WO2016148200A1 - METHOD FOR PRODUCING ε-CAPROLACTAM - Google Patents
METHOD FOR PRODUCING ε-CAPROLACTAM Download PDFInfo
- Publication number
- WO2016148200A1 WO2016148200A1 PCT/JP2016/058354 JP2016058354W WO2016148200A1 WO 2016148200 A1 WO2016148200 A1 WO 2016148200A1 JP 2016058354 W JP2016058354 W JP 2016058354W WO 2016148200 A1 WO2016148200 A1 WO 2016148200A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cyclohexanone oxime
- mass
- cyclohexylamine
- cyclohexanone
- caprolactam
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D201/00—Preparation, separation, purification or stabilisation of unsubstituted lactams
- C07D201/02—Preparation of lactams
- C07D201/04—Preparation of lactams from or via oximes by Beckmann rearrangement
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D201/00—Preparation, separation, purification or stabilisation of unsubstituted lactams
- C07D201/16—Separation or purification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D223/00—Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
- C07D223/02—Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
- C07D223/06—Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D223/08—Oxygen atoms
- C07D223/10—Oxygen atoms attached in position 2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a method for producing ⁇ -caprolactam from cyclohexanone oxime by a gas phase Beckmann rearrangement reaction using a solid catalyst.
- ⁇ -Caprolactam is an important basic chemical raw material used as a raw material for nylon and the like.
- a method for producing this ⁇ -caprolactam a method having a step of performing a gas phase Beckmann rearrangement reaction of cyclohexanone oxime using a solid catalyst is known.
- a method in which a lower alcohol is allowed to coexist in the reaction system in this rearrangement reaction is also disclosed (Patent Document 1). According to this method, the reaction rate of cyclohexanone oxime is substantially 100%.
- ⁇ -caprolactam can be obtained with extremely high selectivity, and the life of the catalyst can be remarkably improved.
- the cyclohexanone oxime used in the method for producing ⁇ -caprolactam is often industrially produced from cyclohexanone as a raw material, but cyclohexanone oxime can be produced by other methods, for example, using cyclohexylamine as a raw material. Can be manufactured.
- a method for producing cyclohexanone oxime using cyclohexylamine as a raw material methods using hydrogen peroxide or molecular oxygen as an oxidizing agent are disclosed (Patent Documents 2 to 4).
- cyclohexanone oxime can be produced at a lower cost compared to a method using cyclohexanone as a raw material, it is expected that ⁇ -caprolactam can also be produced at a lower cost.
- the present invention provides a method for producing ⁇ -caprolactam with high reaction rate and high selectivity by vapor phase Beckmann rearrangement reaction even when cyclohexanone oxime produced using cyclohexylamine as a raw material is used. Let it be an issue.
- a method for producing ⁇ -caprolactam comprising: Step (A) for producing cyclohexanone oxime by oxidizing cyclohexylamine, and Step (B) for producing ⁇ -caprolactam from cyclohexanone oxime by gas phase Beckmann rearrangement reaction using a solid catalyst in the presence of a lower alcohol.
- the amount of cyclohexylamine contained in the cyclohexanone oxime in the step (B) is represented by the following formula (1): (1) 0 ⁇ ⁇ [mass of cyclohexylamine / mass of cyclohexanone oxime] ⁇ 100 ⁇ ⁇ 5.0 Meet the way.
- the amount of cyclohexanone contained in the cyclohexanone oxime in the step (B) is represented by the following formula (2): (2) 0 ⁇ ⁇ [mass of cyclohexanone / mass of cyclohexanone oxime] ⁇ 100 ⁇ ⁇ 5.0
- the amount of nitrocyclohexane contained in the cyclohexanone oxime in the step (B) is represented by the following formula (3): (3) 0 ⁇ ⁇ [mass of nitrocyclohexane / mass of cyclohexanone oxime] ⁇ 100 ⁇ ⁇ 15
- the method according to [1] or [2], wherein [4] The method according to any one of [1] to [3], further comprising a step (C) of recovering cyclohexylamine by hydrolyzing cyclohexylidenecyclohexylamine contained in the reaction solution obtained by the gas phase reaction
- the present invention is a process for producing ⁇ -caprolactam comprising Step (A) for producing cyclohexanone oxime by oxidizing cyclohexylamine, and Step (B) for producing ⁇ -caprolactam from cyclohexanone oxime by gas phase Beckmann rearrangement reaction using a solid catalyst in the presence of a lower alcohol.
- gas phase reaction means “gas phase Beckmann rearrangement reaction” unless otherwise specified.
- the amount of cyclohexylamine contained in the cyclohexanone oxime in the step (B) is represented by the following formula (1): (1) 0 ⁇ ⁇ [mass of cyclohexylamine / mass of cyclohexanone oxime] ⁇ 100 ⁇ ⁇ 5.0 Meet. That is, the amount of cyclohexylamine contained in the cyclohexanone oxime subjected to the gas phase Beckmann rearrangement reaction in the step (B) satisfies the above formula (1).
- the value of the above formula ⁇ [mass of cyclohexylamine / mass of cyclohexanone oxime] ⁇ 100 ⁇ is preferably 5.0 or less, more preferably 3.0 or less, still more preferably 2.0 or less, and particularly preferably 1.0 or less. Preferably, 0.5 or less is very preferable. In the manufacturing method of this invention as it is below the said upper limit, a high reaction rate and selectivity can be obtained.
- the value of the above formula ⁇ [mass of cyclohexylamine / mass of cyclohexanone oxime] ⁇ 100 ⁇ is usually 0 or more, for example, 0.01 or more.
- the reaction rate means the ratio of reacted cyclohexanone oxime to cyclohexanone oxime based on the amount of substance
- the selectivity means the ratio of ⁇ -caprolactam to reacted cyclohexanone oxime based on the amount of substance.
- cyclohexanone oxime is obtained by oxidizing cyclohexylamine using molecular oxygen or the like, unreacted cyclohexylamine can be contained in cyclohexanone oxime.
- the amount of cyclohexanone contained in the cyclohexanone oxime is represented by the following formula (2): (2) 0 ⁇ ⁇ [mass of cyclohexanone / mass of cyclohexanone oxime] ⁇ 100 ⁇ ⁇ 5.0 It is preferable to satisfy. That is, it is preferable that the amount of cyclohexanone contained in the cyclohexanone oxime subjected to the gas phase Beckmann rearrangement reaction in the step (B) satisfies the above formula (2).
- the value of the above formula ⁇ [mass of cyclohexanone / mass of cyclohexanone oxime] ⁇ 100 ⁇ is preferably 5.0 or less, more preferably 3.0 or less, further preferably 1.0 or less, and very preferably 0.5 or less. preferable. In the manufacturing method of this invention as it is below the said upper limit, a higher reaction rate and selectivity can be obtained.
- the value of the above formula ⁇ [mass of cyclohexanone / mass of cyclohexanone oxime] ⁇ 100 ⁇ is usually 0 or more, for example, 0.01 or more.
- Water is generated as a byproduct when cyclohexanone oxime is synthesized by oxidizing cyclohexylamine.
- the cyclohexanone can be by-produced by the reaction of this water and cyclohexanone oxime.
- the amount of nitrocyclohexane contained in the cyclohexanone oxime is represented by the following formula (3): (3) 0 ⁇ ⁇ [mass of nitrocyclohexane / mass of cyclohexanone oxime] ⁇ 100 ⁇ ⁇ 15 It is more preferable to satisfy. That is, it is preferable that the amount of nitrocyclohexane contained in the cyclohexanone oxime subjected to the gas phase Beckmann rearrangement reaction in the step (B) satisfies the above formula (3).
- the value of the above formula ⁇ [mass of nitrocyclohexane / mass of cyclohexanone oxime] ⁇ 100 ⁇ is preferably 15 or less, more preferably 10 or less, further preferably 5 or less, and very preferably 2.5 or less. In the manufacturing method of this invention as it is below the said upper limit, a higher reaction rate and selectivity can be obtained.
- the value of the formula ⁇ [mass of nitrocyclohexane / mass of cyclohexanone oxime] ⁇ 100 ⁇ is usually 0 or more, for example, 0.1 or more.
- the nitrocyclohexane can be produced as a by-product when the amine site of cyclohexylamine is oxidized.
- the cyclohexanone oxime is obtained by oxidizing cyclohexylamine.
- the oxidizing agent used when oxidizing cyclohexylamine is not particularly limited, and examples thereof include organic peroxides, hydrogen peroxide, and molecular oxygen.
- One embodiment of the present invention further includes a step (C) of hydrolyzing cyclohexylidenecyclohexylamine contained in the reaction solution obtained by the gas phase reaction to recover cyclohexylamine.
- Step (C) is a step of hydrolyzing cyclohexylidenecyclohexylamine contained in the reaction solution obtained by the gas phase reaction to produce cyclohexylamine and recovering the cyclohexylamine.
- the cyclohexylamine recovered in this step can be recycled and used again as a raw material in the production of cyclohexanone oxime.
- the cyclohexylidenecyclohexylamine can be produced by a reaction between cyclohexanone that can be by-produced when synthesizing cyclohexanone oxime by oxidation of cyclohexylamine as a raw material and cyclohexylamine as a raw material.
- the hydrolysis is usually performed by separating a liquid containing cyclohexylidenecyclohexylamine from a reaction liquid obtained by a gas phase reaction by distillation or the like and hydrolyzing it in the presence of water.
- the molar ratio of cyclohexylidenecyclohexyl to water is usually 1: 0.1 to 1: 100, preferably 1: 1 to 1:20.
- the reaction temperature for the hydrolysis is usually 0 to 200 ° C, preferably 25 to 150 ° C.
- the method for recovering cyclohexylamine from the hydrolyzed mixture includes various methods such as distillation and membrane separation, preferably distillation, and steam distillation is particularly preferable.
- Cyclohexylamine, cyclohexanone and nitrocyclohexane contained in cyclohexanone oxime can be separated by a usual method.
- cyclohexanone oxime in which the amounts of impurities cyclohexylamine, cyclohexanone, and nitrocyclohexane are controlled to satisfy the above formulas (1) to (3) can be obtained by extraction, distillation, crystallization, or the like.
- Cyclohexylamine, cyclohexanone, and nitrocyclohexane can suppress the mixing amount in cyclohexanone oxime to 5 mass% or less, 2 mass% or less, and 1 mass% or less, respectively, by distillation. Furthermore, by performing crystallization after the distillation, cyclohexylamine, cyclohexanone, and nitrocyclohexane can be suppressed to an amount below the lower limit of detection in gas chromatography analysis.
- the solvent used in the crystallization include aliphatic straight chain hydrocarbons having 6 to 12 carbon atoms, aliphatic hydrocarbons having side chains, alicyclic hydrocarbons, alcohols, and water.
- aliphatic linear hydrocarbons such as hexane, heptane, octane, nonane and decane, aliphatic hydrocarbons having side chains such as methylhexane, isooctane and neohexane, methylcyclopentane, cyclohexane and methylcyclohexane.
- alicyclic hydrocarbons such as methanol, ethanol, alcohol such as n-propanol and n-butanol, and water. These may be used alone or in admixture of two or more.
- the amount of the solvent used for crystallization can be about 0.1 to about 5 times by mass, preferably about 0.3 to about 4 times by mass with respect to the amount of cyclohexanone oxime.
- Specific methods for crystallization include, for example, a method in which crude cyclohexanone oxime is dissolved in the above solvent and cooled to precipitate crystals of cyclohexanone oxime, and the solvent is evaporated under reduced pressure and cooled with the latent heat of vaporization to produce crystals. And a method of precipitating cyclohexanone oxime crystals by mixing a crude cyclohexanone oxime in a molten state or a mixture of the above solvent and crude cyclohexanone oxime and a cooled solvent. By this crystallization operation, most of the impurities contained in the crude cyclohexanone oxime are discharged into the solvent.
- the crystal is separated from the solvent by means such as filtration or sedimentation, and the obtained crystal is washed with the above-described solvent or the like as necessary.
- the washing may be a method of suspending in the above-mentioned solvent, stirring, then separating the solvent from the crystal by means of filtration, sedimentation, or the like, or a method of filtering while directly spraying the solvent on the crystal.
- the crystallization temperature may be about 0 ° C. or higher and less than the melting point of cyclohexanone oxime.
- the solid catalyst is not particularly limited as long as it can convert cyclohexanone oxime into ⁇ -caprolactam by a Beckmann rearrangement reaction in a gas phase.
- the solid catalyst include zeolite, boric acid catalyst, silica / alumina catalyst, solid phosphoric acid catalyst, and composite metal oxide.
- zeolite is preferable, pentasil-type zeolite is more preferable, and MFI zeolite is more preferable.
- the zeolite may be crystalline silica whose skeleton is substantially composed of silicon and oxygen, or a crystalline metallo that further contains elements other than silicon and oxygen, such as metal elements, as elements constituting the skeleton. It may be a silicate or the like. Examples of elements other than silicon and oxygen in the crystalline metallosilicate include Be, B, Al, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Sb, La, Hf, Bi, etc. are mentioned, These 2 or more types may be contained. The atomic ratio of silicon to these elements is preferably 50 or more, more preferably 500 or more.
- the zeolite is hydrothermally synthesized using, for example, a silicon compound, a quaternary ammonium compound, water and, if necessary, a metal compound, and the obtained crystal is dried and calcined, and then contacted with ammonia or an ammonium salt. And then dried.
- the particle size of the solid catalyst is preferably 0.0001 to 5 mm, more preferably 0.001 to 3 mm, from the viewpoint of catalytic activity.
- the solid catalyst may be, for example, a molded body substantially consisting of only the catalyst component, or may be one in which the catalyst component is supported on a carrier.
- the lower alcohol is usually an alcohol having 6 or less carbon atoms, preferably an alcohol having 5 or less carbon atoms.
- the lower alcohol may be linear or branched, and may have a halogen group such as fluorine, chlorine, or bromine as a substituent.
- Examples of the lower alcohol include methanol, ethanol, 1-propanol (n-propyl alcohol), 2-propanol (isopropyl alcohol), 1-butanol (n-butyl alcohol), 2-butanol (sec-butyl alcohol), 2 -Methyl-1-propanol (isobutyl alcohol), 1-pentanol (n-pentyl alcohol), 1-hexanol (n-hexyl alcohol) and 2,2,2-trifluoroethanol.
- methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol are preferable from the viewpoint of particularly excellent improvement in selectivity of ⁇ -caprolactam and catalyst life, and methanol and ethanol are more preferable from an industrial viewpoint.
- the lower alcohols may be used alone or in combination of two or more. When two or more types are used in combination, the combination and ratio can be arbitrarily selected. However, considering the handleability and the like, it is preferable to use the lower alcohol alone.
