WO2016147473A1 - Compressor system - Google Patents

Compressor system Download PDF

Info

Publication number
WO2016147473A1
WO2016147473A1 PCT/JP2015/081588 JP2015081588W WO2016147473A1 WO 2016147473 A1 WO2016147473 A1 WO 2016147473A1 JP 2015081588 W JP2015081588 W JP 2015081588W WO 2016147473 A1 WO2016147473 A1 WO 2016147473A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
compressor
angle
working fluid
vane
Prior art date
Application number
PCT/JP2015/081588
Other languages
French (fr)
Japanese (ja)
Inventor
中庭 彰宏
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to DE112015006319.6T priority Critical patent/DE112015006319T5/en
Priority to US15/516,816 priority patent/US20170298944A1/en
Publication of WO2016147473A1 publication Critical patent/WO2016147473A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/002Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors

Definitions

  • the present invention relates to a compressor system.
  • This application claims priority on Japanese Patent Application No. 2015-054250 filed on Mar. 18, 2015, the contents of which are incorporated herein by reference.
  • a compressor system in which a motor and a compressor are integrated includes a compressor that compresses a gas such as air or gas, and a motor that drives the compressor.
  • a rotating shaft extending from the casing of the compressor and a rotating shaft of a motor extending similarly from the motor casing are connected.
  • the rotation of the motor is transmitted to the compressor.
  • the rotating shafts of the motor and the compressor are stably rotated by being supported by a plurality of bearings.
  • Such a compressor system is, for example, a subsea production system such as Non-Patent Document 1 (Subsea Production System) or a floating production oil storage facility such as Non-Patent Document 2 (Floating Production Storage and Offloading, FPSO). used.
  • a subsea production system such as Non-Patent Document 1 (Subsea Production System) or a floating production oil storage facility such as Non-Patent Document 2 (Floating Production Storage and Offloading, FPSO).
  • a subsea production system such as Non-Patent Document 1 (Subsea Production System) or a floating production oil storage facility such as Non-Patent Document 2 (Floating Production Storage and Offloading, FPSO).
  • FPSO Floating Production Storage and Offloading
  • a production fluid mixed with crude oil or natural gas mined from a production well on the seabed flows into the compressor as a fluid.
  • This production fluid may change its characteristics when the content of oil such as crude oil fluctuates during mining. If the characteristics of the inflowing production fluid change, the operable range of the compressor will change. As a result, the operating conditions of the compressor change.
  • the present invention provides a compressor system that can cope with changing operating conditions.
  • a compressor system compresses a working fluid by rotating with a rotor having a rotor that rotates about an axis, a stator that is disposed on an outer peripheral side of the rotor, and the rotor.
  • a compressor having an impeller wherein the compressor has an inflow channel through which a working fluid flows into the impeller, and a housing in which a discharge channel through which the working fluid pumped by the impeller flows is formed,
  • a guide vane provided in the inflow channel and capable of changing an angle;
  • a diffuser vane provided in the discharge channel and capable of changing an angle;
  • a control unit configured to control the angles of the guide vane and the diffuser vane.
  • the control unit includes the guide vane and the front vane based on a required PQ characteristic value which is a value of a required pressure and flow rate and a rotation speed of the impeller. Controlling at least one of the angle of the diffuser vanes.
  • the angle of at least one of the guide vane and the diffuser vane can be controlled based on the required PQ characteristic value and the rotation speed of the impeller. Therefore, at least one of the inflow angle of the working fluid flowing into the impeller from the inflow channel or the inflow angle of the working fluid flowing into the discharge channel from the impeller can be reduced.
  • the surge control line can be changed so as to improve the PQ characteristic during operation, and the operating range of the compressor can be expanded.
  • control unit flows into the impeller from the inflow passage when the rotation speed of the impeller is smaller than a predetermined reference.
  • the angle of the guide vane may be controlled so that the relative angle with respect to the inflow direction of the working fluid becomes small.
  • the guide vane when the rotation speed of the impeller is smaller than a predetermined reference, the guide vane is guided in the inflow direction of the working fluid flowing into the impeller from the inflow passage on the inflow side of the working fluid into the impeller. Reduce the phase angle. Thereby, the PQ characteristic can be improved efficiently. As a result, by adjusting the angle of the guide vanes, the operating range of the compressor can be efficiently expanded in the low pressure and low flow regions.
  • control unit flows into the discharge flow path from the impeller when the rotational speed of the impeller is larger than a predetermined reference. You may control the angle of the said diffuser vane so that the relative angle with respect to the inflow direction of the said working fluid may become small.
  • the relative angle of the diffuser vane with respect to the inflow angle of the working fluid flowing into the discharge flow channel on the outflow side of the working fluid from the impeller make it smaller.
  • the PQ characteristic can be improved efficiently.
  • the operating range of the compressor can be efficiently expanded in the high pressure and high flow areas.
  • the control unit when the required PQ characteristic value satisfies a predetermined criterion, the angle of the guide vane may be controlled so that the relative angle with respect to the inflow direction of the working fluid flowing into the impeller from the inflow channel becomes small.
  • the PQ characteristics can be changed only when necessary, and the operating range of the compressor can be efficiently expanded.
  • the control unit when the required PQ characteristic value satisfies a predetermined criterion, the angle of the diffuser vane may be controlled so that a relative angle with respect to an inflow direction of the working fluid flowing from the impeller into the discharge flow path becomes small.
  • the PQ characteristics can be changed only when necessary, and the operating range of the compressor can be efficiently expanded.
  • the operating range of the compressor can be expanded to cope with changing operating conditions.
  • the compressor system 1 is used in a subsea production system (Subsea Production System), which is one of the offshore oil and gas field development methods, and is installed on the bottom of the sea, or a floating production storage and offloading, FPSO. ) And used at sea.
  • the compressor system 1 pumps a production fluid such as oil and gas collected from a production well of an oil and gas field existing at several hundred to several thousand m in the seabed as a working fluid.
  • the compressor system 1 includes a compressor 2, a motor 3, a bearing unit 4, a casing 5, and a control unit 6.
  • the compressor 2 includes a shaft 21 that extends in the axis O direction (left and right direction in FIG. 1) as a rotation axis.
  • the motor 3 is directly connected to the shaft 21 and has a rotor 31.
  • the bearing portion 4 supports the shaft 21.
  • the casing 5 accommodates the motor 3 and the compressor 2.
  • the control unit 6 controls the motor 3 and the compressor 2.
  • the compressor 2 is accommodated in the casing 5.
  • the compressor 2 compresses the working fluid by rotating the shaft 21 around the axis O together with the rotor 31.
  • the compressor 2 of this embodiment includes a shaft 21, an impeller 22, and a housing 23.
  • the shaft 21 extends in the direction of the axis O.
  • the impeller 22 is fixed to the outer peripheral surface of the shaft 21 and rotates with the rotor 31 to compress the working fluid.
  • the housing 23 covers the impeller 22 from the outside.
  • the shaft 21 is a rotating shaft extending in the direction of the axis O.
  • the shaft 21 is supported by the casing 5 so as to be rotatable around the axis O.
  • the shaft 21 penetrates the housing 23 in the direction of the axis O.
  • the shaft 21 extends from the housing 23 at both ends.
  • the shaft 21 extends in the direction of the axis O in the casing 5 described later.
  • the impeller 22 rotates with the shaft 21 and compresses the working fluid that passes through the impeller flow path 22a formed therein to generate a compressed fluid.
  • a plurality of impellers 22 are fixed to the outer peripheral surface of the shaft 21 side by side in the direction of the axis O.
  • FIG. 1 shows an example in which a plurality of impellers 22 are provided. However, at least one impeller 22 may be provided in the compressor 2.
  • the impeller channel 22a circulates the working fluid from the inlet portion of the impeller 22 toward the outlet portion of the impeller 22, as shown in FIG.
  • the inlet portion of the impeller 22 is formed at an end portion facing the upstream side (the right side in FIG. 1 and FIG. 2) which is one side of the impeller 22 in the axis O direction.
  • the exit portion of the impeller 22 is formed at an end portion facing outward in the radial direction with respect to the axis O of the impeller 22.
  • the housing 23 is an exterior of the compressor 2.
  • the housing 23 accommodates the impeller 22 therein.
  • the housing 23 is accommodated in the casing 5.
  • the housing 23 is provided with a plurality of internal spaces 23a that repeat the contraction and expansion.
  • the impellers 22 are accommodated in the internal spaces 23a.
  • the impeller 22 is disposed at a predetermined interval with respect to the housing 23.
  • a housing flow path 24 is formed in the housing 23.
  • the housing flow path 24 circulates the working fluid from the impeller 22 arranged on the upstream side in the axis O direction to the impeller 22 adjacent to the downstream side (the left side in FIG. 1 and FIG. 2) that is the other side in the axis O direction.
  • the housing flow path 24 has a suction flow path 25, an intermediate flow path 26, and a discharge flow path (not shown).
  • the suction flow path 25 is disposed on the most upstream side in the direction of the axis O and allows the working fluid to flow into the impeller 22 from the outside.
  • the intermediate flow path 26 is formed between the plurality of impellers 22.
  • the discharge flow path (not shown) discharges the compressed working fluid from the impeller 22 disposed on the most downstream side in the direction of the axis O to the outside.
  • the suction flow path 25 is formed at a position upstream of the impeller 22 disposed on the most upstream side in the axis O direction.
  • the suction flow path 25 is an inflow flow path that allows the working fluid to flow into the impeller 22 disposed on the most upstream side in the axis O direction.
  • the suction flow path 25 extends radially inward from an opening formed in a part of the circumferential direction on the upstream side in the axis O direction of the housing 23.
  • the suction channel 25 circulates the working fluid toward the inlet of the impeller channel 22a.
  • the suction passage 25 is provided with an inlet guide vane 251 (guide vane). The inlet guide vane 251 turns the working fluid sucked from the outside of the housing 23 in a desired direction and guides it to the impeller flow path 22a.
  • the angle of the inlet guide vane 251 can be changed by an operating mechanism (not shown).
  • the desired direction in the inlet guide vane 251 is, for example, a direction in which a pre-turn is applied to the working fluid sucked from the outside.
  • the desired direction in the inlet guide vane 251 is, for example, a direction inclined toward the front side in the rotational direction of the impeller 22 as it goes in the radial direction.
  • the inlet guide vane 251 of the present embodiment is adjusted based on a signal from the control unit 6 so that the relative angle with respect to the inflow direction of the working fluid flowing into the impeller flow path 22a becomes small.
  • the intermediate flow path 26 is formed so as to connect between the impellers 22 adjacent in the axis O direction.
  • the intermediate flow path 26 does not communicate with the outside of the housing 23 but is formed inside the housing 23.
  • the intermediate flow path 26 has a diffuser flow path 27 and a return flow path 28.
  • the diffuser flow path 27 extends outward in the radial direction from the outlet portion of the impeller flow path 22a.
  • the return flow path 28 is connected to the diffuser flow path 27 and extends toward the inlet portion of the impeller flow path 22 a of the adjacent impeller 22.
  • the diffuser channel 27 has an inlet facing the outlet of the impeller channel 22a.
  • the diffuser flow path 27 allows the working fluid discharged from the impeller flow path 22a to flow outward in the radial direction.
  • the diffuser channel 27 is a discharge channel through which the working fluid pumped by the impeller 22 flows.
  • a diffuser vane 271 is provided in the diffuser flow path 27. The diffuser vane 271 turns the working fluid discharged from the impeller flow path 22a in a desired direction.
  • the angle of the diffuser vane 271 can be changed by an operating mechanism (not shown).
  • the desired direction in the diffuser vane 271 is a direction in which the dynamic pressure of the circulating working fluid is recovered as a static pressure.
  • the desired direction in the diffuser vane 271 is a direction that inclines forward in the rotational direction of the impeller 22 as it goes in the radial direction.
  • the angle of the diffuser vane 271 of this embodiment is adjusted so that the relative angle with respect to the inflow direction of the working fluid flowing into the diffuser flow path 27 from the impeller flow path 22a is reduced based on a signal from the control unit 6.
  • the return channel 28 is an inflow channel for allowing the working fluid that has flowed through the diffuser channel 27 to flow into the impeller channel 22a.
  • the return channel 28 has a curved channel 281 and a straight channel 282.
  • the curved channel 281 is connected to the end portion on the outer side in the radial direction of the diffuser channel 27.
  • the straight channel 282 is connected to the end of the curved channel 281.
  • the curved channel 281 is formed continuously with respect to the outer side in the radial direction of the diffuser channel 27.
  • the curved channel 281 extends so as to bend inward in the radial direction after extending outward in the radial direction.
  • the curved flow path 281 diverts the flow of the working fluid going outward in the radial direction to the flow going inward in the radial direction.
  • the straight flow path 282 extends from the curved flow path 281 toward the inlet portion of the impeller flow path 22a toward the inside in the radial direction.
  • the straight flow path 282 is formed continuously with respect to the opposite side of the bent flow path 281 connected to the diffuser flow path 27.
  • the straight flow path 282 is provided with a return vane 282a for turning the working fluid flowing through the diffuser flow path 27 in a desired direction.
  • the motor 3 is accommodated in the casing 5 with an interval in the direction of the axis O with respect to the compressor 2.
  • the motor 3 has a rotor 31 and a stator 32.
  • the rotor 31 is fixed so as to be integrated with the shaft 21.
  • the stator 32 is disposed on the outer peripheral side of the rotor 31.
  • the rotor 31 is integrated with the shaft 21 so as to be rotatable around the axis O.
  • the rotor 31 is directly connected to the outer peripheral side of the shaft 21, which is the outer side in the circumferential direction with respect to the axis O, so as to rotate integrally with the shaft 21 of the compressor 2 without using a gear or the like.
  • the rotor 31 has, for example, a rotor core (not shown) through which an induced current flows when the stator 32 generates a rotating magnetic field.
  • the stator 32 is provided with a gap in the circumferential direction so as to cover the rotor 31 from the outer peripheral side.
