WO2016148144A1 - Rubber composition and tire - Google Patents

Rubber composition and tire Download PDF

Info

Publication number
WO2016148144A1
WO2016148144A1 PCT/JP2016/058163 JP2016058163W WO2016148144A1 WO 2016148144 A1 WO2016148144 A1 WO 2016148144A1 JP 2016058163 W JP2016058163 W JP 2016058163W WO 2016148144 A1 WO2016148144 A1 WO 2016148144A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rubber
nitrone
modified polymer
mass
Prior art date
Application number
PCT/JP2016/058163
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 学
亮太 高橋
隆裕 岡松
美昭 桐野
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2016549810A priority Critical patent/JPWO2016148144A1/en
Publication of WO2016148144A1 publication Critical patent/WO2016148144A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Definitions

  • the present invention relates to a rubber composition and a tire.
  • Patent Document 1 a rubber composition containing a modified polymer using a compound having a nitrone group (nitrone compound) as a modifier is known as a rubber composition used for tires and the like.
  • a rubber composition used for tires and the like includes a rubber composition in which 10 to 120 parts by weight of silica is blended with 100 parts by weight of a diene rubber containing 5 to 100% by weight of a modified butadiene rubber, Is a rubber composition obtained by modifying a butadiene rubber having a cis content of 90% or more with a nitrone compound having a nitrogen-containing heterocyclic ring in the molecule.
  • Patent Document 1 shows that heat generation is reduced by using the rubber composition described in Patent Document 1.
  • an object of the present invention is to provide a rubber composition excellent in rigidity, toughness and low heat build-up after vulcanization, and a tire using the rubber composition.
  • the present inventors have found that the above problems can be solved by using a nitrone compound having an acetal structure as a modifying agent, and have reached the present invention. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • the diene rubber includes a modified polymer obtained by reacting a nitrone compound with a double bond of a conjugated diene polymer,
  • the nitrone compound is a nitrone compound having an acetal structure,
  • the content of the modified polymer in the diene rubber is 8 to 100% by mass,
  • a rubber composition, wherein the content of silica is 25 to 130 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the rubber composition according to (1), wherein the nitrone compound is N-phenyl- ⁇ - (3,4-methylenebisoxyphenyl) nitrone.
  • the modification rate represents the ratio (mol%) modified by the nitrone compound among all the double bonds derived from the conjugated diene of the conjugated diene polymer.
  • the amount of the nitrone compound reacted with respect to the double bond of the conjugated diene polymer is 0.1 to 10 parts by mass with respect to 100 parts by mass of the diene rubber.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the rubber composition of the present invention contains a diene rubber and silica.
  • the diene rubber includes a modified polymer obtained by reacting a nitrone compound with a double bond of a conjugated diene polymer, the nitrone compound is a nitrone compound having an acetal structure, and the diene rubber
  • the content of the modified polymer is 8 to 100% by mass
  • the content of the silica is 25 to 130 parts by mass with respect to 100 parts by mass of the diene rubber. Since the composition of this invention takes such a structure, it is thought that it is excellent in the rigidity after a vulcanization, toughness, and low exothermic property. The reason is not clear, but it is presumed that it is as follows.
  • the composition of the present invention contains a modified polymer obtained by reacting a nitrone compound with a double bond of a conjugated diene polymer. Therefore, the nitrone residue (modified nitrone group) in the modified polymer interacts with the silica in the composition to form a dense and homogeneous network between the silica and the polymer, resulting in improved rigidity and toughness. It is considered a thing. Moreover, since a homogeneous structure is formed as described above, it is considered that energy loss is reduced and low heat build-up is improved. Here, if the interaction between the nitrone compound and silica is too strong, the balance between rigidity and toughness is reduced.
  • the nitrone compound having an acetal structure is used as the nitrone compound, It is considered that the interaction is adjusted to an appropriate size by the acetal structure, and as a result, the balance between rigidity and toughness is ensured.
  • the diene rubber contained in the composition of the present invention includes a modified polymer obtained by reacting a nitrone compound with a double bond of a conjugated diene polymer.
  • the nitrone compound has an acetal structure.
  • the content of the modified polymer in the diene rubber is 8 to 100% by mass.
  • the diene rubber may contain a rubber component other than the modified polymer.
  • the rubber component is not particularly limited, but natural rubber, isoprene rubber (IR), butadiene rubber (BR), aromatic vinyl-conjugated diene copolymer rubber (for example, styrene butadiene rubber (SBR)), acrylonitrile-butadiene.
  • Examples thereof include copolymer rubber (NBR), butyl rubber (IIR), halogenated butyl rubber (Br-IIR, Cl-IIR), and chloroprene rubber (CR). Of these, butadiene rubber (BR) and styrene butadiene rubber (SBR) are preferable.
  • the modified polymer is a modified polymer obtained by reacting a nitrone compound having an acetal structure (hereinafter also referred to as “acetal nitrone”) with a double bond of a conjugated diene polymer.
  • acetal nitrone a nitrone compound having an acetal structure
  • the conjugated diene polymer used in the production of the modified polymer is not particularly limited, and natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), aromatic vinyl-conjugated diene copolymer rubber (for example, styrene)
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • aromatic vinyl-conjugated diene copolymer rubber for example, styrene
  • SBR butadiene rubber
  • NBR butyl rubber
  • IIR acrylonitrile-butadiene copolymer rubber
  • Br-IIR halogenated butyl rubber
  • Cl-IIR chloroprene rubber
  • CR chloroprene rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • the modified polymer is preferably a modified polymer obtained by reacting a nitrone compound with a double bond of sty
  • the nitrone compound used for the production of the modified polymer is not particularly limited as long as it is a nitrone compound having an acetal structure (acetal nitrone).
  • the nitrone compound refers to a compound having a nitrone group represented by the following formula (1).
  • the acetal nitrone is preferably a compound represented by the following formula (2).
  • X and Y each independently represent an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or an aromatic heterocyclic group that may have an acetal structure. However, at least one of X and Y has an acetal structure (preferably, it has an acetal structure as a substituent).
  • the aliphatic hydrocarbon group include an alkyl group, a cycloalkyl group, and an alkenyl group.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, Examples thereof include a tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, n-hexyl group, n-heptyl group, and n-octyl group.
  • alkyl groups having 1 to 6 carbon atoms are more preferred.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, etc. Among them, a cycloalkyl group having 3 to 10 carbon atoms is preferable, and a cycloalkyl group having 3 to 6 carbon atoms is preferable. More preferred.
  • Examples of the alkenyl group include a vinyl group, a 1-propenyl group, an allyl group, an isopropenyl group, a 1-butenyl group, and a 2-butenyl group. Among them, an alkenyl group having 2 to 18 carbon atoms is preferable.
  • An alkenyl group having 2 to 6 carbon atoms is more preferable.
  • the aromatic hydrocarbon group include an aryl group and an aralkyl group.
  • the aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. Among them, an aryl group having 6 to 14 carbon atoms is preferable, and an aryl group having 6 to 10 carbon atoms is more preferable.
  • a phenyl group and a naphthyl group are more preferable.
  • the aralkyl group include a benzyl group, a phenethyl group, and a phenylpropyl group.
  • an aralkyl group having 7 to 13 carbon atoms is preferable, an aralkyl group having 7 to 11 carbon atoms is more preferable, and a benzyl group is preferable.
  • the aromatic heterocyclic group include pyrrolyl group, furyl group, thienyl group, pyrazolyl group, imidazolyl group (imidazole group), oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, pyridyl group (pyridine group), furan Group, thiophene group, pyridazinyl group, pyrimidinyl group, pyrazinyl group and the like.
  • the acetal structure represents a structure represented by the following formula (A).
  • R 1 to R 4 each independently represents a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group obtained by combining these.
  • the aliphatic hydrocarbon group may be linear, branched or cyclic.
  • Specific examples of the aliphatic hydrocarbon group include a linear or branched alkyl group (particularly 1 to 30 carbon atoms), a linear or branched alkenyl group (particularly 2 to 30 carbon atoms), Examples thereof include a linear or branched alkynyl group (particularly 2 to 30 carbon atoms).
  • the aromatic hydrocarbon group include aromatic hydrocarbon groups having 6 to 18 carbon atoms such as a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
  • n-valent group obtained by removing n is an integer of 1 or more hydrogen atoms from the structure represented by the above formula (A). To do.
  • a preferred embodiment of acetal nitrone includes a compound represented by the following formula (A1).
  • R 1 to R 2 and R 4 each independently represents a hydrogen atom or a hydrocarbon group. Specific examples and preferred embodiments of R 1 to R 2 and R 4 are the same as R 1 to R 4 in formula (A) described above.
  • R 4 may be bonded to a benzene ring to which L is bonded to form a ring.
  • L represents a single bond or a divalent hydrocarbon group. Examples of the divalent hydrocarbon group include a divalent hydrocarbon group obtained by removing one hydrogen atom from the above-described hydrocarbon group.
  • the compound represented by the formula (A1) is preferably a compound represented by the following formula (A2).
  • the compound represented by the following formula (A2) corresponds to an embodiment in which R 4 in the above formula (A1) is bonded to a benzene ring to which L is bonded to form a ring.
  • R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group.
  • R 1 ⁇ R 2 are the same as R 1 ⁇ R 4 in the above-mentioned formula (A).
  • L represents a single bond or a divalent hydrocarbon group.
  • Specific examples and preferred embodiments of L are the same as L in Formula (A1) described above. Plural Ls may be the same or different.
  • the compound represented by the above formula (A2) is preferably a compound represented by the following formula (A3).
  • the compound represented by the following formula (A3) corresponds to an embodiment in which L in the above formula (A2) is a single bond and is bonded to the 3rd and 4th positions of the benzene ring.
  • R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group. Specific examples and preferred embodiments of R 1 ⁇ R 2 are the same as R 1 ⁇ R 4 in the above-mentioned formula (A).
  • Examples of the compound represented by the formula (A3) include N-phenyl- ⁇ - (3,4-methylenebisoxyphenyl) nitrone (an embodiment in which R 1 and R 2 in the formula (A3) are hydrogen atoms). Is mentioned.
  • the method for synthesizing the acetal nitrone is not particularly limited, and a conventionally known method can be used.
  • a compound having a hydroxyamino group (—NHOH), a compound having an aldehyde group (—CHO) and an acetal structure (for example, piperonal represented by the formula (b) described later) a hydroxyamino group and an aldehyde group
  • an organic solvent eg, methanol, ethanol, tetrahydrofuran, etc.
  • a method for producing a modified polymer by reacting an acetal nitrone with a double bond of a conjugated diene polymer is not particularly limited.
  • the above-described conjugated diene polymer and the above-described nitrone compound are heated at 100 to 200 ° C. And mixing for 1 to 30 minutes.
  • a cycloaddition reaction takes place, giving a five-membered ring.
  • the following formula (4-1) represents a reaction between a 1,4-bond and a nitrone group
  • the following formula (4-2) represents a reaction between a 1,2-vinyl bond and a nitrone group.
  • Formulas (4-1) and (4-2) represent reactions when butadiene is 1,3-butadiene, but when butadiene is other than 1,3-butadiene, Give a ring.
  • the amount of acetal nitrone reacted with respect to the double bond of the conjugated diene polymer is preferably 0.1 to 10 parts by mass, and 0.3 to 5 parts by mass with respect to 100 parts by mass of the diene rubber. More preferably, the amount is 1 to 3 parts by mass.
  • the modification rate of the modified polymer is not particularly limited, but is preferably 0.02 to 4.0 mol%, and more preferably 0.10 to 2.0 mol%.
  • the modification rate represents the ratio (mol%) modified by the nitrone compound among all the double bonds derived from the conjugated diene (conjugated diene diene unit) of the conjugated diene polymer. Is butadiene (1,3-butadiene), it represents the ratio (mol%) in which the structure of the above formula (4-1) or the above formula (4-2) is formed by modification with a nitrone compound.
  • the modification rate can be determined, for example, by performing NMR measurement of the conjugated diene polymer and modified polymer (that is, the polymer before and after modification). In the present specification, a modified polymer having a modification rate of 100 mol% also corresponds to a diene rubber.
  • the content of the modified polymer in the diene rubber is 8 to 100% by mass. In particular, the content is more preferably 20 to 80% by mass, and more preferably 30 to 50% by mass.
  • the composition of the present invention contains silica. Although the said silica in particular is not restrict
  • the content of silica is 25 to 130 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the amount is more preferably 40 to 100 parts by mass.
  • the composition of this invention can contain an additive further in the range which does not impair the effect and objective as needed.
  • the additive include fillers other than silica (for example, carbon black), silane coupling agents, zinc oxide (zinc white), stearic acid, adhesive resins, peptizers, anti-aging agents, waxes, Various additives generally used in rubber compositions such as processing aids, aroma oils, liquid polymers, terpene resins, thermosetting resins, vulcanizing agents (for example, sulfur), and vulcanization accelerators can be mentioned. .
  • the production method of the composition of the present invention is not particularly limited, and specific examples thereof include, for example, kneading the above-described components using a known method and apparatus (for example, a Banbury mixer, a kneader, a roll, etc.). The method etc. are mentioned.
  • a known method and apparatus for example, a Banbury mixer, a kneader, a roll, etc.
  • the method etc. are mentioned.
  • the composition of the present invention contains sulfur or a vulcanization accelerator, components other than sulfur and the vulcanization accelerator are first mixed at a high temperature (preferably 80 to 140 ° C.) and cooled, and then sulfur or It is preferable to mix a vulcanization accelerator.
  • the composition of the present invention can be vulcanized or crosslinked under conventionally known vulcanization or crosslinking conditions.
  • composition of the present invention is suitably used for tires (preferably cap tread portions).
  • the tire of the present invention is a tire using the above-described composition of the present invention. Especially, it is preferable that it is a pneumatic tire which used the composition of this invention for the tire tread part (cap tread part).
  • FIG. 1 shows a schematic partial sectional view of a tire representing an example of an embodiment of the tire of the present invention, but the tire of the present invention is not limited to the embodiment shown in FIG.
  • reference numeral 1 represents a bead portion
  • reference numeral 2 represents a sidewall portion
  • reference numeral 3 represents a tire tread portion
  • a carcass layer 4 in which fiber cords are embedded is mounted between the pair of left and right bead portions 1, and the end of the carcass layer 4 extends from the inside of the tire to the outside around the bead core 5 and the bead filler 6. Wrapped and rolled up.
  • a belt layer 7 is disposed over the circumference of the tire on the outside of the carcass layer 4.
  • the rim cushion 8 is arrange
  • the tire tread portion 3 is formed of the above-described composition of the present invention.
  • the tire of the present invention can be manufactured, for example, according to a conventionally known method. Moreover, as gas with which a tire is filled, inert gas, such as nitrogen, argon, helium other than the air which adjusted normal or oxygen partial pressure, can be used.
  • inert gas such as nitrogen, argon, helium other than the air which adjusted normal or oxygen partial pressure
  • Modified Polymer 1 ⁇ Synthesis of Modified Polymer (Modified Polymer 1)> SBR (Nipol 1502 manufactured by Nippon Zeon Co., Ltd.) was charged into a Banbury mixer at 120 ° C. and masticated for 2 minutes. Thereafter, 1.22 parts by mass of the acetal nitrone synthesized as described above was added to 100 parts by mass of SBR and mixed at 160 ° C. for 5 minutes to modify SBR with acetal nitrone. The resulting modified polymer is referred to as modified polymer 1. The obtained modified polymer 1 was subjected to NMR measurement to obtain a modification rate. The modification rate of the modified polymer 1 was 0.32 mol%.
  • Modified Polymer 2 ⁇ Synthesis of Modified Polymer (Modified Polymer 2)> Instead of charging 1.22 parts by mass of acetal nitrone, SBR was modified with acetal nitrone according to the same procedure as modified polymer 1 except that 3.65 parts by mass was added. The resulting modified polymer is referred to as modified polymer 2. The obtained modified polymer 2 was subjected to NMR measurement to determine the modification rate. The modification rate of the modified polymer 2 was 0.96 mol%.
  • SBR was modified with pyridyl nitrone according to the same procedure as modified polymer 1 except that 3.65 parts by mass of pyridyl nitrone synthesized as described above was used instead of acetal nitrone.
  • the obtained SBR modified with pyridyl nitrone is referred to as comparative modified polymer 2.
  • the obtained comparative modified polymer 2 was subjected to NMR measurement to determine the modification rate.
  • the modification rate of the comparative modified polymer 2 was 0.81 mol%.
  • the nitrone amount converted value represents the part by mass of the nitrone compound used for the synthesis of the modified polymer or the comparatively modified polymer with respect to 100 parts by mass of the diene rubber.
  • the modification rate represents the modification rate of the modified polymer described above.
  • Zinc flower Zinc flower No. 3 (manufactured by Shodo Chemical Co., Ltd.)
  • Sulfur Oil-treated sulfur (manufactured by Karuizawa Refinery)
  • Vulcanization accelerator CZ Noxeller CZ-G (Ouchi Shinko Chemical Co., Ltd.)
  • Vulcanization accelerator DPG Soxinol DG: (Sumitomo Chemical Co., Ltd.)
  • Examples 1 and 2 containing a modified polymer obtained by reacting acetal nitrone with a double bond of a conjugated diene polymer showed excellent rigidity, toughness and low heat build-up. It was. Among them, Example 2 in which the modification rate of the modified polymer was 0.50 mol% or more showed more excellent rigidity, toughness, and low exothermic property.
  • Comparative Examples 1 to 3 which do not contain a modified polymer obtained by reacting an acetal nitrone with a double bond of a conjugated diene polymer, are insufficient in at least one of rigidity, toughness and low exothermic property. there were.

Abstract

The purpose of the present invention is to provide a rubber composition having excellent low exothermic properties and rigidity and toughness after vulcanization, and a tire which uses the rubber composition. This rubber composition contains a diene rubber and silica, the diene rubber including a modified polymer obtained by reacting a nitrone compound with double bonds of a conjugated diene polymer, the nitrone compound being a nitrone compound having an acetal structure, the content of the modified polymer in the diene rubber being 8-100% by mass, and the silica content being 25-130 parts by mass with respect to 100 parts by mass of the diene rubber.

