WO2016147603A1 - Thermionic power generation element and method for manufacturing same - Google Patents

Thermionic power generation element and method for manufacturing same Download PDF

Info

Publication number
WO2016147603A1
WO2016147603A1 PCT/JP2016/001241 JP2016001241W WO2016147603A1 WO 2016147603 A1 WO2016147603 A1 WO 2016147603A1 JP 2016001241 W JP2016001241 W JP 2016001241W WO 2016147603 A1 WO2016147603 A1 WO 2016147603A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitter
metal element
power generation
substrate
Prior art date
Application number
PCT/JP2016/001241
Other languages
French (fr)
Japanese (ja)
Inventor
片岡 光浩
裕治 木村
進 祖父江
直也 森岡
山崎 聡
竹内 大輔
宙光 加藤
一之 渡辺
Original Assignee
株式会社デンソー
国立研究開発法人産業技術総合研究所
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 国立研究開発法人産業技術総合研究所, 学校法人東京理科大学 filed Critical 株式会社デンソー
Publication of WO2016147603A1 publication Critical patent/WO2016147603A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J45/00Discharge tubes functioning as thermionic generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N3/00Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • thermoelectric power generation element that converts thermal energy into electrical energy and a method for manufacturing the same.
  • Patent Document 1 discloses an example of an electron emission device in which a first diamond layer and a second diamond layer are formed on a conductive substrate.
  • P phosphorus
  • N nitrogen
  • thermoelectron emission device disclosed in Patent Document 1 has a problem in that the thermoelectric current is still insufficient for use as a thermoelectric power generation element, and power generation efficiency is low.
  • This disclosure intends to provide a thermionic power generation element with high power generation efficiency.
  • thermoelectric power generating element includes an emitter substrate having electrical conductivity, an n-type diamond semiconductor containing phosphorus as a donor, and a first layer stacked on the emitter substrate;
  • Two or more kinds of specific metal elements M are contained, and have a termination layer formed on the outermost surface of the second layer, and have at least an emitter for generating thermoelectrons and a collector substrate having electrical conductivity.
  • a collector which is disposed through a gap so as to face the emitter and collects the thermoelectrons.
  • the thermoelectron power generation device includes the first layer, the second layer having the specific thickness, and the termination layer formed on the outermost surface of the second layer on the emitter substrate. Has an emitter. In the emitter, it is considered that the influence of the second layer having a relatively high resistivity is reduced by reducing the thickness of the second layer to 40 nm or less. As a result, the internal resistance of the emitter in the thickness direction can be reduced.
  • the specific metal element M is present on the outermost surface of the second layer. Thereby, the work function of the second layer can be greatly reduced.
  • the emitter can reduce the internal resistance and work function by having the specific configuration.
  • the thermoelectron power generation element can significantly increase the thermoelectron current generated from the emitter as compared with the prior art, and can further improve the power generation efficiency.
  • thermoelectric generator In the method for manufacturing a thermoelectric generator according to the second aspect of the present disclosure, a first layer made of an n-type diamond semiconductor containing phosphorus as a donor is formed on an emitter substrate having electrical conductivity, A second layer made of an n-type diamond semiconductor containing nitrogen as a donor is formed on the first layer, and then one or two selected from the group consisting of an alkali metal element and Mg on the outermost surface of the second layer A termination layer is formed by adsorbing the specific metal element M described above, and an emitter having the emitter substrate, the first layer, the second layer, and the termination layer is manufactured, and a collector substrate having electrical conductivity. Is prepared separately from the emitter, and the emitter and the collector are opposed to each other with a gap therebetween.
  • the thermionic power generation element can be easily manufactured.
  • FIG. 1 is an explanatory diagram of a thermionic power generation element in Example 1.
  • FIG. 2 is a partially enlarged sectional view showing an example of a termination layer in Example 1.
  • FIG. 3 is an explanatory diagram of the energy band of the emitter in Example 1.
  • FIG. 4 is an explanatory diagram of an energy band when only the second layer is stacked on the emitter substrate.
  • FIG. 5 is an explanatory diagram of an energy band when only the first layer is stacked on the emitter substrate.
  • FIG. 6 is a partially enlarged cross-sectional view showing an example of a termination layer in which a LiO group is configured in Example 3
  • FIG. 7 is a graph showing the thermionic current magnitude of a sample prepared by changing the thickness of the second layer in the reference example.
  • the first layer of the emitter is preferably composed of an n-type diamond semiconductor having a P dopant concentration of 1 ⁇ 10 19 cm ⁇ 3 or more.
  • the internal resistance in the thickness direction of the first layer can be sufficiently reduced, and the thermionic current can be further increased.
  • the higher the dopant concentration of P the smaller the internal resistance.
  • the dopant concentration exceeds 1 ⁇ 10 21 cm ⁇ 3 , it is difficult to obtain an effect of reducing the internal resistance commensurate with the doping amount.
  • the second layer is preferably composed of an n-type diamond semiconductor having a dopant concentration of N of 1 ⁇ 10 20 cm ⁇ 3 or more.
  • the internal resistance in the thickness direction of the second layer can be sufficiently reduced, and the thermionic current can be further increased.
  • the higher the dopant concentration of N the lower the internal resistance.
  • the dopant concentration exceeds 1 ⁇ 10 21 cm ⁇ 3 , it is difficult to obtain an effect commensurate with the amount of doping.
  • the film thickness of the second layer is 40 nm or less as described above.
  • the thickness of the second layer exceeds 40 nm, it is difficult to increase the thermionic current.
  • the thickness of the second layer is excessively thin, the second layer is difficult to be formed uniformly, and the first layer may be exposed on the surface of the emitter. In this case, the effect of laminating the second layer cannot be obtained, and the power generation efficiency may be reduced. Therefore, the thickness of the second layer is preferably 1 nm or more and 40 nm or less.
  • a termination layer containing one or more specific metal elements M selected from the group consisting of alkali metal elements and Mg is formed on the outermost surface of the second layer.
  • the specific metal element M may be directly bonded to the outermost surface of the n-type diamond semiconductor constituting the second layer. Good. That is, the n-type diamond semiconductor constituting the second layer may be terminated by the specific metal element M present in the termination layer.
  • the termination layer is formed by, for example, sequentially forming the first layer and the second layer by a method such as microwave plasma CVD (chemical vapor deposition), and then bonding hydrogen to the outermost surface by a method such as heating in a vacuum.
  • a method such as microwave plasma CVD (chemical vapor deposition)
  • bonding hydrogen to the outermost surface by a method such as heating in a vacuum.
  • adsorbing the specific metal element M continuously continuously.
  • “continuously” mentioned above means that after desorbing hydrogen bonded to the outermost surface of the second layer, the specific metal element M is adsorbed without exposing the outermost surface to the atmosphere.
  • the termination layer may contain specific metal elements M and O.
  • the specific metal elements M and O present in the termination layer constitute an MO group, and the n-type diamond semiconductor constituting the second layer is terminated by the MO group. preferable.
  • the termination layer containing the MO group is subjected to surface oxidation treatment to terminate the outermost surface of the second layer with oxygen, and then the second layer. It can be formed by adsorbing the specific metal element M on the outermost surface of the layer.
  • surface oxidation treatment for example, an ozone oxidation treatment that oxidizes the outermost surface with ozone can be employed.
  • the alkali metal element contained in the termination layer for example, Li (lithium), Na (sodium), K (potassium), or Cs (cesium) can be employed.
  • the n-type diamond semiconductor constituting the second layer is terminated with the alkali metal element, the work function can be further reduced by using Na as the alkali metal element.
  • the amount of the specific metal element M contained in the termination layer is preferably an amount corresponding to 0.2 molecular layer or more and 10 molecular layer or less. In this case, the termination layer can be reliably formed and the thermionic emission characteristics of the emitter can be improved.
  • the amount of the specific metal element M contained in the termination layer is less than 0.2 molecular layer, the effect of reducing the work function may be insufficient.
  • the amount of the specific metal element M exceeds 10 molecular layers, the specific metal element M contained in the termination layer may be excessive.
  • a film of the specific metal element M is formed on the surface of the emitter, which may hinder the emission of thermoelectrons in a relatively low temperature range.
  • the amount of the specific metal element M is preferably an amount corresponding to 0.2 to 10 molecular layers.
  • the amount of the specific metal element M contained in the termination layer is more preferably an amount corresponding to 0.2 molecular layer or more and 1 molecular layer or less.
  • the stability of the specific metal element M in the termination layer is improved, and the specific metal element M is less likely to be detached from the termination layer when heated to a high temperature.
  • the work function of the emitter can be effectively reduced.
  • the specific metal element M or the MO group is easily bonded directly to the resurface of the second layer by reducing the amount of the specific metal element M to one molecular layer or less.
  • the specific metal element M is adsorbed. This is because the surface properties can be effectively changed as the energy increases.
  • thermoelectric power generation element in which the outermost surface of the diamond layer is terminated with hydrogen, it has been confirmed that when the diamond layer is heated to 700 ° C. or higher, hydrogen begins to desorb from the outermost surface. Therefore, it is difficult to use the conventional thermoelectric power generation element at a high temperature of, for example, 700 ° C. or more, and there is a limit to improving the power generation efficiency. Further, the conventional thermoelectron power generation device has a problem that the thermoelectron emission characteristics gradually deteriorate when used over a long period of time.
  • thermoelectric power generation element can suppress detachment of the specific metal element M from the termination layer by setting the amount of the specific metal element M in the specific range.
  • the thermoelectron power generation element has excellent thermoelectron emission characteristics even at a higher temperature than conventional thermoelectron power generation elements, and can maintain excellent thermoelectron emission characteristics over a long period of time.
  • the emitter and collector preferably have an internal resistance in the thickness direction of 1 ⁇ cm 2 or less. In this case, it is possible to reduce the voltage drop when the current derived from the thermoelectrons passes through the emitter and collector, and to sufficiently reduce the loss derived therefrom. As a result, the power generation efficiency of the thermionic power generation element can be further improved.
  • the emitter substrate is any one of Si (silicon), Ti (titanium), Mo (molybdenum), Ir (iridium), Ta (tantalum), W (tungsten), Ru (ruthenium), Cr (chromium), or Pt (platinum). It is preferable that it is comprised.
  • An emitter substrate made of these materials is likely to generate diamond nuclei when the first layer is formed.
  • the diamond semiconductor produced on the emitter substrate made of these materials is difficult to peel from the emitter substrate in the temperature region where the diamond semiconductor is grown. Therefore, in this case, the first layer made of an n-type diamond semiconductor with few defects and good film quality can be produced. As a result, the internal resistance of the emitter in the thickness direction can be further reduced, and the power generation efficiency can be further improved.
  • Si has few impurities, crystal defects, and the like, and a high-quality material having a large area can be easily obtained. Therefore, the manufacturing cost of the thermoelectric power generation element can be reduced more easily.
  • the emitter may have an interface intermediate layer between the emitter substrate and the first layer.
  • the interface intermediate layer the sum of the resistance in the thickness direction, the interface resistance between the emitter substrate and the interface resistance between the first layer is larger than the interface resistance between the emitter substrate and the first layer. It is preferable to be configured to be small. In this case, the internal resistance of the emitter in the thickness direction can be further reduced. As a result, the power generation efficiency of the thermionic power generation element can be further improved.
  • thermoelectric generator 1 includes an emitter 2 that generates thermoelectrons, and a collector 3 that is disposed through a gap d so as to face the emitter 2 and collects thermoelectrons.
  • the emitter 2 is formed on the outermost surface of the emitter layer 21 having electrical conductivity, the first layer 22 laminated on the emitter substrate 21, the second layer 23 laminated on the first layer, and the second layer 23. And a terminated layer 24.
  • the first layer 22 is composed of an n-type diamond semiconductor containing P as a donor.
  • the second layer 23 is made of an n-type diamond semiconductor containing N as a donor and has a thickness of 40 nm or less.
  • the termination layer 24 contains the specific metal element M in an amount corresponding to 0.2 to 10 molecular layers. In this example, an alkali metal element is used as the specific metal element M.
  • the collector 3 has at least a collector substrate 31 having electrical conductivity.
  • a more detailed configuration of the thermoelectric generator 1 will be described together with a manufacturing method.
  • the emitter substrate 21 of this example is made of Mo. As will be described later, the emitter substrate 21 also serves as an electrode for connecting the external load 4.
  • the n-type diamond semiconductor constituting the first layer 22 can be formed by, for example, a microwave plasma CVD method using CH 4 gas as a carbon source, PH 3 gas as a phosphorus source, and H 2 gas as a carrier gas.