  • the stator 32 has, for example, a plurality of stator cores (not shown) arranged along the circumferential direction of the rotor 31, and a stator winding (not shown) wound around the stator core.
  • the stator 32 rotates the rotor 31 by generating a rotating magnetic field when an electric current flows from the outside.
  • the stator 32 is fixed in the casing 5.
  • the bearing part 4 is accommodated in the casing 5, and supports the shaft 21 rotatably.
  • the bearing portion 4 of this embodiment includes a plurality of journal bearings 41 and thrust bearings 42.
  • the journal bearing 41 supports a load acting on the shaft 21 in the radial direction.
  • the journal bearings 41 are disposed at both ends of the shaft 21 in the axis O direction so as to sandwich the motor 3 and the compressor 2 from the axis O direction.
  • the journal bearing 41 is disposed between the area where the compressor 2 is provided and the area where the motor 3 is provided, and is also arranged closer to the motor 3 than a seal member 51 described later.
  • the thrust bearing 42 supports a load that acts on the shaft 21 in the direction of the axis O via a thrust collar 21 a formed on the shaft 21.
  • the thrust bearing 42 is disposed between the area where the compressor 2 is provided and the area where the motor 3 is provided, and is disposed closer to the compressor 2 than a seal member 51 described later.
  • Casing 5 accommodates compressor 2 and motor 3 inside.
  • the casing 5 has a cylindrical shape along the axis O.
  • the inner surface of the casing 5 protrudes toward the shaft 21 between the compressor 2 and the motor 3 in the direction of the axis O.
  • the casing 5 is provided in a protruding portion of a seal member 51 that seals between a region where the compressor 2 is provided and a region where the motor 3 is provided.
  • the controller 6 controls the compressor 2 and the motor 3 so that the compressor 2 operates under predetermined operating conditions.
  • the control unit 6 controls the angles of the inlet guide vane 251 and the diffuser vane 271.
  • the control unit 6 controls the rotation speed of the rotor 31 of the motor 3.
  • the control unit 6 includes an input unit 61, a determination unit 62, and an output unit 63.
  • the input unit 61 receives a required PQ characteristic value that is a required pressure and flow rate value and a required rotational speed that is a required rotational speed of the impeller 22.
  • the determination unit 62 determines whether or not the input required PQ characteristic value and the required rotation speed satisfy a predetermined standard.
  • the output unit 63 sends a signal to the motor 3, the inlet guide vane 251, and the diffuser vane 271 based on the determination result in the determination unit 62.
  • the input unit 61 outputs the input required PQ characteristic value and the required rotation speed to the determination unit 62.
  • the determination unit 62 determines whether or not the required rotational speed satisfies a predetermined standard, and determines whether or not the required PQ characteristic value is within the initial operation range.
  • the determination unit 62 sends an instruction to the output unit 63 as to how much the angle of the inlet guide vane 251 or the diffuser vane 271 is adjusted based on the determination result.
  • the initial operation range is a range in which the compressor 2 in the initial setting state can be operated without causing a surge.
  • the initial operating range is a region on the right side of the surge control lines SCL11 and SCL12 and the surge control lines SCL21 and SCL22 in the curve indicating the pressure-flow rate relationship of the compressor 2 shown in FIG.
  • the surge control lines SCL11 and SCL12 are defined by an inlet guide vane 251 and a diffuser vane 271 having an angle determined as an initial value.
  • the surge control lines SCL21 and SCL22 are defined by the inlet guide vane 251 and the diffuser vane 271 after changing the angle described later. A surge occurs in the region on the left side of these surge control lines.
  • the determination unit 62 of the present embodiment determines whether or not the input requested rotational speed is below a predetermined first reference.
  • the determination unit 62 determines whether or not the input requested rotational speed exceeds a predetermined second reference.
  • the first reference is the rotational speed at which the compressor 2 is operated in a region of lower pressure and lower flow rate than the state where the rotational speed is 100%, assuming that the rotational speed during rated operation is 100%.
  • the second reference is the rotational speed at which the compressor 2 is operated in the region of higher pressure and higher flow rate than the state where the rotational speed is 100%.
  • the first reference is the rotation speed 100%.
  • the second reference is the rotation speed 110%.
  • the determination unit 62 sends an instruction to the output unit 63 to adjust the inlet guide vane 251 when the input requested rotation number is smaller than the first reference rotation number 100%.
  • the input required PQ characteristic value is from the low-frequency side surge control line SCL12 in the low-pressure and low-flow region of the initial operation range. Also, it is determined whether or not it is within the right region. Therefore, for example, when the required PQ characteristic value is a value in the region ⁇ in FIG. 3, it is determined that the required PQ characteristic value exceeds the low-frequency side surge control line SCL12.
  • the determination unit 62 sends an instruction to the output unit 63 to adjust the angle of the inlet guide vane 251 so that the relative angle with respect to the inflow direction of the working fluid flowing into the impeller flow channel 22a from the suction flow channel 25 becomes small.
  • the determining unit 62 sends an instruction to the output unit 63 to adjust the diffuser vane 271 when the input requested rotational speed is larger than the second reference rotational speed 110%. If the determination unit 62 determines that the required rotational speed is greater than the second reference, the input required PQ characteristic value is higher than the high-frequency side surge control line SCL11 in the high-pressure and high-flow region of the initial operation range. Also, it is determined whether or not it is within the right region. Therefore, for example, when the required PQ characteristic value is a value in the region ⁇ in FIG. 3, it is determined that the required PQ characteristic value exceeds the high-frequency side surge control line SCL11.
  • the determination unit 62 sends an instruction to the output unit 63 to adjust the angle of the diffuser vane 271 so that the relative angle with respect to the inflow direction of the working fluid flowing into the diffuser flow channel 27 from the impeller flow channel 22a becomes small.
  • the determination unit 62 instructs the output unit 63 not to adjust any angle of the inlet guide vane 251 and the diffuser vane 271 when the input requested rotational speed is larger than the first reference and smaller than the second reference. send.
  • the determination unit 62 sends an instruction to the output unit 63 so as not to adjust any of the inlet guide vane 251 and the diffuser vane 271 even when the input required PQ characteristic value does not exceed the initial operation range.
  • the output unit 63 sends an instruction to the motor 3 to change the rotation number of the rotor 31 based on the requested rotation number input from the input unit 61 via the determination unit 62.
  • the output unit 63 sends an instruction to the inlet guide vane 251 or the diffuser vane 271 to change the angle based on the determination result in the determination unit 62. Note that the amount of change in the angle of the inlet guide vane 251 or the diffuser vane 271 may be set as appropriate from the difference between the required PQ characteristic value and the current PQ characteristic value.
  • the angle of the inlet guide vane 251 in response to an instruction from the output unit 63, the angle of the inlet guide vane 251 is adjusted. As a result, as shown in FIG. 3, the position of the low-frequency side surge control line SCL12 in the low-pressure and low-flow region changes to SCL22. In response to an instruction from the output unit 63, the angle of the diffuser vane 271 is adjusted. As a result, the position of the high-frequency surge control line SCL11 in the high-pressure and high-flow region changes to SCL12.
  • the compressor system 1 According to the compressor system 1 as described above, current is supplied to the stator 32 by an external device such as a generator (not shown) based on the required PQ characteristic value and the required rotational speed input to the input unit 61 of the control unit 6. Is done. A rotating magnetic field is generated based on the supplied current, and the rotor 31 of the motor 3 starts rotating together with the shaft 21 at the required rotational speed.
  • the impeller 22 By rotating the shaft 21 at a high speed, in the compressor 2, the impeller 22 that rotates together with the shaft 21 compresses the working fluid flowing into the compressor 2 from the upstream side in the axis O direction and compresses from the downstream side in the axis O direction.
  • the compressed fluid that satisfies the required PQ characteristic value is discharged.
  • the required PQ characteristic value and the required rotational speed are input to the input unit 61 of the control unit 6 so as to keep the discharge pressure of the compressor 2 constant.
  • the output unit 63 sends an instruction to the motor 3 to change the rotational speed of the rotor 31 according to the requested rotational speed. As a result, the rotational speed of the impeller 22 is adjusted via the rotor 31.
  • the determination unit 62 determines whether the required rotational speed is below the first reference, it determines whether the required PQ characteristic value exceeds the low-frequency side surge control line SCL12.
  • the angle of the inlet guide vane 251 is adjusted from the determination unit 62 to the output unit 63. Send a signal.
  • the inlet guide vane 251 that has received the signal from the output unit 63 adjusts the angle so that the relative angle with respect to the inflow direction of the working fluid flowing from the suction flow path 25 into the impeller flow path 22a becomes small.
  • the position of the low-frequency side surge control line SCL12 changes to SCL22.
  • the operating region at the rotation speed of 110% changes from the line L111 to the line L112. Therefore, the PQ characteristics in the low pressure and low flow rate regions can be improved.
  • the determination unit 62 determines whether the required PQ characteristic value exceeds the high frequency side surge control line SCL11.
  • a signal is sent from the determination unit 62 to the output unit 63 to adjust the angle of the diffuser vane 271.
  • the diffuser vane 271 that has received the signal from the output unit 63 adjusts the angle so that the relative angle with respect to the inflow direction of the working fluid flowing into the diffuser flow path 27 from the impeller flow path 22a becomes small.
  • the position of the high frequency side surge control line SCL11 changes to SCL12.
  • the operating region at the rotation speed of 110% changes from the line L111 to the line L112. Therefore, the PQ characteristics in the high pressure and high flow rate regions can be improved.
  • the surge control line can be changed to improve the PQ characteristics during operation. Therefore, even when the state quantity of the working fluid flowing into the impeller flow path 22a changes, the compressor 2 can be operated over a wide range to make the discharge pressure constant. Therefore, the operating range of the compressor 2 can be expanded to cope with changing operating conditions.
  • the impeller 22 rotates at a low rotation speed. Therefore, the compressor 2 is operated in the low pressure and low flow areas. That is, when the required rotational speed is low, the compression efficiency of the working fluid by the impeller 22 is low. Therefore, the volume flow rate of the working fluid flowing through the impeller channel 22a increases. Therefore, when the required rotational speed is low, the inflow direction of the working fluid flowing into the impeller flow path 22a greatly affects the operating range of the compressor 2. Therefore, when the required rotational speed is smaller than a predetermined first reference, the inlet for the inflow direction of the working fluid flowing into the impeller passage 22a from the suction passage 25 on the inflow side of the working fluid into the impeller passage 22a.
  • the phase angle of the guide vane 251 is reduced. Thereby, the PQ characteristic can be improved efficiently. That is, by adjusting the angle of the inlet guide vane 251, the operating range of the compressor 2 can be expanded more efficiently than adjusting the diffuser vane 271 in the low pressure and low flow rate regions.
  • the compressor 2 When the required rotational speed is high, the compressor 2 is operated in a high pressure and high flow rate region. That is, when the required rotational speed is high, the compression efficiency of the working fluid is high. Therefore, the volume flow rate of the working fluid flowing through the impeller flow path 22a is reduced. Therefore, in the region of high pressure and high flow rate, the inflow angle of the working fluid flowing out from the impeller passage 22 a into the diffuser passage 27 greatly affects the operating range of the compressor 2. Accordingly, when the required rotational speed is larger than a predetermined second reference, the relative angle of the diffuser vane 271 with respect to the inflow angle of the working fluid flowing into the diffuser passage 27 on the outflow side of the working fluid from the impeller passage 22a. Is reduced. Thereby, the PQ characteristic can be improved efficiently. That is, by adjusting the angle of the diffuser vane 271, the operating range of the compressor 2 can be expanded more efficiently than adjusting the inlet guide vane 251 in the high pressure and high flow rate regions.
  • the angles of the inlet guide vane 251 and the diffuser vane 271 are determined. Thereby, it can be changed so as to improve the PQ characteristic only when necessary, and the operating range of the compressor 2 can be efficiently expanded.
  • the guide vane is not limited to the inlet guide vane 251 provided in the suction flow path 25 as in the present embodiment.
  • the guide vane is only required to be provided in the inflow channel and to divert the working fluid flowing into the impeller channel 22a in a desired direction.
  • the guide vane may be a return vane 282 a provided in the straight flow path 282 of the return flow path 28.
  • the inlet guide vane 251 and the diffuser vane 271 that are guide vanes are arranged together, but the present invention is not limited to such a configuration.
  • the compressor 2 may be provided with only the guide vane or only the diffuser vane 271.
  • the guide vanes and diffuser vanes 271 are not limited to being provided for all the impellers 22 when a plurality of impellers 22 are provided.
  • the guide vane and diffuser vane 271 may be arranged only around the impeller 22 of an arbitrary stage whose operating range is desired to be adjusted.
  • a reference different from the first reference and the second reference is used as a reference for determining whether or not it is within a predetermined operation range.
  • the determination is not limited to this. Absent. For example, you may determine whether it is settled in the predetermined driving range using one standard.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A compressor system is provided with a compressor (2) having an impeller (22) that compresses a working fluid by rotating. The compressor (2) has: a housing (23) in which an inflow channel (25) and a discharge channel (27) are formed; a guide vane (251) provided to the inflow channel (25), said guide vane (251) having a changeable angle; a diffuser vane (271) provided to the discharge channel (27), said diffuser vane (271) having a changeable angle; and a control unit (6) that controls the angles of the guide vane (251) and the diffuser vane (271). The control unit (6) controls the angle of at least one of the guide vane (251) and the diffuser vane (271) on the basis of the number of rotations of the impeller (22) and the required PQ characteristic value.

