WO2016147886A1 - 半導体素子、信号増幅方法、及び、検出装置 - Google Patents
半導体素子、信号増幅方法、及び、検出装置 Download PDFInfo
- Publication number
- WO2016147886A1 WO2016147886A1 PCT/JP2016/056614 JP2016056614W WO2016147886A1 WO 2016147886 A1 WO2016147886 A1 WO 2016147886A1 JP 2016056614 W JP2016056614 W JP 2016056614W WO 2016147886 A1 WO2016147886 A1 WO 2016147886A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor
- terahertz wave
- light
- electrons
- incident
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 74
- 230000003321 amplification Effects 0.000 title claims abstract description 64
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 64
- 239000004065 semiconductor Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000000969 carrier Substances 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims description 86
- 229910052751 metal Inorganic materials 0.000 claims description 86
- 230000005684 electric field Effects 0.000 claims description 43
- 230000001965 increasing effect Effects 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 abstract description 26
- 238000004891 communication Methods 0.000 abstract description 3
- 238000003745 diagnosis Methods 0.000 abstract description 3
- 230000004001 molecular interaction Effects 0.000 abstract description 2
- 238000004611 spectroscopical analysis Methods 0.000 abstract description 2
- 238000011953 bioanalysis Methods 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 20
- 229910052710 silicon Inorganic materials 0.000 description 20
- 239000010703 silicon Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 15
- 230000010287 polarization Effects 0.000 description 11
- 230000035945 sensitivity Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 241000167857 Bourreria Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/868—PIN diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/107—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
Definitions
- the present technology relates to a semiconductor element, a signal amplification method, and a detection apparatus, and more particularly, to a semiconductor element, a signal amplification method, and a detection apparatus that can enable avalanche amplification without requiring a high voltage. .
- Terahertz waves are in the middle region of light waves and radio waves, and are considered to have both of these characteristics. Therefore, taking advantage of these characteristics, for example, medical diagnosis, biological analysis, information communication, Applications in fields such as ranging systems are expected, and various studies have been conducted (for example, see Non-Patent Documents 1 and 2).
- One terahertz corresponds to 10 12 Hz
- terahertz waves are a general term for a band of 0.1 to 10 ⁇ 10 12 Hz.
- the present technology has been made in view of such a situation, and makes it possible to enable avalanche amplification without requiring a high voltage.
- the semiconductor element according to one aspect of the present technology is a semiconductor element that multiplies electrons by causing carriers on the semiconductor surface to vibrate strongly by incident electric field enhancement and collide with semiconductor constituent atoms.
- the signal amplification method and detection device are the signal amplification method and detection device corresponding to the semiconductor element according to one aspect of the present technology described above.
- the carriers on the semiconductor surface are vibrated strongly by the electric field enhancement of incident light and collide with semiconductor constituent atoms, thereby multiplying electrons.
- avalanche amplification can be performed without requiring a high voltage.
- FIG. 1 is a diagram illustrating a configuration example of a terahertz wave detection system 1.
- the terahertz wave detection system 1 is a system for detecting a transmission image inside the object 2 using terahertz waves (terahertz light).
- the terahertz wave detection system 1 includes a terahertz wave light source 10, a lens 11, a lens 12, a terahertz wave enhancement unit 13, a terahertz wave detection device 14, and an information processing device 15.
- the terahertz wave detection system 1 the terahertz wave emitted from the terahertz wave light source 10 passes through the object 2 through the lens 11. Then, the terahertz wave that has passed through the object 2 is collected by the lens 12, enhanced by the terahertz wave enhancement unit 13, and then incident on the terahertz wave detection device 14.
- the terahertz wave detection device 14 detects a signal corresponding to the terahertz wave from the terahertz wave enhancement unit 13 and supplies the detection result to the information processing device 15.
- the information processing device 15 processes the detection result from the terahertz wave detection device 14 and outputs, for example, a transmission image inside the object 2.
- the terahertz wave detection device 14 corresponds to an imager (imager device), and the terahertz wave enhancement unit 13 corresponds to OCL (On (Chip Lens) in the imager. Further, since the terahertz wave detection device 14 has elements (semiconductor elements) for detecting terahertz waves arranged in a two-dimensional manner, scanning is not necessary when acquiring a two-dimensional image (transmission image). It is said.
- terahertz wave detection system 1 in FIG. 1 a system that detects a transmission image inside an object has been described as an example of a system using terahertz waves.
- medical diagnosis, biological analysis, information communication, and a ranging system are described. It can be applied to other systems using terahertz waves.
- security field it can also be applied to the field of spectroscopic analysis based on molecular interaction detection.
- FIG. 2 is a diagram illustrating a structure of the terahertz wave detecting element 140 in the terahertz wave detecting device 14 of FIG.
- a plurality of terahertz wave detection elements 140 corresponding to one pixel are arranged in a two-dimensional manner.
- the terahertz wave detecting element 140 is configured by laminating a fully depleted SOI (FD-SOI: Fully Depleted Silicon On Insulator) 201, a BOX (Buried Oxide) layer 202, and a silicon substrate 203. Further, an insulating film 204 such as a silicon oxide film (SiO 2 ) is formed on the fully depleted SOI 201.
- FD-SOI Fully Depleted Silicon On Insulator
- BOX Buried Oxide
- SiO 2 silicon oxide film
- the fully depleted SOI 201 forms a pin junction diode.
- the p layer corresponds to the source (source part)
- the n layer corresponds to the drain (drain part)
- the i layer (intrinsic Si) corresponds to the channel (channel part).
- a metal slit ring 130 is disposed via an insulating film 204.
- the metal slit ring 130 is arranged in the terahertz wave enhancing unit 13 in FIG.
- the metal slit ring 130 has, for example, a metal nanogap 130A that is a nano-sized slit as a metal nanostructure (metal microstructure) that collects terahertz waves.
- a gold ring (gold slit ring) having a metal nano gap 130A is suitable. That is, the metal slit ring 130 serves as an antenna for terahertz waves.
- the terahertz wave is locally resonated and collected by plasmon resonance, and is incident on the silicon (Si) channel as near-field light with enhanced intensity. Is done. Then, due to the electric field ("E" in the figure) of this enhanced light, electrons (carriers) in the silicon channel cause avalanche amplification (light-induced avalanche amplification) (avalanche region A in the figure). .
- the metal slit ring 130 can also be regarded as a gate electrode in an FET (Field-Effect-Transistor), the potential of the silicon channel is oscillated at a frequency of terahertz (THz) due to charges induced in both electrodes of the metal nanogap 130A. Will be.
- FET Field-Effect-Transistor
- the size of the metal nanogap 130A is less than 10 nm and is as small as, for example, about 5 nm. Therefore, the generated electric field is very strong. Further, the diameter of the metal slit ring 130 can be about 400 nm, and the width of the ring can be about 100 nm (for example, see Document 3 below).
- the area of the channel portion may be such that the avalanche region A immediately below the metal slit ring 130 is included in the channel region.
- the size of the channel region can be reduced to the size of the slit opening.
- the size of the terahertz wave detecting element 140 (1 pixel) including the source part and the drain part is on the order of 1 ⁇ m.
- V D > 0 An appropriate drain voltage (V D > 0) that is reverse-biased is applied between the source and the drain so as to induce electrons (carriers) in the channel (corresponding to the off-state current of the diode).
- V BG ⁇ 0 a back gate voltage (V BG ⁇ 0) is applied to the gate electrode of the silicon substrate 203 through the BOX layer 202 to deplete the total thickness of SOI (Silicon On Insulator), thereby providing a fully depleted SOI 201. To be formed.
- the enhanced electric field due to plasmon resonance reaches a depth of several nanometers from the channel surface, but in fully depleted SOI 201, SOI is completely depleted and electrons (carriers) are collected on the channel outermost surface. Therefore, that depth is sufficient. That is, this is also the reason why the fully depleted SOI 201 is used. Further, if designed according to the International Semiconductor Technology Roadmap (ITRS: International Technology Roadmap for Semiconductors), the thickness of the fully depleted SOI 201 is, for example, several tens to several nanometers, and the thickness of the BOX layer 202 is For example, it can be several tens nm to several nm.
- ITRS International Technology Roadmap for Semiconductors
- FIG. 3 is a diagram illustrating the band structure of the channel portion.
- FIG. 4 is a diagram showing a band structure in the depth direction of the channel portion.
- the channel potential is bent in the thickness direction by the back gate voltage (V BG ⁇ 0), and is completely depleted. For this reason, electrons (carriers) are accumulated on the incident side of the terahertz wave, that is, on the channel side.
- FIG. 5 is a diagram illustrating a signal detection principle in light-induced avalanche amplification to which the present technology is applied.