  • the film formation conditions of the first layer 22 are, for example, as follows.
  • n-type diamond semiconductor constituting the second layer 23 can be formed by, for example, a microwave plasma CVD method using CH 4 gas as a carbon source, N 2 gas as a nitrogen source, and H 2 gas as a carrier gas. .
  • the film formation of the second layer 23 is normally performed without exposing the first layer 22 to the atmosphere after the film formation of the first layer 22 is completed.
  • the film forming conditions for the second layer 23 are, for example, as follows.
  • the specific metal element M contained in the termination layer 24 of this example is bonded to the outermost surface of the n-type diamond semiconductor constituting the second layer 23. That is, it can be presumed that the n-type diamond semiconductor constituting the second layer 23 is terminated by the specific metal element M present in the termination layer 24 as shown in FIG.
  • the adsorption of the specific metal element M to the second layer 23 can be performed using, for example, an alkali metal dispenser. More specifically, the specific metal element M can be adsorbed on the outermost surface of the second layer 23 by exposing the outermost surface of the second layer 23 to the atmosphere of the specific metal element M supplied from the alkali metal dispenser. .
  • the adsorption amount of the specific metal element M can be measured using XPS (X-ray photoelectron spectroscopy).
  • any one of Li, Na, K, and Cs can be used as an alkali metal element supplied from the dispenser.
  • the collector 3 has a structure in which a 2.5 ⁇ m thick first layer 32 and a 20 nm thick second layer 33 are sequentially laminated on a collector substrate 31 made of Mo.
  • the film formation conditions of the first layer 32 and the second layer 33 are the same as those of the first layer 22 and the second layer 23 in the emitter 2.
  • the size of the gap d between the emitter 2 and the collector 3 is not particularly limited, but in this example, the emitter 2 and the collector 3 are arranged so that the gap d is about 20 to 30 ⁇ m. .
  • the space between the emitter 2 and the collector 3 is depressurized to 1 ⁇ 10 ⁇ 5 Pa or less.
  • thermoelectric generator 1 When operating the thermoelectric generator 1, the emitter substrate 21 and the collector substrate 31 are connected via the external load 4 as shown in FIG. 1, and the emitter 2 is heated in this state. Thereby, thermoelectrons are emitted from the surface of the emitter 2 into the gap d between the emitter 2 and the collector 3 and collected by the collector 3. Then, the electrons collected in the collector 3 flow from the collector substrate 31 to the external circuit (see arrow 101), pass through the external load 4 and return to the emitter 2 (see arrow 102).
  • FIG. 3 is an example of the energy band of the emitter 2.
  • the position in the vertical direction in FIG. 3 corresponds to the energy level, and the higher level indicates the higher energy level.
  • the horizontal direction is divided into three regions 221, 231, and 201 by two vertical lines of a vertical line 200 corresponding to the surface of the emitter and a vertical line 230 corresponding to the boundary between the first layer 22 and the second layer 23. did.
  • the lower end 222 of the conduction band of the first layer 22, the impurity level 223, and the upper end 224 of the valence band are shown.
  • the central region 231 the lower end 232 of the conduction band, the impurity level 233, and the upper end 234 of the valence band of the second layer 23 are shown. Since the thickness of the termination layer 24 is very thin, the boundary between the second layer 23 and the termination layer 24 and the energy band in the termination layer 24 are omitted from FIG. 3 for convenience.
  • FIG. 4 shows an example of the energy band of the emitter 2 in which only the second layer 23 is laminated on the emitter substrate 21.
  • the vertical position in FIG. 4 corresponds to the energy level as in FIG.
  • the energy band of the second layer 23 is shown in the region 231 on the left side of the vertical line 200 corresponding to the surface.
  • FIG. 5 is an example of an energy band of an emitter in which only the first layer 22 is stacked on the emitter substrate 21.
  • the vertical position in FIG. 5 corresponds to the energy level as in FIG.
  • the energy band of the first layer 22 is shown in the left region 221 with respect to the vertical line 200 corresponding to the surface. 4 and 5, the same reference numerals as those in FIG. 3 represent the same components as those in FIG. 3 unless otherwise indicated.
  • the impurity level 223 of the n-type diamond semiconductor constituting the first layer 22 has a conduction band higher than the impurity level 233 of the n-type diamond semiconductor constituting the second layer 23. It is formed at a position close to the lower ends 222 and 232. Therefore, the first layer 22 is more likely to cause hopping conduction and has a lower resistivity than the second layer 23. Therefore, as compared with the case where the first layer 22 is not provided as shown in FIG. 4, the emitter 2 (see FIG. 3) of this example can reduce the internal resistance in the thickness direction.
  • the emitter 2 (see FIG. 3) of this example can reduce the barrier in the vicinity of the surface, and the thermionic current. Is easily increased.
  • the thickness of the second layer 23 is 40 nm or less. Therefore, it is considered that the influence of the second layer 23 having a higher resistivity than the first layer 22 on the internal resistance of the entire emitter 2 can be reduced.
  • the n-type diamond semiconductor constituting the second layer 23 is terminated by the specific metal element M contained in the termination layer 24. Therefore, the electrons 6 thermally excited inside the emitter 2 are easily emitted from the surface of the emitter 2.
  • thermoelectric power generation element 1 of this example can easily increase the thermionic current, and can further improve the power generation efficiency.
  • Example 2 the change of the work function of the emitter 2 when the specific metal element M is changed is evaluated by the first principle calculation. The first principle calculation was performed under the following conditions.
  • the calculation code used for the first principle calculation is the first principle electronic state calculation package ABINIT.
  • the potential function used in the calculation is a norm-preserving pseudopotential.
  • a slab model having a film portion corresponding to the second layer 23 and the termination layer 24 and a vacuum portion arranged on both sides of the film portion in the thickness direction was employed in the calculation region.
  • the film portion has a structure in which ten diamond unit cells are laminated in the thickness direction, and both surface in the thickness direction is a surface and has a surface unit cell having a period of 2 ⁇ 1. Further, the dangling bonds existing on the surface of the film part are terminated by the specific metal element M.
  • Table 1 shows the result of the above calculation performed by changing the element terminating the film part.
  • Table 1 shows the result of the above calculation performed by changing the element terminating the film part.
  • two types of structural models were created for the case where the adsorption amount was equivalent to 0.25 molecular layer and that corresponding to one molecular layer, and the calculation was performed.
  • the structural model in which the dangling bond is terminated with hydrogen and the structural model of the clean surface where the dangling bond is not terminated are also calculated. It was.
  • thermoelectric power generation element 1 The power generation characteristics of the thermoelectric power generation element 1 are, for example, G. W. As described in Sutton “direct energy conversion” (Kogakusha, 1968), it can be expressed as the following formulas (1) and (2).
  • the emitter 2 having the surface of the second layer 23 terminated by the specific metal element M can easily increase the thermionic current as compared with the conventional case, and can further improve the power generation efficiency.
  • Example 3 This example is an example of the thermoelectric generator 1 in which the surface of the second layer 23 is terminated with an MO group.
  • the first layer 22 and the second layer 23 are formed on the emitter substrate 21 under the same conditions as in the first embodiment.
  • a functional group F containing oxygen is formed on the outermost surface of the second layer 23, and the n-type diamond semiconductor constituting the second layer 23 is terminated with oxygen.
  • a method such as UV ozone treatment in which the surface of the second layer 23 is irradiated with ultraviolet light while being exposed to an oxygen atmosphere can be employed.
  • the termination layer 24 b containing Li and O can be formed on the outermost surface of the second layer 23. It is considered that Li contained in the termination layer 24b of this example reacts with the functional group F described above to form a LiO group as shown in FIG. That is, it can be estimated that the n-type diamond semiconductor constituting the second layer 23 is terminated by a LiO group composed of Li and O existing in the termination layer 24b.
  • Example 1 Others are the same as in Example 1.
  • the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.
  • the work function of the emitter 2 when the surface of the second layer 23 was terminated by the LiO group was evaluated by the first principle calculation. Specifically, the work function was calculated by the same method as in Example 2 except that dangling bonds in the structural model of Example 2 were terminated with a LiO group. As a result, the work function of the structural model terminated with the LiO group was 1.78 eV.
  • thermoelectric power generation element 1 in which the surface of the second layer 23 is terminated with a LiO group can further reduce the work function of the emitter 2 and has excellent thermoelectron emission characteristics.
  • This example is a reference example in which the thickness of the second layer 23 is changed to various thicknesses.
  • the n-type diamond semiconductor constituting the first layer 22 of this example and the n-type diamond semiconductor constituting the second layer 23 were formed by microwave plasma CVD using the same conditions as in Example 1.
  • the film thickness of the first layer 22 was 2.5 ⁇ m, and the dopant concentration of P was 1 ⁇ 10 20 cm ⁇ 3 .
  • the dopant concentration of N in the second layer 23 was 3 ⁇ 10 20 cm ⁇ 3 .
  • a hydrogen plasma process is performed on the outermost surface of the second layer 23, and a process of hydrogenating the outermost surface of the second layer 23 is performed. It was. Further, following the hydrogen plasma treatment, a treatment for terminating the outermost surface of the second layer 23 with hydrogen was performed by placing the emitter 2 in a hydrogen atmosphere.
  • sample E1 to E2 four types of samples (samples E1 to E2 and samples C1 to C2) having different film thicknesses of the second layer 23 were produced. Further, in this example, for comparison with the samples E1 to E2 and the samples C1 to C2, the sample C3 in which the emitter substrate 21 and the second layer 23 are stacked, the emitter substrate 21 and the first layer 22 are stacked. Sample C4 was prepared. The thickness of the second layer 23 in the sample C3 is 2.0 ⁇ m, and the dopant concentration of N is 3 ⁇ 10 20 cm ⁇ 3 . The thickness of the first layer 22 in the sample C4 is 2.5 ⁇ m, and the dopant concentration of P is 1 ⁇ 10 20 cm ⁇ 3 .
  • the sample E1 of this example had an internal resistance per unit area in the thickness direction of about 0.7 ⁇ cm 2 .
  • the internal resistance was measured using a two-terminal method. In measuring the internal resistance, a metal electrode was formed by vapor deposition on the outermost surface of the second layer 23 in the sample E1, and this metal electrode and the emitter substrate 21 were used as terminals used for the measurement in the two-terminal method.
  • a sample was attached to the cathode electrode arranged in the vacuum vessel, and the cathode electrode and the emitter substrate 21 were brought into electrical contact.
  • the vacuum container was evacuated until the pressure in the vacuum container became 1 ⁇ 10 ⁇ 5 Pa or less.
  • the sample is heated to 600 ° C., and a voltage is applied between the cathode electrode and the anode electrode disposed facing the cathode electrode through a gap.
  • An electric field having an electric field strength of 0.025 V / ⁇ m was formed. And the thermionic current generated from the sample was measured.
  • the magnitude of the thermionic current obtained by the above-described method is considered to be approximately proportional to the magnitude of the thermionic current when the thermoelectric power generating element 1 is configured with each sample as the emitter 2.
  • Table 2 and FIG. 7 show the results of converting the magnitude of the thermoelectron current generated from each sample into the current density per unit area on the surface of the emitter 2. Note that the vertical axis in FIG. 7 is the current density of the thermoelectron current, and the horizontal axis is the film thickness of the second layer 23.
  • the sample E1 and the sample E2 in which the film thickness of the second layer 23 is 40 nm or less include the sample C1 and the sample C2 having a film thickness exceeding 40 nm, or only the second layer 23.
  • the current density of the thermionic current was significantly increased.
  • the sample C1 in which the second layer 23 having a film thickness of 60 nm was stacked on the first layer 22 showed the same current density as the sample C3 having only the second layer 23. From this, when the film thickness of the second layer 23 is 60 nm or more, the internal resistance of the second layer 23 affects the thermionic emission performance, and the effect of laminating the first layer 22 and the second layer 23 is obtained. Can be guessed. Therefore, in order to obtain the effect of increasing the thermionic current by laminating the first layer 22 and the second layer 23 on the emitter substrate 21, the thickness of the second layer 23 needs to be 40 nm or less. It can be understood that.
  • the surface of the second layer 23 is hydrogen-terminated instead of the formation of the termination layers 24 and 24b containing the specific metal element M.
  • the influence on the size is essentially the same as when the termination layers 24 and 24b including the specific metal element M are formed.
  • a titanium thin film is formed on the emitter substrate 21 by vapor deposition.
  • the first layer 22 and the second layer 23 are formed by a microwave plasma CVD method or the like.
  • the titanium thin film reacts with the carbon contained in the first layer 22 to form an interface intermediate layer made of titanium carbide.
  • the internal resistance of the emitter 2 in the thickness direction can be further reduced as compared with the case where the interface intermediate layer is not formed. Therefore, the thermoelectron current can be further increased and the power generation efficiency can be further improved.