Description

圧縮機システムCompressor system
 本発明は、圧縮機システムに関する。
 本願は、2015年3月18日に出願された特願2015-054250号について優先権を主張し、その内容をここに援用する。
The present invention relates to a compressor system.
This application claims priority on Japanese Patent Application No. 2015-054250 filed on Mar. 18, 2015, the contents of which are incorporated herein by reference.
 モータと圧縮機とが一体となっている圧縮機システムは、空気やガス等の気体を圧縮する圧縮機と、圧縮機を駆動させるモータとを有している。圧縮機システムでは、圧縮機のケーシングから延在する回転軸と、モータのケーシングから同様に延在するモータの回転軸とが接続されている。モータの回転が圧縮機に伝達される。このモータ及び圧縮機の回転軸は、複数の軸受により支持されることで安定して回転する。 A compressor system in which a motor and a compressor are integrated includes a compressor that compresses a gas such as air or gas, and a motor that drives the compressor. In the compressor system, a rotating shaft extending from the casing of the compressor and a rotating shaft of a motor extending similarly from the motor casing are connected. The rotation of the motor is transmitted to the compressor. The rotating shafts of the motor and the compressor are stably rotated by being supported by a plurality of bearings.
 このような圧縮機システムは、例えば、非特許文献1のような海底生産システム(Subsea Production System)や、非特許文献2のような浮体式海洋石油貯蔵設備(Floating Production Storage and Offloading、FPSO)に使用される。海底生産システムに使用される際には、圧縮機システムは、海底に設置される。圧縮機システムは、海底から数千mの深さまで掘削した生産井から原油や天然ガス等が混在した生産流体を海上に送り出している。浮体式海洋石油貯蔵設備に使用される際には、圧縮機システムは、船舶等の海上設備に設置されている。 Such a compressor system is, for example, a subsea production system such as Non-Patent Document 1 (Subsea Production System) or a floating production oil storage facility such as Non-Patent Document 2 (Floating Production Storage and Offloading, FPSO). used. When used in a seabed production system, the compressor system is installed on the seabed. In the compressor system, a production fluid mixed with crude oil, natural gas, etc. is sent to the sea from a production well drilled to a depth of several thousand meters from the sea floor. When used in a floating marine oil storage facility, the compressor system is installed in a marine facility such as a ship.
 ところで、海底生産システムや浮体式海洋石油貯蔵設備で使用される圧縮機システムでは、海底の生産井から採掘した原油や天然ガス等が混在した生産流体が流体として、圧縮機に流入する。この生産流体は、採掘中に原油等の油分の含有量が変動することで、特性が変わってしまう可能性がある。流入する生産流体の特性が変わってしまうと、圧縮機の運転可能な範囲が変化してしまう。その結果、圧縮機の運転条件が変わってしまう。 By the way, in a compressor system used in a submarine production system or a floating offshore oil storage facility, a production fluid mixed with crude oil or natural gas mined from a production well on the seabed flows into the compressor as a fluid. This production fluid may change its characteristics when the content of oil such as crude oil fluctuates during mining. If the characteristics of the inflowing production fluid change, the operable range of the compressor will change. As a result, the operating conditions of the compressor change.
 本発明は、変化する運転条件に対応可能な圧縮機システムを提供する。 The present invention provides a compressor system that can cope with changing operating conditions.
 上記課題を解決するために、本発明は以下の手段を提案している。
 本発明の第一の態様に係る圧縮機システムは、軸線回りに回転するロータと、前記ロータの外周側に配置されたステータとを有するモータと、前記ロータとともに回転することで作動流体を圧縮するインペラを有する圧縮機と、を備え、前記圧縮機は、前記インペラに作動流体を流入させる流入流路、及び、前記インペラによって圧送される作動流体が流通する排出流路が形成されたハウジングと、前記流入流路に設けられて角度を変更可能なガイドベーンと、前記排出流路に設けられて角度を変更可能なディフューザベーンと、前記ガイドベーン及びディフューザベーンの角度を制御する制御部と、を有し、前記制御部は、要求される圧力及び流量の値である要求PQ特性値と前記インペラの回転数とに基づいて、前記ガイドベーン及び前記ディフューザベーンの少なくとも一方の角度を制御する。
In order to solve the above problems, the present invention proposes the following means.
A compressor system according to a first aspect of the present invention compresses a working fluid by rotating with a rotor having a rotor that rotates about an axis, a stator that is disposed on an outer peripheral side of the rotor, and the rotor. A compressor having an impeller, wherein the compressor has an inflow channel through which a working fluid flows into the impeller, and a housing in which a discharge channel through which the working fluid pumped by the impeller flows is formed, A guide vane provided in the inflow channel and capable of changing an angle; a diffuser vane provided in the discharge channel and capable of changing an angle; and a control unit configured to control the angles of the guide vane and the diffuser vane. And the control unit includes the guide vane and the front vane based on a required PQ characteristic value which is a value of a required pressure and flow rate and a rotation speed of the impeller. Controlling at least one of the angle of the diffuser vanes.
 このような構成によれば、要求PQ特性値とインペラの回転数とに基づいて、ガイドベーン及びディフューザベーンの少なくとも一方の角度を制御することができる。そのため、流入流路からインペラに流入する作動流体の流入角度またはインペラから排出流路に流入する作動流体の流入角度の少なくとも一方を小さくすることができる。これにより、運転中にPQ特性を向上させるようにサージコントロールラインを変化させることができ、圧縮機の運転範囲を広げることができる。 According to such a configuration, the angle of at least one of the guide vane and the diffuser vane can be controlled based on the required PQ characteristic value and the rotation speed of the impeller. Therefore, at least one of the inflow angle of the working fluid flowing into the impeller from the inflow channel or the inflow angle of the working fluid flowing into the discharge channel from the impeller can be reduced. Thereby, the surge control line can be changed so as to improve the PQ characteristic during operation, and the operating range of the compressor can be expanded.
 本発明の第二の態様に係る圧縮機システムでは、第一の態様において、制御部は、前記インペラの回転数が予め定めた基準よりも小さい場合に、前記流入流路から前記インペラに流入する前記作動流体の流入方向に対する相対角度が小さくなるように前記ガイドベーンの角度を制御してもよい。 In the compressor system according to the second aspect of the present invention, in the first aspect, the control unit flows into the impeller from the inflow passage when the rotation speed of the impeller is smaller than a predetermined reference. The angle of the guide vane may be controlled so that the relative angle with respect to the inflow direction of the working fluid becomes small.
 このような構成によれば、インペラの回転数が予め定めた基準よりも小さい場合に、インペラへの作動流体の流入側である流入流路からインペラに流入する作動流体の流入方向に対するガイドベーンの相体角度を小さくする。これにより、効率的にPQ特性を向上させることができる。その結果、ガイドベーンの角度を調整することで、低圧及び低流量の領域で効率的に圧縮機の運転範囲を広げることができる。 According to such a configuration, when the rotation speed of the impeller is smaller than a predetermined reference, the guide vane is guided in the inflow direction of the working fluid flowing into the impeller from the inflow passage on the inflow side of the working fluid into the impeller. Reduce the phase angle. Thereby, the PQ characteristic can be improved efficiently. As a result, by adjusting the angle of the guide vanes, the operating range of the compressor can be efficiently expanded in the low pressure and low flow regions.
 本発明の第三の態様に係る圧縮機システムでは、第一の態様において、制御部は、前記インペラの回転数が予め定めた基準よりも大きい場合に、前記インペラから前記排出流路に流入する前記作動流体の流入方向に対する相対角度が小さくなるように前記ディフューザベーンの角度を制御してもよい。 In the compressor system according to the third aspect of the present invention, in the first aspect, the control unit flows into the discharge flow path from the impeller when the rotational speed of the impeller is larger than a predetermined reference. You may control the angle of the said diffuser vane so that the relative angle with respect to the inflow direction of the said working fluid may become small.
 このような構成によれば、インペラの回転数が予め定めた基準よりも大きい場合に、インペラからの作動流体の流出側である排出流路に流入する作動流体の流入角度に対するディフューザベーンの相対角度を小さくする。これにより、効率的にPQ特性を向上させることができる。その結果、高圧及び高流量の領域で効率的に圧縮機の運転範囲を広げることができる。 According to such a configuration, when the rotational speed of the impeller is larger than a predetermined reference, the relative angle of the diffuser vane with respect to the inflow angle of the working fluid flowing into the discharge flow channel on the outflow side of the working fluid from the impeller Make it smaller. Thereby, the PQ characteristic can be improved efficiently. As a result, the operating range of the compressor can be efficiently expanded in the high pressure and high flow areas.
 本発明の第四の態様に係る圧縮機システムでは、第一から第三の態様のいずれか一つにおいて、前記制御部は、前記要求PQ特性値が予め定めた基準を満たした場合に、前記流入流路から前記インペラに流入する前記作動流体の流入方向に対する相対角度が小さくなるように前記ガイドベーンの角度を制御していてもよい。 In the compressor system according to the fourth aspect of the present invention, in any one of the first to third aspects, the control unit, when the required PQ characteristic value satisfies a predetermined criterion, The angle of the guide vane may be controlled so that the relative angle with respect to the inflow direction of the working fluid flowing into the impeller from the inflow channel becomes small.
 このような構成によれば、必要な場合のみPQ特性を向上させるように変化させることができ、効率的に圧縮機の運転範囲を広げることができる。 According to such a configuration, the PQ characteristics can be changed only when necessary, and the operating range of the compressor can be efficiently expanded.
 本発明の第五の態様に係る圧縮機システムでは、第一から第三の態様のいずれか一つにおいて、前記制御部は、前記要求PQ特性値が予め定めた基準を満たした場合に、前記インペラから前記排出流路に流入する前記作動流体の流入方向に対する相対角度が小さくなるように前記ディフューザベーンの角度を制御してもよい。 In the compressor system according to the fifth aspect of the present invention, in any one of the first to third aspects, the control unit, when the required PQ characteristic value satisfies a predetermined criterion, The angle of the diffuser vane may be controlled so that a relative angle with respect to an inflow direction of the working fluid flowing from the impeller into the discharge flow path becomes small.
 このような構成によれば、必要な場合のみPQ特性を向上させるように変化させることができ、効率的に圧縮機の運転範囲を広げることができる。 According to such a configuration, the PQ characteristics can be changed only when necessary, and the operating range of the compressor can be efficiently expanded.
 本発明の圧縮機システムによれば、ガイドベーン及びディフューザベーンの少なくとも一方の角度を制御することで、圧縮機の運転範囲を広げて、変化する運転条件に対応させることができる。 According to the compressor system of the present invention, by controlling the angle of at least one of the guide vane and the diffuser vane, the operating range of the compressor can be expanded to cope with changing operating conditions.
本発明の実施形態における圧縮機システムを説明する模式図である。It is a mimetic diagram explaining a compressor system in an embodiment of the present invention. 本発明の実施形態における圧縮機の内部構造を示す模式図である。It is a schematic diagram which shows the internal structure of the compressor in embodiment of this invention. 本発明の実施形態における圧縮機での流量と圧力との関係図である。It is a related figure of the flow and pressure in the compressor in the embodiment of the present invention.
 以下、本発明に係る実施形態について図1から図3を参照して説明する。
 圧縮機システム1は、海洋油ガス田開発方式の一つである海底生産システム(Subsea Production System)に使用されて海底に設けられていたり、浮体式海洋石油貯蔵設備(Floating Production Storage and Offloading、FPSO)に使用されて海上に設けられていたりする。圧縮機システム1は、海底数百から数千mに存在する油ガス田の生産井から採取された油・ガス等の生産流体を作動流体として圧送する。
Embodiments according to the present invention will be described below with reference to FIGS. 1 to 3.
The compressor system 1 is used in a subsea production system (Subsea Production System), which is one of the offshore oil and gas field development methods, and is installed on the bottom of the sea, or a floating production storage and offloading, FPSO. ) And used at sea. The compressor system 1 pumps a production fluid such as oil and gas collected from a production well of an oil and gas field existing at several hundred to several thousand m in the seabed as a working fluid.
 圧縮機システム1は、図1に示すように、圧縮機2と、モータ3と、軸受部4と、ケーシング5と、制御部6とを備えている。圧縮機2は、回転軸として軸線O方向(図1左右方向)に延在するシャフト21を有する。モータ3は、シャフト21に直接的に接続されロータ31を有する。軸受部4は、シャフト21を支持している。ケーシング5は、モータ3と圧縮機2とを収容している。制御部6は、モータ3及び圧縮機2を制御する。 As shown in FIG. 1, the compressor system 1 includes a compressor 2, a motor 3, a bearing unit 4, a casing 5, and a control unit 6. The compressor 2 includes a shaft 21 that extends in the axis O direction (left and right direction in FIG. 1) as a rotation axis. The motor 3 is directly connected to the shaft 21 and has a rotor 31. The bearing portion 4 supports the shaft 21. The casing 5 accommodates the motor 3 and the compressor 2. The control unit 6 controls the motor 3 and the compressor 2.
 圧縮機2は、ケーシング5内に収容されている。圧縮機2は、ロータ31とともにシャフト21が軸線O回りに回転することで作動流体を圧縮する。本実施形態の圧縮機2は、シャフト21と、インペラ22と、ハウジング23とを有している。シャフト21は、軸線O方向に延在している。インペラ22は、シャフト21の外周面に固定されてロータ31とともに回転することで作動流体を圧縮する。ハウジング23は、インペラ22を外側から覆っている。 The compressor 2 is accommodated in the casing 5. The compressor 2 compresses the working fluid by rotating the shaft 21 around the axis O together with the rotor 31. The compressor 2 of this embodiment includes a shaft 21, an impeller 22, and a housing 23. The shaft 21 extends in the direction of the axis O. The impeller 22 is fixed to the outer peripheral surface of the shaft 21 and rotates with the rotor 31 to compress the working fluid. The housing 23 covers the impeller 22 from the outside.