- FIG. 5 shows a current-voltage characteristic curve (IV curve) of the pn junction diode.
- reverse bias current change of reverse bias current (reverse bias current) is used.
- This reverse bias current corresponds to the leakage current of the pn junction diode, and for example, a very small current of about pA is sufficient.
- the photoinduced avalanche amplification is induced by the terahertz wave
- the amplified current I R is produced.
- the intensity of the terahertz wave is detected as the magnitude of the current I R relative to the current I 0 .
- light-induced avalanche amplification (avalanche amplification) is possible without requiring a high voltage.
- the intensity of the terahertz wave is detected as the reverse bias current modulation, the signal can be detected by measuring the change in the reverse bias current. In that case, since a special detection circuit is unnecessary, the circuit configuration can be simplified.
- the conventional avalanche amplification occurs by applying a reverse bias voltage close to the voltage V B.
- V B Electrometic-Charge Coupled Device
- FIG. 6 is a diagram for explaining the enhancement of the electric field strength of the terahertz wave.
- the condensing by the lens 12 is up to the diffraction limit (order of wavelength) of the lens 12, and the light intensity ( ⁇
- ⁇ 10 4 is obtained, for example, if “ ⁇ square square of area” and the lens diameter is 3 m.
- the terahertz wave from the lens 12 is condensed by the plasmon resonance of the metal nanogap 130A by the metal slit ring 130 and further enhanced.
- the terahertz wave can be narrowed below the diffraction limit by the plasmon resonance phenomenon.
- a gold slit ring optimized for terahertz waves is used as the metal slit ring 130, for example, “ ⁇ ⁇ 25,000”, that is, “ ⁇ 160”.
- FIG. 7 shows a simulation result of the electric field strength enhancement of the terahertz wave by the FDTD (Finite Difference Time Domain) method.
- FDTD Finite Difference Time Domain
- FIG. 8 is a diagram for explaining a conventional signal detection method using avalanche amplification.
- FIG. 8 a state in which visible light is incident on the photodiode (PD) is schematically shown.
- the photodiode ( PD) changes the number of electrons (signal) generated by photoelectric conversion. For example, if the intensity of the incident light on the right side is the lowest, the intensity of the incident light on the center is the highest, and the intensity of the incident light on the left side is between them, the photodiode (PD)
- a electrons corresponding to the incident light on the left side, b electrons corresponding to the incident light on the center, and c electrons corresponding to the incident light on the right side are generated.
- the avalanche electric field strength is constant, and the number of electrons (signal) generated by photoelectric conversion or the like is amplified. That is, the avalanche gain is constant.
- the avalanche amplification factor is doubled ( ⁇ 2)
- avalanche amplification results in 2a electrons corresponding to the incident light on the left side, and 2b electrons corresponding to the incident light on the center is 2b.
- the number of c electrons corresponding to the incident light on the right side is 2c.
- FIG. 9 is a diagram illustrating a signal detection method by light-induced avalanche amplification according to the present technology.
- FIG. 9 schematically shows a state in which the terahertz wave is incident on the terahertz wave detecting element (PD) 140. Since terahertz waves (terahertz light) have low energy (about 4 meV), photoelectrons are not generally generated by photoelectric conversion in a photodiode (PD), and the a electrons shown in the figure are the reverse bias of the diode. It represents the charge collected on the channel surface by applying current and back gate voltage. That is, a certain number of charges are present in the channel surface as an initial state regardless of the intensity of the incident terahertz wave.
- the avalanche electric field intensity changes accordingly.
- the avalanche amplification factor changes according to the intensity of incident light. For example, in FIG. 9, since the intensity of the incident light at the center is the highest, the light-induced avalanche amplification is amplified (electron multiplication) to the highest magnification (for example, 5 times ( ⁇ 5)), and 5a electrons are obtained. can get.
- the intensity of the incident light on the right side is the lowest, so it is amplified (electron multiplication) to the lowest magnification (for example, 2 times ( ⁇ 2)) to obtain 2a electrons, Since the intensity of the incident light on the left side is an intermediate intensity, it is amplified (electron multiplication) to an intermediate magnification (for example, 3 times ( ⁇ 3)) to obtain 3a electrons.
- the avalanche amplification is constant because the avalanche electric field intensity is constant and the number of electrons (signal) generated by photoelectric conversion or the like is avalanche amplified. ing.
- the signal detection method FIG. 9 using the light-induced avalanche amplification of the present technology
- the number of electrons injected into the avalanche region is constant (corresponding to the current I 0 in FIG. 5)
- by 2) changes
- FIG. 10 is a diagram schematically showing light-induced avalanche amplification.
- FIG. 10 shows four atoms (for example, silicon) forming a lattice on which a terahertz wave is incident and electrons (e ⁇ ) that are carriers that are vibrated by a photoelectric field. If the vibration amplitude of the electrons exceeds the lattice spacing and the electrons and atoms collide violently, light-induced avalanche amplification can occur.
- FIG. 11 shows a waveform of the electric field strength by the terahertz wave expressed by the following formula (2).
- the electron travel distance (vibration amplitude) is determined by the electric field strength of the incident light wave (terahertz wave) and the frequency (travel time). At this time, the electrons are ballistically conducted in the mean free process. Then, when the incident terahertz wave is expressed by the above formula (2), the relationship of the following formula (3) is derived.
- the enhanced electric field intensity E 0 is 160 MV / m.
- the maximum travel distance of electrons (2.2 ⁇ m) thus determined is a sufficient travel distance of the electron mean free path (for example, 50 nm) in silicon, and accelerated electrons can collide with atoms. become. It is known that the mean free path of silicon is several nm to several tens of nm at room temperature. However, the mean free path of silicon depends on the energy of electrons, and the higher the energy, the farther it can travel.
- the kinetic energy (8.0 eV) of the electrons thus obtained is sufficiently larger than the silicon band gap of 1.1 eV, which can cause photo-induced avalanche amplification.
- T / 100 the time required for the electron to travel 50 nm in the electric field near E 0
- This is sufficiently smaller than T / 2
- the electric field can be regarded as substantially constant during this period.
- the light-induced avalanche amplification occurs stochastically when the electric field strength is high. That is, it can be said that photo-induced avalanche amplification can occur when the electric field strength in the sine wave of FIG.
- terahertz waves are suitable as target light to be detected by silicon using light-induced avalanche amplification.
- the reason for this is that, when the frequency is higher than that of the terahertz wave, as described above, it is difficult to cause light-induced avalanche amplification.
- the frequency when the frequency is lower than that of the terahertz wave, it is possible to use an existing method as an electromagnetic wave.
- the pin junction diode is formed in the fully depleted SOI 201 .
- a pn junction diode may be formed.
- silicon (Si) which is widely used is suitable as a material for the semiconductor diode, but any semiconductor material having a band gap of several eV or less can be used.
- CIGS copper (Cu), indium (In), gallium (Ga), selenium (Se)
- light-induced avalanche amplification can be easily caused.
- the terahertz wave detection element 140 (having the terahertz wave detection apparatus 14) operates at room temperature, the terahertz wave detection element 140 or the entire terahertz wave detection apparatus 14 is cooled in order to further increase sensitivity (reduce noise). It may be. Further, since the terahertz wave does not pass through the metal, the terahertz wave that has passed through the fully depleted SOI 201 is reflected by, for example, the back gate electrode and captured by the metal nanogap 130A of the metal slit ring 130 on the silicon surface side. . Thereby, the sensitivity can be enhanced by using the incident terahertz wave without waste.
- the terahertz wave detecting element 140 which has the terahertz wave detecting device 14
- the S / N ratio is reduced, so that the terahertz wave detecting element 140 can block disturbance light. It can be arranged in a housing or the like. Further, a visible light filter, an IR light filter, or the like may be disposed on the terahertz wave detection element 140.
- the metal slit ring 130 is preferably passivated with a high-purity insulator film having a high breakdown voltage VBD . For this reason, in principle, it may be left as it is, but exposure to the atmosphere is not desirable because the metal nanogap 130A of the metal slit ring 130 facilitates discharge. Further, it may be sealed with a vacuum package or the like. It should be noted that the metal slit ring 130 contributes to improvement of sensitivity and detection efficiency by changing its arrangement method, and the detailed contents thereof will be described with reference to FIGS. 14 to 20.
- FIG. 14 is a diagram illustrating an example of arrangement when a plurality of metal slit rings 130 are provided.
- FIG. 14 is a plan view (top view) of the terahertz wave detection element 140.
- a plurality of metal slit rings 130 are arranged on the i layer of the fully depleted SOI 201 in which the pin junction diode is formed via the insulating film 204. As described above, by arranging the plurality of metal slit rings 130, the avalanche region A on the silicon surface increases, so that the signal can be increased.