- a molecular oxygen-containing gas may coexist in the reaction system. It is economical and preferable to use air as the molecular oxygen-containing gas.
- the molecular oxygen concentration in the molecular oxygen-containing gas is preferably outside the explosion composition range.
- the amount of molecular oxygen in the reaction system during the gas phase reaction is preferably 0.1 to 10 mol, preferably 0.3 to 5 mol, per 1 mol of cyclohexanone oxime as a raw material. More preferred.
- the gas phase reaction can be performed by a gas phase contact reaction of a normal fixed bed method, a fluidized bed method, or a moving bed method.
- Cyclohexanone oxime reacts by contacting the solid catalyst layer in the gaseous state, but the lower alcohol may be premixed with cyclohexanone oxime in the gaseous state, or the cyclohexanone oxime may be supplied separately to the reactor. May be.
- cyclohexanone oxime and lower alcohol do not necessarily have to be mixed in advance, and these may be separately supplied to the reactor. Alcohol may be divided and supplied. In addition, when performing a fluidized bed type gas phase catalytic reaction, lower alcohol may be supplied upstream of cyclohexanone oxime.
- the molecular oxygen-containing gas can be supplied by mixing with a lower alcohol and cyclohexanone oxime, or mixed with a lower alcohol, and more reactive than cyclohexanone oxime. It may be supplied upstream.
- the lower alcohol added to the gas phase reaction system can be separated and recovered from the reaction product and reused.
- the gas phase reaction may be performed in the presence of a vapor of a compound inert to the reaction, such as benzene, cyclohexane, or toluene, as a diluent gas, or an inert gas such as nitrogen or carbon dioxide. You may go.
- a compound inert to the reaction such as benzene, cyclohexane, or toluene, as a diluent gas, or an inert gas such as nitrogen or carbon dioxide.
- the gas phase reaction is preferably performed under atmospheric pressure or under reduced pressure below atmospheric pressure.
- the reaction temperature during the gas phase reaction is preferably 250 to 500 ° C, more preferably 300 to 450 ° C, and even more preferably 300 to 400 ° C.
- the reaction temperature is at least the above lower limit, the reaction rate is improved, and the selectivity for ⁇ -caprolactam is further improved.
- the reaction temperature is not more than the above upper limit value, the thermal decomposition of cyclohexanone oxime is suppressed, and the selectivity of ⁇ -caprolactam is further improved.
- the space velocity (WHSV) of cyclohexanone oxime during the gas phase reaction is 0.1 to 40 h ⁇ 1 (that is, the supply rate of cyclohexanone oxime per 1 g of the solid catalyst is 0.1 to 40 g / h). Preferably, it is 0.2 to 20 h ⁇ 1 , more preferably 0.5 to 10 h ⁇ 1 .
- ⁇ -Caprolactam produced by the gas phase reaction can be separated from the reaction mixture by a known method.
- the reaction product gas is cooled and condensed, and then separated by extraction, distillation, crystallization, or the like, whereby purified ⁇ -caprolactam is obtained.
- the solid catalyst can be removed by burning (calcining) the carbonaceous material adhering in the gas phase reaction with a molecular oxygen-containing gas at a temperature of 200 to 600 ° C., and is easily activated to the original performance. Can be reused repeatedly.
- the carbonaceous material may be removed in the presence of alcohol in the molecular oxygen-containing gas.
- the combustion treatment with the molecular oxygen-containing gas may be carried out at 200 to 600 ° C. under a constant temperature condition or under a condition where the temperature is raised in multiple stages.
- air is usually suitable, but air or oxygen may be diluted with an inert gas such as nitrogen, argon or carbon dioxide.
- the oxygen concentration in the molecular oxygen-containing gas is preferably 1 to 30% by volume, more preferably 5 to 25% by volume.
- the space velocity WHSV (h ⁇ 1 ) was calculated by dividing the supply rate (g / h) of cyclohexanone oxime by the mass (g) of the solid catalyst.
- cyclohexanone oxime and ⁇ -caprolactam were analyzed by gas chromatography, and the reaction rate, selectivity and yield of cyclohexanone oxime were calculated by the following formulas.
- the amount of cyclohexanone oxime supplied was X mol
- the amount of unreacted cyclohexanone oxime was Y mol
- the amount of ⁇ -caprolactam produced was Z mol.
- Reaction rate of cyclohexanone oxime (%) [(XY) / X] ⁇ 100
- Selectivity of ⁇ -caprolactam (%) [Z / (XY)] ⁇ 100
- Yield (%) [(reaction rate of cyclohexanone oxime) ⁇ (selectivity of ⁇ -caprolactam)] / 100
- the obtained mixture was subjected to pressure filtration to separate a solid, and 17 kg of pure water was added to the solid, followed by washing and filtration by pressure filtration. After washing filtration, 14 kg of pure water was further added, and washing filtration was performed by pressure filtration. The obtained solid was dried at 110 ° C. overnight to prepare catalyst A (montmorillonite containing titanium ions between layers).
- reaction solution A was analyzed by gas chromatography, and the contents of cyclohexylamine, cyclohexanone, cyclohexanone oxime, and nitrocyclohexane contained in the reaction solution A were determined from the obtained analysis values.
- the content of cyclohexylamine was 18.
- the conversion of cyclohexylamine was 31.3%, and the selectivity for cyclohexanone oxime was 77.1%.
- fraction A The content of was 36.8% by mass, and the content of nitrocyclohexane was 0.45% by mass.
- 2000 g of fraction A was placed in a 5 liter SUS tank equipped with a jacket and a stirring blade and distilled under reduced pressure at 10 Torr and 130 ° C. to obtain 949 g as fraction B.
- the contents of cyclohexylamine, cyclohexanone, cyclohexanone oxime and nitrocyclohexane contained in fraction B were determined, the content of cyclohexylamine was 22.4% by mass, the content of cyclohexanone was 0.30% by mass, and cyclohexanone oxime.
- the contents of cyclohexylamine, cyclohexanone, cyclohexanone oxime, and nitrocyclohexane contained in fraction C were determined.
- the content of cyclohexylamine was 4.16% by mass
- the content of cyclohexanone was 0.94% by mass
- cyclohexanone oxime The content of was 84.6% by mass
- the content of nitrocyclohexane was 0.26% by mass.
- 600 g of fraction C and 290 g of n-heptane solvent were added. After heating up to 70 degreeC and dissolving cyclohexanone oxime, the obtained solution was cooled to 4 degreeC, stirring.
- the precipitated cyclohexanone oxime crystals were collected by filtration.
- 290 g of an n-heptane solvent was added, and the mixture was cooled and stirred until it reached 0.1 ° C. and filtered.
- 290 g of n-heptane solvent was added to the crystals, and the mixture was cooled to 0.6 ° C., stirred and filtered.
- 370 g of a methanol / water mixed solvent having a mass ratio of 1 / 1.44 was added, and the mixture was cooled and stirred until it reached 0.1 ° C., followed by filtration.
- Example 2 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 0.1 instead of 0.
- Example 3 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 0.5 instead of 0.
- Example 4 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 1.0 instead of 0.
- Example 5 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 2.0 instead of 0.
- Example 6 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 5.0 instead of 0.
- Example 7 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the value of formula (b) was changed to 1.0 instead of 0.
- Example 8 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the value of formula (b) was changed to 5.0 instead of 0.
- Example 9 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the value of formula (b) was changed to 10.0 instead of 0.
- Example 10 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the value of the formula (c) was 2.0 instead of 0.
- Example 11 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the value of formula (c) was changed to 10.0 instead of 0.
- Example 12 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the value of formula (c) was changed to 20.0 instead of 0.
- Example 13 As shown in Table 1, the value of formula (a) is changed to 5.0 instead of 0, the value of formula (b) is changed to 5.0 instead of 0, and the value of formula (c) is changed to 0. Except for 15.0, ⁇ -caprolactam was prepared in the same manner as in Example 1.
- the reaction rate and selectivity in the rearrangement reaction can be maintained at a very high level.
- the cost can be reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Other In-Based Heterocyclic Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
A method for producing ε-caprolactam wherein the method includes a step (A) for producing cyclohexanone oxime by oxidizing cyclohexylamine and a step (B) for producing ε-caprolactam from the cyclohexanone oxime by a vapor-phase Beckmann rearrangement reaction using a solid catalyst in the presence of a lower alcohol, and the amount of cyclohexylamine contained in the cyclohexanone oxime in step (B) satisfies formula (1): (1) 0 ≤ {[mass of cyclohexylamine/mass of cyclohexanone oxime] ×100} ≤ 5.0.
Description
本発明は、固体触媒を用いた気相ベックマン転位反応により、シクロヘキサノンオキシムからε-カプロラクタムを製造する方法に関する。
The present invention relates to a method for producing ε-caprolactam from cyclohexanone oxime by a gas phase Beckmann rearrangement reaction using a solid catalyst.
ε-カプロラクタムは、ナイロン等の原料となる重要な基幹化学原料である。このε-カプロラクタムの製造方法としては、固体触媒を用いたシクロヘキサノンオキシムの気相ベックマン転位反応を行う工程を有する方法が知られている。また、この転位反応において、反応系内に低級アルコールを共存させる方法も開示されており(特許文献1)、この方法によれば、シクロヘキサノンオキシムの反応率が実質的に100%付近の条件においても、極めて高い選択率でε-カプロラクタムが得られ、且つ触媒の寿命も著しく向上させることができる。
Ε-Caprolactam is an important basic chemical raw material used as a raw material for nylon and the like. As a method for producing this ε-caprolactam, a method having a step of performing a gas phase Beckmann rearrangement reaction of cyclohexanone oxime using a solid catalyst is known. In addition, a method in which a lower alcohol is allowed to coexist in the reaction system in this rearrangement reaction is also disclosed (Patent Document 1). According to this method, the reaction rate of cyclohexanone oxime is substantially 100%. Ε-caprolactam can be obtained with extremely high selectivity, and the life of the catalyst can be remarkably improved.
そして、ε-カプロラクタムの製造方法において用いられるシクロヘキサノンオキシムは、工業的にはシクロヘキサノンを原料として製造されることが多いが、シクロヘキサノンオキシムは他の方法によっても製造でき、例えば、原料としてシクロヘキシルアミンを用いて製造することができる。原料としてシクロヘキシルアミンを用いてシクロヘキサノンオキシムを製造する方法としては、過酸化水素や分子状酸素を酸化剤として用いる方法が開示されている(特許文献2~4)。これらの方法によれば、シクロヘキサノンを原料とする方法と比較して、安価にシクロヘキサノンオキシムを製造することができるため、ε-カプロラクタムもより安価に製造できることが期待される。
The cyclohexanone oxime used in the method for producing ε-caprolactam is often industrially produced from cyclohexanone as a raw material, but cyclohexanone oxime can be produced by other methods, for example, using cyclohexylamine as a raw material. Can be manufactured. As a method for producing cyclohexanone oxime using cyclohexylamine as a raw material, methods using hydrogen peroxide or molecular oxygen as an oxidizing agent are disclosed (Patent Documents 2 to 4). According to these methods, since cyclohexanone oxime can be produced at a lower cost compared to a method using cyclohexanone as a raw material, it is expected that ε-caprolactam can also be produced at a lower cost.
しかしながら、本発明者の検討により、原料としてシクロヘキシルアミンを用いて製造されたシクロヘキサノンオキシムを、気相反応によりベックマン転位させることによってε-カプロラクタムを製造しようとすると、高い反応率及び選択率が得られず、その結果、安価にε-カプロラクタムを製造することが難しいことが見出された。
However, according to the study of the present inventors, when ε-caprolactam is produced by subjecting cyclohexanone oxime produced using cyclohexylamine as a raw material to Beckmann rearrangement by a gas phase reaction, high reaction rate and selectivity are obtained. As a result, it has been found that it is difficult to produce ε-caprolactam at low cost.
そこで、本発明は、原料としてシクロヘキシルアミンを用いて製造されたシクロヘキサノンオキシムを用いた場合でも、気相ベックマン転位反応によって高反応率かつ高選択率でε-カプロラクタムを製造する方法を提供することを課題とする。
Therefore, the present invention provides a method for producing ε-caprolactam with high reaction rate and high selectivity by vapor phase Beckmann rearrangement reaction even when cyclohexanone oxime produced using cyclohexylamine as a raw material is used. Let it be an issue.
本発明者らは、前記課題を解決すべく鋭意検討を行った結果、シクロヘキサノンオキシムの気相ベックマン転位反応において、シクロヘキサノンオキシムに特定の不純物が特定量の範囲で含まれる場合、すなわち、シクロヘキサノンオキシムにシクロヘキシルアミンが特定量の範囲で含まれる場合に、シクロヘキサノンオキシムの転位反応が阻害されることを見出し、本発明を完成するに至った。
As a result of diligent studies to solve the above problems, the present inventors have determined that in the gas phase Beckmann rearrangement reaction of cyclohexanone oxime, when cyclohexanone oxime contains a specific impurity in a specific amount range, that is, in cyclohexanone oxime. It has been found that the rearrangement reaction of cyclohexanone oxime is inhibited when cyclohexylamine is contained in a specific amount range, and the present invention has been completed.
すなわち、本発明には以下の好適な実施態様が含まれる。
〔1〕ε-カプロラクタムを製造する方法であって、該方法は、
シクロヘキシルアミンを酸化することによってシクロヘキサノンオキシムを製造する工程(A)、及び
低級アルコールの存在下、固体触媒を用いた気相ベックマン転位反応によって、前記シクロヘキサノンオキシムからε-カプロラクタムを製造する工程(B)
を含み、
前記工程(B)において前記シクロヘキサノンオキシム中に含まれるシクロヘキシルアミンの量は、下記式(1):
(1)0≦{[シクロヘキシルアミンの質量/シクロヘキサノンオキシムの質量]×100}≦5.0
を満たす、方法。
〔2〕前記工程(B)において前記シクロヘキサノンオキシム中に含まれるシクロヘキサノンの量は、下記式(2):
(2)0≦{[シクロヘキサノンの質量/シクロヘキサノンオキシムの質量]×100}≦5.0
を満たす、〔1〕に記載の方法。
〔3〕前記工程(B)において前記シクロヘキサノンオキシム中に含まれるニトロシクロヘキサンの量は、下記式(3):
(3)0≦{[ニトロシクロヘキサンの質量/シクロヘキサノンオキシムの質量]×100}≦15
を満たす、〔1〕又は〔2〕に記載の方法。
〔4〕前記気相反応によって得られる反応液に含まれるシクロヘキシリデンシクロヘキシルアミンを加水分解してシクロヘキシルアミンを回収する工程(C)をさらに含む、〔1〕~〔3〕のいずれかに記載の方法。
〔5〕前記固体触媒はゼオライトである、〔1〕~〔4〕のいずれかに記載の方法。 That is, the present invention includes the following preferred embodiments.