 シャフト21は、軸線O方向に延在する回転軸である。シャフト21は、軸線O回りに回転可能にケーシング5に支持されている。シャフト21は、ハウジング23を軸線O方向に貫通している。シャフト21は、両端がハウジング23から延出している。シャフト21は、後述するケーシング5内において軸線O方向に延在している。 The shaft 21 is a rotating shaft extending in the direction of the axis O. The shaft 21 is supported by the casing 5 so as to be rotatable around the axis O. The shaft 21 penetrates the housing 23 in the direction of the axis O. The shaft 21 extends from the housing 23 at both ends. The shaft 21 extends in the direction of the axis O in the casing 5 described later.
 インペラ22は、シャフト21とともに回転し、内部に形成されたインペラ流路22aを通過する作動流体を圧縮して圧縮流体を生成する。インペラ22は、シャフト21の外周面に軸線O方向に間隔を空けて複数並んで固定されている。なお、図1において、インペラ22が複数設けられている場合の一例を示している。しかしながら、圧縮機2においてインペラ22は、少なくとも1つ以上設けられていればよい。 The impeller 22 rotates with the shaft 21 and compresses the working fluid that passes through the impeller flow path 22a formed therein to generate a compressed fluid. A plurality of impellers 22 are fixed to the outer peripheral surface of the shaft 21 side by side in the direction of the axis O. FIG. 1 shows an example in which a plurality of impellers 22 are provided. However, at least one impeller 22 may be provided in the compressor 2.
 インペラ流路22aは、図2に示すように、インペラ22の入口部分から、インペラ22の出口部分に向けて作動流体を流通させる。インペラ22の入口部分は、インペラ22の軸線O方向の一方側である上流側(図1及び図2紙面右側)を向く端部に形成されている。インペラ22の出口部分は、インペラ22の軸線Oを基準とする径方向の外側を向く端部に形成されている。 The impeller channel 22a circulates the working fluid from the inlet portion of the impeller 22 toward the outlet portion of the impeller 22, as shown in FIG. The inlet portion of the impeller 22 is formed at an end portion facing the upstream side (the right side in FIG. 1 and FIG. 2) which is one side of the impeller 22 in the axis O direction. The exit portion of the impeller 22 is formed at an end portion facing outward in the radial direction with respect to the axis O of the impeller 22.
 ハウジング23は、圧縮機2の外装である。ハウジング23は、インペラ22を内部に収容している。ハウジング23は、ケーシング5内に収容されている。ハウジング23は、縮径及び拡径を繰り返す内部空間23aが複数設けられている。この内部空間23aには、それぞれインペラ22が収容されている。内部空間23aでは、インペラ22がハウジング23に対して所定の間隔を隔てて配置されている。ハウジング23には、ハウジング流路24が形成されている。ハウジング流路24は、軸線O方向の上流側に配置されたインペラ22から軸線O方向の他方側である下流側(図1及び図2紙面左側)に隣接するインペラ22に作動流体を流通させる。 The housing 23 is an exterior of the compressor 2. The housing 23 accommodates the impeller 22 therein. The housing 23 is accommodated in the casing 5. The housing 23 is provided with a plurality of internal spaces 23a that repeat the contraction and expansion. The impellers 22 are accommodated in the internal spaces 23a. In the internal space 23 a, the impeller 22 is disposed at a predetermined interval with respect to the housing 23. A housing flow path 24 is formed in the housing 23. The housing flow path 24 circulates the working fluid from the impeller 22 arranged on the upstream side in the axis O direction to the impeller 22 adjacent to the downstream side (the left side in FIG. 1 and FIG. 2) that is the other side in the axis O direction.
 ハウジング流路24は、図2に示すように、吸込流路25と、中間流路26と、吐出流路(不図示)とを有している。吸込流路25は、軸線O方向の最も上流側に配置されてインペラ22に対して作動流体を外部から流入させる。中間流路26は、複数のインペラ22同士の間に形成されている。吐出流路(不図示)は、軸線O方向の最も下流側に配置されたインペラ22から圧縮された作動流体を外部に吐出する。 As shown in FIG. 2, the housing flow path 24 has a suction flow path 25, an intermediate flow path 26, and a discharge flow path (not shown). The suction flow path 25 is disposed on the most upstream side in the direction of the axis O and allows the working fluid to flow into the impeller 22 from the outside. The intermediate flow path 26 is formed between the plurality of impellers 22. The discharge flow path (not shown) discharges the compressed working fluid from the impeller 22 disposed on the most downstream side in the direction of the axis O to the outside.
 吸込流路25は、軸線O方向の最も上流側に配置されたインペラ22よりも上流側の位置に形成されている。吸込流路25は、軸線O方向の最も上流側に配置されたインペラ22に作動流体を流入させる流入流路である。吸込流路25は、ハウジング23の軸線O方向の上流側の周方向の一部に形成された開口から径方向の内側に向かって延びている。吸込流路25は、インペラ流路22aの入口に向かって作動流体を流通させる。吸込流路25には、インレットガイドベーン251(ガイドベーン)が設けられている。インレットガイドベーン251は、ハウジング23の外部から吸い込まれた作動流体を所望の方向へ転向させてインペラ流路22aに案内する。 The suction flow path 25 is formed at a position upstream of the impeller 22 disposed on the most upstream side in the axis O direction. The suction flow path 25 is an inflow flow path that allows the working fluid to flow into the impeller 22 disposed on the most upstream side in the axis O direction. The suction flow path 25 extends radially inward from an opening formed in a part of the circumferential direction on the upstream side in the axis O direction of the housing 23. The suction channel 25 circulates the working fluid toward the inlet of the impeller channel 22a. The suction passage 25 is provided with an inlet guide vane 251 (guide vane). The inlet guide vane 251 turns the working fluid sucked from the outside of the housing 23 in a desired direction and guides it to the impeller flow path 22a.
 インレットガイドベーン251は、不図示の動作機構によって、角度を変更可能とされている。インレットガイドベーン251における所望の方向とは、例えば、外部から吸い込まれた作動流体に予旋回を加える方向である。インレットガイドベーン251における所望の方向とは、例えば、径方向に向かうにしたがってインペラ22の回転方向の前方側に傾斜する方向である。本実施形態のインレットガイドベーン251は、制御部6から信号に基づいて、インペラ流路22aに流入する作動流体の流入方向に対する相対角度が小さくなるように角度が調整される。 The angle of the inlet guide vane 251 can be changed by an operating mechanism (not shown). The desired direction in the inlet guide vane 251 is, for example, a direction in which a pre-turn is applied to the working fluid sucked from the outside. The desired direction in the inlet guide vane 251 is, for example, a direction inclined toward the front side in the rotational direction of the impeller 22 as it goes in the radial direction. The inlet guide vane 251 of the present embodiment is adjusted based on a signal from the control unit 6 so that the relative angle with respect to the inflow direction of the working fluid flowing into the impeller flow path 22a becomes small.
 中間流路26は、軸線O方向に隣接するインペラ22の間を繋ぐように形成されている。中間流路26は、ハウジング23の外部には連通せず、ハウジング23の内部に形成されている。中間流路26は、ディフューザ流路27と、リターン流路28とを有している。ディフューザ流路27は、インペラ流路22aの出口部分から径方向の外側に向かって延びている。リターン流路28は、ディフューザ流路27に接続され、隣接するインペラ22のインペラ流路22aの入口部分に向かって延びている。 The intermediate flow path 26 is formed so as to connect between the impellers 22 adjacent in the axis O direction. The intermediate flow path 26 does not communicate with the outside of the housing 23 but is formed inside the housing 23. The intermediate flow path 26 has a diffuser flow path 27 and a return flow path 28. The diffuser flow path 27 extends outward in the radial direction from the outlet portion of the impeller flow path 22a. The return flow path 28 is connected to the diffuser flow path 27 and extends toward the inlet portion of the impeller flow path 22 a of the adjacent impeller 22.
 ディフューザ流路27は、入口がインペラ流路22aの出口部分と対向している。ディフューザ流路27は、インペラ流路22aから排出された作動流体を径方向の外側に向かって流通させる。ディフューザ流路27は、インペラ22によって圧送される作動流体が流通する排出流路である。ディフューザ流路27には、ディフューザベーン271が設けられていている。ディフューザベーン271は、インペラ流路22aから排出された作動流体を所望の方向へ転向させる。 The diffuser channel 27 has an inlet facing the outlet of the impeller channel 22a. The diffuser flow path 27 allows the working fluid discharged from the impeller flow path 22a to flow outward in the radial direction. The diffuser channel 27 is a discharge channel through which the working fluid pumped by the impeller 22 flows. A diffuser vane 271 is provided in the diffuser flow path 27. The diffuser vane 271 turns the working fluid discharged from the impeller flow path 22a in a desired direction.
 ディフューザベーン271は、不図示の動作機構によって、角度を変更可能とされている。ディフューザベーン271における所望の方向とは、流通する作動流体の動圧を静圧として回復させる方向である。ディフューザベーン271における所望の方向とは、径方向に向かうにしたがってインペラ22の回転方向の前方側に傾斜する方向である。本実施形態のディフューザベーン271は、制御部6から信号に基づいて、インペラ流路22aからディフューザ流路27に流入する作動流体の流入方向に対する相対角度が小さくなるように角度が調整される。 The angle of the diffuser vane 271 can be changed by an operating mechanism (not shown). The desired direction in the diffuser vane 271 is a direction in which the dynamic pressure of the circulating working fluid is recovered as a static pressure. The desired direction in the diffuser vane 271 is a direction that inclines forward in the rotational direction of the impeller 22 as it goes in the radial direction. The angle of the diffuser vane 271 of this embodiment is adjusted so that the relative angle with respect to the inflow direction of the working fluid flowing into the diffuser flow path 27 from the impeller flow path 22a is reduced based on a signal from the control unit 6.
 リターン流路28は、ディフューザ流路27を流通した作動流体をインペラ流路22aに流入させる流入流路である。リターン流路28は、曲り流路281と、直線流路282とを有している。曲り流路281は、ディフューザ流路27の径方向の外側の端部に接続されている。直線流路282は、曲り流路281の端部に接続されている。 The return channel 28 is an inflow channel for allowing the working fluid that has flowed through the diffuser channel 27 to flow into the impeller channel 22a. The return channel 28 has a curved channel 281 and a straight channel 282. The curved channel 281 is connected to the end portion on the outer side in the radial direction of the diffuser channel 27. The straight channel 282 is connected to the end of the curved channel 281.
 曲り流路281は、ディフューザ流路27の径方向の外側に対して連続して形成されている。曲り流路281は、径方向の外側に延びた後に径方向の内側に湾曲するように延びている。曲り流路281は、径方向の外側へ向かう作動流体の流れを、径方向の内側に向かう流れに転向する。 The curved channel 281 is formed continuously with respect to the outer side in the radial direction of the diffuser channel 27. The curved channel 281 extends so as to bend inward in the radial direction after extending outward in the radial direction. The curved flow path 281 diverts the flow of the working fluid going outward in the radial direction to the flow going inward in the radial direction.
 直線流路282は、曲り流路281からインペラ流路22aの入口部分に向かって径方向の内側に向かって延びている。直線流路282は、曲り流路281のディフューザ流路27との接続部分とは逆側に対して連続して形成されている。直線流路282には、ディフューザ流路27を流通した作動流体を所望の方向へ転向させるリターンベーン282aが設けられていている。 The straight flow path 282 extends from the curved flow path 281 toward the inlet portion of the impeller flow path 22a toward the inside in the radial direction. The straight flow path 282 is formed continuously with respect to the opposite side of the bent flow path 281 connected to the diffuser flow path 27. The straight flow path 282 is provided with a return vane 282a for turning the working fluid flowing through the diffuser flow path 27 in a desired direction.
 モータ3は、図1に示すように、圧縮機2に対して軸線O方向に間隔を空けてケーシング5内に収容されている。モータ3は、ロータ31と、ステータ32とを有している。ロータ31は、シャフト21と一体をなすように固定されている。ステータ32は、ロータ31の外周側に配置されている。 As shown in FIG. 1, the motor 3 is accommodated in the casing 5 with an interval in the direction of the axis O with respect to the compressor 2. The motor 3 has a rotor 31 and a stator 32. The rotor 31 is fixed so as to be integrated with the shaft 21. The stator 32 is disposed on the outer peripheral side of the rotor 31.
 ロータ31は、シャフト21と一体となって軸線O回りに回転可能とされている。ロータ31は、圧縮機2のシャフト21に対してギア等を介さずに一体となって回転するように、軸線Oを基準とする周方向の外側であるシャフト21の外周側に直接的に接続されている。ロータ31は、例えば、ステータ32が回転磁界を生成することで誘導電流が流れる回転子鉄心(不図示)を有している。 The rotor 31 is integrated with the shaft 21 so as to be rotatable around the axis O. The rotor 31 is directly connected to the outer peripheral side of the shaft 21, which is the outer side in the circumferential direction with respect to the axis O, so as to rotate integrally with the shaft 21 of the compressor 2 without using a gear or the like. Has been. The rotor 31 has, for example, a rotor core (not shown) through which an induced current flows when the stator 32 generates a rotating magnetic field.
 ステータ32は、ロータ31を外周側から覆うように周方向に隙間を空けて設けられている。ステータ32は、例えばロータ31の周方向に沿って複数配置された固定子鉄心(不図示)と、固定子鉄心に巻回された固定子巻線(不図示)とを有している。ステータ32は、外部から電流が流れることで回転磁場を生成してロータ31を回転させる。ステータ32は、ケーシング5内に固定されている。 The stator 32 is provided with a gap in the circumferential direction so as to cover the rotor 31 from the outer peripheral side. The stator 32 has, for example, a plurality of stator cores (not shown) arranged along the circumferential direction of the rotor 31, and a stator winding (not shown) wound around the stator core. The stator 32 rotates the rotor 31 by generating a rotating magnetic field when an electric current flows from the outside. The stator 32 is fixed in the casing 5.
 軸受部4は、ケーシング5内に収容され、シャフト21を回転可能に支持する。本実施形態の軸受部4は、複数のジャーナル軸受41及びスラスト軸受42を備えている。 The bearing part 4 is accommodated in the casing 5, and supports the shaft 21 rotatably. The bearing portion 4 of this embodiment includes a plurality of journal bearings 41 and thrust bearings 42.