- the arrow in the figure represents the reverse bias current I that does not pass through the avalanche region A.
- This current I is wasted, but since the avalanche region A is increased, the signal detection efficiency is increased. Can be improved.
- FIG. 15 for example, among the metal slit rings 130 arranged in three rows, by shifting the metal slit ring 130 in the center row with respect to the metal slit rings 130 in the other two rows, The reverse bias current I that does not pass through the avalanche region A can be reduced. As a result, the detection efficiency can be further improved.
- FIG. 16 is a diagram illustrating an example of the arrangement when the channel width is limited to only the avalanche region.
- FIG. 16 is a plan view (top view) of the terahertz wave detection element 140.
- the channel width of the fully depleted SOI 201 in which the pin junction diode is formed is narrowed to about the avalanche region A region.
- the channel width in this case may be about the plasmon resonance region of the metal nanogap 130A of about 100 nm, for example.
- the channel width is only the lower part of the metal slit ring 130, the current path is narrowed, so that the reverse bias current I passing through the region other than the avalanche region A is eliminated, and the dark current (reverse bias current) itself is lost. Can also be reduced. That is, since all the reverse bias current I passes through the avalanche region A and contributes to the light-induced avalanche amplification, it is possible to improve sensitivity and increase detection efficiency. However, in this case, the polarization direction of the incident terahertz wave is limited to one direction.
- FIG. 17 is a diagram illustrating an example of an arrangement when the channel length is minimized.
- FIG. 17 is a plan view (top view) of the terahertz wave detection element 140.
- the channel width of the fully depleted SOI 201 in which the pin junction diode is formed is narrowed down to the area of the avalanche region A, and the channel length is minimized.
- the channel length in this case may be such that, for example, the avalanche region A immediately below the metal slit ring 130 of about 10 nm is included in the channel region.
- the reverse bias currents I pass through the avalanche region A and contribute to the light-induced avalanche amplification, it is possible to improve the sensitivity and increase the detection efficiency.
- the channel length becomes very narrow, the i region may be eliminated and a pn junction diode may be formed. Thereby, the size of the terahertz wave detecting element 140 can be reduced. 14 to 17, the direction of the metal nanogap 130A of the metal slit ring 130 does not need to be orthogonal to the drain current, and may have an arbitrary angle.
- FIG. 18 is a diagram illustrating an example of a basic arrangement for eliminating polarization dependency.
- FIG. 18 is a plan view (top view) of the terahertz wave detection element 140.
- two metal slit rings 130 are paired so that the directions of the metal nanogap 130A are shifted from each other by 90 °. Since the direction of the slit of the metal nanogap 130A may be parallel or orthogonal to the drain current, the polarization dependency of the incident terahertz wave is eliminated by combining the two metal slit rings 130 in this way. Can do. Note that it is only necessary that the relative angle of the two metal nano gaps 130A of the pair of metal slit rings 130 is 90 °, and the metal nano gaps 130A need to be arranged orthogonally and parallel to the drain current. There is no.
- FIG. 19 is a diagram showing an example of a two-dimensional arrangement for eliminating the polarization dependency.
- FIG. 19 is a plan view (top view) of the terahertz wave detection element 140. However, in A of FIG. 19 and B of FIG. 19, only the channel portion of the fully depleted SOI 201 is illustrated, and four metal slit rings 130 are arranged in one pixel (terahertz wave detection element 140). Is shown.
- each metal slit rings 130 are arranged by shifting the direction of the slits of each metal nanogap 130A in units of 90 °.
- the slits of the metal nano gaps 130A of the four metal slit rings 130 are arranged so as to be shifted by 90 °.
- the metal slit ring 130 since the metal slit ring 130 has polarization dependency, the electric field direction orthogonal to the slit of the metal nanogap 130A has the highest detection efficiency as shown in FIG. 19C. Therefore, when polarization dependency becomes a problem, the basic arrangement of FIG. 19A or the two-dimensional arrangement of FIG. 19B is adopted, and the direction of the slit of the metal nanogap 130A is in units of 90 °. The shifted metal slit ring 130 is arranged.
- the basic arrangement in FIG. 19A and the two-dimensional arrangement in FIG. 19B are examples, and other arrangements that can eliminate the problem of polarization dependence may be adopted.
- the metal slit ring 130 having other angles may be used for any purpose. It does not matter if it is mixed.
- FIG. 20 is a diagram illustrating an example of an arrangement in which the metal slit ring 130 is raised with respect to the channel surface.
- 20A is a side view of the terahertz wave detection element 140
- FIG. 20B is a plan view (top view) of the terahertz wave detection element 140.
- 20C shows a view when the metal slit ring 130 in FIG. 20A is viewed from the direction of the arrow P.
- the terahertz wave detecting element 140 has the same structure as that in FIG. 2, but the metal slit ring 130 disposed on the fully depleted SOI 201 with the insulating film 204 interposed therebetween is connected to the channel surface. Stands vertically. In this case, the metal nanogap 130A is positioned below the metal slit ring 130, and the slit of the metal nanogap 130A is opposed to the channel surface, so that the avalanche region A immediately below the metal slit ring 130 is the channel. It can be included in the area.
- the metal slit ring 130 erected perpendicularly to the channel surface has the direction of the channel as long as the slit of the metal nanogap 130A faces the channel surface. Can be horizontal, vertical, or at any angle.
- the metal slit ring 130 standing perpendicular to the channel surface is inclined obliquely while maintaining the slit of the metal nanogap 130A and the channel surface facing each other. You may make it contact. As described above, if the metal slit ring 130 is inclined to make point contact, it is effective for minimizing the channel region.
- the metal slit ring 130 may be provided as long as the slit of the metal nanogap 130A faces the channel surface in the same manner as the arrangement shown in FIG. Can be set perpendicular to the channel surface, or can be tilted obliquely for point contact.
- the carrier on the semiconductor surface is vibrated strongly by the electric field enhancement of incident light and collides with the semiconductor constituent atoms. , Will cause electron multiplication.
- the intensity of incident light is detected by applying a reverse bias current to a pin junction diode or a pn junction diode and modulating the reverse bias current by electron multiplication by photoinduced avalanche amplification.
- avalanche amplification (light-induced avalanche amplification) can be performed without requiring a high voltage.
- this semiconductor element can detect the terahertz wave with high sensitivity by a pin junction diode or a pn junction diode. Further, this semiconductor element can be manufactured by a CMOS (Complementary Metal Oxide Semiconductor) process, and its structure is simple, so that it can be easily manufactured without complicated processes. Further, since the incident terahertz wave itself is used as an energy source for detection, it is super power saving (so-called energy harvesting technology is used). Further, this semiconductor element can be operated at room temperature.
- CMOS Complementary Metal Oxide Semiconductor
- Non-Patent Documents 1 and 2 described above disclose a technique for oscillating and detecting a terahertz wave (0.3 THz) using a resonant tunnel diode as a terahertz wave detection method using a solid state element.
- these technologies of Non-Patent Documents 1 and 2 detect a terahertz wave by acquiring a transmission image by two-dimensional scanning (scanning) and using the nonlinearity (negative resistance region) of the resonant tunneling diode. Is disclosed. In this technique, the spatial resolution is about 1 mm.
- Non-Patent Documents 1 and 2 described above, first, the sensitivity is insufficient, and the resolution (spatial resolution) depends on the diffraction limit of the terahertz wave to be used. In addition, since an antenna is required, the element size is on the order of several millimeters and cannot be miniaturized. In addition, since a two-dimensional scan is required to obtain a transmission image, a process and mechanism for that purpose are required. On the other hand, as described above, the present technology can solve all the problems of the technologies of Non-Patent Documents 1 and 2.
- the present technology can take the following configurations.
- a detection device comprising a detection unit in which a plurality of the semiconductor elements according to (4) are two-dimensionally arranged.
- the detection device according to (9), wherein the incident light is a terahertz wave.
