WO2016147553A1 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
WO2016147553A1
WO2016147553A1 PCT/JP2016/000803 JP2016000803W WO2016147553A1 WO 2016147553 A1 WO2016147553 A1 WO 2016147553A1 JP 2016000803 W JP2016000803 W JP 2016000803W WO 2016147553 A1 WO2016147553 A1 WO 2016147553A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state imaging
imaging device
antenna
antenna wiring
Prior art date
Application number
PCT/JP2016/000803
Other languages
French (fr)
Japanese (ja)
Inventor
茂史 土肥
横山 賢司
油井 隆
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016147553A1 publication Critical patent/WO2016147553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present disclosure relates to a solid-state imaging device.
  • Pathological diagnosis which diagnoses diseases from tissues directly collected from affected areas of patients, is a very powerful technique for determining disease names and conditions.
  • FIG. 12 is a cross-sectional view of a solid-state imaging device as a biosensor disclosed in Patent Document 1.
  • This solid-state imaging device includes a solid-state imaging device 101, a culture vessel 102 held above the imaging surface of the solid-state imaging device 101, cells 104 that are specimens contained in the culture vessel 102, and growth of specimens.
  • the culture medium 103 for this is included. With such a configuration, it is possible to read the morphological information of the object with the solid-state imaging device 101 at low cost without using an expensive optical lens and system, and to perform pathological diagnosis from the image.
  • FIG. 13 is a cross-sectional view of the biological sample observation apparatus disclosed in Patent Document 2.
  • this biological sample observation device a portion of the sample 204 to be observed is positioned immediately above the light receiving surface of the solid-state imaging device 201 on the holder 205.
  • the sample is not protected and is in contact with the outside air, the sample is easily deteriorated due to the influence of the external environment, so that it is difficult to evaluate the sample with high accuracy and retesting after long-term storage is very difficult.
  • the solid-state imaging device and the drive unit need to transmit and receive image data, but there is no description regarding the wiring structure. It is necessary to provide a plurality of wirings and a plurality of connection terminals for data transfer from the solid-state imaging device to the image display unit, and the degree of freedom of the shape, arrangement, and structure of the solid-state imaging device 1 is restricted.
  • This disclosure provides a solid-state imaging device that is suitable for high-resolution imaging, suppresses deterioration of a specimen, and is suitable for cost reduction.
  • a solid-state imaging device includes a transparent substrate, at least one solid-state imaging device that images an imaging target, the periphery of the imaging surface of the solid-state imaging device, and the same as the imaging surface And at least one first antenna wiring for transmitting an image from the solid-state image sensor, and encapsulated by an encapsulant between the transparent substrate and the image plane of the solid-state image sensor. The captured object is sandwiched.
  • the distance between the specimen and the solid-state imaging device due to the presence of the container does not occur, and the light can be collected through the transparent substrate, so that a high-resolution image can be obtained.
  • the specimen since the specimen is enclosed and protected by an encapsulant between the transparent substrate and the solid-state imaging device, it is not in contact with the outside air and can suppress deterioration of the specimen due to the influence of the external environment. Diagnosis and re-examination after long-term storage can be performed.
  • the solid-state imaging device since the solid-state imaging device has the first antenna wiring and can transmit images without contact, the solid-state imaging device has a higher degree of freedom in shape, arrangement position, and structure. A low-cost and high-efficiency solid-state imaging device can be realized, such as eliminating the need for a through electrode therebetween.
  • FIG. 1A is a cross-sectional view illustrating a configuration example of a solid-state imaging device according to Embodiment 1.
  • FIG. 1B is a plan view illustrating a configuration example of the solid-state imaging apparatus according to the first embodiment.
  • FIG. 1C is a bird's-eye view and a cross-sectional view illustrating an example of a method for manufacturing the solid-state imaging device according to the first embodiment.
  • 2A is a cross-sectional view of a solid-state imaging device according to Modification 1 of Embodiment 1.
  • FIG. 2B is a plan view of the solid-state imaging device according to the first modification of the first embodiment.
  • 3A is a cross-sectional view of a solid-state imaging device according to Modification 2 of Embodiment 1.
  • FIG. 3B is a plan view of the solid-state imaging device according to the second modification of the first embodiment.
  • FIG. 4A is a cross-sectional view illustrating a configuration example of a solid-state imaging apparatus according to the second embodiment.
  • FIG. 4B is a plan view illustrating a configuration example of the solid-state imaging apparatus according to the second embodiment.
  • FIG. 5A is a cross-sectional view of a solid-state imaging device according to Modification 1 of Embodiment 2.
  • FIG. 5B is a plan view of the solid-state imaging device according to the first modification of the second embodiment.
  • FIG. 6A is a cross-sectional view of a solid-state imaging device according to Modification 2 of Embodiment 2.
  • FIG. 6B is a plan view of a solid-state imaging device according to Modification 2 of Embodiment 2.
  • FIG. 7A is a cross-sectional view of a solid-state imaging device according to Modification 3 of Embodiment 2.
  • FIG. 7B is a plan view of a solid-state imaging device according to Modification 3 of Embodiment 2.
  • FIG. 8A is a cross-sectional view illustrating a configuration example of the solid-state imaging apparatus according to the third embodiment.
  • FIG. 8B is a cross-sectional view illustrating another configuration example of the solid-state imaging apparatus according to the third embodiment.
  • FIG. 8C is a plan view illustrating a configuration example of the antenna substrate according to the third embodiment.
  • FIG. 8D is a plan view illustrating another configuration example of the antenna substrate according to the third embodiment.
  • FIG. 9A is a plan view of an antenna substrate according to the first modification of the third embodiment.
  • FIG. 9B is a plan view of the antenna substrate according to the second modification of the third embodiment.
  • FIG. 10 is a plan view of an antenna substrate according to the third modification of the third embodiment.
  • FIG. 11A is a cross-sectional view of the solid-state imaging device according to the fourth embodiment.
  • FIG. 11B is a plan view illustrating a configuration example of a transparent substrate according to Embodiment 4.
  • FIG. 12 is a cross-sectional view of a solid-state imaging device according to the prior art.
  • FIG. 13 is a cross-sectional view of a solid-state image sensor according to the prior art.
  • FIG. 1A is a cross-sectional view illustrating a configuration example of the solid-state imaging device 100 according to the first embodiment.
  • FIG. 1B is a plan perspective view illustrating a configuration example of the solid-state imaging device 100.
  • the planar perspective view in the present specification is a schematic diagram in which characteristic portions are emphasized in an easy-to-understand manner, and the hierarchical relationship is not accurately illustrated. The exact hierarchical relationship is as shown in the cross-sectional view.
  • FIG. 1A shows a cross section taken along line BB ′ in FIG. 1B.
  • the solid-state imaging device 1 includes a sensor unit 2 having an imaging surface in contact with the imaging object 4.
  • the imaging object 4 encapsulated by the encapsulating material 5 is sandwiched between the transparent substrate 6 and the imaging surface of the solid-state imaging device 1.
  • the imaging object 4 is encapsulated by an encapsulating material 5 between the imaging surface of the solid-state imaging device 1 and the transparent substrate 6.
  • the first antenna wiring 3 is an antenna for performing at least one of transmission of an image from the solid-state imaging device 1 and reception of power from the outside.
  • the first antenna wiring 3 is formed of a conductive wiring layer material on the same surface as the imaging surface of the solid-state imaging device 1, and is formed of, for example, aluminum, copper, or an alloy thereof.
  • the shape is described as a shape surrounding the outer periphery of the sensor unit 2 in FIG. 1B, there are no restrictions on the wiring shape and structure.
  • the first antenna wiring 3 is improved in radio wave transmission characteristics by forming the wiring length as long as possible.
  • the solid-state imaging device 100 includes the imaging target 4 (specimen) encapsulated by the encapsulating material 5 between the transparent substrate 6 and the solid-state imaging element 1.
  • the imaging surface of the sensor unit 2 is in contact with the imaging object 4 (specimen) and the encapsulating material 5.
  • the solid-state imaging device 100 has a structure in which the solid-state imaging device 1 and the first antenna wiring 3 are connected.
  • the distance between the specimen due to the presence of the container and the imaging surface of the solid-state imaging device 1 does not occur, and the light can be condensed via the transparent substrate 6, so that the resolution is high. High image quality can be obtained.
  • the imaging object 4 (specimen) is sealed and protected by the encapsulating material 5 between the transparent substrate 6 and the solid-state imaging device 1, it is not in contact with outside air and suppresses deterioration of the specimen due to the influence of the external environment. Therefore, accurate pathological diagnosis and reexamination after long-term storage can be performed.
  • the imaging object 4 is, for example, a pathological section, the size is approximately within 20 mm ⁇ 20 mm, and the thickness is about several microns.
  • the image of the imaging object 4 (specimen) photographed by the sensor unit 2 of the solid-state imaging device 1 by the first antenna wiring 3 can be transmitted in a non-contact manner from the solid-state imaging device 100, In addition to easy multi-terminalization and miniaturization by functionalization, it is also easy to extract data from external terminals from the solid-state imaging device 1.
  • the imaging surface is flattened and the contact between the imaging object 4 (specimen) and the imaging surface is easy compared to the case where a signal imaged by the sensor unit 2 is pulled out to the outside of the solid-state imaging device 1 by wire bonding or wiring.
  • any of the above-described solid-state image pickup devices such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS) can be selected, but light is converted into an electric signal in the light receiving portion.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the aperture ratio can be almost 100% with respect to incident light, and an image with higher resolution can be obtained.
  • a micro lens is generally formed on the sensor unit 2 on the surface of the solid-state imaging device.
  • the imaging object 4 (specimen) and the solid-state imaging device. Since 1 is in direct contact, a microlens is not necessary.
  • the manufacturing cost of the solid-state imaging device 1 and the manufacturing cost of the solid-state imaging device 100 can be reduced. Is possible.
  • the transparent substrate 6 is a translucent plate-shaped substrate formed of glass or resin, and for example, a slide glass (76 mm ⁇ 26 mm ⁇ 0.9 mm to 1.2 mm) used in general optical microscope observation is used. It is done.
  • FIG. 1C is a bird's-eye view showing an example of a manufacturing method of the solid-state imaging device 100 of the first embodiment.
  • the solid-state imaging device 100 As shown in FIG. 1C (a), the solid-state imaging device 100 according to Embodiment 1 first dehydrates the tissue of the collected imaging object 4 (specimen) and performs an embedding process with paraffin, and then several ⁇ m. Are sliced on the transparent substrate 6 to a desired thickness of about several tens of ⁇ m, paraffin is removed, and a dyed imaging object 4 (specimen) is prepared. Next, as shown in FIG. 1C (b), the encapsulating material 5 is applied on the imaging target 4 (specimen). Next, as shown in (c) of FIG. 1C, the solid-state imaging device 1 having the first antenna wiring 3 is mounted from the upper surfaces of the imaging object 4 (specimen) and the encapsulating material 5.
  • the solid-state imaging device 1 and the imaging device 1 are imaged while the solid-state imaging device 1 having the first antenna wiring 3 is pushed out of the encapsulating material 5 on the imaging target 4 (specimen).
  • the object 4 (specimen) is brought into contact, and the imaged object 4 (specimen) is encapsulated by the solid-state imaging device 1, the encapsulating material 5, and the transparent substrate 6, and the solid-state imaging device 100 is manufactured.
  • the solid-state imaging device 100 manufactured in this way is externally output to the pathological examination system using a reader / writer, socket, or probe device having a second antenna wiring facing the first antenna wiring 3.
  • the specimen form information (image) read by the solid-state imaging device 1 is output to an image processing device, a storage device, or the like using a plurality of external terminals, and a large number of signal inputs are also input to the solid-state imaging device 1. Therefore, it is necessary to take the form of a package for accommodating the entire solid-state imaging device 100 in a desired size while securing necessary external terminals.
  • the number of external terminals is increased due to the increase in the number of signals accompanying the enhancement of the function of the solid-state imaging element, and the size reduction required from the entire apparatus is achieved. And it is difficult to pull out the external terminal from the solid-state imaging device.
  • the signal of the electrode of the solid-state image sensor 1 can be transmitted by radio waves to the surface opposite to the specimen or the area outside the transparent substrate 6 by the first antenna wiring 3, the function of the solid-state image sensor 1 is enhanced. Therefore, it is easy to reduce the size, and data transmission from the solid-state imaging device 1 to an external reader / writer element is also easy.
  • the solid-state imaging device 1 is in contact with the imaging object 4 (specimen) as an element alone, but a plurality of solid-state imaging devices 1 and a plurality of first imaging devices are used as shown in FIGS. 7A and 7B described below.
  • the antenna wiring 3 may be in contact with the imaging object 4 (specimen).
  • the surface of the solid-state imaging device 1 is subjected to a hydrophilic surface treatment.
  • a hydrophilic surface treatment By carrying out such processing, it is possible to push out the encapsulating material 5 on the imaging object 4 (specimen) from the solid-state image sensing device 1 and suppress voids between the solid-state image sensing device and the sample. Accuracy is improved.
  • the material of the transparent substrate 6 is not limited to transparent glass and resin, but can be applied to the imaging object 4 (specimen) because observation light is transmitted as long as it is a transparent material even if it is an opaque material. It is.
  • the void between the solid-state imaging device and the specimen when encapsulated by the encapsulating material 5 is suppressed, but the imaging object 4 (specimen) even in a structure without the encapsulating material 5 Can be observed.
  • FIG. 2A is a cross-sectional view of the solid-state imaging device 200 according to this modification.
  • FIG. 2B is a plan perspective view of the solid-state imaging device 200.
  • the solid-state imaging device 200 is different from the solid-state imaging device 100 of FIGS. 1A and 1B in that it includes at least one capacitor element 7 formed on the same plane as the imaging surface.
  • different points will be mainly described.
  • the capacitor element 7 is arranged on the imaging surface side of the solid-state imaging element 1, and there is no restriction on the arrangement location and the number of arrangement, and the capacitor element 7 can be arranged in any region on the solid-state imaging element 1.
  • the capacitor element 7 is connected to the power supply wiring of the driving circuit of the sensor unit 2, the image processing circuit, or the driving circuit of the first antenna wiring 3, and is arranged for the purpose of supplementing the power supply voltage for driving the solid-state imaging device 1.
  • the power of the solid-state imaging device 200 is supplied by a radio wave transmission signal supplied from the second antenna wiring of the reader / writer device arranged outside.
  • the power supply voltage by this supply is weak, there exists a subject which the operation of driving the solid-state image sensor 1 or image data transmission becomes unstable. Therefore, the power supply voltage by the radio wave transmitted from the outside is stored in the capacitor element 7 disposed in the solid-state image pickup device 1 and used for the circuit operation in the solid-state image pickup device 1 so that the operation can be stabilized.
  • the capacitor element 7 can be realized by a structure in which an insulating layer is sandwiched between wiring layers in the solid-state imaging device 1 in the vertical direction, the horizontal direction, or both.
  • a conductive semiconductor wiring material such as aluminum, copper, or polysilicon can be used.
  • an insulating semiconductor interlayer film material such as polyimide, polybenzoxazole (PBO), SiN, or SiO 2 can be used.
  • the capacitor element 7 accumulates electric power supplied from the outside via the first antenna wiring 3, so that the power supply voltage is stabilized and the operation of the solid-state imaging element 1 is stabilized. Can be achieved.
  • FIG. 3A is a cross-sectional view of a solid-state imaging device 300 according to this modification.
  • FIG. 3B is a plan perspective view showing a second modification of the solid-state imaging device 300.
  • the solid-state imaging device 300 includes at least one second antenna wiring 8 formed on the back surface of the imaging surface and the imaging surface, as compared with the solid-state imaging device 200 of FIGS. 2A and 2B. The difference is that it includes at least one probe pad element 9 connected to the second antenna wiring 8 on the back surface.
  • different points will be mainly described.
  • the second antenna wiring 8 is an antenna for performing at least one of reception of an image from the first antenna wiring 3 and power supply by radio waves to the first antenna wiring 3.
  • the second antenna wiring 8 on the back surface of the imaging surface is disposed on the back surface of the imaging surface of the solid-state imaging device 1.
  • a conductive semiconductor wiring material such as aluminum, copper and an alloy thereof can be used.
  • a probe pad element 9 formed of a metal in the same layer as the second antenna wiring 8 or a connected metal layer is disposed in a part of the second antenna wiring 8.
  • the probe pad element 9 is used to output an image or supply power to a pathological examination system for a socket and a probe device in addition to the solid-state imaging element 1.
  • the first antenna wiring 3 disposed on the surface of the imaging surface and the second antenna wiring 8 disposed on the back surface of the imaging surface can perform at least one of data transmission (for example, image transmission) and power reception by radio waves. Even if there is no conductive wiring penetrating between the front surface and the back surface of the solid-state image sensor 1, an external image can be output via the probe pad element 9 disposed on the back surface of the solid-state image sensor 1.
  • the first antenna wiring 3 disposed on the surface of the solid-state imaging device 1 and the second antenna wiring 8 disposed on the back surface are wired at the same position on the front surface and the back surface. However, it is not always necessary to have the same arrangement.
  • the solid-state imaging device 300 it is possible to acquire an image on the back surface of the solid-state imaging device 1 or supply power from the back surface without the conductive wiring penetrating between the front surface and the back surface of the solid-state imaging device 1. Become. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
  • FIG. 4A is a cross-sectional view illustrating a configuration example of the solid-state imaging apparatus 400 according to the second embodiment.
  • FIG. 4B is a plan perspective view illustrating a configuration example of the solid-state imaging device 400.
  • FIG. 4A shows a cross section taken along line BB ′ in FIG. 4B.
  • a solid-state imaging device 400 in FIGS. 4A and 4B is formed around the transparent substrate 6, at least one solid-state imaging device 1 (one in FIGS. 4A and 4B), and the solid-state imaging device 1. 1 and at least one first portion formed in the extension portion 10 having the same plane as the imaging surface of the solid-state imaging device 1 and the extension portion 10 on the same plane as the imaging surface of the sensor unit 2 in the solid-state imaging device 1.
  • the antenna wiring 3 and the first antenna wiring 3 are connected, and the conductive wiring layer 11 having wirings 11a and 11b formed on the same surface as the imaging surface of the extension portion 10 is provided.
  • the imaging object 4 encapsulated by the encapsulating material 5 is sandwiched.
  • the extended portion 10 is formed of, for example, a mold material or an epoxy resin.
  • the imaging object 4 is encapsulated by an encapsulating material 5 between the imaging surface of the solid-state imaging device 1 and the transparent substrate 6.
  • the first antenna wiring 3 is an antenna for performing at least one of transmission of an image from the solid-state imaging device 1 and reception of power from the outside.
  • the first antenna wiring 3 is formed on the same surface of the imaging surface of the solid-state imaging device 1 and the extension portion 10, and is formed of a conductive wiring layer material such as aluminum, copper, or an alloy thereof.
  • a circuit in the solid-state imaging device 1 and the first antenna wiring 3 are connected by a wiring 11 a of the conductive wiring layer 11.
  • the wiring 11a conducts transmission data (image or power) of the solid-state imaging device 1.
  • the conductive wiring layer 11 may be a wiring in the same layer as the first antenna wiring 3 or a wiring in a different layer, and the wiring layer material is a conductive material such as aluminum, copper or an alloy thereof. If it is.
  • the shape of the first antenna wiring 3 is described as a shape surrounding the outer periphery of the solid-state imaging device 1 in FIG. 4B, there is no restriction on the wiring shape and structure, but transmission of radio waves can be achieved by forming the wiring length as long as possible. Improved characteristics.
  • the solid-state imaging device 400 includes the imaging target 4 (specimen) encapsulated by the encapsulating material 5 between the transparent substrate 6 and the solid-state imaging element 1.
  • the solid-state imaging device 1 is held in a direction in which the sensor unit 2 (that is, the imaging surface) is in contact with the imaging object 4 (specimen) and the encapsulating material 5.
  • the solid-state imaging device 400 has a structure in which a circuit for driving the solid-state imaging device 1 and the first antenna wiring 3 are connected.
  • the distance between the specimen due to the presence of the container and the imaging surface of the solid-state imaging device 1 does not occur, and the light can be condensed via the transparent substrate 6, so that the resolution is high. High image quality can be obtained.
  • the imaging object 4 (specimen) is sealed and protected by the encapsulating material 5 between the transparent substrate 6 and the solid-state imaging device 1, it is not in contact with outside air and suppresses deterioration of the specimen due to the influence of the external environment. Therefore, accurate pathological diagnosis and reexamination after long-term storage can be performed.
  • extension portion 10 on the outer peripheral portion of the solid-state image sensor 1 can expand the region where the first antenna wiring 3 is arranged without depending on the outer size of the solid-state image sensor 1, and the antenna transmission characteristics can be improved. Gain can be improved.
  • the void between the solid-state imaging device and the specimen when encapsulated by the encapsulant 5 is suppressed, but the imaging object 4 (analyte) even if the structure does not have the encapsulant 5 Can be observed.
  • FIG. 5A is a cross-sectional view of a solid-state imaging device 500 according to this modification.
  • FIG. 5B is a plan perspective view of the solid-state imaging device 500.
  • the solid-state imaging device 500 includes at least one capacitor element 7 formed on the same plane as the imaging surface and the wiring 11b, as compared with the solid-state imaging device 400 of FIGS. 4A and 4B.
