WO2016147662A1 - Pgw, sgw, bearer control method, bearer establishment method, and nontemporary computer-readable medium - Google Patents

Pgw, sgw, bearer control method, bearer establishment method, and nontemporary computer-readable medium Download PDF

Info

Publication number
WO2016147662A1
WO2016147662A1 PCT/JP2016/001491 JP2016001491W WO2016147662A1 WO 2016147662 A1 WO2016147662 A1 WO 2016147662A1 JP 2016001491 W JP2016001491 W JP 2016001491W WO 2016147662 A1 WO2016147662 A1 WO 2016147662A1
Authority
WO
WIPO (PCT)
Prior art keywords
pgw
communication
bearer
target
communication terminal
Prior art date
Application number
PCT/JP2016/001491
Other languages
French (fr)
Japanese (ja)
Inventor
創 前佛
寛之 原田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2016147662A1 publication Critical patent/WO2016147662A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections

Definitions

  • the present invention relates to a PGW (Packet Data Network Gateway), an SGW (Serving Gateway), a bearer control method, a bearer establishment method, and a program.
  • PGW Packet Data Network Gateway
  • SGW Serving Gateway
  • a UE User Equipment
  • the UE communicates with the external network via a PGW (Packet Data Network Gateway).
  • PGW Packet Data Network Gateway
  • UE is used as a general term for communication terminals in 3GPP.
  • the PGW is used as a gateway when communicating with an external network.
  • Non-Patent Document 1 discloses an operation related to UE Attach processing.
  • An object of the present invention is to provide a PGW, an SGW, a bearer control method, a bearer establishment method, and a program that do not require time for changing the PGW used by the UE.
  • the PGW includes: a detection unit that detects a change in a communication state related to a communication terminal that is in communication; and a communication unit that performs communication when the change in the communication state is detected in the detection unit.
  • a determination unit that determines a target PGW to be executed on behalf of the own device, and a communication unit that transmits a message to the SGW to instruct to establish a first bearer related to the communication terminal with the target PGW, It is to be prepared.
  • the SGW according to the second aspect of the present invention is configured to execute communication related to the communication terminal communicating via the source PGW on behalf of the source PGW due to a change in the communication state related to the communication terminal in communication.
  • a communication unit that receives a message instructing to establish a first bearer related to the communication terminal with the target PGW from the source PGW that has determined the message, and when receiving the message, A bearer control unit that establishes the first bearer.
  • the bearer control method detects a change in a communication state related to a communication terminal in communication.
  • a change in a communication state is detected, the communication of the communication terminal is performed on behalf of the own device.
  • a target PGW to be executed is determined, and a message instructing to establish a first bearer related to the communication terminal with the target PGW is transmitted to the SGW.
  • the bearer establishment method executes communication related to a communication terminal communicating via the source PGW on behalf of the source PGW due to a change in the communication state related to the communication terminal currently communicating.
  • a message indicating that a first bearer related to the communication terminal is established with the target PGW is received from the source PGW that has determined the target PGW, and when the message is received, the message is received between the target PGW and the target PGW.
  • a first bearer is established.
  • a program detects a change in a communication state related to a communication terminal in communication, and executes a communication of the communication terminal on behalf of its own device when a change in the communication state is detected.
  • the target PGW is determined, and the computer is caused to transmit a message instructing to establish a first bearer related to the communication terminal with the target PGW to the SGW.
  • the present invention it is possible to provide a PGW, an SGW, a bearer control method, a bearer establishment method, and a program that do not require time to change the PGW used by the UE.
  • FIG. 1 is a configuration diagram of a communication system according to a first exemplary embodiment
  • FIG. 3 is a configuration diagram of a communication system according to a second exemplary embodiment.
  • It is a block diagram of PGW concerning Embodiment 2.
  • FIG. It is a block diagram of SGW concerning Embodiment 2.
  • FIG. It is a figure which shows the flow of the change destination PGW determination process concerning Embodiment 2.
  • FIG. It is a figure which shows the flow of the session establishment process between SGW and target PGW concerning Embodiment 2.
  • FIG. It is a figure which shows the flow of the session establishment process between source PGW and target PGW concerning Embodiment 2.
  • FIG. 10 is a diagram illustrating a flow of uplink data path switching processing according to the second exemplary embodiment; It is a figure which shows the transfer path
  • FIG. 10 is a diagram illustrating a flow of downlink data path switching processing according to the second exemplary embodiment; It is a figure which shows the transfer path
  • FIG. It is a figure which shows the flow of the deletion process of the unnecessary bearer concerning Embodiment 2.
  • the communication system in FIG. 1 includes a source PGW 10, a target PGW 20, and an SGW (Serving Gateway) 30.
  • the source PGW 10, the target PGW 20, and the SGW 30 may be computer devices that operate when a processor executes a program stored in a memory.
  • the source PGW 10 includes a detection unit 11, a determination unit 12, and a communication unit (transmission / reception unit) 13.
  • Each component that configures the source PGW 10 may be software or a module that executes processing when a processor executes a program stored in a memory.
  • each component which comprises source PGW10 may be constituted by a circuit etc.
  • the detecting unit 11 detects a change in the communication state related to the communication terminal that is communicating.
  • Communication means, for example, receiving data destined for the communication terminal and transmitting the received data to the communication terminal, or receiving data transmitted from the communication terminal and transferring the received data to an external network or the like. It may be to transmit.
  • the communication state may be, for example, a data transfer amount, a packet loss number (packet discard number), a transfer rate, or the like.
  • the change in the communication state is, for example, that the data transfer amount related to a certain communication terminal exceeds a predetermined threshold, the number of packet losses in communication of a certain communication terminal exceeds a predetermined threshold, or in a certain communication terminal When GBR (Guaranteed Bit Rate) is determined, the transfer rate may exceed GBR, or the like.
  • GBR Guard Bit Rate
  • the change in the communication state may be a change in a radio communication method (RAT: Radio Access Technology).
  • the detection unit 11 may detect a change in the communication state within the device itself, or may detect a change in the communication state by receiving information detected by an external server or the like. Moreover, the detection part 11 may detect the information acquirable in DPI (Deep
  • DPI Deep
  • the determination unit 12 determines a target PGW 20 that executes communication of the communication terminal whose communication state has changed instead of the source PGW 10.
  • the determining unit 12 may determine, as the target PGW 20, a PGW in which the data transfer amount or the number of packet loss of the entire apparatus has not yet reached a predetermined threshold.
  • the status of communication states related to a plurality of PGWs may be notified between PGWs, or may be collectively managed by an external server or the like.
  • the communication unit 13 transmits to the SGW 30 a message instructing to establish a bearer related to the communication terminal to be migrated between the SGW 30 and the target PGW 20.
  • the bearer may be, for example, a data transfer path determined for each communication terminal.
  • the data transfer path may be paraphrased as, for example, a data transmission path, a data relay path, or a data transfer tunnel.
  • the source PGW 10 instructs the current communication terminal to establish a bearer regarding a communication terminal to be migrated with the target PGW 20 to the SGW 30.
  • the set bearer can be changed.
  • the source PGW 10 can change the bearer of the communication terminal without detaching the communication terminal in the Attach state. Since the communication terminal does not need to execute the process associated with the reattach, it is possible to avoid the occurrence of a switching time or the like accompanying the change of the data transmission path.
  • the communication system shown in FIG. 2 is mainly composed of node devices that execute operations defined in 3GPP. 2 includes a UE 40, an eNB (evolved NodeB) 50, an SGW (Serving Gateway) 60, a source PGW 70, a target PGW 80, an SCS (Service Capability Server) 90, a PCRF (Policy and Charging Rule Function) 100, and a traffic collection device. 110 and the Internet 120.
  • a UE 40 evolved NodeB
  • SGW Serving Gateway
  • SCS Service Capability Server
  • PCRF Policy and Charging Rule Function
  • the source PGW 70 corresponds to the source PGW 10 in FIG. 1
  • the target PGW 80 corresponds to the target PGW 20 in FIG.
  • the SGW 60 corresponds to the SGW 30 in FIG.
  • the UE 40 is used as a general term for communication terminals in 3GPP.
  • the eNB 50 is a base station that can use LTE (Long Term Term Evolution) defined in 3GPP as a radio communication scheme.
  • LTE Long Term Term Evolution
  • the SGW 60 relays user data transmitted and received between the eNB 50 and the source PGW 70 or the target PGW 80.
  • the user data may be referred to as U-Plane data, for example.
  • the source PGW 70 and the target PGW 80 relay user data transmitted and received between the SCS 90 and the SGW 60.
  • User data is also transmitted between the source PGW 70 and the target PGW 80.
  • the SCS 90 is a device on which an M2M application used for realizing, for example, M2M (Machine to Machine) communication is mounted.
  • the SCS 90 communicates with an application server arranged on the Internet 120 and relays user data transmitted and received between the application server and the source PGW 70 or the target PGW 80.
  • the SCS 90 may communicate with devices arranged in a closed network in addition to the Internet, which is an open network.
  • AGW Access Gateway
  • TDF Traffic Detection Function
  • the PCRF 100 is a device that performs policy control, charging control, and the like in a network configured by the eNB 50, the SGW 60, the source PGW 70, the target PGW 80, and the SCS 90.
  • the traffic collection device 110 is a device that manages the traffic of the source PGW 70 and the target PGW 80.
  • the traffic collection device 110 may manage the amount of data transmitted / received in the source PGW 70 and the target PGW 80, or the number of packet losses in the source PGW 70 and the target PGW 80.
  • the Internet 120 is an external network different from the mobile network configured by the eNB 50, the SGW 60, the source PGW 70, the target PGW 80, the SCS 90, the PCRF 100, and the traffic collection device 110.
  • a plurality of application servers and the like may be arranged on the Internet 120.
  • the source PGW 70 in FIG. 3 has a configuration in which a switching instruction unit 71 is added to the source PGW 10 in FIG.
  • a switching instruction unit 71 is added to the source PGW 10 in FIG.
  • detailed description of the same configuration as that of the source PGW 10 in FIG. 1 is omitted.
  • the switching instruction unit 71 transmits, via the communication unit 13, a message instructing the SGW 60 to transmit data related to the UE 40 to be transmitted to the source PGW 70 to the target PGW 80. Assume that a bearer is established between the SGW 60 and the target PGW 80.
  • the switching instruction unit 71 transmits a message for instructing the SCS 90 to transmit data related to the UE 40 to be transmitted to the source PGW 70 to the target PGW 80 via the communication unit 13.
  • the switching instructing unit 71 can transfer the data transfer processing related to the UE 40 to the target PGW 80 by transmitting a message instructing the SGW 60 and the SCS 90 to transmit data to be transmitted to the source PGW 70 to the target PGW 80. .
  • the source PGW 70 does not perform the data transfer process on the UE 40, and thus the processing load can be reduced.
