WO2016148535A1 - Biomass saccharification method using solid acid catalyst - Google Patents

Biomass saccharification method using solid acid catalyst Download PDF

Info

Publication number
WO2016148535A1
WO2016148535A1 PCT/KR2016/002756 KR2016002756W WO2016148535A1 WO 2016148535 A1 WO2016148535 A1 WO 2016148535A1 KR 2016002756 W KR2016002756 W KR 2016002756W WO 2016148535 A1 WO2016148535 A1 WO 2016148535A1
Authority
WO
WIPO (PCT)
Prior art keywords
saccharification
biomass
acid catalyst
acid
solid acid
Prior art date
Application number
PCT/KR2016/002756
Other languages
French (fr)
Korean (ko)
Inventor
장용근
주현우
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2016148535A1 publication Critical patent/WO2016148535A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • C07H1/08Separation; Purification from natural products
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides

Definitions

  • the present invention relates to a method for saccharifying biomass using a solid acid as a main catalyst, and more particularly, by using a minimum amount of liquid acid as a cocatalyst to supplement the performance of a solid acid as a main catalyst, the glycation efficiency is dramatically improved. It relates to a biomass saccharification method characterized in that.
  • Wood-based biomass is a complex of 40-50% of cellulose, 25-35% of hemicellulose and 15-20% of lignin.
  • cellulose is tightly wrapped by lignin and hemicellulose, and it is not easy to pretreat and saccharify because of the crystalline structure of cellulose.
  • biochemical pretreatment and saccharification are known as physicochemical methods such as dilute acid hydrolysis, steeming or ateam explosion (STEX), ammonia fiver expansion (AFEX), wet oxidation (WO), and hot water pretreatment.
  • seaweeds In addition to woody biomass, seaweeds (microalgae and giant algae), which have recently been spotlighted as a new natural resource, are fast growing so that they can be harvested 4 to 6 times a year compared to other biomass, as shown in Table 1. It also has the advantage of no competition with the fields and no erosion of cultivated land. In addition, the use of a large sea makes it much more competitive than other biomass because of its large cultivation area and little production cost. In addition, marine algae absorbs carbon dioxide at an annual rate of 36.7 tons / ha, which is 5 to 7 times higher than that of wood.
  • Microalgae include freshwater species that grow in freshwater and marine microalgae that grow in seawater.
  • microalgae containing a large amount of various carbohydrates, such as starch are glycosylated to produce various monosaccharides such as glucose, xylose, galactose or mannose. Can produce.
  • Giant algae are mostly marine and can be classified into red algae, brown algae and green algae. These macroalgae can be broken down into various sugars through the saccharification process.
  • the algae consists mainly of cellulose, mannose, xylene, xylane, starch and fructan
  • the red algae are galactan agar and carrageenan. carrageenan, xylan, mannan and the like.
  • Brown algae are also composed of alginate, fucoidan, laminaran and the like.
  • macroalgae are composed of a wide variety of polysaccharides, so a saccharification process is required to break them down.
  • ionic liquids, strong acids, and strong bases are used as catalysts, and these catalysts are difficult or practically impossible to recycle separately from saccharified liquids.
  • a neutralization process is required as a subsequent process.
  • additional material costs and process costs may occur.
  • the neutralization process is not necessary, the acid and alkali catalysts are burdened with the environment if they are released as they are, so they can be discharged through an additional treatment process. Therefore, it is absolutely necessary to use a catalyst in a form that can be easily separated from the saccharified solution after the reaction and can be recycled and does not require a subsequent treatment process such as neutralization and desalination.
  • Korean Unexamined Patent Publication No. 2013-0001627 discloses a method of extracting sugar by pretreatment of brown algae with an imidazolium-based ionic liquid, followed by hydrolysis with a liquid acid catalyst. Although the yield was higher than when only the liquid acid catalyst was used, there is a disadvantage in that a step of neutralizing the liquid acid content to 10 to 30 wt% of the algal content is required.
  • Republic of Korea Patent No. 1254662 discloses a method for producing a high glucose-containing glycosylated solution from the net and algae biomass using a catalyst.
  • This patent obtains high concentrations of monosaccharides directly from enzymatic hydrolysis or chemical hydrolysis from algae without special pretreatment, but as a catalyst for hydrolysis, liquid acids such as sulfuric acid, nitric acid, hydrochloric acid, or liquids such as sodium hydroxide and potassium hydroxide.
  • liquid acids such as sulfuric acid, nitric acid, hydrochloric acid, or liquids such as sodium hydroxide and potassium hydroxide.
  • the use of bases has the disadvantage of requiring additional neutralization steps.
  • Korean Patent Laid-Open Publication No. 2009-0039470 discloses a saccharification method of woody biomass using an acid catalyst and a supercritical water. Although this patent uses supercritical water to shorten the glycosylation time very short.
  • the liquid acid catalyst requires additional neutralization and has a disadvantage in that the separation process is complicated during supercritical water regeneration.
  • the present inventors have made diligent efforts to solve the above problems, but using a solid acid catalyst that can be recovered and reused after the reaction, so that there is no necessity of a subsequent process of neutralization and desalting to compensate for the insufficient saccharification performance of the solid acid.
  • a trace amount of the liquid acid as an auxiliary catalyst, it was confirmed that the saccharification efficiency was remarkably improved, and the present invention was completed.
  • a method of improving the economic efficiency of the saccharification process has been developed through higher saccharification efficiency than the case of using a solid acid catalyst and a liquid acid catalyst alone, and at the same time, the cost of subsequent neutralization and desalination processes is reduced.
  • An object of the present invention is to provide a saccharification method of biomass, which has a saccharification efficiency and economy at the same time by using a solid acid as a main catalyst and a trace liquid as a cocatalyst.
  • the present invention comprises the steps of (a) adding a solid acid catalyst and a liquid acid catalyst to the biomass raw material, and then heating to saccharify the biomass; And (b) separating the solid acid catalyst from the saccharification liquid.
  • FIG. 1 shows the results of saccharification of Golenkinia using 9.23 g / L Emberist 36 and nitric acid according to each concentration.
  • FIG. 2 shows the results of saccharification of Golenkinia using 0.01 N nitric acid and 9.23 g / L Emberist 36.
  • Figure 3 shows the results of saccharification of golenkinia using 0.05N nitric acid and 9.23 g / L Emberist 36.
  • Fig. 4 shows the results of saccharification of cellulose using 0.05N nitric acid and 9.23 g / L emblem 36.
  • FIG. 5 shows the results of 2,3-BDO production using crab forla oxytoca strain from Golenkinia saccharified solution treated with 0.01 N nitric acid.
  • a saccharified solution was prepared using a solid acid and a liquid acid, and the separation of the prepared saccharified liquid and the solid acid was easy, and it was confirmed that the saccharification efficiency was superior to the single use of the solid acid.
  • a microalgae raw material, a solid acid and a liquid acid catalyst were added to a stainless steel reactor to perform a saccharification reaction, and a saccharification rate was increased as compared with a solid acid catalyst or a liquid acid catalyst alone. It was confirmed that.
  • the present invention comprises the steps of: (a) adding a solid acid catalyst and a liquid acid catalyst to the biomass raw material, and then heating to saccharify the biomass; And (b) separating the solid acid catalyst from the saccharification liquid, and a method for saccharifying biomass using the solid acid and liquid acid catalysts.
  • the biomass raw material may be characterized in that the microalgae raw material, microalgae dry powder, microalgae residue, wood-based biomass or macroalgae biomass.
  • the microalgae can be used in the form of primula, and it is preferable to use the microalgae in the form of dry powder for ease of transportation, storage and reaction. It is also possible to use a microalgae residue form in which carbohydrates are present.
  • various types of biomass such as wood-based biomass and algae can be used.
  • the microalga is genus Nannochloropsis sp., Golenkinia sp., Oranthiochitrium sp., Aurantiochytrium sp., Schizochytrium sp. ), Chlorella sp., Spirulina sp., Dunaliella sp., Botryococcus sp., Thraustochytrium sp., Japono Japonochytrium sp., Ulkenia sp., Crypthecodinium sp., Halphthoros sp., Chlamydomonas sp. Porphyridium sp. May be selected from the group consisting of. Microalgae that produce carbohydrates in the saccharification reaction using biomass can be used without limitation, but it is more preferable to use the genus Golenkinia of the microalgal group.
  • the macroalgae may be selected from the group consisting of red algae, brown algae and green algae. Giant algae are divided into red algae, brown algae, and green algae. In the present invention, algae that generate carbohydrates as a raw material of saccharified liquid can be used without limitation.
  • the wood-based biomass may be selected from the group consisting of corncob, corn stover, wood chip, wood pellets and waste wood.
  • Wood-based biomass is classified into herbaceous biomass and wood-based biomass. A large amount of herbaceous biomass is produced and it is preferable to use corn which is disposed of as waste. In particular, corncaps or cornstalks that are discarded after harvesting grains from corn can be used without limitation. Wood-based biomass may also use waste wood or wood chips or wood pellets for ease of transportation.
  • a small amount of liquid acid catalyst is used in parallel to increase the saccharification efficiency of the solid acid and the solid acid catalyst, which are the main catalysts, but the liquid acid mainly liquefies the solid raw material, and the solid acid catalyst mainly plays a role of saccharification.
  • the acid catalyst is mixed with biomass to perform a chemical hydrolysis reaction, and in the present invention, a solid acid catalyst is used to facilitate separation from the saccharified solution.
  • solid acid of the present invention refers to a solid that acts as a proton donor or electron acceptor.
  • Solid acids have the property of discoloring basic indicators or adsorbing bases, just like normal acids.
  • Naturally produced clay minerals such as acidic clay, silica alumina mixed with various ratios of silica and alumina, cation exchange resins, and solid acids (eg, silica gel, alumina, sulfuric acid, phosphoric acid, etc.)
  • inorganic chemicals such as aluminum oxide.
  • the properties as a catalyst is important and excellent in activity and selectivity as compared to a homogeneous acid solvent.
  • the solid acid catalyst is zeolite, bentonite, benolinite, kaolinite, attapulgite, montmorillonite, zinc oxide (ZnO), aluminum oxide (Al 2 O 3). ), Titanium oxide (TiO 2 ), cesium oxide (CeO 2 ), vanadium oxide (V 2 O 5 ), silicon oxide (SiO 2 ), chromium oxide (Cr 2 O 3 ), calcium sulfate (CaSO 4 ), manganese sulfate (MnSO 4 ), nickel sulfate (NiSO 4 ), copper sulfate (CuSO 4 ), cobalt sulfate (CoSO 4 ), cadmium sulfate (CdSO 4 ), magnesium sulfate (MgSO 4 ), iron sulfate (FeSO 4 ), aluminum sulfate (Al 2 (SO 4 ) 3 ), calcium nitrate (Ca (NO 3 ) 2
  • the liquid acid catalyst may be selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, bromic acid, perchloric acid and acetic acid, preferably nitric acid may be used.
  • the liquid acid catalyst is used to increase the saccharification reaction efficiency of the solid acid catalyst and to reduce the saccharification reaction time. Although the saccharification reaction proceeds even when the solid acid is used alone, the efficiency of the saccharification reaction when used in parallel with a small amount of the liquid acid catalyst is used. This rises even more.
  • a neutralization process is additionally required in order to control the acidity of the product, and a desalting process is required to remove salts generated therein.
  • the liquid acid is supplied to the fermentation process without removing the liquid acid, the activity of the microorganism is lowered by the acid, so that the smooth fermentation process cannot be performed.
  • the saccharified solution can be used in the fermentation process without the neutralization process, and no additional desalting process is required.
  • the saccharification of step (a) may be performed for 0.5 to 5 hours at a temperature of 80 ⁇ 200 °C.
  • the pyrolysis temperature of the general sugar is known as about 200 °C but it is preferable to perform the reaction below 200 °C so that the resulting sugar is not pyrolyzed.
  • the reaction is preferably performed at 80 ° C. or higher, and more preferably, at 150 ° C.
  • the reaction time is preferably within 4 hours, the time at which the sugar is decomposed by the acid at 0.5 hours, which is the shortest time for the sugar to be produced, more preferably 1 to 3 hours.
  • the amount of the solid acid catalyst and the liquid acid catalyst added is 1 to 150 parts by weight and 0.006 to 6.3 parts by weight, preferably 60 to 120 parts by weight and 0.315 to 3.15 parts by weight, based on 100 parts by weight of the biomass, respectively. More preferably, 92.3 parts by weight and 0.63 parts by weight may be used.
  • the emblem has maximum activity when 0.63 parts by weight is added, but when using other solid acid catalysts, since the activity of the catalyst changes, an appropriate concentration can be selected according to the activity of the solid acid. .
  • the solid acid catalyst is less than 1 part by weight, the effect of hydrolysis by the solid acid catalyst is remarkably inferior, and when it exceeds 150 parts by weight, glycolysis by acid may occur.
  • the amount of the liquid acid catalyst is less than 0.006 parts by weight, the activation effect of the solid acid catalyst by the liquid acid catalyst is lowered.
  • the amount of the liquid acid catalyst is greater than 6.3 parts by weight, glycolysis by the liquid acid catalyst occurs and further neutralization and desalting of the product is required.
  • the saccharified liquid is glucose, galactose, rhamnose, xylose, mannose, fucose, arabinose. It may be characterized by including one or more selected from the group consisting of (arabinose) and ribose (ribose).
  • the saccharification liquid produced by the saccharification reaction may include various monosaccharides, but in the present invention, mixed monosaccharides including glucose, galactose, and the like may be obtained.
  • the saccharification system used for this embodiment consists of a reactor and control box made of stainless steel.
  • the reactor has a cylindrical shape with an inner diameter of 6 cm and an inner height of 10 cm and a reaction capacity of 300 ml (effective capacity 200 ml), an impeller for stirring, a thermocouple for measuring the temperature inside the reactor, and a sampling line for sampling. line) is installed on the reactor lid.
  • the sampling line can be fed with high pressure N 2 gas from outside the reactor.
  • the control box is equipped with a stirrer RPM, reactor internal temperature setting and a timer.
  • high performance liquid chromatography In order to quantify the monosaccharides produced by the saccharification process, high performance liquid chromatography was used. It consists of a pump made by Waters, an autosampler that automatically injects a certain amount of samples, and a column oven that keeps the temperature of the column constant. The sugar in the saccharified solution was detected through an evaporative light scattering detector.
  • microalgae Golenkinia sp. was used, which is just one example and is not limited to the substrate used in the present invention.
  • Golenkinia was dried in an oven at 70 ° C. and ground to produce a powder having a particle size of 1 mm or less and used for saccharification experiments.
  • a liquid acid catalyst was used as a 70% nitric acid solution, and a solid acid catalyst was purchased from Amberlyst 36_wet purchased from Sigma Aldrich.
  • HPLC was used for quantitative analysis of monosaccharides in microalgal saccharification liquor, and Aminex HPX-87H (Biorad, 300 mm ⁇ 7.8 mm) was used as a column.
  • the mobile phase used tertiary distilled water, the flow rate was set to 0.6ml / min, the column temperature was set to 65 °C.
  • Monosaccharide concentration was quantitatively analyzed using a standard curve. The yield of the produced monosaccharide was calculated by the following equation.
  • M concentration of dried microalgae raw material for the saccharification reaction (g / L)
  • Figure 3 shows the results using 0.315g (0.05N) nitric acid, when using both catalysts showed a higher sugar yield than the case of using each catalyst alone, but the synergistic effect is remarkable compared to the use of nitric acid alone There was no.
  • Example 2 The same experimental apparatus as in Example 1 was used, and the same experiment was carried out using cellulose instead of golenkinia.
  • Cellulose was glycosylated using only 0.315 g (0.05 N) nitric acid, only 9.23 g Emberist36, or 0.315 g nitric acid and 9.23 g Emberist 36 in combination
  • the experiment was performed.
  • the sugar yield was 25% higher than the sum of the sugar concentrations ((1) + (2)) when the two catalysts were used alone.
  • the synergy effect of the parallel use of the catalyst was shown.
  • Example 5 Klebsiella oxytoca strain fermentation from Golenkinia saccharified solution
  • Golenkinia sp. 0.063 g HNO 3 0.063 g and Amberlyst36 9.23 g were prepared in the same manner as in Example 3.
  • the saccharified solution was filtered through a solid acid catalyst with 8m filter paper, and then the supernatant was filtered out after the solid solution precipitated with a centrifuge. Thereafter, the lipid in the saccharified solution was extracted using an excess amount of chloroform as an organic solvent, and the layers were separated by centrifugation to obtain only an aqueous layer.
  • lipid extraction process it is a process that can be removed during the preparation of saccharified solution using the degreasing microalgal sample.
  • the glycosylated solution was not subjected to a separate salt treatment process such as electrodialysis.
  • the saccharification method according to the present invention uses a solid acid as a catalyst, it is easy to separate the saccharified liquid and the solid acid, so that a costly neutralization device or a salt separation device is not necessary, and the solid acid or liquid acid is used alone. Since the saccharification efficiency is excellent, it is useful for producing saccharified solution at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Catalysts (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention relates to a biomass saccharification method using solid acid and liquid acid catalysts, and more specifically, to a biomass saccharification method for generating a monosaccharide from a solid biomass by using solid acid and liquid acid simultaneously. The saccharification method, according to the present invention, uses solid acid as a catalyst, thereby enabling the easy separation of hydrolysate and solid acid, and thus a neutralization device or salt separating device by which much cost is consumed are unnecessary, and since saccharification efficiency is more excellent compared to when exclusively using solid acid or liquid acid, hydrolysate may be produced at a low cost.