Abstract

Provided is a thermionic power generation element having: an emitter (2) for generating thermions, having an emitter substrate (21) that has electrical conductivity, a first layer (22) laminated onto the emitter substrate and comprising an n-type diamond semiconductor containing phosphorus as a donor, a second layer (23) laminated onto the first layer, comprising an n-type diamond semiconductor containing nitrogen as a donor and having a film thickness of 40 nm or less, and a terminal layer (24, 24b) formed on the outermost surface of the second layer and containing one or more specific metal elements M selected from the group consisting of the alkali metals and Mg; and a collector (3) having at least a collector substrate (31) that has electrical conductivity, the collector (3) being arranged facing the emitter across a gap and collecting the thermions.

Description

熱電子発電素子及びその製造方法THERMOELECTRIC POWER GENERATOR AND MANUFACTURING METHOD THEREOF 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年3月13日に出願された日本出願番号2015-51168号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2015-511168 filed on Mar. 13, 2015, the contents of which are incorporated herein by reference.
 本開示は、熱エネルギーを電気エネルギーに変換する熱電子発電素子及びその製造方法に関する。 The present disclosure relates to a thermoelectric power generation element that converts thermal energy into electrical energy and a method for manufacturing the same.
 熱エネルギーを電気エネルギーに変換する発電素子として、熱電子放出を利用して起電力を発生する熱電子発電素子がある。例えば、特許文献1には、導電性基板上に第1のダイヤモンド層と第2のダイヤモンド層とを形成してなる電子放出装置の例が開示されている。特許文献1の電子放出装置は、第1のダイヤモンド層に添加するドーパントにP(リン)を用い、第2のダイヤモンド層に添加するドーパントにN(窒素)を用いることにより、熱電子電流の大きさを増大させることを図っている。 As a power generation element that converts thermal energy into electric energy, there is a thermoelectron power generation element that generates electromotive force using thermionic emission. For example, Patent Document 1 discloses an example of an electron emission device in which a first diamond layer and a second diamond layer are formed on a conductive substrate. In the electron emission device of Patent Document 1, P (phosphorus) is used as a dopant added to the first diamond layer, and N (nitrogen) is used as a dopant added to the second diamond layer. We are trying to increase this.
 しかしながら、特許文献1の熱電子放出装置は、熱電子発電素子に用いるものとしては熱電子電流の大きさが未だ不十分であり、発電効率が低いという問題がある。 However, the thermoelectron emission device disclosed in Patent Document 1 has a problem in that the thermoelectric current is still insufficient for use as a thermoelectric power generation element, and power generation efficiency is low.
特開2009-238690号公報JP 2009-238690 A
 本開示は、発電効率が高い熱電子発電素子を提供しようとするものである。 This disclosure intends to provide a thermionic power generation element with high power generation efficiency.
 本開示の第一の態様に係る熱電子発電素子は、電気伝導性を有するエミッタ基板と、リンをドナーとして含有するn型ダイヤモンド半導体よりなり、上記エミッタ基板上に積層された第1層と、窒素をドナーとして含有するn型ダイヤモンド半導体よりなり、40nm以下の膜厚を有し、上記第1層上に積層された第2層と、アルカリ金属元素及びMgからなる群より選ばれる1種または2種以上の特定金属元素Mが含まれており、上記第2層の最表面に形成された終端層とを有し、熱電子を発生させるエミッタと、電気伝導性を有するコレクタ基板を少なくとも有し、上記エミッタに対面して間隙を介して配置され、上記熱電子を収集するコレクタと、を有している。 上記熱電子発電素子は、上記エミッタ基板上に、上記第1層と、上記特定の膜厚を有する上記第2層と、上記第2層の最表面に形成された上記終端層とを備えたエミッタを有している。上記エミッタは、上記第2層の膜厚を40nm以下と薄くすることにより、比較的抵抗率の大きい上記第2層の影響が低減されると考えられる。その結果、厚み方向におけるエミッタの内部抵抗を小さくすることができる。 The thermoelectric power generating element according to the first aspect of the present disclosure includes an emitter substrate having electrical conductivity, an n-type diamond semiconductor containing phosphorus as a donor, and a first layer stacked on the emitter substrate; One type selected from the group consisting of an n-type diamond semiconductor containing nitrogen as a donor, having a film thickness of 40 nm or less, laminated on the first layer, and an alkali metal element and Mg Two or more kinds of specific metal elements M are contained, and have a termination layer formed on the outermost surface of the second layer, and have at least an emitter for generating thermoelectrons and a collector substrate having electrical conductivity. And a collector which is disposed through a gap so as to face the emitter and collects the thermoelectrons. The thermoelectron power generation device includes the first layer, the second layer having the specific thickness, and the termination layer formed on the outermost surface of the second layer on the emitter substrate. Has an emitter. In the emitter, it is considered that the influence of the second layer having a relatively high resistivity is reduced by reducing the thickness of the second layer to 40 nm or less. As a result, the internal resistance of the emitter in the thickness direction can be reduced.
 また、上記第2層の最表面には特定金属元素Mが存在している。これにより、上記第2層の仕事関数を大幅に低減することができる。 Further, the specific metal element M is present on the outermost surface of the second layer. Thereby, the work function of the second layer can be greatly reduced.
 以上のように、上記エミッタは、上記特定の構成を有することにより、内部抵抗を低減させると共に仕事関数を低減することができる。これらの結果、上記熱電子発電素子は、上記エミッタから発生する熱電子電流を従来よりも格段に増大させることができ、ひいては発電効率をより向上させることができる。 As described above, the emitter can reduce the internal resistance and work function by having the specific configuration. As a result, the thermoelectron power generation element can significantly increase the thermoelectron current generated from the emitter as compared with the prior art, and can further improve the power generation efficiency.
 本開示の第二の態様に係る熱電子発電素子の製造方法においては、電気伝導性を有するエミッタ基板上にリンをドナーとして含有するn型ダイヤモンド半導体よりなる第1層を形成し、次いで、該第1層上に窒素をドナーとして含有するn型ダイヤモンド半導体よりなる第2層を形成し、その後、該第2層の最表面にアルカリ金属元素及びMgからなる群より選ばれる1種または2種以上の特定金属元素Mを吸着させることにより終端層を形成して、上記エミッタ基板、上記第1層、上記第2層及び上記終端層を備えたエミッタを作製し、電気伝導性を有するコレクタ基板を少なくとも有するコレクタを上記エミッタとは別に準備し、上記エミッタと上記コレクタとを間隔をあけて互いに対面させる。 In the method for manufacturing a thermoelectric generator according to the second aspect of the present disclosure, a first layer made of an n-type diamond semiconductor containing phosphorus as a donor is formed on an emitter substrate having electrical conductivity, A second layer made of an n-type diamond semiconductor containing nitrogen as a donor is formed on the first layer, and then one or two selected from the group consisting of an alkali metal element and Mg on the outermost surface of the second layer A termination layer is formed by adsorbing the specific metal element M described above, and an emitter having the emitter substrate, the first layer, the second layer, and the termination layer is manufactured, and a collector substrate having electrical conductivity. Is prepared separately from the emitter, and the emitter and the collector are opposed to each other with a gap therebetween.
 上記熱電子発電素子の製造方法によれば、上記熱電子発電素子を容易に製造することができる。 According to the method for manufacturing a thermionic power generation element, the thermionic power generation element can be easily manufactured.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施例1における、熱電子発電素子の説明図であり、 図2は、実施例1における、終端層の一例を示す一部拡大断面図であり、 図3は、実施例1における、エミッタのエネルギーバンドの説明図であり、 図4は、エミッタ基板の上に第2層のみを積層した場合のエネルギーバンドの説明図であり、 図5は、エミッタ基板の上に第1層のみを積層した場合のエネルギーバンドの説明図であり、 図6は、実施例3における、LiO基が構成された終端層の一例を示す一部拡大断面図であり、及び、 図7は、参考例における、第2層の膜厚を変更して作製した試料の熱電子電流の大きさを示すグラフである。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an explanatory diagram of a thermionic power generation element in Example 1. FIG. 2 is a partially enlarged sectional view showing an example of a termination layer in Example 1. FIG. 3 is an explanatory diagram of the energy band of the emitter in Example 1. FIG. 4 is an explanatory diagram of an energy band when only the second layer is stacked on the emitter substrate. FIG. 5 is an explanatory diagram of an energy band when only the first layer is stacked on the emitter substrate. FIG. 6 is a partially enlarged cross-sectional view showing an example of a termination layer in which a LiO group is configured in Example 3, and FIG. 7 is a graph showing the thermionic current magnitude of a sample prepared by changing the thickness of the second layer in the reference example.
 上記熱電子発電素子において、エミッタの第1層は、Pのドーパント濃度が1×1019cm-3以上であるn型ダイヤモンド半導体から構成されていることが好ましい。この場合には、第1層における厚み方向の内部抵抗を十分に小さくでき、熱電子電流をより増大させることができる。Pのドーパント濃度は高いほど内部抵抗を小さくできるが、ドーパント濃度が1×1021cm-3を超える場合には、ドープ量に見合った内部抵抗の低減効果を得ることが難しい。 In the thermoelectric generator, the first layer of the emitter is preferably composed of an n-type diamond semiconductor having a P dopant concentration of 1 × 10 19 cm −3 or more. In this case, the internal resistance in the thickness direction of the first layer can be sufficiently reduced, and the thermionic current can be further increased. The higher the dopant concentration of P, the smaller the internal resistance. However, when the dopant concentration exceeds 1 × 10 21 cm −3 , it is difficult to obtain an effect of reducing the internal resistance commensurate with the doping amount.
 第2層は、Nのドーパント濃度が1×1020cm-3以上であるn型ダイヤモンド半導体から構成されていることが好ましい。この場合には、第2層における厚み方向の内部抵抗を十分に小さくでき、熱電子電流をより増大させることができる。Nのドーパント濃度は高いほど内部抵抗を小さくできるが、ドーパント濃度が1×1021cm-3を超える場合には、ドープ量に見合った効果を得ることが難しい。 The second layer is preferably composed of an n-type diamond semiconductor having a dopant concentration of N of 1 × 10 20 cm −3 or more. In this case, the internal resistance in the thickness direction of the second layer can be sufficiently reduced, and the thermionic current can be further increased. The higher the dopant concentration of N, the lower the internal resistance. However, when the dopant concentration exceeds 1 × 10 21 cm −3 , it is difficult to obtain an effect commensurate with the amount of doping.
 第2層の膜厚は、上述したように40nm以下である。第2層の膜厚が40nmを超える場合には、熱電子電流を増大させることが困難となる。一方、第2層の膜厚が過度に薄い場合には、第2層が均一に形成されにくく、第1層がエミッタの表面に露出するおそれがある。この場合には、第2層を積層させた効果が得られず、かえって発電効率が低下するおそれがある。それ故、第2層の膜厚は、1nm以上40nm以下であることが好ましい。 The film thickness of the second layer is 40 nm or less as described above. When the thickness of the second layer exceeds 40 nm, it is difficult to increase the thermionic current. On the other hand, when the thickness of the second layer is excessively thin, the second layer is difficult to be formed uniformly, and the first layer may be exposed on the surface of the emitter. In this case, the effect of laminating the second layer cannot be obtained, and the power generation efficiency may be reduced. Therefore, the thickness of the second layer is preferably 1 nm or more and 40 nm or less.
 第2層の最表面にはアルカリ金属元素及びMgからなる群より選ばれる1種または2種以上の特定金属元素Mを含む終端層が形成されている。終端層に存在する特定金属元素Mの化学状態を特定することは困難であるが、例えば、特定金属元素Mは、第2層を構成するn型ダイヤモンド半導体の最表面に直接結合していてもよい。即ち、第2層を構成するn型ダイヤモンド半導体は上記終端層に存在する上記特定金属元素Mにより終端されていてもよい。 A termination layer containing one or more specific metal elements M selected from the group consisting of alkali metal elements and Mg is formed on the outermost surface of the second layer. Although it is difficult to specify the chemical state of the specific metal element M present in the termination layer, for example, the specific metal element M may be directly bonded to the outermost surface of the n-type diamond semiconductor constituting the second layer. Good. That is, the n-type diamond semiconductor constituting the second layer may be terminated by the specific metal element M present in the termination layer.
 上記終端層は、例えば、マイクロ波プラズマCVD(化学気相成長)法等の方法により第1層及び第2層を順次形成した後、真空中で加熱する等の方法により最表面に結合する水素を脱離させ、その後に連続して特定金属元素Mを吸着させることにより容易に形成することができる。ここで、上述した「連続して」とは、第2層の最表面に結合した水素を脱離させた後、その最表面を大気に晒すことなく特定金属元素Mを吸着させることをいう。 The termination layer is formed by, for example, sequentially forming the first layer and the second layer by a method such as microwave plasma CVD (chemical vapor deposition), and then bonding hydrogen to the outermost surface by a method such as heating in a vacuum. Can be easily formed by adsorbing the specific metal element M continuously. Here, “continuously” mentioned above means that after desorbing hydrogen bonded to the outermost surface of the second layer, the specific metal element M is adsorbed without exposing the outermost surface to the atmosphere.
 また、上記終端層は、特定金属元素M及びOを含んでいてもよい。この場合には、上記終端層に存在する特定金属元素MとOとがMO基を構成しており、上記第2層を構成するn型ダイヤモンド半導体が上記MO基により終端されていることがより好ましい。 The termination layer may contain specific metal elements M and O. In this case, the specific metal elements M and O present in the termination layer constitute an MO group, and the n-type diamond semiconductor constituting the second layer is terminated by the MO group. preferable.
 MO基を含む上記終端層は、例えば、上述と同様に第1層及び第2層の形成を行った後、表面酸化処理を施して第2層の最表面を酸素終端し、その後に第2層の最表面に特定金属元素Mを吸着させることにより形成することができる。上述した表面酸化処理としては、例えば、最表面をオゾンにより酸化するオゾン酸化処理等を採用することができる。 For example, after forming the first layer and the second layer in the same manner as described above, the termination layer containing the MO group is subjected to surface oxidation treatment to terminate the outermost surface of the second layer with oxygen, and then the second layer. It can be formed by adsorbing the specific metal element M on the outermost surface of the layer. As the surface oxidation treatment described above, for example, an ozone oxidation treatment that oxidizes the outermost surface with ozone can be employed.