  • the processing loads on the source PGW 70 and the target PGW 80 can be leveled. In this figure, the interface between the PCRF 100 and the traffic collection device 110 is not shown.
  • the SGW 60 includes a communication unit 61 and a control unit 62.
  • the communication unit 61 receives from the source PGW 70 a message instructing to establish a bearer related to the communication of the UE 40 with the target PGW 80. Further, the communication unit 61 receives from the source PGW 70 a message instructing transmission of data related to the UE 40 to be transmitted to the source PGW 70 to the target PGW 80. The communication unit 61 transmits / receives user data to / from the source PGW 70 and the target PGW 80.
  • control unit 62 When the control unit 62 receives a message instructing to establish a bearer regarding the UE 40 with the target PGW 80 via the communication unit 61, the control unit 62 executes a process of establishing a bearer with the target PGW 80. Furthermore, when the control unit 62 receives a message instructing transmission of data related to the UE 40 to be transmitted to the source PGW 70 to the target PGW 80, the control unit 62 sets the destination of the data transmitted from the UE 40 as the target PGW 80.
  • the source PGW 70 detects a change in the communication state of the UE 40 (S11). For example, the source PGW 70 may determine that the communication state of the UE 40 has changed when the transfer amount of data related to the UE 40 exceeds a predetermined threshold.
  • the data transfer amount may be a data amount at which the source PGW 70 transmits and receives data related to the UE 40.
  • the source PGW 70 may detect a change in the communication state of the UE 40 using, for example, a DPI function.
  • the DPI function is a function for analyzing a user packet.
  • the source PGW 70 may detect a change in the communication state in consideration of the data transfer amount of the entire apparatus together with the data transfer amount for each UE. For example, the source PGW 70 determines that the communication state has not changed when the data transfer amount of a certain UE 40 exceeds the threshold but does not exceed the data amount that can be transferred by the own device. May be. In other words, it may be determined that the communication state has changed when the data transfer amount of each UE 40 exceeds a predetermined threshold value and the data transfer amount of the entire apparatus also exceeds the predetermined threshold value.
  • the source PGW 70 transmits a PGW change notification message to the traffic collection device 110 in order to inquire about communication resources, that is, a PGW having a sufficient data transfer amount as the entire device (S12).
  • the source PGW 70 may set information on the data transfer amount to be transferred to the target PGW in the PGW change notification message.
  • the traffic collection device 110 may be, for example, an operation device or the like, and is assumed to acquire information on the data transfer amount from each PGW in real time or periodically.
  • the traffic collection device 110 When the traffic collection device 110 receives the PGW change notification message, the traffic collection device 110 extracts PGWs having sufficient communication resources. For example, the traffic collection device 110 may select a PGW whose data transfer amount does not reach a predetermined threshold as the target PGW. Alternatively, the traffic collection device 110 may select, as the target PGW, a PGW that does not reach a predetermined threshold as the data transfer amount of the entire device even if the data transfer amount transferred by the source PGW 70 is added.
  • the traffic collection device 110 transmits a target PGW notification message to the source PGW 70 in order to notify the source PGW 70 of the selected target PGW (S13).
  • the bearer establishment process may be rephrased as a session establishment process.
  • the source PGW 70 transmits a PGWPGRelocation Request message to the SGW 60 (S21).
  • the source PGW 70 sets identification information, address information, and the like of the target PGW 80 in the PGW Relocation Request message.
  • the SGW 60 establishes a bearer used for data transmission related to the UE 40 with the target PGW 80 according to the information related to the target PGW 80 set in the PGWPGRelocation Request message.
  • the interface between the SGW 60 and the target PGW 80 is defined as an S5 interface in 3GPP.
  • the SGW 60 transmits a Create Session Request message to the target PGW 80 in order to establish an S5 session via the S5 interface with the target PGW 80 (S22).
  • the target PGW 80 transmits a Credit Control Request message to the PCRF 100 in order to notify that the PGW that executes data transfer related to the UE 40 has been changed from the source PGW 70 to the target PGW 80 (S23).
  • the PCRF 100 transmits a Credit Control Answer message to the target PGW 80 as a response to the Credit Control Request message (S24).
  • the target PGW 80 transmits a Create Session Response message to the SGW 60 as a response to the Create Session Request message (S25).
  • the target PGW 80 transmits a Create Session Response message to the SGW 60, thereby establishing a bearer between the SGW 60 and the target PGW 80.
  • the SGW 60 transmits a PGW Relocation Response message to the source PGW 70 as a response to the PGW Relocation Request message (S26).
  • a session or bearer established between the source PGW 70 and the target PGW 80 may be referred to as Indirect tunnel.
  • the Indirect tunnel is used to perform data transfer between the source PGW 70 and the target PGW 80 in the process of switching the data transfer process related to the UE 40 from the source PGW 70 to the target PGW 80.
  • the source PGW 70 transmits a Create Indirect Data Tunnel Request message to the target PGW 80 (S31).
  • the source PGW 70 sets identification information regarding the UE 40 that performs data transfer using Indirect tunnel in a Create Indirect Data Tunnel Request message.
  • the target PGW 80 transmits a Create Indirect Data Tunnel Response message to the source PGW 70 as a response to the Create Indirect Data Tunnel Request message (S32).
  • the target PGW 80 transmits a Create Indirect Data Tunnel Response message to the source PGW 70, whereby an Indirect tunnel is established between the source PGW 70 and the target PGW 80.
  • the path switching process is a process of switching the data transfer path.
  • the uplink data is data transmitted from the UE 40 to a server device on the Internet.
  • the downlink data is data transmitted to the UE 40 from a server device on the Internet.
  • the source PGW 70 transmits a Path-Switch-Request message to instruct the SGW 60 to transmit uplink data related to the UE 40 to the target PGW 80 (S41).
  • the SGW 60 transmits a Path Switch Response message to the source PGW 70 as a response to the Path Switch Request message (S42).
  • the SGW 60 transmits uplink data related to the UE 40 to the target PGW 80.
  • the target PGW 80 transmits the uplink data transmitted from the SGW 60 to the source PGW 70 using Indirect / tunnel. This is because, at this stage, the SCS 90 has not been notified to process data related to the UE 40 in the target PGW 80.
  • the transfer path of the uplink data and the downlink data will be described with reference to FIG.
  • the path switching process is not executed. Therefore, the downlink data is transmitted to the UE 40 via the SCS 90, the source PGW 70, the SGW 60, and the eNB 50.
  • a path switching process is executed from the source PGW 70 to the target PGW 80. Therefore, the uplink data is transmitted to the Internet 120 via the eNB 50, the SGW 60, the target PGW 80, the source PGW 70, and the SCS 90.
  • the uplink data path switching process of FIG. 8 when the uplink data path switching process of FIG. 8 is performed, the uplink data is transmitted on a different path from the downlink data.
  • the source PGW 70 transmits a Path-Switch-Request message to instruct the target PGW 80 to transmit downlink data related to the UE 40 to the SGW 60 (S51).
  • the target PGW 80 transmits to the SCS 90 a transmission destination change notification message instructing to change the transmission destination of the downlink data destined for the UE 40 from the source PGW 70 to the target PGW 80 (S52).
  • the SCS 90 transmits a transmission destination change notification response message to the target PGW 80 as a response to the transmission destination change notification message (S53).
  • the SCS 90 switches the transmission destination of the downlink data destined for the UE 40 from the source PGW 70 to the target PGW 80 by transmitting a transmission destination change notification response message to the target PGW 80. Further, the SCS 90 recognizes that subsequent uplink data is also transmitted from the target PGW 80 by receiving the transmission destination change notification message.
  • the target PGW 80 transmits a Path Switch Response message to the source PGW 70 as a response to the Path Switch Request message (S54).
  • the target PGW 80 transmits a Path Switch Response message to the source PGW 70, and in subsequent processing, the downlink data related to the UE 40 transmitted from the SCS 90 is transmitted to the SGW 60 without using the Indirect tunnel with the source PGW 70.
  • the target PGW 80 switches the uplink data related to the UE 40 to be transmitted to the SCS 90 without using the Indirect tunnel with the source PGW 70.
  • a path switching process is performed on downlink data transmitted from the server device or the like of the Internet 120 to the UE 40. Therefore, the downlink data is transmitted to the UE 40 via the SCS 90, the target PGW 80, the SGW 60, and the eNB 50.
  • the upstream PGW 80 transmits the uplink data to the SCS 90 without using Indirect tunnel. Therefore, uplink data is transmitted to the Internet 120 via the eNB 50, the SGW 60, the target PGW 80, and the SCS 90.
  • the source PGW 70 transmits a Delete Bearer Request message to the SGW 60 in order to delete a bearer with the SGW 60 (S61).
  • the SGW 60 transmits a Delete Bearer Response message to the source PGW 70 as a response to the Delete Bearer Request message (S62).
  • S62 When the SGW 60 transmits a Delete Bearer Response message to the source PGW 70, the bearer between the SGW 60 and the source PGW 70 is deleted.
  • the source PGW 70 transmits a Credit Control Request message to the PCRF 100 in order to transmit to the PCRF 100 that the bearer related to the UE 40 has been deleted with the SGW 60 (S63).
  • the PCRF 100 transmits a Credit Control Answer message to the source PGW 70 as a response to the Credit Control Request message (S64).
  • the source PGW 70 transmits a Delete Indirect Data ForwardingInTunnel Request message to the target PGW 80 (S65).
  • the target PGW 80 transmits a Delete Indirect Data Forwarding Tunnel Response message to the source PGW 70 as a response to the Delete Indirect Data Forwarding Tunnel Request message (S66).
  • the target PGW 80 transmits a Delete Indirect Data Forwarding Tunnel Response message to the source PGW 70, whereby the Indirect tunnel between the source PGW 70 and the target PGW 80 is deleted.
  • the communication system can shift the uplink data and downlink data related to the UE 40, which have been processed in the source PGW 70, to the target PGW 80 in a stepwise manner. For example, when each device involved in a path change changes the path of uplink data and downlink data at the same time, the processing load may increase rapidly and the convergence of the path change may be delayed. For this reason, it is possible to speed up the convergence of the route change by shifting the uplink data and the downlink data to the target PGW 80 at different timings.
  • the communication system according to the second exemplary embodiment of the present invention can change the PGW used for data transmission without performing the Detach process in the UE 40 as in the first exemplary embodiment. Therefore, the PGW that performs data processing can also be changed for a UE in communication with a short switching time. Also, by not performing the Detach process, the UE can change the PGW that performs data processing without interrupting communication.
  • the communication system can change the PGW for each bearer. Therefore, the communication system can change only the PGW of a specific bearer without changing the PGW for all bearers when the Multi PDN is performed. For example, when the UE is executing a plurality of applications, the communication system can change the PGW only for communication related to some applications.
  • the present invention has been described as a hardware configuration, but the present invention is not limited to this.
  • the present invention can also realize processing in the PGW and the SGW by causing a CPU (Central Processing Unit) to execute a computer program.
  • a CPU Central Processing Unit
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