- 1 terahertz wave detection system 10 terahertz wave light source, 13 terahertz wave enhancement unit, 14 terahertz wave detection device, 130 metal slit ring, 130A metal nanogap, 140 terahertz wave detection element, 201 fully depleted SOI, 202 BOX layer, 203 Silicon substrate, 204 insulating film
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Electromagnetism (AREA)
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
本技術は、高電圧を必要としないでアバランシェ増幅を可能とすることができるようにする半導体素子、信号増幅方法、及び、検出装置に関する。 半導体素子は、半導体表面のキャリヤを、入射光の電界増強により強く振動させて、半導体構成原子と衝突させることで、電子を増倍する。本技術は、例えば、入射光としてテラヘルツ波を利用する、物体内部の透過像を検出するシステム、医療診断や生体分析、情報通信、測距システムに応用することができる。また、セキュリティの分野のほか、分子の相互作用検出による分光分析分野などにも応用することができる。
Description
本技術は、半導体素子、信号増幅方法、及び、検出装置に関し、特に、高電圧を必要としないでアバランシェ増幅を可能とすることができるようにした半導体素子、信号増幅方法、及び、検出装置に関する。
テラヘルツ波(THz波)は、光波と電波の中間領域にあたり、それらの特性の両方を備えていると考えられていることから、その特性を活かして、例えば、医療診断や生体分析、情報通信、測距システムなどの分野での応用が期待されており、各種の研究が行われている(例えば、非特許文献1,2参照)。なお、1テラヘルツは、1012Hzに相当し、テラヘルツ波は、0.1~10×1012Hzの帯域の総称である。
また、半導体の分野において、電界のエネルギーによって、電子が雪崩的に増幅するアバランシェ増幅が知られている。
共鳴トンネルダイオードを用いたテラヘルツイメージング;宮本,向井;第60回応物春季学術講演会[29a-D1-2]
田中,向井;Isotope News 2013/10月号No.714, pp.2-5.
ところで、テラヘルツ波を利用した検出方法において、アバランシェ増幅の技術を応用することが期待されており、特に、高電圧を必要としないアバランシェ増幅の技術が要請されていた。
本技術はこのような状況に鑑みてなされたものであり、高電圧を必要としないでアバランシェ増幅を可能とすることができるようにするものである。
本技術の一側面の半導体素子は、半導体表面のキャリヤを、入射光の電界増強により強く振動させて、半導体構成原子と衝突させることで、電子を増倍する半導体素子である。
本技術の一側面の信号増幅方法及び検出装置は、上述した本技術の一側面の半導体素子に対応する信号増幅方法及び検出装置である。
本技術の一側面においては、半導体表面のキャリヤが、入射光の電界増強により強く振動されて、半導体構成原子と衝突されることで、電子が増倍される。
本技術の一側面によれば、高電圧を必要としないでアバランシェ増幅を可能とすることができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
以下、図面を参照しながら本技術の実施の形態について説明する。なお、説明は以下の順序で行うものとする。
1.システム構成
2.テラヘルツ波検出素子の構造
3.信号検出方法
4.動作原理の論理的検証
5.他の実施の形態
6.金属スリットリングの配置方法
2.テラヘルツ波検出素子の構造
3.信号検出方法
4.動作原理の論理的検証
5.他の実施の形態
6.金属スリットリングの配置方法
<1.システム構成>
(テラヘルツ波検出システムの構成)
図1は、テラヘルツ波検出システム1の構成例を示す図である。
図1は、テラヘルツ波検出システム1の構成例を示す図である。
テラヘルツ波検出システム1は、テラヘルツ波(テラヘルツ光)を利用して、物体2の内部の透過像を検出するためのシステムである。図1において、テラヘルツ波検出システム1は、テラヘルツ波光源10、レンズ11、レンズ12、テラヘルツ波増強部13、テラヘルツ波検出装置14、及び、情報処理装置15から構成される。
テラヘルツ波検出システム1においては、テラヘルツ波光源10から発せられたテラヘルツ波が、レンズ11を介して物体2を透過する。そして、物体2を透過したテラヘルツ波は、レンズ12により集光され、テラヘルツ波増強部13により増強された後、テラヘルツ波検出装置14に入射される。
テラヘルツ波検出装置14は、テラヘルツ波増強部13からのテラヘルツ波に応じた信号を検出して、その検出結果を、情報処理装置15に供給する。情報処理装置15は、テラヘルツ波検出装置14からの検出結果を処理して、例えば、物体2の内部の透過像を出力する。
なお、テラヘルツ波検出システム1において、テラヘルツ波検出装置14は、イメージャ(イメージャデバイス)に相当するものであり、テラヘルツ波増強部13は、イメージャにおけるOCL(On Chip Lens)に相当するものである。また、テラヘルツ波検出装置14には、テラヘルツ波を検出するための素子(半導体素子)が、2次元状に配列されているため、2次元画像(透過像)を取得する際に、スキャンが不要とされる。
また、図1のテラヘルツ波検出システム1では、テラヘルツ波を利用したシステムの一例として、物体内部の透過像を検出するシステムを説明したが、例えば、医療診断や生体分析、情報通信、測距システムなどのテラヘルツ波を利用した他のシステムに応用することができる。また、セキュリティの分野のほか、分子の相互作用検出による分光分析分野などにも応用することができる。
<2.テラヘルツ波検出素子の構造>
(テラヘルツ波検出素子の構造)
図2は、図1のテラヘルツ波検出装置14におけるテラヘルツ波検出素子140の構造を示す図である。なお、テラヘルツ波検出装置14においては、1画素に相当するテラヘルツ波検出素子140が、2次元状に複数配列されることになる。
図2は、図1のテラヘルツ波検出装置14におけるテラヘルツ波検出素子140の構造を示す図である。なお、テラヘルツ波検出装置14においては、1画素に相当するテラヘルツ波検出素子140が、2次元状に複数配列されることになる。
図2において、テラヘルツ波検出素子140は、完全空乏型SOI(FD-SOI:Fully Depleted Silicon On Insulator)201、BOX(Buried Oxide)層202、及び、シリコン基板203が積層されて構成される。また、完全空乏型SOI201上には、例えばシリコン酸化膜(SiO2)等の絶縁膜204が形成されている。
完全空乏型SOI201は、pin接合ダイオードを形成している。このpin接合ダイオードにおいて、p層はソース(ソース部)、n層はドレイン(ドレイン部)、i層(intrinsic Si)はチャネル(チャネル部)に相当する。このi層上に、絶縁膜204を介して金属スリットリング130が配置される。なお、金属スリットリング130は、図1のテラヘルツ波増強部13に配置されることになる。
金属スリットリング130は、テラヘルツ波を集光する金属ナノ構造(金属微細構造)として、例えば、ナノサイズのスリットである金属ナノギャップ130Aを有している。この金属スリットリング130としては、金属ナノギャップ130Aを有する金のリング(金のスリットリング)などが適当である。すなわち、この金属スリットリング130が、テラヘルツ波に対するアンテナの役割を果たすことになる。
ここで、金のスリットリング等の金属スリットリング130の金属ナノギャップ130Aでは、テラヘルツ波がプラズモン共鳴により局所的に共鳴集光され、強度が増強された近接場光としてシリコン(Si)チャネルに入射される。そして、この増強光の電界(図中の「E」の部分)により、シリコンチャネル内における電子(キャリヤ)は、アバランシェ増幅(光誘起アバランシェ増幅)を起こすことになる(図中のアバランシェ領域A)。
金属スリットリング130は、FET(Field Effect Transistor)におけるゲート電極とみなすこともできるため、金属ナノギャップ130Aの両極に誘起される電荷により、シリコンチャネルの電位は、テラヘルツ(THz)の周波数で振動されることになる。
この金属ナノギャップ130Aの大きさは、10nm未満のサイズであって、例えば5nm程度と小さく、したがって、生じる電界は非常に強いものとなる。また、金属スリットリング130の直径は、400nm程度、リングの幅は100nm程度とすることができる(例えば、下記の文献3参照)。
文献3:文科省・先端研究施設共用イノベーション創出事業;ローム,北大,静岡大Gp.;H20年度トピックス
また、チャネル部の面積は、金属スリットリング130の直下のアバランシェ領域Aが、チャネル領域に含まれていればよい。金属スリットリング130を1個で構成する場合には、チャネル領域の大きさは、スリット開口の大きさ程度まで小さくすることができる。このとき、ソース部とドレイン部を含むテラヘルツ波検出素子140(1画素)のサイズは、1μmのオーダーとなる。
ソース-ドレイン間には、逆バイアスとなる適当なドレイン電圧(VD > 0)を印加して、チャネルに電子(キャリヤ)を誘起しておくようにする(ダイオードのオフ電流に相当する)。一方で、シリコン基板203のゲート電極には、BOX層202を介してバックゲート電圧(VBG < 0)を印加して、SOI(Silicon On Insulator)の全厚を空乏化して完全空乏型SOI201が形成されるようにする。
