field regulator. Use range. And a method to find the turns ratio and radius ratio that is beneficial to engineering practice is realized.
  • the magnetic field adjuster includes a first-stage superconducting coil 10, and a second-stage superconducting coil 11, and a heater 20 is disposed on the second-stage superconducting coil 11, and the heater is connected to a heating power source. twenty one.
  • the first stage coil 10 is placed within the second stage coil 11 and placed over the two dimensional moving platform 5 (i.e., the position adjuster). The relative position between the inner and outer coils is finely adjusted by the moving platform.
  • the first-stage coil is wound by a single high-temperature superconducting wire, and the Bi2223 wire is used in the first embodiment.
  • the second-stage coil turns adopt the method of online adjustment: that is, the side winding is performed, and the electrician clip is used for temporary overlapping to form a closed loop, and the adjustment ability of the coil group is tested in the adjusted area 7 by using the probe under the condition of artificially adding a uniform external field. .
  • the series adjustable resistor 3 is welded between the first and the last to form a permanent closed loop, and the parallel adjustable resistor 4 is welded between the winding turns.
  • the second-stage coil T2 is 25 ⁇ determined by the above method
  • the adjusted area 7 reaches the preset adjustment ratio.
  • the number of turns obtained above is obtained under the ideal condition of artificially applying a uniform field. Most of the actual noise magnetic field is not a uniform magnetic field. At this time, it is necessary to cooperate with the moving platform 5 to adjust the relative position between the inner and outer coils to achieve joint fine adjustment.
  • the biggest advantage of this magnetic field cancellation system is the ability to adjust the frequency range of the canceling magnetic field.
  • Adjusting the low-frequency magnetic field, or the cutting ability is realized by adjusting the series welding resistance 3.
  • the series welding resistor 3 is set to 6000 nanoohms, and the specific series resistance setting can be finely adjusted according to the experiment. If you want to increase the frequency of the passing magnetic field, you need to further increase the resistance of the series resistor.
  • the high-frequency capability of the magnetic field regulator is realized by the parallel adjustable resistor 4.
  • the parallel adjustable resistance is set to 25 milliohms, and the specific parallel resistance setting can be finely adjusted according to the experiment.
  • An important feature of this type of magnetic field conditioning system is the ability to apply a DC background magnetic field or to cancel a DC magnetic field in space. This capability is achieved by biasing the coil and mating with the heater 20.
  • the target cancels the spatial DC bias magnetic field as in the first embodiment.
  • the specific implementation method is as follows. First, the magnetic field probe is used to actually detect the amplitude and direction of the DC magnetic field in the canceled area. After knowing the DC magnetic field at this time, the bias coil is used. A current is applied to generate a reverse DC magnetic field. When the magnetic field is applied, the heater is turned on to quench the superconducting coil, and when the probe is used to determine that the DC bias magnetic field has been completely cancelled by the adjusted region 7, the heater is turned off. Since the DC bias magnetic field often shifts with time, in the first embodiment, it is necessary to perform a similar DC magnetic field elimination work at intervals.
  • the second-order planar coil structure as in the first embodiment is still used, but by adjusting the radius and the number of turns, the series variable resistor 3 is matched, and the parallel variable resistor 4 is used to realize a certain frequency band passing capability.
  • Magnetic field regulator The basic structure is still as shown in FIG. 1 , and the secondary coil structure is still used.
  • r1 0.03m
  • r2 0.18m
  • the first-order coil turns T1 is set to 5
  • the online search is performed according to the first embodiment.
  • the number of turns T2 is 27 ⁇ .
  • the noise magnetic field of the 10-400 Hz band is mainly passed, and the magnetic field of about 1000 Hz or so of about 1 Hz is shielded.
  • the shunt resistor 4 is only soldered on the second-stage coil without soldering the shunt resistor 4 on the first-stage coil.
  • the series resistor 3 is still soldered where the first stage coil is connected to the second stage coil.
  • Low frequency magnetic field cancellation capability can be adjusted by The joint welding resistor 3 is realized.
  • the series welding resistor 3 is set to 6000 nanoohms, and the specific series resistance setting can be finely adjusted according to experiments.
  • the high-frequency magnetic field shielding capability is realized by the parallel adjustable resistor 4.
  • the parallel adjustable resistance is set to 50 milliohms, and the specific series resistance setting can be finely adjusted according to the experiment.
  • the spectral characteristics of the magnetic field regulator are shown in Figure 3. It shows that in the 10-400Hz frequency band, the ability to pass the external magnetic field by 6dB (over 50%) is achieved, while for the 1Hz, 1000Hz magnetic field, the offset energy is 40dB (1% remaining), that is, canceling the 1Hz, 1000Hz magnetic field.