Description

ゴム組成物およびタイヤRubber composition and tire
 本発明は、ゴム組成物およびタイヤに関する。 The present invention relates to a rubber composition and a tire.
 従来、タイヤ等に用いられるゴム組成物として、ニトロン基を有する化合物(ニトロン化合物)を変性剤として用いた変性ポリマーを含有するゴム組成物が知られている。
 例えば、特許文献1の請求項1には、「変性ブタジエンゴムを5~100重量%含むジエン系ゴム100重量部にシリカを10~120重量部配合したゴム組成物であって、前記変性ブタジエンゴムが、シス含量が90%以上のブタジエンゴムを、窒素含有複素環を分子中に有するニトロン化合物で変性したものであることを特徴とするゴム組成物。」が開示されている。特許文献1には、特許文献1に記載のゴム組成物を用いることで発熱性が低減することが示されている。
Conventionally, a rubber composition containing a modified polymer using a compound having a nitrone group (nitrone compound) as a modifier is known as a rubber composition used for tires and the like.
For example, claim 1 of Patent Document 1 includes a rubber composition in which 10 to 120 parts by weight of silica is blended with 100 parts by weight of a diene rubber containing 5 to 100% by weight of a modified butadiene rubber, Is a rubber composition obtained by modifying a butadiene rubber having a cis content of 90% or more with a nitrone compound having a nitrogen-containing heterocyclic ring in the molecule. Patent Document 1 shows that heat generation is reduced by using the rubber composition described in Patent Document 1.
特開2013-32471号公報JP 2013-32471 A
 昨今、環境問題などの観点から、燃費の向上が求められ、それに伴い、さらなる発熱性の低減が求められている。また、タイヤに対する耐久性の要求水準が高まるなか、ゴム組成物に対して、加硫後の剛性や靭性のさらなる向上が求められている。
 このようななか、本発明者らが特許文献1に記載のゴム組成物について検討したところ、その低発熱性は昨今要求されるレベルを必ずしも満たすものではないこと明らかになった。
Recently, from the viewpoint of environmental problems and the like, improvement in fuel efficiency is required, and accordingly, further reduction in heat generation is required. Further, as the required level of durability for tires increases, further improvements in rigidity and toughness after vulcanization are required for rubber compositions.
Under these circumstances, the present inventors examined the rubber composition described in Patent Document 1 and found that its low heat build-up does not necessarily satisfy the level required recently.
 そこで、本発明は、上記実情を鑑みて、加硫後の剛性、靭性および低発熱性に優れたゴム組成物、ならびに、そのゴム組成物を使用したタイヤを提供することを目的とする。 Therefore, in view of the above circumstances, an object of the present invention is to provide a rubber composition excellent in rigidity, toughness and low heat build-up after vulcanization, and a tire using the rubber composition.
 本発明者らは、上記課題について鋭意検討した結果、アセタール構造を有するニトロン化合物を変性剤として使用することで上記課題が解決できることを見出し、本発明に至った。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
As a result of intensive studies on the above problems, the present inventors have found that the above problems can be solved by using a nitrone compound having an acetal structure as a modifying agent, and have reached the present invention.
That is, the present inventors have found that the above problem can be solved by the following configuration.
(1) ジエン系ゴムと、シリカとを含有し、
 上記ジエン系ゴムが、共役ジエン重合体の二重結合に対してニトロン化合物を反応させることで得られる変性ポリマーを含み、
 上記ニトロン化合物が、アセタール構造を有するニトロン化合物であり、
 上記ジエン系ゴム中の上記変性ポリマーの含有量が、8~100質量%であり、
 上記シリカの含有量が、上記ジエン系ゴム100質量部に対して、25~130質量部である、ゴム組成物。
(2) 上記ニトロン化合物が、N-フェニル-α-(3,4-メチレンビスオキシフェニル)ニトロンである、上記(1)に記載のゴム組成物。
(3) 上記変性ポリマーの変性率が、0.02~4.0mol%である、上記(1)または(2)に記載のゴム組成物。ここで、変性率は、上記共役ジエン重合体が有する共役ジエンに由来する全ての二重結合のうち、上記ニトロン化合物によって変性された割合(mol%)を表す。
(4) 上記共役ジエン重合体の二重結合に対して反応させる上記ニトロン化合物の量が、上記ジエン系ゴム100質量部に対して、0.1~10質量部である、上記(1)~(3)のいずれかに記載のゴム組成物。
(5) 上記(1)~(4)のいずれかに記載のゴム組成物を用いて製造したタイヤ。
(1) containing a diene rubber and silica,
The diene rubber includes a modified polymer obtained by reacting a nitrone compound with a double bond of a conjugated diene polymer,
The nitrone compound is a nitrone compound having an acetal structure,
The content of the modified polymer in the diene rubber is 8 to 100% by mass,
A rubber composition, wherein the content of silica is 25 to 130 parts by mass with respect to 100 parts by mass of the diene rubber.
(2) The rubber composition according to (1), wherein the nitrone compound is N-phenyl-α- (3,4-methylenebisoxyphenyl) nitrone.
(3) The rubber composition according to the above (1) or (2), wherein the modification rate of the modified polymer is 0.02 to 4.0 mol%. Here, the modification rate represents the ratio (mol%) modified by the nitrone compound among all the double bonds derived from the conjugated diene of the conjugated diene polymer.
(4) The amount of the nitrone compound reacted with respect to the double bond of the conjugated diene polymer is 0.1 to 10 parts by mass with respect to 100 parts by mass of the diene rubber. The rubber composition according to any one of (3).
(5) A tire manufactured using the rubber composition according to any one of (1) to (4) above.
 以下に示すように、本発明によれば、加硫後の剛性、靭性および低発熱性に優れたゴム組成物、ならびに、そのゴム組成物を使用したタイヤを提供することができる。 As described below, according to the present invention, it is possible to provide a rubber composition excellent in rigidity, toughness and low heat build-up after vulcanization, and a tire using the rubber composition.
本発明のタイヤの実施態様の一例を表すタイヤの部分断面概略図である。It is a partial section schematic diagram of the tire showing an example of an embodiment of a tire of the present invention.
 以下に、本発明のゴム組成物、および、本発明のゴム組成物を使用したタイヤについて説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Below, the rubber composition of this invention and the tire which used the rubber composition of this invention are demonstrated.
In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[ゴム組成物]
 本発明のゴム組成物(以下、本発明の組成物とも言う)は、ジエン系ゴムと、シリカとを含有する。ここで、上記ジエン系ゴムは共役ジエン重合体の二重結合に対してニトロン化合物を反応させることで得られる変性ポリマーを含み、上記ニトロン化合物はアセタール構造を有するニトロン化合物であり、上記ジエン系ゴム中の上記変性ポリマーの含有量は8~100質量%であり、上記シリカの含有量は上記ジエン系ゴム100質量部に対して25~130質量部である。
 本発明の組成物はこのような構成をとるため、加硫後の剛性、靭性および低発熱性に優れるものと考えられる。その理由は明らかではないが、およそ以下のとおりと推測される。
[Rubber composition]
The rubber composition of the present invention (hereinafter also referred to as the composition of the present invention) contains a diene rubber and silica. Here, the diene rubber includes a modified polymer obtained by reacting a nitrone compound with a double bond of a conjugated diene polymer, the nitrone compound is a nitrone compound having an acetal structure, and the diene rubber The content of the modified polymer is 8 to 100% by mass, and the content of the silica is 25 to 130 parts by mass with respect to 100 parts by mass of the diene rubber.
Since the composition of this invention takes such a structure, it is thought that it is excellent in the rigidity after a vulcanization, toughness, and low exothermic property. The reason is not clear, but it is presumed that it is as follows.
 本発明の組成物は、上述のとおり、共役ジエン重合体の二重結合に対してニトロン化合物を反応させることで得られる変性ポリマーを含有する。そのため、変性ポリマー中のニトロン残基(変性後のニトロン基)が組成物中のシリカと相互作用し、シリカとポリマーとの緻密かつ均質なネットワークが形成され、結果として、剛性および靭性が向上するものと考えられる。また、上述のとおり、均質な構造が形成されるため、エネルギーロスが低下し、低発熱性が向上するものと考えられる。
 ここで、ニトロン化合物とシリカとの相互作用が強すぎると、剛性と靭性のバランスが低下してしまうところ、本発明では上記ニトロン化合物としてアセタール構造を有するニトロン化合物を使用するため、ニトロン化合物中の上記アセタール構造によって相互作用が適度な大きさに調整され、結果として、剛性と靭性のバランスが担保されているものと考えられる。
As described above, the composition of the present invention contains a modified polymer obtained by reacting a nitrone compound with a double bond of a conjugated diene polymer. Therefore, the nitrone residue (modified nitrone group) in the modified polymer interacts with the silica in the composition to form a dense and homogeneous network between the silica and the polymer, resulting in improved rigidity and toughness. It is considered a thing. Moreover, since a homogeneous structure is formed as described above, it is considered that energy loss is reduced and low heat build-up is improved.
Here, if the interaction between the nitrone compound and silica is too strong, the balance between rigidity and toughness is reduced. In the present invention, since the nitrone compound having an acetal structure is used as the nitrone compound, It is considered that the interaction is adjusted to an appropriate size by the acetal structure, and as a result, the balance between rigidity and toughness is ensured.
〔ジエン系ゴム〕
 本発明の組成物に含有されるジエン系ゴムは、共役ジエン重合体の二重結合に対してニトロン化合物を反応させることで得られる変性ポリマーを含む。ここで、上記ニトロン化合物はアセタール構造を有する。また、上記ジエン系ゴム中の上記変性ポリマーの含有量は8~100質量%である。