Description

고체산 촉매를 이용한 바이오매스의 당화방법Saccharification Method of Biomass Using Solid Acid Catalyst
본 발명은 고체산을 주촉매로 하여 바이오매스의 당화방법에 관한 것으로, 더욱 상세하게는 주촉매인 고체산의 성능을 보완하기 위해 최소한의 액체산을 보조촉매로 사용함으로써 당화효율을 획기적으로 향상시키는 것을 특징으로 하는 바이오매스의 당화방법에 관한 것이다.The present invention relates to a method for saccharifying biomass using a solid acid as a main catalyst, and more particularly, by using a minimum amount of liquid acid as a cocatalyst to supplement the performance of a solid acid as a main catalyst, the glycation efficiency is dramatically improved. It relates to a biomass saccharification method characterized in that.
바이오에너지 및 화합물 생산에 사용되는 원료(기질)는 대부분이 곡류 유래의 전분이나 열대작물에서 얻어지는 당류이다. 미국의 경우, 옥수수 전분을 가수분해하여 얻어지는 포도당을 원료로 대부분의 바이오에탄올을 생산하고 있고, 브라질은 사탕수수에서 얻어지는 설탕을 원료로 바이오에탄올을 생산하고 있다. 하지만 사람이 식량으로 먹을 수 있는 농작물을 에너지원으로 쓰는 것은, 아직도 상당수의 인류가 식량난으로 허덕이고 있는 시점에서 비판을 받고 있을 뿐더러 앞으로 급속히 증가하게 될 바이오에탄올의 수요를 충족시키지 못하기 때문에 근본적인 한계를 지니고 있다. 따라서 기존 농작물을 원료로 이용할 것이 아니라 인류가 식량으로 이용하지 못하며, 안정적인 바이오에너지 원료원이 될 수 있는 미세조류 바이오매스 자원을 활용한 바이오에너지 생산연구가 진행되고 있다(Brennan Owende, Renew. Sustain. Energy Rev. 14:557-577(2010); John., Bioresource Technology, 102:186-193(2011)). Most of the raw materials (substrates) used in the production of bioenergy and compounds are sugars obtained from starches or tropical crops derived from cereals. In the United States, most bioethanol is produced from glucose obtained by hydrolyzing corn starch, and Brazil produces bioethanol from sugar obtained from sugar cane. However, the use of crops for human consumption as energy sources is still a critical limitation because many human beings are criticized at the time of the food shortage and cannot meet the rapidly increasing demand for bioethanol. It has Therefore, research on bioenergy production using microalgae biomass resources that can not be used as food as a source of food, but as a stable source of bioenergy is being conducted (Brennan Owende, Renew. Sustain). Energy Rev. 14: 557-577 (2010); John., Bioresource Technology, 102: 186-193 (2011).
목질계 바이오매스는 셀룰로스(cellulose) 40~50%, 헤미셀룰로스(hemicellulose) 25~35% 및 리그닌(lignin) 15~20%의 복합체이다. 여기서 셀룰로스는 리그닌과 헤미셀룰로스가 단단히 감싸고 있고, 셀룰로스의 결정성 구조 때문에 전처리 및 당화가 쉽지 않다. 현재 이러한 바이오매스의 전처리 및 당화에는 물리화학적 방법인 dilute acid hydrolysis, steeming or ateam explosion (STEX), ammonia fiver expansion (AFEX), wet oxidation (WO), hot water pretreatment 등이 알려져 있다.Wood-based biomass is a complex of 40-50% of cellulose, 25-35% of hemicellulose and 15-20% of lignin. Here, cellulose is tightly wrapped by lignin and hemicellulose, and it is not easy to pretreat and saccharify because of the crystalline structure of cellulose. At present, biochemical pretreatment and saccharification are known as physicochemical methods such as dilute acid hydrolysis, steeming or ateam explosion (STEX), ammonia fiver expansion (AFEX), wet oxidation (WO), and hot water pretreatment.
목질계 바이오메스 외에 최근 새로운 천연자원으로 각광을 받고 있는 해조류(미세조류 및 거대조류)는, 표 1과 같이, 다른 바이오매스에 비해 연간 4~6회 수확이 가능할 정도로 생장성이 빠르고, 식물작물들과의 경쟁 및 재배 경지의 잠식이 불필요하다는 장점도 가지고 있다. 뿐만 아니라 넓은 바다를 이용하므로 가용재배면적이 넓고, 생산비용도 거의 들지 않기 때문에 다른 바이오매스에 비해 훨씬 경쟁적이다. 또한 marine algae는 연간 이산화탄소 흡수량이 ha당 36.7톤으로써 목질계에 비해 5~7배가 더 높을 정도로 이산화탄소 흡수능이 뛰어나다.In addition to woody biomass, seaweeds (microalgae and giant algae), which have recently been spotlighted as a new natural resource, are fast growing so that they can be harvested 4 to 6 times a year compared to other biomass, as shown in Table 1. It also has the advantage of no competition with the fields and no erosion of cultivated land. In addition, the use of a large sea makes it much more competitive than other biomass because of its large cultivation area and little production cost. In addition, marine algae absorbs carbon dioxide at an annual rate of 36.7 tons / ha, which is 5 to 7 times higher than that of wood.
Figure PCTKR2016002756-appb-T000001
Figure PCTKR2016002756-appb-T000001
미세조류(microalgae)는 민물에서 자라는 담수종과 해수에서 자라는 해양성 미세조류가 있다. 특히 녹말(starch)과 같은 다양한 종류의 탄수화물(carbohydrate)을 다량 함유하고 있는 미세조류는 당화를 통해 글루코스(glucose), 자일로스(xylose), 갈락토스(galactose) 또는 만노오스(mannose)와 같은 다양한 단당류를 생산할 수 있다.Microalgae include freshwater species that grow in freshwater and marine microalgae that grow in seawater. In particular, microalgae containing a large amount of various carbohydrates, such as starch, are glycosylated to produce various monosaccharides such as glucose, xylose, galactose or mannose. Can produce.
거대조류는 대부분 해양성이며, 홍조류(red algae), 갈조류(brown algae), 녹조류(green algae)로 구분할 수 있다. 이러한 거대조류는 당화공정을 통해 다양한 당들로 분해될 수 있다. 우선 녹조류는 주로 셀룰로스(cellulose), 만노오스(mannose), 크실렌(xylane), 스타치(starch), 프룩탄(fructan) 등으로 구성되어 있으며, 홍조류는 갈락탄(galactan)인 아가(agar)와 카라기난(carrageenan), 크실란(xylan), 만난(mannan) 등으로 되어 있다, 또한 갈조류는 알기네이트(alginate), 후코이단(fucoidan), 라미나란(laminaran) 등으로 구성된다. 이렇듯, 거대조류들도 매우 다양한 다당류로 구성되어 있기 때문에 이를 분해하기 위한 당화공정이 필요하다Giant algae are mostly marine and can be classified into red algae, brown algae and green algae. These macroalgae can be broken down into various sugars through the saccharification process. First of all, the algae consists mainly of cellulose, mannose, xylene, xylane, starch and fructan, and the red algae are galactan agar and carrageenan. carrageenan, xylan, mannan and the like. Brown algae are also composed of alginate, fucoidan, laminaran and the like. As such, macroalgae are composed of a wide variety of polysaccharides, so a saccharification process is required to break them down.
이러한 바이오매스의 당화를 위해 이온성액체, 강산, 강염기 등을 촉매로 사용하는데, 이런 촉매들은 당화액과 분리하여 재활용하는 것이 어렵거나 현실적으로 불가능하다. 특히 산 또는 알카리를 사용하는 경우 후속 과정으로 중화공정이 필요하게 된다. 또한 중화공정 시 생성되는 다량의 염을 제거해야 하므로 추가적인 재료비와 공정비용이 발생할 수도 있다. 중화공정이 필요하지 않은 경우라도 산, 알칼리 촉매들은 그대로 방출될 경우 환경에 부담을 주게 되므로 추가적인 처리공정을 거쳐야 배출이 가능하다. 따라서 반응 후 당화액으로부터 분리가 용이하여 재활용이 가능한 동시에 중화, 탈염 등의 후속 처리공정이 필요 없는 형태의 촉매를 사용하는 것이 절대적으로 필요하다. For the saccharification of such biomass, ionic liquids, strong acids, and strong bases are used as catalysts, and these catalysts are difficult or practically impossible to recycle separately from saccharified liquids. In particular, when acid or alkali is used, a neutralization process is required as a subsequent process. In addition, since a large amount of salt generated during the neutralization process must be removed, additional material costs and process costs may occur. Even if the neutralization process is not necessary, the acid and alkali catalysts are burdened with the environment if they are released as they are, so they can be discharged through an additional treatment process. Therefore, it is absolutely necessary to use a catalyst in a form that can be easily separated from the saccharified solution after the reaction and can be recycled and does not require a subsequent treatment process such as neutralization and desalination.
대한민국 공개특허 제2013-0001627호에는 갈조류를 이미다졸륨 기반(imidazolium-based) 이온성 액체로 전처리한 후, 액체산 촉매로 가수분해하여 당을 추출하는 방법이 개시되어 있다. 액체산 촉매만을 사용했을 때보다 수득율은 높았지만, 액체산의 함량이 조류 함량의 10 내지 30 wt%로 중화시키는 단계가 필요하다는 단점이 있다. Korean Unexamined Patent Publication No. 2013-0001627 discloses a method of extracting sugar by pretreatment of brown algae with an imidazolium-based ionic liquid, followed by hydrolysis with a liquid acid catalyst. Although the yield was higher than when only the liquid acid catalyst was used, there is a disadvantage in that a step of neutralizing the liquid acid content to 10 to 30 wt% of the algal content is required.
