WO2016147946A1 - Rotor for rotating electrical machine - Google Patents

Rotor for rotating electrical machine Download PDF

Info

Publication number
WO2016147946A1
WO2016147946A1 PCT/JP2016/057123 JP2016057123W WO2016147946A1 WO 2016147946 A1 WO2016147946 A1 WO 2016147946A1 JP 2016057123 W JP2016057123 W JP 2016057123W WO 2016147946 A1 WO2016147946 A1 WO 2016147946A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
radial direction
flux
rotor core
permanent magnets
Prior art date
Application number
PCT/JP2016/057123
Other languages
French (fr)
Japanese (ja)
Inventor
直孝 樋田
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2016147946A1 publication Critical patent/WO2016147946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotor of a rotating electrical machine.
  • Patent Document 1 and the like disclose a permanent magnet embedded rotary electric machine. Specifically, in the rotating electrical machine disclosed in Patent Document 1, as shown in FIG. 7, permanent magnets 203, 204, and 205 are inserted into arc-shaped permanent magnet insertion holes 201 and 202 formed in the rotor core 200. The rotating electric machine has the arc-shaped permanent magnet insertion holes 201 and 202 to increase the reluctance torque.
  • a plurality of types of permanent magnets 203, 204, 205 having different shapes corresponding to the shape of the permanent magnet insertion holes 201, 202 are required.
  • a plurality of types of permanent magnets are manufactured.
  • a metal mold is required, resulting in an increase in cost.
  • An object of the present invention is to provide a rotor of a rotating electrical machine that can reduce the cost of a permanent magnet.
  • a rotor of a rotating electrical machine for solving the above-described problem has a cylindrical rotor core configured to be disposed radially inside a stator on which a coil is wound, and an outer peripheral surface of the rotor core is interposed via a gap.
  • the rotor core has a plurality of magnetic pole regions in the circumferential direction, and a plurality of permanent magnets are embedded in each magnetic pole region so as to be aligned in the radial direction.
  • the plurality of permanent magnets have flux barriers extending from both ends in the circumferential direction of each of the plurality of permanent magnets, and the plurality of permanent magnets arranged in the radial direction have an arc shape, and have the same shape and the same dimensions.
  • the schematic diagram of the rotary electric machine in one Embodiment The elements on larger scale of the rotary electric machine in the embodiment.
  • the rotating electrical machine 10 is a magnet-embedded rotating electrical machine, and includes a rotor 20 and a stator 100.
  • the stator 100 is disposed on the outer peripheral side of the cylindrical rotor 20.
  • the inner peripheral surface of the stator 100 is opposed to the outer peripheral surface of the rotor 20 via a gap G (see FIG. 2).
  • Each figure is a schematic diagram, and the shape is emphasized.
  • the number of poles in the rotating electrical machine 10 of the present embodiment is “4”.
  • the stator 100 has a cylindrical stator core 101, and a plurality (36 in this embodiment) of slots 102 are formed inside the stator core 101 so as to be arranged in the circumferential direction. ing. Each slot 102 is open to the inner peripheral surface of the stator core 101. Teeth 103 are formed between slots 102 adjacent in the circumferential direction.
  • the number of slots per pole is “9” (that is, the number of teeth per pole is “9”), and the angle ⁇ r from the center O per pole is 90 °. is there.
  • a coil 104 that is energized with three-phase alternating current is wound around teeth 103 that are provided at equal intervals in the circumferential direction. The coil 104 is disposed on the inner peripheral portion of the stator 100.
  • a rotor 20 is disposed radially inward of the stator 100, and the rotor 20 includes a cylindrical rotor core 30 in which a plurality of (for example, several tens) electromagnetic disk-shaped steel plates are stacked.
  • a shaft 50 is inserted through the shaft.
  • the rotor 20 is supported by a bearing of a housing (not shown) via a shaft 50 in a state where the outer peripheral surface of the rotor core 30 is spaced apart from the teeth 103, and is rotatable with respect to the housing. That is, the rotor 20 is arranged so that the outer peripheral surface of the rotor core 30 faces the inner peripheral surface of the stator 100 with the gap G interposed therebetween.
  • the rotor 20 has four magnetic pole regions in the circumferential direction, and the angle ⁇ r of each magnetic pole region is 90 °.
  • the rotor core 30 is embedded with a plurality of permanent magnets 40 and 41 so as to be aligned in the radial direction in each magnetic pole region.
  • two permanent magnets 40 and 41 are provided in each magnetic pole region. That is, two permanent magnet layers are provided side by side in the radial direction in each magnetic pole region.
  • Flux barriers 33, 34, 35, and 36 are disposed on both circumferential sides of the permanent magnets 40 and 41, respectively.
  • arc-shaped permanent magnet insertion holes 31 and 32 are formed in each magnetic pole region of the rotor core 30.
  • Each permanent magnet insertion hole 31, 32 extends in the axial direction of the rotor core 30.
  • the permanent magnet insertion hole 31 is located on the radially inner side, and the permanent magnet insertion hole 32 is located on the radially outer side.
  • a permanent magnet 40 is inserted into the permanent magnet insertion hole 31.
  • the permanent magnet 40 is located on the d-axis, and the permanent magnet 40 is magnetized in the thickness direction (the radial direction of the rotor core 30).
  • a permanent magnet 41 is inserted into the permanent magnet insertion hole 32.
  • the permanent magnet 41 is located on the d-axis, and the permanent magnet 41 is magnetized in the thickness direction (the radial direction of the rotor core 30).
  • the plurality of permanent magnets 40 and 41 embedded in the rotor core 30 so as to be aligned in the radial direction have an arc shape, and have the same shape and the same dimensions. More specifically, in the permanent magnet 40, the radius of curvature of the outer surface in the radial direction is R1, the width in the radial direction is W1, and the length at the center in the radial direction (dimension in the direction orthogonal to the width W1). L1. In the permanent magnet 41, the radius of curvature of the outer surface in the radial direction is R2, the width in the radial direction is W2, and the length at the center in the radial direction (dimension in the direction perpendicular to the width W2) is L2.
  • the center O1 of the permanent magnet 40 and the center O2 of the permanent magnet 41 are both located on the d axis, and the center O1 of the permanent magnet 40 and the center O2 of the permanent magnet 41 are lines extending from the center O of the rotor core 30. It is separated by a distance L10 on the minute (on the d axis).
  • the permanent magnet 40 and the permanent magnet 41 are made of the same material.
  • the permanent magnets 40 and 41 are arranged so that the polarities of adjacent magnetic pole regions are different.
  • the permanent magnets 40 and 41 in a certain magnetic pole area are arranged so that the polarity on the side facing the teeth 103 is the S pole, the permanent magnets 40 and 41 in the adjacent magnetic pole area are It arrange
  • the rotor core 30 has arc-shaped flux barriers 33 and 34 that are continuous with both ends in the circumferential direction of the permanent magnet insertion hole 31 and extend from both ends in the circumferential direction.
  • the rotor core 30 includes arc-shaped flux barriers 35 and 36 that are continuous with both ends in the circumferential direction of the permanent magnet insertion hole 32 and extend from both ends in the circumferential direction.
  • Each of the flux barriers 33, 34, 35, 36 is formed by a hole or slit extending in the axial direction of the rotor core 30.
  • 4 and 5 show the magnetic flux of the exemplary rotating electrical machine 10a.
  • the d-axis magnetic flux is visualized.
  • the q-axis magnetic flux is visualized.
  • 4 and 5 show the magnetic flux generated in the coil 104 when the permanent magnet insertion holes 31 and 32, the flux barriers 33 to 36, and the permanent magnets 40 and 41 are not provided.
  • the permanent magnet in this embodiment is shown.
  • the arrangement of the insertion holes 31 and 32, the flux barriers 33 to 36, and the permanent magnets 40 and 41 is indicated by a one-dot chain line.
  • the flux barriers 33 and 34 extend along the q-axis magnetic flux (see FIG. 5).
  • the flux barriers 35 and 36 extend along the q-axis magnetic flux (see FIG. 5).
  • the flux barriers 33 and 34 are located on the radially inner side, the flux barriers 35 and 36 are located on the radially outer side, and the rotor core 30 has a plurality of flux barrier layers arranged side by side in the radial direction.
  • the inner wall of the flux barrier 33 in other words, the inner wall of the slit (hole) forming the flux barrier 33 has a radially inner wall surface 33a and a radially outer wall surface 33b.
  • the radially outer wall surface 33b has an arc shape.
  • the inner wall of the flux barrier 34 in other words, the inner wall of the slit (hole) forming the flux barrier 34 has a radially inner wall surface 34a and a radially outer wall surface 34b.