  • the third embodiment of the present invention provides several other forms of magnetic field adjusters.
  • a series resistor is placed between the second stage coil and the third stage coil.
  • the parallel resistor is placed between the windings of the second stage coil.
  • the first stage coil uses a solenoid structure in order to obtain a long straight adjustment zone.
  • the adjustment zone 7 is obtained mainly in two separate areas.
  • the basic principle of magnetic field adjustment is to use the series adjustable resistor, the parallel adjustable resistor combined with the turns ratio between the superconducting coils to achieve frequency selective amplification or reduction of the external magnetic field in a specific frequency domain.
  • a variety of K, M, N, r, T coil structures may be available depending on the shape of the external magnetic field, the spatial requirements of the adjusted region, and the spectral characteristics.
  • the above technical solution can be implemented in the field of electromagnetic compatibility, and can provide a magnetic field regulator for adjusting the uneven external field, the DC magnetic field and the specific frequency domain magnetic field, and has powerful functions and industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

提供一种磁场调节器,能够实现对外界磁场的调节。所述磁场调节器包括:K级超导线圈(1)、超导开关(2)、第一电子元件(3)、至少一个第二电子元件(4)、位置调节器(5)、偏置电路(6);其中,K为大于1的正整数;K级超导线圈(1)呈内外放置,K级超导线圈(1)中不同级的超导线圈串联成闭合线圈,K级超导线圈(1)与第一电子元件(3)串联,K级超导线圈(1)中至少一个超导线圈的至少一个绕组匝间中每一个绕组匝间焊接一个第二电子元件(4),位置调节器(5),用于调整K级超导线圈(1)中不同级超导线圈之间的相对位置,偏置电路(6)由偏置线圈和偏置电源组成,用于产生直流磁场,超导开关(2),置于闭合线圈上,用于调控K级超导线圈(1)的工作状态。

Description

磁场调节器 技术领域
本发明涉及电磁兼容领域,具体涉及一种磁场调节器。
背景技术
随着人类文明的不断发展,电磁环境也日益恶化。在高压线,大型用电器,大型钢结构建筑周围,电磁噪音尤其严重,磁场抵消是许多精密科学的通用保障性技术,在一些极端测量环境:如高精密原子钟电子束成像装置,质谱仪,中微子探测中得到广泛引用。在某些生物磁测量中,待测信号多处于10pT(1×10-11)量级甚至更低。而环境噪音磁场要大3-6个数量级。去除噪音信号成为这类测量必不可少的环节。
目前普遍采用的磁场屏蔽方式有两种:被动屏蔽式和主动抵消式。其中被动屏蔽式应用历史最为悠久,屏蔽系统采用高磁导率材料构建封闭腔体将被保护对象封闭其内,搭建屏蔽腔的材料的磁导率愈高,腔壁愈厚,屏蔽效果就愈显著。常用高磁导率材料如软铁、硅钢、坡莫合金等。这种屏蔽质量大,重量沉,屏蔽磁场方向光学不透明。还有一些抵消式的屏蔽系统,比如,现有技术提供了一种基于闭合超导线圈组结构的屏蔽装置,其基本结构是由特定半径比和匝数比的超导线圈组电连接形成。然而,该种屏蔽装置首先仅能对广谱动态均匀外场屏蔽,而对于不均匀外场和直流磁场无能力屏蔽。最重要的是,该屏蔽系统是一种广谱屏蔽系统,对于屏蔽磁场频谱完全无法控制,导致在屏蔽噪音磁场频域的同时,也将信息磁场频域屏蔽,大大限制了屏蔽系统的使用范围。