 なお、上記ジエン系ゴムは上記変性ポリマー以外のゴム成分を含んでいてもよい。そのようなゴム成分としては特に制限されないが、天然ゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、芳香族ビニル-共役ジエン共重合ゴム(例えば、スチレンブタジエンゴム(SBR))、アクリロニトリル-ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br-IIR、Cl-IIR)、クロロプレンゴム(CR)などが挙げられる。なかでも、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)が好ましい。
[Diene rubber]
The diene rubber contained in the composition of the present invention includes a modified polymer obtained by reacting a nitrone compound with a double bond of a conjugated diene polymer. Here, the nitrone compound has an acetal structure. The content of the modified polymer in the diene rubber is 8 to 100% by mass.
The diene rubber may contain a rubber component other than the modified polymer. The rubber component is not particularly limited, but natural rubber, isoprene rubber (IR), butadiene rubber (BR), aromatic vinyl-conjugated diene copolymer rubber (for example, styrene butadiene rubber (SBR)), acrylonitrile-butadiene. Examples thereof include copolymer rubber (NBR), butyl rubber (IIR), halogenated butyl rubber (Br-IIR, Cl-IIR), and chloroprene rubber (CR). Of these, butadiene rubber (BR) and styrene butadiene rubber (SBR) are preferable.
<変性ポリマー>
 変性ポリマーは、共役ジエン重合体の二重結合に対して、アセタール構造を有するニトロン化合物(以下、「アセタールニトロン」とも言う)を反応させることで得られる変性ポリマーである。
<Modified polymer>
The modified polymer is a modified polymer obtained by reacting a nitrone compound having an acetal structure (hereinafter also referred to as “acetal nitrone”) with a double bond of a conjugated diene polymer.
(共役ジエン重合体)
 変性ポリマーの製造に使用される共役ジエン重合体としては特に制限されず、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、芳香族ビニル-共役ジエン共重合ゴム(例えば、スチレンブタジエンゴム(SBR))、アクリロニトリル-ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br-IIR、Cl-IIR)、クロロプレンゴム(CR)などが挙げられる。なかでも、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)が好ましい。すなわち、変性ポリマーは、スチレンブタジエンゴム(SBR)またはブタジエンゴム(BR)の二重結合に対してニトロン化合物を反応させることで得られる変性ポリマーであるのが好ましい。
(Conjugated diene polymer)
The conjugated diene polymer used in the production of the modified polymer is not particularly limited, and natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), aromatic vinyl-conjugated diene copolymer rubber (for example, styrene) Examples thereof include butadiene rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber (IIR), halogenated butyl rubber (Br-IIR, Cl-IIR), and chloroprene rubber (CR). Of these, styrene butadiene rubber (SBR) and butadiene rubber (BR) are preferable. That is, the modified polymer is preferably a modified polymer obtained by reacting a nitrone compound with a double bond of styrene butadiene rubber (SBR) or butadiene rubber (BR).
(ニトロン化合物)
 変性ポリマーの製造に使用されるニトロン化合物は、アセタール構造を有するニトロン化合物(アセタールニトロン)であれば特に制限されない。ここで、ニトロン化合物とは、下記式(1)で表されるニトロン基を有する化合物を指す。
(Nitron compounds)
The nitrone compound used for the production of the modified polymer is not particularly limited as long as it is a nitrone compound having an acetal structure (acetal nitrone). Here, the nitrone compound refers to a compound having a nitrone group represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、*は結合位置を表す。 In the above formula (1), * represents a bonding position.
 アセタールニトロンは、下記式(2)で表される化合物であることが好ましい。 The acetal nitrone is preferably a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(2)中、XおよびYは、それぞれ独立に、アセタール構造を有していてもよい、脂肪族炭化水素基、芳香族炭化水素基、または、芳香族複素環基を表す。ただし、XおよびYのうち少なくとも一方は、アセタール構造を有する(好ましくは、置換基としてアセタール構造を有する)。
 上記脂肪族炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基などが挙げられる。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基などが挙げられ、なかでも、炭素数1~18のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられ、なかでも、炭素数3~10のシクロアルキル基が好ましく、炭素数3~6のシクロアルキル基がより好ましい。アルケニル基としては、例えば、ビニル基、1-プロペニル基、アリル基、イソプロペニル基、1-ブテニル基、2-ブテニル基などが挙げられ、なかでも、炭素数2~18のアルケニル基が好ましく、炭素数2~6のアルケニル基がより好ましい。
 上記芳香族炭化水素基としては、例えば、アリール基、アラルキル基などが挙げられる。アリール基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基などが挙げられ、なかでも、炭素数6~14のアリール基が好ましく、炭素数6~10のアリール基がより好ましく、フェニル基、ナフチル基がさらに好ましい。アラルキル基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基などが挙げられ、なかでも、炭素数7~13のアラルキル基が好ましく、炭素数7~11のアラルキル基がより好ましく、ベンジル基がさらに好ましい。
 上記芳香族複素環基としては、例えば、ピロリル基、フリル基、チエニル基、ピラゾリル基、イミダゾリル基(イミダゾール基)、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、ピリジル基(ピリジン基)、フラン基、チオフェン基、ピリダジニル基、ピリミジニル基、ピラジニル基等が挙げられる。
In the above formula (2), X and Y each independently represent an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or an aromatic heterocyclic group that may have an acetal structure. However, at least one of X and Y has an acetal structure (preferably, it has an acetal structure as a substituent).
Examples of the aliphatic hydrocarbon group include an alkyl group, a cycloalkyl group, and an alkenyl group. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, Examples thereof include a tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, n-hexyl group, n-heptyl group, and n-octyl group. Are preferred, and alkyl groups having 1 to 6 carbon atoms are more preferred. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, etc. Among them, a cycloalkyl group having 3 to 10 carbon atoms is preferable, and a cycloalkyl group having 3 to 6 carbon atoms is preferable. More preferred. Examples of the alkenyl group include a vinyl group, a 1-propenyl group, an allyl group, an isopropenyl group, a 1-butenyl group, and a 2-butenyl group. Among them, an alkenyl group having 2 to 18 carbon atoms is preferable. An alkenyl group having 2 to 6 carbon atoms is more preferable.
Examples of the aromatic hydrocarbon group include an aryl group and an aralkyl group. Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. Among them, an aryl group having 6 to 14 carbon atoms is preferable, and an aryl group having 6 to 10 carbon atoms is more preferable. A phenyl group and a naphthyl group are more preferable. Examples of the aralkyl group include a benzyl group, a phenethyl group, and a phenylpropyl group. Among them, an aralkyl group having 7 to 13 carbon atoms is preferable, an aralkyl group having 7 to 11 carbon atoms is more preferable, and a benzyl group is preferable. Further preferred.
Examples of the aromatic heterocyclic group include pyrrolyl group, furyl group, thienyl group, pyrazolyl group, imidazolyl group (imidazole group), oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, pyridyl group (pyridine group), furan Group, thiophene group, pyridazinyl group, pyrimidinyl group, pyrazinyl group and the like.
 上記アセタール構造は、下記式(A)で表される構造を表す。 The acetal structure represents a structure represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(A)中、R~Rは、それぞれ独立に、水素原子または炭化水素基を表す。
 炭化水素基としては、例えば、脂肪族炭化水素基、芳香族炭化水素基、またはこれらを組み合わせた基などが挙げられる。
 上記脂肪族炭化水素基は、直鎖状、分岐鎖状、環状のいずれであってもよい。上記脂肪族炭化水素基の具体例としては、直鎖状または分岐状のアルキル基(特に、炭素数1~30)、直鎖状または分岐状のアルケニル基(特に、炭素数2~30)、直鎖状または分岐状のアルキニル基(特に、炭素数2~30)などが挙げられる。
 上記芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基などの炭素数6~18の芳香族炭化水素基などが挙げられる。
In the above formula (A), R 1 to R 4 each independently represents a hydrogen atom or a hydrocarbon group.
Examples of the hydrocarbon group include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group obtained by combining these.
The aliphatic hydrocarbon group may be linear, branched or cyclic. Specific examples of the aliphatic hydrocarbon group include a linear or branched alkyl group (particularly 1 to 30 carbon atoms), a linear or branched alkenyl group (particularly 2 to 30 carbon atoms), Examples thereof include a linear or branched alkynyl group (particularly 2 to 30 carbon atoms).
Examples of the aromatic hydrocarbon group include aromatic hydrocarbon groups having 6 to 18 carbon atoms such as a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
 なお、「アセタール構造を有する」とは、上記式(A)で表される構造からn個(nは1以上の整数)の水素原子を取り除くことで得られるn価の基を有することを意図する。 Note that “having an acetal structure” intends to have an n-valent group obtained by removing n (n is an integer of 1 or more) hydrogen atoms from the structure represented by the above formula (A). To do.