  • the point to prepare is different.
  • different points will be mainly described.
  • the capacitor element 7 is disposed on the extended portion 10 on the same surface as the sensor portion 2 of the solid-state imaging device, and there is no restriction on the arrangement place and the number of arranged, and the capacitor element 7 can be arranged in any region on the extended portion 10. is there.
  • the capacitor element 7 is connected to the power supply wiring of the driving circuit of the sensor unit 2, the image processing circuit, or the driving circuit of the first antenna wiring 3 through the wiring 11 b, and supplies the power supply voltage for driving the solid-state imaging device 1. Arranged to make up.
  • the power of the solid-state imaging device 500 is supplied by a radio wave transmission signal supplied from the first antenna wiring 3 of the reader / writer device arranged outside.
  • the power supply voltage by this supply is weak, there exists a subject which the operation of driving the solid-state image sensor 1 or image data transmission becomes unstable. Therefore, the power supply voltage by the radio wave transmitted from the outside is stored in the capacitor element 7 disposed in the solid-state image pickup device 1 and used for the circuit operation in the solid-state image pickup device 1 so that the operation can be stabilized.
  • the capacitor element 7 can be realized with a structure in which an insulating layer is sandwiched between wiring layers.
  • the wiring layer material is a conductive wiring material such as aluminum or copper
  • the insulating layer material is a structure in which an insulating interlayer film material such as polyimide, polybenzoxazole (PBO), SiN, or SiO 2 is disposed on the surface layer of the extension portion 10.
  • PBO polybenzoxazole
  • SiN silicon oxide
  • SiO 2 SiO 2 oxide
  • the capacitor element 7 is formed in the extended portion 10 as compared with the solid-state imaging devices 200 and 300 in FIGS. 2A, 2B, 3A, and 3B.
  • the degree of freedom of the shape, arrangement position, and structure can be further improved. Further, the degree of freedom of arrangement of the capacitor element 7 can be improved. Since the capacitor element 7 accumulates electric power supplied from the outside via the first antenna wiring 3, the power supply voltage can be stabilized and the operation of the solid-state imaging element 1 can be stabilized.
  • FIG. 6A is a cross-sectional view of a solid-state imaging device 600 according to this modification.
  • FIG. 6B is a plan perspective view of the solid-state imaging device 600.
  • the solid-state imaging device 600 is at least one first surface formed on the back surface side of the expansion unit 10 on the back surface side of the imaging surface compared to the solid-state imaging device 500 of FIGS. 5A and 5B. 2 antenna wiring 8 and at least one probe pad element 9 connected to the second antenna wiring 8 on the back surface of the imaging surface.
  • different points will be mainly described.
  • the second antenna wiring 8 is an antenna for performing at least one of reception of an image from the first antenna wiring 3 and power supply by radio waves to the first antenna wiring 3.
  • the second antenna wiring 8 on the back surface of the imaging surface is disposed on the back surface of the imaging surface of the solid-state imaging device 1.
  • a conductive semiconductor wiring material such as aluminum, copper and an alloy thereof can be used.
  • a probe pad element 9 formed of the same metal as the second antenna wiring 8 or a connected metal layer is disposed on a part of the second antenna wiring 8, and a socket or a probe is provided outside the solid-state imaging device 1. Using the device, output to the pathological examination system externally.
  • the first antenna wiring 3 disposed on the surface of the imaging surface and the second antenna wiring 8 disposed on the back surface of the imaging surface can transmit data by radio waves, and are between the front surface and the back surface of the solid-state imaging device 1. Even if there is no conductive wiring penetrating, external output is possible via the probe pad element 9 disposed on the back surface of the solid-state imaging device 1.
  • the first antenna wiring 3 disposed on the front surface and the second antenna wiring 8 disposed on the back surface are wired at the same position on the front surface and the back surface. It is not necessary to have the same arrangement.
  • the size of the second antenna wiring 8 can be made larger than that of the solid-state imaging device 1, and power can be easily received.
  • the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
  • FIG. 7A is a cross-sectional view of a solid-state imaging device 700 according to this modification.
  • FIG. 7B is a plan perspective view of the solid-state imaging device 700.
  • the solid-state imaging device 700 includes a plurality of solid-state imaging devices 1 instead of one, as compared with the solid-state imaging device 600 of FIGS. 6A and 6B, and the first antenna wiring 3.
  • the difference is that a plurality of second antenna wirings 8 are provided instead of one, and a plurality of second antenna wirings 8 are provided instead of one.
  • different points will be mainly described.
  • the solid-state imaging device 1 and the first antenna wiring 3 correspond one-to-one
  • the first antenna wiring 3 and the second antenna wiring 8 also correspond one-to-one.
  • Each of the plurality of solid-state imaging devices 1 has a surface having the sensor unit 2 disposed on the same surface side as the expansion unit 10.
  • the wiring 11 a of the conductive wiring layer 11 connects the plurality of solid-state imaging devices 1 to the first antenna wiring 3 provided in the extension unit 10.
  • the solid-state imaging device 700 in which a plurality of solid-state imaging devices 1 are mounted can adjust the size of the solid-state imaging device 700 and the number of the solid-state imaging devices 1 to be mounted by cutting each solid-state imaging device 1 unit. It becomes possible.
  • the second antenna wiring 8 and the first antenna wiring 3 are arranged on the outer periphery of each solid-state image sensor 1, and after being individually cut, the solid-state image sensor 1 and the second antenna The wiring 8 and the first antenna wiring 3 are connected and electrically connected.
  • the first antenna wiring 3 arranged on the front surface and the second antenna wiring 8 arranged on the back surface are wired at the same arrangement position on the front surface and the back surface. It is not necessary to have the same arrangement.
  • the second antenna wiring 8 is wired in the same number of pairs as the solid-state imaging device 1, but it does not necessarily have to be the same number.
  • a configuration of a plurality of systems in which a plurality of first antenna wirings are provided for one solid-state imaging device may be used, and a configuration in which a plurality of solid-state imaging devices 1 are provided for one first antenna wiring and the first antenna wiring is provided.
  • a structure having a control circuit configuration to be used together may be used.
  • the solid-state imaging device 700 even when the imaging target 4 (specimen) is larger than one imaging surface of the solid-state imaging device 1, a plurality of solid-state imaging devices 1 are mounted. A wider area can be observed. Even when a plurality of imaging objects 4 (specimens) are mounted on the transparent substrate 6, observation is possible with the plurality of solid-state imaging devices 1. In addition, the plurality of solid-state imaging devices 1 can be individually controlled.
  • FIG. 8A is a cross-sectional view illustrating a configuration example of the solid-state imaging device 800 according to the present embodiment.
  • FIG. 8B is a cross-sectional view illustrating another configuration example of the solid-state imaging apparatus 800 according to the present embodiment.
  • FIG. 8C is a plan perspective view of the solid-state imaging device 800.
  • the solid-state imaging device 800 is different from the solid-state imaging device 100 of FIGS. 1A and 1B in that an antenna substrate 12 is added.
  • an antenna substrate 12 is added.
  • the antenna substrate 12 includes at least one second antenna wiring 13 for receiving an image from the first antenna wiring 3.
  • the second antenna wiring 13 is an antenna for performing at least one of receiving an image from the first antenna wiring 3 and supplying electric power to the first antenna wiring 3 by radio waves.
  • the antenna substrate 12 is a part or all of a reader / writer device that supplies power to the solid-state image sensor 1 and performs data transmission (such as image reception) with the solid-state image sensor 1. That is, in FIGS. 8A to 8C, the antenna substrate 12 includes at least the second antenna wiring 13, but as illustrated in FIG. 8D, the radio circuit 16a that receives an image via the second antenna wiring 13 and the first antenna wiring 13 There may be provided a control IC 16 having two antenna wirings 13 and a power feeding circuit 16 b for supplying power to the first antenna wiring 3.
  • the antenna substrate 12 is in contact with the back surface side of the solid-state imaging device 1 or arranged in a non-contact positional relationship, or is in contact with the back surface side of the transparent substrate 6 on the side in contact with the imaging object 4 or in a non-contact positional relationship. It is arranged with.
  • the antenna substrate 12 has at least one second antenna wiring 13 on the first antenna wiring 3 side of the solid-state imaging device 1.
  • the material of the second antenna wiring 13 a conductive wiring material such as aluminum, copper and its alloy can be used.
  • a probe pad element formed of the same metal as the second antenna wiring 13 or a connected metal layer is arranged in a part of the second antenna wiring, and a pathological examination system using a socket or a probe device. Connect with.
  • the first antenna wiring 3 disposed on the surface of the imaging surface and the second antenna wiring 13 disposed on the antenna substrate 12 can transmit data by radio waves, and conductive wiring between the front and back surfaces of the solid-state imaging device 1. Even if there is no route, external output is possible via the second antenna wiring 13.
  • the first antenna wiring 3 arranged on the surface of the solid-state imaging device 1 and the second antenna wiring 13 arranged on the antenna substrate 12 are located at the same arrangement position on the front surface and the back surface. Although it is wired, it is not always necessary to have the same arrangement.
  • the probe pad element is arranged on the second antenna wiring 13, but the second antenna wiring 13 and the pathological examination system may be directly connected by a conductive wire instead of the probe pad element.
  • the antenna substrate 12 is arranged below the transparent substrate 6. However, even if it is arranged on the back side of the solid-state imaging device 1 as shown in FIG. It is.
  • the solid-state imaging device 800 even if there is no conductive wiring penetrating between the front surface and the back surface of the solid-state imaging device 1, an image can be acquired via the second antenna wiring of the antenna substrate 12 or from the back surface. Electric power can be supplied. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
  • FIG. 9A is a plan perspective view of the antenna substrate 12 in the circular example.
  • FIG. 9A is different from FIG. 8C in that an opening 14 is provided in a part of the antenna substrate 12.
  • FIG. 9A is different from FIG. 8C in that an opening 14 is provided in a part of the antenna substrate 12.
  • the opening 14 of the antenna substrate 12 is imaged on the transparent substrate 6. They are arranged in a positional relationship overlapping the object 4 (specimen) region.
  • the imaging object 4 (specimen) captures an image with the sensor unit 2 of the solid-state imaging device 1. At that time, the light passes through the opening 14 of the antenna substrate 12 and further passes through the transparent substrate 6, and the imaging object is captured. By transmitting light through the object 4 (specimen), it is possible to secure a sufficient amount of light for imaging and to capture a clear image.
  • the first antenna wiring 3 arranged on the surface of the solid-state imaging device 1 and the second antenna wiring 13 arranged on the antenna substrate 12 are wired at the same arrangement position on the front surface and the back surface. However, they are not necessarily arranged in the same manner.
  • the second antenna wiring 13 arranged on the antenna substrate 12 is wired on the outer periphery of the opening 14, but may be another wiring position.
  • FIG. 9A one opening 14 is arranged, but a structure in which a plurality of openings 14 are arranged to secure a light guide path as shown in FIG. 9B may be used.
  • the opening 14 is shown as a quadrangle, but the same effect can be obtained even if it is a different shape such as a circle or a polygon.
  • the antenna substrate 12 is arranged below the transparent substrate 6. However, even if it is arranged on the back side of the solid-state imaging device 1 as shown in FIG. It is.
  • the probe pad element is arranged on the second antenna wiring 13, but the second antenna wiring 13 and the pathological examination system may be directly connected by a conductive wire instead of the probe pad.
  • the antenna substrate 12 shown in FIGS. 9A and 9B can capture a clear image by ensuring that the light passes through the opening of the antenna substrate and the transparent substrate 6 to capture a sufficient amount of light. it can.
  • FIG. 10 is a perspective plan view of the antenna substrate 12 in this modification.
  • the antenna substrate 12 of FIG. 10 is different from the antenna substrate 12 of FIG. 8C in that it is formed of a light-transmitting resin material or a glass material.
  • a light-transmitting resin material or a glass material.
  • the antenna substrate 12 When the antenna substrate 12 is arranged on the back side of the transparent substrate 6 on the side in contact with the imaging target as shown in FIG. 8A, the antenna substrate 12 is made of a translucent resin material or glass material.
  • the imaging object 4 (specimen) captures an image with the sensor unit 2 of the solid-state imaging device 1, light passes through the reader / writer 12, passes through the transparent substrate 6, and the imaging object 4 ( By transmitting the light through the (specimen), it is possible to secure a sufficient amount of light for photographing and to capture a clear image.
  • the first antenna wiring 3 disposed on the surface of the solid-state imaging device 1 and the second antenna wiring 13 disposed on the antenna substrate 12 are wired at the same position on the front surface and the back surface. However, they are not necessarily arranged in the same manner.
  • the antenna substrate 12 may be arranged below the transparent substrate 6 as shown in FIG. 8A, or may be arranged on the back side of the solid-state imaging device 1 as shown in FIG. 8B.
  • the probe pad element is arranged on the second antenna wiring 13, but the structure may be such that the second antenna wiring 13 and the pathological examination system are directly connected by a conductive wire instead of the probe pad element.
  • the antenna substrate 12 of FIG. 10 when the image is taken, the light passes through the antenna substrate and the transparent substrate 6 so that the amount of light necessary for photographing can be secured and a clear image can be taken.
  • Embodiment 4 Next, the solid-state imaging device of Embodiment 4 will be described.
  • FIG. 11A is a cross-sectional view of a solid-state imaging device 1100 according to this modification.
  • FIG. 11B is a plan perspective view of the solid-state imaging device 1100.
  • the solid-state imaging device 1100 is different from FIGS. 1A and 1B in that the transparent substrate 6 includes a second antenna wiring 13.
  • the transparent substrate 6 includes a second antenna wiring 13.
  • the transparent substrate 6 provided with the second antenna wiring 13 is arranged in a positional relationship in contact with the solid-state imaging device 1 and the imaging object. At least one second antenna wiring 13 is formed on the first antenna wiring 3 side of the solid-state imaging device 1 and data is transmitted by radio waves.
  • the imaging target 4 (specimen) is imaged by the sensor unit 2 of the solid-state imaging device 1.
  • the light passes through the transparent substrate 6 and is transmitted through the imaging target 4 (specimen), so that a sufficient amount of light can be secured and a clear image can be taken.
  • the first antenna wiring 3 disposed on the surface of the solid-state imaging device 1 and the second antenna wiring 13 disposed on the transparent substrate 6 are disposed at the same position on the front surface and the back surface. Are not necessarily arranged in the same manner.
  • the second antenna wiring 13 of the transparent substrate 6 may be laid at any position in the front surface, back surface, or substrate of the transparent substrate 6.
  • the probe pad element is arranged on the second antenna wiring 13, but the structure may be such that the second antenna wiring 13 and the pathological examination system are directly connected by a conductive wire instead of the probe pad element.
  • the solid-state imaging device 1100 even if there is no conductive wiring penetrating between the front surface and the back surface of the solid-state imaging device 1, the image acquisition or the back surface is performed via the second antenna wiring of the transparent substrate 6. It is possible to supply power from. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
  • FIG. 1C is applicable not only to the first embodiment but also to other embodiments and modifications.
  • the sensor unit 2 of the solid-state imaging device 1 may be an imaging device such as a CMOS type, a BSI (Back Side Illumination) type, an FSI (Front Side Illumination) type, or an organic CMOS type as well as a CCD type.
  • CMOS type a CMOS type
  • BSI Back Side Illumination
  • FSI Front Side Illumination
  • organic CMOS type an organic CMOS type as well as a CCD type.
  • the selection of the CCD type generally has technical characteristics such as a low power consumption and low cost CMOS type and a high quality CCD type, and can be used according to the application.
  • the solid-state imaging device includes the transparent substrate 6, at least one solid-state imaging device 1 that images the imaging target 4, and the periphery of the imaging surface of the solid-state imaging device 1. And at least one first antenna wiring 3 formed on the same plane as the plane, and the imaging object 4 encapsulated by the encapsulant 5 is sandwiched between the transparent substrate 6 and the imaging plane of the solid-state imaging device 1.
  • the first antenna wiring 3 performs at least one of transmission of an image from the solid-state imaging device 1 and reception of power from the outside.
  • the imaging object 4 (specimen) is sealed and protected by the encapsulating material 5 between the transparent substrate 6 and the solid-state imaging device 1, it is not in contact with outside air and suppresses deterioration of the specimen due to the influence of the external environment. can do. Therefore, accurate pathological diagnosis and reexamination after long-term storage can be performed.
  • the solid-state imaging device 1 since the solid-state imaging device 1 has the first antenna wiring 3 and can transmit images in a non-contact manner, the solid-state imaging device 1 has a higher degree of freedom in shape, arrangement position, and structure. Therefore, it is possible to realize a low-cost and high-efficiency solid-state imaging device such that a through electrode between the front surface and the back surface is not necessary.
  • the first antenna wiring 3 may surround the imaging surface.
  • the wiring length of the first antenna wiring 3 can be increased, and the radio wave transmission characteristics can be improved.
  • the solid-state imaging device further includes at least one capacitor element 7 that is formed on the same plane as the imaging surface and is connected to the power supply wiring in the solid-state imaging device 1, and the first antenna wiring 3 is externally provided. You may receive the electric power by an electromagnetic wave and supply electric power to the solid-state image sensor 1 via a power supply wiring.
  • the capacitor element 7 since the capacitor element 7 accumulates electric power supplied from the outside via the first antenna wiring 3, the power supply voltage can be stabilized and the operation of the solid-state imaging element 1 can be stabilized. .
  • the solid-state imaging device further includes at least one second antenna wiring 8 formed on the back surface of the imaging surface and at least one probe pad element 9 connected to the second antenna wiring 8.
  • the second antenna wiring 8 may perform at least one of reception of an image from the first antenna wiring 3 and power supply by radio waves to the first antenna wiring 3.
  • the solid-state imaging device is further formed around the solid-state imaging device 1, holds the solid-state imaging device 1, and has an extension unit 10 having the same plane as the imaging surface of the solid-state imaging device 1,
  • the first antenna wiring 3 may be connected, and a wiring 11 a formed on the same surface as the imaging surface of the expansion unit 10 may be provided.
  • the wiring length of the 1st antenna wiring 3 can be lengthened, it will become easier to receive electric power, and the shape of the solid-state image sensor 1 The degree of freedom of the arrangement position and structure can be improved.
  • the extension unit 10 connects at least one capacitor element 7 formed on the same plane as the imaging surface, the solid-state imaging device 1 and the capacitor element 7, and is formed on the same plane as the imaging surface of the extension unit 10. Wiring 11a may be provided.
  • the capacitor element 7 since the capacitor element 7 accumulates electric power supplied from the outside via the first antenna wiring 3, the power supply voltage can be stabilized and the operation of the solid-state imaging element 1 can be stabilized. .
  • the extension unit 10 includes at least one second antenna wiring 8 formed on the back surface of the imaging surface, and at least one probe pad element (9) connected to the second antenna wiring.
  • the second antenna wiring 8 may perform at least one of reception of an image from the first antenna wiring 3 and power supply by radio waves to the first antenna wiring.
  • the solid-state imaging device may include a plurality of solid-state imaging elements 1, and the imaging surfaces of the plurality of solid-state imaging elements 1 may be included in the same plane.
  • the solid-state imaging device may include a plurality of first antenna wirings 3 corresponding to the plurality of solid-state imaging elements 1.
  • the imaging object 4 (specimen) is larger than one imaging surface of the solid-state imaging device 1, a wider area can be observed by mounting a plurality of solid-state imaging devices 1. It becomes. Even when a plurality of imaging objects 4 (specimens) are mounted on the transparent substrate 6, observation is possible with the plurality of solid-state imaging devices 1. In addition, the plurality of solid-state imaging devices 1 can be individually controlled.
  • the solid-state imaging device includes an antenna substrate 12 and at least one second antenna wiring 13 formed on the antenna substrate 12 for receiving an image from the first antenna wiring 3.
  • the antenna wiring 13 may perform at least one of reception of an image from the first antenna wiring 3 and power supply by radio waves to the first antenna wiring 3.
  • the antenna substrate 12 is in contact with the back surface side of the solid-state imaging device 1 or in a non-contact position, or is in contact with the back surface side of the transparent substrate 6 on the side in contact with the imaging target or in a non-contact position. It may be arranged.
  • the back side of the solid-state imaging device 1 or the back side of the transparent substrate 6 that is in contact with the imaging target it is possible to acquire an image or supply power from the back side via the second antenna wiring. It becomes. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
  • the second antenna wiring 13 may be wired in a ring shape, and the antenna substrate 12 may include an opening 14 having a size larger than the imaging surface inside the ring shape.
  • the antenna substrate 12 may be formed of a translucent resin material or a glass material.
  • the light passes through the antenna substrate 12 and the transparent substrate 6 to ensure the amount of light necessary for imaging and to capture a clear image.
  • the transparent substrate 6 includes at least one second antenna wiring 13, and the second antenna wiring 13 receives an image from the first antenna wiring 3 and leads to the first antenna wiring 3. You may perform at least one of the electric power supply by an electromagnetic wave.
  • the present disclosure can be suitably used for, for example, a solid-state imaging device for pathological examination that requires high-resolution video imaging, reliability, miniaturization, and manufacturability.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Endoscopes (AREA)