대한민국 등록특허 1254662호에는 촉매를 이용하여 그물말과 조류 바이오매스로부터 글루코스 고함유 당화액을 제조하는 방법이 개시되어 있다. 이 특허는 특별한 전처리 없이 조류로부터 효소 가수분해 또는 화학적 가수분해를 통하여 고농도의 단당류를 직접 수득하고 있지만, 가수분해를 위한 촉매로 황산, 질산, 염산등의 액체산 또는 수산화나트륨, 수산화칼륨과 같은 액체염기를 사용하고 있어 추가적인 중화공정이 필요하다는 단점을 가진다.Republic of Korea Patent No. 1254662 discloses a method for producing a high glucose-containing glycosylated solution from the net and algae biomass using a catalyst. This patent obtains high concentrations of monosaccharides directly from enzymatic hydrolysis or chemical hydrolysis from algae without special pretreatment, but as a catalyst for hydrolysis, liquid acids such as sulfuric acid, nitric acid, hydrochloric acid, or liquids such as sodium hydroxide and potassium hydroxide. The use of bases has the disadvantage of requiring additional neutralization steps.
대한민국 공개특허 2009-0039470호에는 산촉매와 초임계수를 이용하여 목질계 바이오메스의 당화법이 개시되어 있다. 이 특허에서는 초임계수를 사용하여 당화시간을 매우 짧게 단축하고 있지만. 액체산 촉매를 사용하고 있어 추가적인 중화공정이 필요하며 초임계수 재생시 분리공정이 복잡하다는 단점을 가진다.Korean Patent Laid-Open Publication No. 2009-0039470 discloses a saccharification method of woody biomass using an acid catalyst and a supercritical water. Although this patent uses supercritical water to shorten the glycosylation time very short. The liquid acid catalyst requires additional neutralization and has a disadvantage in that the separation process is complicated during supercritical water regeneration.
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 반응 후 회수하여 재사용이 가능한 고체산 촉매를 사용하되, 고체산의 미흡한 당화성능을 보완하기 위해 중화 및 탈염의 후속공정이 필요성이 없을 정도의 미량의 액체산을 보조 촉매로 사용함으로써 당화효율이 획기적으로 개선되는 것을 확인하고, 본 발명을 완성하게 되었다. 결과적으로 고체산 촉매와 액체산 촉매를 단독으로 사용하는 경우보다 당화효율이 높은 동시에 후속 중화 및 탈염공정에 소요되는 비용의 절감을 통해 당화공정의 경제성을 획기적으로 향상시킬 수 있는 방법을 개발하였다.Accordingly, the present inventors have made diligent efforts to solve the above problems, but using a solid acid catalyst that can be recovered and reused after the reaction, so that there is no necessity of a subsequent process of neutralization and desalting to compensate for the insufficient saccharification performance of the solid acid. By using a trace amount of the liquid acid as an auxiliary catalyst, it was confirmed that the saccharification efficiency was remarkably improved, and the present invention was completed. As a result, a method of improving the economic efficiency of the saccharification process has been developed through higher saccharification efficiency than the case of using a solid acid catalyst and a liquid acid catalyst alone, and at the same time, the cost of subsequent neutralization and desalination processes is reduced.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다. The above information described in this Background section is only for improving the understanding of the background of the present invention, and therefore does not include information that forms a prior art known to those of ordinary skill in the art. You may not.
발명의 요약Summary of the Invention
본 발명의 목적은 고체산을 주 촉매로 하되, 미량의 액체산을 보조촉매로 사용함으로써 당화효율과 경제성이 동시에 향상된 바이오매스의 당화방법을 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a saccharification method of biomass, which has a saccharification efficiency and economy at the same time by using a solid acid as a main catalyst and a trace liquid as a cocatalyst.
상기 목적을 달성하기 위하여, 본 발명은 (a) 바이오매스 원료에 고체산 촉매 및 액체산 촉매를 첨가한 다음, 가열하여 바이오매스를 당화시키는 단계; 및 (b) 상기 당화액에서 고체산 촉매를 분리하는 단계를 포함하는 바이오매스의 당화방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (a) adding a solid acid catalyst and a liquid acid catalyst to the biomass raw material, and then heating to saccharify the biomass; And (b) separating the solid acid catalyst from the saccharification liquid.
도 1은 9.23g/L 엠벌리스트36과 각 농도에 따른 질산을 사용한 골렌키니아의 당화반응 결과이다.FIG. 1 shows the results of saccharification of Golenkinia using 9.23 g / L Emberist 36 and nitric acid according to each concentration.
도 2는 0.01N 질산과 9.23g/L 엠벌리스트36을 사용한 골렌키니아의 당화반응 결과이다.FIG. 2 shows the results of saccharification of Golenkinia using 0.01 N nitric acid and 9.23 g / L Emberist 36. FIG.
도 3는 0.05N 질산과 9.23g/L 엠벌리스트36을 사용한 골렌키니아의 당화반응 결과이다.Figure 3 shows the results of saccharification of golenkinia using 0.05N nitric acid and 9.23 g / L Emberist 36.
도 4는 0.05N 질산과 9.23g/L 엠벌리스트36을 사용한 셀룰로오즈의 당화반응 결과이다.Fig. 4 shows the results of saccharification of cellulose using 0.05N nitric acid and 9.23 g / L emblem 36.
도 5은 0.01N 질산으로 처리된 골렌키니아 당화액으로부터 크랩시엘라 옥시토카 균주를 이용한 2,3-BDO 생산 결과이다.FIG. 5 shows the results of 2,3-BDO production using crab ciella oxytoca strain from Golenkinia saccharified solution treated with 0.01 N nitric acid.
발명의 상세한 설명 및 구체적인 Detailed description and specifics of the invention 구현예Embodiment
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명에서는 고체산과 액체산을 이용하여 당화액을 제조하고, 제조된 당화액과 고체산의 분리가 용이하며, 고체산의 단일사용보다 당화효율이 우수한 것을 확인하고자 하였다. In the present invention, a saccharified solution was prepared using a solid acid and a liquid acid, and the separation of the prepared saccharified liquid and the solid acid was easy, and it was confirmed that the saccharification efficiency was superior to the single use of the solid acid.
본 발명의 일 실시예에서 스테인레스 재질의 반응기에 미세조류 원료, 고체산 및 액체산 촉매를 투입하여 당화반응을 수행하였으며, 고체산 촉매나 액체산 촉매를 단독으로 사용하는 경우에 비해서 당화율이 증가하는 것을 확인하였다. In an embodiment of the present invention, a microalgae raw material, a solid acid and a liquid acid catalyst were added to a stainless steel reactor to perform a saccharification reaction, and a saccharification rate was increased as compared with a solid acid catalyst or a liquid acid catalyst alone. It was confirmed that.
따라서, 본 발명은 일 관점에서, (a) 바이오매스 원료에 고체산 촉매 및 액체산 촉매를 첨가한 다음, 가열하여 바이오매스를 당화시키는 단계; 및 (b) 상기 당화액에서 고체산 촉매를 분리하는 단계를 포함하는 고체산 및 액체산 촉매를 사용하는 바이오매스의 당화방법에 관한 것이다. Therefore, in one aspect, the present invention comprises the steps of: (a) adding a solid acid catalyst and a liquid acid catalyst to the biomass raw material, and then heating to saccharify the biomass; And (b) separating the solid acid catalyst from the saccharification liquid, and a method for saccharifying biomass using the solid acid and liquid acid catalysts.
본 발명에 있어서, 상기 바이오매스 원료는 미세조류 원초, 미세조류 건조분말, 미세조류 잔사물, 목질계 바이오매스 또는 거대조류 바이오매스인 것을 특징으로 할 수 있다. 미세조류는 원초 형태로 사용가능하며, 운반과 보관, 반응의 편이성을 위하여 건조 분말 형태로 사용하는 것이 바람직하다. 또한 탄수화물이 존재하는 미세조류의 잔사물 형태도 사용 가능하다. 아울러 목질계 바이오매스와 거대조류와 같은 다양한 종류의 바이오매스가 사용 가능하다.In the present invention, the biomass raw material may be characterized in that the microalgae raw material, microalgae dry powder, microalgae residue, wood-based biomass or macroalgae biomass. The microalgae can be used in the form of primula, and it is preferable to use the microalgae in the form of dry powder for ease of transportation, storage and reaction. It is also possible to use a microalgae residue form in which carbohydrates are present. In addition, various types of biomass such as wood-based biomass and algae can be used.
본 발명에 있어서, 상기 미세조류는 난노크로롭시스 속 (Nannochloropsis sp.), 골렌키니아 속(Golenkinia sp.), 오란티오키트리움 속 (Aurantiochytrium sp.), 스키조키트리움 속 (Schizochytrium sp.), 클로렐라 속 (Chlorella sp.), 스피룰리나 속 (Spirulina sp.), 듀날리엘라 속(Dunaliella sp.), 보트리오코커스 속 (Botryococcus sp.), 트라우스토키트리움 속 (Thraustochytrium sp.), 자포노키트리움 속 (Japonochytrium sp.), 울케니아 속 (Ulkenia sp.), 크립테코디니움 속 (Crypthecodinium sp.), 할리프토로스 속 (Haliphthoros sp.), 클라미도모나스 속 (Chlamydomonas sp.) 및 포르피리디움 속 (Porphyridium sp.)으로 이루어진 군에서 선택되는 것을 특징으로 할 수 있다. 바이오매스를 이용한 당화 반응에서 탄수화물을 생성하는 미세조류는 제한 없이 사용 가능하지만, 상기 미세조류군 중 골렌키니아 속을 사용하는 것이 더욱 바람직하다. In the present invention, the microalga is genus Nannochloropsis sp., Golenkinia sp., Oranthiochitrium sp., Aurantiochytrium sp., Schizochytrium sp. ), Chlorella sp., Spirulina sp., Dunaliella sp., Botryococcus sp., Thraustochytrium sp., Japono Japonochytrium sp., Ulkenia sp., Crypthecodinium sp., Halphthoros sp., Chlamydomonas sp. Porphyridium sp. May be selected from the group consisting of. Microalgae that produce carbohydrates in the saccharification reaction using biomass can be used without limitation, but it is more preferable to use the genus Golenkinia of the microalgal group.