なお、プラズモン共鳴による増強電界が及ぶのは、チャネル表面から数nmの深さであるが、完全空乏型SOI201では、SOIが完全空乏化され、電子(キャリヤ)は、チャネル最表面に集められているため、その程度の深さでも十分である。すなわち、これが完全空乏型SOI201を用いている理由でもある。また、国際半導体技術ロードマップ(ITRS:International Technology Roadmap for Semiconductors)に則して設計を行えば、完全空乏型SOI201の厚みは、例えば、数10nm~数nmなどで、BOX層202の厚みは、例えば、数10nm~数nmなどとすることができる。
(チャネル部のバンド構造)
図3は、チャネル部のバンド構造を示す図である。
図3は、チャネル部のバンド構造を示す図である。
図3においては、テラヘルツ波の入射により、金属スリットリング130の金属ナノギャップ130Aの直下にあるi層のチャネル部のバンドには、局所的に強い電位振動が誘起される。そして、この金属ナノギャップ130Aの大きさに相当する急峻な電位勾配領域(例えば数nm)が、アバランシェ領域Aとなる。そして、逆バイアスで生じた僅かな電子(キャリヤ)は、この電位勾配(すなわち電界)で、光誘起アバランシェ増幅されることになる。図3では、模式的に表された電子(e-)が、光誘起アバランシェ増幅されて、その数が増加している(電子増倍)。
なお、電位が局所的に凹む場合には、電子(キャリヤ)がトラップされることが想定される場合もあるが、次の瞬間に極性が変化して、増幅された電子ははじき出され、ドレイン電圧により、ドレイン側に引っ張られる。これにより、テラヘルツ波の強度は、ドレイン電流として検出されることになる。
(チャネル部の深さ方向のバンド構造)
図4は、チャネル部の深さ方向のバンド構造を示す図である。
図4は、チャネル部の深さ方向のバンド構造を示す図である。
完全空乏型SOI201では、バックゲート電圧(VBG < 0)によって、チャネルの電位が厚み方向にベンドされており、完全空乏化されている。そのため、テラヘルツ波の入射側、すなわち、チャネル側に、電子(キャリヤ)が蓄積されることになる。
なお、反転層が形成されるほど強いバックゲート電圧VBGを印加しないようにする必要がある。これは、そのようなバックゲート電圧VBGを印加すると、チャネル側にまでベンドが及ばなくなり、電子(キャリヤ)を蓄積できなくなるからである。
<3.信号検出方法>
(光誘起アバランシェ増幅における信号検出原理)
図5は、本技術を適用した光誘起アバランシェ増幅における信号検出原理を説明する図である。図5には、pn接合ダイオードの電流電圧特性曲線(I-Vカーブ)が示されている。
図5は、本技術を適用した光誘起アバランシェ増幅における信号検出原理を説明する図である。図5には、pn接合ダイオードの電流電圧特性曲線(I-Vカーブ)が示されている。
信号の検出には、逆方向バイアス電流(逆バイアス電流)の変化を利用する。なお、この逆バイアス電流は、pn接合ダイオードのリーク電流に相当し、例えば、pA程度の極僅かな電流で十分である。
図5においては、例えば電圧VDを1Vとした場合に、テラヘルツ波により光誘起アバランシェ増幅が誘起されると、増幅された電流IRが発生する。テラヘルツ波の強度は、電流I0に対する電流IRの大きさとして検出される。ここでは、高電圧を必要としないで光誘起アバランシェ増幅(アバランシェ増幅)が可能となっている。そして、逆バイアス電流変調として、テラヘルツ波の強度が検出されるので、当該逆バイアス電流の変化を測定することで、信号を検出することができる。その際に、特別な検出回路は不要であるため、回路構成を簡略化することができる。
なお、従来のアバランシェ増幅は、電圧VBに近い逆方向のバイアス電圧を印加することで発生する。例えば、EM-CCD(Electron Multiplying - Charge Coupled Device)では、30~50Vとされる。
(テラヘルツ波の電界増強)
図6は、テラヘルツ波の電界強度の増強を説明する図である。
図6は、テラヘルツ波の電界強度の増強を説明する図である。
図6において、入射されるテラヘルツ波(例えば、1THz,λ=300μm)は、まず、レンズ12で集光される。光学的なレンズ12を使用する場合、レンズ12による集光は、レンズ12の回折限界(波長のオーダー)までであり、光の強度(∝|E|2)は、「×面積比」に増強されることになる。これを、電界強度に変換すると、「×面積の平方根」で、レンズ径を3mとすれば、例えば、「×104」となる。
次に、レンズ12からのテラヘルツ波は、金属スリットリング130で、金属ナノギャップ130Aのプラズモン共鳴により集光され、さらに増強される。ここでは、プラズモン共鳴現象により、回折限界以下にまでテラヘルツ波を絞ることができる。また、金属スリットリング130として、テラヘルツ波に最適化された金のスリットリングを用いた場合、例えば、「×√25,000」、すなわち、「×160」となる。
その結果、入射されるテラヘルツ波の電界強度は、104×160 = 1.6×106倍に増強されることになる。すなわち、入射されるテラヘルツ波の電界強度をEinとし、増強後の電界強度を、Eenhとすれば、下記の式(1)の関係が成立することになる。
なお、図7には、FDTD(Finite Difference Time Domain)法による、テラヘルツ波の電界強度増強のシミュレーション結果が示されている。このシミュレーションでは、50THzと130THzにプラズモン共鳴バンドが観測され、金属ナノギャップ130Aのスリット幅5nmにて、25,000倍の光電場増強が確認されている。
(従来の信号検出方法との比較)
図8は、従来のアバランシェ増幅による信号検出方法を説明する図である。
図8は、従来のアバランシェ増幅による信号検出方法を説明する図である。
図8においては、フォトダイオード(PD)に、可視光が入射される様子が模式的に示されているが、入射される可視光の強度(∝|E|2)が変化すると、フォトダイオード(PD)で光電変換により発生する電子数(信号)が変化する。例えば、図中の入射光のうち、右側の入射光の強度が最も低く、中央の入射光の強度が最も高く、左側の入射光の強度がそれらの中間である場合、フォトダイオード(PD)では、左側の入射光に応じたa個の電子、中央の入射光に応じたb個の電子、右側の入射光に応じたc個の電子が発生することになる。
また、アバランシェ増幅では、アバランシェ電界強度が一定で、光電変換等により生じる電子数(信号)が増幅されている。すなわち、アバランシェ増幅率は一定となっている。したがって、例えばアバランシェ増幅率が2倍(×2)となる場合、アバランシェ増幅によって、左側の入射光に応じたa個の電子が2a個となり、中央の入射光に応じたb個の電子が2b個となり、右側の入射光に応じたc個の電子が2c個となる。
一方、図9は、本技術の光誘起アバランシェ増幅による信号検出方法を説明する図である。
図9においては、テラヘルツ波検出素子(PD)140に、テラヘルツ波が入射される様子が模式的に示されている。テラヘルツ波(テラヘルツ光)はエネルギーが小さいため(約4meV)、一般に、フォトダイオード(PD)にて光電変換により光電子が生じることはなく、図中に示したa個の電子は、ダイオードの逆バイアス電流及びバックゲート電圧印加によりチャネル表面に集められた電荷を表している。すなわち、チャネル表面には、入射されるテラヘルツ波の強度に依らず、一定の数の電荷が初期状態として存在することになる。
本技術の光誘起アバランシェ増幅では、入射されるテラヘルツ波の強度が変化すると、それに応じて、アバランシェ電界強度も変化する。すなわち、アバランシェ増幅率は、入射光の強度に応じて変化することになる。例えば、図9においては、中央の入射光の強度が最も高いので、光誘起アバランシェ増幅では、最も高い倍率(例えば5倍(×5))に増幅(電子増倍)され、5a個の電子が得られる。同様に、光誘起アバランシェ増幅では、右側の入射光の強度が最も低いので、最も低い倍率(例えば2倍(×2))に増幅(電子増倍)されて2a個の電子が得られるとともに、左側の入射光の強度は中間の強度となるので、中間の倍率(例えば3倍(×3))に増幅(電子増倍)されて、3a個の電子が得られる。
このように、従来のアバランシェ増幅による信号検出方法(図8)では、アバランシェ電界強度が一定で、光電変換等により生じる電子数(信号)をアバランシェ増幅しているため、アバランシェ増幅率は一定となっている。一方で、本技術の光誘起アバランシェ増幅による信号検出方法(図9)では、アバランシェ領域に注入される電子数は一定で(図5の電流I0に相当)、テラヘルツ波の強度(∝|E|2)が変化することにより、アバランシェ増幅率も変化して、増幅される信号量(図5の電流IRに相当)が変化することになる。
なお、図9において、入射されるテラヘルツ波の電界強度|E|は、上述した式(1)の関係から、1.6×106倍に増強されていることになる。
<4.動作原理の論理的検証>
図10は、光誘起アバランシェ増幅を模式的に示した図である。
図10においては、テラヘルツ波が入射される格子を形成する4個の原子(例えばシリコン)と、光電場により振動するキャリヤである電子(e-)が表されている。この電子の振動振幅が格子間隔を超えて、電子と原子が激しく衝突すると、光誘起アバランシェ増幅が起き得ることになる。ここで、図11は、下記の式(2)で表されるテラヘルツ波による電界強度の波形を示している。
図11において、電界強度の半周期(T/2)の間、電子は、一方向に加速し続けることになる(パルス電界に相当)。なお、この半周期の間の電子の走行距離(振動振幅)が、シリコン中における電子の平均自由工程よりも十分、大きく設計する必要がある。また、図11において、光誘起アバランシェ増幅は、電界強度が最も高い振幅のピーク付近で生じやすい。
ここで、電子の走行距離(振動振幅)と運動エネルギーの見積もりを示す。電子の走行距離(振動振幅)は、入射する光波(テラヘルツ波)の電界強度と、振動数(走行時間)で決定される。このとき、電子は、平均自由工程内では、バリスティック伝導(Ballistic)することになる。そして、入射されるテラヘルツ波を、上記の式(2)で表すと、下記の式(3)の関係が導き出される。
なお、式(3)において、E0は、増強された電界強度(振幅)を表している。また、ω=2π/Tである。