发明内容
本发明旨在提供一种轻便的磁场调节器,用于实现对外界动态均匀磁场和不均匀磁场,以及直流磁场的调节,实现对特定频域磁场的调节。
为此目的,本发明提出一种磁场调节器,包括:
K级超导线圈、超导开关、第一电子元件、至少一个第二电子元件、位置调节器、偏置电路;其中,K为大于1的正整数;
所述K级超导线圈呈内外放置,所述K级超导线圈中不同级的超导线圈串联成闭合线圈,所述K级超导线圈与所述第一电子元件串联,所述K级超导线圈中至少一个超导线圈的至少一个绕组匝间中每一个绕组匝间焊接一个第二电子元件,所述位置调节器,置于所述K级超导线圈下方,用于调整所述K级超导线圈中不同级超导线圈之间的相对位置,所述偏置电路由偏置线圈和偏置电源组成,用于产生直流磁场,所述超导开关,置于所述闭合线圈上,用于调控所述K级超导线圈的工作状态;
所述第一电子元件和第二电子元件为电阻,或者所述第一电子元件和第二电子元件为电容。
本发明实施例所述的磁场调节器,通过调节所述K级超导线圈中不同级超导线圈之间的相对位置,并结合调整所述K级超导线圈的半径和匝数实现对外界动态磁场的调节;通过所述第一电子元件和至少一个第二电子元件实现对特定频域范围磁场的调节;通过偏置电路并配合线圈上的超导开关实现对直流磁场的调节,相对于现有技术,本发明提供的磁场调节器,实现了对不均匀外场的调节,实现了对直流磁场的调节,关键实现了对特定频域磁场的调节,大幅度扩展了磁场调节器的功能。
附图说明
图1为本发明一种磁场调节器一实施例的结构示意图;
图2为本发明一种磁场调节器另一实施例的频谱特性示意图;
图3为本发明一种磁场调节器又一实施例的频谱特性示意图;
图4为本发明一种磁场调节器又一实施例(除位置调节器外)的结构示意图;
图5为本发明一种磁场调节器又一实施例(除位置调节器外)的结构示意图;
图6为本发明一种磁场调节器又一实施例(除位置调节器外)的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本实施例公开一种磁场调节器,包括:
K级超导线圈1、超导开关2、第一电子元件3、至少一个第二电子元件4、位置调节器5、偏置电路6;其中,K为大于1的正整数;
所述K级超导线圈1呈内外放置,所述K级超导线圈1中不同级的超导线圈串联成闭合线圈,所述K级超导线圈1与所述第一电子元件3串联,所述K级超导线圈1中至少一个超导线圈的至少一个绕组匝间中每一个绕组匝间焊接一个第二电子元件4,所述位置调节器5,置于所述K级超导线圈1下方,用于调整所述K级超导线圈1中不同级超导线圈之间的相对位置,所述偏置电路6由偏置线圈和偏置电源组成,用于产生直流磁场,所述超导开关2,置于所述闭合线圈上,用于调控所述K级超导线圈1的工作状态;
所述第一电子元件3和第二电子元件4为电阻,或者所述第一电子元件3和第二电子元件4为电容。
本发明实施例所述的磁场调节器,通过调节所述K级超导线圈中不同级超导线圈之间的相对位置,并结合调整所述K级超导线圈的半径和匝数实现对外界动态磁场的调节;通过所述第一电子元件和至少一个第二电子元件实现对特定频域范围磁场的调节;通过偏置电路并配合线圈上的超导开关实现对直流磁场的调节,相对于现有技术,本发明提供的磁场调节器,实现了对不均匀外场的调节,实现了对直流磁场的调节,关键实现了对特定频域磁场的调节,大幅度扩展了磁场调节器的功能。
可选地,在本发明磁场调节器的另一实施例中,所述电阻为可调电阻,所述电容为可调电容。
本发明实施例中,通过调节所述第一电子元件和至少一个第二电子元件 能够实现对特定频域范围磁场的调节。
可选地,在本发明磁场调节器的另一实施例中,所述超导开关包括:缠绕于所述闭合线圈之上的励磁线圈或缠绕于所述闭合线圈之上的加热器、电源和开关。
可选地,在本发明磁场调节器的另一实施例中,所述K等于2,所述K级超导线圈包括第一级超导线圈和第二级超导线圈,所述第一级超导线圈和第二级超导线圈为平面圆形线圈,所述第一级超导线圈放置在所述第二级超导线圈之内,所述第一级超导线圈的半径根据被调节区域的大小和所述被调节区域的均匀性确定,所述第一级超导线圈的匝数大于预设的第一阈值,所述第二级超导线圈的半径与所述第一级超导线圈的半径的比值大于第二阈值,所述第二级超导线圈的匝数根据预设的所述第一级超导线圈的匝数和预设的磁场调节比例确定,所述第二级超导线圈绕组匝间并联所述至少一个第二电子元件。
可选地,在本发明磁场调节器的另一实施例中,所述K等于2,所述K级超导线圈包括第一级超导线圈和第二级超导线圈,所述第一级超导线圈和第二级超导线圈为平面圆形线圈,所述第一级超导线圈放置在所述第二级超导线圈之内,所述第一级超导线圈的半径根据被调节区域的大小和所述被调节区域的均匀性确定,所述第一级超导线圈的匝数大于预设的第二阈值,所述第二级超导线圈的半径与所述第一级超导线圈的半径的比值大于第二阈值,所述第二级超导线圈的匝数根据预设的所述第一级超导线圈的匝数和预设的磁场调节比例确定,所述第一级超导线圈和所述第二级超导线圈绕组匝间并联所述至少一个第二电子元件。