 上記終端層に含まれるアルカリ金属元素としては、例えば、Li(リチウム)、Na(ナトリウム)、K(カリウム)またはCs(セシウム)を採用することができる。第2層を構成するn型ダイヤモンド半導体が上記アルカリ金属元素により終端されている場合には、アルカリ金属元素としてNaを用いることにより、仕事関数をより小さくすることができる。 As the alkali metal element contained in the termination layer, for example, Li (lithium), Na (sodium), K (potassium), or Cs (cesium) can be employed. When the n-type diamond semiconductor constituting the second layer is terminated with the alkali metal element, the work function can be further reduced by using Na as the alkali metal element.
 上記終端層に含まれる特定金属元素Mの量は、0.2分子層以上10分子層以下に相当する量であることが好ましい。この場合には、上記終端層を確実に形成し、エミッタの熱電子放出特性を改善することができる。 The amount of the specific metal element M contained in the termination layer is preferably an amount corresponding to 0.2 molecular layer or more and 10 molecular layer or less. In this case, the termination layer can be reliably formed and the thermionic emission characteristics of the emitter can be improved.
 上記終端層に含まれる特定金属元素Mの量が0.2分子層未満の場合には、仕事関数を低減する効果が不十分となるおそれがある。一方、特定金属元素Mの量が10分子層を超える場合には、終端層に含まれる特定金属元素Mが過剰となるおそれがある。また、場合によってはエミッタの表面に特定金属元素Mの膜が形成され、比較的低い温度範囲での熱電子の放出を阻害するおそれがある。 If the amount of the specific metal element M contained in the termination layer is less than 0.2 molecular layer, the effect of reducing the work function may be insufficient. On the other hand, when the amount of the specific metal element M exceeds 10 molecular layers, the specific metal element M contained in the termination layer may be excessive. In some cases, a film of the specific metal element M is formed on the surface of the emitter, which may hinder the emission of thermoelectrons in a relatively low temperature range.
 以上より、特定金属元素Mによる作用効果を十分に得る観点から、特定金属元素Mの量は、0.2分子層以上10分子層以下に相当する量であることが好ましい。 From the above, from the viewpoint of sufficiently obtaining the action and effect of the specific metal element M, the amount of the specific metal element M is preferably an amount corresponding to 0.2 to 10 molecular layers.
 また、上記終端層に含まれる特定金属元素Mの量は、0.2分子層以上1分子層以下に相当する量であることがより好ましい。この場合には、上記終端層内での特定金属元素Mの安定性が向上し、高温に加熱された際に特定金属元素Mが上記終端層から脱離しにくくなる。また、この場合には、エミッタの仕事関数を効果的に小さくすることができる。これは、特定金属元素Mの量を1分子層以下にすることにより、特定金属元素Mまたは上記MO基が上記第2層の再表面に直接結合しやすくなり、結果として特定金属元素Mの吸着エネルギーが大きくなると共に表面の性質を効果的に変化させることができるためと考えられる。 The amount of the specific metal element M contained in the termination layer is more preferably an amount corresponding to 0.2 molecular layer or more and 1 molecular layer or less. In this case, the stability of the specific metal element M in the termination layer is improved, and the specific metal element M is less likely to be detached from the termination layer when heated to a high temperature. In this case, the work function of the emitter can be effectively reduced. This is because the specific metal element M or the MO group is easily bonded directly to the resurface of the second layer by reducing the amount of the specific metal element M to one molecular layer or less. As a result, the specific metal element M is adsorbed. This is because the surface properties can be effectively changed as the energy increases.
 ダイヤモンド層の最表面が水素終端された従来の熱電子発電素子においては、ダイヤモンド層が700℃以上に加熱されると最表面から水素が脱離し始めることが確認されている。それ故、従来の熱電子発電素子は、例えば700℃以上の高温において使用することが困難であり、発電効率の向上には限界があった。また、従来の熱電子発電素子は、長期間に亘って使用すると次第に熱電子放出特性が低下するという問題があった。 In a conventional thermoelectric power generation element in which the outermost surface of the diamond layer is terminated with hydrogen, it has been confirmed that when the diamond layer is heated to 700 ° C. or higher, hydrogen begins to desorb from the outermost surface. Therefore, it is difficult to use the conventional thermoelectric power generation element at a high temperature of, for example, 700 ° C. or more, and there is a limit to improving the power generation efficiency. Further, the conventional thermoelectron power generation device has a problem that the thermoelectron emission characteristics gradually deteriorate when used over a long period of time.
 一方、上記熱電子発電素子は、特定金属元素Mの量を上記特定の範囲にすることにより、上記終端層内からの特定金属元素Mの脱離を抑制することができる。その結果、上記熱電子発電素子は、従来の熱電子発電素子よりも高い温度においても優れた熱電子放出特性を有すると共に、長期間に亘って優れた熱電子放出特性を維持することができる。 On the other hand, the thermoelectric power generation element can suppress detachment of the specific metal element M from the termination layer by setting the amount of the specific metal element M in the specific range. As a result, the thermoelectron power generation element has excellent thermoelectron emission characteristics even at a higher temperature than conventional thermoelectron power generation elements, and can maintain excellent thermoelectron emission characteristics over a long period of time.
 また、エミッタ及びコレクタは、厚み方向における内部抵抗が1Ωcm2以下であることが好ましい。この場合には、熱電子に由来する電流がエミッタやコレクタを通過する際の電圧降下を小さくし、これに由来する損失を十分に低減することができる。その結果、熱電子発電素子の発電効率をより向上させることができる。 The emitter and collector preferably have an internal resistance in the thickness direction of 1 Ωcm 2 or less. In this case, it is possible to reduce the voltage drop when the current derived from the thermoelectrons passes through the emitter and collector, and to sufficiently reduce the loss derived therefrom. As a result, the power generation efficiency of the thermionic power generation element can be further improved.
 エミッタ基板は、Si(シリコン)、Ti(チタン)、Mo(モリブデン)、Ir(イリジウム)、Ta(タンタル)、W(タングステン)、Ru(ルテニウム)、Cr(クロム)またはPt(白金)のいずれかより構成されていることが好ましい。これらの材質よりなるエミッタ基板は、第1層を作製する際にダイヤモンドの核を生成させやすい。また、これらの材質よりなるエミッタ基板上に生成したダイヤモンド半導体は、ダイヤモンド半導体を成長させる温度領域において、エミッタ基板から剥離しにくい。それ故、この場合には、欠陥等が少なく、膜質の良好なn型ダイヤモンド半導体よりなる第1層を作製できる。その結果、厚み方向におけるエミッタの内部抵抗をより低減することができ、発電効率をより向上させることができる。 The emitter substrate is any one of Si (silicon), Ti (titanium), Mo (molybdenum), Ir (iridium), Ta (tantalum), W (tungsten), Ru (ruthenium), Cr (chromium), or Pt (platinum). It is preferable that it is comprised. An emitter substrate made of these materials is likely to generate diamond nuclei when the first layer is formed. Moreover, the diamond semiconductor produced on the emitter substrate made of these materials is difficult to peel from the emitter substrate in the temperature region where the diamond semiconductor is grown. Therefore, in this case, the first layer made of an n-type diamond semiconductor with few defects and good film quality can be produced. As a result, the internal resistance of the emitter in the thickness direction can be further reduced, and the power generation efficiency can be further improved.
 上述した材質のうち、エミッタ基板としては、Siを用いることがより好ましい。Siは、不純物や結晶欠陥等が少なく、大面積で高品質な素材を容易に入手することができる。そのため、熱電子発電素子の製造コストをより容易に低減することができる。 Of the materials described above, it is more preferable to use Si as the emitter substrate. Si has few impurities, crystal defects, and the like, and a high-quality material having a large area can be easily obtained. Therefore, the manufacturing cost of the thermoelectric power generation element can be reduced more easily.
 また、上記エミッタは、エミッタ基板と第1層との間に界面中間層を有していてもよい。界面中間層は、その厚み方向の抵抗と、エミッタ基板との間の界面抵抗と、第1層との間の界面抵抗との和が、エミッタ基板と第1層との間の界面抵抗よりも小さくなるよう構成されていることが好ましい。この場合には、厚み方向におけるエミッタの内部抵抗をより低減することができる。その結果、熱電子発電素子の発電効率をより向上させることができる。 The emitter may have an interface intermediate layer between the emitter substrate and the first layer. In the interface intermediate layer, the sum of the resistance in the thickness direction, the interface resistance between the emitter substrate and the interface resistance between the first layer is larger than the interface resistance between the emitter substrate and the first layer. It is preferable to be configured to be small. In this case, the internal resistance of the emitter in the thickness direction can be further reduced. As a result, the power generation efficiency of the thermionic power generation element can be further improved.
 上述した界面中間層としては、例えば金属炭化物を用いることができる。金属炭化物としては、例えば炭化チタン、炭化タンタル、炭化タングステン、炭化モリブデン、炭化珪素、炭化クロム等を挙げることができ、これらの中でも、炭化チタンを用いることがより好ましい。
(実施例1)
 上記熱電子発電素子の実施例について、図1~図5を用いて説明する。図1に示すように、熱電子発電素子1は、熱電子を発生させるエミッタ2と、エミッタ2に対面して間隙dを介して配置され、熱電子を収集するコレクタ3とを有している。エミッタ2は、電気伝導性を有するエミッタ基板21と、エミッタ基板21に積層された第1層22と、第1層上に積層された第2層23と、第2層23の最表面に形成された終端層24とを有している。
For example, a metal carbide can be used as the interface intermediate layer described above. Examples of the metal carbide include titanium carbide, tantalum carbide, tungsten carbide, molybdenum carbide, silicon carbide, and chromium carbide. Among these, it is more preferable to use titanium carbide.
(Example 1)
Examples of the thermoelectric power generation element will be described with reference to FIGS. As shown in FIG. 1, the thermoelectric generator 1 includes an emitter 2 that generates thermoelectrons, and a collector 3 that is disposed through a gap d so as to face the emitter 2 and collects thermoelectrons. . The emitter 2 is formed on the outermost surface of the emitter layer 21 having electrical conductivity, the first layer 22 laminated on the emitter substrate 21, the second layer 23 laminated on the first layer, and the second layer 23. And a terminated layer 24.
 第1層22はPをドナーとして含有するn型ダイヤモンド半導体より構成されている。第2層23はNをドナーとして含有するn型ダイヤモンド半導体より構成されており、40nm以下の膜厚を有している。図2に示すように、終端層24には、0.2~10分子層に相当する量の特定金属元素Mが含まれている。なお、本例においては、特定金属元素Mとしてアルカリ金属元素を用いている。 The first layer 22 is composed of an n-type diamond semiconductor containing P as a donor. The second layer 23 is made of an n-type diamond semiconductor containing N as a donor and has a thickness of 40 nm or less. As shown in FIG. 2, the termination layer 24 contains the specific metal element M in an amount corresponding to 0.2 to 10 molecular layers. In this example, an alkali metal element is used as the specific metal element M.
 また、コレクタ3は、電気伝導性を有するコレクタ基板31を少なくとも有している。以下、熱電子発電素子1のより詳細な構成について、製造方法と共に説明する。 The collector 3 has at least a collector substrate 31 having electrical conductivity. Hereinafter, a more detailed configuration of the thermoelectric generator 1 will be described together with a manufacturing method.
 本例のエミッタ基板21は、Moより構成されている。エミッタ基板21は、後述するように、外部負荷4を接続する電極を兼ねている。 The emitter substrate 21 of this example is made of Mo. As will be described later, the emitter substrate 21 also serves as an electrode for connecting the external load 4.
 第1層22を構成するn型ダイヤモンド半導体は、例えば、炭素源としてCH4ガス、リン源としてPH3ガス、キャリアガスとしてH2ガスを用いたマイクロ波プラズマCVD法により成膜することができる。第1層22の成膜条件は、例えば以下の通りである。 The n-type diamond semiconductor constituting the first layer 22 can be formed by, for example, a microwave plasma CVD method using CH 4 gas as a carbon source, PH 3 gas as a phosphorus source, and H 2 gas as a carrier gas. . The film formation conditions of the first layer 22 are, for example, as follows.
 ・基板温度:1000℃
 ・H2ガス流量に対するCH4ガス流量の比(CH4流量/H2流量):0.01
 ・CH4ガス流量に対するPH3ガス流量の比(PH3流量/CH4流量):0.05
 ・成膜時圧力:30Torr
 ・マイクロ波出力:750W
 ・膜厚 1.0μm
 ・Pのドーパント濃度 1×1020cm-3
 第2層23を構成するn型ダイヤモンド半導体は、例えば、炭素源としてCH4ガス、窒素源としてN2ガス、キャリアガスとしてH2ガスを用いたマイクロ波プラズマCVD法により成膜することができる。第2層23の成膜は、通常、第1層22の成膜が完了した後、第1層22を大気に露出させることなく行う。第2層23の成膜条件は、例えば以下の通りである。
-Substrate temperature: 1000 ° C
-Ratio of CH 4 gas flow rate to H 2 gas flow rate (CH 4 flow rate / H 2 flow rate): 0.01
-Ratio of PH 3 gas flow rate to CH 4 gas flow rate (PH 3 flow rate / CH 4 flow rate): 0.05
・ Film pressure: 30 Torr
・ Microwave output: 750W
・ Film thickness 1.0μm
・ P dopant concentration 1 × 10 20 cm −3
The n-type diamond semiconductor constituting the second layer 23 can be formed by, for example, a microwave plasma CVD method using CH 4 gas as a carbon source, N 2 gas as a nitrogen source, and H 2 gas as a carrier gas. . The film formation of the second layer 23 is normally performed without exposing the first layer 22 to the atmosphere after the film formation of the first layer 22 is completed. The film forming conditions for the second layer 23 are, for example, as follows.
 ・基板温度:1000℃
 ・H2ガス流量に対するCH4ガス流量の比(CH4流量/H2流量):0.01
 ・CH4ガス流量に対するN2ガス流量の比(N2流量/CH4流量):10
 ・成膜時圧力:50Torr
 ・マイクロ波出力:1000W
 ・膜厚 40nm
 ・Nのドーパント濃度 5×1020cm-3
 エミッタ基板21上に第1層22及び第2層23を成膜した後、第1層22及び第2層23を大気に露出させることなく、第2層23の最表面に特定金属元素Mを吸着させる。これにより、第2層23の最表面に終端層24を形成することができる。本例の終端層24に含まれる特定金属元素Mは、第2層23を構成するn型ダイヤモンド半導体の最表面に結合すると推定できる。即ち、第2層23を構成するn型ダイヤモンド半導体は、例えば図2に示すように、終端層24に存在する特定金属元素Mにより終端されていると推定できる。
-Substrate temperature: 1000 ° C
-Ratio of CH 4 gas flow rate to H 2 gas flow rate (CH 4 flow rate / H 2 flow rate): 0.01
-Ratio of N 2 gas flow rate to CH 4 gas flow rate (N 2 flow rate / CH 4 flow rate): 10
・ Film pressure: 50 Torr
・ Microwave output: 1000W
・ Film thickness 40nm
N dopant concentration 5 × 10 20 cm −3
After the first layer 22 and the second layer 23 are formed on the emitter substrate 21, the specific metal element M is applied to the outermost surface of the second layer 23 without exposing the first layer 22 and the second layer 23 to the atmosphere. Adsorb. Thereby, the termination layer 24 can be formed on the outermost surface of the second layer 23. It can be estimated that the specific metal element M contained in the termination layer 24 of this example is bonded to the outermost surface of the n-type diamond semiconductor constituting the second layer 23. That is, it can be presumed that the n-type diamond semiconductor constituting the second layer 23 is terminated by the specific metal element M present in the termination layer 24 as shown in FIG.