  • the radially outer wall surface 34b has an arc shape.
  • the inner wall of the flux barrier 35 in other words, the inner wall of the slit (hole) forming the flux barrier 35 has a radially inner wall surface 35a and a radially outer wall surface 35b.
  • the radially outer wall surface 35b has an arc shape.
  • the inner wall of the flux barrier 36 in other words, the inner wall of the slit (hole) forming the flux barrier 36 has a radially inner wall surface 36a and a radially outer wall surface 36b.
  • the radially outer wall surface 36b has an arc shape.
  • the flux barriers 33, 34 are located on the innermost radial direction of the flux barriers 33, 34 and 35, 36.
  • the radially inner wall surfaces 33a and 34a of the flux barriers 33 and 34 are formed so as to spread (protrude) toward the adjacent magnetic pole region from a position along the q-axis magnetic flux. More specifically, the radially inner wall surfaces 33a and 34a have a portion parallel to the boundary Bm of the magnetic pole region.
  • the radially inner wall surfaces 35 a, 36 a of the flux barriers 35, 36 are on an extension line of the arc on the radially inner surface of the permanent magnet 41 (an arc having a radius of curvature R ⁇ b> 10 indicated by a two-dot chain line).
  • the q-axis magnetic path widths W20 and W21 formed between the radially inner wall surfaces 35a and 36a of the flux barriers 35 and 36 and the radially outer wall surfaces 33b and 34b of the flux barriers 33 and 34 are d-axis It becomes narrower than the above q-axis magnetic path width W10 (q-axis magnetic path width W10 between the permanent magnet insertion holes 31 and 32).
  • the radially inner wall surfaces 35a, 36a of the flux barriers 35, 36 are shifted to the radially outer side of the rotor core 30 and are formed in a straight line, thereby uniformizing the q-axis magnetic path widths W10, W11, W12. ing.
  • the flux barriers 35 and 36 are arranged on the radially outer side of the rotor core 30 (arrow A) with respect to the arc extension line (two-dot chain line in FIG. 3) of the permanent magnet 41 so as to ensure the q-axis magnetic path width. In the direction indicated by).
  • the flux barriers 35 and 36 in which the radially inner wall surfaces 35a and 36a are arranged so as to be displaced radially outward are the most among the plurality of flux barriers 33, 34, 35, and 36 that are arranged in the radial direction. Located radially outside. That is, the radially inner wall surfaces 35a, 36a of the radially outer flux barriers 35, 36 are arranged so as to be shifted radially outward.
  • the rotor core 30 has a notch (concave portion) 37 extending along the axial direction of the rotor core 30 at a location where the d-axis passes on the outer peripheral surface thereof.
  • One notch (concave portion) 37 is formed per pole, and is provided symmetrically with respect to the d-axis.
  • the notch 37 has an arc-shaped bottom surface portion.
  • the rotating electrical machine 10 configured as described above will be described.
  • a three-phase current is supplied to the coil 104 of the stator 100, a rotating magnetic field is generated in the stator 100, and the rotating magnetic field acts on the rotor 20.
  • the rotor 20 rotates in synchronization with the rotating magnetic field by the magnetic attractive force and the repulsive force between the rotating magnetic field and the permanent magnets 40 and 41.
  • the curvature radii R1 (R2) of the permanent magnets 40 and 41 arranged in the radial direction are the same. Further, the centers O1 and O2 of the radii of curvature R1 and R2 of the permanent magnets 40 and 41 arranged in the radial direction are arranged so as to be shifted (separated) from each other. Thereby, the multilayer permanent magnets 40 and 41 can be arranged with the same curvature radius. As a result, the shape of the permanent magnets 40 and 41 can be one type.
  • the shape of the permanent magnets 40 and 41 becomes one type, so that the cost can be reduced.
  • the mold cost of the permanent magnets is required only for the types of shapes, which greatly increases the cost.
  • the shape of a permanent magnet can be made into one type, drastic cost reduction can be aimed at.
  • the shape of the radially inner wall surfaces 33a and 34a of the flux barriers 33 and 34 is a shape that can narrow the width of the magnetic path to such an extent that the magnetic flux density is not saturated.
  • the width of the flux barriers 33 and 34 in the direction along the road is increased.
  • the d-axis magnetic flux can be effectively prevented as shown in FIG.
  • the d-axis inductance Ld is reduced, and the salient pole ratio (Lq / Ld) can be increased.
  • the salient-pole ratio (Lq / Ld) is increased by reducing the d-axis inductance Ld while reducing the change in the q-axis inductance Lq by contriving the shape of the part having a sufficient magnetic flux density, and the reluctance. Torque can be increased.
  • the rotor 20 of the rotating electrical machine 10 has a cylindrical rotor core 30 configured to be arranged on the radially inner side of the stator 100 around which the coil 104 is wound, and the outer peripheral surface of the rotor core 30 has a gap G. It faces the stator 100 via
  • a plurality of permanent magnets 40, 41 are embedded in each magnetic pole region so as to be aligned in the radial direction, and flux barriers 33, 34, 35, 36 are disposed on both sides in the circumferential direction of each permanent magnet 40, 41.
  • the permanent magnets 40 and 41 embedded so as to be aligned in the radial direction have an arc shape, and have the same shape and the same dimensions. Therefore, the cost can be reduced by using one type of permanent magnet.
  • the flux barriers 33, 34, 35, and 36 are arranged so as to be shifted with respect to the arc extension line of the permanent magnets 40 and 41 (indicated by a two-dot chain line in FIG. 3) so as to ensure the q-axis magnetic path width. So it is practical.
  • the flux barriers 33, 34, 35, and 36 extend along the q-axis magnetic path.
  • the flux barriers 33 and 34 are located on the innermost radial direction among the plurality of flux barriers 33, 34, 35, and 36 arranged so as to be aligned in the radial direction.
  • the radially inner wall surfaces 33a and 34a of the flux barriers 33 and 34 spread from the position along the q-axis magnetic path toward the adjacent magnetic pole region.
  • the rotor core 5 has a portion with a sufficient magnetic flux density in the q-axis magnetic path, and the rotor core is not fully utilized.
  • the radially inner wall surfaces 33a and 34a of the flux barriers 33 and 34 spread from the position along the q-axis magnetic path toward the adjacent magnetic pole region. Accordingly, the salient pole ratio (Lq / Ld) can be increased by reducing the d-axis inductance Ld while reducing the change in the q-axis inductance Lq.
  • the embodiment is not limited to the above, and may be embodied as follows, for example.
  • one permanent magnet is arranged in each of the plurality of permanent magnet layers arranged in the radial direction, but the present invention is not limited to this.
  • two permanent magnets 40a and 40b may be arranged in a permanent magnet layer located on the radially inner side. That is, in each magnetic pole region of the rotor core 30, one permanent magnet 41 is disposed on the radially outer layer, and two permanent magnets 40a and 40b are disposed on the radially inner layer.
  • Flux barriers 35 and 36 are disposed on both sides in the circumferential direction of the permanent magnet 41, flux barriers 42 and 43 are disposed on both sides in the circumferential direction of the permanent magnet 40a, and fluxes are disposed on both sides in the circumferential direction of the permanent magnet 40b. Barriers 44 and 45 are arranged.
  • the three permanent magnets 40a, 40b, and 41 have an arc shape, and have the same shape and the same dimensions.
  • the flux barriers on both sides in the circumferential direction of the permanent magnet insertion holes 31 and 32 need not have the same radius of curvature as the permanent magnet insertion hole.
  • the two layers including the flux barrier and the permanent magnet are arranged side by side in the radial direction, but three or more layers may be arranged side by side, and the number of arrangement is not limited.
  • the number of poles of rotating electrical machines is not limited to four There may be more or less than four poles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This rotor for a rotating electrical machine is provided with a cylindrical rotor core configured so as to be disposed inside a stator in the radial direction, said stator having a coil wound therearound. The outer circumferential surface of the rotor core faces the stator with a gap therebetween. The rotor core is provided with a plurality of magnetic pole regions in the circumferential direction. In each of the magnetic pole regions, a plurality of permanent magnets are embedded so as to be arranged in the radial direction. The rotor core is provided with flux barriers which respectively extend from ends of each of the plurality of permanent magnets at both sides in the circumferential direction. The plurality of permanent magnets arranged in the radial direction are arc shaped, and have the same shape and the same dimensions.