[1] A method for producing ε-caprolactam, the method comprising:
Step (A) for producing cyclohexanone oxime by oxidizing cyclohexylamine, and Step (B) for producing ε-caprolactam from cyclohexanone oxime by gas phase Beckmann rearrangement reaction using a solid catalyst in the presence of a lower alcohol.
Including
The amount of cyclohexylamine contained in the cyclohexanone oxime in the step (B) is represented by the following formula (1):
(1) 0 ≦ {[mass of cyclohexylamine / mass of cyclohexanone oxime] × 100} ≦ 5.0
Meet the way.
[2] The amount of cyclohexanone contained in the cyclohexanone oxime in the step (B) is represented by the following formula (2):
(2) 0 ≦ {[mass of cyclohexanone / mass of cyclohexanone oxime] × 100} ≦ 5.0
The method according to [1], wherein
[3] The amount of nitrocyclohexane contained in the cyclohexanone oxime in the step (B) is represented by the following formula (3):
(3) 0 ≦ {[mass of nitrocyclohexane / mass of cyclohexanone oxime] × 100} ≦ 15
The method according to [1] or [2], wherein
[4] The method according to any one of [1] to [3], further comprising a step (C) of recovering cyclohexylamine by hydrolyzing cyclohexylidenecyclohexylamine contained in the reaction solution obtained by the gas phase reaction. the method of.
[5] The method according to any one of [1] to [4], wherein the solid catalyst is zeolite.
〔1〕ε-カプロラクタムを製造する方法であって、該方法は、
シクロヘキシルアミンを酸化することによってシクロヘキサノンオキシムを製造する工程(A)、及び
低級アルコールの存在下、固体触媒を用いた気相ベックマン転位反応によって、前記シクロヘキサノンオキシムからε-カプロラクタムを製造する工程(B)
を含み、
前記工程(B)において前記シクロヘキサノンオキシム中に含まれるシクロヘキシルアミンの量は、下記式(1):
(1)0≦{[シクロヘキシルアミンの質量/シクロヘキサノンオキシムの質量]×100}≦5.0
を満たす、方法。
〔2〕前記工程(B)において前記シクロヘキサノンオキシム中に含まれるシクロヘキサノンの量は、下記式(2):
(2)0≦{[シクロヘキサノンの質量/シクロヘキサノンオキシムの質量]×100}≦5.0
を満たす、〔1〕に記載の方法。
〔3〕前記工程(B)において前記シクロヘキサノンオキシム中に含まれるニトロシクロヘキサンの量は、下記式(3):
(3)0≦{[ニトロシクロヘキサンの質量/シクロヘキサノンオキシムの質量]×100}≦15
を満たす、〔1〕又は〔2〕に記載の方法。
〔4〕前記気相反応によって得られる反応液に含まれるシクロヘキシリデンシクロヘキシルアミンを加水分解してシクロヘキシルアミンを回収する工程(C)をさらに含む、〔1〕~〔3〕のいずれかに記載の方法。
〔5〕前記固体触媒はゼオライトである、〔1〕~〔4〕のいずれかに記載の方法。 That is, the present invention includes the following preferred embodiments.
[1] A method for producing ε-caprolactam, the method comprising:
Step (A) for producing cyclohexanone oxime by oxidizing cyclohexylamine, and Step (B) for producing ε-caprolactam from cyclohexanone oxime by gas phase Beckmann rearrangement reaction using a solid catalyst in the presence of a lower alcohol.
Including
The amount of cyclohexylamine contained in the cyclohexanone oxime in the step (B) is represented by the following formula (1):
(1) 0 ≦ {[mass of cyclohexylamine / mass of cyclohexanone oxime] × 100} ≦ 5.0
Meet the way.
[2] The amount of cyclohexanone contained in the cyclohexanone oxime in the step (B) is represented by the following formula (2):
(2) 0 ≦ {[mass of cyclohexanone / mass of cyclohexanone oxime] × 100} ≦ 5.0
The method according to [1], wherein
[3] The amount of nitrocyclohexane contained in the cyclohexanone oxime in the step (B) is represented by the following formula (3):
(3) 0 ≦ {[mass of nitrocyclohexane / mass of cyclohexanone oxime] × 100} ≦ 15
The method according to [1] or [2], wherein
[4] The method according to any one of [1] to [3], further comprising a step (C) of recovering cyclohexylamine by hydrolyzing cyclohexylidenecyclohexylamine contained in the reaction solution obtained by the gas phase reaction. the method of.
[5] The method according to any one of [1] to [4], wherein the solid catalyst is zeolite.
本発明によれば、原料としてシクロヘキシルアミンを用いて製造されたシクロヘキサノンオキシムを用いた場合でも、その気相ベックマン転位反応によって、高反応率かつ高選択率でε-カプロラクタムを製造する方法を提供することができる。
According to the present invention, even when cyclohexanone oxime produced using cyclohexylamine as a raw material is used, there is provided a method for producing ε-caprolactam with high reaction rate and high selectivity by the gas phase Beckmann rearrangement reaction. be able to.
本発明は、ε-カプロラクタムを製造する方法であって、
シクロヘキシルアミンを酸化することによってシクロヘキサノンオキシムを製造する工程(A)、及び
低級アルコールの存在下、固体触媒を用いた気相ベックマン転位反応によって、前記シクロヘキサノンオキシムからε-カプロラクタムを製造する工程(B)
を含む。以下において、「気相反応」は、特に断らない限り「気相ベックマン転位反応」を意味する。 The present invention is a process for producing ε-caprolactam comprising
Step (A) for producing cyclohexanone oxime by oxidizing cyclohexylamine, and Step (B) for producing ε-caprolactam from cyclohexanone oxime by gas phase Beckmann rearrangement reaction using a solid catalyst in the presence of a lower alcohol.
including. In the following, “gas phase reaction” means “gas phase Beckmann rearrangement reaction” unless otherwise specified.
シクロヘキシルアミンを酸化することによってシクロヘキサノンオキシムを製造する工程(A)、及び
低級アルコールの存在下、固体触媒を用いた気相ベックマン転位反応によって、前記シクロヘキサノンオキシムからε-カプロラクタムを製造する工程(B)
を含む。以下において、「気相反応」は、特に断らない限り「気相ベックマン転位反応」を意味する。 The present invention is a process for producing ε-caprolactam comprising
Step (A) for producing cyclohexanone oxime by oxidizing cyclohexylamine, and Step (B) for producing ε-caprolactam from cyclohexanone oxime by gas phase Beckmann rearrangement reaction using a solid catalyst in the presence of a lower alcohol.
including. In the following, “gas phase reaction” means “gas phase Beckmann rearrangement reaction” unless otherwise specified.
前記工程(B)において前記シクロヘキサノンオキシム中に含まれるシクロヘキシルアミンの量は、下記式(1):
(1)0≦{[シクロヘキシルアミンの質量/シクロヘキサノンオキシムの質量]×100}≦5.0
を満たす。すなわち、前記工程(B)における気相ベックマン転位反応に供する前記シクロヘキサノンオキシム中に含まれるシクロヘキシルアミンの量は、上記式(1)を満たす。 The amount of cyclohexylamine contained in the cyclohexanone oxime in the step (B) is represented by the following formula (1):
(1) 0 ≦ {[mass of cyclohexylamine / mass of cyclohexanone oxime] × 100} ≦ 5.0
Meet. That is, the amount of cyclohexylamine contained in the cyclohexanone oxime subjected to the gas phase Beckmann rearrangement reaction in the step (B) satisfies the above formula (1).
(1)0≦{[シクロヘキシルアミンの質量/シクロヘキサノンオキシムの質量]×100}≦5.0
を満たす。すなわち、前記工程(B)における気相ベックマン転位反応に供する前記シクロヘキサノンオキシム中に含まれるシクロヘキシルアミンの量は、上記式(1)を満たす。 The amount of cyclohexylamine contained in the cyclohexanone oxime in the step (B) is represented by the following formula (1):
(1) 0 ≦ {[mass of cyclohexylamine / mass of cyclohexanone oxime] × 100} ≦ 5.0
Meet. That is, the amount of cyclohexylamine contained in the cyclohexanone oxime subjected to the gas phase Beckmann rearrangement reaction in the step (B) satisfies the above formula (1).
上記式{[シクロヘキシルアミンの質量/シクロヘキサノンオキシムの質量]×100}の値は、5.0以下が好ましく、3.0以下がより好ましく、2.0以下がさらに好ましく、1.0以下が特に好ましく、0.5以下が非常に好ましい。上記上限値以下であると、本発明の製造方法において、高い反応率及び選択率を得ることができる。なお、上記式{[シクロヘキシルアミンの質量/シクロヘキサノンオキシムの質量]×100}の値は、通常0以上であり、例えば0.01以上である。本発明において、反応率とは、物質量に基づく、シクロヘキサノンオキシムに対する反応したシクロヘキサノンオキシムの比率を意味し、選択率とは、物質量に基づく、反応したシクロヘキサノンオキシムに対するε-カプロラクタムの比率を意味する。
The value of the above formula {[mass of cyclohexylamine / mass of cyclohexanone oxime] × 100} is preferably 5.0 or less, more preferably 3.0 or less, still more preferably 2.0 or less, and particularly preferably 1.0 or less. Preferably, 0.5 or less is very preferable. In the manufacturing method of this invention as it is below the said upper limit, a high reaction rate and selectivity can be obtained. In addition, the value of the above formula {[mass of cyclohexylamine / mass of cyclohexanone oxime] × 100} is usually 0 or more, for example, 0.01 or more. In the present invention, the reaction rate means the ratio of reacted cyclohexanone oxime to cyclohexanone oxime based on the amount of substance, and the selectivity means the ratio of ε-caprolactam to reacted cyclohexanone oxime based on the amount of substance. .
なお、本発明において、シクロヘキサノンオキシムは、分子状酸素等を用いてシクロヘキシルアミンを酸化させることによって得られるため、シクロヘキサノンオキシム中には未反応のシクロヘキシルアミンが含まれ得る。
In the present invention, since cyclohexanone oxime is obtained by oxidizing cyclohexylamine using molecular oxygen or the like, unreacted cyclohexylamine can be contained in cyclohexanone oxime.
また、前記工程(B)において前記シクロヘキサノンオキシム中に含まれるシクロヘキサノンの量は、下記式(2):
(2)0≦{[シクロヘキサノンの質量/シクロヘキサノンオキシムの質量]×100}≦5.0
を満たすことが好ましい。すなわち、前記工程(B)における気相ベックマン転位反応に供する前記シクロヘキサノンオキシム中に含まれるシクロヘキサノンの量は、上記式(2)を満たすことが好ましい。 In the step (B), the amount of cyclohexanone contained in the cyclohexanone oxime is represented by the following formula (2):
(2) 0 ≦ {[mass of cyclohexanone / mass of cyclohexanone oxime] × 100} ≦ 5.0
It is preferable to satisfy. That is, it is preferable that the amount of cyclohexanone contained in the cyclohexanone oxime subjected to the gas phase Beckmann rearrangement reaction in the step (B) satisfies the above formula (2).
(2)0≦{[シクロヘキサノンの質量/シクロヘキサノンオキシムの質量]×100}≦5.0
を満たすことが好ましい。すなわち、前記工程(B)における気相ベックマン転位反応に供する前記シクロヘキサノンオキシム中に含まれるシクロヘキサノンの量は、上記式(2)を満たすことが好ましい。 In the step (B), the amount of cyclohexanone contained in the cyclohexanone oxime is represented by the following formula (2):
(2) 0 ≦ {[mass of cyclohexanone / mass of cyclohexanone oxime] × 100} ≦ 5.0
It is preferable to satisfy. That is, it is preferable that the amount of cyclohexanone contained in the cyclohexanone oxime subjected to the gas phase Beckmann rearrangement reaction in the step (B) satisfies the above formula (2).
上記式{[シクロヘキサノンの質量/シクロヘキサノンオキシムの質量]×100}の値は、5.0以下が好ましく、3.0以下がより好ましく、1.0以下がさらに好ましく、0.5以下が非常に好ましい。上記上限値以下であると、本発明の製造方法において、より高い反応率及び選択率を得ることができる。なお、上記式{[シクロヘキサノンの質量/シクロヘキサノンオキシムの質量]×100}の値は、通常0以上であり、例えば0.01以上である。
The value of the above formula {[mass of cyclohexanone / mass of cyclohexanone oxime] × 100} is preferably 5.0 or less, more preferably 3.0 or less, further preferably 1.0 or less, and very preferably 0.5 or less. preferable. In the manufacturing method of this invention as it is below the said upper limit, a higher reaction rate and selectivity can be obtained. The value of the above formula {[mass of cyclohexanone / mass of cyclohexanone oxime] × 100} is usually 0 or more, for example, 0.01 or more.
シクロヘキシルアミンを酸化させてシクロヘキサノンオキシムを合成する際に副生成物として水が発生する。前記シクロヘキサノンは、この水とシクロヘキサノンオキシムとが反応して副生し得る。
Water is generated as a byproduct when cyclohexanone oxime is synthesized by oxidizing cyclohexylamine. The cyclohexanone can be by-produced by the reaction of this water and cyclohexanone oxime.
また、前記工程(B)において前記シクロヘキサノンオキシム中に含まれるニトロシクロヘキサンの量は、下記式(3):
(3)0≦{[ニトロシクロヘキサンの質量/シクロヘキサノンオキシムの質量]×100}≦15
を満たすことがより好ましい。すなわち、前記工程(B)における気相ベックマン転位反応に供する前記シクロヘキサノンオキシム中に含まれるニトロシクロヘキサンの量は、上記式(3)を満たすことが好ましい。 In the step (B), the amount of nitrocyclohexane contained in the cyclohexanone oxime is represented by the following formula (3):
(3) 0 ≦ {[mass of nitrocyclohexane / mass of cyclohexanone oxime] × 100} ≦ 15
It is more preferable to satisfy. That is, it is preferable that the amount of nitrocyclohexane contained in the cyclohexanone oxime subjected to the gas phase Beckmann rearrangement reaction in the step (B) satisfies the above formula (3).
(3)0≦{[ニトロシクロヘキサンの質量/シクロヘキサノンオキシムの質量]×100}≦15
を満たすことがより好ましい。すなわち、前記工程(B)における気相ベックマン転位反応に供する前記シクロヘキサノンオキシム中に含まれるニトロシクロヘキサンの量は、上記式(3)を満たすことが好ましい。 In the step (B), the amount of nitrocyclohexane contained in the cyclohexanone oxime is represented by the following formula (3):
(3) 0 ≦ {[mass of nitrocyclohexane / mass of cyclohexanone oxime] × 100} ≦ 15
It is more preferable to satisfy. That is, it is preferable that the amount of nitrocyclohexane contained in the cyclohexanone oxime subjected to the gas phase Beckmann rearrangement reaction in the step (B) satisfies the above formula (3).