본 발명에 있어서, 상기 거대조류는 홍조류, 갈조류 및 녹조류로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. 거대 조류는 홍조류, 갈조류, 녹조류로 구분되는데 본 발명에서는 당화액의 원료인 탄수화물을 생성하는 거대조류는 제한 없이 사용 가능하다.In the present invention, the macroalgae may be selected from the group consisting of red algae, brown algae and green algae. Giant algae are divided into red algae, brown algae, and green algae. In the present invention, algae that generate carbohydrates as a raw material of saccharified liquid can be used without limitation.
본 발명에 있어서, 상기 목질계 바이오매스는 콘캅 (corncob), 콘스토버 (corn stover), 우드칩 (wood chip), 목질펠릿 및 폐 목재로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. 목질계 바이오매스는 초본계 바이오매스와 목본계 바이오매스로 구분되는데 초본계 바이오매스 중 많은 양이 생산되며, 폐기물로 버려지는 옥수수를 사용하는 것이 바람직하다. 특히 옥수수에서 낱알을 수확한 뒤 버려지는 콘캅이나 콘스토버도 제한 없이 사용 가능하다. 또한 목본계 바이오매스는 폐목재를 사용하거나 운반의 편의를 위하여 우드칩이나 목질펠릿을 사용할 수 있다.In the present invention, the wood-based biomass may be selected from the group consisting of corncob, corn stover, wood chip, wood pellets and waste wood. Wood-based biomass is classified into herbaceous biomass and wood-based biomass. A large amount of herbaceous biomass is produced and it is preferable to use corn which is disposed of as waste. In particular, corncaps or cornstalks that are discarded after harvesting grains from corn can be used without limitation. Wood-based biomass may also use waste wood or wood chips or wood pellets for ease of transportation.
본 발명에서는 주 촉매인 고체산과 고체산 촉매의 당화효율을 높이기 위해 소량의 액체산 촉매를 병행 사용하되, 액체산은 주로 고형 원료의 액화, 고체산 촉매는 주로 당화의 역할을 한다. 이때 산 촉매는 바이오매스와 혼합되어 화학적 가수분해 반응을 수행하며, 본 발명에서는 당화액과 분리가 용이하도록 고체산 촉매를 사용하였다.In the present invention, a small amount of liquid acid catalyst is used in parallel to increase the saccharification efficiency of the solid acid and the solid acid catalyst, which are the main catalysts, but the liquid acid mainly liquefies the solid raw material, and the solid acid catalyst mainly plays a role of saccharification. In this case, the acid catalyst is mixed with biomass to perform a chemical hydrolysis reaction, and in the present invention, a solid acid catalyst is used to facilitate separation from the saccharified solution.
본 발명의 용어 고체산은 양성자 공여체 또는 전자 수용체로 작용하는 고체를 말한다. 고체산은 일반산처럼 염기성 지시약을 변색시키거나, 염기를 흡착하는 성질을 갖고 있다. 산성 백토와 같은 천연적으로 산출하는 점토 광물, 실리카와 알루미나를 다양한 비율로 배합·혼합한 실리카 알루미나, 양이온 교환수지, 일반산을 담체에 부착시킨 고형화산(예컨데 실리카겔이나 알루미나에 황산, 인산 등을 부착 시킨 것), 산화 알루미늄 등 무기 화학 약품 등이 그 예이다. 특히 그 촉매로서의 성질은 중요하며 균질산 용매에 비하여 활성 및 선택성이 우수하다는 것이 알려져 있다. The term solid acid of the present invention refers to a solid that acts as a proton donor or electron acceptor. Solid acids have the property of discoloring basic indicators or adsorbing bases, just like normal acids. Naturally produced clay minerals such as acidic clay, silica alumina mixed with various ratios of silica and alumina, cation exchange resins, and solid acids (eg, silica gel, alumina, sulfuric acid, phosphoric acid, etc.) And inorganic chemicals such as aluminum oxide. In particular, it is known that the properties as a catalyst is important and excellent in activity and selectivity as compared to a homogeneous acid solvent.
본 발명에 있어서, 상기 고체산 촉매는 제올라이트(Zeolite), 벤토나이트(Bentonite), 카올리나이트(Kaolinite), 아타풀가이트(Attapulgite), 몬모릴로나이트(Montmorillonite), 산화아연(ZnO), 산화알루미늄(Al2O3), 산화티타늄(TiO2), 산화세슘(CeO2), 산화바나듐(V2O5), 산화규소(SiO2), 산화크롬(Cr2O3), 황산칼슘(CaSO4), 황산망간(MnSO4), 황산니켈(NiSO4), 황산구리(CuSO4), 황산코발트(CoSO4), 황산카드뮴(CdSO4), 황산마그네슘(MgSO4), 황산철(FeSO4), 황산알루미늄 (Al2(SO4)3), 질산칼슘(Ca(NO3)2), 질산아연(Zn(NO3)2), 질산철(Fe(NO3)3), 인산알루미늄(AlPO4), 인산철(FePO4), 인산크롬(CrPO4), 인산구리(Cu3(PO4)2), 인산아연(Zn3(PO4)2), 인산마그네슘(Mg3(PO4)2), 염화알루미늄(AlCl3), 염화티타늄(TiCl4), 염화칼슘(CaCl2), 불화칼슘(CaF2), 불화바륨(BaF2), 탄산칼슘(CaCO3), 탄산마그네슘(MgCO3) 및 양이온교환수지로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 바람직하게는 양이온교환수지(상품명: Amberlyst 15, A21, 36, 70), 더욱 바람직하게는 엠벌리스트(Amberlyst)36을 사용할 수 있다.In the present invention, the solid acid catalyst is zeolite, bentonite, benolinite, kaolinite, attapulgite, montmorillonite, zinc oxide (ZnO), aluminum oxide (Al 2 O 3). ), Titanium oxide (TiO 2 ), cesium oxide (CeO 2 ), vanadium oxide (V 2 O 5 ), silicon oxide (SiO 2 ), chromium oxide (Cr 2 O 3 ), calcium sulfate (CaSO 4 ), manganese sulfate (MnSO 4 ), nickel sulfate (NiSO 4 ), copper sulfate (CuSO 4 ), cobalt sulfate (CoSO 4 ), cadmium sulfate (CdSO 4 ), magnesium sulfate (MgSO 4 ), iron sulfate (FeSO 4 ), aluminum sulfate (Al 2 (SO 4 ) 3 ), calcium nitrate (Ca (NO 3 ) 2 ), zinc nitrate (Zn (NO 3 ) 2 ), iron nitrate (Fe (NO 3 ) 3 ), aluminum phosphate (AlPO 4 ), iron phosphate (FePO 4 ), chromium phosphate (CrPO 4 ), copper phosphate (Cu 3 (PO 4 ) 2 ), zinc phosphate (Zn 3 (PO 4 ) 2 ), magnesium phosphate (Mg 3 (PO 4 ) 2 ), aluminum chloride (AlCl 3 ), titanium chloride (TiCl 4 ), calcium chloride (CaCl 2 ), calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), calcium carbonate (C aCO 3 ), magnesium carbonate (MgCO 3 ) and a cation exchange resin, it may be characterized in that the cation exchange resin (trade name: Amberlyst 15, A21, 36, 70), more preferably Amberlyst36 can be used.
본 발명에 있어서, 상기 액체산 촉매는 질산, 염산, 황산, 인산, 브롬산, 과염소산 및 아세트산으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 바람직하게는 질산을 사용할 수 있다. 액체산 촉매는 고체산 촉매의 당화반응 효율을 높이고 당화반응시간을 줄이기 위해 사용하는 것으로, 고체산을 단독으로 사용하는 경우에도 당화반응이 진행되지만, 소량의 액체산 촉매와 병행 사용시 당화반응의 효율이 더욱 상승한다. 또한, 액체산 촉매만으로 당화반응을 진행하는 경우 생성물의 산도를 조절하기 위하여 중화공정이 추가로 필요하며, 이때 생성되는 염을 제거하는 탈염공정이 필요하다. 이때 액체산을 제거하지 않고 발효공정으로 공급하는 경우 산에 의하여 미생물의 활성이 저하되어 원활한 발효공정을 진행할 수 없게된다. 하지만 고체산 촉매와 병행으로 사용하는 경우, 소량(10 중량부 이하)의 액체산을 사용하게 되므로 중화공정 없이 당화액을 발효공정에 사용 가능하며, 추가적인 탈염공정 역시 필요하지 않게 된다.In the present invention, the liquid acid catalyst may be selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, bromic acid, perchloric acid and acetic acid, preferably nitric acid may be used. The liquid acid catalyst is used to increase the saccharification reaction efficiency of the solid acid catalyst and to reduce the saccharification reaction time. Although the saccharification reaction proceeds even when the solid acid is used alone, the efficiency of the saccharification reaction when used in parallel with a small amount of the liquid acid catalyst is used. This rises even more. In addition, when the saccharification reaction proceeds only with a liquid acid catalyst, a neutralization process is additionally required in order to control the acidity of the product, and a desalting process is required to remove salts generated therein. In this case, when the liquid acid is supplied to the fermentation process without removing the liquid acid, the activity of the microorganism is lowered by the acid, so that the smooth fermentation process cannot be performed. However, when used in parallel with the solid acid catalyst, since a small amount (10 parts by weight or less) of the liquid acid is used, the saccharified solution can be used in the fermentation process without the neutralization process, and no additional desalting process is required.