Description

回転電機のロータRotating electrical machine rotor
 本発明は、回転電機のロータに関するものである。 The present invention relates to a rotor of a rotating electrical machine.
 特許文献1等において永久磁石埋込式回転電機が開示されている。詳しくは、特許文献1の回転電機においては、図7に示すように、ロータコア200に形成された円弧形状の永久磁石挿入孔201,202に永久磁石203,204,205が挿入されて特許文献1の回転電機は、円弧形状の永久磁石挿入孔201,202を有することでリラクタンストルクを増加させている。 Patent Document 1 and the like disclose a permanent magnet embedded rotary electric machine. Specifically, in the rotating electrical machine disclosed in Patent Document 1, as shown in FIG. 7, permanent magnets 203, 204, and 205 are inserted into arc-shaped permanent magnet insertion holes 201 and 202 formed in the rotor core 200. The rotating electric machine has the arc-shaped permanent magnet insertion holes 201 and 202 to increase the reluctance torque.
特開2014-100048号公報JP 2014-100048 A
 ところが、図7に示した構成を採用すると、永久磁石203,204,205として永久磁石挿入孔201,202の形状に応じた異なる形状のものが複数種類必要となり、例えば、複数種類の永久磁石製造用金型が必要となり、コストアップを招くことになる。 However, when the configuration shown in FIG. 7 is adopted, a plurality of types of permanent magnets 203, 204, 205 having different shapes corresponding to the shape of the permanent magnet insertion holes 201, 202 are required. For example, a plurality of types of permanent magnets are manufactured. A metal mold is required, resulting in an increase in cost.
 本発明の目的は、永久磁石についてコスト低減を図ることができる回転電機のロータを提供することにある。 An object of the present invention is to provide a rotor of a rotating electrical machine that can reduce the cost of a permanent magnet.
 上記課題を解決するための回転電機のロータは、コイルが巻装されたステータの径方向内側に配置されるように構成された円筒状のロータコアを有し、該ロータコアの外周面がギャップを介して前記ステータと対向する回転電機のロータであって、前記ロータコアは周方向に複数の磁極領域を有するとともに、各磁極領域には径方向に並ぶように複数の永久磁石が埋め込まれ、前記ロータコアは、複数の前記永久磁石の各々の周方向両側の端部からそれぞれ延びるフラックスバリアを有し、径方向に並ぶ複数の前記永久磁石は、円弧状をなし、かつ、同一形状、同一寸法である。 A rotor of a rotating electrical machine for solving the above-described problem has a cylindrical rotor core configured to be disposed radially inside a stator on which a coil is wound, and an outer peripheral surface of the rotor core is interposed via a gap. And the rotor core has a plurality of magnetic pole regions in the circumferential direction, and a plurality of permanent magnets are embedded in each magnetic pole region so as to be aligned in the radial direction. The plurality of permanent magnets have flux barriers extending from both ends in the circumferential direction of each of the plurality of permanent magnets, and the plurality of permanent magnets arranged in the radial direction have an arc shape, and have the same shape and the same dimensions.
一実施形態における回転電機の模式図。The schematic diagram of the rotary electric machine in one Embodiment. 同実施形態における回転電機の部分拡大図。The elements on larger scale of the rotary electric machine in the embodiment. 同実施形態におけるロータの部分拡大図。The elements on larger scale of the rotor in the embodiment. 例示的な回転電機のd軸磁束を表す図。The figure showing the d-axis magnetic flux of an example rotary electric machine. 例示的な回転電機のq軸磁束を表す図。The figure showing the q-axis magnetic flux of an example rotary electric machine. 別例における回転電機の部分拡大図。The elements on larger scale of the rotary electric machine in another example. 背景技術を説明するための図。The figure for demonstrating background art.
 以下、本発明の一実施形態を図面に従って説明する。
 図1に示すように、回転電機10は、磁石埋込式回転電機であって、ロータ20と、ステータ100とを備える。円筒状をなすロータ20の外周側にステータ100が配置されている。ステータ100の内周面は、ロータ20の外周面とギャップG(図2参照)を介して対向している。なお、図は何れも模式図であり、形状を強調して記載している。本実施形態の回転電機10における極数は「4」である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the rotating electrical machine 10 is a magnet-embedded rotating electrical machine, and includes a rotor 20 and a stator 100. The stator 100 is disposed on the outer peripheral side of the cylindrical rotor 20. The inner peripheral surface of the stator 100 is opposed to the outer peripheral surface of the rotor 20 via a gap G (see FIG. 2). Each figure is a schematic diagram, and the shape is emphasized. The number of poles in the rotating electrical machine 10 of the present embodiment is “4”.
 図1および図2に示すように、ステータ100は、円筒状のステータコア101を有し、ステータコア101の内側には周方向に並ぶように複数(本実施形態では36個)のスロット102が形成されている。各スロット102はステータコア101の内周面に開口している。周方向に隣り合うスロット102間にティース103が形成されている。本実施形態のステータ100では、一極あたりのスロット数が「9」であり(すなわち一極あたりのティース数が「9」であり)、一極あたりの中心Oからの角度θrは90°である。周方向に等間隔で設けられているティース103には、3相交流が通電されるコイル104が巻回されている。コイル104は、ステータ100の内周部に配置されている。 As shown in FIGS. 1 and 2, the stator 100 has a cylindrical stator core 101, and a plurality (36 in this embodiment) of slots 102 are formed inside the stator core 101 so as to be arranged in the circumferential direction. ing. Each slot 102 is open to the inner peripheral surface of the stator core 101. Teeth 103 are formed between slots 102 adjacent in the circumferential direction. In the stator 100 of this embodiment, the number of slots per pole is “9” (that is, the number of teeth per pole is “9”), and the angle θr from the center O per pole is 90 °. is there. A coil 104 that is energized with three-phase alternating current is wound around teeth 103 that are provided at equal intervals in the circumferential direction. The coil 104 is disposed on the inner peripheral portion of the stator 100.
 ステータ100の径方向内側にはロータ20が配置されており、ロータ20は、略円板状の電磁鋼板を複数枚(例えば数十枚)積層した円筒状のロータコア30を備え、ロータコア30の中心にシャフト50が貫挿されている。ロータ20は、ロータコア30の外周面がティース103と所定の間隔を置いた状態で、図示しないハウジングの軸受けにシャフト50を介して支持されており、ハウジングに対して回転可能である。つまり、ステータ100の内周面にロータコア30の外周面がギャップGを介して対向するように、ロータ20が配置されている。 A rotor 20 is disposed radially inward of the stator 100, and the rotor 20 includes a cylindrical rotor core 30 in which a plurality of (for example, several tens) electromagnetic disk-shaped steel plates are stacked. A shaft 50 is inserted through the shaft. The rotor 20 is supported by a bearing of a housing (not shown) via a shaft 50 in a state where the outer peripheral surface of the rotor core 30 is spaced apart from the teeth 103, and is rotatable with respect to the housing. That is, the rotor 20 is arranged so that the outer peripheral surface of the rotor core 30 faces the inner peripheral surface of the stator 100 with the gap G interposed therebetween.