可选地,在本发明磁场调节器的另一实施例中,所述K等于2,所述K级超导线圈包括第一级超导线圈和第二级超导线圈,所述第一级超导线圈采用螺线管结构,所述第二级超导线圈为平面圆形线圈,所述第一级超导线圈放置在所述第二级超导线圈之内,所述第一级超导线圈的半径根据被调节区域的大小和所述被调节区域的均匀性确定,所述第一级超导线圈的匝数大于预设的第三阈值,所述第二级超导线圈的半径与所述第一级超导线圈的半径的 比值大于第二阈值,所述第二级超导线圈的匝数根据预设的所述第一级超导线圈的匝数和预设的磁场调节比例确定,所述第二级超导线圈绕组匝间并联所述至少一个第二电子元件。
可选地,在本发明磁场调节器的另一实施例中,所述K等于2,所述K级超导线圈包括二个第一级超导线圈和一个第二级超导线圈,所述第一级超导线圈和所述第二级超导线圈为平面圆形线圈,所述第一级超导线圈在所述第二级超导线圈上的投影在所述第二级超导线圈内,所述第一级超导线圈放置在所述第二级超导线圈之内,所述第二级超导线圈绕组匝间并联所述至少一个第二电子元件。
可选地,在本发明磁场调节器的另一实施例中,所述K等于3,所述K级超导线圈包括第一级超导线圈、第二级超导线圈和第三级超导线圈,所述第一级超导线圈、第二级超导线圈和第三级超导线圈为平面圆形线圈,所述第一级超导线圈放置在所述第二级超导线圈之内,所述第二级超导线圈放置在所述第三级超导线圈之内,所述第一级超导线圈的半径根据被调节区域的大小和所述被调节区域的均匀性确定,所述第一级超导线圈的匝数大于预设的第四阈值,所述第二级超导线圈绕组匝间并联所述至少一个第二电子元件。
可选地,在本发明磁场调节器的另一实施例中,所述K级超导线圈由高温钇系超导体或者高温铋系超导体材绕制而成。
下面对本发明磁场调节器的一个实施例进行详细介绍。
本发明所述的磁场调节器,由多个并联绕组闭合超导线圈组成。以相同半径,或者长度的线圈定义为同一级线圈,规定最内侧,即半径最小或者长度最小的线圈为第N1(N1=1)级线圈,其半径为r1,匝数为T1,以此类推,半径最大或者长度最大的线圈为第NK(NK=K)级线圈,其半径为rK,匝数为TK。第一级线圈数目为M1,第二级线圈数目为M2,以此类推,第NK级线圈数目为MK,其中M1≥1,M2≥1,...,MK≥1。
不同级之间的超导线圈相连组成闭合超导线圈。相同半径或者相同长度,即同级之间的超导线圈可以相连也可以不相互连接。在普遍非均匀外场的情况下,不同级之间的线圈不共轴,仅仅在抵消均匀外磁场的特殊情况下才进 行共轴设置。其中第Nk级线圈半径或者长度,与第N1级线圈的半径或者长度之比必须大于1.2。在串联线圈组之上缠绕有加热器,可通过加热使线圈失超,配合直流偏置线圈产生的磁场抵消直流磁场。加热器也可由其他形式超导开关替代,如通过外磁场使超导线圈失超。
搭建此类磁场调节器遵循以下方式,以一个由二级线圈组成的系统为例。首先根据需要被调节区域大小,以及所需被调节区均匀性设计第一级线圈形状,半径或者长度,第一级线圈可以是单个平面线圈、多个平面线圈、亥姆霍兹线圈结构,或者长直螺线管。
根据设计半径r1绕制第一级线圈,先预设匝数,匝数T1一般>3,在绕制完毕第一级线圈后,从第一级线圈结束处,继续以半径r2继续绕制第二级超导线圈。一般保证r2/r1>1.2。第二级线圈匝数T2采用在线调整的方式,边绕制,边以电工夹进行临时搭接形成闭合回路,在人工外加均匀场的条件下,测试被保护区的经过调节之后的磁场。当观测达到预设调节比例的时候,在首尾之间焊接可调电阻器形成闭合回路。并在第一级线圈,或者第二级线圈,或者同时在第一级线圈和第二级线圈绕组匝间焊接可调电阻。
这种磁场调节器的一个至关重要的特点是具有主动选频抵消外磁场功能,即可对特定频段的磁场有很强抵消能力,而对频段外的磁场有通过能力,也可以对特定频段的磁场有通过能力,而对频段外的磁场有抵消能力。其中,主要依靠闭合串联回路当中的可调电阻调节低频段通过能力,一般而言串联回路中的电阻越大,低频抵消能力越弱,达到低频磁场通过的效果。其中,主要依靠并联回路中的可调电阻调节高频通过能力,其原理是在低频下,超导中的电阻远小于并联电阻,线圈中的感应电流会沿着既定匝数产生环流,产生既定匝数下的调节系数。而在高频下,匝间会产生耦合电流,经过并联电阻,将多匝线圈耦合成单匝线圈,使得调节系数改变。一般而言并联回路中电阻越小,越容易在高频下被耦合。
这种磁场调节器,直流偏置线圈处于系统最外侧,用以提供抵消外界直流磁场的反向磁场,或者提供背景磁场。偏置线圈配有偏置电源,可根据实测直流偏置磁场提供反向磁场。偏置磁场加载必须要配合超导线圈上的加热 器或者其他类型超导开关使用。如需抵消直流磁场,或者提供一个背景磁场。需要加热线圈使得超导线圈恢复到正常态,在正常态下抵消,或者提供背景磁场,然后关闭加热器使得线圈恢复到超导态,在被保护区内锁定设置偏置磁场。
相对于现有技术,本发明提供的磁场调节器,实现了对不均匀外场的调节,实现了对直流磁场的调节,关键实现了对特定频域磁场的调节,大幅度扩展了磁场调节器的使用范围。并且实现了一种有利于工程实践的寻找匝数比与半径比的方法。