본 발명에 있어서, 상기 (a) 단계의 당화는 80 ~ 200℃의 온도에서 0.5 ~ 5시간 동안 수행되는 것을 특징으로 할 수 있다. 일반적인 당의 열분해 온도는 200℃정도로 알려져 있는데 생성되는 당이 열분해 되지 않도록 200℃이하에서 반응을 수행하는 것이 바람직하다. 또한 온도가 낮은 경우 반응의 속도가 떨어져 전체적인 효율이 감소하므로 80℃이상에서 반응을 수행하는 것이 바람직하며, 더욱 바람직하게는 150℃에서 수행할 수 있다. 반응시간은 당이 생성되는 최단시간인 0.5시간에서 생성된 당이 산에 의해 분해되는 시간인 4시간 이내인 것이 바람직하며, 더욱 바람직하게는 1 ~ 3시간 일 수 있다.In the present invention, the saccharification of step (a) may be performed for 0.5 to 5 hours at a temperature of 80 ~ 200 ℃. The pyrolysis temperature of the general sugar is known as about 200 ℃ but it is preferable to perform the reaction below 200 ℃ so that the resulting sugar is not pyrolyzed. In addition, when the temperature is low, since the reaction rate is lowered and the overall efficiency decreases, the reaction is preferably performed at 80 ° C. or higher, and more preferably, at 150 ° C. The reaction time is preferably within 4 hours, the time at which the sugar is decomposed by the acid at 0.5 hours, which is the shortest time for the sugar to be produced, more preferably 1 to 3 hours.
본 발명에 있어서, 상기 고체산 촉매 및 액체산 촉매의 첨가량은 바이오매스 100 중량부에 대하여 각각 1 ~ 150 중량부 및 0.006 ~ 6.3 중량부, 바람직하게는 60~120중량부 및 0.315 ~ 3.15 중량부, 더욱 바람직하게는 92.3 중량부 및 0.63중량부를 사용하는 것을 특징으로 할 수 있다. 상기 고체산 촉매 중 엠벌리스트의 경우, 0.63중량부를 첨가할때 최대 활성을 가지만, 다른 고체산 촉매를 사용하는 경우, 촉매의 활성이 변화하므로 고체산의 활성에 따라 적절한 농도를 선택하여 사용 가능하다. 아울러, 상기 고체산 촉매가 1 중량부 미만인 경우 고체산 촉매에 의한 가수분해의 효과가 현저하게 떨어지며, 150 중량부를 초과하는 경우 산에 의한 당분해가 일어날 수 있다. 또한 액체산 촉매가 0.006 중량부 미만인 경우 액체산 촉매에 의한 고체산 촉매의 활성화 효과가 떨어지며, 6.3 중량부 초과에서는 액체산 촉매에 의한 당분해가 일어나며 생성물의 추가적인 중화 및 탈염 공정이 필요하다.In the present invention, the amount of the solid acid catalyst and the liquid acid catalyst added is 1 to 150 parts by weight and 0.006 to 6.3 parts by weight, preferably 60 to 120 parts by weight and 0.315 to 3.15 parts by weight, based on 100 parts by weight of the biomass, respectively. More preferably, 92.3 parts by weight and 0.63 parts by weight may be used. Among the solid acid catalysts, the emblem has maximum activity when 0.63 parts by weight is added, but when using other solid acid catalysts, since the activity of the catalyst changes, an appropriate concentration can be selected according to the activity of the solid acid. . In addition, when the solid acid catalyst is less than 1 part by weight, the effect of hydrolysis by the solid acid catalyst is remarkably inferior, and when it exceeds 150 parts by weight, glycolysis by acid may occur. In addition, when the amount of the liquid acid catalyst is less than 0.006 parts by weight, the activation effect of the solid acid catalyst by the liquid acid catalyst is lowered. When the amount of the liquid acid catalyst is greater than 6.3 parts by weight, glycolysis by the liquid acid catalyst occurs and further neutralization and desalting of the product is required.
본 발명에 있어서, 상기 당화액은 글루코오즈(glucose), 갈락토오즈 (galactose), 람노오즈(rhmnose), 자일로오즈(xylose), 만노오즈(mannose), 퓨코오즈(fucose), 아라비노오즈(arabinose) 및 라이보오즈(ribose)로 구성된 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 할 수 있다. 당화반응에 의하여 생성되는 당화액은 다양한 단당류가 포함될 수 있지만 본 발명에서는 글루코오즈, 갈락토오즈 등을 포함하는 혼합 단당류가 수득될 수 있다.In the present invention, the saccharified liquid is glucose, galactose, rhamnose, xylose, mannose, fucose, arabinose. It may be characterized by including one or more selected from the group consisting of (arabinose) and ribose (ribose). The saccharification liquid produced by the saccharification reaction may include various monosaccharides, but in the present invention, mixed monosaccharides including glucose, galactose, and the like may be obtained.
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1: 당화 반응의 원료 및 당화 반응기의 구성Example 1: Raw Material of Saccharification Reaction and Configuration of Saccharification Reactor
본 실시예를 위해 사용한 당화장치 시스템은 스테인레스 재질로 이루어진 반응기와 콘트롤 박스로 구성되어 있다. 반응기는 내경 6cm, 내부 높이 10cm 반응용량 300ml(유효용량 200ml)의 원통형으로 제작되며, 교반을 위한 임펠러(impeller), 반응기 내부 온도를 측정하기 위한 열전도(thermocouple)와 샘플 채취를 위한 샘플링 라인(sampling line)이 반응기 뚜껑에 설치되어 있다. 샘플 채취의 용이성을 위해 샘플링 라인에는 반응기 외부로부터 고압 N2 가스가 유입될 수 있다. 콘트롤 박스에는 교반기의 RPM과 반응기 내부 온도설정, 타이머(timer)등이 장착되어 있다.The saccharification system used for this embodiment consists of a reactor and control box made of stainless steel. The reactor has a cylindrical shape with an inner diameter of 6 cm and an inner height of 10 cm and a reaction capacity of 300 ml (effective capacity 200 ml), an impeller for stirring, a thermocouple for measuring the temperature inside the reactor, and a sampling line for sampling. line) is installed on the reactor lid. For ease of sampling, the sampling line can be fed with high pressure N 2 gas from outside the reactor. The control box is equipped with a stirrer RPM, reactor internal temperature setting and a timer.
당화 과정으로 생성된 단당을 정량하기 위하여, 고성능 액체 크로마토그래피를 사용하였다. Waters사에서 제작된 펌프(pump), 자동적으로 샘플들의 일정량을 주입하는 오토샘플러(autosampler), 컬럼의 온도를 일정하게 유지시키는 컬럼 오븐(colum oven)등으로 구성되어 있으며, Sedex사에서 제작한 증기화광산란 검출기(evaporative light scattering detector)를 통해 당화액 내 당을 검출하였다.In order to quantify the monosaccharides produced by the saccharification process, high performance liquid chromatography was used. It consists of a pump made by Waters, an autosampler that automatically injects a certain amount of samples, and a column oven that keeps the temperature of the column constant. The sugar in the saccharified solution was detected through an evaporative light scattering detector.
본 실시예에서는 미세조류 골렌키니아(Golenkinia sp.)를 사용하였으며, 이는 하나의 예시일 뿐, 본 발명에서 사용한 기질에 제한되지 않는다. 골렌키니아를 70℃ 오븐에 건조하여 분쇄하여 입도 1mm 이하의 가루를 만들어 당화 실험에 사용하였다.In the present example, microalgae Golenkinia sp. Was used, which is just one example and is not limited to the substrate used in the present invention. Golenkinia was dried in an oven at 70 ° C. and ground to produce a powder having a particle size of 1 mm or less and used for saccharification experiments.
액체산 촉매는 70% 질산용액을 사용하였으며, 고체산 촉매는 시그마알드리치에서 구매한 엠벌리스트36(Amberlyst36_wet)를 구매하여 사용하였다.A liquid acid catalyst was used as a 70% nitric acid solution, and a solid acid catalyst was purchased from Amberlyst 36_wet purchased from Sigma Aldrich.
미세조류 당화액 내 단당의 정량 분석을 위해 HPLC를 사용하였으며, Aminex HPX-87H (Biorad, 300mm × 7.8mm)을 컬럼으로 사용하였다. 이동상은 3차 증류수를 사용하였으며, 흐름 속도는 0.6ml/분, 컬럼 온도는 65℃로 설정 하였다. 단당의 농도는 표준물질 곡선을 이용하여 정량 분석하였다. 생성된 단당의 수율은 다음과 같은 식에 의해 계산되었다.HPLC was used for quantitative analysis of monosaccharides in microalgal saccharification liquor, and Aminex HPX-87H (Biorad, 300 mm × 7.8 mm) was used as a column. The mobile phase used tertiary distilled water, the flow rate was set to 0.6ml / min, the column temperature was set to 65 ℃. Monosaccharide concentration was quantitatively analyzed using a standard curve. The yield of the produced monosaccharide was calculated by the following equation.
Figure PCTKR2016002756-appb-I000001
Figure PCTKR2016002756-appb-I000001
S = HPLC 상으로 정량 분석된 단당 농도(g/L)S = monosaccharide concentration quantified by HPLC (g / L)
M = 당화 반응을 위해 투입한 미세조류 건조 원료의 농도(g/L)M = concentration of dried microalgae raw material for the saccharification reaction (g / L)
실시예 2: 액체산 촉매의 농도에 따른 당화반응 효율 변화Example 2: Change in Glycation Reaction Efficiency According to Concentration of Liquid Acid Catalyst