 ジャーナル軸受41は、シャフト21に対して径方向に作用する荷重を支持する。ジャーナル軸受41は、軸線O方向からモータ3及び圧縮機2を挟み込むようにシャフト21の軸線O方向の両端に配置されている。ジャーナル軸受41は、圧縮機2が設けられた領域とモータ3が設けられた領域との間であって、後述するシール部材51よりもモータ3側にも配置されている。 The journal bearing 41 supports a load acting on the shaft 21 in the radial direction. The journal bearings 41 are disposed at both ends of the shaft 21 in the axis O direction so as to sandwich the motor 3 and the compressor 2 from the axis O direction. The journal bearing 41 is disposed between the area where the compressor 2 is provided and the area where the motor 3 is provided, and is also arranged closer to the motor 3 than a seal member 51 described later.
 スラスト軸受42は、シャフト21に形成されたスラストカラー21aを介して、シャフト21に対して軸線O方向に作用する荷重を支持する。スラスト軸受42は、圧縮機2が設けられた領域とモータ3が設けられた領域との間であって、後述するシール部材51よりも圧縮機2側に配置されている。 The thrust bearing 42 supports a load that acts on the shaft 21 in the direction of the axis O via a thrust collar 21 a formed on the shaft 21. The thrust bearing 42 is disposed between the area where the compressor 2 is provided and the area where the motor 3 is provided, and is disposed closer to the compressor 2 than a seal member 51 described later.
 ケーシング5は、圧縮機2とモータ3とを内部に収容している。ケーシング5は、軸線Oに沿った円筒形状をなしている。ケーシング5の内面は、軸線O方向の圧縮機2とモータ3との間でシャフト21に向かって突出している。ケーシング5は、圧縮機2が設けられた領域とモータ3が設けられた領域との間をシールするシール部材51が突出した部分に設けられている。 Casing 5 accommodates compressor 2 and motor 3 inside. The casing 5 has a cylindrical shape along the axis O. The inner surface of the casing 5 protrudes toward the shaft 21 between the compressor 2 and the motor 3 in the direction of the axis O. The casing 5 is provided in a protruding portion of a seal member 51 that seals between a region where the compressor 2 is provided and a region where the motor 3 is provided.
 制御部6は、予め定めた運転条件で圧縮機2が運転するように、圧縮機2及びモータ3を制御する。制御部6は、インレットガイドベーン251及びディフューザベーン271の角度を制御する。制御部6は、モータ3のロータ31の回転数を制御する。制御部6は、図2に示すように、入力部61と、判定部62と、出力部63とを有している。入力部61は、要求される圧力及び流量の値である要求PQ特性値と要求されるインペラ22の回転数である要求回転数とが入力される。判定部62は、入力された要求PQ特性値及び要求回転数が予め定めた基準を満たしているか否かを判定する。出力部63は、判定部62での判定結果に基づいて、モータ3、インレットガイドベーン251、及び、ディフューザベーン271に信号を送る。 The controller 6 controls the compressor 2 and the motor 3 so that the compressor 2 operates under predetermined operating conditions. The control unit 6 controls the angles of the inlet guide vane 251 and the diffuser vane 271. The control unit 6 controls the rotation speed of the rotor 31 of the motor 3. As illustrated in FIG. 2, the control unit 6 includes an input unit 61, a determination unit 62, and an output unit 63. The input unit 61 receives a required PQ characteristic value that is a required pressure and flow rate value and a required rotational speed that is a required rotational speed of the impeller 22. The determination unit 62 determines whether or not the input required PQ characteristic value and the required rotation speed satisfy a predetermined standard. The output unit 63 sends a signal to the motor 3, the inlet guide vane 251, and the diffuser vane 271 based on the determination result in the determination unit 62.
 入力部61は、入力された要求PQ特性値及び要求回転数を判定部62に出力する。
 判定部62は、要求回転数が予め定めた基準を満たしているか否かを判定するとともに、要求PQ特性値が初期運転範囲に収まっているか否かを判定する。判定部62は、判定結果に基づいて、インレットガイドベーン251またはディフューザベーン271の角度をどれだけ調整するか出力部63に指示を送る。
The input unit 61 outputs the input required PQ characteristic value and the required rotation speed to the determination unit 62.
The determination unit 62 determines whether or not the required rotational speed satisfies a predetermined standard, and determines whether or not the required PQ characteristic value is within the initial operation range. The determination unit 62 sends an instruction to the output unit 63 as to how much the angle of the inlet guide vane 251 or the diffuser vane 271 is adjusted based on the determination result.
 ここで、初期運転範囲とは、初期設定状態の圧縮機2がサージを起こさずに運転可能な範囲である。初期運転範囲は、図3に示す圧縮機2の圧力-流量の関係を示す曲線において、サージコントロールライン(Surge Control Line)SCL11、SCL12や、サージコントロールラインSCL21、SCL22よりも右側の領域である。サージコントロールラインSCL11、SCL12は、初期値として定めた角度のインレットガイドベーン251及びディフューザベーン271によって定められる。サージコントロールラインSCL21、SCL22は、後述する角度を変更した後のインレットガイドベーン251及びディフューザベーン271によって定められる。なお、これらサージコントロールラインよりも左側の領域では、サージが発生する。 Here, the initial operation range is a range in which the compressor 2 in the initial setting state can be operated without causing a surge. The initial operating range is a region on the right side of the surge control lines SCL11 and SCL12 and the surge control lines SCL21 and SCL22 in the curve indicating the pressure-flow rate relationship of the compressor 2 shown in FIG. The surge control lines SCL11 and SCL12 are defined by an inlet guide vane 251 and a diffuser vane 271 having an angle determined as an initial value. The surge control lines SCL21 and SCL22 are defined by the inlet guide vane 251 and the diffuser vane 271 after changing the angle described later. A surge occurs in the region on the left side of these surge control lines.
 具体的には、本実施形態の判定部62は、入力された要求回転数が予め定めた第一基準を下回っているか否かを判定する。判定部62は、入力された要求回転数が予め定めた第二基準を上回っているか否かを判定する。 Specifically, the determination unit 62 of the present embodiment determines whether or not the input requested rotational speed is below a predetermined first reference. The determination unit 62 determines whether or not the input requested rotational speed exceeds a predetermined second reference.
 ここで、第一基準とは、定格運転時の回転数を100%とした場合に、回転数100%の状態よりも低圧及び低流量の領域で圧縮機2が運転される回転数である。逆に、第二基準とは、回転数100%の状態よりも高圧及び高流量の領域で圧縮機2が運転される回転数である。
 本実施形態では、第一基準を回転数100%とする。本実施形態では、第二基準を回転数110%とする。
Here, the first reference is the rotational speed at which the compressor 2 is operated in a region of lower pressure and lower flow rate than the state where the rotational speed is 100%, assuming that the rotational speed during rated operation is 100%. On the other hand, the second reference is the rotational speed at which the compressor 2 is operated in the region of higher pressure and higher flow rate than the state where the rotational speed is 100%.
In the present embodiment, the first reference is the rotation speed 100%. In the present embodiment, the second reference is the rotation speed 110%.
 判定部62は、入力された要求回転数が第一基準である回転数100%よりも小さい場合にインレットガイドベーン251を調整するよう出力部63に指示を送る。判定部62は、要求回転数が第一基準よりも小さいと判定した場合には、入力された要求PQ特性値が、初期運転範囲の低圧及び低流量の領域の低域側サージコントロールラインSCL12よりも右側の領域に収まっているか否かを判定する。したがって、例えば、要求PQ特性値が図3のαの領域の値である場合には、要求PQ特性値が低域側サージコントロールラインSCL12を超えていると判定する。この場合、判定部62は、吸込流路25からインペラ流路22aに流入する作動流体の流入方向に対する相対角度が小さくなるようにインレットガイドベーン251の角度を調整するよう出力部63に指示を送る。 The determination unit 62 sends an instruction to the output unit 63 to adjust the inlet guide vane 251 when the input requested rotation number is smaller than the first reference rotation number 100%. When the determination unit 62 determines that the required rotational speed is smaller than the first reference, the input required PQ characteristic value is from the low-frequency side surge control line SCL12 in the low-pressure and low-flow region of the initial operation range. Also, it is determined whether or not it is within the right region. Therefore, for example, when the required PQ characteristic value is a value in the region α in FIG. 3, it is determined that the required PQ characteristic value exceeds the low-frequency side surge control line SCL12. In this case, the determination unit 62 sends an instruction to the output unit 63 to adjust the angle of the inlet guide vane 251 so that the relative angle with respect to the inflow direction of the working fluid flowing into the impeller flow channel 22a from the suction flow channel 25 becomes small. .
 判定部62は、入力された要求回転数が第二基準である回転数110%よりも大きい場合にディフューザベーン271を調整するよう出力部63に指示を送る。判定部62は、要求回転数が第二基準よりも大きいと判定した場合には、入力された要求PQ特性値が、初期運転範囲の高圧及び高流量の領域の高域側サージコントロールラインSCL11よりも右側の領域に収まっているか否かを判定する。したがって、例えば、要求PQ特性値が図3のβの領域の値である場合には、要求PQ特性値が高域側サージコントロールラインSCL11を超えていると判定する。この場合、判定部62は、インペラ流路22aからディフューザ流路27に流入する作動流体の流入方向に対する相対角度が小さくなるようにディフューザベーン271の角度を調整するよう出力部63に指示を送る。 The determining unit 62 sends an instruction to the output unit 63 to adjust the diffuser vane 271 when the input requested rotational speed is larger than the second reference rotational speed 110%. If the determination unit 62 determines that the required rotational speed is greater than the second reference, the input required PQ characteristic value is higher than the high-frequency side surge control line SCL11 in the high-pressure and high-flow region of the initial operation range. Also, it is determined whether or not it is within the right region. Therefore, for example, when the required PQ characteristic value is a value in the region β in FIG. 3, it is determined that the required PQ characteristic value exceeds the high-frequency side surge control line SCL11. In this case, the determination unit 62 sends an instruction to the output unit 63 to adjust the angle of the diffuser vane 271 so that the relative angle with respect to the inflow direction of the working fluid flowing into the diffuser flow channel 27 from the impeller flow channel 22a becomes small.
 判定部62は、入力された要求回転数が第一基準よりも大きく第二基準よりも小さい場合には、インレットガイドベーン251及びディフューザベーン271のいずれの角度も調整しないよう出力部63に指示を送る。判定部62は、入力された要求PQ特性値が初期運転範囲を超えていない場合にも、インレットガイドベーン251及びディフューザベーン271のいずれの角度も調整しないよう出力部63に指示を送る。 The determination unit 62 instructs the output unit 63 not to adjust any angle of the inlet guide vane 251 and the diffuser vane 271 when the input requested rotational speed is larger than the first reference and smaller than the second reference. send. The determination unit 62 sends an instruction to the output unit 63 so as not to adjust any of the inlet guide vane 251 and the diffuser vane 271 even when the input required PQ characteristic value does not exceed the initial operation range.
 出力部63は、判定部62を介して入力部61から入力された要求回転数に基づいて、モータ3にロータ31の回転数を変更するよう指示を送る。出力部63は、判定部62での判定結果に基づいて、インレットガイドベーン251またはディフューザベーン271に角度を変更するように指示を送る。なお、インレットガイドベーン251またはディフューザベーン271に角度の変化量は、要求PQ特性値と現状のPQ特性値との差から適宜設定されればよい。 The output unit 63 sends an instruction to the motor 3 to change the rotation number of the rotor 31 based on the requested rotation number input from the input unit 61 via the determination unit 62. The output unit 63 sends an instruction to the inlet guide vane 251 or the diffuser vane 271 to change the angle based on the determination result in the determination unit 62. Note that the amount of change in the angle of the inlet guide vane 251 or the diffuser vane 271 may be set as appropriate from the difference between the required PQ characteristic value and the current PQ characteristic value.
 本実施形態では、出力部63からの指示を受けてインレットガイドベーン251の角度が調整される。これにより、図3の示すように、低圧及び低流量の領域の低域側サージコントロールラインSCL12の位置がSCL22に変化する。出力部63からの指示を受けてディフューザベーン271の角度が調整される。これにより、高圧及び高流量の領域の高域側サージコントロールラインSCL11の位置がSCL12に変化する。 In this embodiment, in response to an instruction from the output unit 63, the angle of the inlet guide vane 251 is adjusted. As a result, as shown in FIG. 3, the position of the low-frequency side surge control line SCL12 in the low-pressure and low-flow region changes to SCL22. In response to an instruction from the output unit 63, the angle of the diffuser vane 271 is adjusted. As a result, the position of the high-frequency surge control line SCL11 in the high-pressure and high-flow region changes to SCL12.
 上記のような圧縮機システム1によれば、制御部6の入力部61に入力された要求PQ特性値及び要求回転数に基づいて、図示しない発電機等の外部装置によってステータ32に電流が供給される。供給された電流に基づいて回転磁界が生成され、モータ3のロータ31がシャフト21とともに要求回転数で回転を開始する。シャフト21が高速で回転することで、圧縮機2では、圧縮機2内に軸線O方向の上流側から流入する作動流体をシャフト21と共に回転するインペラ22が圧縮して軸線O方向の下流側から要求PQ特性値を満たした圧縮流体を排出する。 According to the compressor system 1 as described above, current is supplied to the stator 32 by an external device such as a generator (not shown) based on the required PQ characteristic value and the required rotational speed input to the input unit 61 of the control unit 6. Is done. A rotating magnetic field is generated based on the supplied current, and the rotor 31 of the motor 3 starts rotating together with the shaft 21 at the required rotational speed. By rotating the shaft 21 at a high speed, in the compressor 2, the impeller 22 that rotates together with the shaft 21 compresses the working fluid flowing into the compressor 2 from the upstream side in the axis O direction and compresses from the downstream side in the axis O direction. The compressed fluid that satisfies the required PQ characteristic value is discharged.