图1为本发明第一实施例提供的磁场调节器(除偏置电路外)的结构示意图。本实施例中,K=2,M1=1,M2=1,即采用二级平面线圈结构,每一级仅用1个平面圆形线圈。如图1所示,所述磁场调节器包括第一级超导线圈10,和第二级超导线圈11,在第二级超导线圈11之上有加热器20,加热器连接有加热电源21。第一级线圈10放置在第二级线圈11之内,并且放置在二维移动平台5(即位置调节器)之上。通过移动平台精细调整内外线圈之间的相对位置。
下面根据以上结构阐述磁场调节器的实施方法,首先由单根高温超导导线绕制第一级线圈,实施例一中采用Bi2223导线。根据被保护区实际情况,设置第一级线圈半径为r1=0.05m,在实施例一中第一级线圈匝数T1设置为7匝。在绕制完毕第一级线圈后,从第一级线圈结束处,利用同一根导线,继续以半径r2=0.15m绕制第二级超导线圈。第二级线圈匝数采用在线调整的方式:即边绕制,边以电工夹进行临时搭接形成闭合回路,利用探头在人为外加均匀外场的条件下,在被调节区7测试线圈组调节能力。当观测达到预设调节比例的时候,在首尾之间焊接串联可调电阻3形成永久闭合回路,并在绕组匝间焊接并联可调电阻4。实施例一中经过上述方法确定第二级线圈匝数T2为25匝时,被调节区7达到预设调节比例。以上得到的匝数是在人工外加均匀场的理想条件下得到的,实际噪音磁场大部分情况并非均匀磁场,此时需要配合移动平台5,调节内外线圈之间的相对位置,实现联合精细调整。
这种磁场抵消系统最大的优势是可调节抵消磁场的频率范围。在实施例 一中,我们预设主要抵消10-400Hz频段噪音磁场,而让1Hz左右1000Hz左右频段磁场通过。调节低频磁场通过,或者截断能力是通过调节串联焊接电阻3实现的,实施例一中串联焊接电阻3设置为6000纳欧,具体串联电阻设定可根据实验精细调整。如果希望提高通过磁场频率,则需要进一步调高串联电阻阻值。磁场调节器高频能力通过并联可调电阻4实现,实施例一中并联可调电阻阻值设为25毫欧姆,具体并联电阻设定可根据实验精细调整。
该种磁场调节系统的一个重要特点是可以施加直流背景磁场,或者抵消空间中的直流磁场。这一能力的实现是通过,偏置线圈并配合加热器20实现的。如实施例一中目标抵消空间直流偏置磁场,具体实施方法如下,首先利用磁场探头实际探测被抵消区直流磁场的幅值和方向,在确切知道此时此地的直流磁场之后,利用偏置线圈施加电流,产生反向直流磁场。在施加磁场的时候,打开加热器使得超导线圈失超,当利用探头确定在被调节区7已经完全抵消直流偏置磁场后,关闭加热器。由于直流偏置磁场经常会随着时间偏移,在实施例一中,需要每隔一段时间,做一次类似的直流磁场消除工作。
将以上系统放置在杜瓦之中,利用液氮浸泡制冷,实际测量磁场调节器的频域特征(如图2所示),表明在10-400Hz频段,实现对外界噪音磁场40dB(剩余1%)以上的抵消,而对1Hz,1000Hz磁场的抵消能力仅仅为6dB(剩余50%),即允许1Hz,1000Hz磁场通过。
本发明第二实施例中仍然采用如实施例一中的二级平面线圈结构,但通过调节半径与匝数,配合串联可变电阻3,与并联可变电阻4,实现了一定频带通过能力的磁场调节器。其基本结构仍然如图1所示,仍然采用二级线圈结构,实施例二中r1=0.03m,r2=0.18m,第一级线圈匝数T1设置为5,根据实施例一中在线寻找匝数比的方式,寻找可满足反向放大磁场一倍的匝数,根据这种方法寻找到匝数T2为27匝。
在实施例二中,我们预设主要让10-400Hz频段噪音磁场通过,而让1Hz左右1000Hz左右以上磁场屏蔽。为达到此目的,实施例二中仅仅在第二级线圈上焊接并联电阻4,而无需在第一级线圈上焊接并联电阻4。串联电阻3仍然焊接在第一级线圈与第二级线圈连接之处。低频磁场抵消能力可通过调节串 联焊接电阻3实现,实施例一中串联焊接电阻3设置为6000纳欧,具体串联电阻设定可根据实验精细调整。高频磁场屏蔽能力通过并联可调电阻4实现,实施例二中并联可调电阻阻值设为50毫欧姆,具体串联电阻设定可根据实验精细调整。在这种参数下,磁场调节器的频谱特性如图3所示。表明在10-400Hz频段,实现对外界磁场6dB(剩余50%)以上的通过能力,而对1Hz,1000Hz磁场的抵消能为40dB(剩余1%),即抵消1Hz,1000Hz磁场。
本发明第三实施例集中提供了几种其它形态的磁场调节器。如图4所示实现了一种K=3,M1=1,M2=1,M3=1即一种三级平面线圈结构的磁场调节器,其中并联电阻放置在第二级线圈绕组匝间,串联电阻放置在第二级线圈和第三级线圈之间。利用第二级线圈的缓冲作用,可以更加细微的调节磁场调节器的频率特性。
如图5所示,展示了一种K=2,M1=1,M2=1二级线圈结构磁场调节系统,但第一级线圈采用螺线管结构,第二级线圈仍然采用平面线圈结构,其中并联电阻放置在第二级线圈绕组匝间。第一级线圈采用螺线管结构是为了获得一个长直被调节区。
如图6所示,展示一种K=2,M1=2,M2=1结构线圈,其中并联电阻放置在第二级线圈绕组匝间。采用这种结构的主要在两个分离区域获得调整区7。