ここで、入射されるテラヘルツ波の電界強度が、100V/m(可視光の1000 1xに相当)であるとすると、増強された電界強度E0は、160MV/mとなる。また、振動数を、1THz(T=10-12s)とした場合に、一方向に加速し続ける半周期における電子の走行距離(最大走行距離)は、式(3)において、Ei=0,t=T/2とすれば、下記の式(4)のように求められる。
このようにして求められた電子の最大走行距離(2.2μm)は、シリコン中における電子の平均自由工程(例えば50nm)以上の十分な走行距離であり、加速した電子は、原子と衝突し得ることになる。なお、シリコンの平均自由工程は、室温で数nm~数10nmであることが知られている。ただし、シリコンの平均自由工程は、電子のエネルギーに依存するものであり、エネルギーが高いほど、遠くまで走行可能となる。
そして、式(2)のサイン波(図11)における電界強度が高いときに、光誘起アバランシェ増幅が起き得ることになる。ここで、仮に、E0近傍の電界が作用したとして、この間、電界が一定であるとすると、50nm走行時点での電子の運動エネルギーは、下記の式(5)のように求められる。
このようにして求められた電子の運動エネルギー(8.0eV)は、シリコンのバンドギャップである1.1eVよりも十分に大きく、光誘起アバランシェ増幅を起こし得ることがわかる。
また、E0近傍の電界で、電子が、50nm走行するのに要する時間は、式(3)において、x=50nm,Ei=E0として、T/100程度となる。これは、T/2と比べて、十分に小さく、変化率の小さいE0近傍では、この間、電界をほぼ一定とみなすことができる。そして、光誘起アバランシェ増幅は、電界強度が高いときに、確率的に生じることになる。すなわち、式(2)のサイン波(図11)における電界強度が高いときに、光誘起アバランシェ増幅が起き得ると言える。
なお、可視光では振動数が高いために(E14~15Hz)、電子の一方向の走行時間(T/2)が短すぎて、E0でも電子は平均自由工程に至ることはない。この場合、平均自由工程到達前に引き戻されるか、あるいは弱くぶつかる程度で、熱になってしまう。例えば、E14Hz(T=E-14s)では、T/2の間における走行距離は、0.22nmとなる。
また、光誘起アバランシェ増幅を利用して、シリコンで検出する対象光は、テラヘルツ波が好適である。その理由としては、テラヘルツ波よりも周波数が高い場合には、上述したように、光誘起アバランシェ増幅を起こしにくい点が挙げられる。一方で、テラヘルツ波よりも周波数が低い場合には、電磁波として既存の方法を用いることが可能であるため、本技術の信号検出方法を用いるケースは少ないと考えられるからである。
<5.他の実施の形態>
上述した説明では、光誘起アバランシェ増幅を利用する場合を説明したが、光誘起アバランシェ増幅の代わりに、衝突電離(Impact Ionization)を利用するようにしてもよい。
また、上述した説明では、アバランシェ領域に電子を注入する場合を説明したが、図12に示すように、アバランシェ領域にホール(正孔)を注入するようにしてもよい。ただし、シリコンを用いる場合に、ホールを注入して光誘起アバランシェ増幅を起こすとノイズが生じやすいため、シリコンを用いる場合には、アバランシェ領域には、電子を注入することが望ましい(図13)。なお、図12及び図13において、領域Bに反転層が形成されると、空乏層がチャネル表面にまで及ばないため、反転層が形成されないようにする必要がある(反転層が形成されるほど強いバックゲート電圧VBGを印加しないようにする必要がある)。
また、上述した説明では、完全空乏型SOI201に、pin接合ダイオードが形成される場合を説明したが、pn接合ダイオードが形成されるようにしてもよい。さらに、半導体ダイオードの材料としては、広く使用されているシリコン(Si)が好適であるが、バンドギャップが数eV以下の任意の半導体材料であれば、それを用いることができる。例えば、CIGS(銅(Cu),インジウム(In),ガリウム(Ga),セレン(Se))などのバンドギャップが小さい材料を用いることで、光誘起アバランシェ増幅を起こしやすくすることができる。
テラヘルツ波検出素子140(を有するテラヘルツ波検出装置14)は、室温で動作するが、さらに感度を高める(ノイズを減らす)ために、テラヘルツ波検出素子140又はテラヘルツ波検出装置14全体を冷却するようにしてもよい。また、テラヘルツ波は、金属を透過しないため、完全空乏型SOI201を透過したテラヘルツ波を、例えばバックゲート電極で反射させて、シリコン表面側の金属スリットリング130の金属ナノギャップ130Aで捕らえるようにする。これにより、入射されるテラヘルツ波を無駄なく利用して、感度を高めることができる。
上述した図5の電流電圧特性曲線において、電圧VDを、電圧VBに近づけることで、従来のアバランシェ増幅の効果が加わって、本技術を適用した光誘起アバランシェ増幅の感度をさらに増強することができる。また、テラヘルツ波検出素子140(を有するテラヘルツ波検出装置14)において、検出するテラヘルツ波以外の光が入射すると、S/N比が低下するので、テラヘルツ波検出素子140は、外乱光を遮断できる筐体等に配置されるようにすることができる。また、テラヘルツ波検出素子140の上部に、可視光フィルタやIR光フィルタなどを配置するようにしてもよい。
金属スリットリング130は、絶縁破壊電圧VBDが高い高純度な絶縁体膜等でパッシベーション(Passivation)するのが好ましい。その理由であるが、原理的にはそのままでも構わないのであるが、大気にさらすのは、金属スリットリング130の金属ナノギャップ130Aで、放電しやすくなるため、望ましくない。さらに、真空パッケージなどで、密封してもよい。なお、金属スリットリング130は、その配置方法を変えることで、感度向上や検出高効率化などに寄与するが、その詳細な内容は、図14乃至図20を参照して説明する。
<6.金属スリットリングの配置方法>
次に、図14乃至図20を参照して、金属スリットリング130の配置方法について説明する。
(複数の配置)
図14は、複数の金属スリットリング130を設けた場合の配置の例を示す図である。なお、図14は、テラヘルツ波検出素子140の平面図(top view)となる。
図14は、複数の金属スリットリング130を設けた場合の配置の例を示す図である。なお、図14は、テラヘルツ波検出素子140の平面図(top view)となる。
図14において、pin接合ダイオードが形成された完全空乏型SOI201のi層上に、絶縁膜204を介して複数の金属スリットリング130が配置されている。このように、複数の金属スリットリング130を配置することで、シリコン表面におけるアバランシェ領域Aが増えるため、信号を増加させることができる。
なお、図中の矢印は、アバランシェ領域Aを通らない逆バイアス電流Iを表しており、この電流Iは、無駄になってしまうが、アバランシェ領域Aが増加しているため、信号の検出効率を向上させることができる。ただし、図15に示すように、例えば、3列配置された金属スリットリング130のうち、中央の列の金属スリットリング130を、他の2つの列の金属スリットリング130に対してずらすことで、アバランシェ領域Aを通らない逆バイアス電流Iを減らすことができる。その結果、検出効率をさらに向上させることができる。
(チャネル幅を絞った配置)
図16は、チャネル幅をアバランシェ領域のみに絞った場合の配置の例を示す図である。なお、図16は、テラヘルツ波検出素子140の平面図(top view)となる。
図16は、チャネル幅をアバランシェ領域のみに絞った場合の配置の例を示す図である。なお、図16は、テラヘルツ波検出素子140の平面図(top view)となる。
図16においては、pin接合ダイオードが形成された完全空乏型SOI201のチャネル幅が、アバランシェ領域Aの領域程度に絞られている。この場合のチャネル幅であるが、例えば100nm程度の金属ナノギャップ130Aのプラズモン共鳴領域程度とすることができる。
このように、チャネル幅が、金属スリットリング130の下部のみとすれば、電流経路が絞られるため、アバランシェ領域A以外の領域を通過する逆バイアス電流Iがなくなり、暗電流(逆バイアス電流)そのものも減らすことができる。すなわち、すべての逆バイアス電流Iが、アバランシェ領域Aを通過して、光誘起アバランシェ増幅に寄与するため、感度向上や検出高効率化を図ることができる。ただし、この場合、入射されるテラヘルツ波の偏光方向は一方向に限られることにはなる。
(チャネル長を最小化した配置)
図17は、チャネル長を最小化した場合の配置の例を示す図である。なお、図17は、テラヘルツ波検出素子140の平面図(top view)となる。
図17は、チャネル長を最小化した場合の配置の例を示す図である。なお、図17は、テラヘルツ波検出素子140の平面図(top view)となる。
図17においては、pin接合ダイオードが形成された完全空乏型SOI201のチャネル幅が、アバランシェ領域Aの領域程度に絞られるとともに、チャネル長が最小化されている。この場合のチャネル長であるが、例えば10nm程度の金属スリットリング130の直下のアバランシェ領域Aが、チャネル領域に含まれる程度とすることができる。
これにより、すべての逆バイアス電流Iが、アバランシェ領域Aを通過して、光誘起アバランシェ増幅に寄与するため、感度向上や検出高効率化を図ることができる。なお、チャネル長が非常に狭くなれば、i領域をなくして、pn接合ダイオードが形成されるようにしてもよい。これにより、テラヘルツ波検出素子140のサイズを小さくすることができる。なお、図14乃至図17の例において、金属スリットリング130の金属ナノギャップ130Aの向きは、ドレイン電流と直交している必要はなく、任意の角度を持たせるようにしてもよい。
(偏光依存性を解消した配置)
図18は、偏光依存性を解消するための基本の配置の例を示す図である。なお、図18は、テラヘルツ波検出素子140の平面図(top view)となる。
図18は、偏光依存性を解消するための基本の配置の例を示す図である。なお、図18は、テラヘルツ波検出素子140の平面図(top view)となる。