 ここで、例えば、圧縮機システム1の運転中に生産流体中の油分の含有量等の状態量が変動した場合には、圧縮機2に流入する作動流体の特性が変わってしまい、圧縮機2の吐出圧力が変化する。そのため、圧縮機2の吐出圧力を一定に保つように制御部6の入力部61に要求PQ特性値及び要求回転数を入力する。要求PQ特性値及び要求回転数が入力されることで、出力部63は、要求回転数にしたがってモータ3にロータ31の回転数を変化させるように指示を送る。その結果、ロータ31を介してインペラ22の回転数が調整される。同時に、判定部62では、要求回転数が第一基準を下回っていると判定した場合には、要求PQ特性値が低域側サージコントロールラインSCL12を超えているか否かを判定する。要求回転数が第一基準を下回っており、要求PQ特性値が低域側サージコントロールラインSCL12を超えている場合には、判定部62から出力部63にインレットガイドベーン251の角度を調整するよう信号を送る。出力部63からの信号を受けたインレットガイドベーン251は、吸込流路25からインペラ流路22aに流入する作動流体の流入方向に対する相対角度が小さくなるように角度を調整する。インレットガイドベーン251の角度が変化することで、低域側サージコントロールラインSCL12の位置がSCL22まで変化する。同時に、回転数110%の運転領域は線L111から線L112に変化する。したがって、低圧及び低流量の領域におけるPQ特性を向上させることができる。 Here, for example, when the state quantity such as the oil content in the production fluid fluctuates during the operation of the compressor system 1, the characteristics of the working fluid flowing into the compressor 2 change, and the compressor 2 The discharge pressure changes. Therefore, the required PQ characteristic value and the required rotational speed are input to the input unit 61 of the control unit 6 so as to keep the discharge pressure of the compressor 2 constant. When the requested PQ characteristic value and the requested rotational speed are input, the output unit 63 sends an instruction to the motor 3 to change the rotational speed of the rotor 31 according to the requested rotational speed. As a result, the rotational speed of the impeller 22 is adjusted via the rotor 31. At the same time, if the determination unit 62 determines that the required rotational speed is below the first reference, it determines whether the required PQ characteristic value exceeds the low-frequency side surge control line SCL12. When the required rotational speed is lower than the first reference and the required PQ characteristic value exceeds the low-frequency side surge control line SCL12, the angle of the inlet guide vane 251 is adjusted from the determination unit 62 to the output unit 63. Send a signal. The inlet guide vane 251 that has received the signal from the output unit 63 adjusts the angle so that the relative angle with respect to the inflow direction of the working fluid flowing from the suction flow path 25 into the impeller flow path 22a becomes small. As the angle of the inlet guide vane 251 changes, the position of the low-frequency side surge control line SCL12 changes to SCL22. At the same time, the operating region at the rotation speed of 110% changes from the line L111 to the line L112. Therefore, the PQ characteristics in the low pressure and low flow rate regions can be improved.
 判定部62では、要求回転数が第二基準を上回っていると判定した場合には、要求PQ特性値が高域側サージコントロールラインSCL11を超えているか否かを判定する。要求回転数が第二基準を上回っており、要求PQ特性値が高域側サージコントロールラインSCL11を超えている場合には、判定部62から出力部63にディフューザベーン271の角度を調整するよう信号を送る。出力部63からの信号を受けたディフューザベーン271は、インペラ流路22aからディフューザ流路27に流入する作動流体の流入方向に対する相対角度が小さくなるように角度を調整する。ディフューザベーン271の角度が変化することで、高域側サージコントロールラインSCL11の位置がSCL12まで変化する。同時に、回転数110%の運転領域は線L111から線L112に変化する。したがって、高圧及び高流量の領域におけるPQ特性を向上させることができる。 When the determination unit 62 determines that the required rotational speed exceeds the second reference, the determination unit 62 determines whether the required PQ characteristic value exceeds the high frequency side surge control line SCL11. When the required rotational speed exceeds the second reference and the required PQ characteristic value exceeds the high frequency side surge control line SCL11, a signal is sent from the determination unit 62 to the output unit 63 to adjust the angle of the diffuser vane 271. Send. The diffuser vane 271 that has received the signal from the output unit 63 adjusts the angle so that the relative angle with respect to the inflow direction of the working fluid flowing into the diffuser flow path 27 from the impeller flow path 22a becomes small. As the angle of the diffuser vane 271 changes, the position of the high frequency side surge control line SCL11 changes to SCL12. At the same time, the operating region at the rotation speed of 110% changes from the line L111 to the line L112. Therefore, the PQ characteristics in the high pressure and high flow rate regions can be improved.
 即ち、運転中にPQ特性を向上させるようにサージコントロールラインを変化させることができる。そのため、インペラ流路22aに流入する作動流体の状態量が変化した場合であっても、吐出圧力を一定とするような運転を広範囲にわたって圧縮機2に実施させることができる。したがって、圧縮機2の運転範囲を広げることで、変化する運転条件に対応させることができる。 That is, the surge control line can be changed to improve the PQ characteristics during operation. Therefore, even when the state quantity of the working fluid flowing into the impeller flow path 22a changes, the compressor 2 can be operated over a wide range to make the discharge pressure constant. Therefore, the operating range of the compressor 2 can be expanded to cope with changing operating conditions.
 要求回転数が低い場合には、インペラ22が低回転数で回転する。そのため、圧縮機2は低圧及び低流量の領域で運転される。即ち、要求回転数が低い場合には、インペラ22による作動流体の圧縮効率が低い。そのため、インペラ流路22aを流通する作動流体の体積流量が多くなる。そのため、要求回転数が低い場合では、インペラ流路22aに流入する作動流体の流入方向が圧縮機2の運転範囲に大きく影響を与える。したがって、要求回転数が予め定めた第一基準よりも小さい場合に、インペラ流路22aへの作動流体の流入側である吸込流路25からインペラ流路22aに流入する作動流体の流入方向に対するインレットガイドベーン251の相体角度が小さくされる。これにより、効率的にPQ特性を向上させることができる。つまり、インレットガイドベーン251の角度を調整することで、低圧及び低流量の領域でディフューザベーン271を調整するよりも効率的に圧縮機2の運転範囲を広げることができる。 When the required rotation speed is low, the impeller 22 rotates at a low rotation speed. Therefore, the compressor 2 is operated in the low pressure and low flow areas. That is, when the required rotational speed is low, the compression efficiency of the working fluid by the impeller 22 is low. Therefore, the volume flow rate of the working fluid flowing through the impeller channel 22a increases. Therefore, when the required rotational speed is low, the inflow direction of the working fluid flowing into the impeller flow path 22a greatly affects the operating range of the compressor 2. Therefore, when the required rotational speed is smaller than a predetermined first reference, the inlet for the inflow direction of the working fluid flowing into the impeller passage 22a from the suction passage 25 on the inflow side of the working fluid into the impeller passage 22a. The phase angle of the guide vane 251 is reduced. Thereby, the PQ characteristic can be improved efficiently. That is, by adjusting the angle of the inlet guide vane 251, the operating range of the compressor 2 can be expanded more efficiently than adjusting the diffuser vane 271 in the low pressure and low flow rate regions.
 要求回転数が高い場合には、圧縮機2は高圧及び高流量の領域で運転される。即ち、要求回転数が高い場合には、作動流体の圧縮効率が高い。そのため、インペラ流路22aを流通する作動流体の体積流量が少なくなる。そのため、高圧及び高流量の領域では、インペラ流路22aから流出する作動流体のディフューザ流路27への流入角度が圧縮機2の運転範囲に大きく影響を与える。したがって、要求回転数が予め定めた第二基準よりも大きい場合に、インペラ流路22aからの作動流体の流出側であるディフューザ流路27に流入する作動流体の流入角度に対するディフューザベーン271の相対角度が小さくされる。これにより、効率的にPQ特性を向上させることができる。つまり、ディフューザベーン271の角度を調整することで、高圧及び高流量の領域でインレットガイドベーン251を調整するよりも効率的に圧縮機2の運転範囲を広げることができる。 When the required rotational speed is high, the compressor 2 is operated in a high pressure and high flow rate region. That is, when the required rotational speed is high, the compression efficiency of the working fluid is high. Therefore, the volume flow rate of the working fluid flowing through the impeller flow path 22a is reduced. Therefore, in the region of high pressure and high flow rate, the inflow angle of the working fluid flowing out from the impeller passage 22 a into the diffuser passage 27 greatly affects the operating range of the compressor 2. Accordingly, when the required rotational speed is larger than a predetermined second reference, the relative angle of the diffuser vane 271 with respect to the inflow angle of the working fluid flowing into the diffuser passage 27 on the outflow side of the working fluid from the impeller passage 22a. Is reduced. Thereby, the PQ characteristic can be improved efficiently. That is, by adjusting the angle of the diffuser vane 271, the operating range of the compressor 2 can be expanded more efficiently than adjusting the inlet guide vane 251 in the high pressure and high flow rate regions.
 要求PQ特性値が初期運転範囲を超えている場合のみインレットガイドベーン251やディフューザベーン271の角度を判定する。これにより、必要な場合のみPQ特性を向上させるように変化させることができ、効率的に圧縮機2の運転範囲を広げることができる。 Only when the required PQ characteristic value exceeds the initial operating range, the angles of the inlet guide vane 251 and the diffuser vane 271 are determined. Thereby, it can be changed so as to improve the PQ characteristic only when necessary, and the operating range of the compressor 2 can be efficiently expanded.
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations of the embodiments in the embodiments are examples, and the addition and omission of configurations are within the scope not departing from the gist of the present invention. , Substitutions, and other changes are possible. Further, the present invention is not limited by the embodiments, and is limited only by the scope of the claims.
 なお、ガイドベーンは、本実施形態のように吸込流路25に設けられたインレットガイドベーン251であることに限定されるものではない。ガイドベーンは、流入流路に設けられてインペラ流路22aに流入する作動流体を所望の方向へ転向させることができればよい。例えば、ガイドベーンは、リターン流路28の直線流路282に設けられたリターンベーン282aであってもよい。 The guide vane is not limited to the inlet guide vane 251 provided in the suction flow path 25 as in the present embodiment. The guide vane is only required to be provided in the inflow channel and to divert the working fluid flowing into the impeller channel 22a in a desired direction. For example, the guide vane may be a return vane 282 a provided in the straight flow path 282 of the return flow path 28.
 本実施形態では、ガイドベーンであるインレットガイドベーン251とディフューザベーン271とをともに配置した構成としたが、このような構成に限定されるものではない。即ち、圧縮機2には、ガイドベーンのみを設けてもよく、ディフューザベーン271のみを設けてもよい。 In this embodiment, the inlet guide vane 251 and the diffuser vane 271 that are guide vanes are arranged together, but the present invention is not limited to such a configuration. In other words, the compressor 2 may be provided with only the guide vane or only the diffuser vane 271.
 ガイドベーン及びディフューザベーン271は、インペラ22が複数設けられている場合に、全てのインペラ22に対して設けられていることに限定されるものではない。ガイドベーン及びディフューザベーン271は、運転範囲を調整したい任意の段のインペラ22周りにのみ配置してもよい。 The guide vanes and diffuser vanes 271 are not limited to being provided for all the impellers 22 when a plurality of impellers 22 are provided. The guide vane and diffuser vane 271 may be arranged only around the impeller 22 of an arbitrary stage whose operating range is desired to be adjusted.
 本実施形態の判定部62では、予め定めた運転範囲に収まっているか否かを判定する基準として、第一基準と第二基準との異なった基準を用いたが、これに限定されるものではない。例えば、一つの基準を用いて予め定めた運転範囲に収まっているか否かを判定してもよい。 In the determination unit 62 of the present embodiment, a reference different from the first reference and the second reference is used as a reference for determining whether or not it is within a predetermined operation range. However, the determination is not limited to this. Absent. For example, you may determine whether it is settled in the predetermined driving range using one standard.
 上記圧縮機システムによれば、ガイドベーン及びディフューザベーンの少なくとも一方の角度を制御することで、圧縮機の運転範囲を広げて、変化する運転条件に対応させることができる。 According to the above compressor system, by controlling the angle of at least one of the guide vane and the diffuser vane, it is possible to expand the operating range of the compressor and cope with changing operating conditions.
1     圧縮機システム
O     軸線
2     圧縮機
21   シャフト
22   インペラ
22a インペラ流路
23   ハウジング
23a 内部空間
24   ハウジング流路
25   吸込流路
251 インレットガイドベーン
26   中間流路
27   ディフューザ流路
271 ディフューザベーン
28   リターン流路
281 曲り流路
282 直線流路
282a      リターンベーン
3     モータ
31   ロータ
32   ステータ
33   隙間
4     軸受部
41   ジャーナル軸受
42   スラスト軸受
5     ケーシング5
51   シール部材
6     制御部
61   入力部
62   判定部
63   出力部
DESCRIPTION OF SYMBOLS 1 Compressor system O Axis 2 Compressor 21 Shaft 22 Impeller 22a Impeller flow path 23 Housing 23a Internal space 24 Housing flow path 25 Suction flow path 251 Inlet guide vane 26 Intermediate flow path 27 Diffuser flow path 271 Diffuser vane 28 Return flow path 281 Curved flow path 282 Straight flow path 282a Return vane 3 Motor 31 Rotor 32 Stator 33 Clearance 4 Bearing portion 41 Journal bearing 42 Thrust bearing 5 Casing 5
51 Sealing member 6 Control unit 61 Input unit 62 Determination unit 63 Output unit