Abstract

The purpose of the present invention is to provide a packet data gateway (PGW), a serving gateway (SGW), a bearer control method, a bearer establishment method, and a program that do not require time for the process to change a PGW used by user equipment (UE). A source PGW (10) according to the present invention is provided with: a detection unit (11) for detecting changes in the communication state pertaining to a mid-communication communication terminal; a determination unit (12) that, when a change in the communication state is detected by the detection unit (11), determines a target PGW (20) for executing communication pertaining to the mid-communication communication terminal via the device, in place of the device; and a communication unit (13) for transmitting a message to an SGW (30) instructing that a first bearer pertaining to the communication terminal is to be established between the target PGW (20) and the SGW (30).

Description

PGW、SGW、ベアラ制御方法、ベアラ確立方法及び非一時的なコンピュータ可読媒体PGW, SGW, bearer control method, bearer establishment method, and non-transitory computer-readable medium
 本発明はPGW(Packet Data Network Gateway)、SGW(Serving Gateway)、ベアラ制御方法、ベアラ確立方法及びプログラムに関し、特にPGWの切替処理を行うPGW、SGW、ベアラ制御方法、ベアラ確立方法及びプログラムに関する。 The present invention relates to a PGW (Packet Data Network Gateway), an SGW (Serving Gateway), a bearer control method, a bearer establishment method, and a program.
 3GPP(3rd Generation Partnership Project)に規定された動作に従って、UE(User Equipment)が外部ネットワークと通信を行う場合、UEは、PGW(Packet Data Network Gateway)を介して外部ネットワークと通信を行う。UEは、3GPPにおいて通信端末の総称として用いられる。また、PGWは、外部ネットワークと通信する際のゲートウェイとして用いられる。 When a UE (User Equipment) communicates with an external network in accordance with an operation defined in 3GPP (3rd Generation Partnership Project), the UE communicates with the external network via a PGW (Packet Data Network Gateway). UE is used as a general term for communication terminals in 3GPP. The PGW is used as a gateway when communicating with an external network.
 UEは、3GPPに規定された動作を実行するモバイルネットワークへAttachしている間、外部ネットワークと通信を行う場合、同一のPGWを介して外部ネットワークと通信を行う。非特許文献1には、UEのAttach処理に関する動作が開示されている。 When a UE communicates with an external network while attaching to a mobile network that performs an operation defined in 3GPP, the UE communicates with the external network via the same PGW. Non-Patent Document 1 discloses an operation related to UE Attach processing.
 しかし、複数のUEが、同一のPGWを用いて外部ネットワークと通信を行っている場合、一部のUEの通信量が増加すると、他のUEにおいて通信可能な通信量が減少する等の影響を及ぼすことがある。そのため、通信量が多いUEを他のPGWへ収容させる等のUEに関するベアラの動的な移行が要望されている。しかし、UEに関するベアラを他のPGWへ移行させる場合、ネットワーク主導によって、UEを一旦Detachさせてから、新たなPGWへ再Attachさせる必要がある。この場合、UEの再Attachに伴う再接続処理に時間がかかるという問題がある。 However, when multiple UEs communicate with an external network using the same PGW, if the communication volume of some UEs increases, the amount of communication that can be communicated by other UEs may decrease. May have an effect. Therefore, there is a demand for dynamic shift of bearers related to UEs such as accommodating UEs with a large amount of communication in other PGWs. However, when the bearer related to the UE is transferred to another PGW, it is necessary to cause the UE to detach once by the network initiative and then re-attach to the new PGW. In this case, there is a problem that it takes time for the reconnection process associated with the reattachment of the UE.
 本発明の目的は、UEが使用するPGWの変更処理に時間を要しないPGW、SGW、ベアラ制御方法、ベアラ確立方法及びプログラムを提供することにある。 An object of the present invention is to provide a PGW, an SGW, a bearer control method, a bearer establishment method, and a program that do not require time for changing the PGW used by the UE.
 本発明の第1の態様にかかるPGWは、通信中の通信端末に関する通信状態の変化を検出する検出部と、前記検出部において、通信状態の変化が検出された場合、前記通信端末の通信を、自装置に代わって実行するターゲットPGWを決定する決定部と、前記通信端末に関する第1のベアラを前記ターゲットPGWとの間に確立することを指示するメッセージをSGWへ送信する通信部と、を備えるものである。 The PGW according to the first aspect of the present invention includes: a detection unit that detects a change in a communication state related to a communication terminal that is in communication; and a communication unit that performs communication when the change in the communication state is detected in the detection unit. A determination unit that determines a target PGW to be executed on behalf of the own device, and a communication unit that transmits a message to the SGW to instruct to establish a first bearer related to the communication terminal with the target PGW, It is to be prepared.
 本発明の第2の態様にかかるSGWは、通信中の通信端末に関する通信状態が変化したことによって、ソースPGWを介して通信中の通信端末に関する通信を、前記ソースPGWに代わって実行するターゲットPGWを決定したソースPGWから、前記通信端末に関する第1のベアラを前記ターゲットPGWとの間に確立することを指示するメッセージを受信する通信部と、前記メッセージを受信すると、前記ターゲットPGWとの間に前記第1のベアラを確立するベアラ制御部と、を備えるものである。 The SGW according to the second aspect of the present invention is configured to execute communication related to the communication terminal communicating via the source PGW on behalf of the source PGW due to a change in the communication state related to the communication terminal in communication. A communication unit that receives a message instructing to establish a first bearer related to the communication terminal with the target PGW from the source PGW that has determined the message, and when receiving the message, A bearer control unit that establishes the first bearer.
 本発明の第3の態様にかかるベアラ制御方法は、通信中の通信端末に関する通信状態の変化を検出し、通信状態の変化が検出された場合、前記通信端末の通信を、自装置に代わって実行するターゲットPGWを決定し、前記通信端末に関する第1のベアラを前記ターゲットPGWとの間に確立することを指示するメッセージをSGWへ送信するものである。 The bearer control method according to the third aspect of the present invention detects a change in a communication state related to a communication terminal in communication. When a change in a communication state is detected, the communication of the communication terminal is performed on behalf of the own device. A target PGW to be executed is determined, and a message instructing to establish a first bearer related to the communication terminal with the target PGW is transmitted to the SGW.
 本発明の第4の態様にかかるベアラ確立方法は、通信中の通信端末に関する通信状態が変化したことによって、ソースPGWを介して通信中の通信端末に関する通信を、前記ソースPGWに代わって実行するターゲットPGWを決定したソースPGWから、前記通信端末に関する第1のベアラを前記ターゲットPGWとの間に確立することを指示するメッセージを受信し、前記メッセージを受信すると、前記ターゲットPGWとの間に前記第1のベアラを確立するものである。 The bearer establishment method according to the fourth aspect of the present invention executes communication related to a communication terminal communicating via the source PGW on behalf of the source PGW due to a change in the communication state related to the communication terminal currently communicating. A message indicating that a first bearer related to the communication terminal is established with the target PGW is received from the source PGW that has determined the target PGW, and when the message is received, the message is received between the target PGW and the target PGW. A first bearer is established.
 本発明の第5の態様にかかるプログラムは、通信中の通信端末に関する通信状態の変化を検出し、通信状態の変化が検出された場合、前記通信端末の通信を、自装置に代わって実行するターゲットPGWを決定し、前記通信端末に関する第1のベアラを前記ターゲットPGWとの間に確立することを指示するメッセージをSGWへ送信する、ことをコンピュータに実行させるものである。 A program according to a fifth aspect of the present invention detects a change in a communication state related to a communication terminal in communication, and executes a communication of the communication terminal on behalf of its own device when a change in the communication state is detected. The target PGW is determined, and the computer is caused to transmit a message instructing to establish a first bearer related to the communication terminal with the target PGW to the SGW.
 本発明により、UEが使用するPGWの変更処理に時間を要しないPGW、SGW、ベアラ制御方法、ベアラ確立方法及びプログラムを提供することができる。 According to the present invention, it is possible to provide a PGW, an SGW, a bearer control method, a bearer establishment method, and a program that do not require time to change the PGW used by the UE.
実施の形態1にかかる通信システムの構成図である。1 is a configuration diagram of a communication system according to a first exemplary embodiment; 実施の形態2にかかる通信システムの構成図である。FIG. 3 is a configuration diagram of a communication system according to a second exemplary embodiment. 実施の形態2にかかるPGWの構成図である。It is a block diagram of PGW concerning Embodiment 2. FIG. 実施の形態2にかかるSGWの構成図である。It is a block diagram of SGW concerning Embodiment 2. FIG. 実施の形態2にかかる変更先PGW決定処理の流れを示す図である。It is a figure which shows the flow of the change destination PGW determination process concerning Embodiment 2. FIG. 実施の形態2にかかるSGWとターゲットPGWとの間のセッション確立処理の流れを示す図である。It is a figure which shows the flow of the session establishment process between SGW and target PGW concerning Embodiment 2. FIG. 実施の形態2にかかるソースPGWとターゲットPGWとの間のセッション確立処理の流れを示す図である。It is a figure which shows the flow of the session establishment process between source PGW and target PGW concerning Embodiment 2. FIG. 実施の形態2にかかる上りデータのパス切替処理の流れを示す図である。FIG. 10 is a diagram illustrating a flow of uplink data path switching processing according to the second exemplary embodiment; 実施の形態2にかかる上りデータ及び下りデータの転送経路を示す図である。It is a figure which shows the transfer path | route of the uplink data and downlink data concerning Embodiment 2. FIG. 実施の形態2にかかる下りデータのパス切替処理の流れを示す図である。FIG. 10 is a diagram illustrating a flow of downlink data path switching processing according to the second exemplary embodiment; 実施の形態2にかかる上りデータ及び下りデータの転送経路を示す図である。It is a figure which shows the transfer path | route of the uplink data and downlink data concerning Embodiment 2. FIG. 実施の形態2にかかる不要なベアラの削除処理の流れを示す図である。It is a figure which shows the flow of the deletion process of the unnecessary bearer concerning Embodiment 2. FIG.
 (実施の形態1)
 以下、図面を参照して本発明の実施の形態について説明する。はじめに、図1を用いて本発明の実施の形態1にかかる通信システムの構成例について説明する。図1の通信システムは、ソースPGW10、ターゲットPGW20及びSGW(Serving Gateway)30を有する。ソースPGW10、ターゲットPGW20及びSGW30は、プロセッサがメモリに格納されたプログラムを実行することによって動作するコンピュータ装置であってもよい。
(Embodiment 1)
Embodiments of the present invention will be described below with reference to the drawings. First, a configuration example of a communication system according to the first exemplary embodiment of the present invention will be described with reference to FIG. The communication system in FIG. 1 includes a source PGW 10, a target PGW 20, and an SGW (Serving Gateway) 30. The source PGW 10, the target PGW 20, and the SGW 30 may be computer devices that operate when a processor executes a program stored in a memory.
 続いて、ソースPGW10の構成例について説明する。ソースPGW10は、検出部11、決定部12及び通信部(送受信部)13を有している。ソースPGW10を構成する各構成要素は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュールであってもよい。もしくは、ソースPGW10を構成する各構成要素は、回路等によって構成されてもよい。 Subsequently, a configuration example of the source PGW 10 will be described. The source PGW 10 includes a detection unit 11, a determination unit 12, and a communication unit (transmission / reception unit) 13. Each component that configures the source PGW 10 may be software or a module that executes processing when a processor executes a program stored in a memory. Or each component which comprises source PGW10 may be constituted by a circuit etc.
 検出部11は、通信中の通信端末に関する通信状態の変化を検出する。通信中とは、例えば、通信端末を宛先とするデータを受信し、受信したデータを通信端末へ送信すること、もしくは、通信端末から送信されたデータを受信し、受信したデータを外部ネットワーク等へ送信することであってもよい。 The detecting unit 11 detects a change in the communication state related to the communication terminal that is communicating. “Communicating” means, for example, receiving data destined for the communication terminal and transmitting the received data to the communication terminal, or receiving data transmitted from the communication terminal and transferring the received data to an external network or the like. It may be to transmit.