 アセタールニトロンの好適な態様としては、下記式(A1)で表される化合物が挙げられる。 A preferred embodiment of acetal nitrone includes a compound represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(A1)中、R~RおよびRは、それぞれ独立に、水素原子または炭化水素基を表す。R~RおよびRの具体例および好適な態様は、上述した式(A)中のR~Rと同じである。Rは、Lが結合するベンゼン環と結合して、環を形成してもよい。Lは、単結合または2価の炭化水素基を表す。2価の炭化水素基としては、例えば、上述した炭化水素基から水素原子を1つ取り除くことで得られる2価の炭化水素基が挙げられる。 In the above formula (A1), R 1 to R 2 and R 4 each independently represents a hydrogen atom or a hydrocarbon group. Specific examples and preferred embodiments of R 1 to R 2 and R 4 are the same as R 1 to R 4 in formula (A) described above. R 4 may be bonded to a benzene ring to which L is bonded to form a ring. L represents a single bond or a divalent hydrocarbon group. Examples of the divalent hydrocarbon group include a divalent hydrocarbon group obtained by removing one hydrogen atom from the above-described hydrocarbon group.
 上記式(A1)で表される化合物は、下記式(A2)で表される化合物であることが好ましい。なお、下記式(A2)で表される化合物は、上記式(A1)中のRが、Lが結合するベンゼン環と結合して環を形成した態様に相当する。 The compound represented by the formula (A1) is preferably a compound represented by the following formula (A2). The compound represented by the following formula (A2) corresponds to an embodiment in which R 4 in the above formula (A1) is bonded to a benzene ring to which L is bonded to form a ring.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(A2)中、R~Rは、それぞれ独立に、水素原子または炭化水素基を表す。R~Rの具体例および好適な態様は、上述した式(A)中のR~Rと同じである。Lは、単結合または2価の炭化水素基を表す。Lの具体例および好適な態様は、上述した式(A1)中のLと同じである。複数あるLは同一であっても、異なってもよい。 In the above formula (A2), R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group. Specific examples and preferred embodiments of R 1 ~ R 2 are the same as R 1 ~ R 4 in the above-mentioned formula (A). L represents a single bond or a divalent hydrocarbon group. Specific examples and preferred embodiments of L are the same as L in Formula (A1) described above. Plural Ls may be the same or different.
 上記式(A2)で表される化合物は、下記式(A3)で表される化合物であることが好ましい。なお、下記式(A3)で表される化合物は、上記式(A2)中のLが、いずれも単結合であり、かつ、ベンゼン環の3位と4位に結合した態様に相当する。 The compound represented by the above formula (A2) is preferably a compound represented by the following formula (A3). Note that the compound represented by the following formula (A3) corresponds to an embodiment in which L in the above formula (A2) is a single bond and is bonded to the 3rd and 4th positions of the benzene ring.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(A3)中、R~Rは、それぞれ独立に、水素原子または炭化水素基を表す。R~Rの具体例および好適な態様は、上述した式(A)中のR~Rと同じである。 In the above formula (A3), R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group. Specific examples and preferred embodiments of R 1 ~ R 2 are the same as R 1 ~ R 4 in the above-mentioned formula (A).
 上記式(A3)で表される化合物としては、例えば、N-フェニル-α-(3,4-メチレンビスオキシフェニル)ニトロン(式(A3)中のRおよびRが水素原子の態様)が挙げられる。 Examples of the compound represented by the formula (A3) include N-phenyl-α- (3,4-methylenebisoxyphenyl) nitrone (an embodiment in which R 1 and R 2 in the formula (A3) are hydrogen atoms). Is mentioned.
 アセタールニトロンの合成方法は特に限定されず、従来公知の方法を用いることができる。例えば、ヒドロキシアミノ基(-NHOH)を有する化合物と、アルデヒド基(-CHO)およびアセタール構造を有する化合物(例えば、後述する式(b)で表されるピペロナール)とを、ヒドロキシアミノ基とアルデヒド基とのモル比(-NHOH/-CHO)が1.0~1.5となる量で、有機溶媒(例えば、メタノール、エタノール、テトラヒドロフラン等)下で、室温で1~24時間撹拌することにより、両基が反応し、アセタール構造とニトロン基とを有する化合物(アセタールニトロン)を与える。 The method for synthesizing the acetal nitrone is not particularly limited, and a conventionally known method can be used. For example, a compound having a hydroxyamino group (—NHOH), a compound having an aldehyde group (—CHO) and an acetal structure (for example, piperonal represented by the formula (b) described later), a hydroxyamino group and an aldehyde group By stirring for 1 to 24 hours at room temperature under an organic solvent (eg, methanol, ethanol, tetrahydrofuran, etc.) in such an amount that the molar ratio of (—NHOH / —CHO) becomes 1.0 to 1.5. Both groups react to give a compound having an acetal structure and a nitrone group (acetal nitrone).
(変性ポリマーの製造方法)
 共役ジエン重合体の二重結合に対してアセタールニトロンを反応させることで変性ポリマーを製造する方法は特に制限されないが、例えば、上述した共役ジエン重合体と上述したニトロン化合物とを、100~200℃で1~30分間混合する方法が挙げられる。
 このとき、下記式(4-1)または下記式(4-2)に示すように、上記共役ジエン重合体が有する共役ジエンに由来する二重結合とアセタールニトロンが有するニトロン基との間で、環化付加反応が起こり、五員環を与える。なお、下記式(4-1)は1,4-結合とニトロン基との反応を表し、下記式(4-2)は1,2-ビニル結合とニトロン基との反応を表す。また、式(4-1)および(4-2)はブタジエンが1,3-ブタジエンの場合の反応を表すものであるが、ブタジエンが1,3-ブタジエン以外の場合も同様の反応により五員環を与える。
(Method for producing modified polymer)
A method for producing a modified polymer by reacting an acetal nitrone with a double bond of a conjugated diene polymer is not particularly limited. For example, the above-described conjugated diene polymer and the above-described nitrone compound are heated at 100 to 200 ° C. And mixing for 1 to 30 minutes.
At this time, as shown in the following formula (4-1) or the following formula (4-2), between the double bond derived from the conjugated diene of the conjugated diene polymer and the nitrone group of the acetal nitrone, A cycloaddition reaction takes place, giving a five-membered ring. The following formula (4-1) represents a reaction between a 1,4-bond and a nitrone group, and the following formula (4-2) represents a reaction between a 1,2-vinyl bond and a nitrone group. Formulas (4-1) and (4-2) represent reactions when butadiene is 1,3-butadiene, but when butadiene is other than 1,3-butadiene, Give a ring.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記共役ジエン重合体の二重結合に対して反応させるアセタールニトロンの量は、上記ジエン系ゴム100質量部に対して、0.1~10質量部であるのが好ましく、0.3~5質量部であるのがより好ましく、1~3質量部であるのがさらに好ましい。 The amount of acetal nitrone reacted with respect to the double bond of the conjugated diene polymer is preferably 0.1 to 10 parts by mass, and 0.3 to 5 parts by mass with respect to 100 parts by mass of the diene rubber. More preferably, the amount is 1 to 3 parts by mass.
(変性率)
 変性ポリマーの変性率は特に制限されないが、0.02~4.0mol%であることが好ましく、0.10~2.0mol%であることがより好ましい。
 ここで、変性率とは、上記共役ジエン重合体が有する共役ジエン(共役ジエンジエン単位)に由来する全ての二重結合のうち、ニトロン化合物によって変性された割合(mol%)を表し、例えば共役ジエンがブタジエン(1,3-ブタジエン)であれば、ニトロン化合物による変性によって上記式(4-1)または上記式(4-2)の構造が形成された割合(mol%)を表す。変性率は、例えば、上記共役ジエン重合体および変性ポリマー(すなわち、変性前後のポリマー)のNMR測定を行うことで求めることができる。
 なお、本明細書において、変性率が100mol%の変性ポリマーもジエン系ゴムに該当するものとする。
(Modification rate)
The modification rate of the modified polymer is not particularly limited, but is preferably 0.02 to 4.0 mol%, and more preferably 0.10 to 2.0 mol%.
Here, the modification rate represents the ratio (mol%) modified by the nitrone compound among all the double bonds derived from the conjugated diene (conjugated diene diene unit) of the conjugated diene polymer. Is butadiene (1,3-butadiene), it represents the ratio (mol%) in which the structure of the above formula (4-1) or the above formula (4-2) is formed by modification with a nitrone compound. The modification rate can be determined, for example, by performing NMR measurement of the conjugated diene polymer and modified polymer (that is, the polymer before and after modification).
In the present specification, a modified polymer having a modification rate of 100 mol% also corresponds to a diene rubber.
 ジエン系ゴム中の変性ポリマーの含有量は、8~100質量%である。なかでも、20~80質量%であることがより好ましく、そのなかでも、30~50質量であることがより好ましい。
〔シリカ〕
 本発明の組成物はシリカを含有する。
 上記シリカは特に制限されないが、タイヤ等の用途でゴム組成物に配合されている従来公知の任意のシリカを用いることができる。
 シリカの具体例としては、湿式シリカ、乾式シリカ、ヒュームドシリカ、珪藻土などが挙げられる。なかでも、湿式シリカが好ましい。上記シリカは、1種のシリカを単独で用いても、2種以上のシリカを併用してもよい。
The content of the modified polymer in the diene rubber is 8 to 100% by mass. In particular, the content is more preferably 20 to 80% by mass, and more preferably 30 to 50% by mass.
〔silica〕
The composition of the present invention contains silica.
Although the said silica in particular is not restrict | limited, The conventionally well-known arbitrary silica currently mix | blended with the rubber composition for uses, such as a tire, can be used.
Specific examples of silica include wet silica, dry silica, fumed silica, diatomaceous earth, and the like. Of these, wet silica is preferable. As the silica, one type of silica may be used alone, or two or more types of silica may be used in combination.
 本発明の組成物において、シリカの含有量は、上記ジエン系ゴム100質量部に対して、25~130質量部である。なかでも、40~100質量部であることがより好ましい。 In the composition of the present invention, the content of silica is 25 to 130 parts by mass with respect to 100 parts by mass of the diene rubber. In particular, the amount is more preferably 40 to 100 parts by mass.
〔任意成分〕
 本発明の組成物は、必要に応じて、その効果や目的を損なわない範囲でさらに添加剤を含有することができる。