후속 중화 및 탈염 공정이 불필요하거나 최소화되는 수준으로 보조촉매로 사용하는 질산의 양을 낮추는 것이 본 발명의 목적달성에 가장 중요한 요소이므로 증류사 1L에 바이오매스 10g을 첨가한다음, 주촉매로 사용된 엠벌리스트36는 9.23g으로 고정한 상태에서, 질산의 양을 0.00315~0.315g의 범위에서 변화시켜가며 당화실험을 수행하였다. 상기 엠벌리스트의 양은, 질산의 24.3meqH+/L 농도와 동일한 값으로 액체산 촉매의 활성화 효과를 받아 최대 당화수율에 도달 가능한 양이다. 대조군으로 순수 엠벌리스트36, 9.23g 만을 사용한 실험을 행하였다. 모든 실험의 당화반응은 150℃에서 최대 160분간 진행하였다.Since lowering the amount of nitric acid used as a cocatalyst to a level where the subsequent neutralization and desalting process is unnecessary or minimized is the most important factor in achieving the object of the present invention, 10 g of biomass is added to 1 L of distilled sand, and then used as the main catalyst. Emberist 36 was glycosylated with varying amounts of nitric acid in the range of 0.00315 to 0.315 g while being fixed at 9.23 g. The amount of the emblem is such that the maximum saccharification yield can be reached by the activation effect of the liquid acid catalyst at the same value as the concentration of 24.3 meqH + / L of nitric acid. The experiment using only pure 23, 9.23g as a control group was performed. The saccharification of all experiments was performed at 150 ° C. for up to 160 minutes.
도 1에 나타난 바와 같이, 고체산 촉매만을 사용한 경우는 수율이 극히 낮아 실용성이 없음을 알 수 있다. 질산 병용의 경우, 질산의 농도를 0.063g(0.01N)까지 낮추더라도 최대수율에 도달하는 시간이 0.315g(0.05N)의 경우에 비해 다소 더 걸리지만, 충분한 당수율을 얻을 수 있었다. 그러나 질산농도가 0.063g보다 낮은 경우 충분한 수준의 수율을 얻을 수 없었다. 따라서, 질산의 첨가농도로는 0.063g이 가장 적합한 것으로 밝혀졌는바, 이렇게 낮은 질산 사용 농도는 통상적인 지식으로 판단할 때 후속 중화 및 탈염 공정이 필요가 없는 수준이다. 결과적으로 고체산 촉매 사용 시 미량의 액체산 촉매를 같이 사용함으로써 당화효율은 획기적으로 높이되, 고체산 단독 사용 시와 마찬가지로 후속 중화 및 탈염공정이 필요 없는 당화방법의 개발이 가능하였다.As shown in FIG. 1, when only the solid acid catalyst is used, the yield is extremely low, which implies no practicality. In the case of using nitric acid, even when the concentration of nitric acid was lowered to 0.063g (0.01N), the time to reach the maximum yield was slightly longer than that of 0.315g (0.05N), but sufficient sugar yield was obtained. However, if the nitric acid concentration was lower than 0.063g, a sufficient level of yield could not be obtained. Therefore, 0.063 g of nitric acid was found to be the most suitable, so such a low nitric acid concentration is a level which, as judged by conventional knowledge, does not require subsequent neutralization and desalination processes. As a result, by using a small amount of the liquid acid catalyst when using a solid acid catalyst, the saccharification efficiency is significantly increased, but as in the case of using the solid acid alone, it was possible to develop a saccharification method that does not require subsequent neutralization and desalination processes.
실시예 3: 고체산 촉매와 액체산 촉매의 병행사용 시의 시너지 효과Example 3: Synergistic Effect of Parallel Use of Solid Acid Catalyst and Liquid Acid Catalyst
고체산과 액체산 촉매의 병행사용 시 얻을 수 있는 시너지 효과를 확인하기 위해, 대조군으로 액체산 촉매만을 사용한 당화반응을 추가로 행한 후 이 결과를 고체산만을 사용한 결과와 합한 것을 고체산 및 액체산 병행사용 시의 결과와 비교하였다. 도 2에 나타난 바와 같이, 0.063(0.01N)g의 질산을 고체산과 같이 사용했을 때 시너지 효과가 뚜렷함을 알 수 있는 바, 당농도가 최대에 도달한 120분의 시점에서 볼 때, 두 가지 촉매를 같이 사용함으로써 개별 사용 시의 합((1)+(2))에 비해 80 % 정도의 당화수율 상승 (당농도 기준 2.1 g/L --> 3.7 g/L) 효과가 있었다. 도 3은 0.315g(0.05N)의 질산을 사용한 결과를 보여주는데, 두 촉매를 같이 사용한 경우 각 촉매를 단독으로 사용한 경우들보다는 높은 당수율을 보였으나 질산의 단독사용에 비하여 특기할 만한 시너지 효과는 없었다. In order to confirm the synergistic effect that can be obtained when the solid acid and the liquid acid catalyst are used in parallel, an additional glycosylation reaction using only the liquid acid catalyst is performed as a control, and the result is combined with the result using only the solid acid. It was compared with the result at the time of use. As shown in FIG. 2, it can be seen that synergistic effects are apparent when 0.063 (0.01N) g of nitric acid is used together with a solid acid. By using the catalyst together, there was an 80% increase in glycation yield (2.1 g / L-> 3.7 g / L based on sugar concentration) compared to the sum ((1) + (2)). Figure 3 shows the results using 0.315g (0.05N) nitric acid, when using both catalysts showed a higher sugar yield than the case of using each catalyst alone, but the synergistic effect is remarkable compared to the use of nitric acid alone There was no.
실시예 4: 셀룰로오즈(Celluose) 당화 반응Example 4: Cellulose Glycation Reaction
실시예 1과 동일한 실험기구를 사용하였으며, 원료를 골렌키니아 대신 셀룰로오즈를 사용하여 동일한 실험을 수행하였다. 셀룰로오즈(Celluose) 10g/L (Sigmaaldrich korea)를 0.315g(0.05N)의 질산만을 사용하거나, 9.23g의 엠벌리스트36만을 사용하거나, 또는 0.315g 질산과 9.23g 엠벌리스트36을 병행사용하여 당화하는 실험을 행하였다. 그 결과, 도 4에 나타난 바와 같이, 질산과 엠벌리스트36을 같이 사용하였을 시 당수율이 상기 두 가지 촉매를 단독으로 사용하였을 때의 당농도 합계((1)+(2))보다 25% 더 높은 값을 나타냄으로써 촉매 병행사용에 따른 시너지 효과를 보였다. The same experimental apparatus as in Example 1 was used, and the same experiment was carried out using cellulose instead of golenkinia. Cellulose was glycosylated using only 0.315 g (0.05 N) nitric acid, only 9.23 g Emberist36, or 0.315 g nitric acid and 9.23 g Emberist 36 in combination The experiment was performed. As a result, as shown in FIG. 4, when the nitric acid and the Emberist 36 were used together, the sugar yield was 25% higher than the sum of the sugar concentrations ((1) + (2)) when the two catalysts were used alone. By showing a high value, the synergy effect of the parallel use of the catalyst was shown.
실시예 5: 골렌키니아 당화액으로부터 크랩시엘라 옥시토카(Klebsiella oxytoca) 균주 발효Example 5: Klebsiella oxytoca strain fermentation from Golenkinia saccharified solution
실시예 3과 같은 방법으로 0.063g HNO3 0.063g과 Amberlyst36 9.23g을 사용하여 제조한 Golenkinia sp. 당화액을 8m 여과지로 고체산 촉매를 거른 후 걸리진 용액을 원심분리기를 고형물질을 침전시킨 뒤 상등액만 걸렀다. 그 후 유기용매인 클로로폼을 과량 사용하여 당화액내에 있는 지질을 추출하고, 원심분리기로 층분리 하여 수용액층만 얻었다. 지질 추출 하는 과정의 경우 탈지된 미세조류 시료를 사용하여 당화액을 제조시 제거될 수 있는 공정이다. 이렇게 만들어진 당화액은 전기투석같은 별도의 염처리 공정을 거치지 않았다. Golenkinia sp. 0.063 g HNO 3 0.063 g and Amberlyst36 9.23 g were prepared in the same manner as in Example 3. The saccharified solution was filtered through a solid acid catalyst with 8m filter paper, and then the supernatant was filtered out after the solid solution precipitated with a centrifuge. Thereafter, the lipid in the saccharified solution was extracted using an excess amount of chloroform as an organic solvent, and the layers were separated by centrifugation to obtain only an aqueous layer. In the case of lipid extraction process, it is a process that can be removed during the preparation of saccharified solution using the degreasing microalgal sample. The glycosylated solution was not subjected to a separate salt treatment process such as electrodialysis.
제조된 당화액 100ml에 (g/L) 9; yeast extract, 5; (NH4)2SO4, 6; K2HPO4, 8.7; KH2PO4, 6.8; MgSO4·7H2O, 0.25; trace metal solution, 2%(v/v)을 첨가하였으며, 수산화나트륨을 사용하여 pH를 5.5로 조정하였다.(G / L) 9 to 100 ml of the prepared saccharified solution; yeast extract, 5; (NH 4 ) 2 SO 4 , 6; K 2 HPO 4 , 8.7; KH 2 PO 4 , 6.8; MgSO 4 7H 2 O, 0.25; trace metal solution, 2% (v / v) was added and the pH was adjusted to 5.5 using sodium hydroxide.
크랩시엘라 옥시토카 균주를 배양하여 실험한 결과, 도 5에 나타난 바와 같이, 별도의 염처리 공정이 없어도 균주가 잘 자랐으며, 2,3-BDO을 생산하는 것을 확인할 수 있었다. As a result of culturing crab ciella oxytoca strain, as shown in Figure 5, the strain was grown well without a separate salt treatment process, it was confirmed that the production of 2,3-BDO.
본 발명에 따른 당화방법은 고체산을 촉매로 사용하므로, 당화액과 고체산의 분리가 용이하여 많은 비용이 소모되는 중화장치나 염분리장치가 불필요하며, 고체산 또는 액체산의 단독사용에 비하여 당화효율이 뛰어나므로 낮은 비용으로 당화액을 제조하는 것에 유용하다.Since the saccharification method according to the present invention uses a solid acid as a catalyst, it is easy to separate the saccharified liquid and the solid acid, so that a costly neutralization device or a salt separation device is not necessary, and the solid acid or liquid acid is used alone. Since the saccharification efficiency is excellent, it is useful for producing saccharified solution at low cost.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