Abstract

The present invention is provided with: a transparent substrate (6); at least one solid state imaging element (1) for capturing an image of a subject to be imaged; and at least one antenna wire (3) formed near the imaging surface of the solid state imaging element (1) and on the same plane as the imaging surface, said wire (3) transmitting images from the solid state imaging element (1). A sealing material (5) is used to seal a subject (4) to be imaged between the transparent substrate (6) and the imaging surface of the solid state imaging element (1).

Description

固体撮像装置Solid-state imaging device
 本開示は、固体撮像装置に関する。 The present disclosure relates to a solid-state imaging device.
 患者の患部から直接採取した組織から病気の診断を行う病理診断は、病名・病状を確定する上で非常に有力な手法である。 Pathological diagnosis, which diagnoses diseases from tissues directly collected from affected areas of patients, is a very powerful technique for determining disease names and conditions.
 図12は、特許文献1に開示されたバイオセンサとしての固体撮像装置の断面図である。この固体撮像装置は、固体撮像素子101と、この固体撮像素子101の撮像面の上部に保持された培養容器102と、この培養容器102に収容された検体である細胞104と、検体の生育のための培地103を含むものである。このような構成とすることで、高価な光学レンズとシステムを使用することなく低コストで被対象物の形態情報を固体撮像素子101で読み取り、その映像から病理診断することができる。 FIG. 12 is a cross-sectional view of a solid-state imaging device as a biosensor disclosed in Patent Document 1. This solid-state imaging device includes a solid-state imaging device 101, a culture vessel 102 held above the imaging surface of the solid-state imaging device 101, cells 104 that are specimens contained in the culture vessel 102, and growth of specimens. The culture medium 103 for this is included. With such a configuration, it is possible to read the morphological information of the object with the solid-state imaging device 101 at low cost without using an expensive optical lens and system, and to perform pathological diagnosis from the image.
 図13は、特許文献2に開示された生物試料観察装置の断面図である。この生物試料観察装置は、試料204の観察したい部分を保持具205上の固体撮像素子201の受光面のすぐ上に位置される。このような構造とすることで、試料204と固体撮像素子201の間に光学系を設ける必要がなくなるため、装置が大幅に簡略化され、観察操作が簡便になる。 FIG. 13 is a cross-sectional view of the biological sample observation apparatus disclosed in Patent Document 2. In this biological sample observation device, a portion of the sample 204 to be observed is positioned immediately above the light receiving surface of the solid-state imaging device 201 on the holder 205. With such a structure, it is not necessary to provide an optical system between the sample 204 and the solid-state imaging device 201, so that the apparatus is greatly simplified and the observation operation is simplified.
特開平6-311879号公報Japanese Patent Laid-Open No. 6-311879 特開平4-316478号公報JP-A-4-316478
 しかしながら特許文献1の技術を用いて病理診断する場合、検体と固体撮像素子の間には容器が存在するため、固体撮像素子の光電変換部と検体の間に、培養容器の厚み分の距離が生じ、解像度の高い映像を得ることが難しい。 However, when performing pathological diagnosis using the technique of Patent Document 1, since a container exists between the specimen and the solid-state imaging device, there is a distance corresponding to the thickness of the culture container between the photoelectric conversion unit of the solid-state imaging element and the specimen. It is difficult to obtain a high-resolution video.
 また、検体が保護されておらず外気に接しており、外部環境の影響で検体が容易に劣化するため、高精度の検体評価が難しく長期保管後の再検査も非常に困難である。 Also, because the sample is not protected and is in contact with the outside air, the sample is easily deteriorated due to the influence of the external environment, so that it is difficult to evaluate the sample with high accuracy and retesting after long-term storage is very difficult.
 また、特許文献2の技術を用いて病理診断する場合、固体撮像素子と、駆動部とは画像データの送受信が必要であるが、その配線構造に関する記載が無い。固体撮像素子から画像表示部へのデータ転送用に複数の配線および複数の接続端子を備える必要があり、固体撮像素子1の形状、配置および構造の自由度が制約される。 Further, when performing pathological diagnosis using the technique of Patent Document 2, the solid-state imaging device and the drive unit need to transmit and receive image data, but there is no description regarding the wiring structure. It is necessary to provide a plurality of wirings and a plurality of connection terminals for data transfer from the solid-state imaging device to the image display unit, and the degree of freedom of the shape, arrangement, and structure of the solid-state imaging device 1 is restricted.
 本開示は、高解像度の撮像に適し、検体の劣化を抑制し、低コスト化に適した固体撮像装置を提供する。 This disclosure provides a solid-state imaging device that is suitable for high-resolution imaging, suppresses deterioration of a specimen, and is suitable for cost reduction.
 上記課題を解決するため本開示における固体撮像装置は、透明性基板と、撮像対象物を撮像する少なくとも1つの固体撮像素子と、前記固体撮像素子の撮像面の周辺で、かつ前記撮像面と同一面に形成され、前記固体撮像素子からの画像を送信するための少なくとも1つの第1のアンテナ配線とを備え、前記透明性基板と前記固体撮像素子の撮像面との間に封入材によって封入された撮像対象物が挟まれる。 In order to solve the above-described problem, a solid-state imaging device according to the present disclosure includes a transparent substrate, at least one solid-state imaging device that images an imaging target, the periphery of the imaging surface of the solid-state imaging device, and the same as the imaging surface And at least one first antenna wiring for transmitting an image from the solid-state image sensor, and encapsulated by an encapsulant between the transparent substrate and the image plane of the solid-state image sensor. The captured object is sandwiched.
 本開示における固体撮像装置によれば、容器の存在による検体と固体撮像素子間の距離が生じず、透明性基板を介して集光することができるため解像度の高い映像を得ることが出来る。 According to the solid-state imaging device of the present disclosure, the distance between the specimen and the solid-state imaging device due to the presence of the container does not occur, and the light can be collected through the transparent substrate, so that a high-resolution image can be obtained.
 また、検体は透明性基板と固体撮像素子の間で封入材によって封入し保護されているため、外気に接しておらず外部環境の影響による検体の劣化を抑制することができるため、正確な病理診断および長期保管後の再検査を実施することが出来る。 In addition, since the specimen is enclosed and protected by an encapsulant between the transparent substrate and the solid-state imaging device, it is not in contact with the outside air and can suppress deterioration of the specimen due to the influence of the external environment. Diagnosis and re-examination after long-term storage can be performed.
 また、固体撮像素子は第1のアンテナ配線を有し、非接触で画像の送信を行えるため、固体撮像素子の形状、配置位置、構造の自由度が向上し、固体撮像素子内の表面、裏面間の貫通電極が不要になるなど、低コストで高効率な固体撮像装置を実現することができる。 Further, since the solid-state imaging device has the first antenna wiring and can transmit images without contact, the solid-state imaging device has a higher degree of freedom in shape, arrangement position, and structure. A low-cost and high-efficiency solid-state imaging device can be realized, such as eliminating the need for a through electrode therebetween.
図1Aは、実施形態1に係る固体撮像装置の構成例を示す断面図である。1A is a cross-sectional view illustrating a configuration example of a solid-state imaging device according to Embodiment 1. FIG. 図1Bは、実施形態1に係る固体撮像装置の構成例を示す平面図である。FIG. 1B is a plan view illustrating a configuration example of the solid-state imaging apparatus according to the first embodiment. 図1Cは、実施形態1に係る固体撮像装置の製造方法の一例を示す鳥瞰図および断面図である。FIG. 1C is a bird's-eye view and a cross-sectional view illustrating an example of a method for manufacturing the solid-state imaging device according to the first embodiment. 図2Aは、実施形態1の変形例1に係る固体撮像装置の断面図である。2A is a cross-sectional view of a solid-state imaging device according to Modification 1 of Embodiment 1. FIG. 図2Bは、実施形態1の変形例1に係る固体撮像装置の平面図である。FIG. 2B is a plan view of the solid-state imaging device according to the first modification of the first embodiment. 図3Aは、実施形態1の変形例2に係る固体撮像装置の断面図である。3A is a cross-sectional view of a solid-state imaging device according to Modification 2 of Embodiment 1. FIG. 図3Bは、実施形態1の変形例2に係る固体撮像装置の平面図である。FIG. 3B is a plan view of the solid-state imaging device according to the second modification of the first embodiment. 図4Aは、実施形態2に係る固体撮像装置の構成例を示す断面図である。FIG. 4A is a cross-sectional view illustrating a configuration example of a solid-state imaging apparatus according to the second embodiment. 図4Bは、実施形態2に係る固体撮像装置の構成例を示す平面図である。FIG. 4B is a plan view illustrating a configuration example of the solid-state imaging apparatus according to the second embodiment. 図5Aは、実施形態2の変形例1に係る固体撮像装置の断面図である。FIG. 5A is a cross-sectional view of a solid-state imaging device according to Modification 1 of Embodiment 2. 図5Bは、実施形態2の変形例1に係る固体撮像装置の平面図である。FIG. 5B is a plan view of the solid-state imaging device according to the first modification of the second embodiment. 図6Aは、実施形態2の変形例2に係る固体撮像装置の断面図である。FIG. 6A is a cross-sectional view of a solid-state imaging device according to Modification 2 of Embodiment 2. 図6Bは、実施形態2の変形例2に係る固体撮像装置の平面図である。6B is a plan view of a solid-state imaging device according to Modification 2 of Embodiment 2. FIG. 図7Aは、実施形態2の変形例3に係る固体撮像装置の断面図である。FIG. 7A is a cross-sectional view of a solid-state imaging device according to Modification 3 of Embodiment 2. 図7Bは、実施形態2の変形例3に係る固体撮像装置の平面図である。FIG. 7B is a plan view of a solid-state imaging device according to Modification 3 of Embodiment 2. 図8Aは、実施形態3に係る固体撮像装置の構成例を示す断面図である。FIG. 8A is a cross-sectional view illustrating a configuration example of the solid-state imaging apparatus according to the third embodiment. 図8Bは、実施形態3に係る固体撮像装置の他の構成例を示す断面図である。FIG. 8B is a cross-sectional view illustrating another configuration example of the solid-state imaging apparatus according to the third embodiment. 図8Cは、実施形態3に係るアンテナ基板の構成例を示す平面図である。FIG. 8C is a plan view illustrating a configuration example of the antenna substrate according to the third embodiment. 図8Dは、実施形態3に係るアンテナ基板の他の構成例を示す平面図である。FIG. 8D is a plan view illustrating another configuration example of the antenna substrate according to the third embodiment. 図9Aは、実施形態3の変形例1に係るアンテナ基板の平面図である。FIG. 9A is a plan view of an antenna substrate according to the first modification of the third embodiment. 図9Bは、実施形態3の変形例2に係るアンテナ基板の平面図である。FIG. 9B is a plan view of the antenna substrate according to the second modification of the third embodiment. 図10は、実施形態3の変形例3に係るアンテナ基板の平面図である。FIG. 10 is a plan view of an antenna substrate according to the third modification of the third embodiment. 図11Aは、実施形態4に係る固体撮像装置の断面図である。FIG. 11A is a cross-sectional view of the solid-state imaging device according to the fourth embodiment. 図11Bは、実施形態4に係る透明性基板の構成例を示す平面図である。FIG. 11B is a plan view illustrating a configuration example of a transparent substrate according to Embodiment 4. 図12は、従来技術に係る固体撮像素子の断面図である。FIG. 12 is a cross-sectional view of a solid-state imaging device according to the prior art. 図13は、従来技術に係る固体撮像素子の断面図である。FIG. 13 is a cross-sectional view of a solid-state image sensor according to the prior art.
 以下、本開示の実施の形態に係る固体撮像装置を、図面を参照しながら説明する。 Hereinafter, a solid-state imaging device according to an embodiment of the present disclosure will be described with reference to the drawings.
 但し、必要以上に詳細な説明は省略する場合がある。 However, more detailed explanation than necessary may be omitted.
 例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は当業者が本開示を十分に理解するためのものであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 For example, there may be a case where detailed descriptions of already well-known matters and duplicate descriptions for substantially the same configuration are omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. It should be noted that the accompanying drawings and the following description are for the purpose of fully understanding the present disclosure by those skilled in the art, and are not intended to limit the claimed subject matter.
 (実施形態1)
 図1Aは実施形態1に係る固体撮像装置100の構成例を示す断面図である。図1Bは固体撮像装置100の構成例を示す平面透視図である。本明細書における平面透視図は、特徴的な部分をわかり易く強調している模式図であり、階層関係は正確には図示していない。正確な階層関係は断面図に図示される通りである。また、図1Aは、図1B中のB-B’の断面を示す。
(Embodiment 1)
FIG. 1A is a cross-sectional view illustrating a configuration example of the solid-state imaging device 100 according to the first embodiment. FIG. 1B is a plan perspective view illustrating a configuration example of the solid-state imaging device 100. The planar perspective view in the present specification is a schematic diagram in which characteristic portions are emphasized in an easy-to-understand manner, and the hierarchical relationship is not accurately illustrated. The exact hierarchical relationship is as shown in the cross-sectional view. FIG. 1A shows a cross section taken along line BB ′ in FIG. 1B.
 図1A、図1Bにおける固体撮像装置100は、透明性基板6と、少なくとも1つの固体撮像素子1(図1A、図1Bでは1つ)と、第1のアンテナ配線3とを備える。また固体撮像素子1は、撮像対象物4と接する撮像面を有するセンサ部2を備える。透明性基板6と固体撮像素子1の撮像面との間には封入材5によって封入された撮像対象物4が挟まれる。撮像対象物4は、固体撮像素子1の撮像面と透明性基板6との間に封入材5によって封入される。 1A and 1B includes a transparent substrate 6, at least one solid-state image sensor 1 (one in FIGS. 1A and 1B), and a first antenna wiring 3. The solid-state imaging device 1 includes a sensor unit 2 having an imaging surface in contact with the imaging object 4. The imaging object 4 encapsulated by the encapsulating material 5 is sandwiched between the transparent substrate 6 and the imaging surface of the solid-state imaging device 1. The imaging object 4 is encapsulated by an encapsulating material 5 between the imaging surface of the solid-state imaging device 1 and the transparent substrate 6.
 第1のアンテナ配線3は、固体撮像素子1からの画像の送信、および、外部からの電力受信の少なくとも一方を行うためのアンテナである。第1のアンテナ配線3は、固体撮像素子1の撮像面と同一面に、導電性配線層材料で形成され、例えばアルミ、銅、それらの合金などにより形成される。その形状は図1Bではセンサ部2の外周を囲む形状で記載しているが、配線形状、構造に制約は無い。第1のアンテナ配線3は、極力配線長を長く形成することで電波の伝送特性が向上する。 The first antenna wiring 3 is an antenna for performing at least one of transmission of an image from the solid-state imaging device 1 and reception of power from the outside. The first antenna wiring 3 is formed of a conductive wiring layer material on the same surface as the imaging surface of the solid-state imaging device 1, and is formed of, for example, aluminum, copper, or an alloy thereof. Although the shape is described as a shape surrounding the outer periphery of the sensor unit 2 in FIG. 1B, there are no restrictions on the wiring shape and structure. The first antenna wiring 3 is improved in radio wave transmission characteristics by forming the wiring length as long as possible.
 このように、固体撮像装置100は、透明性基板6と固体撮像素子1との間に封入材5によって封入された撮像対象物4(検体)を有する。固体撮像素子1は、そのセンサ部2の撮像面が撮像対象物4(検体)および封入材5と接する。また、固体撮像装置100は、固体撮像素子1と第1のアンテナ配線3が接続された構造を有する。 As described above, the solid-state imaging device 100 includes the imaging target 4 (specimen) encapsulated by the encapsulating material 5 between the transparent substrate 6 and the solid-state imaging element 1. In the solid-state imaging device 1, the imaging surface of the sensor unit 2 is in contact with the imaging object 4 (specimen) and the encapsulating material 5. Further, the solid-state imaging device 100 has a structure in which the solid-state imaging device 1 and the first antenna wiring 3 are connected.
 実施形態1の固体撮像装置100によれば、容器の存在による検体と固体撮像素子1の撮像面との間の距離が生じず、透明性基板6を介して集光することができるため解像度の高い映像を得ることが出来る。 According to the solid-state imaging device 100 of the first embodiment, the distance between the specimen due to the presence of the container and the imaging surface of the solid-state imaging device 1 does not occur, and the light can be condensed via the transparent substrate 6, so that the resolution is high. High image quality can be obtained.
 また、撮像対象物4(検体)は透明性基板6と固体撮像素子1の間で封入材5によって封入し保護されているため、外気に接しておらず外部環境の影響による検体の劣化を抑制することができるため、正確な病理診断および長期保管後の再検査を実施することが出来る。 In addition, since the imaging object 4 (specimen) is sealed and protected by the encapsulating material 5 between the transparent substrate 6 and the solid-state imaging device 1, it is not in contact with outside air and suppresses deterioration of the specimen due to the influence of the external environment. Therefore, accurate pathological diagnosis and reexamination after long-term storage can be performed.
 撮像対象物4(検体)は例えば、病理切片であり、その大きさはおおよそ20mm×20mm以内であり、厚みは数ミクロン程度である。 The imaging object 4 (specimen) is, for example, a pathological section, the size is approximately within 20 mm × 20 mm, and the thickness is about several microns.
 また、第1のアンテナ配線3によって固体撮像素子1のセンサ部2で撮影した撮像対象物4(検体)の画像を固体撮像装置100から非接触でデータ伝送可能なため、固体撮像素子1の高機能化による多端子化および小型化が容易であることに加え、固体撮像素子1からの外部端子のデータ取り出しも容易である。 In addition, since the image of the imaging object 4 (specimen) photographed by the sensor unit 2 of the solid-state imaging device 1 by the first antenna wiring 3 can be transmitted in a non-contact manner from the solid-state imaging device 100, In addition to easy multi-terminalization and miniaturization by functionalization, it is also easy to extract data from external terminals from the solid-state imaging device 1.
 さらに、ワイヤボンドや配線によってセンサ部2で撮影した信号を固体撮像素子1の外部へ引出す場合と比較して撮像面は平坦となり、撮像対象物4(検体)と撮像面の接触も容易であるし、封入材5による撮像対象物4(検体)の封入時に気泡(ボイド)を発生させることなく封入することが可能となる。 Furthermore, the imaging surface is flattened and the contact between the imaging object 4 (specimen) and the imaging surface is easy compared to the case where a signal imaged by the sensor unit 2 is pulled out to the outside of the solid-state imaging device 1 by wire bonding or wiring. In addition, it is possible to encapsulate the imaging object 4 (specimen) with the encapsulating material 5 without generating bubbles (voids).
 固体撮像素子1には、電荷結合素子(CCD)、相補性金属酸化膜半導体(CMOS)いずれの上述の固体撮像素子も選択することが可能であるが、受光部に光を電気信号に変換する機能を持つ有機薄膜を用いたCMOSを選択することで、原理的に入射光に対して開口率をほぼ100%にすることができ、より解像度の高い映像を得ることが可能である。 As the solid-state image pickup device 1, any of the above-described solid-state image pickup devices such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS) can be selected, but light is converted into an electric signal in the light receiving portion. By selecting a CMOS using an organic thin film having a function, in principle, the aperture ratio can be almost 100% with respect to incident light, and an image with higher resolution can be obtained.
 また、通常固体撮像素子には表面のセンサ部2にマイクロレンズが形成されるのが一般的であるが、固体撮像装置100における固体撮像素子1では、撮像対象物4(検体)と固体撮像素子1が直接接しているため、マイクロレンズが不要である。 Further, in general, a micro lens is generally formed on the sensor unit 2 on the surface of the solid-state imaging device. However, in the solid-state imaging device 1 in the solid-state imaging device 100, the imaging object 4 (specimen) and the solid-state imaging device. Since 1 is in direct contact, a microlens is not necessary.
 このようなマイクロレンズを有しない構成とすることで固体撮像素子1の製造時のマイクロレンズ形成の工程を省略できるため、固体撮像素子1の製造コストおよび固体撮像装置100の製造コストを低減することが可能である。 Since the microlens formation process at the time of manufacturing the solid-state imaging device 1 can be omitted by adopting such a configuration without the microlens, the manufacturing cost of the solid-state imaging device 1 and the manufacturing cost of the solid-state imaging device 100 can be reduced. Is possible.
 透明性基板6は、ガラスまたは樹脂で形成された透光性の板状基板であり、例えば一般的な光学顕微鏡観察で用いられるスライドガラス(76mm×26mm×0.9mm~1.2mm)が用いられる。 The transparent substrate 6 is a translucent plate-shaped substrate formed of glass or resin, and for example, a slide glass (76 mm × 26 mm × 0.9 mm to 1.2 mm) used in general optical microscope observation is used. It is done.
 次に、実施形態1の固体撮像装置100の製造方法について説明する。 Next, a method for manufacturing the solid-state imaging device 100 according to Embodiment 1 will be described.
 図1Cは実施形態1の固体撮像装置100の製造方法の一例を示す鳥瞰図である。 FIG. 1C is a bird's-eye view showing an example of a manufacturing method of the solid-state imaging device 100 of the first embodiment.
 実施形態1の固体撮像装置100は、図1Cの(a)に示すように、まず、採取した撮像対象物4(検体)の組織を脱水し、パラフィンにより包埋処理を行った後、数μmから数十μm程度の所望の厚さに透明性基板6上に薄切りし、パラフィンを取り除き、染色した撮像対象物4(検体)を準備する。次に、図1Cの(b)に示すように、撮像対象物4(検体)上に封入材5を塗布する。次に、図1Cの(c)に示すように、第1のアンテナ配線3を有した固体撮像素子1を撮像対象物4(検体)及び封入材5の上面から搭載する。 As shown in FIG. 1C (a), the solid-state imaging device 100 according to Embodiment 1 first dehydrates the tissue of the collected imaging object 4 (specimen) and performs an embedding process with paraffin, and then several μm. Are sliced on the transparent substrate 6 to a desired thickness of about several tens of μm, paraffin is removed, and a dyed imaging object 4 (specimen) is prepared. Next, as shown in FIG. 1C (b), the encapsulating material 5 is applied on the imaging target 4 (specimen). Next, as shown in (c) of FIG. 1C, the solid-state imaging device 1 having the first antenna wiring 3 is mounted from the upper surfaces of the imaging object 4 (specimen) and the encapsulating material 5.
 次に、図1Cの(d)に示すように、第1のアンテナ配線3を有した固体撮像素子1を撮像対象物4(検体)上の封入材5を押出しながら、固体撮像素子1と撮像対象物4(検体)をコンタクトさせ、撮像対象物4(検体)を固体撮像素子1と封入材5および透明性基板6によって封入し、固体撮像装置100を製造する。 Next, as shown in FIG. 1C (d), the solid-state imaging device 1 and the imaging device 1 are imaged while the solid-state imaging device 1 having the first antenna wiring 3 is pushed out of the encapsulating material 5 on the imaging target 4 (specimen). The object 4 (specimen) is brought into contact, and the imaged object 4 (specimen) is encapsulated by the solid-state imaging device 1, the encapsulating material 5, and the transparent substrate 6, and the solid-state imaging device 100 is manufactured.