 上記添加剤としては、例えば、シリカ以外の充填剤(例えば、カーボンブラック)、シランカップリング剤、酸化亜鉛(亜鉛華)、ステアリン酸、接着用樹脂、素練り促進剤、老化防止剤、ワックス、加工助剤、アロマオイル、液状ポリマー、テルペン系樹脂、熱硬化性樹脂、加硫剤(例えば、硫黄)、加硫促進剤などのゴム組成物に一般的に使用される各種添加剤が挙げられる。
[Optional ingredients]
The composition of this invention can contain an additive further in the range which does not impair the effect and objective as needed.
Examples of the additive include fillers other than silica (for example, carbon black), silane coupling agents, zinc oxide (zinc white), stearic acid, adhesive resins, peptizers, anti-aging agents, waxes, Various additives generally used in rubber compositions such as processing aids, aroma oils, liquid polymers, terpene resins, thermosetting resins, vulcanizing agents (for example, sulfur), and vulcanization accelerators can be mentioned. .
〔ゴム組成物の製造方法〕
 本発明の組成物の製造方法は特に限定されず、その具体例としては、例えば、上述した各成分を、公知の方法、装置(例えば、バンバリーミキサー、ニーダー、ロールなど)を用いて、混練する方法などが挙げられる。本発明の組成物が硫黄または加硫促進剤を含有する場合は、硫黄および加硫促進剤以外の成分を先に高温(好ましくは80~140℃)で混合し、冷却してから、硫黄または加硫促進剤を混合するのが好ましい。
 また、本発明の組成物は、従来公知の加硫または架橋条件で加硫または架橋することができる。
[Method for producing rubber composition]
The production method of the composition of the present invention is not particularly limited, and specific examples thereof include, for example, kneading the above-described components using a known method and apparatus (for example, a Banbury mixer, a kneader, a roll, etc.). The method etc. are mentioned. When the composition of the present invention contains sulfur or a vulcanization accelerator, components other than sulfur and the vulcanization accelerator are first mixed at a high temperature (preferably 80 to 140 ° C.) and cooled, and then sulfur or It is preferable to mix a vulcanization accelerator.
The composition of the present invention can be vulcanized or crosslinked under conventionally known vulcanization or crosslinking conditions.
〔用途〕
 本発明の組成物はタイヤ(好ましくは、キャップトレッド部)に好適に用いられる。
[Use]
The composition of the present invention is suitably used for tires (preferably cap tread portions).
[タイヤ]
 本発明のタイヤは、上述した本発明の組成物を使用したタイヤである。なかでも、本発明の組成物をタイヤトレッド部(キャップトレッド部)に使用した空気入りタイヤであることが好ましい。
 図1に、本発明のタイヤの実施態様の一例を表すタイヤの部分断面概略図を示すが、本発明のタイヤは図1に示す態様に限定されるものではない。
[tire]
The tire of the present invention is a tire using the above-described composition of the present invention. Especially, it is preferable that it is a pneumatic tire which used the composition of this invention for the tire tread part (cap tread part).
FIG. 1 shows a schematic partial sectional view of a tire representing an example of an embodiment of the tire of the present invention, but the tire of the present invention is not limited to the embodiment shown in FIG.
 図1において、符号1はビード部を表し、符号2はサイドウォール部を表し、符号3はタイヤトレッド部を表す。
 また、左右一対のビード部1間においては、繊維コードが埋設されたカーカス層4が装架されており、このカーカス層4の端部はビードコア5およびビードフィラー6の廻りにタイヤ内側から外側に折り返されて巻き上げられている。
 また、タイヤトレッド部3においては、カーカス層4の外側に、ベルト層7がタイヤ1周に亘って配置されている。
 また、ビード部1においては、リムに接する部分にリムクッション8が配置されている。
 なお、タイヤトレッド部3は上述した本発明の組成物により形成されている。
In FIG. 1, reference numeral 1 represents a bead portion, reference numeral 2 represents a sidewall portion, and reference numeral 3 represents a tire tread portion.
Further, a carcass layer 4 in which fiber cords are embedded is mounted between the pair of left and right bead portions 1, and the end of the carcass layer 4 extends from the inside of the tire to the outside around the bead core 5 and the bead filler 6. Wrapped and rolled up.
Further, in the tire tread portion 3, a belt layer 7 is disposed over the circumference of the tire on the outside of the carcass layer 4.
Moreover, in the bead part 1, the rim cushion 8 is arrange | positioned in the part which touches a rim | limb.
The tire tread portion 3 is formed of the above-described composition of the present invention.
 本発明のタイヤは、例えば、従来公知の方法に従って製造することができる。また、タイヤに充填する気体としては、通常のまたは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウムなどの不活性ガスを用いることができる。 The tire of the present invention can be manufactured, for example, according to a conventionally known method. Moreover, as gas with which a tire is filled, inert gas, such as nitrogen, argon, helium other than the air which adjusted normal or oxygen partial pressure, can be used.
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
<アセタールニトロンの合成>
 300mLナスフラスコに、下記式(b)で表されるピペロナール(30.0g)およびエタノール(20mL)を入れ、ここに、下記式(a)で表されるフェニルヒドロキシアミン(21.8g)をエタノール(70mL)に溶かしたものを加え、室温で22時間撹拌した。撹拌終了後、エタノールからの再結晶により、下記式(c)で表されるニトロン化合物(アセタールニトロン)を白色の結晶として得た(42.9g)。収率は89%であった。
<Synthesis of Acetal Nitron>
Piperonal (30.0 g) represented by the following formula (b) and ethanol (20 mL) are placed in a 300 mL eggplant flask, and phenylhydroxyamine (21.8 g) represented by the following formula (a) is added to ethanol. What was dissolved in (70 mL) was added, and it stirred at room temperature for 22 hours. After completion of the stirring, the nitrone compound (acetal nitrone) represented by the following formula (c) was obtained as white crystals by recrystallization from ethanol (42.9 g). The yield was 89%.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<ジフェニルニトロンの合成>
 300mLナスフラスコに、下記式(6)で表されるベンズアルデヒド(42.45g)およびエタノール(10mL)を入れ、ここに、下記式(5)で表されるフェニルヒドロキシアミン(43.65g)をエタノール(70mL)に溶かしたものを加え、室温で22時間撹拌した。撹拌終了後、エタノールからの再結晶により、下記式(7)で表されるアセタール構造を有さないニトロン化合物(ジフェニルニトロン)を白色の結晶として得た(65.40g)。収率は83%であった。
<Synthesis of diphenylnitrone>
A 300 mL eggplant flask is charged with benzaldehyde (42.45 g) represented by the following formula (6) and ethanol (10 mL), and phenylhydroxyamine (43.65 g) represented by the following formula (5) is added to ethanol. What was dissolved in (70 mL) was added, and it stirred at room temperature for 22 hours. After completion of the stirring, recrystallization from ethanol gave a nitrone compound (diphenylnitrone) having no acetal structure represented by the following formula (7) as white crystals (65.40 g). The yield was 83%.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
<ピリジルニトロンの合成>
 2Lナスフラスコに、40℃に温めたメタノール(900mL)を入れ、ここに、下記式(b-2)で表される2-ピリジンカルボキシアルデヒド(21.4g)を加えて溶かした。この溶液に、下記式(a-2)で表されるフェニルヒドロキシアミン(21.8g)をメタノール(100mL)に溶かしたものを加え、室温で19時間撹拌した。撹拌終了後、メタノールからの再結晶により、下記式(c-2)で表されるニトロン化合物(ピリジルニトロン)を得た(39.0g)。収率は90%であった。
<Synthesis of pyridyl nitrone>
Methanol (900 mL) warmed to 40 ° C. was placed in a 2 L eggplant flask, and 2-pyridinecarboxaldehyde (21.4 g) represented by the following formula (b-2) was added and dissolved therein. To this solution was added phenylhydroxyamine (21.8 g) represented by the following formula (a-2) dissolved in methanol (100 mL), and the mixture was stirred at room temperature for 19 hours. After the stirring, the nitrone compound (pyridyl nitrone) represented by the following formula (c-2) was obtained by recrystallization from methanol (39.0 g). The yield was 90%.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
<変性ポリマー(変性ポリマー1)の合成>
 120℃のバンバリーミキサーにSBR(日本ゼオン社製Nipol1502)を投入して2分間素練りを行った。その後、上述のとおり合成したアセタールニトロンをSBR100質量部に対して1.22質量部投入し、160℃で5分間混合することで、SBRをアセタールニトロンによって変性した。得られた変性ポリマーを変性ポリマー1とする。
 得られた変性ポリマー1についてNMR測定を行い、変性率を求めたところ、変性ポリマー1の変性率は0.32mol%であった。
<Synthesis of Modified Polymer (Modified Polymer 1)>
SBR (Nipol 1502 manufactured by Nippon Zeon Co., Ltd.) was charged into a Banbury mixer at 120 ° C. and masticated for 2 minutes. Thereafter, 1.22 parts by mass of the acetal nitrone synthesized as described above was added to 100 parts by mass of SBR and mixed at 160 ° C. for 5 minutes to modify SBR with acetal nitrone. The resulting modified polymer is referred to as modified polymer 1.
The obtained modified polymer 1 was subjected to NMR measurement to obtain a modification rate. The modification rate of the modified polymer 1 was 0.32 mol%.
<変性ポリマー(変性ポリマー2)の合成>
 アセタールニトロンを1.22質量部投入する代わりに、3.65質量部投入する以外は変性ポリマー1と同様の手順に従って、SBRをアセタールニトロンによって変性した。得られた変性ポリマーを変性ポリマー2とする。
 得られた変性ポリマー2についてNMR測定を行い、変性率を求めたところ、変性ポリマー2の変性率は0.96mol%であった。
<Synthesis of Modified Polymer (Modified Polymer 2)>
Instead of charging 1.22 parts by mass of acetal nitrone, SBR was modified with acetal nitrone according to the same procedure as modified polymer 1 except that 3.65 parts by mass was added. The resulting modified polymer is referred to as modified polymer 2.