磁场调节基本原理是利用串联可调电阻,并联可调电阻结合超导线圈之间的匝数比实现对特定频域外界磁场的选频放大,或者缩小。特别利用并联可调电阻控制超导绕组随频率的耦合状态,实现高频下的选频特性是本发明的一个重要特征。除了以上几个实施例,根据外磁场形态,被调节区空间要求,和频谱特性,可有多种K,M,N,r,T线圈结构。
上述技术方案可以在电磁兼容领域中实现,可以提供一种针对不均匀外场、直流磁场和特定频域磁场的调节的磁场调节器,功能强大,具有工业实用性。
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (9)

  1. 一种磁场调节器,其特征在于,包括:
    K级超导线圈、超导开关、第一电子元件、至少一个第二电子元件、位置调节器、偏置电路;其中,K为大于1的正整数;
    所述K级超导线圈呈内外放置,所述K级超导线圈中不同级的超导线圈串联成闭合线圈,所述K级超导线圈与所述第一电子元件串联,所述K级超导线圈中至少一个超导线圈的至少一个绕组匝间中每一个绕组匝间焊接一个第二电子元件,所述位置调节器,置于所述K级超导线圈下方,用于调整所述K级超导线圈中不同级超导线圈之间的相对位置,所述偏置电路由偏置线圈和偏置电源组成,用于产生直流磁场,所述超导开关,置于所述闭合线圈上,用于调控所述K级超导线圈的工作状态;
    所述第一电子元件和第二电子元件为电阻,或者所述第一电子元件和第二电子元件为电容。
  2. 根据权利要求1所述的磁场调节器,其特征在于,所述电阻为可调电阻,所述电容为可调电容。
  3. 根据权利要求1或2所述的磁场调节器,其特征在于,所述超导开关包括:缠绕于所述闭合线圈之上的励磁线圈或缠绕于所述闭合线圈之上的加热器、电源和开关。
  4. 根据权利要求3所述的磁场调节器,其特征在于,所述K等于2,所述K级超导线圈包括第一级超导线圈和第二级超导线圈,所述第一级超导线圈和第二级超导线圈为平面圆形线圈,所述第一级超导线圈放置在所述第二级超导线圈之内,所述第一级超导线圈的半径根据被调节区域的大小和所述被调节区域的均匀性确定,所述第一级超导线圈的匝数大于预设的第一阈值,所述第二级超导线圈的半径与所述第一级超导线圈的半径的比值大于第二阈值,所述第二级超导线圈的匝数根据预设的所述第一级超导线圈的匝数和预设的磁场调节比例确定,所述第二级超导线圈绕组匝间并联所述至少一个第二电子元件。
  5. 根据权利要求3所述的磁场调节器,其特征在于,所述K等于2,所述K级超导线圈包括第一级超导线圈和第二级超导线圈,所述第一级超导线圈和第二级超导线圈为平面圆形线圈,所述第一级超导线圈放置在所述第二级超导线圈之内,所述第一级超导线圈的半径根据被调节区域的大小和所述被调节区域的均匀性确定,所述第一级超导线圈的匝数大于预设的第二阈值,所述第二级超导线圈的半径与所述第一级超导线圈的半径的比值大于第二阈值,所述第二级超导线圈的匝数根据预设的所述第一级超导线圈的匝数和预设的磁场调节比例确定,所述第一级超导线圈和所述第二级超导线圈绕组匝间并联所述至少一个第二电子元件。
  6. 根据权利要求3所述的磁场调节器,其特征在于,所述K等于2,所述K级超导线圈包括第一级超导线圈和第二级超导线圈,所述第一级超导线圈采用螺线管结构,所述第二级超导线圈为平面圆形线圈,所述第一级超导线圈放置在所述第二级超导线圈之内,所述第一级超导线圈的半径根据被调节区域的大小和所述被调节区域的均匀性确定,所述第一级超导线圈的匝数大于预设的第三阈值,所述第二级超导线圈的半径与所述第一级超导线圈的半径的比值大于第二阈值,所述第二级超导线圈的匝数根据预设的所述第一级超导线圈的匝数和预设的磁场调节比例确定,所述第二级超导线圈绕组匝间并联所述至少一个第二电子元件。
  7. 根据权利要求3所述的磁场调节器,其特征在于,所述K等于2,所述K级超导线圈包括二个第一级超导线圈和一个第二级超导线圈,所述第一级超导线圈和所述第二级超导线圈为平面圆形线圈,所述第一级超导线圈在所述第二级超导线圈上的投影在所述第二级超导线圈内,所述第二级超导线圈绕组匝间并联所述至少一个第二电子元件。
  8. 根据权利要求3所述的磁场调节器,其特征在于,所述K等于3,所述K级超导线圈包括第一级超导线圈、第二级超导线圈和第三级超导线圈,所述第一级超导线圈、第二级超导线圈和第三级超导线圈为平面圆形线圈,所述第一级超导线圈放置在所述第二级超导线圈之内,所述第二级超导线圈放置在所述第三级超导线圈之内,所述第一级超导线圈的半径根据被调节区 域的大小和所述被调节区域的均匀性确定,所述第一级超导线圈的匝数大于预设的第四阈值,所述第二级超导线圈绕组匝间并联所述至少一个第二电子元件。
  9. 根据权利要求1所述的磁场调节器,其特征在于,所述K级超导线圈由高温钇系超导体或者高温铋系超导体材绕制而成。