図18においては、2つの金属スリットリング130を組にして、金属ナノギャップ130Aの向きが互いに90°ずれるようにする。金属ナノギャップ130Aのスリットの向きは、ドレイン電流と並行でも直交でもよいため、このようにして2つの金属スリットリング130を組にすることで、入射されるテラヘルツ波の偏光依存性を解消することができる。なお、ペア(組)にした金属スリットリング130の2つの金属ナノギャップ130Aの相対角度が90°になっていればよく、必ずしも金属ナノギャップ130Aをドレイン電流に対して直交及び平行に配置する必要はない。
図19は、偏光依存性を解消するための2次元配置の例を示す図である。なお、図19は、テラヘルツ波検出素子140の平面図(top view)となる。ただし、図19のA及び図19のBにおいては、完全空乏型SOI201のチャネル部のみを図示し、1つの画素(テラヘルツ波検出素子140)に、4つの金属スリットリング130が配置されている場合を示している。
すなわち、図18の基本の配置においては、2つの金属スリットリング130を組にした場合を説明したが、図19のA及び図19のBでは、4つの金属スリットリング130の組み合わせが2次元状に配置されている。
図19のAにおいては、各画素内で、4つの金属スリットリング130が、それぞれの金属ナノギャップ130Aのスリットの向きを90°単位でずらして配置されている。また、図19のBにおいては、4つの画素ごとに、4つの金属スリットリング130の金属ナノギャップ130Aのそれぞれのスリットの向きが、90°単位でずれるように配置されている。
また、金属スリットリング130には偏光依存性があるので、図19のCに示すように、金属ナノギャップ130Aのスリットに直交する電界方向が最も検出効率が高くなる。そこで、偏光依存性が問題になる場合には、図19のAの基本の配置や図19のBの2次元状の配置を採用して、金属ナノギャップ130Aのスリットの向きが90°単位でずらされた金属スリットリング130が配置されるようにする。ただし、図19のAの基本の配置や図19のBの2次元状の配置は、一例であって、偏光依存性の問題を解消できる他の配置を採用してもよい。なお、偏光依存性解消には、金属ナノギャップ130A間の相対角度が90°のペア(組)を最小単位とすれば十分であるが、それ以外の角度を持つ金属スリットリング130が何らかの目的のために混じっていても構わない。
(チャネル面に対して立てた配置)
図20は、金属スリットリング130をチャネル面に対して立てた配置の例を示す図である。なお、図20のAは、テラヘルツ波検出素子140の側面図(side view)となり、図20のBは、テラヘルツ波検出素子140の平面図(top view)となる。また、図20のCは、図20のAにおける金属スリットリング130を、矢印Pの方向から見た場合の図を示している。
図20は、金属スリットリング130をチャネル面に対して立てた配置の例を示す図である。なお、図20のAは、テラヘルツ波検出素子140の側面図(side view)となり、図20のBは、テラヘルツ波検出素子140の平面図(top view)となる。また、図20のCは、図20のAにおける金属スリットリング130を、矢印Pの方向から見た場合の図を示している。
図20のAにおいて、テラヘルツ波検出素子140は、図2と同様の構造からなるが、完全空乏型SOI201上に、絶縁膜204を介して配置される金属スリットリング130が、チャネル面に対して垂直に立てられている。この場合において、金属スリットリング130の下部に金属ナノギャップ130Aが位置するようにして、金属ナノギャップ130Aのスリットを、チャネル面と対向させることで、金属スリットリング130の直下のアバランシェ領域Aがチャネル領域に含まれるようにすることが可能となる。
また、図20のBに示すように、チャネル面に対して垂直に立てられた金属スリットリング130は、金属ナノギャップ130Aのスリットが、チャネル面と対向さえしていれば、その向きを、チャネルに対して水平にしたり、あるいは垂直にしたり、あるいは任意の角度にしたりすることができる。さらに、図20のCに示すように、チャネル面に対して垂直に立てられた金属スリットリング130を、金属ナノギャップ130Aのスリットとチャネル面と対向を維持しつつ、斜めに傾けることで、点接触とするようにしてもよい。このように、金属スリットリング130を斜めに傾けて点接触とすれば、チャネル領域の極小化に有効となる。
なお、上述した図14乃至図19の金属スリットリング130の配置においても、図20の配置と同様にして、金属ナノギャップ130Aのスリットが、チャネル面と対向さえしていれば、金属スリットリング130をチャネル面に対して垂直に立てたり、あるいは斜めに傾けて点接触としたりすることができる。
以上のように、本技術を適用した半導体素子(図2のテラヘルツ波検出素子140)においては、半導体表面のキャリヤを、入射光の電界増強により強く振動させて、半導体構成原子と衝突させることで、電子増倍を起こすことになる。そして、この半導体素子では、pin接合ダイオード又はpn接合ダイオードに逆バイアス電流を流して、光誘起アバランシェ増幅による電子増倍により、逆バイアス電流を変調させることで、入射光の強度を検出することから、高電圧を必要としないでアバランシェ増幅(光誘起アバランシェ増幅)を可能とすることができる。
また、この半導体素子は、入射光がテラヘルツ波である場合、pin接合ダイオード又はpn接合ダイオードにより、高感度に当該テラヘルツ波を検出することができる。また、この半導体素子は、CMOS(Complementary Metal Oxide Semiconductor)プロセスで製造可能であり、その構造もシンプルとなるため、複雑な工程を経ることなく、容易に製造することができる。また、入射されるテラヘルツ波自体を検出のエネルギー源として用いるため、超省電力化されている(いわゆるエネルギーハーベスティング技術を用いていると言える)。また、この半導体素子は、室温での動作が可能とされる。
なお、上述した非特許文献1,2には、固体素子によるテラヘルツ波検出方法として、共鳴トンネルダイオードを用いて、テラヘルツ波(0.3THz)を発振・検出する技術が開示されている。また、これらの非特許文献1,2の技術では、2次元走査(スキャン)によって、透過画像を取得することや、共鳴トンネルダイオードの非線形性(負性抵抗領域)を用いて、テラヘルツ波を検出することが開示されている。なお、この技術では、空間分解能は1mm程度とされている。
しかしながら、上述した非特許文献1,2の技術では、まず、感度が不足しているし、解像度(空間分解能)は使用するテラヘルツ波の回折限界に依存することになってしまう。また、アンテナが必要となるため、素子サイズが数mmオーダーのサイズとなり、小型化ができない。また、透過画像を得るために、2次元走査が必要となるため、そのための処理や機構が必要となってしまう。一方、上述したように、本技術では、これらの非特許文献1,2の技術の問題点をすべて解決することが可能となる。
なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
また、本技術は、以下のような構成をとることができる。
(1)
半導体表面のキャリヤを、入射光の電界増強により強く振動させて、半導体構成原子と衝突させることで、電子を増倍する
半導体素子。
(2)
前記半導体表面には、前記入射光によりプラズモン共鳴が生じる金属微細構造が、絶縁層を介して配置されている
(1)に記載の半導体素子。
(3)
前記金属微細構造により電界増強された光は、pin接合ダイオードのi(intrinsic)領域又はpn接合ダイオードの接合領域に入射して、光誘起アバランシェ増幅を起こすことで、電子を増倍する
(2)に記載の半導体素子。
(4)
前記pin接合ダイオード又は前記pn接合ダイオードに逆バイアス電流を流し、
前記光誘起アバランシェ増幅による電子増倍により、前記逆バイアス電流を変調させることで、前記入射光の強度を検出する
(3)に記載の半導体素子。
(5)
前記半導体は、完全空乏化している
(1)乃至(4)のいずれかに記載の半導体素子。
(6)
前記半導体における前記入射光の入射面の反対側には、ゲート電極が配置されており、
前記ゲート電極への電圧印加により、前記半導体が完全空乏化される
(5)に記載の半導体素子。
(7)
前記入射光は、テラヘルツ波である
(1)乃至(6)のいずれかに記載の半導体素子。
(8)
半導体表面のキャリヤを、入射光の電界増強により強く振動させて、半導体構成原子と衝突させることで、電子を増倍する
信号増幅方法。
(9)
(4)に記載の半導体素子が2次元状に複数配列された検出部を備える
検出装置。
(10)
前記入射光は、テラヘルツ波である
(9)に記載の検出装置。
半導体表面のキャリヤを、入射光の電界増強により強く振動させて、半導体構成原子と衝突させることで、電子を増倍する
半導体素子。
(2)
前記半導体表面には、前記入射光によりプラズモン共鳴が生じる金属微細構造が、絶縁層を介して配置されている
(1)に記載の半導体素子。
(3)
前記金属微細構造により電界増強された光は、pin接合ダイオードのi(intrinsic)領域又はpn接合ダイオードの接合領域に入射して、光誘起アバランシェ増幅を起こすことで、電子を増倍する
(2)に記載の半導体素子。
(4)
前記pin接合ダイオード又は前記pn接合ダイオードに逆バイアス電流を流し、
前記光誘起アバランシェ増幅による電子増倍により、前記逆バイアス電流を変調させることで、前記入射光の強度を検出する
(3)に記載の半導体素子。
(5)
前記半導体は、完全空乏化している
(1)乃至(4)のいずれかに記載の半導体素子。
(6)
前記半導体における前記入射光の入射面の反対側には、ゲート電極が配置されており、
前記ゲート電極への電圧印加により、前記半導体が完全空乏化される
(5)に記載の半導体素子。
(7)
前記入射光は、テラヘルツ波である
(1)乃至(6)のいずれかに記載の半導体素子。
(8)
半導体表面のキャリヤを、入射光の電界増強により強く振動させて、半導体構成原子と衝突させることで、電子を増倍する
信号増幅方法。
(9)