上記式{[ニトロシクロヘキサンの質量/シクロヘキサノンオキシムの質量]×100}の値は、15以下が好ましく、10以下がより好ましく、5以下がさらに好ましく、2.5以下が非常に好ましい。上記上限値以下であると、本発明の製造方法において、より高い反応率及び選択率を得ることができる。なお、上記式{[ニトロシクロヘキサンの質量/シクロヘキサノンオキシムの質量]×100}の値は、通常、0以上であり、例えば0.1以上である。
The value of the above formula {[mass of nitrocyclohexane / mass of cyclohexanone oxime] × 100} is preferably 15 or less, more preferably 10 or less, further preferably 5 or less, and very preferably 2.5 or less. In the manufacturing method of this invention as it is below the said upper limit, a higher reaction rate and selectivity can be obtained. The value of the formula {[mass of nitrocyclohexane / mass of cyclohexanone oxime] × 100} is usually 0 or more, for example, 0.1 or more.
なお、前記ニトロシクロヘキサンは、シクロヘキシルアミンのアミン部位が酸化されることによって副生し得る。
The nitrocyclohexane can be produced as a by-product when the amine site of cyclohexylamine is oxidized.
本発明において、前記シクロヘキサノンオキシムはシクロヘキシルアミンを酸化して得られる。シクロヘキシルアミンを酸化する際に用いられる酸化剤は特に限定されないが、例えば有機過酸化物、過酸化水素、及び分子状酸素等が挙げられる。
In the present invention, the cyclohexanone oxime is obtained by oxidizing cyclohexylamine. The oxidizing agent used when oxidizing cyclohexylamine is not particularly limited, and examples thereof include organic peroxides, hydrogen peroxide, and molecular oxygen.
本発明の1つの実施態様においては、前記気相反応によって得られる反応液に含まれるシクロヘキシリデンシクロヘキシルアミンを加水分解してシクロヘキシルアミンを回収する工程(C)がさらに含まれる。工程(C)は、前記気相反応によって得られる反応液に含まれるシクロヘキシリデンシクロヘキシルアミンを加水分解してシクロヘキシルアミンを生成させ、該シクロヘキシルアミンを回収する工程である。この工程において回収されたシクロヘキシルアミンは、リサイクルして再度シクロヘキサノンオキシムの製造において原料として用いることができる。なお、シクロヘキシリデンシクロヘキシルアミンは、原料であるシクロヘキシルアミンの酸化によりシクロヘキサノンオキシムを合成する際に副生し得るシクロヘキサノンと、原料であるシクロヘキシルアミンとの反応によって生成し得るものである。前記加水分解は、通常、気相反応によって得られた反応液からシクロヘキシリデンシクロヘキシルアミンを含有する液を蒸留等で分離し、これを水の存在下で加水分解することにより行われる。シクロヘキシリデンシクロヘキシルと水とのモル比は通常1:0.1~1:100であり、好ましくは1:1~1:20である。加水分解の反応温度は通常0~200℃であり、好ましくは25~150℃である。加水分解後の混合物からシクロヘキシルアミンを回収する方法としては蒸留、膜分離等種々の方法が挙げられるが、好ましくは蒸留であり、中でも水蒸気蒸留が好ましい。
One embodiment of the present invention further includes a step (C) of hydrolyzing cyclohexylidenecyclohexylamine contained in the reaction solution obtained by the gas phase reaction to recover cyclohexylamine. Step (C) is a step of hydrolyzing cyclohexylidenecyclohexylamine contained in the reaction solution obtained by the gas phase reaction to produce cyclohexylamine and recovering the cyclohexylamine. The cyclohexylamine recovered in this step can be recycled and used again as a raw material in the production of cyclohexanone oxime. The cyclohexylidenecyclohexylamine can be produced by a reaction between cyclohexanone that can be by-produced when synthesizing cyclohexanone oxime by oxidation of cyclohexylamine as a raw material and cyclohexylamine as a raw material. The hydrolysis is usually performed by separating a liquid containing cyclohexylidenecyclohexylamine from a reaction liquid obtained by a gas phase reaction by distillation or the like and hydrolyzing it in the presence of water. The molar ratio of cyclohexylidenecyclohexyl to water is usually 1: 0.1 to 1: 100, preferably 1: 1 to 1:20. The reaction temperature for the hydrolysis is usually 0 to 200 ° C, preferably 25 to 150 ° C. The method for recovering cyclohexylamine from the hydrolyzed mixture includes various methods such as distillation and membrane separation, preferably distillation, and steam distillation is particularly preferable.
シクロヘキサノンオキシム中に含まれるシクロヘキシルアミン、シクロヘキサノン及びニトロシクロヘキサンは、通常の方法で分離することができる。例えば、抽出、蒸留、又は晶析等により、不純物であるシクロヘキシルアミン、シクロヘキサノン、及びニトロシクロヘキサンの量が上記式(1)~(3)を満たすように制御したシクロヘキサノンオキシムを得ることができる。
Cyclohexylamine, cyclohexanone and nitrocyclohexane contained in cyclohexanone oxime can be separated by a usual method. For example, cyclohexanone oxime in which the amounts of impurities cyclohexylamine, cyclohexanone, and nitrocyclohexane are controlled to satisfy the above formulas (1) to (3) can be obtained by extraction, distillation, crystallization, or the like.
シクロヘキシルアミン、シクロヘキサノン、及びニトロシクロヘキサンは、蒸留により、シクロヘキサノンオキシム中の混入量を、それぞれ、5質量%以下、2質量%以下、及び1質量%以下に抑制することができる。さらに、前記蒸留後に晶析を行うことにより、シクロヘキシルアミン、シクロヘキサノン、及びニトロシクロヘキサンは、ガスクロマトグラフィー分析上で検出下限以下の量にまで抑制することができる。この晶析で用いる溶媒としては、炭素数6~12の脂肪族直鎖炭化水素、側鎖を有する脂肪族炭化水素、脂環式炭化水素、アルコール系、及び、水等が挙げられる。より具体的には、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の脂肪族直鎖炭化水素、メチルヘキサン、イソオクタン、ネオヘキサン等の側鎖を有する脂肪族炭化水素、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素、メタノール、エタノール、n-プロパノール、n-ブタノール等のアルコール、水が挙げられる。これらは単独で用いても2種以上を混合して用いてもよい。
Cyclohexylamine, cyclohexanone, and nitrocyclohexane can suppress the mixing amount in cyclohexanone oxime to 5 mass% or less, 2 mass% or less, and 1 mass% or less, respectively, by distillation. Furthermore, by performing crystallization after the distillation, cyclohexylamine, cyclohexanone, and nitrocyclohexane can be suppressed to an amount below the lower limit of detection in gas chromatography analysis. Examples of the solvent used in the crystallization include aliphatic straight chain hydrocarbons having 6 to 12 carbon atoms, aliphatic hydrocarbons having side chains, alicyclic hydrocarbons, alcohols, and water. More specifically, aliphatic linear hydrocarbons such as hexane, heptane, octane, nonane and decane, aliphatic hydrocarbons having side chains such as methylhexane, isooctane and neohexane, methylcyclopentane, cyclohexane and methylcyclohexane. And alicyclic hydrocarbons such as methanol, ethanol, alcohol such as n-propanol and n-butanol, and water. These may be used alone or in admixture of two or more.
晶析に用いる溶媒の量は、シクロヘキサノンオキシムの量に対して、約0.1~約5質量倍とすることができ、好ましくは約0.3~約4質量倍である。
The amount of the solvent used for crystallization can be about 0.1 to about 5 times by mass, preferably about 0.3 to about 4 times by mass with respect to the amount of cyclohexanone oxime.
晶析の具体的な方法としては、例えば、粗シクロヘキサノンオキシムを上記溶媒に溶解し、これを冷却してシクロヘキサノンオキシムの結晶を析出させる方法、溶媒を減圧蒸発させ、その蒸発潜熱で冷却して結晶を析出させる方法、溶融状態にある粗シクロヘキサノンオキシムあるいは上記溶媒と粗シクロヘキサノンオキシムの混合液と冷却された溶媒とを混合することによりシクロヘキサノンオキシム結晶を析出させる方法等を挙げることができる。この晶析の操作により、粗シクロヘキサノンオキシムに含有されていた不純物の殆どが溶媒中に排出される。次いで、濾過や沈降等の手段により結晶を溶媒から分離し、得られた結晶を必要に応じて上記溶媒等で洗浄する。前記洗浄は、上記溶媒中に懸濁させて、撹拌後、濾過、沈降等の手段により結晶から溶媒を分離する方法でも良いし、結晶に溶媒を直接吹きかけながら濾過する方法でも良い。
Specific methods for crystallization include, for example, a method in which crude cyclohexanone oxime is dissolved in the above solvent and cooled to precipitate crystals of cyclohexanone oxime, and the solvent is evaporated under reduced pressure and cooled with the latent heat of vaporization to produce crystals. And a method of precipitating cyclohexanone oxime crystals by mixing a crude cyclohexanone oxime in a molten state or a mixture of the above solvent and crude cyclohexanone oxime and a cooled solvent. By this crystallization operation, most of the impurities contained in the crude cyclohexanone oxime are discharged into the solvent. Next, the crystal is separated from the solvent by means such as filtration or sedimentation, and the obtained crystal is washed with the above-described solvent or the like as necessary. The washing may be a method of suspending in the above-mentioned solvent, stirring, then separating the solvent from the crystal by means of filtration, sedimentation, or the like, or a method of filtering while directly spraying the solvent on the crystal.
晶析の温度としては、約0℃以上でありシクロヘキサノンオキシムの融点未満程度でよい。
The crystallization temperature may be about 0 ° C. or higher and less than the melting point of cyclohexanone oxime.
本発明において、前記固体触媒は、気相にてシクロヘキサノンオキシムをベックマン転位反応させてε-カプロラクタムに変換することができる固体触媒であれば特に限定されない。前記固体触媒としては、例えばゼオライト、ホウ酸系触媒、シリカ・アルミナ系触媒、固体リン酸触媒、複合金属酸化物等が挙げられる。なかでも、ε-カプロラクタムを長期にわたって高収率で製造するには、ゼオライトが好ましく、ペンタシル型ゼオライトがより好ましく、MFIゼオライトがさらに好ましい。
In the present invention, the solid catalyst is not particularly limited as long as it can convert cyclohexanone oxime into ε-caprolactam by a Beckmann rearrangement reaction in a gas phase. Examples of the solid catalyst include zeolite, boric acid catalyst, silica / alumina catalyst, solid phosphoric acid catalyst, and composite metal oxide. Among these, for producing ε-caprolactam with a high yield over a long period of time, zeolite is preferable, pentasil-type zeolite is more preferable, and MFI zeolite is more preferable.
前記ゼオライトとしては、その骨格が実質的にケイ素及び酸素から構成される結晶性シリカであってもよいし、骨格を構成する元素としてさらに金属元素等、ケイ素及び酸素以外の元素を含む結晶性メタロシリケート等であってもよい。結晶性メタロシリケートにおいてケイ素及び酸素以外に含まれる元素としては、例えば、Be、B、Al、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Sb、La、Hf、及びBi等が挙げられ、これらの2種以上が含まれていてもよい。また、これら元素に対するケイ素の原子数比は、好ましくは50以上であり、より好ましくは500以上である。
The zeolite may be crystalline silica whose skeleton is substantially composed of silicon and oxygen, or a crystalline metallo that further contains elements other than silicon and oxygen, such as metal elements, as elements constituting the skeleton. It may be a silicate or the like. Examples of elements other than silicon and oxygen in the crystalline metallosilicate include Be, B, Al, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Sb, La, Hf, Bi, etc. are mentioned, These 2 or more types may be contained. The atomic ratio of silicon to these elements is preferably 50 or more, more preferably 500 or more.
前記ゼオライトは、例えば、ケイ素化合物、4級アンモニウム化合物、水及び必要に応じて金属化合物等を原料として水熱合成を行い、得られた結晶を乾燥、焼成した後、アンモニアやアンモニウム塩で接触処理し、次いで乾燥することにより調製することができる。
For example, the zeolite is hydrothermally synthesized using, for example, a silicon compound, a quaternary ammonium compound, water and, if necessary, a metal compound, and the obtained crystal is dried and calcined, and then contacted with ammonia or an ammonium salt. And then dried.
前記固体触媒の粒径は、触媒活性の観点から、0.0001~5mmであることが好ましく、0.001~3mmであることがより好ましい。また、前記固体触媒は、例えば、実質的に触媒成分のみからなる成形体であってもよいし、触媒成分を担体に担持したものであってもよい。
The particle size of the solid catalyst is preferably 0.0001 to 5 mm, more preferably 0.001 to 3 mm, from the viewpoint of catalytic activity. In addition, the solid catalyst may be, for example, a molded body substantially consisting of only the catalyst component, or may be one in which the catalyst component is supported on a carrier.
本発明において、前記低級アルコールは、通常、炭素数が6以下のアルコールであり、好ましくは炭素数が5以下のアルコールである。前記低級アルコールは、直鎖状であっても、分岐鎖状であってもよく、またフッ素、塩素、又は臭素等のハロゲン基を置換基として有してもよい。前記低級アルコールとして、例えば、メタノール、エタノール、1-プロパノール(n-プロピルアルコール)、2-プロパノール(イソプロピルアルコール)、1-ブタノール(n-ブチルアルコール)、2-ブタノール(sec-ブチルアルコール)、2-メチル-1-プロパノール(イソブチルアルコール)、1-ペンタノール(n-ペンチルアルコール)、1-ヘキサノール(n-ヘキシルアルコール)及び2,2,2-トリフルオロエタノールが挙げられる。なかでも、ε-カプロラクタムの選択率及び触媒寿命の向上に特に優れる観点から、メタノール、エタノール、1-プロパノール、2-プロパノール及び1-ブタノールが好ましく、工業的観点から、メタノール及びエタノールがより好ましい。
In the present invention, the lower alcohol is usually an alcohol having 6 or less carbon atoms, preferably an alcohol having 5 or less carbon atoms. The lower alcohol may be linear or branched, and may have a halogen group such as fluorine, chlorine, or bromine as a substituent. Examples of the lower alcohol include methanol, ethanol, 1-propanol (n-propyl alcohol), 2-propanol (isopropyl alcohol), 1-butanol (n-butyl alcohol), 2-butanol (sec-butyl alcohol), 2 -Methyl-1-propanol (isobutyl alcohol), 1-pentanol (n-pentyl alcohol), 1-hexanol (n-hexyl alcohol) and 2,2,2-trifluoroethanol. Among these, methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol are preferable from the viewpoint of particularly excellent improvement in selectivity of ε-caprolactam and catalyst life, and methanol and ethanol are more preferable from an industrial viewpoint.