The obtained modified polymer 2 was subjected to NMR measurement to determine the modification rate. The modification rate of the modified polymer 2 was 0.96 mol%.
<比較変性ポリマー1の合成>
 アセタールニトロンの代わりに上述のとおり合成したジフェニルニトロンを3.65質量部投入する以外は変性ポリマー1と同様の手順に従って、SBRをジフェニルニトロンによって変性した。得られた、ジフェニルニトロンによって変性されたSBRを比較変性ポリマー1とする。
 得られた比較変性ポリマー1についてNMR測定を行い、変性率を求めたところ、比較変性ポリマー1の変性率は1.18mol%であった。
<Synthesis of Comparative Modified Polymer 1>
SBR was modified with diphenylnitrone according to the same procedure as modified polymer 1 except that 3.65 parts by mass of diphenylnitrone synthesized as described above was used instead of acetal nitrone. The obtained SBR modified with diphenylnitrone is referred to as comparative modified polymer 1.
The obtained comparative modified polymer 1 was subjected to NMR measurement to obtain a modification rate. As a result, the modification rate of the comparative modified polymer 1 was 1.18 mol%.
<比較変性ポリマー2の合成>
 アセタールニトロンの代わりに上述のとおり合成したピリジルニトロンを3.65質量部投入する以外は変性ポリマー1と同様の手順に従って、SBRをピリジルニトロンによって変性した。得られた、ピリジルニトロンによって変性されたSBRを比較変性ポリマー2とする。
 得られた比較変性ポリマー2についてNMR測定を行い、変性率を求めたところ、比較変性ポリマー2の変性率は0.81mol%であった。
<Synthesis of Comparative Modified Polymer 2>
SBR was modified with pyridyl nitrone according to the same procedure as modified polymer 1 except that 3.65 parts by mass of pyridyl nitrone synthesized as described above was used instead of acetal nitrone. The obtained SBR modified with pyridyl nitrone is referred to as comparative modified polymer 2.
The obtained comparative modified polymer 2 was subjected to NMR measurement to determine the modification rate. The modification rate of the comparative modified polymer 2 was 0.81 mol%.
<ゴム組成物の調製>
 下記表1に示される成分を、下記表1に示される割合(質量部)で配合した。
 具体的には、まず、下記表1に示される成分のうち硫黄および加硫促進剤を除く成分を、80℃のバンバリーミキサーで5分間混合した。次に、ロールを用いて、硫黄および加硫促進剤を混合し、ゴム組成物を得た。
<Preparation of rubber composition>
The components shown in Table 1 below were blended in the proportions (parts by mass) shown in Table 1 below.
Specifically, first, components excluding sulfur and a vulcanization accelerator among the components shown in Table 1 below were mixed for 5 minutes with a Banbury mixer at 80 ° C. Next, sulfur and a vulcanization accelerator were mixed using a roll to obtain a rubber composition.
<加硫ゴムシートの作製>
 得られた各ゴム組成物(未加硫)を、金型(15cm×15cm×0.2cm)中、160℃で15分間プレス加硫して、加硫ゴムシートを作製した。
<Preparation of vulcanized rubber sheet>
Each obtained rubber composition (unvulcanized) was press vulcanized at 160 ° C. for 15 minutes in a mold (15 cm × 15 cm × 0.2 cm) to produce a vulcanized rubber sheet.
<評価>
(モジュラス)
 作製した加硫ゴムシートを厚さ2mmのダンベル状(ダンベル状3号形)に切り出して試験片とした。
 得られた試験片について、JIS K6251:2010に準じ、100%モジュラス(100%伸長時の応力)[MPa]を測定した。結果を表1に示す(M100)。結果は、比較例1を100とする指数で表した。M100が大きい方が剛性に優れる。
<Evaluation>
(Modulus)
The produced vulcanized rubber sheet was cut into a dumbbell shape (dumbbell shape No. 3) having a thickness of 2 mm to obtain a test piece.
About the obtained test piece, 100% modulus (stress at the time of 100% elongation) [MPa] was measured according to JIS K6251: 2010. The results are shown in Table 1 (M100). The results were expressed as an index with Comparative Example 1 as 100. The larger M100, the better the rigidity.
(破断伸び)
 作製した加硫ゴムシートを厚さ2mmのダンベル状(ダンベル状3号形)に切り出して試験片とした。
 得られた試験片について、JIS K6251:2010に準じ、温度20℃、引張り速度500mm/分の条件で破断伸び(=破断時の伸び率)を測定した。結果を表1に示す(破断伸び)。結果は、比較例1を100とする指数で表した。破断伸びが大きい方が靭性に優れる。
(Elongation at break)
The produced vulcanized rubber sheet was cut into a dumbbell shape (dumbbell shape No. 3) having a thickness of 2 mm to obtain a test piece.
About the obtained test piece, elongation at break (= elongation at break) was measured under the conditions of a temperature of 20 ° C. and a pulling speed of 500 mm / min according to JIS K6251: 2010. The results are shown in Table 1 (Elongation at break). The results were expressed as an index with Comparative Example 1 as 100. The larger the elongation at break, the better the toughness.
(低発熱性)
 作製した加硫ゴムシートについて、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、初期歪み10%、振幅±2%、周波数20Hzの条件下で、温度60℃の損失正接tanδ(60℃)を測定した。tanδ(60℃)の逆数を表1に示す(低発熱性)。なお、比較例1のtanδ(60℃)の逆数を100とする指数で表した。値が大きいほど、低発熱性に優れる。
(Low heat generation)
The produced vulcanized rubber sheet was subjected to loss tangent tanδ (60 ° C.) at a temperature of 60 ° C. using a viscoelastic spectrometer (manufactured by Toyo Seiki Seisakusho) under conditions of an initial strain of 10%, an amplitude of ± 2%, and a frequency of 20 Hz ) Was measured. The reciprocal of tan δ (60 ° C.) is shown in Table 1 (low exothermic property). In addition, it represented with the index | exponent which makes the reciprocal number of tan-delta (60 degreeC) of the comparative example 1 100. The larger the value, the better the low heat buildup.
 表1中、ニトロン量換算値は、ジエン系ゴム100質量部に対する、変性ポリマーまたは比較変性ポリマーの合成に使用したニトロン化合物の質量部を表す。
 また、表1中、変性率は、上述した変性ポリマーの変性率を表す。
In Table 1, the nitrone amount converted value represents the part by mass of the nitrone compound used for the synthesis of the modified polymer or the comparatively modified polymer with respect to 100 parts by mass of the diene rubber.
In Table 1, the modification rate represents the modification rate of the modified polymer described above.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 上記表1に示されている各成分の詳細は以下のとおりである。
・SBR:Nipol 1502(日本ゼオン社製)
・BR:Nipol BR1220(日本ゼオン社製)
・変性ポリマー1:上述のとおり合成した変性ポリマー1
・変性ポリマー2:上述のとおり合成した変性ポリマー2
・比較変性ポリマー1:上述のとおり合成した比較変性ポリマー1
・比較変性ポリマー2:上述のとおり合成した比較変性ポリマー2
・カーボンブラック:ショウブラックN339(キャボットジャパン社製)
・シリカ:ZEOSIL 165GR(ロディアシリカコリア社製)
・ステアリン酸:ステアリン酸YR(日油社製)
・加工助剤:アクチプラストST(Rhein Chemie社製)
・老化防止剤:SANTOFLEX 6PPD(Soltia Europe社製)
・ワックス:サンノック(大内新興化学工業社製)
・カップリング剤:Si69(エボニック・デグサ社製)
・オイル:エキストラクト4号S(昭和シェル石油社製)
・亜鉛華:亜鉛華3号(正同化学社製)
・硫黄:油処理硫黄(軽井沢精錬所社製)
・加硫促進剤CZ:ノクセラー CZ-G(大内振興化学工業社製)
・加硫促進剤DPG:ソクシノール D-G:(住友化学社製)
The detail of each component shown by the said Table 1 is as follows.
・ SBR: Nipol 1502 (manufactured by Nippon Zeon)
-BR: Nipol BR1220 (manufactured by Nippon Zeon)
Modified polymer 1: Modified polymer 1 synthesized as described above
Modified polymer 2: Modified polymer 2 synthesized as described above
Comparative modified polymer 1: Comparative modified polymer 1 synthesized as described above
Comparative modified polymer 2: Comparative modified polymer 2 synthesized as described above
・ Carbon black: Show black N339 (manufactured by Cabot Japan)
Silica: ZEOSIL 165GR (manufactured by Rhodia Silica Korea)
・ Stearic acid: Stearic acid YR (manufactured by NOF Corporation)
Processing aid: Actiplast ST (manufactured by Rhein Chemie)
Anti-aging agent: SANTOFLEX 6PPD (manufactured by Soltia Europe)
・ Wax: Sunnock (Ouchi Shinsei Chemical Co., Ltd.)
・ Coupling agent: Si69 (Evonik Degussa)
・ Oil: Extract No. 4 S (made by Showa Shell Sekiyu KK)
・ Zinc flower: Zinc flower No. 3 (manufactured by Shodo Chemical Co., Ltd.)
・ Sulfur: Oil-treated sulfur (manufactured by Karuizawa Refinery)
・ Vulcanization accelerator CZ: Noxeller CZ-G (Ouchi Shinko Chemical Co., Ltd.)
・ Vulcanization accelerator DPG: Soxinol DG: (Sumitomo Chemical Co., Ltd.)
 表1から分かるように、共役ジエン重合体の二重結合に対してアセタールニトロンを反応させることで得られる変性ポリマーを含有する実施例1~2は、優れた剛性、靭性および低発熱性を示した。なかでも、変性ポリマーの変性率が0.50mol%以上である実施例2は、より優れた剛性、靭性および低発熱性を示した。 As can be seen from Table 1, Examples 1 and 2 containing a modified polymer obtained by reacting acetal nitrone with a double bond of a conjugated diene polymer showed excellent rigidity, toughness and low heat build-up. It was. Among them, Example 2 in which the modification rate of the modified polymer was 0.50 mol% or more showed more excellent rigidity, toughness, and low exothermic property.
 一方、共役ジエン重合体の二重結合に対してアセタールニトロンを反応させることで得られる変性ポリマーを含有しない比較例1~3は、剛性、靭性および低発熱性のうち少なくともいずれかが不十分であった。 On the other hand, Comparative Examples 1 to 3, which do not contain a modified polymer obtained by reacting an acetal nitrone with a double bond of a conjugated diene polymer, are insufficient in at least one of rigidity, toughness and low exothermic property. there were.
 1 ビード部
 2 サイドウォール部
 3 タイヤトレッド部
 4 カーカス層
 5 ビードコア
 6 ビードフィラー
 7 ベルト層
 8 リムクッション
1 Bead part 2 Side wall part 3 Tire tread part 4 Carcass layer 5 Bead core 6 Bead filler 7 Belt layer 8 Rim cushion