PCT/CN2015/077188 2015-03-23 2015-04-22 磁场调节器 WO2016149977A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510128739.5A CN104765406B (zh) 2015-03-23 2015-03-23 磁场调节器
CN201510128739.5 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016149977A1 true WO2016149977A1 (zh) 2016-09-29

Family

ID=53647306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077188 WO2016149977A1 (zh) 2015-03-23 2015-04-22 磁场调节器

Country Status (2)

Country Link
CN (1) CN104765406B (zh)
WO (1) WO2016149977A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117234057A (zh) * 2023-11-13 2023-12-15 成都量子时频科技有限公司 一种芯片原子钟关键器件和部件测试装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843366B (zh) * 2016-11-29 2018-07-17 北京原力辰超导技术有限公司 一种磁场调节装置及方法
CN107315445B (zh) * 2017-07-07 2020-12-22 京东方科技集团股份有限公司 一种磁悬浮物体的控制方法和磁悬浮底座和磁悬浮物体
CN108401409B (zh) * 2018-01-22 2020-05-01 清华大学 一种开放式全频段调节的磁场屏蔽装置及其磁场屏蔽方法
CN112444766B (zh) * 2020-11-05 2023-09-26 上海联影医疗科技股份有限公司 一种磁共振系统及其匀场方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1959874A (zh) * 2006-09-30 2007-05-09 中国科学院电工研究所 用于回旋管的传导冷却超导磁体系统
CN201213093Y (zh) * 2008-06-26 2009-03-25 东北大学 高温超导磁通泵
CN101527497A (zh) * 2008-03-15 2009-09-09 高步 超导能源输出机
CN102610351A (zh) * 2011-01-19 2012-07-25 通用电气公司 用于在失超期间保护磁共振成像磁体的装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707860B (zh) * 2009-11-09 2011-05-11 清华大学 被动抵消式磁屏蔽装置
CN104349654B (zh) * 2013-07-26 2018-06-15 清华大学 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备
CN104349653B (zh) * 2013-07-26 2018-02-16 清华大学 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备
CN203644490U (zh) * 2013-11-19 2014-06-11 上海联影医疗科技有限公司 超导磁体组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1959874A (zh) * 2006-09-30 2007-05-09 中国科学院电工研究所 用于回旋管的传导冷却超导磁体系统
CN101527497A (zh) * 2008-03-15 2009-09-09 高步 超导能源输出机
CN201213093Y (zh) * 2008-06-26 2009-03-25 东北大学 高温超导磁通泵
CN102610351A (zh) * 2011-01-19 2012-07-25 通用电气公司 用于在失超期间保护磁共振成像磁体的装置和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117234057A (zh) * 2023-11-13 2023-12-15 成都量子时频科技有限公司 一种芯片原子钟关键器件和部件测试装置
CN117234057B (zh) * 2023-11-13 2024-01-23 成都量子时频科技有限公司 一种芯片原子钟关键器件和部件测试装置

Also Published As

Publication number Publication date
CN104765406B (zh) 2016-02-24