 第2層23への特定金属元素Mの吸着は、例えばアルカリ金属ディスペンサーを用いて行うことができる。より具体的には、アルカリ金属ディスペンサーから供給した特定金属元素Mの雰囲気に第2層23の最表面を曝露することにより、第2層23の最表面に特定金属元素Mを吸着させることができる。なお、特定金属元素Mの吸着量は、XPS(X線光電子分光法)を用いて測定することができる。また、上記ディスペンサーから供給されるアルカリ金属元素としては、例えばLi、Na、K及びCsのいずれかを用いることができる。 The adsorption of the specific metal element M to the second layer 23 can be performed using, for example, an alkali metal dispenser. More specifically, the specific metal element M can be adsorbed on the outermost surface of the second layer 23 by exposing the outermost surface of the second layer 23 to the atmosphere of the specific metal element M supplied from the alkali metal dispenser. . The adsorption amount of the specific metal element M can be measured using XPS (X-ray photoelectron spectroscopy). Moreover, as an alkali metal element supplied from the dispenser, for example, any one of Li, Na, K, and Cs can be used.
 コレクタ3は、Moよりなるコレクタ基板31の上に、膜厚2.5μmの第1層32と膜厚20nmの第2層33とが順次積層された構造を有している。第1層32及び第2層33の成膜条件は、エミッタ2における第1層22及び第2層23と同様である。 The collector 3 has a structure in which a 2.5 μm thick first layer 32 and a 20 nm thick second layer 33 are sequentially laminated on a collector substrate 31 made of Mo. The film formation conditions of the first layer 32 and the second layer 33 are the same as those of the first layer 22 and the second layer 23 in the emitter 2.
 エミッタ2とコレクタ3との間の間隙dの大きさは特に限定されることはないが、本例においては、間隙dが20~30μm程度となるようにエミッタ2及びコレクタ3を配置している。また、エミッタ2とコレクタ3との間の空間は、1×10-5Pa以下に減圧されている。 The size of the gap d between the emitter 2 and the collector 3 is not particularly limited, but in this example, the emitter 2 and the collector 3 are arranged so that the gap d is about 20 to 30 μm. . The space between the emitter 2 and the collector 3 is depressurized to 1 × 10 −5 Pa or less.
 熱電子発電素子1を動作させる場合には、図1に示すように、エミッタ基板21とコレクタ基板31とを外部負荷4を介して接続し、この状態でエミッタ2を加熱する。これにより、エミッタ2の表面から熱電子がエミッタ2とコレクタ3との間の間隙dに放出され、コレクタ3に収集される。そして、コレクタ3に収集された電子は、コレクタ基板31から外部回路へ流れ(矢印101参照)、外部負荷4を通過してエミッタ2に帰還する(矢印102参照)。 When operating the thermoelectric generator 1, the emitter substrate 21 and the collector substrate 31 are connected via the external load 4 as shown in FIG. 1, and the emitter 2 is heated in this state. Thereby, thermoelectrons are emitted from the surface of the emitter 2 into the gap d between the emitter 2 and the collector 3 and collected by the collector 3. Then, the electrons collected in the collector 3 flow from the collector substrate 31 to the external circuit (see arrow 101), pass through the external load 4 and return to the emitter 2 (see arrow 102).
 次に、本例の作用効果について、図3~図5を参照しつつ説明する。図3は、エミッタ2のエネルギーバンドの一例である。図3の縦方向の位置はエネルギー準位に対応しており、上方にある準位ほど高いエネルギー準位にあることを示している。また、エミッタの表面に対応する縦線200及び第1層22と第2層23との境界に対応する縦線230の2本の縦線により横方向を3つの領域221、231、201に区画した。 Next, the function and effect of this example will be described with reference to FIGS. FIG. 3 is an example of the energy band of the emitter 2. The position in the vertical direction in FIG. 3 corresponds to the energy level, and the higher level indicates the higher energy level. Further, the horizontal direction is divided into three regions 221, 231, and 201 by two vertical lines of a vertical line 200 corresponding to the surface of the emitter and a vertical line 230 corresponding to the boundary between the first layer 22 and the second layer 23. did.
 そして、左側の領域221には第1層22の伝導帯の下端222、不純物準位223及び価電子帯の上端224を示した。また、中央の領域231には第2層23の伝導帯の下端232、不純物準位233及び価電子帯の上端234を示した。なお、終端層24の膜厚はごく薄いため、第2層23と終端層24との境界及び終端層24内のエネルギーバンドは、便宜上図3への記載を省略している。 In the left region 221, the lower end 222 of the conduction band of the first layer 22, the impurity level 223, and the upper end 224 of the valence band are shown. In the central region 231, the lower end 232 of the conduction band, the impurity level 233, and the upper end 234 of the valence band of the second layer 23 are shown. Since the thickness of the termination layer 24 is very thin, the boundary between the second layer 23 and the termination layer 24 and the energy band in the termination layer 24 are omitted from FIG. 3 for convenience.
 また、図4は、エミッタ基板21の上に第2層23のみを積層したエミッタ2のエネルギーバンドの一例である。図4の縦方向の位置は、図3と同様にエネルギー準位に対応している。また、表面に対応する縦線200に対して左側の領域231に第2層23のエネルギーバンドを示した。 FIG. 4 shows an example of the energy band of the emitter 2 in which only the second layer 23 is laminated on the emitter substrate 21. The vertical position in FIG. 4 corresponds to the energy level as in FIG. In addition, the energy band of the second layer 23 is shown in the region 231 on the left side of the vertical line 200 corresponding to the surface.
 同様に、図5は、エミッタ基板21の上に第1層22のみを積層したエミッタのエネルギーバンドの一例である。図5の縦方向の位置は、図3と同様にエネルギー準位に対応している。また、表面に対応する縦線200に対して左側の領域221に第1層22のエネルギーバンドを示した。なお、図4及び図5において用いた符号のうち、図3と同一の符号は、特に示さない限り図3と同様の構成要素等を表す。 Similarly, FIG. 5 is an example of an energy band of an emitter in which only the first layer 22 is stacked on the emitter substrate 21. The vertical position in FIG. 5 corresponds to the energy level as in FIG. Further, the energy band of the first layer 22 is shown in the left region 221 with respect to the vertical line 200 corresponding to the surface. 4 and 5, the same reference numerals as those in FIG. 3 represent the same components as those in FIG. 3 unless otherwise indicated.
 図3及び図4より知られるように、第1層22を構成するn型ダイヤモンド半導体の不純物準位223は、第2層23を構成するn型ダイヤモンド半導体の不純物準位233よりも伝導帯の下端222、232に近い位置に形成される。そのため、第1層22は、第2層23に比べてホッピング伝導が起き易く、抵抗率が小さくなる。それ故、図4に示すように第1層22を設けない場合に比べて、本例のエミッタ2(図3参照)は、厚み方向における内部抵抗を低減することができる。 As is known from FIGS. 3 and 4, the impurity level 223 of the n-type diamond semiconductor constituting the first layer 22 has a conduction band higher than the impurity level 233 of the n-type diamond semiconductor constituting the second layer 23. It is formed at a position close to the lower ends 222 and 232. Therefore, the first layer 22 is more likely to cause hopping conduction and has a lower resistivity than the second layer 23. Therefore, as compared with the case where the first layer 22 is not provided as shown in FIG. 4, the emitter 2 (see FIG. 3) of this example can reduce the internal resistance in the thickness direction.
 また、図5より知られるように、第1層22を構成するn型ダイヤモンド半導体をエミッタ2の表面に露出させると、表面の近傍において、伝導帯の下端222に上向きの曲がり225が生じる。そのため、電子6がエミッタ2から放出されにくくなり、熱電子電流を増大させにくくなる。これは、Pをドナーとして含有するn型ダイヤモンド半導体は、エミッタ2の表面に露出させた場合に欠陥準位が形成されやすい性質を有するためと考えられる。一方、図3及び図4に示すように、Nをドナーとして含有するn型ダイヤモンド半導体は、エミッタ2の表面に露出させた場合に欠陥準位が形成されにくく、表面近傍において伝導帯の曲がりが生じにくい。それ故、図5に示すように第1層22の上に第2層23を積層しない場合に比べて、本例のエミッタ2(図3参照)は表面近傍における障壁を低減でき、熱電子電流を増大させ易くなる。 As is known from FIG. 5, when the n-type diamond semiconductor constituting the first layer 22 is exposed on the surface of the emitter 2, an upward bend 225 is generated at the lower end 222 of the conduction band in the vicinity of the surface. Therefore, it becomes difficult for the electrons 6 to be emitted from the emitter 2 and increase the thermionic current. This is presumably because the n-type diamond semiconductor containing P as a donor has a property that defect levels are likely to be formed when exposed to the surface of the emitter 2. On the other hand, as shown in FIGS. 3 and 4, in the n-type diamond semiconductor containing N as a donor, defect levels are not easily formed when exposed to the surface of the emitter 2, and the conduction band is bent near the surface. Hard to occur. Therefore, as compared with the case where the second layer 23 is not stacked on the first layer 22 as shown in FIG. 5, the emitter 2 (see FIG. 3) of this example can reduce the barrier in the vicinity of the surface, and the thermionic current. Is easily increased.
 そして、本例のエミッタ2は、第2層23の膜厚が40nm以下である。それ故、第1層22に比べて抵抗率の高い第2層23が、エミッタ2全体の内部抵抗に及ぼす影響を低減することができると考えられる。 In the emitter 2 of this example, the thickness of the second layer 23 is 40 nm or less. Therefore, it is considered that the influence of the second layer 23 having a higher resistivity than the first layer 22 on the internal resistance of the entire emitter 2 can be reduced.
 また、本例のエミッタ2は、第2層23を構成するn型ダイヤモンド半導体が、終端層24に含まれる特定金属元素Mにより終端されている。そのため、エミッタ2の内部において熱励起された電子6がエミッタ2の表面から放出され易くなる。 In the emitter 2 of this example, the n-type diamond semiconductor constituting the second layer 23 is terminated by the specific metal element M contained in the termination layer 24. Therefore, the electrons 6 thermally excited inside the emitter 2 are easily emitted from the surface of the emitter 2.
 以上の結果、本例の熱電子発電素子1は、熱電子電流をより増大させ易くなり、発電効率をより向上させることができる。
(実施例2)
 本例は、特定金属元素Mを変更したときのエミッタ2の仕事関数の変化を第一原理計算により評価した例である。第一原理計算は、以下の条件により行った。
As a result, the thermoelectric power generation element 1 of this example can easily increase the thermionic current, and can further improve the power generation efficiency.
(Example 2)
In this example, the change of the work function of the emitter 2 when the specific metal element M is changed is evaluated by the first principle calculation. The first principle calculation was performed under the following conditions.
 第一原理計算に用いた計算コードは、第一原理電子状態計算パッケージ ABINITである。計算に用いたポテンシャル関数はノルム保存擬ポテンシャルとした。 The calculation code used for the first principle calculation is the first principle electronic state calculation package ABINIT. The potential function used in the calculation is a norm-preserving pseudopotential.
 構造モデルとしては、計算領域内に、第2層23及び終端層24に相当する膜部と、厚み方向における膜部の両側に配置された真空部とを有するスラブモデルを採用した。膜部は、ダイヤモンド単位胞が厚み方向に10層積層され、厚み方向の両側が表面からなり、周期が2×1である表面単位胞を有する構造を有している。また、膜部の表面に存在するダングリングボンドは、特定金属元素Mにより終端されている。 As the structural model, a slab model having a film portion corresponding to the second layer 23 and the termination layer 24 and a vacuum portion arranged on both sides of the film portion in the thickness direction was employed in the calculation region. The film portion has a structure in which ten diamond unit cells are laminated in the thickness direction, and both surface in the thickness direction is a surface and has a surface unit cell having a period of 2 × 1. Further, the dangling bonds existing on the surface of the film part are terminated by the specific metal element M.
 以上の条件及び構造モデルを用いて第一原理計算を行った。得られた結果の中からKohn-Sham方程式のHamiltonianの計算結果を抽出し、その中の有効ポテンシャルを用いて仕事関数を算出した。具体的には、まず、計算領域を厚み方向に仮想的に分割し、各領域における有効ポテンシャルの平均値を算出した。そして、真空領域の中心部における有効ポテンシャルの平均値から、計算により得られたフェルミエネルギーを差し引いた値を仕事関数とした。 First-principles calculations were performed using the above conditions and structural model. The Hamiltonian calculation result of the Kohn-Sham equation was extracted from the obtained results, and the work function was calculated using the effective potential therein. Specifically, first, the calculation area was virtually divided in the thickness direction, and the average value of effective potentials in each area was calculated. And the value which deducted the Fermi energy obtained by calculation from the average value of the effective potential in the center part of a vacuum area | region was made into the work function.
 以上の計算を、膜部を終端した元素を変更して行った結果を表1に示す。なお、本例においては、各元素について、吸着量が0.25分子層相当の場合及び1分子層相当の場合の2種の構造モデルを作成し、計算を行った。また、ダングリングボンドを特定金属元素Mにより終端した場合との比較のため、ダングリングボンドを水素終端した構造モデル、及び、ダングリングボンドが終端されていない清浄表面の構造モデルについても計算を行った。 Table 1 shows the result of the above calculation performed by changing the element terminating the film part. In this example, for each element, two types of structural models were created for the case where the adsorption amount was equivalent to 0.25 molecular layer and that corresponding to one molecular layer, and the calculation was performed. In addition, for comparison with the case where the dangling bond is terminated with the specific metal element M, the structural model in which the dangling bond is terminated with hydrogen and the structural model of the clean surface where the dangling bond is not terminated are also calculated. It was.
Figure JPOXMLDOC01-appb-I000001
 表1より知られるように、Li、Na及びKにより膜部を終端した構造モデルの仕事関数は、H(水素)により膜部を終端した構造モデルの仕事関数よりも小さくなった。
Figure JPOXMLDOC01-appb-I000001
As is known from Table 1, the work function of the structural model in which the film part is terminated with Li, Na, and K is smaller than the work function of the structural model in which the film part is terminated with H (hydrogen).
 熱電子発電素子1の発電特性は、例えばG.W.サットン『直接エネルギー変換』(好学社、1968年)に記載されているように、以下の式(1)及び式(2)のように表すことができる。 The power generation characteristics of the thermoelectric power generation element 1 are, for example, G. W. As described in Sutton “direct energy conversion” (Kogakusha, 1968), it can be expressed as the following formulas (1) and (2).
  Wo=AVoE 2exp{-e(Vo+ΦE)/kTE} ・・・(1)
  Jo=ATE 2exp{-e(Vo+ΦE)/kTE} ・・・(2)
 なお、上記式(1)及び式(2)において使用した記号の意味は以下の通りである。
W o = AV o T E 2 exp {−e (V o + Φ E ) / kT E } (1)