前記低級アルコールは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合、その組み合わせ及び比率は任意に選択できる。ただし、取り扱い性等を考慮すると、前記低級アルコールを単独で用いることが好ましい。
The lower alcohols may be used alone or in combination of two or more. When two or more types are used in combination, the combination and ratio can be arbitrarily selected. However, considering the handleability and the like, it is preferable to use the lower alcohol alone.
本発明においては、反応系内に分子状酸素含有ガスを共存させてもよい。分子状酸素含有ガスとしては、空気を使用するのが経済的で好ましい。分子状酸素含有ガス中の分子状酸素の濃度は、爆発組成範囲外とすることが好ましい。
In the present invention, a molecular oxygen-containing gas may coexist in the reaction system. It is economical and preferable to use air as the molecular oxygen-containing gas. The molecular oxygen concentration in the molecular oxygen-containing gas is preferably outside the explosion composition range.
気相反応時の反応系内における、分子状酸素の量は、原料であるシクロヘキサノンオキシム1モルに対して、0.1~10モルであることが好ましく、0.3~5モルであることがより好ましい。
The amount of molecular oxygen in the reaction system during the gas phase reaction is preferably 0.1 to 10 mol, preferably 0.3 to 5 mol, per 1 mol of cyclohexanone oxime as a raw material. More preferred.
気相反応は、通常の固定床方式、流動床方式、又は移動層方式の気相接触反応によって行なうことができる。シクロヘキサノンオキシムは、気体状態で固体触媒の層と接触することにより反応するが、低級アルコールは気体状態でシクロヘキサノンオキシムと予め混合しておいてもよいし、シクロヘキサノンオキシムとは別々に反応器に供給してもよい。固定床方式の気相接触反応を行う場合には、シクロヘキサノンオキシム及び低級アルコールが十分に混合された状態のガスを固体触媒の層と接触させることが好ましい。これに対して、流動床方式の気相接触反応を行う場合には、必ずしもシクロヘキサノンオキシム及び低級アルコールが予め混合されている必要がなく、これらを別々に反応器に供給してもよく、さらに低級アルコールを分割して供給してもよい。また、流動床方式の気相接触反応を行う場合には、低級アルコールをシクロヘキサノンオキシムよりも上流側に供給してもよい。
The gas phase reaction can be performed by a gas phase contact reaction of a normal fixed bed method, a fluidized bed method, or a moving bed method. Cyclohexanone oxime reacts by contacting the solid catalyst layer in the gaseous state, but the lower alcohol may be premixed with cyclohexanone oxime in the gaseous state, or the cyclohexanone oxime may be supplied separately to the reactor. May be. When performing a fixed bed type gas phase contact reaction, it is preferable to contact a gas in a state where cyclohexanone oxime and a lower alcohol are sufficiently mixed with the solid catalyst layer. On the other hand, when conducting a fluidized bed type gas phase catalytic reaction, cyclohexanone oxime and lower alcohol do not necessarily have to be mixed in advance, and these may be separately supplied to the reactor. Alcohol may be divided and supplied. In addition, when performing a fluidized bed type gas phase catalytic reaction, lower alcohol may be supplied upstream of cyclohexanone oxime.
分子状酸素含有ガスを用いる場合には、分子状酸素含有ガスを低級アルコール及びシクロヘキサノンオキシムと混合して、又は低級アルコールと混合して、供給することができ、また、シクロヘキサノンオキシムよりも反応系の上流側に供給してもよい。
In the case of using a molecular oxygen-containing gas, the molecular oxygen-containing gas can be supplied by mixing with a lower alcohol and cyclohexanone oxime, or mixed with a lower alcohol, and more reactive than cyclohexanone oxime. It may be supplied upstream.
気相反応系に加えた低級アルコールは、反応生成物から分離回収して再利用できる。
The lower alcohol added to the gas phase reaction system can be separated and recovered from the reaction product and reused.
気相反応は、ベンゼン、シクロヘキサン、又はトルエン等の、反応に対して不活性な化合物の蒸気を希釈ガスとして共存させて行ってもよいし、窒素、又は二酸化炭素等の不活性ガスを共存させて行ってもよい。
The gas phase reaction may be performed in the presence of a vapor of a compound inert to the reaction, such as benzene, cyclohexane, or toluene, as a diluent gas, or an inert gas such as nitrogen or carbon dioxide. You may go.
気相反応は、大気圧下、又は大気圧以下の減圧下において行うことが好ましい。
The gas phase reaction is preferably performed under atmospheric pressure or under reduced pressure below atmospheric pressure.
気相反応時の反応温度は、250~500℃であることが好ましく、300~450℃であることがより好ましく、300~400℃であることがさらに好ましい。反応温度が上記下限値以上であると、反応速度が向上し、さらに、ε-カプロラクタムの選択率がより向上する。また、反応温度が上記上限値以下であると、シクロヘキサノンオキシムの熱分解が抑制され、ε-カプロラクタムの選択率がより向上する。
The reaction temperature during the gas phase reaction is preferably 250 to 500 ° C, more preferably 300 to 450 ° C, and even more preferably 300 to 400 ° C. When the reaction temperature is at least the above lower limit, the reaction rate is improved, and the selectivity for ε-caprolactam is further improved. Further, when the reaction temperature is not more than the above upper limit value, the thermal decomposition of cyclohexanone oxime is suppressed, and the selectivity of ε-caprolactam is further improved.
気相反応時のシクロヘキサノンオキシムの空間速度(WHSV)は、0.1~40h-1である(すなわち、固体触媒1gあたりのシクロヘキサノンオキシムの供給速度が0.1~40g/hである)ことが好ましく、0.2~20h-1であることがより好ましく、0.5~10h-1であることがさらに好ましい。
The space velocity (WHSV) of cyclohexanone oxime during the gas phase reaction is 0.1 to 40 h −1 (that is, the supply rate of cyclohexanone oxime per 1 g of the solid catalyst is 0.1 to 40 g / h). Preferably, it is 0.2 to 20 h −1 , more preferably 0.5 to 10 h −1 .
気相反応により生成したε-カプロラクタムは、反応混合物から公知の方法で分離できる。例えば、反応生成ガスを冷却して凝縮させ、次いで抽出、蒸留、又は晶析等により分離することで、精製されたε-カプロラクタムが得られる。
Ε-Caprolactam produced by the gas phase reaction can be separated from the reaction mixture by a known method. For example, the reaction product gas is cooled and condensed, and then separated by extraction, distillation, crystallization, or the like, whereby purified ε-caprolactam is obtained.
前記固体触媒は、気相反応で付着した炭素質物質を、分子状酸素含有ガスにより200~600℃の温度で燃焼処理(焼成)することによって除去することができ、容易に元の性能に賦活でき、繰り返し再利用できる。前記炭素質物質の除去は、分子状酸素含有ガスにアルコールを共存させて行ってもよい。
The solid catalyst can be removed by burning (calcining) the carbonaceous material adhering in the gas phase reaction with a molecular oxygen-containing gas at a temperature of 200 to 600 ° C., and is easily activated to the original performance. Can be reused repeatedly. The carbonaceous material may be removed in the presence of alcohol in the molecular oxygen-containing gas.
分子状酸素含有ガスによる燃焼処理は、200~600℃において、一定温度条件下、多段階で昇温させる条件下のいずれで行ってもよい。
The combustion treatment with the molecular oxygen-containing gas may be carried out at 200 to 600 ° C. under a constant temperature condition or under a condition where the temperature is raised in multiple stages.
前記分子状酸素含有ガスとしては、通常、空気が好適であるが、空気又は酸素を窒素、アルゴン又は二酸化炭素等の不活性ガスで希釈したものでもよい。分子状酸素含有ガス中の酸素濃度は、好ましくは1~30体積%、より好ましくは5~25体積%である。
As the molecular oxygen-containing gas, air is usually suitable, but air or oxygen may be diluted with an inert gas such as nitrogen, argon or carbon dioxide. The oxygen concentration in the molecular oxygen-containing gas is preferably 1 to 30% by volume, more preferably 5 to 25% by volume.
以下、実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
以下の実施例において、空間速度WHSV(h-1)は、シクロヘキサノンオキシムの供給速度(g/h)を固体触媒の質量(g)で除することにより算出した。
In the following examples, the space velocity WHSV (h −1 ) was calculated by dividing the supply rate (g / h) of cyclohexanone oxime by the mass (g) of the solid catalyst.
また、シクロヘキサノンオキシム及びε-カプロラクタムの分析は、ガスクロマトグラフィーにより行い、シクロヘキサノンオキシムの反応率、選択率及び収率を、それぞれ以下の式により算出した。式中、供給したシクロヘキサノンオキシムの物質量をXモル、未反応のシクロヘキサノンオキシムの物質量をYモル、生成したε-カプロラクタムの物質量をZモルとした。
シクロヘキサノンオキシムの反応率(%)=[(X-Y)/X]×100
ε-カプロラクタムの選択率(%)=[Z/(X-Y)]×100
収率(%)=[(シクロヘキサノンオキシムの反応率)×(ε-カプロラクタムの選択率)]/100 Further, cyclohexanone oxime and ε-caprolactam were analyzed by gas chromatography, and the reaction rate, selectivity and yield of cyclohexanone oxime were calculated by the following formulas. In the formula, the amount of cyclohexanone oxime supplied was X mol, the amount of unreacted cyclohexanone oxime was Y mol, and the amount of ε-caprolactam produced was Z mol.
Reaction rate of cyclohexanone oxime (%) = [(XY) / X] × 100
Selectivity of ε-caprolactam (%) = [Z / (XY)] × 100
Yield (%) = [(reaction rate of cyclohexanone oxime) × (selectivity of ε-caprolactam)] / 100
シクロヘキサノンオキシムの反応率(%)=[(X-Y)/X]×100
ε-カプロラクタムの選択率(%)=[Z/(X-Y)]×100
収率(%)=[(シクロヘキサノンオキシムの反応率)×(ε-カプロラクタムの選択率)]/100 Further, cyclohexanone oxime and ε-caprolactam were analyzed by gas chromatography, and the reaction rate, selectivity and yield of cyclohexanone oxime were calculated by the following formulas. In the formula, the amount of cyclohexanone oxime supplied was X mol, the amount of unreacted cyclohexanone oxime was Y mol, and the amount of ε-caprolactam produced was Z mol.
Reaction rate of cyclohexanone oxime (%) = [(XY) / X] × 100
Selectivity of ε-caprolactam (%) = [Z / (XY)] × 100
Yield (%) = [(reaction rate of cyclohexanone oxime) × (selectivity of ε-caprolactam)] / 100
[参考例1]
[触媒Aの調製]
容量24Lのオートクレーブ内に、純水5300gと、10%硝酸水8930gと、モンモリロナイト(クニミネ工業(株)製のクニピアF)800gとを入れ、得られた混合物を撹拌しながら90℃に昇温後、30質量%濃度の硫酸チタン(IV)溶液(Ti(SO4)2、和光純薬工業(株)製)995gを0.5時間かけて滴下した。滴下終了後、90℃で4時間撹拌を継続し、4時間経過後、室温まで冷却し、撹拌を停止した。得られた混合物を加圧濾過することにより固体を分離し、この固体に純水17kgを加えて、加圧濾過により、洗浄濾過した。洗浄濾過後、さらに、純水14kgを加えて、加圧濾過により、洗浄濾過した。得られた固体を110℃で一晩乾燥し、触媒A(層間にチタンイオンを含有するモンモリロナイト)を調製した。 [Reference Example 1]
[Preparation of catalyst A]
In an autoclave with a capacity of 24 L, 5300 g of pure water, 8930 g of 10% nitric acid water, and 800 g of montmorillonite (Kunipia F manufactured by Kunimine Kogyo Co., Ltd.) were added, and the resulting mixture was heated to 90 ° C. while stirring. , 995 g of a 30 mass% titanium sulfate (IV) solution (Ti (SO 4 ) 2 , manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 0.5 hours. After completion of the dropping, stirring was continued at 90 ° C. for 4 hours, and after 4 hours, the mixture was cooled to room temperature and stirring was stopped. The obtained mixture was subjected to pressure filtration to separate a solid, and 17 kg of pure water was added to the solid, followed by washing and filtration by pressure filtration. After washing filtration, 14 kg of pure water was further added, and washing filtration was performed by pressure filtration. The obtained solid was dried at 110 ° C. overnight to prepare catalyst A (montmorillonite containing titanium ions between layers).
[触媒Aの調製]
容量24Lのオートクレーブ内に、純水5300gと、10%硝酸水8930gと、モンモリロナイト(クニミネ工業(株)製のクニピアF)800gとを入れ、得られた混合物を撹拌しながら90℃に昇温後、30質量%濃度の硫酸チタン(IV)溶液(Ti(SO4)2、和光純薬工業(株)製)995gを0.5時間かけて滴下した。滴下終了後、90℃で4時間撹拌を継続し、4時間経過後、室温まで冷却し、撹拌を停止した。得られた混合物を加圧濾過することにより固体を分離し、この固体に純水17kgを加えて、加圧濾過により、洗浄濾過した。洗浄濾過後、さらに、純水14kgを加えて、加圧濾過により、洗浄濾過した。得られた固体を110℃で一晩乾燥し、触媒A(層間にチタンイオンを含有するモンモリロナイト)を調製した。 [Reference Example 1]
[Preparation of catalyst A]
In an autoclave with a capacity of 24 L, 5300 g of pure water, 8930 g of 10% nitric acid water, and 800 g of montmorillonite (Kunipia F manufactured by Kunimine Kogyo Co., Ltd.) were added, and the resulting mixture was heated to 90 ° C. while stirring. , 995 g of a 30 mass% titanium sulfate (IV) solution (Ti (SO 4 ) 2 , manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 0.5 hours. After completion of the dropping, stirring was continued at 90 ° C. for 4 hours, and after 4 hours, the mixture was cooled to room temperature and stirring was stopped. The obtained mixture was subjected to pressure filtration to separate a solid, and 17 kg of pure water was added to the solid, followed by washing and filtration by pressure filtration. After washing filtration, 14 kg of pure water was further added, and washing filtration was performed by pressure filtration. The obtained solid was dried at 110 ° C. overnight to prepare catalyst A (montmorillonite containing titanium ions between layers).