 通信状態とは、例えば、データ転送量、パケットロス数(パケット廃棄数)もしくは転送速度等であってもよい。通信状態の変化は、例えば、ある通信端末に関するデータ転送量が予め定められた閾値を超えること、ある通信端末の通信におけるパケットロス数が予め定められた閾値を超えること、もしくは、ある通信端末におけるGBR(Guaranteed Bit Rate)が定められている場合に転送速度がGBRを超えること、等であってもよい。また、通信状態の変化は、無線通信方式(RAT:Radio Access Technology)の変化であってもよい。 The communication state may be, for example, a data transfer amount, a packet loss number (packet discard number), a transfer rate, or the like. The change in the communication state is, for example, that the data transfer amount related to a certain communication terminal exceeds a predetermined threshold, the number of packet losses in communication of a certain communication terminal exceeds a predetermined threshold, or in a certain communication terminal When GBR (Guaranteed Bit Rate) is determined, the transfer rate may exceed GBR, or the like. The change in the communication state may be a change in a radio communication method (RAT: Radio Access Technology).
 検出部11は、通信状態の変化を自装置内において検出してもよく、外部サーバ等によって検出された情報を受信することによって、通信状態の変化を検出してもよい。また、検出部11は、DPI(Deep Packet Inspection)において取得可能な情報を検出してもよい。DPIにおいて取得可能な情報は、例えば、テキストか動画か、等を示すデータの種別、もしくは宛先が特定のサーバかどうか、等であってもよい。さらに、検知部11は、ある特定アプリケーション用途の通信を検知してもよい。 The detection unit 11 may detect a change in the communication state within the device itself, or may detect a change in the communication state by receiving information detected by an external server or the like. Moreover, the detection part 11 may detect the information acquirable in DPI (Deep | Packet | Inspection). The information that can be acquired in the DPI may be, for example, the type of data indicating whether it is text or video, or whether the destination is a specific server. Furthermore, the detection unit 11 may detect communication for a specific application.
 決定部12は、検出部11において、通信状態の変化が検出された場合、通信状態が変化した通信端末の通信を、ソースPGW10に代わって実行するターゲットPGW20を決定する。 When the detection unit 11 detects a change in the communication state, the determination unit 12 determines a target PGW 20 that executes communication of the communication terminal whose communication state has changed instead of the source PGW 10.
 決定部12は、装置全体のデータ転送量もしくはパケットロス数等が、まだ予め定められた閾値に達していないPGWを、ターゲットPGW20として決定してもよい。複数のPGWに関する通信状態の状況については、PGW間において通知しあってもよく、外部サーバ等において一括して管理されてもよい。 The determining unit 12 may determine, as the target PGW 20, a PGW in which the data transfer amount or the number of packet loss of the entire apparatus has not yet reached a predetermined threshold. The status of communication states related to a plurality of PGWs may be notified between PGWs, or may be collectively managed by an external server or the like.
 通信部13は、SGW30へ、SGW30とターゲットPGW20との間において、移行対象となる通信端末に関するベアラを確立することを指示するメッセージを送信する。ベアラは、例えば、通信端末毎に定められたデータ転送経路であってもよい。データ転送経路は、例えば、データ伝送経路、データ中継経路もしくはデータ転送トンネル等と言い換えられてもよい。 The communication unit 13 transmits to the SGW 30 a message instructing to establish a bearer related to the communication terminal to be migrated between the SGW 30 and the target PGW 20. The bearer may be, for example, a data transfer path determined for each communication terminal. The data transfer path may be paraphrased as, for example, a data transmission path, a data relay path, or a data transfer tunnel.
 以上説明したように、図1の通信システムを用いることによって、ソースPGW10は、SGW30へ、ターゲットPGW20との間に移行対象となる通信端末に関するベアラの確立を指示することによって、現在の通信端末に設定されているベアラを変更することができる。言い換えると、ソースPGW10は、Attach状態の通信端末をDetachすることなく、通信端末のベアラを変更することができる。通信端末は、再Attachに伴う処理を実行する必要がないため、データ伝送経路の変更に伴う切り替え時間等の発生も回避することができる。 As described above, by using the communication system of FIG. 1, the source PGW 10 instructs the current communication terminal to establish a bearer regarding a communication terminal to be migrated with the target PGW 20 to the SGW 30. The set bearer can be changed. In other words, the source PGW 10 can change the bearer of the communication terminal without detaching the communication terminal in the Attach state. Since the communication terminal does not need to execute the process associated with the reattach, it is possible to avoid the occurrence of a switching time or the like accompanying the change of the data transmission path.
 (実施の形態2)
 続いて、図2を用いて本発明の実施の形態2にかかる通信システムの構成例について説明する。図2の通信システムは、主に3GPPにおいて規定されている動作を実行するノード装置によって構成されている。図2の通信システムは、UE40、eNB(evolved NodeB)50、SGW(Serving Gateway)60、ソースPGW70、ターゲットPGW80、SCS(Service Capability Server)90、PCRF(Policy and Charging Rule Function)100、トラヒック収集装置110及びインターネット120を有している。
(Embodiment 2)
Subsequently, a configuration example of the communication system according to the second exemplary embodiment of the present invention will be described with reference to FIG. The communication system shown in FIG. 2 is mainly composed of node devices that execute operations defined in 3GPP. 2 includes a UE 40, an eNB (evolved NodeB) 50, an SGW (Serving Gateway) 60, a source PGW 70, a target PGW 80, an SCS (Service Capability Server) 90, a PCRF (Policy and Charging Rule Function) 100, and a traffic collection device. 110 and the Internet 120.
 ソースPGW70は、図1のソースPGW10に相当し、ターゲットPGW80は、図1のターゲットPGW20に相当する。SGW60は、図1のSGW30に相当する。 The source PGW 70 corresponds to the source PGW 10 in FIG. 1, and the target PGW 80 corresponds to the target PGW 20 in FIG. The SGW 60 corresponds to the SGW 30 in FIG.
 UE40は、3GPPにおいて通信端末の総称として用いられる。eNB50は、無線通信方式として、3GPPにおいて規定されているLTE(Long Term Evolution)を用いることができる基地局である。 UE 40 is used as a general term for communication terminals in 3GPP. The eNB 50 is a base station that can use LTE (Long Term Term Evolution) defined in 3GPP as a radio communication scheme.
 SGW60は、eNB50と、ソースPGW70もしくはターゲットPGW80との間において送受信されるユーザデータを中継する。ユーザデータは、例えば、U-Planeデータと称されてもよい。ソースPGW70及びターゲットPGW80は、SCS90とSGW60との間において送受信されるユーザデータを中継する。また、ソースPGW70とターゲットPGW80との間においても、ユーザデータが伝送される。 The SGW 60 relays user data transmitted and received between the eNB 50 and the source PGW 70 or the target PGW 80. The user data may be referred to as U-Plane data, for example. The source PGW 70 and the target PGW 80 relay user data transmitted and received between the SCS 90 and the SGW 60. User data is also transmitted between the source PGW 70 and the target PGW 80.
 SCS90は、例えば、M2M(Machine to Machine)通信を実現するために用いられるM2Mアプリケーションが搭載された装置である。SCS90は、例えば、インターネット120に配置されているアプリケーションサーバと通信を行い、アプリケーションサーバと、ソースPGW70もしくはターゲットPGW80との間において送受信されるユーザデータを中継する。また、SCS90は、オープンネットワークであるインターネットの他に、クローズドネットワークに配置されている装置と通信を行ってもよい。また、SCS90の代わりに、AGW(Access Gateway)もしくはTDF(Traffic Detection Function)、他にもRadiusやRouter等が用いられてもよい。 The SCS 90 is a device on which an M2M application used for realizing, for example, M2M (Machine to Machine) communication is mounted. For example, the SCS 90 communicates with an application server arranged on the Internet 120 and relays user data transmitted and received between the application server and the source PGW 70 or the target PGW 80. Further, the SCS 90 may communicate with devices arranged in a closed network in addition to the Internet, which is an open network. Instead of the SCS 90, AGW (Access Gateway) or TDF (Traffic Detection Function), Radius, Router, or the like may be used.
 PCRF100は、eNB50、SGW60、ソースPGW70、ターゲットPGW80及びSCS90において構成されるネットワークにおけるポリシー制御及び課金制御等を行う装置である。 The PCRF 100 is a device that performs policy control, charging control, and the like in a network configured by the eNB 50, the SGW 60, the source PGW 70, the target PGW 80, and the SCS 90.
 トラヒック収集装置110は、ソースPGW70及びターゲットPGW80のトラヒックを管理する装置である。例えば、トラヒック収集装置110は、ソースPGW70及びターゲットPGW80において送受信されているデータ量、もしくは、ソースPGW70及びターゲットPGW80におけるパケットロス数等を管理してもよい。 The traffic collection device 110 is a device that manages the traffic of the source PGW 70 and the target PGW 80. For example, the traffic collection device 110 may manage the amount of data transmitted / received in the source PGW 70 and the target PGW 80, or the number of packet losses in the source PGW 70 and the target PGW 80.
 インターネット120は、eNB50、SGW60、ソースPGW70、ターゲットPGW80、SCS90、PCRF100及びトラヒック収集装置110によって構成されるモバイルネットワークとは異なる外部ネットワークである。インターネット120に、複数のアプリケーションサーバ等が配置されていてもよい。 The Internet 120 is an external network different from the mobile network configured by the eNB 50, the SGW 60, the source PGW 70, the target PGW 80, the SCS 90, the PCRF 100, and the traffic collection device 110. A plurality of application servers and the like may be arranged on the Internet 120.
 続いて、図3を用いて本発明の実施の形態2にかかるソースPGW70の構成例について説明する。図3のソースPGW70は、図1のソースPGW10に切替指示部71が追加された構成である。ソースPGW70において、図1のソースPGW10と同様の構成については、詳細な説明を省略する。 Subsequently, a configuration example of the source PGW 70 according to the second embodiment of the present invention will be described with reference to FIG. The source PGW 70 in FIG. 3 has a configuration in which a switching instruction unit 71 is added to the source PGW 10 in FIG. In the source PGW 70, detailed description of the same configuration as that of the source PGW 10 in FIG. 1 is omitted.
 切替指示部71は、SGW60へ、ソースPGW70に送信すべきUE40に関するデータを、ターゲットPGW80へ送信することを指示するメッセージを通信部13を介して送信する。SGW60とターゲットPGW80との間には、ベアラが確立しているとする。 The switching instruction unit 71 transmits, via the communication unit 13, a message instructing the SGW 60 to transmit data related to the UE 40 to be transmitted to the source PGW 70 to the target PGW 80. Assume that a bearer is established between the SGW 60 and the target PGW 80.
 さらに、切替指示部71は、SCS90へ、ソースPGW70に送信すべきUE40に関するデータを、ターゲットPGW80へ送信することを指示するメッセージを通信部13を介して送信する。 Furthermore, the switching instruction unit 71 transmits a message for instructing the SCS 90 to transmit data related to the UE 40 to be transmitted to the source PGW 70 to the target PGW 80 via the communication unit 13.
 切替指示部71が、SGW60及びSCS90へ、ソースPGW70へ送信すべきデータをターゲットPGW80へ送信することを指示するメッセージを送信することによって、UE40に関するデータの転送処理をターゲットPGW80へ移行することができる。これによって、ソースPGW70は、UE40に関するデータの転送処理を行うことがなくなるため、処理負荷を低減させることができる。また、通信システム全体としてみると、ソースPGW70及びターゲットPGW80における処理負荷を平準化することができる。なお、本図においては、PCRF100、トラヒック収集装置110との間のインタフェースについては、図示を省略する。 The switching instructing unit 71 can transfer the data transfer processing related to the UE 40 to the target PGW 80 by transmitting a message instructing the SGW 60 and the SCS 90 to transmit data to be transmitted to the source PGW 70 to the target PGW 80. . As a result, the source PGW 70 does not perform the data transfer process on the UE 40, and thus the processing load can be reduced. Further, when viewed as the entire communication system, the processing loads on the source PGW 70 and the target PGW 80 can be leveled. In this figure, the interface between the PCRF 100 and the traffic collection device 110 is not shown.
 続いて、図4を用いて本発明の実施の形態2にかかるSGW60の構成例について説明する。SGW60は、通信部61及び制御部62を有している。通信部61は、ソースPGW70から、ターゲットPGW80との間において、UE40の通信に関するベアラを確立することを指示するメッセージを受信する。さらに、通信部61は、ソースPGW70から、ソースPGW70に送信すべきUE40に関するデータを、ターゲットPGW80へ送信することを指示するメッセージを受信する。また、通信部61は、ソースPGW70及びターゲットPGW80との間において、ユーザデータを送受信する。 Subsequently, a configuration example of the SGW 60 according to the second embodiment of the present invention will be described with reference to FIG. The SGW 60 includes a communication unit 61 and a control unit 62. The communication unit 61 receives from the source PGW 70 a message instructing to establish a bearer related to the communication of the UE 40 with the target PGW 80. Further, the communication unit 61 receives from the source PGW 70 a message instructing transmission of data related to the UE 40 to be transmitted to the source PGW 70 to the target PGW 80. The communication unit 61 transmits / receives user data to / from the source PGW 70 and the target PGW 80.