 このように、固体撮像素子1と撮像対象物4(検体)の間に距離が生じないようにコンタクトさせることにより高解像度の映像を得ることが可能である。 As described above, it is possible to obtain a high-resolution image by making contact between the solid-state imaging device 1 and the imaging object 4 (specimen) so as not to cause a distance.
 このようにして製造した固体撮像装置100は、第1のアンテナ配線3に対向する第2のアンテナ配線を持つリーダライタやソケットやプローブ装置を用いて、病理検査システムに外部出力する。 The solid-state imaging device 100 manufactured in this way is externally output to the pathological examination system using a reader / writer, socket, or probe device having a second antenna wiring facing the first antenna wiring 3.
 固体撮像素子1により読み取られた検体の形態情報(画像)は、複数の外部端子を用いて画像処理装置や記憶装置などに出力され、さらに、固体撮像素子1に対しても多数の信号入力が必要となるため、必要な外部端子を確保しつつ、固体撮像装置100全体を所望の寸法に納めるためのパッケージ形態をとる必要がある。 The specimen form information (image) read by the solid-state imaging device 1 is output to an image processing device, a storage device, or the like using a plurality of external terminals, and a large number of signal inputs are also input to the solid-state imaging device 1. Therefore, it is necessary to take the form of a package for accommodating the entire solid-state imaging device 100 in a desired size while securing necessary external terminals.
 この点で、例えば、特許文献1において外部端子および素子のパッケージ形態に関して、固体撮像素子の高機能化に伴う信号数の増大に起因する外部端子数の増加および装置全体から要求される小型化への対応や固体撮像素子からの外部端子の引出しが困難である。 In this regard, for example, with respect to the external terminal and the package form of the element in Patent Document 1, the number of external terminals is increased due to the increase in the number of signals accompanying the enhancement of the function of the solid-state imaging element, and the size reduction required from the entire apparatus is achieved. And it is difficult to pull out the external terminal from the solid-state imaging device.
 本実施形態では、第1のアンテナ配線3によって固体撮像素子1の電極の信号を検体とは反対の面または透明性基板6外の領域に電波により伝送できるため、固体撮像素子1の高機能化による多端子化の影響が無く、小型化が容易に行え、固体撮像素子1からの外部のリーダライタ素子へのデータ伝送も容易である。 In the present embodiment, since the signal of the electrode of the solid-state image sensor 1 can be transmitted by radio waves to the surface opposite to the specimen or the area outside the transparent substrate 6 by the first antenna wiring 3, the function of the solid-state image sensor 1 is enhanced. Therefore, it is easy to reduce the size, and data transmission from the solid-state imaging device 1 to an external reader / writer element is also easy.
 実施形態1において、固体撮像素子1は素子として単独で撮像対象物4(検体)と接触させているが、以下に示す図7A、図7Bのように複数の固体撮像素子1および複数の第1のアンテナ配線3を搭載した状態で撮像対象物4(検体)と接触していてもよい。 In the first embodiment, the solid-state imaging device 1 is in contact with the imaging object 4 (specimen) as an element alone, but a plurality of solid-state imaging devices 1 and a plurality of first imaging devices are used as shown in FIGS. 7A and 7B described below. The antenna wiring 3 may be in contact with the imaging object 4 (specimen).
 また、固体撮像素子1の表面は親水性の表面処理を施すことが好ましい。このような処理を実施することにより、固体撮像素子1を撮像対象物4(検体)上の封入材5を押出し、封入する際の固体撮像素子と検体間のボイドを抑制することができ、検査精度が向上する。 Further, it is preferable that the surface of the solid-state imaging device 1 is subjected to a hydrophilic surface treatment. By carrying out such processing, it is possible to push out the encapsulating material 5 on the imaging object 4 (specimen) from the solid-state image sensing device 1 and suppress voids between the solid-state image sensing device and the sample. Accuracy is improved.
 また、透明性基板6の材料は、透明性のガラス、樹脂だけでなく、不透明材料であっても透光性材料であれば、撮像対象物4(検体)に観察光が透過するため適用可能である。 The material of the transparent substrate 6 is not limited to transparent glass and resin, but can be applied to the imaging object 4 (specimen) because observation light is transmitted as long as it is a transparent material even if it is an opaque material. It is.
 また、図1A、図1Bにおいて、封入材5によって封入する際の固体撮像素子と検体間のボイドを抑制しているが、封入材5の無い構造であっても、撮像対象物4(検体)の観察が可能である。 1A and 1B, the void between the solid-state imaging device and the specimen when encapsulated by the encapsulating material 5 is suppressed, but the imaging object 4 (specimen) even in a structure without the encapsulating material 5 Can be observed.
 (実施形態1の変形例1)
 次に、実施形態1の固体撮像装置の変形例1について説明する。
(Modification 1 of Embodiment 1)
Next, a first modification of the solid-state imaging device according to the first embodiment will be described.
 図2Aは、本変形例に係る固体撮像装置200の断面図である。図2Bは固体撮像装置200の平面透視図である。図2Aおよび図2Bに示すように、固体撮像装置200は図1A、図1Bの固体撮像装置100と比べて、撮像面と同一面に形成される少なくとも1つのコンデンサ素子7を備える点が異なる。以下異なる点を中心に説明する。 FIG. 2A is a cross-sectional view of the solid-state imaging device 200 according to this modification. FIG. 2B is a plan perspective view of the solid-state imaging device 200. 2A and 2B, the solid-state imaging device 200 is different from the solid-state imaging device 100 of FIGS. 1A and 1B in that it includes at least one capacitor element 7 formed on the same plane as the imaging surface. Hereinafter, different points will be mainly described.
 コンデンサ素子7は、固体撮像素子1の撮像面側に配置され、配置場所、配置される数に制約は無く、固体撮像素子1上のどの領域においても配置可能である。コンデンサ素子7は、センサ部2の駆動回路、画像処理回路、または第1のアンテナ配線3の駆動回路の電源配線と接続され、固体撮像素子1を駆動するための電源電圧を補う目的で配置される。 The capacitor element 7 is arranged on the imaging surface side of the solid-state imaging element 1, and there is no restriction on the arrangement location and the number of arrangement, and the capacitor element 7 can be arranged in any region on the solid-state imaging element 1. The capacitor element 7 is connected to the power supply wiring of the driving circuit of the sensor unit 2, the image processing circuit, or the driving circuit of the first antenna wiring 3, and is arranged for the purpose of supplementing the power supply voltage for driving the solid-state imaging device 1. The
 固体撮像装置200の電源は、外部に配置されるリーダライタ装置の第2のアンテナ配線から供給される電波の伝送信号により、電源を供給される。この供給による電源電圧が微弱な場合、固体撮像素子1を駆動または撮像画像データ伝送の動作が不安定になる課題がある。そこで固体撮像素子1内に配置されたコンデンサ素子7に外部から伝送される電波による電源電圧を蓄え、固体撮像素子1内の回路動作に用いることで動作の安定化が可能となる。コンデンサ素子7は、固体撮像素子1内の配線層間に絶縁層を縦方向または横方向またはその両方に挟む構造で実現可能である。配線層の材料は、アルミ、銅、ポリシリコンなど導電性の半導体配線材料を用いることができる。絶縁層の材料はポリイミド、ポリベンゾオキサゾール(PBO)、SiN、SiO2など絶縁性の半導体層間膜材料を用いることができる。 The power of the solid-state imaging device 200 is supplied by a radio wave transmission signal supplied from the second antenna wiring of the reader / writer device arranged outside. When the power supply voltage by this supply is weak, there exists a subject which the operation of driving the solid-state image sensor 1 or image data transmission becomes unstable. Therefore, the power supply voltage by the radio wave transmitted from the outside is stored in the capacitor element 7 disposed in the solid-state image pickup device 1 and used for the circuit operation in the solid-state image pickup device 1 so that the operation can be stabilized. The capacitor element 7 can be realized by a structure in which an insulating layer is sandwiched between wiring layers in the solid-state imaging device 1 in the vertical direction, the horizontal direction, or both. As a material for the wiring layer, a conductive semiconductor wiring material such as aluminum, copper, or polysilicon can be used. As the material of the insulating layer, an insulating semiconductor interlayer film material such as polyimide, polybenzoxazole (PBO), SiN, or SiO 2 can be used.
 このように固体撮像装置200によれば、コンデンサ素子7は、外部から第1のアンテナ配線3を介して供給された電力を蓄積するので、電源電圧を安定化して固体撮像素子1の動作の安定化を図ることができる。 As described above, according to the solid-state imaging device 200, the capacitor element 7 accumulates electric power supplied from the outside via the first antenna wiring 3, so that the power supply voltage is stabilized and the operation of the solid-state imaging element 1 is stabilized. Can be achieved.
 (実施形態1の変形例2)
 次に、実施形態1の固体撮像装置の変形例2について説明する。
(Modification 2 of Embodiment 1)
Next, a second modification of the solid-state imaging device according to the first embodiment will be described.
 図3Aは、本変形例に係る固体撮像装置300の断面図である。図3Bは固体撮像装置300の変形例2を示す平面透視図である。図3Aおよび図3Bに示すように、固体撮像装置300は図2A、図2Bの固体撮像装置200と比べて、撮像面の裏面に形成される少なくとも1つの第2のアンテナ配線8と、撮像面の裏面の第2のアンテナ配線8と接続される少なくとも1つのプローブパッド素子9とを備える点が異なる。以下異なる点を中心に説明する。 FIG. 3A is a cross-sectional view of a solid-state imaging device 300 according to this modification. FIG. 3B is a plan perspective view showing a second modification of the solid-state imaging device 300. As shown in FIGS. 3A and 3B, the solid-state imaging device 300 includes at least one second antenna wiring 8 formed on the back surface of the imaging surface and the imaging surface, as compared with the solid-state imaging device 200 of FIGS. 2A and 2B. The difference is that it includes at least one probe pad element 9 connected to the second antenna wiring 8 on the back surface. Hereinafter, different points will be mainly described.
 第2のアンテナ配線8は、第1のアンテナ配線3からの画像の受信、および、第1のアンテナ配線3への電波による電力供給の少なくとも一方を行うためのアンテナである。撮像面の裏面の第2のアンテナ配線8は、固体撮像素子1の撮像面の裏面に配置される。第2のアンテナ配線8の材料は、アルミ、銅とその合金など導電性の半導体配線材料を用いることができる。第2のアンテナ配線8の一部には、第2のアンテナ配線8と同層の金属または接続された金属層で形成されたプローブパッド素子9が配置される。プローブパッド素子9は、固体撮像素子1外にソケットやプローブ装置に対する、病理検査システムに画像出力、または電力供給に用いられる。撮像面の表面に配置される第1のアンテナ配線3と、撮像面の裏面に配置される第2のアンテナ配線8は電波によるデータ伝送(例えば画像送信)および電力受信の少なくとも一方が可能で、固体撮像素子1の表面と裏面の間に貫通する導電配線が無くても、固体撮像素子1の裏面に配置されるプローブパッド素子9を経由して画像の外部出力が可能となる。 The second antenna wiring 8 is an antenna for performing at least one of reception of an image from the first antenna wiring 3 and power supply by radio waves to the first antenna wiring 3. The second antenna wiring 8 on the back surface of the imaging surface is disposed on the back surface of the imaging surface of the solid-state imaging device 1. As a material of the second antenna wiring 8, a conductive semiconductor wiring material such as aluminum, copper and an alloy thereof can be used. A probe pad element 9 formed of a metal in the same layer as the second antenna wiring 8 or a connected metal layer is disposed in a part of the second antenna wiring 8. The probe pad element 9 is used to output an image or supply power to a pathological examination system for a socket and a probe device in addition to the solid-state imaging element 1. The first antenna wiring 3 disposed on the surface of the imaging surface and the second antenna wiring 8 disposed on the back surface of the imaging surface can perform at least one of data transmission (for example, image transmission) and power reception by radio waves. Even if there is no conductive wiring penetrating between the front surface and the back surface of the solid-state image sensor 1, an external image can be output via the probe pad element 9 disposed on the back surface of the solid-state image sensor 1.
 ここで、図3A、図3Bにおいて、固体撮像素子1の表面に配置される第1のアンテナ配線3と、裏面に配置される第2のアンテナ配線8とは、表面、裏面で同じ位置に配線しているが、必ずしも同一配置にする必要はない。 Here, in FIG. 3A and FIG. 3B, the first antenna wiring 3 disposed on the surface of the solid-state imaging device 1 and the second antenna wiring 8 disposed on the back surface are wired at the same position on the front surface and the back surface. However, it is not always necessary to have the same arrangement.
 このように固体撮像装置300によれば、固体撮像素子1の表面と裏面の間に貫通する導電配線が無くても、固体撮像素子1の裏面において画像の取得または裏面からの電力供給が可能となる。したがって、固体撮像素子1の形状、配置位置、構造の自由度が向上し、低コストで高効率な固体撮像装置を実現することができる。 As described above, according to the solid-state imaging device 300, it is possible to acquire an image on the back surface of the solid-state imaging device 1 or supply power from the back surface without the conductive wiring penetrating between the front surface and the back surface of the solid-state imaging device 1. Become. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
 (実施形態2)
 図4Aは実施形態2に係る固体撮像装置400の構成例を示す断面図である。図4Bは固体撮像装置400の構成例を示す平面透視図である。また、図4Aは、図4B中のB-B’の断面を示す。
(Embodiment 2)
FIG. 4A is a cross-sectional view illustrating a configuration example of the solid-state imaging apparatus 400 according to the second embodiment. FIG. 4B is a plan perspective view illustrating a configuration example of the solid-state imaging device 400. FIG. 4A shows a cross section taken along line BB ′ in FIG. 4B.
 図4A、図4Bにおける固体撮像装置400は、透明性基板6と、少なくとも1つの固体撮像素子1(図4A、図4Bでは1つ)と、固体撮像素子1の周辺に形成され、固体撮像素子1を保持し、固体撮像素子1の撮像面と同一面をもつ拡張部10と、固体撮像素子1内のセンサ部2の撮像面と同一面の拡張部10に形成される少なくとも1つの第1のアンテナ配線3と、第1のアンテナ配線3とを接続し、拡張部10の、撮像面と同一面に形成された配線11a、11bを有する導電性配線層11とを備える。透明性基板6と固体撮像素子1の撮像面との間には、封入材5によって封入された撮像対象物4が挟まれる。 A solid-state imaging device 400 in FIGS. 4A and 4B is formed around the transparent substrate 6, at least one solid-state imaging device 1 (one in FIGS. 4A and 4B), and the solid-state imaging device 1. 1 and at least one first portion formed in the extension portion 10 having the same plane as the imaging surface of the solid-state imaging device 1 and the extension portion 10 on the same plane as the imaging surface of the sensor unit 2 in the solid-state imaging device 1. The antenna wiring 3 and the first antenna wiring 3 are connected, and the conductive wiring layer 11 having wirings 11a and 11b formed on the same surface as the imaging surface of the extension portion 10 is provided. Between the transparent substrate 6 and the imaging surface of the solid-state imaging device 1, the imaging object 4 encapsulated by the encapsulating material 5 is sandwiched.
 拡張部10は、例えばモールド材、エポキシ樹脂などにより形成される。 The extended portion 10 is formed of, for example, a mold material or an epoxy resin.
 撮像対象物4は、固体撮像素子1の撮像面と透明性基板6との間に封入材5によって封入される。 The imaging object 4 is encapsulated by an encapsulating material 5 between the imaging surface of the solid-state imaging device 1 and the transparent substrate 6.
 第1のアンテナ配線3は、固体撮像素子1からの画像の送信、および、外部からの電力受信の少なくとも一方を行うためのアンテナである。第1のアンテナ配線3は、固体撮像素子1の撮像面および拡張部10の同一面に形成され、導電性配線層材料、例えばアルミ、銅、それらの合金などにより形成される。固体撮像素子1内の回路と第1のアンテナ配線3とは導電性配線層11の配線11aによって接続される。配線11aは、固体撮像素子1の伝送データ(画像または電力)を導通する。ここで導電性配線層11は第1のアンテナ配線3と同層の配線であっても、別層の配線であってもよく、配線層材料はアルミ、銅やその合金など導電性材料の利用であればよい。 The first antenna wiring 3 is an antenna for performing at least one of transmission of an image from the solid-state imaging device 1 and reception of power from the outside. The first antenna wiring 3 is formed on the same surface of the imaging surface of the solid-state imaging device 1 and the extension portion 10, and is formed of a conductive wiring layer material such as aluminum, copper, or an alloy thereof. A circuit in the solid-state imaging device 1 and the first antenna wiring 3 are connected by a wiring 11 a of the conductive wiring layer 11. The wiring 11a conducts transmission data (image or power) of the solid-state imaging device 1. Here, the conductive wiring layer 11 may be a wiring in the same layer as the first antenna wiring 3 or a wiring in a different layer, and the wiring layer material is a conductive material such as aluminum, copper or an alloy thereof. If it is.
 第1のアンテナ配線3の形状は図4Bでは固体撮像素子1の外周を囲む形状で記載しているが、配線形状、構造に制約は無いが、極力配線長を長く形成することで電波の伝送特性が向上する。 Although the shape of the first antenna wiring 3 is described as a shape surrounding the outer periphery of the solid-state imaging device 1 in FIG. 4B, there is no restriction on the wiring shape and structure, but transmission of radio waves can be achieved by forming the wiring length as long as possible. Improved characteristics.
 このように、固体撮像装置400は、透明性基板6と固体撮像素子1との間に封入材5によって封入された撮像対象物4(検体)を有する。固体撮像素子1は、そのセンサ部2(つまり撮像面)が撮像対象物4(検体)および封入材5と接する向きに保持される。また、固体撮像装置400は、固体撮像素子1を駆動する回路と第1のアンテナ配線3が接続された構造を有する。 As described above, the solid-state imaging device 400 includes the imaging target 4 (specimen) encapsulated by the encapsulating material 5 between the transparent substrate 6 and the solid-state imaging element 1. The solid-state imaging device 1 is held in a direction in which the sensor unit 2 (that is, the imaging surface) is in contact with the imaging object 4 (specimen) and the encapsulating material 5. Further, the solid-state imaging device 400 has a structure in which a circuit for driving the solid-state imaging device 1 and the first antenna wiring 3 are connected.
 実施形態2の固体撮像装置400によれば、容器の存在による検体と固体撮像素子1の撮像面との間の距離が生じず、透明性基板6を介して集光することができるため解像度の高い映像を得ることが出来る。 According to the solid-state imaging device 400 of the second embodiment, the distance between the specimen due to the presence of the container and the imaging surface of the solid-state imaging device 1 does not occur, and the light can be condensed via the transparent substrate 6, so that the resolution is high. High image quality can be obtained.
 また、撮像対象物4(検体)は透明性基板6と固体撮像素子1の間で封入材5によって封入し保護されているため、外気に接しておらず外部環境の影響による検体の劣化を抑制することができるため、正確な病理診断および長期保管後の再検査を実施することが出来る。 In addition, since the imaging object 4 (specimen) is sealed and protected by the encapsulating material 5 between the transparent substrate 6 and the solid-state imaging device 1, it is not in contact with outside air and suppresses deterioration of the specimen due to the influence of the external environment. Therefore, accurate pathological diagnosis and reexamination after long-term storage can be performed.
 また、固体撮像素子1の外周部の拡張部10によって、固体撮像素子1の外形サイズに依存せずに、第1のアンテナ配線3を配置する領域を拡張することが可能で、アンテナ伝送特性の利得を向上することができる。 In addition, the extension portion 10 on the outer peripheral portion of the solid-state image sensor 1 can expand the region where the first antenna wiring 3 is arranged without depending on the outer size of the solid-state image sensor 1, and the antenna transmission characteristics can be improved. Gain can be improved.
 また、図4A、図4Bにおいて、封入材5によって封入する際の固体撮像素子と検体間のボイドを抑制しているが、封入材5の無い構造であっても、撮像対象物4(検体)の観察が可能である。 4A and 4B, the void between the solid-state imaging device and the specimen when encapsulated by the encapsulant 5 is suppressed, but the imaging object 4 (analyte) even if the structure does not have the encapsulant 5 Can be observed.
 (実施形態2の変形例1)
 次に、実施形態2の固体撮像装置の変形例1について説明する。
(Modification 1 of Embodiment 2)
Next, Modification 1 of the solid-state imaging device according to Embodiment 2 will be described.
 図5Aは、本変形例に係る固体撮像装置500の断面図である。図5Bは固体撮像装置500の平面透視図である。図5Aおよび図5Bに示すように、固体撮像装置500は図4A、図4Bの固体撮像装置400と比べて、撮像面と同一面に形成される少なくとも1つのコンデンサ素子7と、配線11bとを備える点が異なる。以下異なる点を中心に説明する。 FIG. 5A is a cross-sectional view of a solid-state imaging device 500 according to this modification. FIG. 5B is a plan perspective view of the solid-state imaging device 500. As shown in FIGS. 5A and 5B, the solid-state imaging device 500 includes at least one capacitor element 7 formed on the same plane as the imaging surface and the wiring 11b, as compared with the solid-state imaging device 400 of FIGS. 4A and 4B. The point to prepare is different. Hereinafter, different points will be mainly described.
 コンデンサ素子7は、固体撮像素子のセンサ部2と同一面の拡張部10に形成される配置され、配置場所、配置される数に制約は無く、拡張部10上のどの領域においても配置可能である。コンデンサ素子7は、センサ部2の駆動回路、画像処理回路、または第1のアンテナ配線3の駆動回路の電源配線と配線11bを介して接続され、固体撮像素子1を駆動するための電源電圧を補う目的で配置される。 The capacitor element 7 is disposed on the extended portion 10 on the same surface as the sensor portion 2 of the solid-state imaging device, and there is no restriction on the arrangement place and the number of arranged, and the capacitor element 7 can be arranged in any region on the extended portion 10. is there. The capacitor element 7 is connected to the power supply wiring of the driving circuit of the sensor unit 2, the image processing circuit, or the driving circuit of the first antenna wiring 3 through the wiring 11 b, and supplies the power supply voltage for driving the solid-state imaging device 1. Arranged to make up.
 固体撮像装置500の電源は、外部に配置されるリーダライタ装置の第1のアンテナ配線3から供給される電波の伝送信号により、電源を供給される。この供給による電源電圧が微弱な場合、固体撮像素子1を駆動または撮像画像データ伝送の動作が不安定になる課題がある。そこで固体撮像素子1内に配置されたコンデンサ素子7に外部から伝送される電波による電源電圧を蓄え、固体撮像素子1内の回路動作に用いることで動作の安定化が可能となる。コンデンサ素子7は、配線層間に絶縁層を挟む構造で実現可能である。配線層の材料は、アルミ、銅など導電性の配線材料、絶縁層の材料はポリイミド、ポリベンゾオキサゾール(PBO)、SiN、SiO2など絶縁性の層間膜材料を拡張部10の表層に配置する構造のほか、コンデンサ素子を固体撮像素子1と同様に拡張部10に埋め込む構造を用いることができる。 The power of the solid-state imaging device 500 is supplied by a radio wave transmission signal supplied from the first antenna wiring 3 of the reader / writer device arranged outside. When the power supply voltage by this supply is weak, there exists a subject which the operation of driving the solid-state image sensor 1 or image data transmission becomes unstable. Therefore, the power supply voltage by the radio wave transmitted from the outside is stored in the capacitor element 7 disposed in the solid-state image pickup device 1 and used for the circuit operation in the solid-state image pickup device 1 so that the operation can be stabilized. The capacitor element 7 can be realized with a structure in which an insulating layer is sandwiched between wiring layers. The wiring layer material is a conductive wiring material such as aluminum or copper, and the insulating layer material is a structure in which an insulating interlayer film material such as polyimide, polybenzoxazole (PBO), SiN, or SiO 2 is disposed on the surface layer of the extension portion 10. In addition to this, a structure in which the capacitor element is embedded in the extension portion 10 similarly to the solid-state imaging element 1 can be used.