J o = AT E 2 exp {−e (V o + Φ E ) / kT E } (2)
In addition, the meaning of the symbol used in the said Formula (1) and Formula (2) is as follows.
 Wo(W/cm2):単位面積当たりの最大出力密度
 Jo(A/cm2):最大出力密度が得られるときの熱電子電流の電流密度
 Vo(V):最大出力密度が得られるときの電圧
 TE(K):エミッタの温度
 ΦE(eV):エミッタの仕事関数
 A(A/cm22):リチャードソン定数
 e(C):電気素量
 k(J/K):ボルツマン定数
 上記式(1)及び式(2)より知られるように、エミッタの仕事関数ΦEの値を小さくすることにより、最大出力密度Wo及びそのときの熱電子電流の電流密度Joを大きくすることができる。それ故、特定金属元素Mにより第2層23の表面が終端されたエミッタ2は、従来に比べて熱電子電流をより増大させ易くなり、発電効率をより向上させることができる。
(実施例3)
 本例は、第2層23の表面をMO基により終端した熱電子発電素子1の例である。本例においては、実施例1と同様の条件によりエミッタ基板21上に第1層22及び第2層23を形成する。次いで、表面酸化処理を施すことにより、第2層23の最表面に酸素を含む官能基F(図6参照)を形成し、第2層23を構成するn型ダイヤモンド半導体を酸素終端する。表面酸化処理としては、例えば、第2層23の表面を酸素雰囲気に曝露しつつ紫外光を照射するUVオゾン処理等の方法を採用することができる。
W o (W / cm 2 ): Maximum power density per unit area J o (A / cm 2 ): Current density of thermoelectron current when maximum power density is obtained V o (V): Maximum power density is obtained Voltage T E (K): Emitter temperature Φ E (eV): Emitter work function A (A / cm 2 K 2 ): Richardson constant e (C): Elementary quantity of electricity k (J / K) : Boltzmann constant As known from the above formulas (1) and (2), by reducing the value of the work function Φ E of the emitter, the maximum output density W o and the current density J o of the thermoelectron current at that time Can be increased. Therefore, the emitter 2 having the surface of the second layer 23 terminated by the specific metal element M can easily increase the thermionic current as compared with the conventional case, and can further improve the power generation efficiency.
(Example 3)
This example is an example of the thermoelectric generator 1 in which the surface of the second layer 23 is terminated with an MO group. In this example, the first layer 22 and the second layer 23 are formed on the emitter substrate 21 under the same conditions as in the first embodiment. Next, by performing a surface oxidation treatment, a functional group F containing oxygen (see FIG. 6) is formed on the outermost surface of the second layer 23, and the n-type diamond semiconductor constituting the second layer 23 is terminated with oxygen. As the surface oxidation treatment, for example, a method such as UV ozone treatment in which the surface of the second layer 23 is irradiated with ultraviolet light while being exposed to an oxygen atmosphere can be employed.
 第2層23の最表面に表面酸化処理を施した後、第2層23の最表面にLiを吸着させる。これにより、第2層23の最表面にLi及びOを含む終端層24bを形成することができる。本例の終端層24bに含まれるLiは、図6に一例を示すように、上述した官能基Fと反応し、LiO基を形成していると考えられる。即ち、第2層23を構成するn型ダイヤモンド半導体は、終端層24bに存在するLiとOとからなるLiO基により終端されていると推定できる。 After the surface oxidation treatment is performed on the outermost surface of the second layer 23, Li is adsorbed on the outermost surface of the second layer 23. Thereby, the termination layer 24 b containing Li and O can be formed on the outermost surface of the second layer 23. It is considered that Li contained in the termination layer 24b of this example reacts with the functional group F described above to form a LiO group as shown in FIG. That is, it can be estimated that the n-type diamond semiconductor constituting the second layer 23 is terminated by a LiO group composed of Li and O existing in the termination layer 24b.
 その他は実施例1と同様である。なお、本例において用いた符号のうち、実施例1において用いた符号と同一のものは、特に説明のない限り実施例1と同様の構成要素等を表す。 Others are the same as in Example 1. Of the reference numerals used in this example, the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.
 本例においては、LiO基により第2層23の表面を終端したときのエミッタ2の仕事関数を第一原理計算により評価した。具体的には、実施例2の構造モデルにおけるダングリングボンドをLiO基により終端した以外は、実施例2と同様の方法により仕事関数を算出した。その結果、LiO基により終端した構造モデルの仕事関数は1.78eVであった。 In this example, the work function of the emitter 2 when the surface of the second layer 23 was terminated by the LiO group was evaluated by the first principle calculation. Specifically, the work function was calculated by the same method as in Example 2 except that dangling bonds in the structural model of Example 2 were terminated with a LiO group. As a result, the work function of the structural model terminated with the LiO group was 1.78 eV.
 この結果から、第2層23の表面をLiO基により終端した熱電子発電素子1は、エミッタ2の仕事関数をより低減することができ、優れた熱電子放出特性を有することが理解できる。
(参考例)
 本例は、第2層23の膜厚を種々の厚みに変更した参考例である。本例の第1層22を構成するn型ダイヤモンド半導体及び第2層23を構成するn型ダイヤモンド半導体は、実施例1と同様の条件を用いたマイクロ波プラズマCVD法により成膜した。第1層22の膜厚は2.5μmとし、Pのドーパント濃度は1×1020cm-3とした。また、第2層23におけるNのドーパント濃度は3×1020cm-3とした。
From this result, it can be understood that the thermoelectric power generation element 1 in which the surface of the second layer 23 is terminated with a LiO group can further reduce the work function of the emitter 2 and has excellent thermoelectron emission characteristics.
(Reference example)
This example is a reference example in which the thickness of the second layer 23 is changed to various thicknesses. The n-type diamond semiconductor constituting the first layer 22 of this example and the n-type diamond semiconductor constituting the second layer 23 were formed by microwave plasma CVD using the same conditions as in Example 1. The film thickness of the first layer 22 was 2.5 μm, and the dopant concentration of P was 1 × 10 20 cm −3 . The dopant concentration of N in the second layer 23 was 3 × 10 20 cm −3 .
 また、エミッタ基板21上に第1層22及び第2層23を成膜した後、第2層23の最表面に水素プラズマ処理を施し、第2層23の最表面を水素化させる処理を行った。更に、水素プラズマ処理に続けて、エミッタ2を水素雰囲気中に置くことにより第2層23の最表面を水素終端させる処理を行った。 Further, after the first layer 22 and the second layer 23 are formed on the emitter substrate 21, a hydrogen plasma process is performed on the outermost surface of the second layer 23, and a process of hydrogenating the outermost surface of the second layer 23 is performed. It was. Further, following the hydrogen plasma treatment, a treatment for terminating the outermost surface of the second layer 23 with hydrogen was performed by placing the emitter 2 in a hydrogen atmosphere.
 本例においては、表2に示すように、第2層23の膜厚が異なる4種の試料(試料E1~E2及び試料C1~C2)を作製した。更に、本例においては、試料E1~E2及び試料C1~C2との比較のために、エミッタ基板21と第2層23とを積層させた試料C3及びエミッタ基板21と第1層22とを積層させた試料C4を作製した。試料C3における第2層23の膜厚は2.0μmであり、Nのドーパント濃度は3×1020cm-3である。また、試料C4における第1層22の膜厚は2.5μmであり、Pのドーパント濃度は1×1020cm-3である。 In this example, as shown in Table 2, four types of samples (samples E1 to E2 and samples C1 to C2) having different film thicknesses of the second layer 23 were produced. Further, in this example, for comparison with the samples E1 to E2 and the samples C1 to C2, the sample C3 in which the emitter substrate 21 and the second layer 23 are stacked, the emitter substrate 21 and the first layer 22 are stacked. Sample C4 was prepared. The thickness of the second layer 23 in the sample C3 is 2.0 μm, and the dopant concentration of N is 3 × 10 20 cm −3 . The thickness of the first layer 22 in the sample C4 is 2.5 μm, and the dopant concentration of P is 1 × 10 20 cm −3 .
 また、本例の試料E1は、その厚み方向における単位面積当たりの内部抵抗が約0.7Ωcm2となった。なお、内部抵抗の測定は、2端子法を用いて行った。内部抵抗の測定に当たっては、試料E1における第2層23の最表面に金属電極を蒸着して形成し、この金属電極とエミッタ基板21とを2端子法の測定に用いる端子として用いた。 Moreover, the sample E1 of this example had an internal resistance per unit area in the thickness direction of about 0.7 Ωcm 2 . The internal resistance was measured using a two-terminal method. In measuring the internal resistance, a metal electrode was formed by vapor deposition on the outermost surface of the second layer 23 in the sample E1, and this metal electrode and the emitter substrate 21 were used as terminals used for the measurement in the two-terminal method.
 以上により得られた6種の試料について、以下の方法により熱電子放出性能の評価を行った。 The six samples obtained as described above were evaluated for thermionic emission performance by the following method.
 まず、真空容器内に配置されたカソード電極に試料を取り付け、カソード電極とエミッタ基板21とを電気的に接触させた。次いで、真空容器内の圧力が1×10-5Pa以下となるまで真空容器内の排気を行った。真空装置内の排気が完了した後、試料を600℃まで加熱し、カソード電極と、間隙を介してカソード電極に対面して配置されたアノード電極との間に電圧を印加し、両電極の間に電界強度が0.025V/μmとなる電界を形成させた。そして、試料から発生した熱電子電流を測定した。 First, a sample was attached to the cathode electrode arranged in the vacuum vessel, and the cathode electrode and the emitter substrate 21 were brought into electrical contact. Next, the vacuum container was evacuated until the pressure in the vacuum container became 1 × 10 −5 Pa or less. After the evacuation in the vacuum apparatus is completed, the sample is heated to 600 ° C., and a voltage is applied between the cathode electrode and the anode electrode disposed facing the cathode electrode through a gap. An electric field having an electric field strength of 0.025 V / μm was formed. And the thermionic current generated from the sample was measured.
 なお、上述した方法により得られる熱電子電流の大きさは、各々の試料をエミッタ2として熱電子発電素子1を構成したときの熱電子電流の大きさに概ね比例すると考えられる。 The magnitude of the thermionic current obtained by the above-described method is considered to be approximately proportional to the magnitude of the thermionic current when the thermoelectric power generating element 1 is configured with each sample as the emitter 2.
 表2及び図7に、各試料から発生した熱電子電流の大きさをエミッタ2の表面における単位面積当たりの電流密度に換算した結果を示す。なお、図7の縦軸は熱電子電流の電流密度であり、横軸は第2層23の膜厚である。 Table 2 and FIG. 7 show the results of converting the magnitude of the thermoelectron current generated from each sample into the current density per unit area on the surface of the emitter 2. Note that the vertical axis in FIG. 7 is the current density of the thermoelectron current, and the horizontal axis is the film thickness of the second layer 23.
Figure JPOXMLDOC01-appb-I000002
 表2及び図7より知られるように、第2層23の膜厚が40nm以下となる試料E1及び試料E2は、膜厚が40nmを超える試料C1及び試料C2や、第2層23のみを有する試料C3、第1層22のみを有する試料C4に比べて、熱電子電流の電流密度が格段に大きくなった。
Figure JPOXMLDOC01-appb-I000002
As can be seen from Table 2 and FIG. 7, the sample E1 and the sample E2 in which the film thickness of the second layer 23 is 40 nm or less include the sample C1 and the sample C2 having a film thickness exceeding 40 nm, or only the second layer 23. Compared to the sample C3 and the sample C4 having only the first layer 22, the current density of the thermionic current was significantly increased.
 また、表2より知られるように、第1層22上に膜厚60nmの第2層23を積層した試料C1は、第2層23のみを有する試料C3と同程度の電流密度を示した。このことから、第2層23の膜厚が60nm以上の場合には、第2層23の内部抵抗が熱電子放出性能に影響し、第1層22と第2層23とを積層させた効果が得られなくなっていると推測できる。従って、エミッタ基板21上に第1層22と第2層23とを積層させ、熱電子電流を増大させる作用効果を得るためには、第2層23の膜厚を40nm以下とすることが必要であることが理解できる。 As can be seen from Table 2, the sample C1 in which the second layer 23 having a film thickness of 60 nm was stacked on the first layer 22 showed the same current density as the sample C3 having only the second layer 23. From this, when the film thickness of the second layer 23 is 60 nm or more, the internal resistance of the second layer 23 affects the thermionic emission performance, and the effect of laminating the first layer 22 and the second layer 23 is obtained. Can be guessed. Therefore, in order to obtain the effect of increasing the thermionic current by laminating the first layer 22 and the second layer 23 on the emitter substrate 21, the thickness of the second layer 23 needs to be 40 nm or less. It can be understood that.
 なお、本例においては、特定金属元素Mを含む終端層24、24bの形成に替えて、第2層23の表面を水素終端しているが、第2層23の膜厚が熱電子電流の大きさに及ぼす影響は、特定金属元素Mを含む終端層24、24bを形成した場合と本質的に同じである。 In this example, the surface of the second layer 23 is hydrogen-terminated instead of the formation of the termination layers 24 and 24b containing the specific metal element M. The influence on the size is essentially the same as when the termination layers 24 and 24b including the specific metal element M are formed.
 上述した実施例1~3及び参考例には、エミッタ基板21の上に第1層22を直接積層させた例を示したが、エミッタ基板21と第1層22との間に界面中間層を具備させる構成をとることもできる。例えば、炭化チタンよりなる界面中間層を形成させる場合には、以下の方法をとることができる。 In the above-described Examples 1 to 3 and the reference example, the example in which the first layer 22 is directly laminated on the emitter substrate 21 is shown, but an interface intermediate layer is provided between the emitter substrate 21 and the first layer 22. It can also take the structure to comprise. For example, when an interface intermediate layer made of titanium carbide is formed, the following method can be employed.
 まず、エミッタ基板21の上に、蒸着によりチタン薄膜を作製する。次いで、第1層22及び第2層23をマイクロ波プラズマCVD法等により作製する。これにより、チタン薄膜と第1層22に含まれる炭素とが反応し、炭化チタンよりなる界面中間層が形成される。 First, a titanium thin film is formed on the emitter substrate 21 by vapor deposition. Next, the first layer 22 and the second layer 23 are formed by a microwave plasma CVD method or the like. As a result, the titanium thin film reacts with the carbon contained in the first layer 22 to form an interface intermediate layer made of titanium carbide.
 炭化チタンよりなる界面中間層を形成する場合には、界面中間層を形成しない場合に比べて、厚み方向におけるエミッタ2の内部抵抗をより低減することができる。そのため、熱電子電流をより増大させることができ、発電効率をより向上させることができる。 When the interface intermediate layer made of titanium carbide is formed, the internal resistance of the emitter 2 in the thickness direction can be further reduced as compared with the case where the interface intermediate layer is not formed. Therefore, the thermoelectron current can be further increased and the power generation efficiency can be further improved.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (15)