 制御部62は、通信部61を介して、ターゲットPGW80との間において、UE40に関するベアラを確立することを指示するメッセージを受信すると、ターゲットPGW80との間においてベアラを確立する処理を実行する。さらに、制御部62は、ソースPGW70に送信すべきUE40に関するデータを、ターゲットPGW80へ送信することを指示するメッセージを受信すると、UE40から送信されたデータの宛先をターゲットPGW80とする。 When the control unit 62 receives a message instructing to establish a bearer regarding the UE 40 with the target PGW 80 via the communication unit 61, the control unit 62 executes a process of establishing a bearer with the target PGW 80. Furthermore, when the control unit 62 receives a message instructing transmission of data related to the UE 40 to be transmitted to the source PGW 70 to the target PGW 80, the control unit 62 sets the destination of the data transmitted from the UE 40 as the target PGW 80.
 また、本図においては、PCRF100及びeNB50との間のインタフェースについては、図示を省略する。 Further, in this figure, the illustration of the interface between the PCRF 100 and the eNB 50 is omitted.
 続いて、図5を用いて本発明の実施の形態2にかかる変更先PGWを決定する処理の流れについて説明する。はじめに、ソースPGW70は、UE40の通信状態の変化を検出する(S11)。例えば、ソースPGW70は、UE40に関するデータの転送量が、予め定められた閾値を超えた場合に、UE40の通信状態が変化したと判定してもよい。データの転送量は、ソースPGW70がUE40に関するデータを送信及び受信したデータ量であってもよい。ソースPGW70は、例えば、DPI機能を用いて、UE40の通信状態の変化を検出してもよい。DPI機能は、ユーザパケットを分析する機能である。 Subsequently, a flow of processing for determining a change destination PGW according to the second embodiment of the present invention will be described with reference to FIG. First, the source PGW 70 detects a change in the communication state of the UE 40 (S11). For example, the source PGW 70 may determine that the communication state of the UE 40 has changed when the transfer amount of data related to the UE 40 exceeds a predetermined threshold. The data transfer amount may be a data amount at which the source PGW 70 transmits and receives data related to the UE 40. The source PGW 70 may detect a change in the communication state of the UE 40 using, for example, a DPI function. The DPI function is a function for analyzing a user packet.
 また、ソースPGW70は、UE毎のデータ転送量とともに装置全体のデータ転送量を考慮して通信状態の変化を検出してもよい。例えば、ソースPGW70は、あるUE40のデータ転送量が、閾値を超えた場合であっても、自装置が転送することができるデータ量を超えていない場合、通信状態が変化していないと判定してもよい。言い換えると、UE40個々のデータ転送量が予め定められた閾値を超え、装置全体のデータ転送量も予め定められた閾値を超えた場合に、通信状態が変化したと判定してもよい。 Further, the source PGW 70 may detect a change in the communication state in consideration of the data transfer amount of the entire apparatus together with the data transfer amount for each UE. For example, the source PGW 70 determines that the communication state has not changed when the data transfer amount of a certain UE 40 exceeds the threshold but does not exceed the data amount that can be transferred by the own device. May be. In other words, it may be determined that the communication state has changed when the data transfer amount of each UE 40 exceeds a predetermined threshold value and the data transfer amount of the entire apparatus also exceeds the predetermined threshold value.
 次に、ソースPGW70は、トラヒック収集装置110へ、通信リソース、つまり、装置全体としてのデータ転送量に余裕があるPGWを問い合わせるために、PGW変更通知メッセージを送信する(S12)。ソースPGW70は、ターゲットPGWへ移管するデータ転送量等に関する情報をPGW変更通知メッセージに設定してもよい。トラヒック収集装置110は、例えば、オペレーション装置等であってもよく、各PGWから、リアルタイムもしくは定期的にデータの転送量に関する情報を取得しているとする。 Next, the source PGW 70 transmits a PGW change notification message to the traffic collection device 110 in order to inquire about communication resources, that is, a PGW having a sufficient data transfer amount as the entire device (S12). The source PGW 70 may set information on the data transfer amount to be transferred to the target PGW in the PGW change notification message. The traffic collection device 110 may be, for example, an operation device or the like, and is assumed to acquire information on the data transfer amount from each PGW in real time or periodically.
 トラヒック収集装置110は、PGW変更通知メッセージを受信すると、通信リソースに余裕があるPGWを抽出する。例えば、トラヒック収集装置110は、データ転送量が、予め定められた閾値に達していないPGWをターゲットPGWとして選択してもよい。もしくは、トラヒック収集装置110は、ソースPGW70が移管するデータ転送量を追加しても、装置全体のデータ転送量として予め定められた閾値に達しないPGWをターゲットPGWとして選択してもよい。 When the traffic collection device 110 receives the PGW change notification message, the traffic collection device 110 extracts PGWs having sufficient communication resources. For example, the traffic collection device 110 may select a PGW whose data transfer amount does not reach a predetermined threshold as the target PGW. Alternatively, the traffic collection device 110 may select, as the target PGW, a PGW that does not reach a predetermined threshold as the data transfer amount of the entire device even if the data transfer amount transferred by the source PGW 70 is added.
 トラヒック収集装置110は、ターゲットPGWを選択すると、選択したターゲットPGWをソースPGW70へ通知するために、ターゲットPGW通知メッセージをソースPGW70へ送信する(S13)。 When selecting the target PGW, the traffic collection device 110 transmits a target PGW notification message to the source PGW 70 in order to notify the source PGW 70 of the selected target PGW (S13).
 続いて、図6を用いて本発明の実施の形態2にかかるSGW60とターゲットPGW80との間のベアラ確立処理の流れについて説明する。ベアラ確立処理は、セッション確立処理と言い換えられてもよい。 Subsequently, a flow of bearer establishment processing between the SGW 60 and the target PGW 80 according to the second embodiment of the present invention will be described with reference to FIG. The bearer establishment process may be rephrased as a session establishment process.
 はじめに、ソースPGW70は、図5のステップS13において、自装置の代わりにUE40に関するデータ転送処理を実行するターゲットPGW80に関する情報を受信すると、SGW60へ、PGW Relocation Requestメッセージを送信する(S21)。ソースPGW70は、ターゲットPGW80の識別情報及びアドレス情報等をPGW Relocation Requestメッセージに設定する。 First, when the source PGW 70 receives information on the target PGW 80 that executes data transfer processing on the UE 40 instead of the own device in step S13 of FIG. 5, the source PGW 70 transmits a PGWPGRelocation Request message to the SGW 60 (S21). The source PGW 70 sets identification information, address information, and the like of the target PGW 80 in the PGW Relocation Request message.
 次に、SGW60は、PGW Relocation Requestメッセージに設定されたターゲットPGW80に関する情報に従い、ターゲットPGW80との間にUE40に関するデータ伝送に用いるベアラを確立する。ここで、SGW60とターゲットPGW80との間のインタフェースは、3GPPにおいてS5インタフェースとして定められている。SGW60は、ターゲットPGW80との間にS5インタフェースを介したS5セッションを確立するために、ターゲットPGW80へ、Create Session Requestメッセージを送信する(S22)。 Next, the SGW 60 establishes a bearer used for data transmission related to the UE 40 with the target PGW 80 according to the information related to the target PGW 80 set in the PGWPGRelocation Request message. Here, the interface between the SGW 60 and the target PGW 80 is defined as an S5 interface in 3GPP. The SGW 60 transmits a Create Session Request message to the target PGW 80 in order to establish an S5 session via the S5 interface with the target PGW 80 (S22).
 次に、ターゲットPGW80は、UE40に関するデータ転送を実行するPGWが、ソースPGW70からターゲットPGW80へ変更されたことを通知するために、PCRF100へCredit Control Requestメッセージを送信する(S23)。次に、PCRF100は、Credit Control Requestメッセージへの応答として、Credit Control AnswerメッセージをターゲットPGW80へ送信する(S24)。 Next, the target PGW 80 transmits a Credit Control Request message to the PCRF 100 in order to notify that the PGW that executes data transfer related to the UE 40 has been changed from the source PGW 70 to the target PGW 80 (S23). Next, the PCRF 100 transmits a Credit Control Answer message to the target PGW 80 as a response to the Credit Control Request message (S24).
 次に、ターゲットPGW80は、Create Session Requestメッセージへの応答として、Create Session ResponseメッセージをSGW60へ送信する(S25)。ターゲットPGW80が、Create Session ResponseメッセージをSGW60へ送信することによって、SGW60とターゲットPGW80との間のベアラが確立する。次に、SGW60は、PGW Relocation Requestメッセージへの応答としてPGW Relocation ResponseメッセージをソースPGW70へ送信する(S26)。 Next, the target PGW 80 transmits a Create Session Response message to the SGW 60 as a response to the Create Session Request message (S25). The target PGW 80 transmits a Create Session Response message to the SGW 60, thereby establishing a bearer between the SGW 60 and the target PGW 80. Next, the SGW 60 transmits a PGW Relocation Response message to the source PGW 70 as a response to the PGW Relocation Request message (S26).
 続いて、図7を用いて本発明の実施の形態2にかかるソースPGW70とターゲットPGW80との間のベアラ確立処理の流れについて説明する。ソースPGW70とターゲットPGW80との間に確立したセッションもしくはベアラは、Indirect tunnelと称されてもよい。 Subsequently, a flow of bearer establishment processing between the source PGW 70 and the target PGW 80 according to the second embodiment of the present invention will be described with reference to FIG. A session or bearer established between the source PGW 70 and the target PGW 80 may be referred to as Indirect tunnel.
 Indirect tunnelは、UE40に関するデータ転送処理を、ソースPGW70からターゲットPGW80へ切り替える過程において、ソースPGW70とターゲットPGW80との間においてデータ転送を行うために用いられる。 The Indirect tunnel is used to perform data transfer between the source PGW 70 and the target PGW 80 in the process of switching the data transfer process related to the UE 40 from the source PGW 70 to the target PGW 80.
 はじめに、ソースPGW70は、ターゲットPGW80へCreate Indirect Data Tunnel Requestメッセージを送信する(S31)。ソースPGW70は、Indirect tunnelを用いてデータ転送を行うUE40に関する識別情報をCreate Indirect Data Tunnel Requestメッセージに設定する。 First, the source PGW 70 transmits a Create Indirect Data Tunnel Request message to the target PGW 80 (S31). The source PGW 70 sets identification information regarding the UE 40 that performs data transfer using Indirect tunnel in a Create Indirect Data Tunnel Request message.
 次に、ターゲットPGW80は、Create Indirect Data Tunnel Requestメッセージへの応答として、Create Indirect Data Tunnel ResponseメッセージをソースPGW70へ送信する(S32)。ターゲットPGW80が、ソースPGW70へCreate Indirect Data Tunnel Responseメッセージを送信することによって、ソースPGW70とターゲットPGW80との間にIndirect tunnelが確立する。 Next, the target PGW 80 transmits a Create Indirect Data Tunnel Response message to the source PGW 70 as a response to the Create Indirect Data Tunnel Request message (S32). The target PGW 80 transmits a Create Indirect Data Tunnel Response message to the source PGW 70, whereby an Indirect tunnel is established between the source PGW 70 and the target PGW 80.
 続いて、図8を用いて本発明の実施の形態2にかかる上りデータのパス切替処理の流れについて説明する。パス切替処理は、データの転送経路を切り替える処理である。上りデータは、UE40から、インターネット上のサーバ装置等へ送信されるデータである。下りデータは、インターネット上のサーバ装置等からUE40へ送信されるデータである。 Subsequently, the flow of uplink data path switching processing according to the second embodiment of the present invention will be described with reference to FIG. The path switching process is a process of switching the data transfer path. The uplink data is data transmitted from the UE 40 to a server device on the Internet. The downlink data is data transmitted to the UE 40 from a server device on the Internet.
 はじめに、ソースPGW70は、SGW60へ、UE40に関する上りデータをターゲットPGW80へ送信することを指示するためにPath Switch Requestメッセージを送信する(S41)。次に、SGW60は、Path Switch Requestメッセージへの応答として、Path Switch ResponseメッセージをソースPGW70へ送信する(S42)。ステップS42以降、SGW60は、UE40に関する上りデータをターゲットPGW80へ送信する。また、ターゲットPGW80は、SGW60から送信された上りデータを、Indirect tunnelを用いてソースPGW70へ送信する。なぜなら、この段階においては、SCS90は、UE40に関するデータをターゲットPGW80において処理することを通知されていないからである。 First, the source PGW 70 transmits a Path-Switch-Request message to instruct the SGW 60 to transmit uplink data related to the UE 40 to the target PGW 80 (S41). Next, the SGW 60 transmits a Path Switch Response message to the source PGW 70 as a response to the Path Switch Request message (S42). After step S42, the SGW 60 transmits uplink data related to the UE 40 to the target PGW 80. Further, the target PGW 80 transmits the uplink data transmitted from the SGW 60 to the source PGW 70 using Indirect / tunnel. This is because, at this stage, the SCS 90 has not been notified to process data related to the UE 40 in the target PGW 80.