[参考例2]
[シクロヘキシルアミン酸化反応液の調製]
熱電対、撹拌翼、ガス供給ライン及びガス排出ラインを備えたSUS316製反応器(容量:24L)に、参考例1で得られた触媒Aを15.7g、シクロヘキシルアミン(和光純薬工業(株)製)を8kg、トルエン(和光純薬工業(株)製)を8kg、及びシクロヘキサノン160gを入れ、反応器内の気相部を窒素で置換した後、密閉し、反応器内の気相部に窒素ガスを導入して反応器内の圧力を0.65MPa(ゲージ圧)とした。次いで、撹拌しながら、反応器内の混合物の液相中に窒素ガスを6L/hの流量で吹込み、反応器内を流通させ反応器内の気相部からガス排出ラインを介してガスを排出しつつ、液相を100℃に昇温した。100℃に昇温後、窒素ガスの代わりに、酸素と窒素との混合ガス(酸素濃度:6.93体積%)を6L/hの流量で吹込み、反応器内の気相部からガス排出ラインを介してガスを排出しつつ、反応器内の圧力を0.65MPa(ゲージ圧)に保持しながら、液相を100℃で38時間撹拌した。38時間経過後、冷却し、撹拌を停止して触媒を自然沈降させた。触媒を自然沈降させた後、上澄み液を抜き出すことにより、6690gの反応液Aを得た。反応液Aをガスクロマトグラフィーにより分析し、得られた分析値から反応液Aに含まれるシクロヘキシルアミン、シクロヘキサノン、シクロヘキサノンオキシム、及びニトロシクロヘキサンの含有量を求めたところ、シクロヘキシルアミンの含有量は18.2質量%、シクロヘキサノンの含有量は1.29質量%、シクロヘキサノンオキシムの含有量は16.1質量%、及びニトロシクロヘキサンの含有量は0.28質量%であった。また、シクロヘキシルアミンの転化率は31.3%であり、シクロヘキサノンオキシムの選択率は77.1%であった。 [Reference Example 2]
[Preparation of cyclohexylamine oxidation reaction solution]
In a reactor made of SUS316 (capacity: 24 L) equipped with a thermocouple, stirring blade, gas supply line and gas discharge line, 15.7 g of catalyst A obtained in Reference Example 1 and cyclohexylamine (Wako Pure Chemical Industries, Ltd.) )), 8 kg of toluene (manufactured by Wako Pure Chemical Industries, Ltd.), and 160 g of cyclohexanone, and after replacing the gas phase part in the reactor with nitrogen, sealing the gas phase part in the reactor Nitrogen gas was introduced into the reactor to adjust the pressure in the reactor to 0.65 MPa (gauge pressure). Next, while stirring, nitrogen gas is blown into the liquid phase of the mixture in the reactor at a flow rate of 6 L / h, and the gas is passed through the reactor through the gas discharge line through the reactor. While discharging, the liquid phase was heated to 100 ° C. After raising the temperature to 100 ° C., instead of nitrogen gas, a mixed gas of oxygen and nitrogen (oxygen concentration: 6.93 vol%) was blown at a flow rate of 6 L / h, and gas was discharged from the gas phase part in the reactor. While discharging the gas through the line, the liquid phase was stirred at 100 ° C. for 38 hours while maintaining the pressure in the reactor at 0.65 MPa (gauge pressure). After 38 hours, the mixture was cooled, stirring was stopped, and the catalyst was allowed to settle naturally. After allowing the catalyst to settle naturally, the supernatant was extracted to obtain 6690 g of reaction solution A. The reaction solution A was analyzed by gas chromatography, and the contents of cyclohexylamine, cyclohexanone, cyclohexanone oxime, and nitrocyclohexane contained in the reaction solution A were determined from the obtained analysis values. The content of cyclohexylamine was 18. The content of 2% by mass, the content of cyclohexanone was 1.29% by mass, the content of cyclohexanone oxime was 16.1% by mass, and the content of nitrocyclohexane was 0.28% by mass. The conversion of cyclohexylamine was 31.3%, and the selectivity for cyclohexanone oxime was 77.1%.
[シクロヘキシルアミン酸化反応液の調製]
熱電対、撹拌翼、ガス供給ライン及びガス排出ラインを備えたSUS316製反応器(容量:24L)に、参考例1で得られた触媒Aを15.7g、シクロヘキシルアミン(和光純薬工業(株)製)を8kg、トルエン(和光純薬工業(株)製)を8kg、及びシクロヘキサノン160gを入れ、反応器内の気相部を窒素で置換した後、密閉し、反応器内の気相部に窒素ガスを導入して反応器内の圧力を0.65MPa(ゲージ圧)とした。次いで、撹拌しながら、反応器内の混合物の液相中に窒素ガスを6L/hの流量で吹込み、反応器内を流通させ反応器内の気相部からガス排出ラインを介してガスを排出しつつ、液相を100℃に昇温した。100℃に昇温後、窒素ガスの代わりに、酸素と窒素との混合ガス(酸素濃度:6.93体積%)を6L/hの流量で吹込み、反応器内の気相部からガス排出ラインを介してガスを排出しつつ、反応器内の圧力を0.65MPa(ゲージ圧)に保持しながら、液相を100℃で38時間撹拌した。38時間経過後、冷却し、撹拌を停止して触媒を自然沈降させた。触媒を自然沈降させた後、上澄み液を抜き出すことにより、6690gの反応液Aを得た。反応液Aをガスクロマトグラフィーにより分析し、得られた分析値から反応液Aに含まれるシクロヘキシルアミン、シクロヘキサノン、シクロヘキサノンオキシム、及びニトロシクロヘキサンの含有量を求めたところ、シクロヘキシルアミンの含有量は18.2質量%、シクロヘキサノンの含有量は1.29質量%、シクロヘキサノンオキシムの含有量は16.1質量%、及びニトロシクロヘキサンの含有量は0.28質量%であった。また、シクロヘキシルアミンの転化率は31.3%であり、シクロヘキサノンオキシムの選択率は77.1%であった。 [Reference Example 2]
[Preparation of cyclohexylamine oxidation reaction solution]
In a reactor made of SUS316 (capacity: 24 L) equipped with a thermocouple, stirring blade, gas supply line and gas discharge line, 15.7 g of catalyst A obtained in Reference Example 1 and cyclohexylamine (Wako Pure Chemical Industries, Ltd.) )), 8 kg of toluene (manufactured by Wako Pure Chemical Industries, Ltd.), and 160 g of cyclohexanone, and after replacing the gas phase part in the reactor with nitrogen, sealing the gas phase part in the reactor Nitrogen gas was introduced into the reactor to adjust the pressure in the reactor to 0.65 MPa (gauge pressure). Next, while stirring, nitrogen gas is blown into the liquid phase of the mixture in the reactor at a flow rate of 6 L / h, and the gas is passed through the reactor through the gas discharge line through the reactor. While discharging, the liquid phase was heated to 100 ° C. After raising the temperature to 100 ° C., instead of nitrogen gas, a mixed gas of oxygen and nitrogen (oxygen concentration: 6.93 vol%) was blown at a flow rate of 6 L / h, and gas was discharged from the gas phase part in the reactor. While discharging the gas through the line, the liquid phase was stirred at 100 ° C. for 38 hours while maintaining the pressure in the reactor at 0.65 MPa (gauge pressure). After 38 hours, the mixture was cooled, stirring was stopped, and the catalyst was allowed to settle naturally. After allowing the catalyst to settle naturally, the supernatant was extracted to obtain 6690 g of reaction solution A. The reaction solution A was analyzed by gas chromatography, and the contents of cyclohexylamine, cyclohexanone, cyclohexanone oxime, and nitrocyclohexane contained in the reaction solution A were determined from the obtained analysis values. The content of cyclohexylamine was 18. The content of 2% by mass, the content of cyclohexanone was 1.29% by mass, the content of cyclohexanone oxime was 16.1% by mass, and the content of nitrocyclohexane was 0.28% by mass. The conversion of cyclohexylamine was 31.3%, and the selectivity for cyclohexanone oxime was 77.1%.
[参考例3]
[反応液Aの精製]
反応液Aの5kgを、ジャケットと撹拌翼を備えた10リットルのSUS製タンクに入れて、40Torr、90℃の条件で減圧蒸留し、2710gの留分を留出させて、SUS製タンク内に残った留分A(2280g)を得た。留分Aに含まれるシクロヘキシルアミン、シクロヘキサノン、シクロヘキサノンオキシム、及びニトロシクロヘキサンの含有量を求めたところ、シクロヘキシルアミンの含有量は21.9質量%、シクロヘキサノンの含有量は2.14質量%、シクロヘキサノンオキシムの含有量は36.8質量%、ニトロシクロヘキサンの含有量は0.45質量%であった。
留分Aの2000gを、ジャケットと撹拌翼を備えた5リットルのSUS製タンクに入れて、10Torr、130℃の条件で減圧蒸留し、留分Bとして、949gを得た。留分Bに含まれるシクロヘキシルアミン、シクロヘキサノン、シクロヘキサノンオキシム、及びニトロシクロヘキサンの含有量を求めたところ、シクロヘキシルアミンの含有量は22.4質量%、シクロヘキサノンの含有量は0.30質量%、シクロヘキサノンオキシムの含有量は56.7質量%、ニトロシクロヘキサンの含有量は0.55質量%であった。
留分Bの900gを、ジャケット、撹拌翼、還流タイマーを備えた2Lセパラブルフラスコに仕込み、フラスコ上部に直径6mmのディクソンパッキンを充填した充填塔(内径30mm、高さ500mm)をセットして、50Torr、145℃、還流比5(還流タイマー開/閉=3秒/15秒)の条件で減圧蒸留し、250gを留出させて、セパラブルフラスコ内に残った留分Cとして、627gを得た。留分Cに含まれるシクロヘキシルアミン、シクロヘキサノン、シクロヘキサノンオキシム、及びニトロシクロヘキサンの含有量を求めたところ、シクロヘキシルアミンの含有量は4.16質量%、シクロヘキサノンの含有量は0.94質量%、シクロヘキサノンオキシムの含有量は84.6質量%、ニトロシクロヘキサンの含有量は0.26質量%であった。
2リットルの反応器に、留分C600gとn-ヘプタン溶媒290gを加えた。70℃まで昇温させてシクロヘキサノンオキシムを溶解させた後、得られた溶液を撹拌しながら4℃まで冷却した。析出したシクロヘキサノンオキシム結晶を濾過して回収した。このようにして得られたシクロヘキサノンオキシム結晶に、n-ヘプタン溶媒290gを加えて、0.1℃になるまで冷却撹拌し、濾過した。さらに、この結晶にn-ヘプタン溶媒290gを加えて、0.6℃になるまで冷却撹拌後、濾過した。次いで、質量比が1/1.44のメタノール/水混合溶媒370gを加えて、0.1℃になるまで冷却撹拌後、濾過した。得られた結晶に質量比が1/1.44のメタノール/水混合溶媒190gを加えて、2.6℃になるまで冷却撹拌し、濾過した。さらに、質量比が1/1.44のメタノール/水混合溶媒190gを加えて、3.7℃になるまで冷却撹拌し、濾過した後、水490gを加えて、3.5℃になるまで冷却撹拌し、濾過して、シクロヘキサノンオキシム結晶376g(収率74.1%)を得た。このようにして得られたシクロヘキサノンオキシム結晶を分析したところ、シクロヘキサノンオキシム純度は99.9%、不純物含量は、シクロヘキシルアミン、シクロヘキサノン及びニトロシクロヘキサンがいずれも検出限界以下、含水率が0.39%であった。 [Reference Example 3]
[Purification of Reaction Solution A]
5 kg of the reaction solution A is put into a 10-liter SUS tank equipped with a jacket and a stirring blade, and distilled under reduced pressure at 40 Torr and 90 ° C. to distill a distillate of 2710 g into the SUS tank. The remaining fraction A (2280 g) was obtained. When the contents of cyclohexylamine, cyclohexanone, cyclohexanone oxime and nitrocyclohexane contained in fraction A were determined, the content of cyclohexylamine was 21.9% by mass, the content of cyclohexanone was 2.14% by mass, and cyclohexanone oxime. The content of was 36.8% by mass, and the content of nitrocyclohexane was 0.45% by mass.
2000 g of fraction A was placed in a 5 liter SUS tank equipped with a jacket and a stirring blade and distilled under reduced pressure at 10 Torr and 130 ° C. to obtain 949 g as fraction B. When the contents of cyclohexylamine, cyclohexanone, cyclohexanone oxime and nitrocyclohexane contained in fraction B were determined, the content of cyclohexylamine was 22.4% by mass, the content of cyclohexanone was 0.30% by mass, and cyclohexanone oxime. The content of was 56.7% by mass, and the content of nitrocyclohexane was 0.55% by mass.
900 g of fraction B was charged into a 2 L separable flask equipped with a jacket, a stirring blade and a reflux timer, and a packed column (inner diameter 30 mm, height 500 mm) filled with Dixon packing with a diameter of 6 mm was set at the top of the flask. Distilling under reduced pressure under conditions of 50 Torr, 145 ° C., reflux ratio 5 (reflux timer open / closed = 3 seconds / 15 seconds), distilling 250 g to obtain 627 g as fraction C remaining in the separable flask. It was. The contents of cyclohexylamine, cyclohexanone, cyclohexanone oxime, and nitrocyclohexane contained in fraction C were determined. The content of cyclohexylamine was 4.16% by mass, the content of cyclohexanone was 0.94% by mass, and cyclohexanone oxime. The content of was 84.6% by mass, and the content of nitrocyclohexane was 0.26% by mass.
To a 2 liter reactor, 600 g of fraction C and 290 g of n-heptane solvent were added. After heating up to 70 degreeC and dissolving cyclohexanone oxime, the obtained solution was cooled to 4 degreeC, stirring. The precipitated cyclohexanone oxime crystals were collected by filtration. To the cyclohexanone oxime crystals thus obtained, 290 g of an n-heptane solvent was added, and the mixture was cooled and stirred until it reached 0.1 ° C. and filtered. Further, 290 g of n-heptane solvent was added to the crystals, and the mixture was cooled to 0.6 ° C., stirred and filtered. Next, 370 g of a methanol / water mixed solvent having a mass ratio of 1 / 1.44 was added, and the mixture was cooled and stirred until it reached 0.1 ° C., followed by filtration. 190 g of a methanol / water mixed solvent having a mass ratio of 1 / 1.44 was added to the obtained crystals, and the mixture was cooled and stirred until it reached 2.6 ° C., followed by filtration. Further, 190 g of a methanol / water mixed solvent having a mass ratio of 1 / 1.44 was added, and the mixture was cooled and stirred until it reached 3.7 ° C., filtered, and then added with 490 g of water and cooled to 3.5 ° C. The mixture was stirred and filtered to obtain 376 g (yield 74.1%) of cyclohexanone oxime crystals. When the cyclohexanone oxime crystals thus obtained were analyzed, the purity of cyclohexanone oxime was 99.9%, the impurity content was less than the detection limit for cyclohexylamine, cyclohexanone and nitrocyclohexane, and the water content was 0.39%. there were.