  1. 다음 단계를 포함하는 고체산 및 액체산 촉매를 이용한 바이오매스의 당화방법:Method of saccharifying biomass using solid acid and liquid acid catalyst comprising the following steps:
    (a) 바이오매스 원료에 고체산 촉매 및 액체산 촉매를 첨가한 다음, 가열하여 바이오매스를 당화시키는 단계; 및(a) adding a solid acid catalyst and a liquid acid catalyst to the biomass feedstock and then heating to saccharify the biomass; And
    (b) 상기 당화액에서 고체산 촉매를 분리하는 단계.(b) separating the solid acid catalyst from the saccharified solution.
  2. 제1항에 있어서, The method of claim 1,
    상기 바이오매스 원료는 미세조류 원초, 미세조류 건조분말, 미세조류 잔사물, 거대조류 바이오매스 또는 목질계 바이오매스인 것을 특징으로 하는 당화방법.The biomass raw material is a microalgae raw material, microalgae dry powder, microalgae residue, macroalgae biomass or wood-based biomass, characterized in that the saccharification method.
  3. 제2항에 있어서, The method of claim 2,
    상기 미세조류는 난노크로롭시스 속 (Nannochloropsis sp.), 골렌키니아 속(Golenkinia sp.), 오란티오키트리움 속 (Aurantiochytrium sp.), 스키조키트리움 속 (Schizochytrium sp.), 클로렐라 속 (Chlorella sp.), 스피룰리나 속 (Spirulina sp.), 듀날리엘라 속(Dunaliella sp.), 보트리오코커스 속 (Botryococcus sp.), 트라우스토키트리움 속 (Thraustochytrium sp.), 자포노키트리움 속 (Japonochytrium sp.), 울케니아 속 (Ulkenia sp.), 크립테코디니움 속 (Crypthecodinium sp.), 할리프토로스 속 (Haliphthoros sp.), 클라미도모나스 속 (Chlamydomonas sp.) 및 포르피리디움 속 (Porphyridium sp.)으로 구성된 군에서 선택되는 것을 특징으로 하는 당화방법.The microalgae include the genus Nannochloropsis sp., Golenkinia sp., Aurantiochytrium sp., Schizochytrium sp., And Chlorella genus. Chlorella sp.), Spirulina sp., Dunaliella sp., Botryococcus sp., Thraustochytrium sp., Japonochytrium sp.), the genus Ulkenia sp., the genus Crypthecodinium sp., the genus Halifthoros sp., the genus Chlamydomonas sp., and the genus Porphyridium. Porphyridium sp.) Glycosylation method, characterized in that selected from the group consisting of.
  4. 제2항에 있어서, The method of claim 2,
    상기 거대조류는 홍조류, 갈조류 및 녹조류로 구성된 군에서 선택되는 것을 특징으로 하는 당화방법.The giant algae is saccharification method, characterized in that selected from the group consisting of red algae, brown algae and green algae.
  5. 제2항에 있어서,The method of claim 2,
    상기 목질계 바이오메스는 콘캅 (corncob), 콘스토버 (corn stover), 우드칩 (wood chip), 목질펠릿 및 폐 목재로 구성된 군에서 선택되는 것을 특징으로 하는 당화방법.The wood-based biomass is a saccharification method, characterized in that selected from the group consisting of corncob (corncob), corn stover (corn stover), wood chip (wood chip), wood pellets and waste wood.
  6. 제1항에 있어서, The method of claim 1,
    상기 고체산 촉매는 제올라이트(Zeolite), 벤토나이트(Bentonite), 카올리나이트(Kaolinite), 아타풀가이트(Attapulgite), 몬모릴로나이트(Montmorillonite), 산화아연(ZnO), 산화알루미늄(Al2O3), 산화티타늄(TiO2), 산화세슘(CeO2), 산화바나듐(V2O5), 산화규소(SiO2), 산화크롬(Cr2O3), 황산칼슘(CaSO4), 황산망간(MnSO4), 황산니켈(NiSO4), 황산구리(CuSO4), 황산코발트(CoSO4), 황산카드뮴(CdSO4), 황산마그네슘(MgSO4), 황산철(FeSO4 ), 황산알루미늄 (Al2(SO4)3), 질산칼슘(Ca(NO3)2), 질산아연(Zn(NO3)2), 질산철(Fe(NO3)3), 인산알루미늄(AlPO4), 인산철(FePO4), 인산크롬(CrPO4), 인산구리(Cu3(PO4)2), 인산아연(Zn3(PO4)2), 인산마그네슘(Mg3(PO4)2), 염화알루미늄(AlCl3), 염화티타늄(TiCl4), 염화칼슘(CaCl2), 불화칼슘(CaF2), 불화바륨(BaF2), 탄산칼슘(CaCO3), 탄산마그네슘(MgCO3) 및 양이온교환수지로 구성된 군에서 선택되는 것을 특징으로 하는 당화방법.The solid acid catalyst is zeolite, bentonite, kaolinite, kaolinite, attapulgite, montmorillonite, zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), titanium oxide ( TiO 2 ), cesium oxide (CeO 2 ), vanadium oxide (V 2 O 5 ), silicon oxide (SiO 2 ), chromium oxide (Cr 2 O 3 ), calcium sulfate (CaSO 4 ), manganese sulfate (MnSO 4 ), Nickel sulfate (NiSO 4 ), copper sulfate (CuSO 4 ), cobalt sulfate (CoSO 4 ), cadmium sulfate (CdSO 4 ), magnesium sulfate (MgSO 4 ), iron sulfate (FeSO 4 ) , aluminum sulfate (Al 2 (SO 4 ) 3 ), calcium nitrate (Ca (NO 3 ) 2 ), zinc nitrate (Zn (NO 3 ) 2 ), iron nitrate (Fe (NO 3 ) 3 ), aluminum phosphate (AlPO 4 ), iron phosphate (FePO 4 ), Chromium Phosphate (CrPO 4 ), Copper Phosphate (Cu 3 (PO 4 ) 2 ), Zinc Phosphate (Zn 3 (PO 4 ) 2 ), Magnesium Phosphate (Mg 3 (PO 4 ) 2 ), Aluminum Chloride (AlCl 3 ), Titanium chloride (TiCl 4 ), calcium chloride (CaCl 2 ), calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), calcium carbonate (CaCO 3 ), magnesium carbonate Saccharification method, characterized in that selected from the group consisting of calcium (MgCO 3 ) and cation exchange resin.
  7. 제1항에 있어서, The method of claim 1,
    상기 액체산 촉매는 질산, 염산, 황산, 인산, 브롬산, 과염소산 및 아세트산으로 구성된 군에서 선택되는 것을 특징으로 하는 당화방법.The liquid acid catalyst is a saccharification method, characterized in that selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, bromic acid, perchloric acid and acetic acid.
  8. 제1항에 있어서, The method of claim 1,
    상기 (a) 단계의 당화는 80 ~ 200℃의 온도에서 0.5 ~ 5시간 동안 수행되는 것을 특징으로 하는 당화방법.The saccharification step (a) is characterized in that the saccharification method is performed for 0.5 to 5 hours at a temperature of 80 ~ 200 ℃.
  9. 제1항에 있어서, The method of claim 1,
    상기 고체산 촉매 및 액체산 촉매의 첨가량은 바이오매스 100중량부에 대하여 각각 1 ~ 150 중량부 및 0.006 ~ 6.3 중량부인 것을 특징으로 하는 당화방법.The amount of the solid acid catalyst and the liquid acid catalyst added is 1 to 150 parts by weight and 0.006 to 6.3 parts by weight based on 100 parts by weight of the biomass, respectively.
  10. 제1항에 있어서, The method of claim 1,
    상기 당화액은 글루코오즈(glucose), 갈락토오즈(galactose), 람노오즈(rhmnose), 자일로오즈(xylose), 만노오즈(mannose), 퓨코오즈(fucose), 아라비노오즈(arabinose) 및 라이보오즈(ribose)로 구성된 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 당화액 제조방법.The saccharified solution is glucose, galactose, rhamnose, rhmnose, xylose, mannose, fucose, arabinose and arabinose. A saccharification solution production method comprising at least one selected from the group consisting of (ribose).
PCT/KR2016/002756 2015-03-18 2016-03-18 Biomass saccharification method using solid acid catalyst WO2016148535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0037194 2015-03-18
KR1020150037194A KR101730034B1 (en) 2015-03-18 2015-03-18 Method of Producing Biomass Hydrolysate by Using Solid Acid Catalyst