 ここで、図9を用いて、上りデータ及び下りデータの転送経路について説明する。インターネット120のサーバ装置等からUE40へ送信される下りデータについては、パス切替処理は実行されていない。そのため、下りデータは、SCS90、ソースPGW70、SGW60及びeNB50を介してUE40へ送信される。 Here, the transfer path of the uplink data and the downlink data will be described with reference to FIG. For downlink data transmitted from the server device or the like of the Internet 120 to the UE 40, the path switching process is not executed. Therefore, the downlink data is transmitted to the UE 40 via the SCS 90, the source PGW 70, the SGW 60, and the eNB 50.
 UE40からインターネット120上のサーバ装置等へ送信される上りデータについては、ソースPGW70からターゲットPGW80へ、パス切替処理が実行されている。そのため、上りデータは、eNB50、SGW60、ターゲットPGW80、ソースPGW70及びSCS90を介してインターネット120へ送信される。 For uplink data transmitted from the UE 40 to a server device or the like on the Internet 120, a path switching process is executed from the source PGW 70 to the target PGW 80. Therefore, the uplink data is transmitted to the Internet 120 via the eNB 50, the SGW 60, the target PGW 80, the source PGW 70, and the SCS 90.
 図9から明らかなように、図8の上りデータのパス切替処理を実施すると、上りデータは、下りデータと異なる経路上を伝送される。 As is clear from FIG. 9, when the uplink data path switching process of FIG. 8 is performed, the uplink data is transmitted on a different path from the downlink data.
 続いて、図10を用いて本発明の実施の形態2にかかる下りデータのパス切替処理の流れについて説明する。はじめに、ソースPGW70は、ターゲットPGW80へ、UE40に関する下りデータをSGW60へ送信することを指示するためにPath Switch Requestメッセージを送信する(S51)。次に、ターゲットPGW80は、SCS90へ、UE40を宛先とする下りデータの送信先をソースPGW70からターゲットPGW80へ変更することを指示する送信先変更通知メッセージをSCS90へ送信する(S52)。次に、SCS90は、送信先変更通知メッセージへの応答として送信先変更通知応答メッセージをターゲットPGW80へ送信する(S53)。 Subsequently, a flow of downlink data path switching processing according to the second exemplary embodiment of the present invention will be described with reference to FIG. First, the source PGW 70 transmits a Path-Switch-Request message to instruct the target PGW 80 to transmit downlink data related to the UE 40 to the SGW 60 (S51). Next, the target PGW 80 transmits to the SCS 90 a transmission destination change notification message instructing to change the transmission destination of the downlink data destined for the UE 40 from the source PGW 70 to the target PGW 80 (S52). Next, the SCS 90 transmits a transmission destination change notification response message to the target PGW 80 as a response to the transmission destination change notification message (S53).
 SCS90は、送信先変更通知応答メッセージをターゲットPGW80へ送信することによって、UE40を宛先とする下りデータの転送先をソースPGW70からターゲットPGW80へ切り替える。また、SCS90は、送信先変更通知メッセージを受信することによって、以降の上りデータについても、ターゲットPGW80から送信されてくることを認識する。 The SCS 90 switches the transmission destination of the downlink data destined for the UE 40 from the source PGW 70 to the target PGW 80 by transmitting a transmission destination change notification response message to the target PGW 80. Further, the SCS 90 recognizes that subsequent uplink data is also transmitted from the target PGW 80 by receiving the transmission destination change notification message.
 次に、ターゲットPGW80は、Path Switch Requestメッセージへの応答としてPath Switch ResponseメッセージをソースPGW70へ送信する(S54)。ここで、ターゲットPGW80は、Path Switch ResponseメッセージをソースPGW70へ送信することによって、以降の処理において、SCS90から送信されたUE40に関する下りデータを、ソースPGW70との間のIndirect tunnelを用いず、SGW60へ送信する。また、ターゲットPGW80は、UE40に関する上りデータを、ソースPGW70との間のIndirect tunnelを用いず、SCS90へ送信するように切り替える。 Next, the target PGW 80 transmits a Path Switch Response message to the source PGW 70 as a response to the Path Switch Request message (S54). Here, the target PGW 80 transmits a Path Switch Response message to the source PGW 70, and in subsequent processing, the downlink data related to the UE 40 transmitted from the SCS 90 is transmitted to the SGW 60 without using the Indirect tunnel with the source PGW 70. Send. Further, the target PGW 80 switches the uplink data related to the UE 40 to be transmitted to the SCS 90 without using the Indirect tunnel with the source PGW 70.
 ここで、図11を用いて、上りデータ及び下りデータの転送経路について説明する。インターネット120のサーバ装置等からUE40へ送信される下りデータについて、パス切替処理が実行されている。そのため、下りデータは、SCS90、ターゲットPGW80、SGW60及びeNB50を介してUE40へ送信される。 Here, the transfer path of the uplink data and the downlink data will be described with reference to FIG. A path switching process is performed on downlink data transmitted from the server device or the like of the Internet 120 to the UE 40. Therefore, the downlink data is transmitted to the UE 40 via the SCS 90, the target PGW 80, the SGW 60, and the eNB 50.
 また、上りデータについても、ターゲットPGW80は、Indirect tunnelを用いずにSCS90へ送信する。そのため、上りデータは、eNB50、SGW60、ターゲットPGW80及びSCS90を介してインターネット120へ送信される。 Also, the upstream PGW 80 transmits the uplink data to the SCS 90 without using Indirect tunnel. Therefore, uplink data is transmitted to the Internet 120 via the eNB 50, the SGW 60, the target PGW 80, and the SCS 90.
 図11から明らかなように、図10の下りデータのパス切替処理を実施すると、上りデータと下りデータとは、同じ経路上を伝送される。 As is clear from FIG. 11, when the downlink data path switching process of FIG. 10 is performed, the uplink data and downlink data are transmitted on the same route.
 続いて、図12を用いて本発明の実施の形態2にかかる不要なベアラの削除処理の流れについて説明する。はじめに、ソースPGW70は、SGW60との間のベアラを削除するために、Delete Bearer RequestメッセージをSGW60へ送信する(S61)。次に、SGW60は、Delete Bearer Requestメッセージへの応答としてDelete Bearer ResponseメッセージをソースPGW70へ送信する(S62)。SGW60がソースPGW70へDelete Bearer Responseメッセージを送信することによって、SGW60とソースPGW70との間のベアラが削除される。 Subsequently, a flow of unnecessary bearer deletion processing according to the second exemplary embodiment of the present invention will be described with reference to FIG. First, the source PGW 70 transmits a Delete Bearer Request message to the SGW 60 in order to delete a bearer with the SGW 60 (S61). Next, the SGW 60 transmits a Delete Bearer Response message to the source PGW 70 as a response to the Delete Bearer Request message (S62). When the SGW 60 transmits a Delete Bearer Response message to the source PGW 70, the bearer between the SGW 60 and the source PGW 70 is deleted.
 次に、ソースPGW70は、SGW60との間において、UE40に関するベアラを削除したことをPCRF100へ送信するために、Credit Control RequestメッセージをPCRF100へ送信する(S63)。次に、PCRF100は、Credit Control Requestメッセージへの応答として、Credit Control AnswerメッセージをソースPGW70へ送信する(S64)。 Next, the source PGW 70 transmits a Credit Control Request message to the PCRF 100 in order to transmit to the PCRF 100 that the bearer related to the UE 40 has been deleted with the SGW 60 (S63). Next, the PCRF 100 transmits a Credit Control Answer message to the source PGW 70 as a response to the Credit Control Request message (S64).
 次に、ソースPGW70は、ターゲットPGW80との間のIndirect tunnelを削除するために、Delete Indirect Data Forwarding Tunnel RequestメッセージをターゲットPGW80へ送信する(S65)。次に、ターゲットPGW80は、Delete Indirect Data Forwarding Tunnel Requestメッセージへの応答として、Delete Indirect Data Forwarding Tunnel ResponseメッセージをソースPGW70へ送信する(S66)。ターゲットPGW80が、ソースPGW70へDelete Indirect Data Forwarding Tunnel Responseメッセージを送信することによって、ソースPGW70とターゲットPGW80との間のIndirect tunnelは削除される。 Next, in order to delete the Indirect tunnel with the target PGW 80, the source PGW 70 transmits a Delete Indirect Data ForwardingInTunnel Request message to the target PGW 80 (S65). Next, the target PGW 80 transmits a Delete Indirect Data Forwarding Tunnel Response message to the source PGW 70 as a response to the Delete Indirect Data Forwarding Tunnel Request message (S66). The target PGW 80 transmits a Delete Indirect Data Forwarding Tunnel Response message to the source PGW 70, whereby the Indirect tunnel between the source PGW 70 and the target PGW 80 is deleted.
 以上説明したように、本発明の実施の形態2にかかる通信システムは、ソースPGW70において処理していた、UE40に関する上りデータ及び下りデータを、段階的にターゲットPGW80へ移行することができる。例えば、経路変更にかかわる各装置が、上りデータと下りデータとの経路を同時に変更させた場合に、処理負荷が急激に増加し、経路変更の収束が遅くなることがある。そのため、上りデータと下りデータとを異なるタイミングにて、ターゲットPGW80へ移行させることによって、経路変更の収束を速くすることができる。 As described above, the communication system according to the second embodiment of the present invention can shift the uplink data and downlink data related to the UE 40, which have been processed in the source PGW 70, to the target PGW 80 in a stepwise manner. For example, when each device involved in a path change changes the path of uplink data and downlink data at the same time, the processing load may increase rapidly and the convergence of the path change may be delayed. For this reason, it is possible to speed up the convergence of the route change by shifting the uplink data and the downlink data to the target PGW 80 at different timings.
 また、本発明の実施の形態2にかかる通信システムは、実施の形態1と同様に、UE40においてDetach処理を実施することなく、データ伝送に使用するPGWを変更することができる。そのため、通信中のUEについても、短い切り替え時間によって、データ処理を行うPGWを変更することができる。また、Detach処理を実施しないことによって、UEは、通信を中断することなく、データ処理を行うPGWを変更することができる。 Also, the communication system according to the second exemplary embodiment of the present invention can change the PGW used for data transmission without performing the Detach process in the UE 40 as in the first exemplary embodiment. Therefore, the PGW that performs data processing can also be changed for a UE in communication with a short switching time. Also, by not performing the Detach process, the UE can change the PGW that performs data processing without interrupting communication.
 また、実施の形態2においては、通信システムは、ベアラ単位にPGWを変更することができる。そのため、通信システムは、Multi PDNを実施している場合には、全てのベアラについてPGWを変更することはなく、特定のベアラのPGWのみを変更することができる。例えば、UEが複数のアプリケーションを実行している場合、通信システムは、一部のアプリケーションに関する通信のみPGWを変更することができる。 In the second embodiment, the communication system can change the PGW for each bearer. Therefore, the communication system can change only the PGW of a specific bearer without changing the PGW for all bearers when the Multi PDN is performed. For example, when the UE is executing a plurality of applications, the communication system can change the PGW only for communication related to some applications.
 また、実施の形態2においては、主に無線通信方式としてLTEを用いる例について説明したが、いわゆる3Gと称される無線通信方式もしくは無線LANを用いる場合についても実施の形態2と同様の効果を得ることができる。 Further, in the second embodiment, an example in which LTE is mainly used as a wireless communication method has been described. However, the same effect as that of the second embodiment is also obtained in the case of using a wireless communication method referred to as 3G or a wireless LAN. Obtainable.
 上述の実施の形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、PGW及びSGWにおける処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。 In the above-described embodiment, the present invention has been described as a hardware configuration, but the present invention is not limited to this. The present invention can also realize processing in the PGW and the SGW by causing a CPU (Central Processing Unit) to execute a computer program.
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 In the above example, the program can be stored using various types of non-transitory computer-readable media and supplied to a computer. Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)) are included. The program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2015年3月17日に出願された日本出願特願2015-053603を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-053603 filed on March 17, 2015, the entire disclosure of which is incorporated herein.
 10 ソースPGW
 11 検出部
 12 決定部
 13 通信部
 20 ターゲットPGW
 30 SGW
 40 UE
 50 eNB
 60 SGW
 61 通信部
 62 制御部
 70 ソースPGW
 71 切替指示部
 80 ターゲットPGW
 90 SCS
 100 PCRF
 110 トラヒック収集装置
 120 インターネット
10 Source PGW
11 Detection unit 12 Determination unit 13 Communication unit 20 Target PGW
30 SGW
40 UE
50 eNB
60 SGW
61 Communication unit 62 Control unit 70 Source PGW
71 Switching instruction unit 80 Target PGW
90 SCS
100 PCRF
110 Traffic collector 120 Internet