(4)に記載の半導体素子が2次元状に複数配列された検出部を備える
検出装置。
(10)
前記入射光は、テラヘルツ波である
(9)に記載の検出装置。
1 テラヘルツ波検出システム, 10 テラヘルツ波光源, 13 テラヘルツ波増強部, 14 テラヘルツ波検出装置, 130 金属スリットリング, 130A 金属ナノギャップ, 140 テラヘルツ波検出素子, 201 完全空乏型SOI, 202 BOX層, 203 シリコン基板, 204 絶縁膜
Claims (10)
- 半導体表面のキャリヤを、入射光の電界増強により強く振動させて、半導体構成原子と衝突させることで、電子を増倍する
半導体素子。 - 前記半導体表面には、前記入射光によりプラズモン共鳴が生じる金属微細構造が、絶縁層を介して配置されている
請求項1に記載の半導体素子。 - 前記金属微細構造により電界増強された光は、pin接合ダイオードのi(intrinsic)領域又はpn接合ダイオードの接合領域に入射して、光誘起アバランシェ増幅を起こすことで、電子を増倍する
請求項2に記載の半導体素子。 - 前記pin接合ダイオード又は前記pn接合ダイオードに逆バイアス電流を流し、
前記光誘起アバランシェ増幅による電子増倍により、前記逆バイアス電流を変調させることで、前記入射光の強度を検出する
請求項3に記載の半導体素子。 - 前記半導体は、完全空乏化している
請求項1に記載の半導体素子。 - 前記半導体における前記入射光の入射面の反対側には、ゲート電極が配置されており、
前記ゲート電極への電圧印加により、前記半導体が完全空乏化される
請求項5に記載の半導体素子。 - 前記入射光は、テラヘルツ波である
請求項1に記載の半導体素子。 - 半導体表面のキャリヤを、入射光の電界増強により強く振動させて、半導体構成原子と衝突させることで、電子を増倍する
信号増幅方法。 - 請求項4に記載の半導体素子が2次元状に複数配列された検出部を備える
検出装置。 - 前記入射光は、テラヘルツ波である
請求項9に記載の検出装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-053226 | 2015-03-17 | ||
JP2015053226A JP2016174076A (ja) | 2015-03-17 | 2015-03-17 | 半導体素子、信号増幅方法、及び、検出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016147886A1 true WO2016147886A1 (ja) | 2016-09-22 |
Family
ID=56919954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/056614 WO2016147886A1 (ja) | 2015-03-17 | 2016-03-03 | 半導体素子、信号増幅方法、及び、検出装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016174076A (ja) |
WO (1) | WO2016147886A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011014857A (ja) * | 2009-06-05 | 2011-01-20 | Nec Corp | 光学素子とこれを用いた光子発生装置、光発生装置、光記録装置および光検出装置 |
WO2015004867A1 (ja) * | 2013-07-12 | 2015-01-15 | シャープ株式会社 | 放射線検出用半導体装置 |
-
2015
- 2015-03-17 JP JP2015053226A patent/JP2016174076A/ja active Pending
-
2016
- 2016-03-03 WO PCT/JP2016/056614 patent/WO2016147886A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011014857A (ja) * | 2009-06-05 | 2011-01-20 | Nec Corp | 光学素子とこれを用いた光子発生装置、光発生装置、光記録装置および光検出装置 |
WO2015004867A1 (ja) * | 2013-07-12 | 2015-01-15 | シャープ株式会社 | 放射線検出用半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2016174076A (ja) | 2016-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fukushima et al. | High responsivity middle-wavelength infrared graphene photodetectors using photo-gating | |
Liu et al. | Graphene charge-injection photodetectors | |
Viti et al. | Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response | |
Lin et al. | Graphene/GaN diodes for ultraviolet and visible photodetectors | |
US8653460B2 (en) | Method and system for detecting light | |
Jin et al. | Dember effect induced photovoltage in perovskite pn heterojunctions | |
Lim et al. | Electrostatically defined few-electron double quantum dot in silicon | |
US20160196948A1 (en) | Low voltage nanoscale vacuum electronic devices | |
Marcet et al. | Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot | |
WO2009128243A1 (ja) | 電磁波受信装置、イメージング装置、および電磁波受信方法 | |
Tang et al. | Temperature enhanced responsivity and speed in an AlGaN/GaN metal-heterostructure-metal photodetector | |
Durini et al. | Lateral drift-field photodiode for low noise, high-speed, large photoactive-area CMOS imaging applications | |
Chen et al. | Surface leakage investigation via gated type-II InAs/GaSb long-wavelength infrared photodetectors | |
Ramírez et al. | Carrier transport and electroluminescence efficiency of erbium-doped silicon nanocrystal superlattices | |
Katsuno et al. | Current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation measurement | |
LaBella et al. | Picosecond time resolution with avalanche amorphous selenium | |
US20130256546A1 (en) | Method and system for demodulating signals | |
Wang et al. | Charge sensitive infrared phototransistor for 45 μm wavelength | |
WO2016147886A1 (ja) | 半導体素子、信号増幅方法、及び、検出装置 | |
Pud et al. | Modulation phenomena in Si nanowire field-effect transistors characterized using noise spectroscopy and gamma radiation technique | |
Gell et al. | Surface-acoustic-wave-driven luminescence from a lateral pn junction | |
Hashiba et al. | Highly sensitive detector for submillimeter wavelength range | |
Stepina et al. | Giant mesoscopic photoconductance fluctuations in Ge/Si quantum dot system | |
Dusanowski et al. | Single photon emission in the red spectral range from a GaAs-based self-assembled quantum dot | |
JP2021500753A (ja) | 電離放射線及び電離粒子の集積センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16764716 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16764716 Country of ref document: EP Kind code of ref document: A1 |