Publications (1)

Publication Number Publication Date
WO2016148535A1 true WO2016148535A1 (en) 2016-09-22

Family

ID=56919213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002756 WO2016148535A1 (en) 2015-03-18 2016-03-18 Biomass saccharification method using solid acid catalyst

Country Status (2)

Country Link
KR (1) KR101730034B1 (en)
WO (1) WO2016148535A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694575A (en) * 2017-09-15 2018-02-16 大唐南京环保科技有限责任公司 A kind of complex carrier SCR denitration and preparation method
CN108118103A (en) * 2017-12-20 2018-06-05 南京林业大学 The method that a kind of iron ion-acetic acid catalysis directionally hydrolyzing hemicellulose produces xylose
CN112844409A (en) * 2021-01-22 2021-05-28 江苏省农业科学院 Preparation method and application of biomass straw-based magnetic solid acid catalyst
CN115337940A (en) * 2021-05-14 2022-11-15 江苏理工学院 Preparation method and application of catalyst for synthesizing triisobutyl citrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101917778B1 (en) 2018-03-30 2018-11-13 전남대학교산학협력단 pine-leaf biochar catalyst, Montmorillonite-pine-leaf biochar catalyst and upgrading method of crude oil derived from lignin using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090004088A (en) * 2007-07-06 2009-01-12 한국과학기술연구원 Method for hydrolyzing cellulose using a solid acid-catalyst
KR20100093253A (en) * 2009-02-16 2010-08-25 삼성전자주식회사 Method for pretreating and saccharifying marine algae biomass
US20140220651A1 (en) * 2009-07-01 2014-08-07 Wisconsin Alumni Research Foundation Biomass hydrolysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090004088A (en) * 2007-07-06 2009-01-12 한국과학기술연구원 Method for hydrolyzing cellulose using a solid acid-catalyst
KR20100093253A (en) * 2009-02-16 2010-08-25 삼성전자주식회사 Method for pretreating and saccharifying marine algae biomass
US20140220651A1 (en) * 2009-07-01 2014-08-07 Wisconsin Alumni Research Foundation Biomass hydrolysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO, FENG ET AL.: "Solid Acid Mediated Hydrolysis of Biomass for Producing Biofuels", PROGRESS IN ENERGY AND COMBUSTION SCIENCE, vol. 38, no. 5, 2012, pages 672 - 690, XP028415257 *
HUANG, YAO - BING ET AL.: "Hydrolysis of Cellulose to Glucose by Solid Acid Catalysts", GREEN CHEMISTRY, vol. 15, no. 5, 2013, pages 1095 - 1111, XP055311349 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694575A (en) * 2017-09-15 2018-02-16 大唐南京环保科技有限责任公司 A kind of complex carrier SCR denitration and preparation method
CN108118103A (en) * 2017-12-20 2018-06-05 南京林业大学 The method that a kind of iron ion-acetic acid catalysis directionally hydrolyzing hemicellulose produces xylose
CN112844409A (en) * 2021-01-22 2021-05-28 江苏省农业科学院 Preparation method and application of biomass straw-based magnetic solid acid catalyst
CN112844409B (en) * 2021-01-22 2023-06-23 江苏省农业科学院 Preparation method and application of biomass straw-based magnetic solid acid catalyst
CN115337940A (en) * 2021-05-14 2022-11-15 江苏理工学院 Preparation method and application of catalyst for synthesizing triisobutyl citrate
CN115337940B (en) * 2021-05-14 2023-12-15 江苏理工学院 Preparation method and application of catalyst for synthesizing triisobutyl citrate

Also Published As

Publication number Publication date
KR101730034B1 (en) 2017-04-26
KR20160112109A (en) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2016148535A1 (en) Biomass saccharification method using solid acid catalyst
Qing et al. Comparison of alkaline and acid pretreatments for enzymatic hydrolysis of soybean hull and soybean straw to produce fermentable sugars
Moniz et al. Hydrothermal production and gel filtration purification of xylo-oligosaccharides from rice straw
Dominguez et al. Dilute acid hemicellulose hydrolysates from corn cobs for xylitol production by yeast
CA2065548C (en) Two-stage dilute acid prehydrolysis of biomass
WO2008095252A1 (en) Fractionation of a lignocellulosic material
UA34477C2 (en) Process of sugars production of cellulose- and hemicellulose-containing materials, process for separation of acid and sugars from liquids produced by this technology, process of fermentation sugars produced by this technology and process of processing solids produced by this technology
EP2118294A1 (en) Method of producing xylitol using hydrolysate containing xylose and arabinose prepared from byproduct of tropical fruit biomass
CN102690899A (en) Method for hydrolyzing lignocellulose raw material by concentrated phosphoric acid and recovering phosphoric acid
BR102014004553A2 (en) process of producing alcohols and / or solvents from lignocellulosic biomass by washing the solid residue obtained after hydrolysis
US10106862B2 (en) Mixed super critical fluid hydrolysis and alcoholysis of cellulosic materials to form alkyl glycosides and alkyl pentosides
US4350766A (en) Pentose syrup production from hemicellulose
US20180273695A1 (en) Processes for producing lignin-based enzymatic hydrolysis enhancers, and compositions produced therefrom
CN1904059A (en) Production method of konjak mannose using cellulase
US20130210089A1 (en) Process for the production of sugars from lignocellulosic biomass pre-treated with a mixture of hydrated inorganic salts and metallic salts
US20140352688A1 (en) Process for pretreatment of lignocellulosic biomass with a hydrated inorganic salt comprising a preliminary acid hydrolysis stage
FR2999604A1 (en) PROCESS FOR THE PRODUCTION OF SUGAR SOLUTIONS AND ALCOHOLS FROM LIGNOCELLULOSIC BIOMASS WITH COMPLEMENTARY TREATMENT OF THE SOLID RESIDUE BY A HYDRATED INORGANIC SALT
BR112015020808B1 (en) ALCOHOL AND/OR SOLVENT PRODUCTION PROCESS FROM A BIOMASS LOAD
KR101543067B1 (en) Biological pretreatment mehtods for sea algae using mixed microorganism
JP5203438B2 (en) Method for producing adsorbent and method for producing alcohol or organic acid
FR2999605A1 (en) PROCESS FOR PRODUCING SUGAR SOLUTIONS FROM LIGNOCELLULOSIC BIOMASS WITH COMPLEMENTARY TREATMENT OF THE SOLID RESIDUE BY A HYDRATED INORGANIC SALT
FI65801C (en) PROTECTION OF CELLULOSE WITHOUT CELLULOSE
Tan et al. Co-production of pigment and high value-added bacterial nanocellulose from Suaeda salsa biomass with improved efficiency of enzymatic saccharification and fermentation
KR101938200B1 (en) Novel Method for Recovery of Xylose from Byproducts Generated in Biomass-Pretreatment Processes and Use Thereof
Hanchar et al. Separation of glucose and pentose sugars by selective enzyme hydrolysis of AFEX-treated corn fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765291

Country of ref document: EP

Kind code of ref document: A1