Claims (12)

  1.  通信中の通信端末に関する通信状態の変化を検出する検出手段と、
     前記検出部において、通信状態の変化が検出された場合、前記通信端末の通信を、自装置に代わって実行するターゲットPGWを決定する決定手段と、
     前記通信端末に関する第1のベアラを前記ターゲットPGWとの間に確立することを指示するメッセージをSGWへ送信する通信手段と、を備えるPGW。
    Detecting means for detecting a change in the communication state relating to the communication terminal in communication;
    In the detection unit, when a change in the communication state is detected, a determination unit that determines a target PGW for executing communication of the communication terminal on behalf of the own device;
    PGW comprising: communication means for transmitting to the SGW a message instructing to establish a first bearer related to the communication terminal with the target PGW.
  2.  前記決定手段は、
     前記ターゲットPGWとの間において前記通信端末に関する第2のベアラを確立する、請求項1に記載のPGW。
    The determining means includes
    The PGW according to claim 1, wherein a second bearer for the communication terminal is established with the target PGW.
  3.  前記SGWに対して、自装置へ送信すべき前記通信端末に関するデータを前記第1のベアラを介して前記ターゲットPGWへ送信することを指示する切替指示部をさらに備える、請求項2に記載のPGW。 The PGW according to claim 2, further comprising a switching instruction unit that instructs the SGW to transmit data related to the communication terminal to be transmitted to the own device to the target PGW via the first bearer. .
  4.  前記切替指示手段は、
     外部ネットワークと通信を行う対向ノード装置へ、自装置へ送信すべき前記通信端末に関するデータを前記ターゲットPGWへ送信することを指示する、請求項3に記載のPGW。
    The switching instruction means includes
    The PGW according to claim 3, wherein the PGW is instructed to transmit to the target PGW data related to the communication terminal to be transmitted to the own node device to an opposite node device that communicates with an external network.
  5.  前記切替指示手段は、
     前記SGW及び前記対向ノード装置へ、自装置へ送信すべき前記通信端末に関するデータの送信先の変更を指示すると、前記第2のベアラを削除する、請求項4に記載のPGW。
    The switching instruction means includes
    The PGW according to claim 4, wherein when the SGW and the opposite node device are instructed to change a transmission destination of data related to the communication terminal to be transmitted to the own device, the PGW according to claim 4 deletes the second bearer.
  6.  前記検出手段は、
     DPI機能を用いて前記通信状態の変化を検出する、もしくは、他の装置から送信された制御信号を用いて前記通信状態の変化を検出する、請求項1乃至5のいずれか1項に記載のPGW。
    The detection means includes
    The change in the communication state is detected using a DPI function, or the change in the communication state is detected using a control signal transmitted from another device. PGW.
  7.  通信中の通信端末に関する通信状態が変化したことによって、ソースPGWを介して通信中の通信端末に関する通信を、前記ソースPGWに代わって実行するターゲットPGWを決定したソースPGWから、前記通信端末に関する第1のベアラを前記ターゲットPGWとの間に確立することを指示するメッセージを受信する通信手段と、
     前記メッセージを受信すると、前記ターゲットPGWとの間に前記第1のベアラを確立するベアラ制御手段と、を備えるSGW。
    Since the communication state relating to the communication terminal being communicated has changed, the communication relating to the communication terminal currently communicating via the source PGW is changed from the source PGW that has determined the target PGW to be executed on behalf of the source PGW to the second Communication means for receiving a message instructing to establish one bearer with the target PGW;
    SGW comprising bearer control means for establishing the first bearer with the target PGW when receiving the message.
  8.  前記通信手段は、
     前記ソースPGWへ送信すべき前記通信端末に関するデータを前記第1のベアラを介して前記ターゲットPGWへ送信することを指示するメッセージを受信すると、前記通信端末に関するデータの送信先を、前記ソースPGWから前記ターゲットPGWへ切り替える、請求項7に記載のSGW。
    The communication means includes
    When receiving a message instructing transmission of data related to the communication terminal to be transmitted to the source PGW to the target PGW via the first bearer, a transmission destination of data related to the communication terminal is sent from the source PGW. The SGW according to claim 7, wherein the SGW is switched to the target PGW.
  9.  通信中の通信端末に関する通信状態の変化を検出し、
     通信状態の変化が検出された場合、前記通信端末の通信を、自装置に代わって実行するターゲットPGWを決定し、
     前記通信端末に関する第1のベアラを前記ターゲットPGWとの間に確立することを指示するメッセージをSGWへ送信する、ベアラ制御方法。
    Detects a change in the communication status related to the communication terminal during communication
    If a change in the communication state is detected, determine a target PGW to execute communication of the communication terminal on behalf of its own device,
    The bearer control method which transmits the message which instruct | indicates to establish the 1st bearer regarding the said communication terminal between the said target PGW to SGW.
  10.  通信中の通信端末に関する通信状態が変化したことによって、ソースPGWを介して通信中の通信端末に関する通信を、前記ソースPGWに代わって実行するターゲットPGWを決定したソースPGWから、前記通信端末に関する第1のベアラを前記ターゲットPGWとの間に確立することを指示するメッセージを受信し、
     前記メッセージを受信すると、前記ターゲットPGWとの間に前記第1のベアラを確立する、ベアラ確立方法。
    Since the communication state relating to the communication terminal being communicated has changed, the communication relating to the communication terminal currently communicating via the source PGW is changed from the source PGW that has determined the target PGW to be executed on behalf of the source PGW to the second Receiving a message instructing to establish one bearer with the target PGW;
    A bearer establishment method for establishing the first bearer with the target PGW when receiving the message.
  11.  通信中の通信端末に関する通信状態の変化を検出し、
     通信状態の変化が検出された場合、前記通信端末の通信を、自装置に代わって実行するターゲットPGWを決定し、
     前記通信端末に関する第1のベアラを前記ターゲットPGWとの間に確立することを指示するメッセージをSGWへ送信する、ことをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
    Detects a change in the communication status related to the communication terminal during communication
    If a change in the communication state is detected, determine a target PGW to execute communication of the communication terminal on behalf of its own device,
    A non-transitory computer-readable medium storing a program for causing a computer to transmit a message instructing to establish a first bearer related to the communication terminal with the target PGW to the SGW.
  12.  通信中の通信端末に関する通信状態が変化したことによって、ソースPGWを介して通信中の通信端末に関する通信を、前記ソースPGWに代わって実行するターゲットPGWを決定したソースPGWから、前記通信端末に関する第1のベアラを前記ターゲットPGWとの間に確立することを指示するメッセージを受信し、
     前記メッセージを受信すると、前記ターゲットPGWとの間に前記第1のベアラを確立することをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
    Since the communication state relating to the communication terminal being communicated has changed, the communication relating to the communication terminal currently communicating via the source PGW is changed from the source PGW that has determined the target PGW to be executed on behalf of the source PGW to the second Receiving a message instructing to establish one bearer with the target PGW;
    A non-transitory computer-readable medium storing a program that, when receiving the message, causes a computer to establish the first bearer with the target PGW.
PCT/JP2016/001491 2015-03-17 2016-03-15 Pgw, sgw, bearer control method, bearer establishment method, and nontemporary computer-readable medium WO2016147662A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-053603 2015-03-17
JP2015053603A JP2016174286A (en) 2015-03-17 2015-03-17 Pgw, sgw, bearer control method, bearer establishment method and program