 このように固体撮像装置500によれば、図2A、図2B、図3A、図3Bの固体撮像装置200、300と比べて、コンデンサ素子7が拡張部10に形成されるので、固体撮像素子1の形状、配置位置、構造の自由度をより向上させることができる。また、コンデンサ素子7の配置の自由度も向上させることができる。コンデンサ素子7は、外部から第1のアンテナ配線3を介して供給された電力を蓄積するので、電源電圧を安定化して固体撮像素子1の動作の安定化を図ることができる。 As described above, according to the solid-state imaging device 500, the capacitor element 7 is formed in the extended portion 10 as compared with the solid- state imaging devices 200 and 300 in FIGS. 2A, 2B, 3A, and 3B. The degree of freedom of the shape, arrangement position, and structure can be further improved. Further, the degree of freedom of arrangement of the capacitor element 7 can be improved. Since the capacitor element 7 accumulates electric power supplied from the outside via the first antenna wiring 3, the power supply voltage can be stabilized and the operation of the solid-state imaging element 1 can be stabilized.
 (実施形態2の変形例2)
 次に、実施形態2の固体撮像装置の変形例2について説明する。
(Modification 2 of Embodiment 2)
Next, a second modification of the solid-state imaging device according to the second embodiment will be described.
 図6Aは、本変形例に係る固体撮像装置600の断面図である。図6Bは固体撮像装置600の平面透視図である。図6Aおよび図6Bに示すように、固体撮像装置600は図5A、図5Bの固体撮像装置500と比べて、撮像面の裏面側で、拡張部10の裏面側に形成される少なくとも1つの第2のアンテナ配線8と、撮像面の裏面の第2のアンテナ配線8と接続される少なくとも1つのプローブパッド素子9とを備える点が異なる。以下異なる点を中心に説明する。 FIG. 6A is a cross-sectional view of a solid-state imaging device 600 according to this modification. FIG. 6B is a plan perspective view of the solid-state imaging device 600. As shown in FIGS. 6A and 6B, the solid-state imaging device 600 is at least one first surface formed on the back surface side of the expansion unit 10 on the back surface side of the imaging surface compared to the solid-state imaging device 500 of FIGS. 5A and 5B. 2 antenna wiring 8 and at least one probe pad element 9 connected to the second antenna wiring 8 on the back surface of the imaging surface. Hereinafter, different points will be mainly described.
 第2のアンテナ配線8は、第1のアンテナ配線3からの画像の受信、および、第1のアンテナ配線3への電波による電力供給の少なくとも一方を行うためのアンテナである。撮像面の裏面の第2のアンテナ配線8は、固体撮像素子1の撮像面の裏面に配置される。配線材料は、アルミ、銅とその合金など導電性の半導体配線材料を用いることができる。第2のアンテナ配線8の一部には、第2のアンテナ配線8と同層の金属または接続された金属層で形成されたプローブパッド素子9が配置され、固体撮像素子1外にソケットやプローブ装置を用いて、病理検査システムに外部出力する。撮像面の表面に配置される第1のアンテナ配線3と、撮像面の裏面に配置される第2のアンテナ配線8は電波によるデータ伝送が可能で、固体撮像素子1の表面と裏面の間に貫通する導電配線が無くても、固体撮像素子1の裏面に配置されるプローブパッド素子9を経由して外部出力が可能となる。 The second antenna wiring 8 is an antenna for performing at least one of reception of an image from the first antenna wiring 3 and power supply by radio waves to the first antenna wiring 3. The second antenna wiring 8 on the back surface of the imaging surface is disposed on the back surface of the imaging surface of the solid-state imaging device 1. As the wiring material, a conductive semiconductor wiring material such as aluminum, copper and an alloy thereof can be used. A probe pad element 9 formed of the same metal as the second antenna wiring 8 or a connected metal layer is disposed on a part of the second antenna wiring 8, and a socket or a probe is provided outside the solid-state imaging device 1. Using the device, output to the pathological examination system externally. The first antenna wiring 3 disposed on the surface of the imaging surface and the second antenna wiring 8 disposed on the back surface of the imaging surface can transmit data by radio waves, and are between the front surface and the back surface of the solid-state imaging device 1. Even if there is no conductive wiring penetrating, external output is possible via the probe pad element 9 disposed on the back surface of the solid-state imaging device 1.
 ここで、図6A、図6Bにおいて、表面に配置される第1のアンテナ配線3と、裏面に配置される第2のアンテナ配線8は表面、裏面で同配置位置に配線しているが、必ずしも同一配置にする必要はない。 6A and 6B, the first antenna wiring 3 disposed on the front surface and the second antenna wiring 8 disposed on the back surface are wired at the same position on the front surface and the back surface. It is not necessary to have the same arrangement.
 このように固体撮像装置600によれば、拡張部10に第2のアンテナ配線8を設けることにより、第2のアンテナ配線8のサイズを固体撮像素子1よりも大きくでき、より電力を受電しやすくなり、拡張部10の表面と裏面の間に貫通する導電配線が無くても、拡張部10の裏面において第2のアンテナ配線8を介して画像の取得または裏面からの電力供給が可能となる。したがって、固体撮像素子1の形状、配置位置、構造の自由度が向上し、低コストで高効率な固体撮像装置を実現することができる。 Thus, according to the solid-state imaging device 600, by providing the second antenna wiring 8 in the extension unit 10, the size of the second antenna wiring 8 can be made larger than that of the solid-state imaging device 1, and power can be easily received. Thus, even if there is no conductive wiring penetrating between the front surface and the back surface of the extended portion 10, it is possible to acquire an image or supply power from the back surface via the second antenna wiring 8 on the back surface of the extended portion 10. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
 (実施形態2の変形例3)
 次に、実施形態2の固体撮像装置の変形例3について説明する。
(Modification 3 of Embodiment 2)
Next, Modification 3 of the solid-state imaging device of Embodiment 2 will be described.
 図7Aは、本変形例に係る固体撮像装置700の断面図である。図7Bは固体撮像装置700の平面透視図である。図7Aおよび図7Bに示すように、固体撮像装置700は図6A、図6Bの固体撮像装置600と比べて、固体撮像素子1を1つでなく複数備える点と、第1のアンテナ配線3を1つではなく複数備える点と、第2のアンテナ配線8を1つではなく複数備える点とが異なる。以下異なる点を中心に説明する。 FIG. 7A is a cross-sectional view of a solid-state imaging device 700 according to this modification. FIG. 7B is a plan perspective view of the solid-state imaging device 700. As shown in FIGS. 7A and 7B, the solid-state imaging device 700 includes a plurality of solid-state imaging devices 1 instead of one, as compared with the solid-state imaging device 600 of FIGS. 6A and 6B, and the first antenna wiring 3. The difference is that a plurality of second antenna wirings 8 are provided instead of one, and a plurality of second antenna wirings 8 are provided instead of one. Hereinafter, different points will be mainly described.
 図7A、図7Bでは、固体撮像素子1と第1のアンテナ配線3とは1対1で対応し、第1のアンテナ配線3と第2のアンテナ配線8も1対1で対応する。 7A and 7B, the solid-state imaging device 1 and the first antenna wiring 3 correspond one-to-one, and the first antenna wiring 3 and the second antenna wiring 8 also correspond one-to-one.
 複数の固体撮像素子1のそれぞれは、センサ部2を有する面が、拡張部10と同一面側に配置される。導電性配線層11の配線11aは、複数の固体撮像素子1のと、拡張部10に設けられた第1のアンテナ配線3とをそれぞれ接続する。 Each of the plurality of solid-state imaging devices 1 has a surface having the sensor unit 2 disposed on the same surface side as the expansion unit 10. The wiring 11 a of the conductive wiring layer 11 connects the plurality of solid-state imaging devices 1 to the first antenna wiring 3 provided in the extension unit 10.
 この構成により、撮像対象物4(検体)領域が固体撮像素子1のセンサ部2よりも大きい場合であっても、固体撮像素子1が複数搭載されていることによって、より広い領域を観察可能となる。また、透明性基板6に複数の撮像対象物4(検体)を搭載した場合であっても、複数の固体撮像素子1によって観察可能となる。また、固体撮像素子1が複数搭載された固体撮像装置700は、個々の固体撮像素子1単位で切断することにより、固体撮像装置700のサイズ、搭載する固体撮像素子1の数量を調整することが可能となる。この場合、第2のアンテナ配線8および第1のアンテナ配線3は、個々の固体撮像素子1の外周に配置される構造とし、個々に切断された後も、固体撮像素子1と第2のアンテナ配線8および第1のアンテナ配線3の接続、電気的な導通が保たれる構造とする。 With this configuration, even when the imaging object 4 (specimen) region is larger than the sensor unit 2 of the solid-state imaging device 1, a wider region can be observed by mounting a plurality of solid-state imaging devices 1. Become. Even when a plurality of imaging objects 4 (specimens) are mounted on the transparent substrate 6, observation is possible with the plurality of solid-state imaging devices 1. Moreover, the solid-state imaging device 700 in which a plurality of solid-state imaging devices 1 are mounted can adjust the size of the solid-state imaging device 700 and the number of the solid-state imaging devices 1 to be mounted by cutting each solid-state imaging device 1 unit. It becomes possible. In this case, the second antenna wiring 8 and the first antenna wiring 3 are arranged on the outer periphery of each solid-state image sensor 1, and after being individually cut, the solid-state image sensor 1 and the second antenna The wiring 8 and the first antenna wiring 3 are connected and electrically connected.
 ここで、図7A、図7Bにおいて、表面に配置される第1のアンテナ配線3と、裏面に配置される第2のアンテナ配線8は表面、裏面で同配置位置に配線しているが、必ずしも同一配置にする必要はない。 Here, in FIGS. 7A and 7B, the first antenna wiring 3 arranged on the front surface and the second antenna wiring 8 arranged on the back surface are wired at the same arrangement position on the front surface and the back surface. It is not necessary to have the same arrangement.
 また、図7Bにおいて、第2のアンテナ配線8は、固体撮像素子1と同数のペアで配線されているが、必ずしも同数でなくてもよい。固体撮像素子1個に対し、複数の第1のアンテナ配線とした複数系統の構成でもよく、第1のアンテナ配線1個に対し、複数の固体撮像素子1を備える構成とし第1のアンテナ配線を併用する制御回路構成を持つ構造でもよい。 In FIG. 7B, the second antenna wiring 8 is wired in the same number of pairs as the solid-state imaging device 1, but it does not necessarily have to be the same number. A configuration of a plurality of systems in which a plurality of first antenna wirings are provided for one solid-state imaging device may be used, and a configuration in which a plurality of solid-state imaging devices 1 are provided for one first antenna wiring and the first antenna wiring is provided. A structure having a control circuit configuration to be used together may be used.
 このように固体撮像装置700によれば、撮像対象物4(検体)が固体撮像素子1の1つの撮像面よりも大きい場合であっても、固体撮像素子1が複数搭載されていることによって、より広い領域を観察可能となる。また、透明性基板6に複数の撮像対象物4(検体)を搭載した場合であっても、複数の固体撮像素子1によって観察可能となる。また、複数の固体撮像素子1を個々に制御することを可能にする。 As described above, according to the solid-state imaging device 700, even when the imaging target 4 (specimen) is larger than one imaging surface of the solid-state imaging device 1, a plurality of solid-state imaging devices 1 are mounted. A wider area can be observed. Even when a plurality of imaging objects 4 (specimens) are mounted on the transparent substrate 6, observation is possible with the plurality of solid-state imaging devices 1. In addition, the plurality of solid-state imaging devices 1 can be individually controlled.
 (実施形態3)
 次に、実施形態3における固体撮像装置について説明する。
(Embodiment 3)
Next, the solid-state imaging device according to Embodiment 3 will be described.
 図8Aは、本実施形態に係る固体撮像装置800の構成例を示す断面図である。図8Bは、本実施形態に係る固体撮像装置800の他の構成例を示す断面図である。図8Cは固体撮像装置800の平面透視図である。図8A~図8Cに示すように、固体撮像装置800は図1A、図1Bの固体撮像装置100と比べて、アンテナ基板12が追加された点が異なる。以下異なる点を中心に説明する。 FIG. 8A is a cross-sectional view illustrating a configuration example of the solid-state imaging device 800 according to the present embodiment. FIG. 8B is a cross-sectional view illustrating another configuration example of the solid-state imaging apparatus 800 according to the present embodiment. FIG. 8C is a plan perspective view of the solid-state imaging device 800. As shown in FIGS. 8A to 8C, the solid-state imaging device 800 is different from the solid-state imaging device 100 of FIGS. 1A and 1B in that an antenna substrate 12 is added. Hereinafter, different points will be mainly described.
 アンテナ基板12は、第1のアンテナ配線3から画像を受信するための少なくとも1つの第2のアンテナ配線13を備える。第2のアンテナ配線13は、第1のアンテナ配線3からの画像の受信、および、第1のアンテナ配線3への電波による電力供給の少なくとも一方を行うためのアンテナである。このアンテナ基板12は、固体撮像素子1に電力を供給するとともに、固体撮像素子1との間でデータ伝送(画像の受信等)を行うリーダライタ装置の一部または全部である。つまり、図8A~図8Cでは、アンテナ基板12は、少なくとも第2のアンテナ配線13を備えるが、図8Dに示すように第2のアンテナ配線13を介して画像を受信する無線回路16aと、第2のアンテナ配線13および第1のアンテナ配線3に電力を供給する給電回路16bとを有する制御IC16を備えていてもよい。 The antenna substrate 12 includes at least one second antenna wiring 13 for receiving an image from the first antenna wiring 3. The second antenna wiring 13 is an antenna for performing at least one of receiving an image from the first antenna wiring 3 and supplying electric power to the first antenna wiring 3 by radio waves. The antenna substrate 12 is a part or all of a reader / writer device that supplies power to the solid-state image sensor 1 and performs data transmission (such as image reception) with the solid-state image sensor 1. That is, in FIGS. 8A to 8C, the antenna substrate 12 includes at least the second antenna wiring 13, but as illustrated in FIG. 8D, the radio circuit 16a that receives an image via the second antenna wiring 13 and the first antenna wiring 13 There may be provided a control IC 16 having two antenna wirings 13 and a power feeding circuit 16 b for supplying power to the first antenna wiring 3.
 アンテナ基板12は、固体撮像素子1の裏面側に接する、または非接触の位置関係で配置する、または透明性基板6の撮像対象物4に接する側の裏面側に接する、または非接触の位置関係で配置される。アンテナ基板12は、固体撮像素子1の第1のアンテナ配線3側に少なくとも1つの第2のアンテナ配線13を有する。 The antenna substrate 12 is in contact with the back surface side of the solid-state imaging device 1 or arranged in a non-contact positional relationship, or is in contact with the back surface side of the transparent substrate 6 on the side in contact with the imaging object 4 or in a non-contact positional relationship. It is arranged with. The antenna substrate 12 has at least one second antenna wiring 13 on the first antenna wiring 3 side of the solid-state imaging device 1.
 第2のアンテナ配線13の材料は、アルミ、銅とその合金など導電性の配線材料を用いることができる。第2のアンテナ配線の一部には、第2のアンテナ配線13と同層の金属または接続された金属層で形成されたプローブパッド素子が配置され、ソケットやプローブ装置を用いて、病理検査システムと接続する。撮像面の表面に配置される第1のアンテナ配線3と、アンテナ基板12に配置される第2のアンテナ配線13は電波によるデータ伝送が可能で、固体撮像素子1の表面および裏面との導電配線経路が無くても、第2のアンテナ配線13を経由して外部出力が可能となる。 As the material of the second antenna wiring 13, a conductive wiring material such as aluminum, copper and its alloy can be used. A probe pad element formed of the same metal as the second antenna wiring 13 or a connected metal layer is arranged in a part of the second antenna wiring, and a pathological examination system using a socket or a probe device. Connect with. The first antenna wiring 3 disposed on the surface of the imaging surface and the second antenna wiring 13 disposed on the antenna substrate 12 can transmit data by radio waves, and conductive wiring between the front and back surfaces of the solid-state imaging device 1. Even if there is no route, external output is possible via the second antenna wiring 13.
 ここで、図8A~図8Cにおいて、固体撮像素子1の表面に配置される第1のアンテナ配線3と、アンテナ基板12に配置される第2のアンテナ配線13は表面、裏面で同配置位置に配線しているが、必ずしも同一配置にする必要はない。 Here, in FIGS. 8A to 8C, the first antenna wiring 3 arranged on the surface of the solid-state imaging device 1 and the second antenna wiring 13 arranged on the antenna substrate 12 are located at the same arrangement position on the front surface and the back surface. Although it is wired, it is not always necessary to have the same arrangement.
 また、図8Cにおいて、第2のアンテナ配線13にプローブパッド素子を配置しているが、プローブパッド素子ではなく、直接第2のアンテナ配線13と病理検査システムとを導線で接続する構造でもよい。 In FIG. 8C, the probe pad element is arranged on the second antenna wiring 13, but the second antenna wiring 13 and the pathological examination system may be directly connected by a conductive wire instead of the probe pad element.
 また、図8Aにおいて、アンテナ基板12は、透明性基板6の下側に配置しているが、図8Bのように固体撮像素子1の裏面側に配置しても同様に電波によるデータ伝送が可能である。 In FIG. 8A, the antenna substrate 12 is arranged below the transparent substrate 6. However, even if it is arranged on the back side of the solid-state imaging device 1 as shown in FIG. It is.
 このように固体撮像装置800によれば、固体撮像素子1の表面と裏面の間に貫通する導電配線が無くても、アンテナ基板12の第2のアンテナ配線を介して画像の取得または裏面からの電力供給が可能となる。したがって、固体撮像素子1の形状、配置位置、構造の自由度が向上し、低コストで高効率な固体撮像装置を実現することができる。 As described above, according to the solid-state imaging device 800, even if there is no conductive wiring penetrating between the front surface and the back surface of the solid-state imaging device 1, an image can be acquired via the second antenna wiring of the antenna substrate 12 or from the back surface. Electric power can be supplied. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
 (実施形態3の変形例1)
 次に、実施形態3におけるアンテナ基板の変形例1について説明する。
(Modification 1 of Embodiment 3)
Next, Modification Example 1 of the antenna substrate in Embodiment 3 will be described.
 図9Aは同へ円形例におけるアンテナ基板12の平面透視図である。図9Aは、図8Cと比べて、アンテナ基板12の一部に開口14を備える点が異なる。以下異なる点を中心に説明する。 FIG. 9A is a plan perspective view of the antenna substrate 12 in the circular example. FIG. 9A is different from FIG. 8C in that an opening 14 is provided in a part of the antenna substrate 12. Hereinafter, different points will be mainly described.
 アンテナ基板12が、図8Bではなく図8Aのように、透明性基板6の撮像対象物に接する側の裏面側に配置される場合、アンテナ基板12の開口14が、透明性基板6上の撮像対象物4(検体)領域と重なる位置関係で配置される。撮像対象物4(検体)は固体撮像素子1のセンサ部2で画像を撮影するが、その際に、光がアンテナ基板12の開口14を透過し、さらに透明性基板6を透過し、撮像対象物4(検体)に透光することで撮影に必要な光量を確保し、明瞭な画像を撮影することができる。 When the antenna substrate 12 is arranged on the back surface side of the transparent substrate 6 on the side in contact with the object to be imaged as shown in FIG. 8A instead of FIG. 8B, the opening 14 of the antenna substrate 12 is imaged on the transparent substrate 6. They are arranged in a positional relationship overlapping the object 4 (specimen) region. The imaging object 4 (specimen) captures an image with the sensor unit 2 of the solid-state imaging device 1. At that time, the light passes through the opening 14 of the antenna substrate 12 and further passes through the transparent substrate 6, and the imaging object is captured. By transmitting light through the object 4 (specimen), it is possible to secure a sufficient amount of light for imaging and to capture a clear image.
 ここで、図9Aにおいて、固体撮像素子1の表面に配置される第1のアンテナ配線3と、アンテナ基板12に配置される第2のアンテナ配線13は表面、裏面で同配置位置に配線しているが、必ずしも同一配置にする必要はない。 Here, in FIG. 9A, the first antenna wiring 3 arranged on the surface of the solid-state imaging device 1 and the second antenna wiring 13 arranged on the antenna substrate 12 are wired at the same arrangement position on the front surface and the back surface. However, they are not necessarily arranged in the same manner.
 ここで、図9Aにおいて、アンテナ基板12に配置される第2のアンテナ配線13は、開口14の外周に配線しているが、別の配線位置でもよい。 Here, in FIG. 9A, the second antenna wiring 13 arranged on the antenna substrate 12 is wired on the outer periphery of the opening 14, but may be another wiring position.
 また、図9Aにおいて、開口14は1個配置されているが、図9Bのように複数の開口14を配置し、導光経路を確保する構造でもよい。 In FIG. 9A, one opening 14 is arranged, but a structure in which a plurality of openings 14 are arranged to secure a light guide path as shown in FIG. 9B may be used.
 また、図9A、図9Bにおいて、開口14は四角形で記載しているが、円形、多角形など別形状であっても同様の効果が得られる。 In FIGS. 9A and 9B, the opening 14 is shown as a quadrangle, but the same effect can be obtained even if it is a different shape such as a circle or a polygon.
 また、図9Aにおいて、アンテナ基板12は、透明性基板6の下側に配置しているが、図8Bのように固体撮像素子1の裏面側に配置しても同様に電波によるデータ伝送が可能である。 9A, the antenna substrate 12 is arranged below the transparent substrate 6. However, even if it is arranged on the back side of the solid-state imaging device 1 as shown in FIG. It is.
 また、図9Aにおいて、第2のアンテナ配線13にプローブパッド素子を配置しているが、プローブパッドではなく、直接第2のアンテナ配線13と病理検査システムとを導線で接続する構造でもよい。 In FIG. 9A, the probe pad element is arranged on the second antenna wiring 13, but the second antenna wiring 13 and the pathological examination system may be directly connected by a conductive wire instead of the probe pad.
 このように図9A、図9Bのアンテナ基板12は、撮像に際して、光がアンテナ基板の開口および透明性基板6を透過することで撮影に必要な光量を確保し、明瞭な画像を撮影することができる。 As described above, the antenna substrate 12 shown in FIGS. 9A and 9B can capture a clear image by ensuring that the light passes through the opening of the antenna substrate and the transparent substrate 6 to capture a sufficient amount of light. it can.
 (実施形態3の変形例2)
 次に、実施形態3におけるアンテナ基板の変形例2について説明する。
(Modification 2 of Embodiment 3)
Next, Modification Example 2 of the antenna substrate in Embodiment 3 will be described.
 図10は本変形例におけるアンテナ基板12の平面透視図である。図10のアンテナ基板12は、は図8Cのアンテナ基板12と比べて、透光性樹脂材料またはガラス材料で形成されている点が異なる。以下異なる点を中心に説明する。 FIG. 10 is a perspective plan view of the antenna substrate 12 in this modification. The antenna substrate 12 of FIG. 10 is different from the antenna substrate 12 of FIG. 8C in that it is formed of a light-transmitting resin material or a glass material. Hereinafter, different points will be mainly described.