  1.  熱電子を発生させるエミッタ(2)と、
    上記熱電子を収集するコレクタ(3)と、を備える熱電子発電素子(1)であって、
     前記エミッタは、電気伝導性を有するエミッタ基板(21)と、リンをドナーとして含有するn型ダイヤモンド半導体から構成され、上記エミッタ基板上に積層された第1層(22)と、窒素をドナーとして含有するn型ダイヤモンド半導体から構成され、40nm以下の膜厚を有し、上記第1層上に積層された第2層(23)と、アルカリ金属元素及びMgからなる群より選ばれる1種または2種以上のMで定義された特定金属元素が含まれており、上記第2層の最表面に形成された終端層(24、24b)と、を有し、
     前記コレクタは、電気伝導性を有するコレクタ基板(31)を少なくとも有し、上記エミッタに対面して間隙を介して配置されている熱電子発電素子。
    An emitter (2) for generating thermal electrons;
    A thermoelectric generator (1) comprising the collector (3) for collecting the thermoelectrons,
    The emitter includes an emitter substrate (21) having electrical conductivity, an n-type diamond semiconductor containing phosphorus as a donor, a first layer (22) stacked on the emitter substrate, and nitrogen as a donor. One type selected from the group consisting of a second layer (23) composed of an n-type diamond semiconductor and having a film thickness of 40 nm or less and laminated on the first layer, and an alkali metal element and Mg A specific metal element defined by two or more kinds of M is included, and has a termination layer (24, 24b) formed on the outermost surface of the second layer,
    The said collector has a collector board | substrate (31) which has electrical conductivity at least, The thermoelectron power generation element arrange | positioned through the gap | interval facing the said emitter.
  2.  上記第2層を構成するn型ダイヤモンド半導体は、上記終端層に存在する上記特定金属元素により終端されている請求項1に記載の熱電子発電素子。 The thermoelectric generator according to claim 1, wherein the n-type diamond semiconductor constituting the second layer is terminated by the specific metal element present in the termination layer.
  3.  上記終端層は、更に酸素を含んでいる請求項1に記載の熱電子発電素子。 The thermoelectric generator according to claim 1, wherein the termination layer further contains oxygen.
  4.  上記終端層に存在する上記特定金属元素と上記酸素とがMO基を構成しており、上記第2層を構成するn型ダイヤモンド半導体は上記MO基により終端されている請求項3に記載の熱電子発電素子。 4. The heat according to claim 3, wherein the specific metal element and the oxygen present in the termination layer constitute an MO group, and the n-type diamond semiconductor constituting the second layer is terminated by the MO group. Electronic power generation element.
  5.  上記アルカリ金属元素は、Li、Na、KまたはCsのいずれかである請求項1~4のいずれか1項に記載の熱電子発電素子。 The thermoelectric power generation element according to any one of claims 1 to 4, wherein the alkali metal element is any one of Li, Na, K, and Cs.
  6.  上記終端層に含まれる上記特定金属元素の量は、0.2分子層以上10分子層以下に相当する量である請求項1~5のいずれか1項に記載の熱電子発電素子。 6. The thermoelectric generator according to claim 1, wherein the amount of the specific metal element contained in the termination layer is an amount corresponding to 0.2 molecular layer or more and 10 molecular layers or less.
  7.  上記エミッタ及び上記コレクタは、厚み方向における内部抵抗が1Ωcm2以下である請求項1~6のいずれか1項に記載の熱電子発電素子。 The thermoelectron power generation element according to any one of claims 1 to 6, wherein the emitter and the collector have an internal resistance in the thickness direction of 1 Ωcm 2 or less.
  8.  上記エミッタ基板は、Si、Ti、Mo、Ir、Ta、W、Ru、CrまたはPtのいずれかより構成されている請求項1~7のいずれか1項に記載の熱電子発電素子。 The thermoelectric generator according to any one of claims 1 to 7, wherein the emitter substrate is made of any one of Si, Ti, Mo, Ir, Ta, W, Ru, Cr, or Pt.
  9.  上記エミッタ基板と上記第1層との間に界面中間層を有しており、該界面中間層は、その厚み方向の抵抗と、上記エミッタ基板との間の界面抵抗と、上記第1層との間の界面抵抗との和が、上記エミッタ基板と上記第1層との間の界面抵抗よりも小さくなるよう構成されている請求項1~8のいずれか1項に記載の熱電子発電素子。 An interface intermediate layer is provided between the emitter substrate and the first layer, and the interface intermediate layer includes a resistance in the thickness direction, an interface resistance between the emitter substrate, the first layer, 9. The thermionic power generation element according to claim 1, wherein a sum of an interface resistance between the emitter substrate and the first layer is smaller than an interface resistance between the emitter substrate and the first layer. .
  10.  上記界面中間層は、金属炭化物より構成されている請求項9に記載の熱電子発電素子。 The thermoelectric generator according to claim 9, wherein the interface intermediate layer is made of a metal carbide.
  11.  電気伝導性を有するエミッタ基板(21)上にリンをドナーとして含有するn型ダイヤモンド半導体から構成された第1層(22)を形成し、
     該第1層上に窒素をドナーとして含有するn型ダイヤモンド半導体から構成された第2層(23)を形成し、
     該第2層の最表面にアルカリ金属元素及びMgからなる群より選ばれる1種または2種以上のMで定義された特定金属元素を吸着させることにより終端層(24、24b)を形成して、上記エミッタ基板、上記第1層、上記第2層及び上記終端層を備えたエミッタ(2)を作製し、
     電気伝導性を有するコレクタ基板(31)を少なくとも有するコレクタ(3)を上記エミッタとは別に準備し、
     上記エミッタと上記コレクタとを間隔をあけて互いに対面させること、を備える熱電子発電素子(1)の製造方法。
    Forming a first layer (22) composed of an n-type diamond semiconductor containing phosphorus as a donor on an electrically conductive emitter substrate (21);
    Forming a second layer (23) composed of an n-type diamond semiconductor containing nitrogen as a donor on the first layer;
    A termination layer (24, 24b) is formed on the outermost surface of the second layer by adsorbing one or more specific metal elements selected from the group consisting of alkali metal elements and Mg. Producing an emitter (2) comprising the emitter substrate, the first layer, the second layer and the termination layer;
    A collector (3) having at least a collector substrate (31) having electrical conductivity is prepared separately from the emitter,
    A method of manufacturing a thermoelectric generator (1) comprising: causing the emitter and the collector to face each other at an interval.
  12.  上記第2層を形成した後、上記特定金属元素を上記第2層上に吸着させることにより上記終端層(24)を形成すること、をさらに備える請求項11に記載の熱電子発電素子の製造方法。 The thermoelectric generator according to claim 11, further comprising: forming the termination layer (24) by adsorbing the specific metal element onto the second layer after forming the second layer. Method.
  13.  上記第2層を形成した後、表面酸化処理を施して上記第2層の上記最表面を酸素終端し、上記第2層の上記最表面に上記特定金属元素を吸着させることにより該特定金属元素及び酸素を含む上記終端層を形成すること、をさらに備える請求項11に記載の熱電子発電素子の製造方法。 After forming the second layer, surface oxidation treatment is performed to terminate the outermost surface of the second layer with oxygen, and the specific metal element is adsorbed on the outermost surface of the second layer. The method for producing a thermoelectric generator according to claim 11, further comprising: forming the termination layer containing oxygen.
  14.  上記アルカリ金属元素は、Li、Na、KまたはCsのいずれかである請求項11~13のいずれか1項に記載の熱電子発電素子の製造方法。 14. The method of manufacturing a thermoelectric generator according to claim 11, wherein the alkali metal element is Li, Na, K, or Cs.
  15.  上記第2層の上記最表面への上記特定金属元素の吸着量は、0.2分子層以上10分子層以下に相当する量である請求項11~14のいずれか1項に記載の熱電子発電素子の製造方法。