[反応液Aの精製]
反応液Aの5kgを、ジャケットと撹拌翼を備えた10リットルのSUS製タンクに入れて、40Torr、90℃の条件で減圧蒸留し、2710gの留分を留出させて、SUS製タンク内に残った留分A(2280g)を得た。留分Aに含まれるシクロヘキシルアミン、シクロヘキサノン、シクロヘキサノンオキシム、及びニトロシクロヘキサンの含有量を求めたところ、シクロヘキシルアミンの含有量は21.9質量%、シクロヘキサノンの含有量は2.14質量%、シクロヘキサノンオキシムの含有量は36.8質量%、ニトロシクロヘキサンの含有量は0.45質量%であった。
留分Aの2000gを、ジャケットと撹拌翼を備えた5リットルのSUS製タンクに入れて、10Torr、130℃の条件で減圧蒸留し、留分Bとして、949gを得た。留分Bに含まれるシクロヘキシルアミン、シクロヘキサノン、シクロヘキサノンオキシム、及びニトロシクロヘキサンの含有量を求めたところ、シクロヘキシルアミンの含有量は22.4質量%、シクロヘキサノンの含有量は0.30質量%、シクロヘキサノンオキシムの含有量は56.7質量%、ニトロシクロヘキサンの含有量は0.55質量%であった。
留分Bの900gを、ジャケット、撹拌翼、還流タイマーを備えた2Lセパラブルフラスコに仕込み、フラスコ上部に直径6mmのディクソンパッキンを充填した充填塔(内径30mm、高さ500mm)をセットして、50Torr、145℃、還流比5(還流タイマー開/閉=3秒/15秒)の条件で減圧蒸留し、250gを留出させて、セパラブルフラスコ内に残った留分Cとして、627gを得た。留分Cに含まれるシクロヘキシルアミン、シクロヘキサノン、シクロヘキサノンオキシム、及びニトロシクロヘキサンの含有量を求めたところ、シクロヘキシルアミンの含有量は4.16質量%、シクロヘキサノンの含有量は0.94質量%、シクロヘキサノンオキシムの含有量は84.6質量%、ニトロシクロヘキサンの含有量は0.26質量%であった。
2リットルの反応器に、留分C600gとn-ヘプタン溶媒290gを加えた。70℃まで昇温させてシクロヘキサノンオキシムを溶解させた後、得られた溶液を撹拌しながら4℃まで冷却した。析出したシクロヘキサノンオキシム結晶を濾過して回収した。このようにして得られたシクロヘキサノンオキシム結晶に、n-ヘプタン溶媒290gを加えて、0.1℃になるまで冷却撹拌し、濾過した。さらに、この結晶にn-ヘプタン溶媒290gを加えて、0.6℃になるまで冷却撹拌後、濾過した。次いで、質量比が1/1.44のメタノール/水混合溶媒370gを加えて、0.1℃になるまで冷却撹拌後、濾過した。得られた結晶に質量比が1/1.44のメタノール/水混合溶媒190gを加えて、2.6℃になるまで冷却撹拌し、濾過した。さらに、質量比が1/1.44のメタノール/水混合溶媒190gを加えて、3.7℃になるまで冷却撹拌し、濾過した後、水490gを加えて、3.5℃になるまで冷却撹拌し、濾過して、シクロヘキサノンオキシム結晶376g(収率74.1%)を得た。このようにして得られたシクロヘキサノンオキシム結晶を分析したところ、シクロヘキサノンオキシム純度は99.9%、不純物含量は、シクロヘキシルアミン、シクロヘキサノン及びニトロシクロヘキサンがいずれも検出限界以下、含水率が0.39%であった。 [Reference Example 3]
[Purification of Reaction Solution A]
5 kg of the reaction solution A is put into a 10-liter SUS tank equipped with a jacket and a stirring blade, and distilled under reduced pressure at 40 Torr and 90 ° C. to distill a distillate of 2710 g into the SUS tank. The remaining fraction A (2280 g) was obtained. When the contents of cyclohexylamine, cyclohexanone, cyclohexanone oxime and nitrocyclohexane contained in fraction A were determined, the content of cyclohexylamine was 21.9% by mass, the content of cyclohexanone was 2.14% by mass, and cyclohexanone oxime. The content of was 36.8% by mass, and the content of nitrocyclohexane was 0.45% by mass.
2000 g of fraction A was placed in a 5 liter SUS tank equipped with a jacket and a stirring blade and distilled under reduced pressure at 10 Torr and 130 ° C. to obtain 949 g as fraction B. When the contents of cyclohexylamine, cyclohexanone, cyclohexanone oxime and nitrocyclohexane contained in fraction B were determined, the content of cyclohexylamine was 22.4% by mass, the content of cyclohexanone was 0.30% by mass, and cyclohexanone oxime. The content of was 56.7% by mass, and the content of nitrocyclohexane was 0.55% by mass.
900 g of fraction B was charged into a 2 L separable flask equipped with a jacket, a stirring blade and a reflux timer, and a packed column (inner diameter 30 mm, height 500 mm) filled with Dixon packing with a diameter of 6 mm was set at the top of the flask. Distilling under reduced pressure under conditions of 50 Torr, 145 ° C., reflux ratio 5 (reflux timer open / closed = 3 seconds / 15 seconds), distilling 250 g to obtain 627 g as fraction C remaining in the separable flask. It was. The contents of cyclohexylamine, cyclohexanone, cyclohexanone oxime, and nitrocyclohexane contained in fraction C were determined. The content of cyclohexylamine was 4.16% by mass, the content of cyclohexanone was 0.94% by mass, and cyclohexanone oxime. The content of was 84.6% by mass, and the content of nitrocyclohexane was 0.26% by mass.
To a 2 liter reactor, 600 g of fraction C and 290 g of n-heptane solvent were added. After heating up to 70 degreeC and dissolving cyclohexanone oxime, the obtained solution was cooled to 4 degreeC, stirring. The precipitated cyclohexanone oxime crystals were collected by filtration. To the cyclohexanone oxime crystals thus obtained, 290 g of an n-heptane solvent was added, and the mixture was cooled and stirred until it reached 0.1 ° C. and filtered. Further, 290 g of n-heptane solvent was added to the crystals, and the mixture was cooled to 0.6 ° C., stirred and filtered. Next, 370 g of a methanol / water mixed solvent having a mass ratio of 1 / 1.44 was added, and the mixture was cooled and stirred until it reached 0.1 ° C., followed by filtration. 190 g of a methanol / water mixed solvent having a mass ratio of 1 / 1.44 was added to the obtained crystals, and the mixture was cooled and stirred until it reached 2.6 ° C., followed by filtration. Further, 190 g of a methanol / water mixed solvent having a mass ratio of 1 / 1.44 was added, and the mixture was cooled and stirred until it reached 3.7 ° C., filtered, and then added with 490 g of water and cooled to 3.5 ° C. The mixture was stirred and filtered to obtain 376 g (yield 74.1%) of cyclohexanone oxime crystals. When the cyclohexanone oxime crystals thus obtained were analyzed, the purity of cyclohexanone oxime was 99.9%, the impurity content was less than the detection limit for cyclohexylamine, cyclohexanone and nitrocyclohexane, and the water content was 0.39%. there were.
[実施例1]
参考例3で得られたシクロヘキサノンオキシム結晶を用いて、メタノール/シクロヘキサノンオキシム(シクロヘキサノンオキシム中の含水率=4.5wt%)=1.8/1(質量比)の混合物Aを調製した。固体触媒として、結晶性シリカからなるMFIゼオライト(Si/Al原子数比=147000)を主成分とする粒径0.3mm以下の粒子0.375gを、内径1cmの石英ガラス製反応管中に充填して固体触媒の層を形成し、4.2L/hでの窒素ガス流通下、340℃にて1時間予熱処理した。次に、4.2L/hでの窒素ガス流通下、メタノール/シクロヘキサノンオキシム(シクロヘキサノンオキシム中の含水率:4.5質量%)=1.8/1(質量比)の混合物を、8.4g/h(シクロヘキサノンオキシムのWHSV:8h-1)の供給速度で前記反応管に供給し、固体触媒の層の温度を380℃に保持しながら、20時間反応を行った。反応20時間において供したシクロヘキサノンオキシム,シクロヘキシルアミン、シクロヘキサノン及びニトロシクロヘキサンの質量は、以下の関係を満たした。
(a){[シクロヘキシルアミンの質量/シクロヘキサノンオキシムの質量]×100}=0
(b){[シクロヘキサノンの質量/シクロヘキサノンオキシムの質量]×100}=0
(c){[ニトロシクロヘキサンの質量/シクロヘキサノンオキシムの質量]×100}=0 [Example 1]
Using the cyclohexanone oxime crystal obtained in Reference Example 3, a mixture A of methanol / cyclohexanone oxime (water content in cyclohexanone oxime = 4.5 wt%) = 1.8 / 1 (mass ratio) was prepared. As a solid catalyst, 0.375 g of a particle having a particle size of 0.3 mm or less mainly composed of MFI zeolite made of crystalline silica (Si / Al atomic ratio = 147000) is packed in a quartz glass reaction tube having an inner diameter of 1 cm. Then, a solid catalyst layer was formed and pre-heated at 340 ° C. for 1 hour under a nitrogen gas flow of 4.2 L / h. Next, 8.4 g of a mixture of methanol / cyclohexanone oxime (water content in cyclohexanone oxime: 4.5 mass%) = 1.8 / 1 (mass ratio) under a nitrogen gas flow at 4.2 L / h. / H (cyclohexanone oxime WHSV: 8 h −1 ) was supplied to the reaction tube, and the reaction was carried out for 20 hours while maintaining the temperature of the solid catalyst layer at 380 ° C. The masses of cyclohexanone oxime, cyclohexylamine, cyclohexanone and nitrocyclohexane provided in the reaction for 20 hours satisfied the following relationship.
(A) {[mass of cyclohexylamine / mass of cyclohexanone oxime] × 100} = 0
(B) {[mass of cyclohexanone / mass of cyclohexanone oxime] × 100} = 0
(C) {[mass of nitrocyclohexane / mass of cyclohexanone oxime] × 100} = 0
参考例3で得られたシクロヘキサノンオキシム結晶を用いて、メタノール/シクロヘキサノンオキシム(シクロヘキサノンオキシム中の含水率=4.5wt%)=1.8/1(質量比)の混合物Aを調製した。固体触媒として、結晶性シリカからなるMFIゼオライト(Si/Al原子数比=147000)を主成分とする粒径0.3mm以下の粒子0.375gを、内径1cmの石英ガラス製反応管中に充填して固体触媒の層を形成し、4.2L/hでの窒素ガス流通下、340℃にて1時間予熱処理した。次に、4.2L/hでの窒素ガス流通下、メタノール/シクロヘキサノンオキシム(シクロヘキサノンオキシム中の含水率:4.5質量%)=1.8/1(質量比)の混合物を、8.4g/h(シクロヘキサノンオキシムのWHSV:8h-1)の供給速度で前記反応管に供給し、固体触媒の層の温度を380℃に保持しながら、20時間反応を行った。反応20時間において供したシクロヘキサノンオキシム,シクロヘキシルアミン、シクロヘキサノン及びニトロシクロヘキサンの質量は、以下の関係を満たした。
(a){[シクロヘキシルアミンの質量/シクロヘキサノンオキシムの質量]×100}=0
(b){[シクロヘキサノンの質量/シクロヘキサノンオキシムの質量]×100}=0
(c){[ニトロシクロヘキサンの質量/シクロヘキサノンオキシムの質量]×100}=0 [Example 1]
Using the cyclohexanone oxime crystal obtained in Reference Example 3, a mixture A of methanol / cyclohexanone oxime (water content in cyclohexanone oxime = 4.5 wt%) = 1.8 / 1 (mass ratio) was prepared. As a solid catalyst, 0.375 g of a particle having a particle size of 0.3 mm or less mainly composed of MFI zeolite made of crystalline silica (Si / Al atomic ratio = 147000) is packed in a quartz glass reaction tube having an inner diameter of 1 cm. Then, a solid catalyst layer was formed and pre-heated at 340 ° C. for 1 hour under a nitrogen gas flow of 4.2 L / h. Next, 8.4 g of a mixture of methanol / cyclohexanone oxime (water content in cyclohexanone oxime: 4.5 mass%) = 1.8 / 1 (mass ratio) under a nitrogen gas flow at 4.2 L / h. / H (cyclohexanone oxime WHSV: 8 h −1 ) was supplied to the reaction tube, and the reaction was carried out for 20 hours while maintaining the temperature of the solid catalyst layer at 380 ° C. The masses of cyclohexanone oxime, cyclohexylamine, cyclohexanone and nitrocyclohexane provided in the reaction for 20 hours satisfied the following relationship.
(A) {[mass of cyclohexylamine / mass of cyclohexanone oxime] × 100} = 0
(B) {[mass of cyclohexanone / mass of cyclohexanone oxime] × 100} = 0
(C) {[mass of nitrocyclohexane / mass of cyclohexanone oxime] × 100} = 0
反応を開始して20時間後、反応を終了し、シクロヘキサノンオキシムの反応率及びε-カプロラクタムの選択率を算出した。結果を表1に示す。
20 hours after starting the reaction, the reaction was completed, and the reaction rate of cyclohexanone oxime and the selectivity of ε-caprolactam were calculated. The results are shown in Table 1.
[実施例2]
表1に示すように、式(a)の値を0に代えて0.1としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 2]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 0.1 instead of 0.
表1に示すように、式(a)の値を0に代えて0.1としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 2]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 0.1 instead of 0.
[実施例3]
表1に示すように、式(a)の値を0に代えて0.5としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 3]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 0.5 instead of 0.
表1に示すように、式(a)の値を0に代えて0.5としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 3]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 0.5 instead of 0.
[実施例4]
表1に示すように、式(a)の値を0に代えて1.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 4]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 1.0 instead of 0.
表1に示すように、式(a)の値を0に代えて1.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 4]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 1.0 instead of 0.
[実施例5]
表1に示すように、式(a)の値を0に代えて2.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 5]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 2.0 instead of 0.
表1に示すように、式(a)の値を0に代えて2.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 5]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 2.0 instead of 0.
[実施例6]
表1に示すように、式(a)の値を0に代えて5.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 6]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 5.0 instead of 0.
表1に示すように、式(a)の値を0に代えて5.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 6]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 5.0 instead of 0.
[実施例7]
表1に示すように、式(b)の値を0に代えて1.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 7]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (b) was changed to 1.0 instead of 0.
表1に示すように、式(b)の値を0に代えて1.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 7]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (b) was changed to 1.0 instead of 0.