 ロータ20は周方向に4つの磁極領域を有しており、各磁極領域の角度θrは90°である。ロータコア30には、各磁極領域において、径方向に並ぶように複数の永久磁石40,41が埋め込まれ、本実施形態では、各磁極領域に2つの永久磁石40,41が設けられている。すなわち、各磁極領域に、2つの永久磁石層が径方向に並んで設けられている。各永久磁石40,41の周方向両側にはそれぞれフラックスバリア33,34、35,36が配置されている。詳しくは、ロータコア30の各磁極領域には円弧状の永久磁石挿入孔31,32が形成されている。各永久磁石挿入孔31,32は、ロータコア30の軸方向に延びている。永久磁石挿入孔31が径方向内側に位置しているとともに永久磁石挿入孔32が径方向外側に位置している。永久磁石挿入孔31には永久磁石40が挿入されている。永久磁石40はd軸上に位置し、永久磁石40はその厚さ方向(ロータコア30の径方向)に着磁されている。永久磁石挿入孔32には永久磁石41が挿入されている。永久磁石41はd軸上に位置し、永久磁石41はその厚さ方向(ロータコア30の径方向)に着磁されている。 The rotor 20 has four magnetic pole regions in the circumferential direction, and the angle θr of each magnetic pole region is 90 °. The rotor core 30 is embedded with a plurality of permanent magnets 40 and 41 so as to be aligned in the radial direction in each magnetic pole region. In the present embodiment, two permanent magnets 40 and 41 are provided in each magnetic pole region. That is, two permanent magnet layers are provided side by side in the radial direction in each magnetic pole region. Flux barriers 33, 34, 35, and 36 are disposed on both circumferential sides of the permanent magnets 40 and 41, respectively. Specifically, arc-shaped permanent magnet insertion holes 31 and 32 are formed in each magnetic pole region of the rotor core 30. Each permanent magnet insertion hole 31, 32 extends in the axial direction of the rotor core 30. The permanent magnet insertion hole 31 is located on the radially inner side, and the permanent magnet insertion hole 32 is located on the radially outer side. A permanent magnet 40 is inserted into the permanent magnet insertion hole 31. The permanent magnet 40 is located on the d-axis, and the permanent magnet 40 is magnetized in the thickness direction (the radial direction of the rotor core 30). A permanent magnet 41 is inserted into the permanent magnet insertion hole 32. The permanent magnet 41 is located on the d-axis, and the permanent magnet 41 is magnetized in the thickness direction (the radial direction of the rotor core 30).
 径方向に並ぶようにロータコア30に埋め込まれた複数の永久磁石40,41は、円弧状をなし、かつ、同一形状、同一寸法である。
 より詳しくは、永久磁石40においては、径方向外側の表面の曲率半径がR1であり、径方向の幅がW1であり、径方向中心での長さ(幅W1と直交する方向の寸法)がL1である。永久磁石41においては、径方向外側の表面の曲率半径がR2であり、径方向の幅がW2であり、径方向中心での長さ(幅W2と直交する方向の寸法)がL2である。ここで、永久磁石40,41においては、径方向外側の表面の曲率半径が同一であり、すなわちR1=R2である。また、径方向の幅が同一であり、すなわちW1=W2である。さらに、径方向中心での長さが同一であり、すなわちL1=L2である。また、永久磁石40の中心O1と永久磁石41の中心O2とはいずれもd軸上に位置し、永久磁石40の中心O1と永久磁石41の中心O2とは、ロータコア30の中心Oから延びる線分上(d軸上)において距離L10だけ離間している。さらに、本実施形態では永久磁石40と永久磁石41とは同一の材料よりなる。
The plurality of permanent magnets 40 and 41 embedded in the rotor core 30 so as to be aligned in the radial direction have an arc shape, and have the same shape and the same dimensions.
More specifically, in the permanent magnet 40, the radius of curvature of the outer surface in the radial direction is R1, the width in the radial direction is W1, and the length at the center in the radial direction (dimension in the direction orthogonal to the width W1). L1. In the permanent magnet 41, the radius of curvature of the outer surface in the radial direction is R2, the width in the radial direction is W2, and the length at the center in the radial direction (dimension in the direction perpendicular to the width W2) is L2. Here, in the permanent magnets 40 and 41, the radius of curvature of the outer surface in the radial direction is the same, that is, R1 = R2. Further, the widths in the radial direction are the same, that is, W1 = W2. Furthermore, the length at the radial center is the same, that is, L1 = L2. The center O1 of the permanent magnet 40 and the center O2 of the permanent magnet 41 are both located on the d axis, and the center O1 of the permanent magnet 40 and the center O2 of the permanent magnet 41 are lines extending from the center O of the rotor core 30. It is separated by a distance L10 on the minute (on the d axis). Furthermore, in this embodiment, the permanent magnet 40 and the permanent magnet 41 are made of the same material.
 図1に示すように、永久磁石40,41は、隣り合う磁極領域の極性が異なるように配置されている。例えば、ある磁極領域の各永久磁石40,41が、ティース103と対向する側の極性がS極になるように配置されると、隣の磁極領域の各永久磁石40,41は、ティース103と対向する側の極性がN極になるように配置される。 As shown in FIG. 1, the permanent magnets 40 and 41 are arranged so that the polarities of adjacent magnetic pole regions are different. For example, when the permanent magnets 40 and 41 in a certain magnetic pole area are arranged so that the polarity on the side facing the teeth 103 is the S pole, the permanent magnets 40 and 41 in the adjacent magnetic pole area are It arrange | positions so that the polarity of the opposite side may become N pole.
 ロータコア30は、永久磁石挿入孔31の周方向両側の端部に連続し且つその周方向両端部からそれぞれ延びる円弧状のフラックスバリア33,34を有する。同様に、ロータコア30は、永久磁石挿入孔32の周方向両端部に連続し且つその周方向両端部からそれぞれ延びる円弧状のフラックスバリア35,36を有する。フラックスバリア33,34,35,36の各々は、ロータコア30の軸線方向に延びる孔又はスリットによって形成されている。 The rotor core 30 has arc- shaped flux barriers 33 and 34 that are continuous with both ends in the circumferential direction of the permanent magnet insertion hole 31 and extend from both ends in the circumferential direction. Similarly, the rotor core 30 includes arc- shaped flux barriers 35 and 36 that are continuous with both ends in the circumferential direction of the permanent magnet insertion hole 32 and extend from both ends in the circumferential direction. Each of the flux barriers 33, 34, 35, 36 is formed by a hole or slit extending in the axial direction of the rotor core 30.
 図4,5は、例示的な回転電機10aの磁束を示している。図4には、d軸磁束を可視化して示す。図5には、q軸磁束を可視化して示す。なお、図4,5は永久磁石挿入孔31,32、フラックスバリア33~36および永久磁石40,41がない場合にコイル104で生じる磁束を示しているが、参考に、本実施形態における永久磁石挿入孔31,32、フラックスバリア33~36、および永久磁石40,41の配置を一点鎖線で示す。 4 and 5 show the magnetic flux of the exemplary rotating electrical machine 10a. In FIG. 4, the d-axis magnetic flux is visualized. In FIG. 5, the q-axis magnetic flux is visualized. 4 and 5 show the magnetic flux generated in the coil 104 when the permanent magnet insertion holes 31 and 32, the flux barriers 33 to 36, and the permanent magnets 40 and 41 are not provided. For reference, the permanent magnet in this embodiment is shown. The arrangement of the insertion holes 31 and 32, the flux barriers 33 to 36, and the permanent magnets 40 and 41 is indicated by a one-dot chain line.
 図2に示すように、本実施形態では、フラックスバリア33,34は、q軸磁束(図5参照)に沿って延びている。本実施形態では、フラックスバリア35,36は、q軸磁束(図5参照)に沿って延びている。フラックスバリア33,34は径方向内側に位置し、フラックスバリア35,36は径方向外側に位置しており、ロータコア30は、径方向に並んで配置された複数のフラックスバリア層を有する。 2, in this embodiment, the flux barriers 33 and 34 extend along the q-axis magnetic flux (see FIG. 5). In the present embodiment, the flux barriers 35 and 36 extend along the q-axis magnetic flux (see FIG. 5). The flux barriers 33 and 34 are located on the radially inner side, the flux barriers 35 and 36 are located on the radially outer side, and the rotor core 30 has a plurality of flux barrier layers arranged side by side in the radial direction.
 フラックスバリア33の内壁は、言い換えればフラックスバリア33を形成するスリット(孔)の内壁は、径方向内側壁面33aを有するとともに径方向外側壁面33bを有する。径方向外側壁面33bは円弧状をなしている。フラックスバリア34の内壁は、言い換えればフラックスバリア34を形成するスリット(孔)の内壁は、径方向内側壁面34aを有するとともに径方向外側壁面34bを有する。径方向外側壁面34bは円弧状をなしている。 The inner wall of the flux barrier 33, in other words, the inner wall of the slit (hole) forming the flux barrier 33 has a radially inner wall surface 33a and a radially outer wall surface 33b. The radially outer wall surface 33b has an arc shape. The inner wall of the flux barrier 34, in other words, the inner wall of the slit (hole) forming the flux barrier 34 has a radially inner wall surface 34a and a radially outer wall surface 34b. The radially outer wall surface 34b has an arc shape.