Claims (5)

  1.  ジエン系ゴムと、シリカとを含有し、
     前記ジエン系ゴムが、共役ジエン重合体の二重結合に対してニトロン化合物を反応させることで得られる変性ポリマーを含み、
     前記ニトロン化合物が、アセタール構造を有するニトロン化合物であり、
     前記ジエン系ゴム中の前記変性ポリマーの含有量が、8~100質量%であり、
     前記シリカの含有量が、前記ジエン系ゴム100質量部に対して、25~130質量部である、ゴム組成物。
    Containing diene rubber and silica,
    The diene rubber includes a modified polymer obtained by reacting a nitrone compound with a double bond of a conjugated diene polymer,
    The nitrone compound is a nitrone compound having an acetal structure,
    The content of the modified polymer in the diene rubber is 8 to 100% by mass,
    A rubber composition, wherein a content of the silica is 25 to 130 parts by mass with respect to 100 parts by mass of the diene rubber.
  2.  前記ニトロン化合物が、N-フェニル-α-(3,4-メチレンビスオキシフェニル)ニトロンである、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the nitrone compound is N-phenyl-α- (3,4-methylenebisoxyphenyl) nitrone.
  3.  前記変性ポリマーの変性率が、0.02~4.0mol%である、請求項1または2に記載のゴム組成物。ここで、変性率は、前記共役ジエン重合体が有する共役ジエンに由来する全ての二重結合のうち、前記ニトロン化合物によって変性された割合(mol%)を表す。 The rubber composition according to claim 1 or 2, wherein the modified polymer has a modification rate of 0.02 to 4.0 mol%. Here, the modification rate represents the ratio (mol%) modified by the nitrone compound among all the double bonds derived from the conjugated diene of the conjugated diene polymer.
  4.  前記共役ジエン重合体の二重結合に対して反応させる前記ニトロン化合物の量が、前記ジエン系ゴム100質量部に対して、0.1~10質量部である、請求項1~3のいずれか1項に記載のゴム組成物。 The amount of the nitrone compound reacted with respect to the double bond of the conjugated diene polymer is 0.1 to 10 parts by mass with respect to 100 parts by mass of the diene rubber. The rubber composition according to item 1.
  5.  請求項1~4のいずれか1項に記載のゴム組成物を用いて製造したタイヤ。 A tire manufactured using the rubber composition according to any one of claims 1 to 4.
PCT/JP2016/058163 2015-03-18 2016-03-15 Rubber composition and tire WO2016148144A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016549810A JPWO2016148144A1 (en) 2015-03-18 2016-03-15 Rubber composition and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015054381 2015-03-18
JP2015-054381 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016148144A1 true WO2016148144A1 (en) 2016-09-22