 図10のアンテナ基板が、図8Aのように透明性基板6の撮像対象物に接する側の裏面側にアンテナ基板12を配置する場合、アンテナ基板12の材料が透光性樹脂材料またはガラス材料であることによって、撮像対象物4(検体)は固体撮像素子1のセンサ部2で画像を撮影する際に、光がリーダライタ12を透過し、透明性基板6を透過し、撮像対象物4(検体)に透光することで撮影に必要な光量を確保し、明瞭な画像を撮影することができる。 When the antenna substrate 12 is arranged on the back side of the transparent substrate 6 on the side in contact with the imaging target as shown in FIG. 8A, the antenna substrate 12 is made of a translucent resin material or glass material. As a result, when the imaging object 4 (specimen) captures an image with the sensor unit 2 of the solid-state imaging device 1, light passes through the reader / writer 12, passes through the transparent substrate 6, and the imaging object 4 ( By transmitting the light through the (specimen), it is possible to secure a sufficient amount of light for photographing and to capture a clear image.
 ここで、図10において、固体撮像素子1の表面に配置される第1のアンテナ配線3と、アンテナ基板12に配置される第2のアンテナ配線13は表面、裏面で同配置位置に配線しているが、必ずしも同一配置にする必要はない。 Here, in FIG. 10, the first antenna wiring 3 disposed on the surface of the solid-state imaging device 1 and the second antenna wiring 13 disposed on the antenna substrate 12 are wired at the same position on the front surface and the back surface. However, they are not necessarily arranged in the same manner.
 また、アンテナ基板12は、図8Aのように透明性基板6の下側に配置してもよいし、図8Bのように固体撮像素子1の裏面側に配置してもよい。 Further, the antenna substrate 12 may be arranged below the transparent substrate 6 as shown in FIG. 8A, or may be arranged on the back side of the solid-state imaging device 1 as shown in FIG. 8B.
 また、図10において、第2のアンテナ配線13にプローブパッド素子を配置しているが、プローブパッド素子ではなく、直接第2のアンテナ配線13と病理検査システムとを導線で接続する構造でもよい。 In FIG. 10, the probe pad element is arranged on the second antenna wiring 13, but the structure may be such that the second antenna wiring 13 and the pathological examination system are directly connected by a conductive wire instead of the probe pad element.
 このように、図10のアンテナ基板12によれば、撮像に際して、光がアンテナ基板および透明性基板6を透過することで撮影に必要な光量を確保し、明瞭な画像を撮影することができる。 As described above, according to the antenna substrate 12 of FIG. 10, when the image is taken, the light passes through the antenna substrate and the transparent substrate 6 so that the amount of light necessary for photographing can be secured and a clear image can be taken.
 (実施形態4)
 次に、実施形態4の固体撮像装置について説明する。
(Embodiment 4)
Next, the solid-state imaging device of Embodiment 4 will be described.
 図11Aは、本変形例に係る固体撮像装置1100の断面図である。図11Bは固体撮像装置1100の平面透視図である。図11Aおよび図11Bに示すように、固体撮像装置1100は図1A、図1Bと比べて、透明性基板6が第2のアンテナ配線13を備える点が異なる。以下異なる点を中心に説明する。 FIG. 11A is a cross-sectional view of a solid-state imaging device 1100 according to this modification. FIG. 11B is a plan perspective view of the solid-state imaging device 1100. As shown in FIGS. 11A and 11B, the solid-state imaging device 1100 is different from FIGS. 1A and 1B in that the transparent substrate 6 includes a second antenna wiring 13. Hereinafter, different points will be mainly described.
 第2のアンテナ配線13を備えた透明性基板6は、固体撮像素子1と撮像対象物に接する位置関係で配置する。固体撮像素子1の第1のアンテナ配線3側に少なくとも1つの第2のアンテナ配線13を形成し電波によりデータを伝送する。 The transparent substrate 6 provided with the second antenna wiring 13 is arranged in a positional relationship in contact with the solid-state imaging device 1 and the imaging object. At least one second antenna wiring 13 is formed on the first antenna wiring 3 side of the solid-state imaging device 1 and data is transmitted by radio waves.
 ここで、透明性基板6が透光性樹脂材料またはガラス材料で形成され、かつ第2のアンテナ配線13を備えることによって、撮像対象物4(検体)は固体撮像素子1のセンサ部2で画像を撮影する際に、光が透明性基板6を透過し、撮像対象物4(検体)に透光することで撮影に必要な光量を確保し、明瞭な画像を撮影することができる。 Here, when the transparent substrate 6 is formed of a translucent resin material or a glass material and includes the second antenna wiring 13, the imaging target 4 (specimen) is imaged by the sensor unit 2 of the solid-state imaging device 1. When the image is taken, the light passes through the transparent substrate 6 and is transmitted through the imaging target 4 (specimen), so that a sufficient amount of light can be secured and a clear image can be taken.
 ここで、図11A、図11Bにおいて、固体撮像素子1の表面に配置される第1のアンテナ配線3と、透明性基板6に配置される第2のアンテナ配線13は表面、裏面で同配置位置に配線しているが、必ずしも同一配置にする必要はない。 Here, in FIGS. 11A and 11B, the first antenna wiring 3 disposed on the surface of the solid-state imaging device 1 and the second antenna wiring 13 disposed on the transparent substrate 6 are disposed at the same position on the front surface and the back surface. Are not necessarily arranged in the same manner.
 ここで、透明性基板6の第2のアンテナ配線13は、透明性基板6の表面、裏面、基板中のどの位置に敷設されていてもよい。 Here, the second antenna wiring 13 of the transparent substrate 6 may be laid at any position in the front surface, back surface, or substrate of the transparent substrate 6.
 また、図11Bにおいて、第2のアンテナ配線13にプローブパッド素子を配置しているが、プローブパッド素子ではなく、直接第2のアンテナ配線13と病理検査システムとを導線で接続する構造でもよい。 In FIG. 11B, the probe pad element is arranged on the second antenna wiring 13, but the structure may be such that the second antenna wiring 13 and the pathological examination system are directly connected by a conductive wire instead of the probe pad element.
 このように、固体撮像装置1100によれば、固体撮像素子1の表面と裏面の間に貫通する導電配線が無くても、透明性基板6の第2のアンテナ配線を介して画像の取得または裏面からの電力供給が可能となる。したがって、固体撮像素子1の形状、配置位置、構造の自由度が向上し、低コストで高効率な固体撮像装置を実現することができる。 As described above, according to the solid-state imaging device 1100, even if there is no conductive wiring penetrating between the front surface and the back surface of the solid-state imaging device 1, the image acquisition or the back surface is performed via the second antenna wiring of the transparent substrate 6. It is possible to supply power from. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
 なお、実施形態1~4および、各変形例の構成について、各変形例を組み合わせた構造を適用することも可能である。また、図1A等の断面図において、固体撮像素子1を上、透明性基板6を下の上下関係で配置した図としているが、この上下関係、それぞれの大小関係は、変更しても適用可能である。 In addition, it is also possible to apply the structure which combined each modification about Embodiment 1-4 and the structure of each modification. Further, in the sectional view of FIG. 1A and the like, the solid-state imaging device 1 is arranged on the top and the transparent substrate 6 is arranged on the bottom in the vertical relationship. It is.
 また、図1Cに示した製造方法は、実施形態1だけでなく他の実施形態および変形例にも適用可能である。 Moreover, the manufacturing method shown in FIG. 1C is applicable not only to the first embodiment but also to other embodiments and modifications.
 また、固体撮像素子1のセンサ部2は、CCD型のみでなく、CMOS型、BSI(Back Side Illumination)型、FSI(Front Side Illumination)型や、有機CMOS型などの撮像素子であってもよい。CCD型の選定については、一般的に低消費電力、低価格のCMOS型と、高画質なCCD型などの技術的特徴をもち、用途に応じた使い分けが可能である。 The sensor unit 2 of the solid-state imaging device 1 may be an imaging device such as a CMOS type, a BSI (Back Side Illumination) type, an FSI (Front Side Illumination) type, or an organic CMOS type as well as a CCD type. . The selection of the CCD type generally has technical characteristics such as a low power consumption and low cost CMOS type and a high quality CCD type, and can be used according to the application.
 以上説明してきたように、本開示における固体撮像装置は、透明性基板6と、撮像対象物4を撮像する少なくとも1つの固体撮像素子1と、固体撮像素子1の撮像面の周辺で、かつ撮像面と同一面に形成される少なくとも1つの第1のアンテナ配線3とを備え、透明性基板6と固体撮像素子1の撮像面との間に封入材5によって封入された撮像対象物4が挟まれ、第1のアンテナ配線3は、固体撮像素子1からの画像の送信、および、外部からの電力受信の少なくとも一方を行う。 As described above, the solid-state imaging device according to the present disclosure includes the transparent substrate 6, at least one solid-state imaging device 1 that images the imaging target 4, and the periphery of the imaging surface of the solid-state imaging device 1. And at least one first antenna wiring 3 formed on the same plane as the plane, and the imaging object 4 encapsulated by the encapsulant 5 is sandwiched between the transparent substrate 6 and the imaging plane of the solid-state imaging device 1. Thus, the first antenna wiring 3 performs at least one of transmission of an image from the solid-state imaging device 1 and reception of power from the outside.
 これによれば、容器の存在による検体と固体撮像素子1間の距離が生じず、透明性基板6を介して集光することができるため解像度の高い映像を得ることができる。 According to this, since the distance between the specimen and the solid-state imaging device 1 due to the presence of the container does not occur and the light can be condensed through the transparent substrate 6, a high-resolution image can be obtained.
 また、撮像対象物4(検体)は透明性基板6と固体撮像素子1の間で封入材5によって封入し保護されているため、外気に接しておらず外部環境の影響による検体の劣化を抑制することができる。そのため、正確な病理診断および長期保管後の再検査を実施することができる。 In addition, since the imaging object 4 (specimen) is sealed and protected by the encapsulating material 5 between the transparent substrate 6 and the solid-state imaging device 1, it is not in contact with outside air and suppresses deterioration of the specimen due to the influence of the external environment. can do. Therefore, accurate pathological diagnosis and reexamination after long-term storage can be performed.
 しかも、固体撮像素子1は第1のアンテナ配線3を有し、非接触で画像の送信を行えるため、固体撮像素子1の形状、配置位置、構造の自由度が向上し、固体撮像素子1内の表面、裏面間の貫通電極が不要になるなど、低コストで高効率な固体撮像装置を実現することができる。 In addition, since the solid-state imaging device 1 has the first antenna wiring 3 and can transmit images in a non-contact manner, the solid-state imaging device 1 has a higher degree of freedom in shape, arrangement position, and structure. Therefore, it is possible to realize a low-cost and high-efficiency solid-state imaging device such that a through electrode between the front surface and the back surface is not necessary.
 ここで、第1のアンテナ配線3は、撮像面を囲んでもよい。 Here, the first antenna wiring 3 may surround the imaging surface.
 これによれば、第1のアンテナ配線3の配線長を長くすることができ、電波の伝送特性を向上させることができる。 According to this, the wiring length of the first antenna wiring 3 can be increased, and the radio wave transmission characteristics can be improved.
 ここで、固体撮像装置は、さらに、撮像面と同一面に形成され、固体撮像素子1内の電源配線に接続される少なくとも1つのコンデンサ素子7を備え、第1のアンテナ配線3は、外部から電波による電力を受信し、電源配線を介して固体撮像素子1に電力を供給してもよい。 Here, the solid-state imaging device further includes at least one capacitor element 7 that is formed on the same plane as the imaging surface and is connected to the power supply wiring in the solid-state imaging device 1, and the first antenna wiring 3 is externally provided. You may receive the electric power by an electromagnetic wave and supply electric power to the solid-state image sensor 1 via a power supply wiring.
 これによれば、コンデンサ素子7は、外部から第1のアンテナ配線3を介して供給された電力を蓄積するので、電源電圧を安定化して固体撮像素子1の動作の安定化を図ることができる。 According to this, since the capacitor element 7 accumulates electric power supplied from the outside via the first antenna wiring 3, the power supply voltage can be stabilized and the operation of the solid-state imaging element 1 can be stabilized. .
 ここで、固体撮像装置は、さらに、撮像面の裏側の面に形成される少なくとも1つの第2のアンテナ配線8と、第2のアンテナ配線8と接続される少なくとも1つのプローブパッド素子9とを備え、第2のアンテナ配線8は、第1のアンテナ配線3からの画像の受信、および、第1のアンテナ配線3への電波による電力供給の少なくとも一方を行ってもよい。 Here, the solid-state imaging device further includes at least one second antenna wiring 8 formed on the back surface of the imaging surface and at least one probe pad element 9 connected to the second antenna wiring 8. In addition, the second antenna wiring 8 may perform at least one of reception of an image from the first antenna wiring 3 and power supply by radio waves to the first antenna wiring 3.
 これによれば、固体撮像素子1の表面と裏面の間に貫通する導電配線が無くても、固体撮像素子1の裏面において画像の取得または裏面からの電力供給が可能となる。したがって、固体撮像素子1の形状、配置位置、構造の自由度が向上し、低コストで高効率な固体撮像装置を実現することができる。 According to this, even if there is no conductive wiring penetrating between the front surface and the back surface of the solid-state image sensor 1, it is possible to acquire an image on the back surface of the solid-state image sensor 1 or to supply power from the back surface. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
 ここで、固体撮像装置は、さらに、固体撮像素子1の周辺に形成され、固体撮像素子1を保持し、固体撮像素子1の撮像面と同一面をもつ拡張部10と、固体撮像素子1と第1のアンテナ配線3とを接続し、拡張部10の、撮像面と同一面に形成された配線11aとを備えてもよい。 Here, the solid-state imaging device is further formed around the solid-state imaging device 1, holds the solid-state imaging device 1, and has an extension unit 10 having the same plane as the imaging surface of the solid-state imaging device 1, The first antenna wiring 3 may be connected, and a wiring 11 a formed on the same surface as the imaging surface of the expansion unit 10 may be provided.
 これによれば、拡張部10に第1のアンテナ配線3を設ければ、第1のアンテナ配線3の配線長をより長くでき、より電力を受電しやすくなり、また、固体撮像素子1の形状、配置位置、構造の自由度を向上させることができる。 According to this, if the 1st antenna wiring 3 is provided in the extended part 10, the wiring length of the 1st antenna wiring 3 can be lengthened, it will become easier to receive electric power, and the shape of the solid-state image sensor 1 The degree of freedom of the arrangement position and structure can be improved.
 ここで、拡張部10は、撮像面と同一面に形成される少なくとも1つのコンデンサ素子7と、固体撮像素子1とコンデンサ素子7とを接続し、拡張部10の撮像面と同一面に形成された配線11aとを備えてもよい。 Here, the extension unit 10 connects at least one capacitor element 7 formed on the same plane as the imaging surface, the solid-state imaging device 1 and the capacitor element 7, and is formed on the same plane as the imaging surface of the extension unit 10. Wiring 11a may be provided.
 これによれば、コンデンサ素子7は、外部から第1のアンテナ配線3を介して供給された電力を蓄積するので、電源電圧を安定化して固体撮像素子1の動作の安定化を図ることができる。 According to this, since the capacitor element 7 accumulates electric power supplied from the outside via the first antenna wiring 3, the power supply voltage can be stabilized and the operation of the solid-state imaging element 1 can be stabilized. .
 ここで、拡張部10は、撮像面の裏側の面に形成される少なくとも1つの第2のアンテナ配線8と、第2のアンテナ配線と接続される少なくとも1つのプローブパッド素子(9)とを備え、第2のアンテナ配線8は、第1のアンテナ配線3からの画像の受信、および、第1のアンテナ配線への電波による電力供給の少なくとも一方を行ってもよい。 Here, the extension unit 10 includes at least one second antenna wiring 8 formed on the back surface of the imaging surface, and at least one probe pad element (9) connected to the second antenna wiring. The second antenna wiring 8 may perform at least one of reception of an image from the first antenna wiring 3 and power supply by radio waves to the first antenna wiring.
 これによれば、拡張部10の表面と裏面の間に貫通する導電配線が無くても、拡張部10の裏面において第2のアンテナ配線8を介して画像の取得または裏面からの電力供給が可能となる。したがって、固体撮像素子1の形状、配置位置、構造の自由度が向上し、低コストで高効率な固体撮像装置を実現することができる。 According to this, even if there is no conductive wiring penetrating between the front surface and the back surface of the extension portion 10, it is possible to acquire an image or supply power from the back surface via the second antenna wiring 8 on the back surface of the extension portion 10. It becomes. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
 ここで、固体撮像装置は、複数の固体撮像素子1を備え、複数の固体撮像素子1の撮像面は同一面に含まれてもよい。 Here, the solid-state imaging device may include a plurality of solid-state imaging elements 1, and the imaging surfaces of the plurality of solid-state imaging elements 1 may be included in the same plane.
 これによれば、撮像対象物4(検体)が固体撮像素子1のセンサ部2よりも大きい場合であっても、固体撮像素子1が複数搭載されていることによって、より広い領域を観察可能となる。また、透明性基板6に複数の撮像対象物4(検体)を搭載した場合であっても、複数の固体撮像素子1によって観察可能となる。 According to this, even when the imaging object 4 (specimen) is larger than the sensor unit 2 of the solid-state imaging device 1, a wider area can be observed by mounting a plurality of solid-state imaging devices 1. Become. Even when a plurality of imaging objects 4 (specimens) are mounted on the transparent substrate 6, observation is possible with the plurality of solid-state imaging devices 1.
 ここで、固体撮像装置は、複数の固体撮像素子1に対応する複数の第1のアンテナ配線3を備えてもよい。 Here, the solid-state imaging device may include a plurality of first antenna wirings 3 corresponding to the plurality of solid-state imaging elements 1.
 これによれば、撮像対象物4(検体)が固体撮像素子1の1つの撮像面よりも大きい場合であっても、固体撮像素子1が複数搭載されていることによって、より広い領域を観察可能となる。また、透明性基板6に複数の撮像対象物4(検体)を搭載した場合であっても、複数の固体撮像素子1によって観察可能となる。また、複数の固体撮像素子1を個々に制御することを可能にする。 According to this, even when the imaging object 4 (specimen) is larger than one imaging surface of the solid-state imaging device 1, a wider area can be observed by mounting a plurality of solid-state imaging devices 1. It becomes. Even when a plurality of imaging objects 4 (specimens) are mounted on the transparent substrate 6, observation is possible with the plurality of solid-state imaging devices 1. In addition, the plurality of solid-state imaging devices 1 can be individually controlled.
 ここで、固体撮像装置は、アンテナ基板12と、第1のアンテナ配線3から画像を受信するための、アンテナ基板12に形成された少なくとも1つの第2のアンテナ配線13とを備え、第2のアンテナ配線13は、第1のアンテナ配線3からの画像の受信、および、第1のアンテナ配線3への電波による電力供給の少なくとも一方を行ってもよい。 Here, the solid-state imaging device includes an antenna substrate 12 and at least one second antenna wiring 13 formed on the antenna substrate 12 for receiving an image from the first antenna wiring 3. The antenna wiring 13 may perform at least one of reception of an image from the first antenna wiring 3 and power supply by radio waves to the first antenna wiring 3.
 これによれば、固体撮像素子1の表面と裏面の間に貫通する導電配線が無くても、第2のアンテナ配線13を介して画像の取得または裏面からの電力供給が可能となる。したがって、固体撮像素子1の形状、配置位置、構造の自由度が向上し、低コストで高効率な固体撮像装置を実現することができる。 According to this, even if there is no conductive wiring penetrating between the front surface and the back surface of the solid-state imaging device 1, an image can be obtained or power can be supplied from the back surface via the second antenna wiring 13. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
 ここで、アンテナ基板12は、固体撮像素子1の裏面側に接する、もしくは非接触の位置に、または、透明性基板6の撮像対象物に接する側の裏面側に接する、もしくは非接触の位置に配置されてもよい。 Here, the antenna substrate 12 is in contact with the back surface side of the solid-state imaging device 1 or in a non-contact position, or is in contact with the back surface side of the transparent substrate 6 on the side in contact with the imaging target or in a non-contact position. It may be arranged.
 これによれば、固体撮像素子1の裏面側、または、透明性基板6の撮像対象物に接する側の裏面側において、第2のアンテナ配線を介して画像の取得または裏面からの電力供給が可能となる。したがって、固体撮像素子1の形状、配置位置、構造の自由度が向上し、低コストで高効率な固体撮像装置を実現することができる。 According to this, on the back side of the solid-state imaging device 1 or the back side of the transparent substrate 6 that is in contact with the imaging target, it is possible to acquire an image or supply power from the back side via the second antenna wiring. It becomes. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
 ここで、第2のアンテナ配線13は環状に配線され、アンテナ基板12は、環状の内側に撮像面以上の大きさの開口14を備えてもよい。 Here, the second antenna wiring 13 may be wired in a ring shape, and the antenna substrate 12 may include an opening 14 having a size larger than the imaging surface inside the ring shape.
 これによれば、撮像に際して、光がアンテナ基板12の開口および透明性基板6を透過することで撮影に必要な光量を確保し、明瞭な画像を撮影することができる。 According to this, at the time of imaging, light passes through the opening of the antenna substrate 12 and the transparent substrate 6 to secure a light amount necessary for imaging, and a clear image can be captured.
 ここで、アンテナ基板12は、透光性樹脂材料またはガラス材料で形成されてもよい。 Here, the antenna substrate 12 may be formed of a translucent resin material or a glass material.
 これによれば、撮像に際して、光がアンテナ基板12および透明性基板6を透過することで撮影に必要な光量を確保し、明瞭な画像を撮影することができる。 According to this, at the time of imaging, the light passes through the antenna substrate 12 and the transparent substrate 6 to ensure the amount of light necessary for imaging and to capture a clear image.
 ここで、透明性基板6は、少なくとも1つの第2のアンテナ配線13を備え、第2のアンテナ配線13は、第1のアンテナ配線3からの画像の受信、および、第1のアンテナ配線3への電波による電力供給の少なくとも一方を行ってもよい。 Here, the transparent substrate 6 includes at least one second antenna wiring 13, and the second antenna wiring 13 receives an image from the first antenna wiring 3 and leads to the first antenna wiring 3. You may perform at least one of the electric power supply by an electromagnetic wave.
 これによれば、固体撮像素子1の表面と裏面の間に貫通する導電配線が無くても、透明性基板6において第2のアンテナ配線13を介して画像の取得または裏面からの電力供給が可能となる。したがって、固体撮像素子1の形状、配置位置、構造の自由度が向上し、低コストで高効率な固体撮像装置を実現することができる。 According to this, even if there is no conductive wiring penetrating between the front surface and the back surface of the solid-state imaging device 1, it is possible to acquire an image or supply power from the back surface via the second antenna wiring 13 on the transparent substrate 6. It becomes. Therefore, the degree of freedom of the shape, arrangement position, and structure of the solid-state imaging device 1 is improved, and a low-cost and high-efficiency solid-state imaging device can be realized.
 本開示は、例えば、高解像度の映像撮影、信頼性、小型化、製造容易性が要求される病理検査用の固体撮像装置に好適に利用可能である。 The present disclosure can be suitably used for, for example, a solid-state imaging device for pathological examination that requires high-resolution video imaging, reliability, miniaturization, and manufacturability.
  1 固体撮像素子
  2 センサ部
  3 第1のアンテナ配線
  4 撮像対象物(検体)
  5 封入材
  6 透明性基板
  7 コンデンサ素子
  8、13 第2のアンテナ配線
  9 プローブパッド素子
 10 拡張部
 11 導電性配線層
 11a、11b 配線
 12 アンテナ基板
 14 開口
 16 制御IC
 16a 無線回路
 16b 給電回路
100、200、300、400、500、600、700、800、1100 固体撮像装置
DESCRIPTION OF SYMBOLS 1 Solid-state image sensor 2 Sensor part 3 1st antenna wiring 4 Imaging object (specimen)
5 Encapsulant 6 Transparent Substrate 7 Capacitor Element 8, 13 Second Antenna Wiring 9 Probe Pad Element 10 Expansion Part 11 Conductive Wiring Layer 11a, 11b Wiring 12 Antenna Substrate 14 Opening 16 Control IC
16a wireless circuit 16b power supply circuit 100, 200, 300, 400, 500, 600, 700, 800, 1100 solid-state imaging device