 フラックスバリア35の内壁は、言い換えればフラックスバリア35を形成するスリット(孔)の内壁は、径方向内側壁面35aを有するとともに径方向外側壁面35bを有する。径方向外側壁面35bは円弧状をなしている。フラックスバリア36の内壁は、言い換えればフラックスバリア36を形成するスリット(孔)の内壁は、径方向内側壁面36aを有するとともに径方向外側壁面36bを有する。径方向外側壁面36bは円弧状をなしている。 The inner wall of the flux barrier 35, in other words, the inner wall of the slit (hole) forming the flux barrier 35 has a radially inner wall surface 35a and a radially outer wall surface 35b. The radially outer wall surface 35b has an arc shape. The inner wall of the flux barrier 36, in other words, the inner wall of the slit (hole) forming the flux barrier 36 has a radially inner wall surface 36a and a radially outer wall surface 36b. The radially outer wall surface 36b has an arc shape.
 フラックスバリア33,34は、フラックスバリア33,34および35,36のうち、最も径方向内側に位置する。フラックスバリア33,34の径方向内側壁面33a,34aがq軸磁束に沿った位置より隣の磁極領域へ向かって広がって(張り出すように)形成されている。より詳しくは、径方向内側壁面33a,34aは、磁極領域の境界Bmに平行な部分を有する。 The flux barriers 33, 34 are located on the innermost radial direction of the flux barriers 33, 34 and 35, 36. The radially inner wall surfaces 33a and 34a of the flux barriers 33 and 34 are formed so as to spread (protrude) toward the adjacent magnetic pole region from a position along the q-axis magnetic flux. More specifically, the radially inner wall surfaces 33a and 34a have a portion parallel to the boundary Bm of the magnetic pole region.
 図3において、仮に、フラックスバリア35,36の径方向内側壁面35a,36aが永久磁石41の径方向内側の表面の円弧の延長線(2点鎖線で示す、曲率半径R10を有する円弧)上にあるとすると、フラックスバリア35,36の径方向内側壁面35a,36aとフラックスバリア33,34の径方向外側壁面33b,34bとの間に形成されるq軸磁路幅W20,W21は、d軸上でのq軸磁路幅W10(永久磁石挿入孔31,32間のq軸磁路幅W10)より狭くなる。そこで、フラックスバリア35,36の径方向内側壁面35a,36aをロータコア30の径方向外側にずらし、かつ直線状に形成しており、これにより、q軸磁路幅W10,W11,W12を均一化している。このようにして、フラックスバリア35,36は、q軸磁路幅を確保するように永久磁石41の円弧の延長線(図3の2点鎖線)に対してロータコア30の径方向外側(矢印Aで示す方向)にずれて配置されている。 In FIG. 3, tentatively, the radially inner wall surfaces 35 a, 36 a of the flux barriers 35, 36 are on an extension line of the arc on the radially inner surface of the permanent magnet 41 (an arc having a radius of curvature R <b> 10 indicated by a two-dot chain line). Assuming that the q-axis magnetic path widths W20 and W21 formed between the radially inner wall surfaces 35a and 36a of the flux barriers 35 and 36 and the radially outer wall surfaces 33b and 34b of the flux barriers 33 and 34 are d-axis It becomes narrower than the above q-axis magnetic path width W10 (q-axis magnetic path width W10 between the permanent magnet insertion holes 31 and 32). Therefore, the radially inner wall surfaces 35a, 36a of the flux barriers 35, 36 are shifted to the radially outer side of the rotor core 30 and are formed in a straight line, thereby uniformizing the q-axis magnetic path widths W10, W11, W12. ing. In this manner, the flux barriers 35 and 36 are arranged on the radially outer side of the rotor core 30 (arrow A) with respect to the arc extension line (two-dot chain line in FIG. 3) of the permanent magnet 41 so as to ensure the q-axis magnetic path width. In the direction indicated by).
 特に、径方向内側壁面35a,36aが径方向外側にずれて配置されているフラックスバリア35,36は、径方向に並んで配置された複数のフラックスバリア33,34、35,36のうち、最も径方向外側に位置する。即ち、径方向外側のフラックスバリア35,36の径方向内側壁面35a,36aが径方向外側にずれて配置される。 In particular, the flux barriers 35 and 36 in which the radially inner wall surfaces 35a and 36a are arranged so as to be displaced radially outward are the most among the plurality of flux barriers 33, 34, 35, and 36 that are arranged in the radial direction. Located radially outside. That is, the radially inner wall surfaces 35a, 36a of the radially outer flux barriers 35, 36 are arranged so as to be shifted radially outward.
 図2に示すように、ロータコア30は、その外周面においてd軸が通る箇所に、ロータコア30の軸線方向に沿って延びる切欠き(凹部)37を有する。切欠き(凹部)37は一極あたり1つ形成され、d軸に対称に設けられている。また、ロータコア30の軸線に直交した断面では、切欠き37は円弧状の底面部を有している。 As shown in FIG. 2, the rotor core 30 has a notch (concave portion) 37 extending along the axial direction of the rotor core 30 at a location where the d-axis passes on the outer peripheral surface thereof. One notch (concave portion) 37 is formed per pole, and is provided symmetrically with respect to the d-axis. In the cross section orthogonal to the axis of the rotor core 30, the notch 37 has an arc-shaped bottom surface portion.
 次に、このように構成した回転電機10の作用を説明する。
 回転電機10が駆動される場合は、ステータ100のコイル104に3相の電流が供給されてステータ100に回転磁界が発生し、ロータ20に回転磁界が作用する。そして、回転磁界と永久磁石40,41との間の磁気的な吸引力および反発力によりロータ20が回転磁界と同期して回転する。
Next, the operation of the rotating electrical machine 10 configured as described above will be described.
When the rotating electrical machine 10 is driven, a three-phase current is supplied to the coil 104 of the stator 100, a rotating magnetic field is generated in the stator 100, and the rotating magnetic field acts on the rotor 20. The rotor 20 rotates in synchronization with the rotating magnetic field by the magnetic attractive force and the repulsive force between the rotating magnetic field and the permanent magnets 40 and 41.
 図2に示すように、径方向に並ぶ永久磁石40,41の曲率半径R1(R2)を互いに同一とする。また、径方向に並ぶ永久磁石40,41の曲率半径R1,R2の中心O1,O2は、互いにずれて(離間するように)配置されている。これにより、同一曲率半径で多層の永久磁石40,41を配置することができる。その結果、永久磁石40,41の形状を1種類とすることができる。 As shown in FIG. 2, the curvature radii R1 (R2) of the permanent magnets 40 and 41 arranged in the radial direction are the same. Further, the centers O1 and O2 of the radii of curvature R1 and R2 of the permanent magnets 40 and 41 arranged in the radial direction are arranged so as to be shifted (separated) from each other. Thereby, the multilayer permanent magnets 40 and 41 can be arranged with the same curvature radius. As a result, the shape of the permanent magnets 40 and 41 can be one type.
 このように、径方向に並ぶように配置された複数の永久磁石40,41を有するロータコア30において、永久磁石40,41の形状が1種類となることでコスト低減を図ることができる。つまり、永久磁石の形状が複数種類となると、永久磁石の金型費が形状の種類だけ必要となり、非常にコスト増加となる。これに対し本実施形態では、永久磁石の形状を1種類とすることができるため、大幅なコスト低減を図ることができる。 As described above, in the rotor core 30 having the plurality of permanent magnets 40 and 41 arranged so as to be aligned in the radial direction, the shape of the permanent magnets 40 and 41 becomes one type, so that the cost can be reduced. In other words, when there are a plurality of types of permanent magnets, the mold cost of the permanent magnets is required only for the types of shapes, which greatly increases the cost. On the other hand, in this embodiment, since the shape of a permanent magnet can be made into one type, drastic cost reduction can be aimed at.