Claims (5)

  1.  軸線回りに回転するロータと、前記ロータの外周側に配置されたステータとを有するモータと、
     前記ロータとともに回転することで作動流体を圧縮するインペラを有する圧縮機と、を備え、
     前記圧縮機は、
     前記インペラに作動流体を流入させる流入流路、及び、前記インペラによって圧送される作動流体が流通する排出流路が形成されたハウジングと、
     前記流入流路に設けられて角度を変更可能なガイドベーンと、
     前記排出流路に設けられて角度を変更可能なディフューザベーンと、
     前記ガイドベーン及びディフューザベーンの角度を制御する制御部と、を有し、
     前記制御部は、
     要求される圧力及び流量の値である要求PQ特性値と前記インペラの回転数とに基づいて、前記ガイドベーン及び前記ディフューザベーンの少なくとも一方の角度を制御する圧縮機システム。
    A motor having a rotor that rotates about an axis, and a stator that is disposed on an outer peripheral side of the rotor;
    A compressor having an impeller that compresses the working fluid by rotating together with the rotor,
    The compressor is
    A housing formed with an inflow channel for allowing working fluid to flow into the impeller, and a discharge channel through which the working fluid pumped by the impeller flows;
    A guide vane provided in the inflow channel and capable of changing an angle;
    A diffuser vane provided in the discharge channel and capable of changing an angle;
    A control unit for controlling the angle of the guide vane and the diffuser vane,
    The controller is
    A compressor system that controls an angle of at least one of the guide vane and the diffuser vane based on a required PQ characteristic value that is a value of a required pressure and flow rate and a rotation speed of the impeller.
  2.  制御部は、前記インペラの回転数が予め定めた基準よりも小さい場合に、前記流入流路から前記インペラに流入する前記作動流体の流入方向に対する相対角度が小さくなるように前記ガイドベーンの角度を制御する請求項1に記載の圧縮機システム。 The control unit adjusts the angle of the guide vane so that a relative angle with respect to an inflow direction of the working fluid flowing from the inflow passage into the impeller is small when the rotation speed of the impeller is smaller than a predetermined reference. The compressor system according to claim 1 to be controlled.
  3.  制御部は、前記インペラの回転数が予め定めた基準よりも大きい場合に、前記インペラから前記排出流路に流入する前記作動流体の流入方向に対する相対角度が小さくなるように前記ディフューザベーンの角度を制御する請求項1に記載の圧縮機システム。 The control unit adjusts the angle of the diffuser vane so that a relative angle with respect to an inflow direction of the working fluid flowing from the impeller into the discharge flow path becomes smaller when the rotation speed of the impeller is larger than a predetermined reference. The compressor system according to claim 1 to be controlled.
  4.  前記制御部は、前記要求PQ特性値が予め定めた基準を満たした場合に、前記流入流路から前記インペラに流入する前記作動流体の流入方向に対する相対角度が小さくなるように前記ガイドベーンの角度を制御する請求項1から請求項3のいずれか一項に記載の圧縮機システム。 The controller is configured to reduce an angle of the guide vane so that a relative angle with respect to an inflow direction of the working fluid flowing into the impeller from the inflow passage becomes small when the required PQ characteristic value satisfies a predetermined criterion. The compressor system according to any one of claims 1 to 3, wherein the compressor is controlled.
  5.  前記制御部は、前記要求PQ特性値が予め定めた基準を満たした場合に、前記インペラから前記排出流路に流入する前記作動流体の流入方向に対する相対角度が小さくなるように前記ディフューザベーンの角度を制御する請求項1から請求項3のいずれか一項に記載の圧縮機システム。 The controller is configured to reduce an angle of the diffuser vane so that a relative angle with respect to an inflow direction of the working fluid flowing from the impeller into the discharge flow path becomes small when the required PQ characteristic value satisfies a predetermined criterion. The compressor system according to any one of claims 1 to 3, wherein the compressor is controlled.
PCT/JP2015/081588 2015-03-18 2015-11-10 Compressor system WO2016147473A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015006319.6T DE112015006319T5 (en) 2015-03-18 2015-11-10 compressor system
US15/516,816 US20170298944A1 (en) 2015-03-18 2015-11-10 Compressor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015054250A JP2016173085A (en) 2015-03-18 2015-03-18 Compressor system
JP2015-054250 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016147473A1 true WO2016147473A1 (en) 2016-09-22