CN104765406A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2016149977A1 (zh) 磁场调节器
Abdellatif et al. Magnetic characterization of rare earth doped spinel ferrite
Thiel et al. Demagnetization of magnetically shielded rooms
Phong et al. Landau mean-field analysis and estimation of the spontaneous magnetization from magnetic entropy change in La0. 7Sr0. 3MnO3 and La0. 7Sr0. 3Mn0. 95Ti0. 05O3
Overshott The use of domain observations in understanding and improving the magnetic properties of transformer steels
CN108401409B (zh) 一种开放式全频段调节的磁场屏蔽装置及其磁场屏蔽方法
CN106843366B (zh) 一种磁场调节装置及方法
Butta et al. Method for offset suppression in orthogonal fluxgate with annealed wire core
US20170192039A1 (en) Current-detection device
Benavides et al. High sensitivity pressure transducer based on the phase characteristics of GMI magnetic sensors
Malátek et al. Double-core GMI current sensor
Valenzuela et al. Effects of thermal annealing on the magnetization dynamics of vitrovac amorphous ribbons
Hasty et al. Ferromagnetic resonance in thin magnetic films at radio frequencies
Bragg et al. Investigation into the temperature dependence of ferrimagnetic nonlinear transmission lines
Madduri et al. ac susceptibility study of magnetic relaxation phenomena in the antiskyrmion-hosting tetragonal Mn-Pt (Pd)-Sn system
Ušák et al. Fast digital feedback algorithm for efficient control of magnetic flux density waveforms
Craven et al. Optimizing the secondary coil of a Tesla transformer to improve spectral purity
Geithner et al. A non-destructive beam monitoring system based on an LTS-SQUID
KR101624496B1 (ko) Mri 시스템의 바디 코일을 위한 디버깅 디바이스
GB2424284A (en) Reducing magnetic field inhomogeneity of primary coil by inductively energized secondary coil.
JP2002158108A (ja) 付加的通電コイル系を有する磁石装置及びその寸法設計方法
Osinalde et al. Structural, magnetic characterization (dependencies of coercivity and loss with the frequency) of magnetic cores based in Finemet
Steppke et al. Application of LTS-SQUIDs in nuclear measurement techniques
US10404303B2 (en) Antenna adapter
Stojanović et al. Electrical and temperature characterization of NiZn ferrites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/02/2018)