 また、図2に示すように、フラックスバリア33,34の径方向内側壁面33a,34aの形状として、磁束密度を飽和させない程度に磁路の幅を狭くし得る形状を採用して、d軸磁路に沿った方向におけるフラックスバリア33,34の幅を広げている。これにより、図4に示すように効果的にd軸磁束を妨げることができる。その結果、d軸インダクタンスLdが低下し、突極比(Lq/Ld)を増加させることができる。このようにして、磁束密度に余裕のある部位の形状工夫により、q軸インダクタンスLqの変化を少なくしつつd軸インダクタンスLdを小さくすることで、突極比(Lq/Ld)を増加させ、リラクタンストルクを増加させることができる。 In addition, as shown in FIG. 2, the shape of the radially inner wall surfaces 33a and 34a of the flux barriers 33 and 34 is a shape that can narrow the width of the magnetic path to such an extent that the magnetic flux density is not saturated. The width of the flux barriers 33 and 34 in the direction along the road is increased. As a result, the d-axis magnetic flux can be effectively prevented as shown in FIG. As a result, the d-axis inductance Ld is reduced, and the salient pole ratio (Lq / Ld) can be increased. In this way, the salient-pole ratio (Lq / Ld) is increased by reducing the d-axis inductance Ld while reducing the change in the q-axis inductance Lq by contriving the shape of the part having a sufficient magnetic flux density, and the reluctance. Torque can be increased.
 上記実施形態によれば、以下のような効果を得ることができる。
 (1)回転電機10のロータ20は、コイル104が巻装されたステータ100の径方向内側に配置されるように構成された円筒状のロータコア30を有し、ロータコア30の外周面がギャップGを介してステータ100と対向する。ロータコア30には、各磁極領域において、径方向に並ぶように複数の永久磁石40,41が埋め込まれ、各永久磁石40,41の周方向両側にフラックスバリア33,34、35,36が配置されている。径方向に並ぶように埋め込まれた永久磁石40,41は、円弧状をなし、かつ、同一形状、同一寸法である。よって、永久磁石が1種類となることでコスト低減を図ることができる。
According to the above embodiment, the following effects can be obtained.
(1) The rotor 20 of the rotating electrical machine 10 has a cylindrical rotor core 30 configured to be arranged on the radially inner side of the stator 100 around which the coil 104 is wound, and the outer peripheral surface of the rotor core 30 has a gap G. It faces the stator 100 via In the rotor core 30, a plurality of permanent magnets 40, 41 are embedded in each magnetic pole region so as to be aligned in the radial direction, and flux barriers 33, 34, 35, 36 are disposed on both sides in the circumferential direction of each permanent magnet 40, 41. ing. The permanent magnets 40 and 41 embedded so as to be aligned in the radial direction have an arc shape, and have the same shape and the same dimensions. Therefore, the cost can be reduced by using one type of permanent magnet.
 (2)フラックスバリア33,34、35,36は、q軸磁路幅を確保するように永久磁石40,41の円弧の延長線(図3において2点鎖線で示す)に対してずれて配置されるので、実用的である。 (2) The flux barriers 33, 34, 35, and 36 are arranged so as to be shifted with respect to the arc extension line of the permanent magnets 40 and 41 (indicated by a two-dot chain line in FIG. 3) so as to ensure the q-axis magnetic path width. So it is practical.
 (3)径方向外側に位置するフラックスバリア35,36の径方向内側壁面35a,36aが、径方向外側にずれて配置されるので、実用的である。
 (4)フラックスバリア33,34、35,36は、q軸磁路に沿って延びている。フラックスバリア33,34は、径方向に並ぶように配置された複数のフラックスバリア33,34、35,36の層のうち、最も径方向内側に位置している。フラックスバリア33,34の径方向内側壁面33a,34aは、q軸磁路に沿った位置より隣の磁極領域へ向かって広がっている。図5に示す例における回転電機10aは、q軸磁路での磁束密度に余裕がある部位を有しており、有効にロータコアを活用しきれていない。このことを考慮して、本実施形態では、フラックスバリア33,34の径方向内側壁面33a,34aがq軸磁路に沿った位置より隣の磁極領域へ向かって広がっている。これにより、q軸インダクタンスLqの変化を少なくしつつd軸インダクタンスLdを小さくすることにより突極比(Lq/Ld)を大きくすることができる。
(3) Since the radially inner wall surfaces 35a and 36a of the flux barriers 35 and 36 located on the radially outer side are arranged so as to be displaced radially outward, it is practical.
(4) The flux barriers 33, 34, 35, and 36 extend along the q-axis magnetic path. The flux barriers 33 and 34 are located on the innermost radial direction among the plurality of flux barriers 33, 34, 35, and 36 arranged so as to be aligned in the radial direction. The radially inner wall surfaces 33a and 34a of the flux barriers 33 and 34 spread from the position along the q-axis magnetic path toward the adjacent magnetic pole region. The rotating electrical machine 10a in the example shown in FIG. 5 has a portion with a sufficient magnetic flux density in the q-axis magnetic path, and the rotor core is not fully utilized. In consideration of this, in the present embodiment, the radially inner wall surfaces 33a and 34a of the flux barriers 33 and 34 spread from the position along the q-axis magnetic path toward the adjacent magnetic pole region. Accordingly, the salient pole ratio (Lq / Ld) can be increased by reducing the d-axis inductance Ld while reducing the change in the q-axis inductance Lq.
 実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
 ・各磁極領域において径方向に並んで配置された複数の永久磁石層の各々には、永久磁石が1つ配置されていたが、これに限らない。例えば、図6のように径方向内側に位置する永久磁石層に2つの永久磁石40a,40bを配置してもよい。即ち、ロータコア30の各磁極領域において、径方向外側の層に1つの永久磁石41が配置され、径方向内側の層に2つの永久磁石40a,40bが配置される。永久磁石41の周方向両側にはそれぞれフラックスバリア35,36が配置され、永久磁石40aの周方向両側にはそれぞれフラックスバリア42,43が配置されるとともに永久磁石40bの周方向両側にはそれぞれフラックスバリア44,45が配置されている。この場合、3つの永久磁石40a,40b,41は、円弧状をなし、かつ、同一形状、同一寸法である。
The embodiment is not limited to the above, and may be embodied as follows, for example.
In each of the magnetic pole regions, one permanent magnet is arranged in each of the plurality of permanent magnet layers arranged in the radial direction, but the present invention is not limited to this. For example, as shown in FIG. 6, two permanent magnets 40a and 40b may be arranged in a permanent magnet layer located on the radially inner side. That is, in each magnetic pole region of the rotor core 30, one permanent magnet 41 is disposed on the radially outer layer, and two permanent magnets 40a and 40b are disposed on the radially inner layer. Flux barriers 35 and 36 are disposed on both sides in the circumferential direction of the permanent magnet 41, flux barriers 42 and 43 are disposed on both sides in the circumferential direction of the permanent magnet 40a, and fluxes are disposed on both sides in the circumferential direction of the permanent magnet 40b. Barriers 44 and 45 are arranged. In this case, the three permanent magnets 40a, 40b, and 41 have an arc shape, and have the same shape and the same dimensions.
 ・各永久磁石挿入孔31,32の周方向両側のフラックスバリアは、永久磁石挿入孔と同一曲率半径でなくてよい。
 ・フラックスバリアおよび永久磁石を含む層は径方向において2つ並んで配置されたが、3つ以上並んで配置されてもよく、その配置数は問わない。
The flux barriers on both sides in the circumferential direction of the permanent magnet insertion holes 31 and 32 need not have the same radius of curvature as the permanent magnet insertion hole.
The two layers including the flux barrier and the permanent magnet are arranged side by side in the radial direction, but three or more layers may be arranged side by side, and the number of arrangement is not limited.
 ・回転電機の極数は4極に限らない。4極より多くても、少なくてもよい。 ・ The number of poles of rotating electrical machines is not limited to four There may be more or less than four poles.