Publications (1)

Publication Number Publication Date
WO2016147662A1 true WO2016147662A1 (en) 2016-09-22

Family

ID=56918593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001491 WO2016147662A1 (en) 2015-03-17 2016-03-15 Pgw, sgw, bearer control method, bearer establishment method, and nontemporary computer-readable medium

Country Status (2)

Country Link
JP (1) JP2016174286A (en)
WO (1) WO2016147662A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HITACHI ET AL.: "Load re-balancing between PDN- GWs", S 2-100483 , 3GPP, XP050433026 *

Also Published As

Publication number Publication date
JP2016174286A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
US9843966B2 (en) Radio communication system
JP5795809B2 (en) Method and apparatus for supporting backhaul selection
WO2021128931A1 (en) Cross-carrier scheduling method and apparatus, and storage medium
WO2013179542A1 (en) Network system, routing control device, routing control method, and nontemporary computer-readable medium for storing program
WO2011125278A1 (en) Wireless communication system, communication apparatus, method for controlling simultaneous transmissions from a plurality of base stations, and noncontemporary computer readable medium
WO2013014847A1 (en) Wireless communication system, base station, control node, mobile station, method relating to these, and computer readable medium
EP3915213B1 (en) Network nodes and methods supporting multiple connectivity
US20170289942A1 (en) Radio terminal, network apparatus, and method therefor
WO2019064542A1 (en) Communication system, base station device, terminal device, and communication method
Marwat et al. Congestion‐aware handover in LTE Systems for Load Balancing in transport network
US9386614B2 (en) Apparatus and method for optimizing data-path in mobile communication network
KR101893917B1 (en) Method for Transmitting Downlink Packet Data in Core Network with Separation of User Plane and Control Plane
JP6128116B2 (en) Communication terminal, communication method, communication system, and program
JP6561995B2 (en) Control apparatus and method
US9813341B1 (en) Systems and methods for routing data traffic based on network conditions
KR20230091908A (en) Method and Apparatus for Packet Rerouting
JP2014230221A (en) Base station device, handover control method and radio communication system
EP3529954B1 (en) Method and apparatuses for attaching a radio base station to a core network node
JP2015185903A (en) Communication device, communication system, and communication method
US20150245274A1 (en) Network Node and a Method for Shortcutting a Communication Path Between User Equipments
WO2016147662A1 (en) Pgw, sgw, bearer control method, bearer establishment method, and nontemporary computer-readable medium
JP2023546399A (en) Routing selection methods, devices and systems
WO2016152072A1 (en) Base station apparatus, communication system, call processing control apparatus, communication method, call processing method, and non-transitory computer readable medium
WO2016165108A1 (en) Method and apparatus for facilitating mobility in a communications network
KR20170013673A (en) Method for controlling packet traffic and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764493

Country of ref document: EP

Kind code of ref document: A1