     
    The thermoelectron according to any one of claims 11 to 14, wherein the adsorption amount of the specific metal element on the outermost surface of the second layer is an amount corresponding to 0.2 molecular layer or more and 10 molecular layers or less. A method for producing a power generation element.

PCT/JP2016/001241 2015-03-13 2016-03-08 Thermionic power generation element and method for manufacturing same WO2016147603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-051168 2015-03-13
JP2015051168A JP2016171246A (en) 2015-03-13 2015-03-13 Thermionic power generation element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2016147603A1 true WO2016147603A1 (en) 2016-09-22

Family

ID=56919610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001241 WO2016147603A1 (en) 2015-03-13 2016-03-08 Thermionic power generation element and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2016171246A (en)
WO (1) WO2016147603A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106362A1 (en) * 2017-11-28 2019-06-06 The University Of Bristol Resonance enhanced work function reduction

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186650B2 (en) * 2017-05-02 2019-01-22 Spark Thermonics, Inc. System and method for work function reduction and thermionic energy conversion
JP6749283B2 (en) 2017-05-22 2020-09-02 株式会社東芝 Power generation element, power generation module, power generation device, and power generation system
WO2021095403A1 (en) * 2019-11-12 2021-05-20 株式会社Gceインスティチュート Method for controlling work function of electrode, power generation element, and method for producing power generation element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208620A (en) * 1997-01-24 1998-08-07 Hitachi Ltd Thin film electron source
JPH10223131A (en) * 1997-02-10 1998-08-21 Hamamatsu Photonics Kk Photoelectric surface
JPH11120899A (en) * 1997-10-16 1999-04-30 Hamamatsu Photonics Kk Secondary electron discharge device and electron tube using the device
JP2005228935A (en) * 2004-02-13 2005-08-25 Nagoya Institute Of Technology Multilayer structure
WO2009119179A1 (en) * 2008-03-28 2009-10-01 株式会社 東芝 Electron emission element
US20110221328A1 (en) * 2007-02-12 2011-09-15 Nemanich Robert J Thermionic Electron Emitters/Collectors Have a Doped Diamond Layer with Variable Doping Concentrations
JP2014116509A (en) * 2012-12-11 2014-06-26 Denso Corp Thermoelectric power generation element and method of manufacturing thermoelectric power generation element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208620A (en) * 1997-01-24 1998-08-07 Hitachi Ltd Thin film electron source
JPH10223131A (en) * 1997-02-10 1998-08-21 Hamamatsu Photonics Kk Photoelectric surface
JPH11120899A (en) * 1997-10-16 1999-04-30 Hamamatsu Photonics Kk Secondary electron discharge device and electron tube using the device
JP2005228935A (en) * 2004-02-13 2005-08-25 Nagoya Institute Of Technology Multilayer structure
US20110221328A1 (en) * 2007-02-12 2011-09-15 Nemanich Robert J Thermionic Electron Emitters/Collectors Have a Doped Diamond Layer with Variable Doping Concentrations
WO2009119179A1 (en) * 2008-03-28 2009-10-01 株式会社 東芝 Electron emission element
JP2014116509A (en) * 2012-12-11 2014-06-26 Denso Corp Thermoelectric power generation element and method of manufacturing thermoelectric power generation element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106362A1 (en) * 2017-11-28 2019-06-06 The University Of Bristol Resonance enhanced work function reduction

Also Published As

Publication number Publication date
JP2016171246A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
Zhao et al. Boosting the performance of WO3/n‐Si heterostructures for photoelectrochemical water splitting: from the role of Si to interface engineering
WO2016147603A1 (en) Thermionic power generation element and method for manufacturing same
JP5627390B2 (en) Photoelectric conversion element and manufacturing method thereof
WO2009119179A1 (en) Electron emission element
JP6165000B2 (en) Thermoelectric generator
WO2003077320A1 (en) Quantum device
JP5826094B2 (en) P-type semiconductor material and method for manufacturing photoelectric conversion device
TWI286773B (en) Field emission type electron source
JPWO2019163647A1 (en) How to manufacture solar cells
CN103219398B (en) Photoelectric conversion device
US9508533B2 (en) Thermionic converter and manufacturing method of electrode of thermionic converter
JP6360137B2 (en) Hydrogen sensor and manufacturing method thereof
JP4593085B2 (en) Electronic device with carbon fiber membrane
JP6213802B2 (en) Photoelectrode, method for producing the same, and photoelectrochemical cell
Yavuz et al. Ag nanowire coated reduced graphene oxide/n-silicon Schottky junction based solar cell
JP4925147B2 (en) cathode
JP5515613B2 (en) Semiconductor photoresponsive body
WO2018016291A1 (en) Electron emitting material and electron emitting element
JP3729536B2 (en) Method for forming rectifying electrode on diamond
JP2015084348A (en) Photovoltaic element and method for manufacturing the same
JP6032128B2 (en) Thermoelectric generator
JP4616538B2 (en) Manufacturing method of field emission electron source
JP5360766B2 (en) Diamond semiconductor device
JP2023025393A (en) Semiconductor element and method for manufacturing semiconductor element
JP6341477B2 (en) Diamond semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764436

Country of ref document: EP

Kind code of ref document: A1