Claims (5)

  1.  コイルが巻装されたステータの径方向内側に配置されるように構成された円筒状のロータコアを有し、該ロータコアの外周面がギャップを介して前記ステータと対向する回転電機のロータであって、
     前記ロータコアは周方向に複数の磁極領域を有するとともに、各磁極領域には径方向に並ぶように複数の永久磁石が埋め込まれ、
     前記ロータコアは、複数の前記永久磁石の各々の周方向両側の端部からそれぞれ延びるフラックスバリアを有し、
     径方向に並ぶ複数の前記永久磁石は、円弧状をなし、かつ、同一形状、同一寸法である回転電機のロータ。
    A rotor of a rotating electrical machine having a cylindrical rotor core configured to be disposed radially inward of a stator around which a coil is wound, and an outer peripheral surface of the rotor core facing the stator via a gap; ,
    The rotor core has a plurality of magnetic pole regions in the circumferential direction, and a plurality of permanent magnets are embedded in each magnetic pole region so as to be aligned in the radial direction,
    The rotor core has flux barriers extending from both ends of each of the plurality of permanent magnets in the circumferential direction,
    The plurality of permanent magnets arranged in the radial direction have a circular arc shape, and have the same shape and the same dimensions.
  2.  前記フラックスバリアは、q軸磁路幅を確保するように前記永久磁石の円弧の延長線に対してずれて配置される請求項1に記載の回転電機のロータ。 The rotor of a rotating electrical machine according to claim 1, wherein the flux barrier is arranged so as to be shifted with respect to an extension line of the arc of the permanent magnet so as to ensure a q-axis magnetic path width.
  3.  前記フラックスバリアの内壁は径方向内側壁面をそれぞれ有し、径方向に並ぶ複数の前記フラックスバリアのうち、径方向外側に位置する前記フラックスバリアの前記径方向内側壁面が、該永久磁石の円弧の延長線に対して径方向外側にずれて配置される請求項2に記載の回転電機のロータ。 The inner wall of the flux barrier has a radially inner wall surface, and the radially inner wall surface of the flux barrier located radially outside of the plurality of flux barriers arranged in the radial direction is an arc of the permanent magnet. The rotor for a rotating electrical machine according to claim 2, wherein the rotor is disposed so as to be shifted radially outward with respect to the extension line.
  4.  前記フラックスバリアはq軸磁路に沿って延びるとともに、前記フラックスバリアの内壁は径方向内側壁面をそれぞれ有し、
     径方向に並ぶ複数の前記フラックスバリアのうち、最も径方向内側に位置する前記フラックスバリアの前記径方向内側壁面は、前記q軸磁路に沿った位置より隣の磁極領域へ向かって広がっている請求項1又は2に記載の回転電機のロータ。
    The flux barrier extends along a q-axis magnetic path, and the inner wall of the flux barrier has a radially inner wall surface,
    Of the plurality of flux barriers arranged in the radial direction, the radially inner wall surface of the flux barrier located at the innermost radial direction extends from the position along the q-axis magnetic path toward the adjacent magnetic pole region. The rotor of the rotary electric machine according to claim 1 or 2.
  5.  前記フラックスバリアは前記q軸磁路に沿って延びており、
     径方向に並ぶ複数の前記フラックスバリアのうち、最も径方向内側に位置する前記フラックスバリアの前記径方向内側壁面は、前記q軸磁路に沿った位置より隣の磁極領域へ向かって広がっている請求項3に記載の回転電機のロータ。
    The flux barrier extends along the q-axis magnetic path;
    Of the plurality of flux barriers arranged in the radial direction, the radially inner wall surface of the flux barrier located at the innermost radial direction extends from the position along the q-axis magnetic path toward the adjacent magnetic pole region. The rotor of the rotary electric machine according to claim 3.
PCT/JP2016/057123 2015-03-16 2016-03-08 Rotor for rotating electrical machine WO2016147946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-052305 2015-03-16
JP2015052305A JP6020629B2 (en) 2015-03-16 2015-03-16 Rotating electrical machine rotor