Family

ID=56919806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058163 WO2016148144A1 (en) 2015-03-18 2016-03-15 Rubber composition and tire

Country Status (2)

Country Link
JP (1) JPWO2016148144A1 (en)
WO (1) WO2016148144A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517071A (en) * 2004-10-20 2008-05-22 株式会社ブリヂストン Polymer-filler coupling additive
JP2008208163A (en) * 2007-02-23 2008-09-11 Bridgestone Corp Modified polymer and rubber composition and tire using the same
JP2013032471A (en) * 2011-08-03 2013-02-14 Yokohama Rubber Co Ltd:The Rubber composition
JP2013530299A (en) * 2010-07-13 2013-07-25 コンパニー ゼネラール デ エタブリッスマン ミシュラン Graft polymer with grafted nitrogen molecules grafted

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517071A (en) * 2004-10-20 2008-05-22 株式会社ブリヂストン Polymer-filler coupling additive
JP2008208163A (en) * 2007-02-23 2008-09-11 Bridgestone Corp Modified polymer and rubber composition and tire using the same
JP2013530299A (en) * 2010-07-13 2013-07-25 コンパニー ゼネラール デ エタブリッスマン ミシュラン Graft polymer with grafted nitrogen molecules grafted
JP2013032471A (en) * 2011-08-03 2013-02-14 Yokohama Rubber Co Ltd:The Rubber composition

Also Published As

Publication number Publication date
JPWO2016148144A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
US9803031B2 (en) Modified polymer, rubber composition and pneumatic tire
JP6163973B2 (en) Rubber composition for tire and pneumatic tire
WO2015173990A1 (en) Under tread rubber composition and pneumatic tire
JP5716850B1 (en) Modified polymer, rubber composition and tire using the same
JP5812152B1 (en) Heavy duty tire rubber composition and pneumatic tire
JP5761442B1 (en) Modified polymer and rubber composition and pneumatic tire
JP5761443B1 (en) Rubber composition and pneumatic tire
JP5949986B1 (en) Compound, modified polymer, rubber composition, tire and conveyor belt
WO2016148144A1 (en) Rubber composition and tire
JP5812155B1 (en) Rubber composition for tire rim cushion or gum finishing and pneumatic tire
JP5812156B1 (en) Sidewall rubber composition and pneumatic tire
WO2016140300A1 (en) Rubber composition and tire
JP6112161B2 (en) Method for producing modified polymer, modified polymer, rubber composition and pneumatic tire
JP5812157B1 (en) Rubber composition for tire rim cushion or gum finishing and pneumatic tire
WO2015173989A1 (en) Rubber composition for tire rim cushion or rubber finishing, and pneumatic tire
JP5812153B1 (en) Sidewall rubber composition and pneumatic tire
WO2015173994A1 (en) Bead filler rubber composition and pneumatic tire
JP6582816B2 (en) Polymer modifier composition, modified polymer, rubber composition and tire
WO2016140304A1 (en) Rubber composition, tire, and industrial conveyor belt
WO2015173988A1 (en) Sidewall rubber composition and pneumatic tire
JP6582818B2 (en) Polymer modifier composition, modified polymer, rubber composition and tire
WO2017057368A1 (en) Polymer modifying agent composition, modified polymer, rubber composition and tire

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016549810

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764974

Country of ref document: EP

Kind code of ref document: A1