[実施例8]
表1に示すように、式(b)の値を0に代えて5.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 8]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (b) was changed to 5.0 instead of 0.
表1に示すように、式(b)の値を0に代えて5.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 8]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (b) was changed to 5.0 instead of 0.
[実施例9]
表1に示すように、式(b)の値を0に代えて10.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 9]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (b) was changed to 10.0 instead of 0.
表1に示すように、式(b)の値を0に代えて10.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 9]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (b) was changed to 10.0 instead of 0.
[実施例10]
表1に示すように、式(c)の値を0に代えて2.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 10]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of the formula (c) was 2.0 instead of 0.
表1に示すように、式(c)の値を0に代えて2.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 10]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of the formula (c) was 2.0 instead of 0.
[実施例11]
表1に示すように、式(c)の値を0に代えて10.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 11]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (c) was changed to 10.0 instead of 0.
表1に示すように、式(c)の値を0に代えて10.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 11]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (c) was changed to 10.0 instead of 0.
[実施例12]
表1に示すように、式(c)の値を0に代えて20.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 12]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (c) was changed to 20.0 instead of 0.
表1に示すように、式(c)の値を0に代えて20.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 12]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (c) was changed to 20.0 instead of 0.
[実施例13]
表1に示すように、式(a)の値を0に代えて5.0とし、式(b)の値を0に代えて5.0とし、式(c)の値を0に代えて15.0とした以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 13]
As shown in Table 1, the value of formula (a) is changed to 5.0 instead of 0, the value of formula (b) is changed to 5.0 instead of 0, and the value of formula (c) is changed to 0. Except for 15.0, ε-caprolactam was prepared in the same manner as in Example 1.
表1に示すように、式(a)の値を0に代えて5.0とし、式(b)の値を0に代えて5.0とし、式(c)の値を0に代えて15.0とした以外は、実施例1と同様にε-カプロラクタムを製造した。 [Example 13]
As shown in Table 1, the value of formula (a) is changed to 5.0 instead of 0, the value of formula (b) is changed to 5.0 instead of 0, and the value of formula (c) is changed to 0. Except for 15.0, ε-caprolactam was prepared in the same manner as in Example 1.
[比較例1]
表1に示すように、式(a)の値を0に代えて10.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Comparative Example 1]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 10.0 instead of 0.
表1に示すように、式(a)の値を0に代えて10.0としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。 [Comparative Example 1]
As shown in Table 1, ε-caprolactam was produced in the same manner as in Example 1 except that the value of formula (a) was changed to 10.0 instead of 0.
[比較例2]
表1に示すように、式(a)の値を0に代えて10.0とし、式(b)の値を0に代えて10.0とし、式(c)の値を0に代えて20.0とした以外は、実施例1と同様にε-カプロラクタムを製造した。 [Comparative Example 2]
As shown in Table 1, the value of the expression (a) is changed to 10.0, the value of the expression (b) is changed to 10.0, and the value of the expression (c) is changed to 0. Except for 20.0, ε-caprolactam was produced in the same manner as in Example 1.
表1に示すように、式(a)の値を0に代えて10.0とし、式(b)の値を0に代えて10.0とし、式(c)の値を0に代えて20.0とした以外は、実施例1と同様にε-カプロラクタムを製造した。 [Comparative Example 2]
As shown in Table 1, the value of the expression (a) is changed to 10.0, the value of the expression (b) is changed to 10.0, and the value of the expression (c) is changed to 0. Except for 20.0, ε-caprolactam was produced in the same manner as in Example 1.
実施例1~13においてはいずれも、優れた選択率及び反応率においてε-カプロラクタムを製造することができた。
一方、式(a)の値が10.0と高い比較例1においては、反応率は良好であるものの、選択率が低く、収率が低かった。また、シクロヘキサノンの前記質量百分率(b)の値が上昇することにより、また、式(a)~(c)の値が全て10.0又は20.0と高い比較例2においては、反応率及び選択率共に低下し、収率も低かった。 In each of Examples 1 to 13, ε-caprolactam could be produced with excellent selectivity and reaction rate.
On the other hand, in Comparative Example 1 where the value of the formula (a) was as high as 10.0, although the reaction rate was good, the selectivity was low and the yield was low. Further, in Comparative Example 2 in which the values of the mass percentage (b) of cyclohexanone are increased and the values of the formulas (a) to (c) are all as high as 10.0 or 20.0, the reaction rate and Both the selectivity and the yield were low.
一方、式(a)の値が10.0と高い比較例1においては、反応率は良好であるものの、選択率が低く、収率が低かった。また、シクロヘキサノンの前記質量百分率(b)の値が上昇することにより、また、式(a)~(c)の値が全て10.0又は20.0と高い比較例2においては、反応率及び選択率共に低下し、収率も低かった。 In each of Examples 1 to 13, ε-caprolactam could be produced with excellent selectivity and reaction rate.
On the other hand, in Comparative Example 1 where the value of the formula (a) was as high as 10.0, although the reaction rate was good, the selectivity was low and the yield was low. Further, in Comparative Example 2 in which the values of the mass percentage (b) of cyclohexanone are increased and the values of the formulas (a) to (c) are all as high as 10.0 or 20.0, the reaction rate and Both the selectivity and the yield were low.
本発明によれば、シクロヘキシルアミンを分子状酸素等で酸化して安価に合成できるシクロヘキサノンオキシムを用いても、転位反応における反応率及び選択率を極めて高水準に維持できるので、ε-カプロラクタムの更なる低コスト化が可能となる。
According to the present invention, even when cyclohexanone oxime that can be synthesized at low cost by oxidizing cyclohexylamine with molecular oxygen or the like can be used, the reaction rate and selectivity in the rearrangement reaction can be maintained at a very high level. The cost can be reduced.
Claims (5)
- ε-カプロラクタムを製造する方法であって、該方法は、
シクロヘキシルアミンを酸化することによってシクロヘキサノンオキシムを製造する工程(A)、及び
低級アルコールの存在下、固体触媒を用いた気相ベックマン転位反応によって、前記シクロヘキサノンオキシムからε-カプロラクタムを製造する工程(B)
を含み、
前記工程(B)において前記シクロヘキサノンオキシム中に含まれるシクロヘキシルアミンの量は、下記式(1):
(1)0≦{[シクロヘキシルアミンの質量/シクロヘキサノンオキシムの質量]×100}≦5.0
を満たす、方法。 A method of producing ε-caprolactam, the method comprising:
Step (A) for producing cyclohexanone oxime by oxidizing cyclohexylamine, and Step (B) for producing ε-caprolactam from cyclohexanone oxime by gas phase Beckmann rearrangement reaction using a solid catalyst in the presence of a lower alcohol.
Including
The amount of cyclohexylamine contained in the cyclohexanone oxime in the step (B) is represented by the following formula (1):
(1) 0 ≦ {[mass of cyclohexylamine / mass of cyclohexanone oxime] × 100} ≦ 5.0
Meet the way. - 前記工程(B)において前記シクロヘキサノンオキシム中に含まれるシクロヘキサノンの量は、下記式(2):
(2)0≦{[シクロヘキサノンの質量/シクロヘキサノンオキシムの質量]×100}≦5.0
を満たす、請求項1に記載の方法。 The amount of cyclohexanone contained in the cyclohexanone oxime in the step (B) is represented by the following formula (2):
(2) 0 ≦ {[mass of cyclohexanone / mass of cyclohexanone oxime] × 100} ≦ 5.0
The method of claim 1, wherein: - 前記工程(B)において前記シクロヘキサノンオキシム中に含まれるニトロシクロヘキサンの量は、下記式(3):
(3)0≦{[ニトロシクロヘキサンの質量/シクロヘキサノンオキシムの質量]×100}≦15
を満たす、請求項1又は2に記載の方法。 The amount of nitrocyclohexane contained in the cyclohexanone oxime in the step (B) is represented by the following formula (3):
(3) 0 ≦ {[mass of nitrocyclohexane / mass of cyclohexanone oxime] × 100} ≦ 15
The method according to claim 1 or 2, wherein: - 前記気相ベックマン転位反応によって得られる反応液に含まれるシクロヘキシリデンシクロヘキシルアミンを加水分解してシクロヘキシルアミンを回収する工程(C)をさらに含む、請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, further comprising a step (C) of hydrolyzing cyclohexylidenecyclohexylamine contained in a reaction solution obtained by the gas phase Beckmann rearrangement reaction to recover cyclohexylamine.
- 前記固体触媒はゼオライトである、請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the solid catalyst is zeolite.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-053398 | 2015-03-17 | ||
JP2015053398A JP2018076235A (en) | 2015-03-17 | 2015-03-17 | PRODUCTION METHOD OF ε-CAPROLACTAM |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016148200A1 true WO2016148200A1 (en) | 2016-09-22 |
Family
ID=56919139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/058354 WO2016148200A1 (en) | 2015-03-17 | 2016-03-16 | METHOD FOR PRODUCING ε-CAPROLACTAM |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2018076235A (en) |
TW (1) | TW201641487A (en) |
WO (1) | WO2016148200A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109206339A (en) * | 2017-06-29 | 2019-01-15 | 湘潭大学 | A kind of method that cyclohexylamine oxidation prepares cyclohexanone oxime |
CN110423206A (en) * | 2019-07-17 | 2019-11-08 | 天津大学 | The method of cyclohexanone oxime, cyclohexanone and toluene is separated from Ammoximation reaction product |
CN113292450A (en) * | 2021-06-23 | 2021-08-24 | 山东方明化工股份有限公司 | Refining and purifying method of cyclohexanone oxime |
CN114507170A (en) * | 2022-02-24 | 2022-05-17 | 江苏扬农化工集团有限公司 | Process for preparing caprolactam |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7277016B2 (en) * | 2018-10-29 | 2023-05-18 | 株式会社三共 | game machine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5657743A (en) * | 1979-10-17 | 1981-05-20 | Honsyu Kagaku Kogyo Kk | Purification of crude dicyclohexylamine |
JP2616088B2 (en) * | 1989-01-26 | 1997-06-04 | 住友化学工業株式会社 | Production method of ε-caprolactam |
JP2003212832A (en) * | 2001-11-13 | 2003-07-30 | Asahi Kasei Corp | Method for producing alicyclic oxime |
JP2005015382A (en) * | 2003-06-26 | 2005-01-20 | Asahi Kasei Chemicals Corp | Method for producing alicyclic oxime |
WO2014103850A1 (en) * | 2012-12-27 | 2014-07-03 | 住友化学株式会社 | Method for producing oxime |
-
2015
- 2015-03-17 JP JP2015053398A patent/JP2018076235A/en active Pending
-
2016
- 2016-03-15 TW TW105107963A patent/TW201641487A/en unknown
- 2016-03-16 WO PCT/JP2016/058354 patent/WO2016148200A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5657743A (en) * | 1979-10-17 | 1981-05-20 | Honsyu Kagaku Kogyo Kk | Purification of crude dicyclohexylamine |
JP2616088B2 (en) * | 1989-01-26 | 1997-06-04 | 住友化学工業株式会社 | Production method of ε-caprolactam |
JP2003212832A (en) * | 2001-11-13 | 2003-07-30 | Asahi Kasei Corp | Method for producing alicyclic oxime |
JP2005015382A (en) * | 2003-06-26 | 2005-01-20 | Asahi Kasei Chemicals Corp | Method for producing alicyclic oxime |
WO2014103850A1 (en) * | 2012-12-27 | 2014-07-03 | 住友化学株式会社 | Method for producing oxime |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109206339A (en) * | 2017-06-29 | 2019-01-15 | 湘潭大学 | A kind of method that cyclohexylamine oxidation prepares cyclohexanone oxime |
CN109206339B (en) * | 2017-06-29 | 2021-04-27 | 湘潭大学 | Method for preparing cyclohexanone oxime by oxidizing cyclohexylamine |
CN110423206A (en) * | 2019-07-17 | 2019-11-08 | 天津大学 | The method of cyclohexanone oxime, cyclohexanone and toluene is separated from Ammoximation reaction product |
CN110423206B (en) * | 2019-07-17 | 2022-07-08 | 天津大学 | Method for separating cyclohexanone oxime, cyclohexanone and toluene from ammoximation reaction product |
CN113292450A (en) * | 2021-06-23 | 2021-08-24 | 山东方明化工股份有限公司 | Refining and purifying method of cyclohexanone oxime |
CN114507170A (en) * | 2022-02-24 | 2022-05-17 | 江苏扬农化工集团有限公司 | Process for preparing caprolactam |
CN114507170B (en) * | 2022-02-24 | 2024-06-04 | 江苏扬农化工集团有限公司 | Process for preparing caprolactam |
Also Published As
Publication number | Publication date |
---|---|
JP2018076235A (en) | 2018-05-17 |
TW201641487A (en) | 2016-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016148200A1 (en) | METHOD FOR PRODUCING ε-CAPROLACTAM | |
US7449600B2 (en) | Process for producing cyclohexanone oxime | |
KR20160029021A (en) | Method for producing 2,3,5-trimethyl benzoquinone by oxidation of 2,3,6-trimethylphenol | |
EP0380364A2 (en) | Process for producing epsilon-caprolactam | |
JP2616088B2 (en) | Production method of ε-caprolactam | |
JP6251821B2 (en) | Acetonitrile production method | |
JP6004884B2 (en) | Method for producing ε-caprolactam | |
EP1695958B1 (en) | Method for producing chlorosulfonyl isocyanate | |
JP2676895B2 (en) | Process for producing ε-caprolactam | |
WO1997003956A1 (en) | PROCESS FOR THE PREPARATION OF ε-CAPROLACTAM | |
WO2018128960A1 (en) | A process for the preparation of adipic acid | |
CA2505359C (en) | Method for purifying caprolactam | |
JP3969078B2 (en) | Method for producing pentasil-type zeolite and method for producing ε-caprolactam | |
EP3277664B1 (en) | An efficient process for the synthesis of cyclic amides | |
US7217818B2 (en) | Purification of caprolactam | |
JP2003012646A (en) | Method for distillation of 2-(4-pyridyl)ethanethiol | |
JP2003040854A (en) | Method for chlorosulfonyl isocyanate production | |
US20030114664A1 (en) | Method for producing cyclic lactams | |
WO2015009963A1 (en) | Two-step system and method for the production of methyl isobutyl ketone | |
JPH05148223A (en) | Production of epsilon-caprolactam | |
JP4239288B2 (en) | Method for producing ε-caprolactam | |
JPH07165624A (en) | Production of 1,3-cyclohexadiene | |
JPH0931052A (en) | Production of epsilon-caprolactam | |
JPH08193061A (en) | Production of epsilon-caprolactam | |
JPH07247232A (en) | Production of cycloalkanol or cycloalkanone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16765029 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16765029 Country of ref document: EP Kind code of ref document: A1 |