Publications (1)

Publication Number Publication Date
WO2016147946A1 true WO2016147946A1 (en) 2016-09-22

Family

ID=56918871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057123 WO2016147946A1 (en) 2015-03-16 2016-03-08 Rotor for rotating electrical machine

Country Status (2)

Country Link
JP (1) JP6020629B2 (en)
WO (1) WO2016147946A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107854A (en) * 2016-12-22 2018-07-05 本田技研工業株式会社 Rotary electric machine
GB2559016B (en) * 2016-11-24 2019-05-22 Jaguar Land Rover Ltd Electric machine apparatus
GB2574450A (en) * 2018-06-07 2019-12-11 Continental Automotive Gmbh Rotor, electric machine and vehicle
JP2021125969A (en) * 2020-02-05 2021-08-30 本田技研工業株式会社 Rotor for rotary electric machine
JP2021125970A (en) * 2020-02-05 2021-08-30 本田技研工業株式会社 Rotor for rotary electric machine and arcuate magnet manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018102039A (en) * 2016-12-19 2018-06-28 三菱重工サーマルシステムズ株式会社 Rotor of electric motor, and compressor
WO2024117216A1 (en) * 2022-11-30 2024-06-06 ニデック株式会社 Rotor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102202A (en) * 1998-09-22 2000-04-07 Aichi Emerson Electric Co Ltd Rotor for permanent-magnet type electric motor
JP2003134707A (en) * 2001-10-25 2003-05-09 Aichi Elec Co Rotor of permanent magnet motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102202A (en) * 1998-09-22 2000-04-07 Aichi Emerson Electric Co Ltd Rotor for permanent-magnet type electric motor
JP2003134707A (en) * 2001-10-25 2003-05-09 Aichi Elec Co Rotor of permanent magnet motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2559016B (en) * 2016-11-24 2019-05-22 Jaguar Land Rover Ltd Electric machine apparatus
JP2018107854A (en) * 2016-12-22 2018-07-05 本田技研工業株式会社 Rotary electric machine
GB2574450A (en) * 2018-06-07 2019-12-11 Continental Automotive Gmbh Rotor, electric machine and vehicle
JP2021125969A (en) * 2020-02-05 2021-08-30 本田技研工業株式会社 Rotor for rotary electric machine
JP2021125970A (en) * 2020-02-05 2021-08-30 本田技研工業株式会社 Rotor for rotary electric machine and arcuate magnet manufacturing method
JP7379196B2 (en) 2020-02-05 2023-11-14 本田技研工業株式会社 Rotating electric machine rotor
JP7390203B2 (en) 2020-02-05 2023-12-01 本田技研工業株式会社 Rotor and arc magnet manufacturing method for rotating electric machine

Also Published As

Publication number Publication date
JP2016174445A (en) 2016-09-29
JP6020629B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
WO2016147946A1 (en) Rotor for rotating electrical machine
JP5774081B2 (en) Rotating electric machine
JP5353917B2 (en) Rotating machine rotor
KR101880377B1 (en) Interior permanent magnet rotating electric machine
JP5709907B2 (en) Permanent magnet embedded rotary electric machine for vehicles
JP5443778B2 (en) Rotor of permanent magnet type rotating electric machine and rotating electric machine thereof
JP6879140B2 (en) Rotating machine
CN108352744B (en) Permanent magnet motor
JP5228316B2 (en) Rotating electric machine rotor and rotating electric machine
JP6667665B2 (en) Rotating electric machine rotor and method of manufacturing rotor for rotating electric machine
JP6399205B2 (en) Rotating electrical machine rotor
JP2008206308A (en) Permanent-magnet rotating electric machine
JP2007104819A (en) Rotating electric machine
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP7185414B2 (en) Rotor core, rotor and synchronous reluctance rotary electric machine
JP2017079530A (en) Synchronous reluctance motor
JP2018057155A (en) Rotator of rotating electrical machine
JP5310790B2 (en) Rotating electrical machine rotor
JP2013132124A (en) Core for field element
JP2015073417A (en) Embedded magnet dynamo-electric machine
JPWO2020194390A1 (en) Rotating machine
JP6877944B2 (en) Synchronous reluctance type rotary electric machine
JP5379566B2 (en) Brushless motor
JP2008187802A (en) Rotor for rotary electrical machine, and electric machine
JP2014161206A (en) Interior magnet type rotating electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764776

Country of ref document: EP

Kind code of ref document: A1