Claims (14)

  1.  透明性基板と、
     撮像対象物を撮像する少なくとも1つの固体撮像素子と、
     前記固体撮像素子の撮像面の周辺で、かつ前記撮像面と同一面に形成される少なくとも1つの第1のアンテナ配線とを備え、
     前記透明性基板と前記固体撮像素子の撮像面との間に封入材によって封入された前記撮像対象物が挟まれ、
     前記第1のアンテナ配線は、前記固体撮像素子からの画像の送信、および、外部からの電力受信の少なくとも一方を行う
    固体撮像装置。
    A transparent substrate;
    At least one solid-state imaging device for imaging an imaging object;
    Including at least one first antenna wiring formed around the imaging surface of the solid-state imaging device and on the same surface as the imaging surface;
    The imaging object encapsulated by an encapsulant is sandwiched between the transparent substrate and the imaging surface of the solid-state imaging device,
    The first antenna wiring is a solid-state imaging device that performs at least one of transmission of an image from the solid-state imaging device and reception of power from the outside.
  2.  前記第1のアンテナ配線は、前記撮像面を囲む
    請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the first antenna wiring surrounds the imaging surface.
  3.  前記固体撮像装置は、さらに、
     前記撮像面と同一面に形成され、前記固体撮像素子内の電源配線に接続される少なくとも1つのコンデンサ素子を備え、
     前記第1のアンテナ配線は、外部から電波による電力を受信し、前記電源配線を介して固体撮像素子に電力を供給する
    請求項1または2に記載の固体撮像装置。
    The solid-state imaging device further includes:
    Comprising at least one capacitor element formed on the same plane as the imaging surface and connected to a power supply wiring in the solid-state imaging device;
    3. The solid-state imaging device according to claim 1, wherein the first antenna wiring receives electric power from radio waves from the outside and supplies power to the solid-state imaging device via the power wiring.
  4.  前記固体撮像装置は、さらに、
     前記撮像面の裏側の面に形成される少なくとも1つの第2のアンテナ配線と、
     前記第2のアンテナ配線と接続される少なくとも1つのプローブパッド素子とを備え、
     前記第2のアンテナ配線は、前記第1のアンテナ配線からの画像の受信、および、前記第1のアンテナ配線への電波による電力供給の少なくとも一方を行う
    請求項1から3の何れか1項に記載の固体撮像装置。
    The solid-state imaging device further includes:
    At least one second antenna wiring formed on the back surface of the imaging surface;
    And at least one probe pad element connected to the second antenna wiring,
    4. The device according to claim 1, wherein the second antenna wiring performs at least one of reception of an image from the first antenna wiring and power supply by radio waves to the first antenna wiring. 5. The solid-state imaging device described.
  5.  前記固体撮像装置は、さらに、
     前記固体撮像素子の周辺に形成され、前記固体撮像素子を保持し、前記固体撮像素子の前記撮像面と同一面をもつ拡張部と、
     前記固体撮像素子と前記第1のアンテナ配線とを接続し、前記拡張部の、前記撮像面と同一面に形成された配線とを備える
    請求項1または2に記載の固体撮像装置。
    The solid-state imaging device further includes:
    An extension part formed around the solid-state image sensor, holding the solid-state image sensor, and having the same surface as the imaging surface of the solid-state image sensor;
    3. The solid-state imaging device according to claim 1, further comprising: a wiring that connects the solid-state imaging element and the first antenna wiring and is formed on the same plane as the imaging surface of the extension portion.
  6.  前記拡張部は、
     撮像面と同一面に形成される少なくとも1つのコンデンサ素子と、
     前記固体撮像素子と前記コンデンサ素子とを接続し、前記拡張部の撮像面と同一面に形成された配線とを備える
    請求項5に記載の固体撮像装置。
    The extension is
    At least one capacitor element formed on the same surface as the imaging surface;
    The solid-state imaging device according to claim 5, further comprising: a wiring that connects the solid-state imaging element and the capacitor element and is formed on the same plane as the imaging surface of the extension portion.
  7.  前記拡張部は、
     撮像面の裏側の面に形成される少なくとも1つの第2のアンテナ配線と、
     前記第2のアンテナ配線と接続される少なくとも1つのプローブパッド素子とを備え、
     前記第2のアンテナ配線は、前記第1のアンテナ配線からの画像の受信、および、前記第1のアンテナ配線への電波による電力供給の少なくとも一方を行う
    請求項5または6に記載の固体撮像装置。
    The extension is
    At least one second antenna wiring formed on the back surface of the imaging surface;
    And at least one probe pad element connected to the second antenna wiring,
    The solid-state imaging device according to claim 5 or 6, wherein the second antenna wiring performs at least one of reception of an image from the first antenna wiring and power supply by radio waves to the first antenna wiring. .
  8.  前記固体撮像装置は、
     複数の前記固体撮像素子を備え、
     複数の前記固体撮像素子の撮像面は同一面に含まれる
    請求項5から7の何れか1項に記載の固体撮像装置。
    The solid-state imaging device
    Comprising a plurality of the solid-state imaging devices;
    The solid-state imaging device according to claim 5, wherein imaging surfaces of the plurality of solid-state imaging elements are included in the same plane.
  9.  前記固体撮像装置は、
     前記複数の固体撮像素子に対応する複数の前記第1のアンテナ配線を備える
    請求項8に記載の固体撮像装置。
    The solid-state imaging device
    The solid-state imaging device according to claim 8, further comprising a plurality of the first antenna wirings corresponding to the plurality of solid-state imaging elements.
  10.  前記固体撮像装置は、
     アンテナ基板と、
     前記第1のアンテナ配線から画像を受信するための、前記アンテナ基板に形成された少なくとも1つの第2のアンテナ配線とを備え、
     前記第2のアンテナ配線は、前記第1のアンテナ配線からの画像の受信、および、前記第1のアンテナ配線への電波による電力供給の少なくとも一方を行う
    請求項1、2、3、5または6に記載の固体撮像装置。
    The solid-state imaging device
    An antenna substrate;
    And at least one second antenna wiring formed on the antenna substrate for receiving an image from the first antenna wiring,
    7. The second antenna wiring performs at least one of reception of an image from the first antenna wiring and power supply by radio waves to the first antenna wiring. The solid-state imaging device described in 1.
  11.  前記アンテナ基板は、前記固体撮像素子の裏面側に接する、もしくは非接触の位置に、または、透明性基板の撮像対象物に接する側の裏面側に接する、もしくは非接触の位置に配置される
    請求項10に記載の固体撮像装置。
    The antenna substrate is disposed at a position in contact with or not in contact with the rear surface side of the solid-state imaging device, or in a position in contact with or without contact with the rear surface side on the side in contact with the imaging target of the transparent substrate. Item 13. The solid-state imaging device according to Item 10.
  12.  前記第2のアンテナ配線は環状に配線され、
     前記アンテナ基板は、前記環状の内側に前記撮像面以上の大きさの開口を備える
    請求項10または11に記載の固体撮像装置。
    The second antenna wiring is wired in a ring shape,
    The solid-state imaging device according to claim 10, wherein the antenna substrate includes an opening having a size larger than the imaging surface inside the annular shape.
  13.  前記アンテナ基板は、
     透光性樹脂材料またはガラス材料で形成される
    請求項10、11または12に記載の固体撮像装置。
    The antenna substrate is
    The solid-state imaging device according to claim 10, 11 or 12, which is formed of a translucent resin material or a glass material.
  14.  前記透明性基板は、少なくとも1つの第2のアンテナ配線を備え、
     前記第2のアンテナ配線は、前記第1のアンテナ配線からの画像の受信、および、前記第1のアンテナ配線への電波による電力供給の少なくとも一方を行う
    請求項1、2、3、5または6に記載の固体撮像装置。
    The transparent substrate includes at least one second antenna wiring;
    7. The second antenna wiring performs at least one of reception of an image from the first antenna wiring and power supply by radio waves to the first antenna wiring. The solid-state imaging device described in 1.
PCT/JP2016/000803 2015-03-18 2016-02-17 Solid-state imaging device WO2016147553A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-055428 2015-03-18
JP2015055428A JP2018078130A (en) 2015-03-18 2015-03-18 Solid state imaging device

Publications (1)

Publication Number Publication Date
WO2016147553A1 true WO2016147553A1 (en) 2016-09-22

Family

ID=56918591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000803 WO2016147553A1 (en) 2015-03-18 2016-02-17 Solid-state imaging device

Country Status (2)

Country Link
JP (1) JP2018078130A (en)
WO (1) WO2016147553A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4373124A1 (en) 2021-07-13 2024-05-22 Kyocera Corporation Optical semiconductor module and sample observation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163453A (en) * 2005-12-12 2007-06-28 Optopac Co Ltd Device for inspecting image sensor package, inspection unit and inspection method thereof
JP2007312354A (en) * 2006-04-17 2007-11-29 Fujifilm Corp Board incorporated antenna
JP2008187554A (en) * 2007-01-31 2008-08-14 Citizen Miyota Co Ltd Solid-state imaging device
JP2008235768A (en) * 2007-03-23 2008-10-02 Hitachi Ltd Semiconductor device and method of manufacturing the same
JP2008233080A (en) * 2007-02-19 2008-10-02 Tadafumi Kawamoto Method for preservation of thin section specimen
JP2010533387A (en) * 2007-05-08 2010-10-21 スキャニメトリクス,インコーポレイテッド Ultra high-speed signal transmission / reception
JP2011242280A (en) * 2010-05-19 2011-12-01 Toshio Sakai Device for forming biological specimen
JP2013509618A (en) * 2009-10-28 2013-03-14 アレンティック マイクロサイエンス インコーポレイテッド Microscopic imaging

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163453A (en) * 2005-12-12 2007-06-28 Optopac Co Ltd Device for inspecting image sensor package, inspection unit and inspection method thereof
JP2007312354A (en) * 2006-04-17 2007-11-29 Fujifilm Corp Board incorporated antenna
JP2008187554A (en) * 2007-01-31 2008-08-14 Citizen Miyota Co Ltd Solid-state imaging device
JP2008233080A (en) * 2007-02-19 2008-10-02 Tadafumi Kawamoto Method for preservation of thin section specimen
JP2008235768A (en) * 2007-03-23 2008-10-02 Hitachi Ltd Semiconductor device and method of manufacturing the same
JP2010533387A (en) * 2007-05-08 2010-10-21 スキャニメトリクス,インコーポレイテッド Ultra high-speed signal transmission / reception
JP2013509618A (en) * 2009-10-28 2013-03-14 アレンティック マイクロサイエンス インコーポレイテッド Microscopic imaging
JP2011242280A (en) * 2010-05-19 2011-12-01 Toshio Sakai Device for forming biological specimen

Also Published As

Publication number Publication date
JP2018078130A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
US9634060B2 (en) Stacked solid-state image sensor and imaging apparatus including the same
JP7395502B2 (en) solid-state image sensor
TWI295107B (en)
US9373660B2 (en) Method of forming a low profile image sensor package with an image sensor substrate, a support substrate and a printed circuit board
JP5424371B1 (en) Solid-state imaging device and imaging apparatus
JP6017107B2 (en) Image sensor, manufacturing method thereof, and sensor device
KR20170124526A (en) Semiconductor device and manufacturing method, and electronic appliance
JP2017130610A (en) Image sensor, manufacturing method, and electronic apparatus
JP2007201365A (en) Imaging apparatus, radiation imaging apparatus and their manufacturing method
KR20220124161A (en) Solid-state imaging devices, imaging devices, and imaging systems
US20190221602A1 (en) Solid state imaging device, solid state imaging device manufacturing method, and electronic apparatus
WO2017057291A1 (en) Imaging element, endoscope, endoscope system
KR20220023764A (en) imaging device
US10986292B2 (en) Solid-state image pickup device and electronic apparatus to increase yield
JP2014057231A (en) Imaging apparatus
TW202107722A (en) Imaging device
US9865641B2 (en) Solid-state imaging device, manufacturing method therefor, and imaging apparatus
WO2016147553A1 (en) Solid-state imaging device
US10837896B2 (en) Electronic prepared slide, solid state imaging element, and electronic prepared slide assembly method
US20160322410A1 (en) Imaging device, and solid-state image element for use therein
US11563049B2 (en) Solid-state imaging apparatus, method for manufacturing solid-state imaging apparatus, and electronic equipment equipped with solid-state imaging apparatus
WO2016056191A1 (en) Solid-state imaging apparatus
WO2016092731A1 (en) Solid state imaging device and production method therefor
WO2023243440A1 (en) Comparator, light detection element, and electronic apparatus
US8318580B2 (en) Isolating wire bonding in integrated electrical components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16764386

Country of ref document: EP

Kind code of ref document: A1