Family

ID=56918767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081588 WO2016147473A1 (en) 2015-03-18 2015-11-10 Compressor system

Country Status (4)

Country Link
US (1) US20170298944A1 (en)
JP (1) JP2016173085A (en)
DE (1) DE112015006319T5 (en)
WO (1) WO2016147473A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190203730A1 (en) * 2017-12-29 2019-07-04 Johnson Controls Technology Company Thrust bearing placement for compressor
TWI715192B (en) * 2019-09-12 2021-01-01 建準電機工業股份有限公司 Fluid delivery device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293995A (en) * 2002-04-02 2003-10-15 Mitsubishi Heavy Ind Ltd Centrifugal compressor and method of operating centrifugal compressor
JP2008208810A (en) * 2007-02-28 2008-09-11 Hitachi Appliances Inc Centrifugal compressor for turbo refrigerator
JP2012140963A (en) * 2012-03-09 2012-07-26 Hitachi Appliances Inc Centrifugal compressor and turbo refrigerator using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293995A (en) * 2002-04-02 2003-10-15 Mitsubishi Heavy Ind Ltd Centrifugal compressor and method of operating centrifugal compressor
JP2008208810A (en) * 2007-02-28 2008-09-11 Hitachi Appliances Inc Centrifugal compressor for turbo refrigerator
JP2012140963A (en) * 2012-03-09 2012-07-26 Hitachi Appliances Inc Centrifugal compressor and turbo refrigerator using the same

Also Published As

Publication number Publication date
DE112015006319T5 (en) 2018-01-04
US20170298944A1 (en) 2017-10-19
JP2016173085A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
EP3030788B1 (en) System and apparatus for pumping a multiphase fluid
US8371811B2 (en) System and method for improving flow in pumping systems
WO2015114136A1 (en) Multistage turbomachine with embedded electric motors
CN108368850A (en) Thrust-compensating system for fluid delivery system
JPS63134802A (en) Idler-disk
EP2154379A1 (en) Seal device for rotary fluid machine and rotary fluid machine
CN104246394B (en) High-pressure ratio multistage centrifugal compressor
RU2596411C2 (en) Pump-turbine plant
WO2016147473A1 (en) Compressor system
US7004719B2 (en) Axial thrust balancing system for a centrifugal compressor, having improved safety characteristics
EP3421814B1 (en) Centrifugal compressor
JP6389785B2 (en) Downhole compressor
EP3657024B1 (en) Multiphase pump
JP5148425B2 (en) Centrifugal compressor
KR101593648B1 (en) Apparatus and method for controlling variable guide vane in axial flow pump or mixed flow pump
WO2016136038A1 (en) Compressor system
KR20120113878A (en) Compressor having bypass pipe for reducing surge
JP7022523B2 (en) Fluid machine
KR101960713B1 (en) Compressor system
EP3936726A1 (en) Adjusting discharge flow of a multistage pump by setting balance drum clearance
JP2005155496A (en) Compressor
JP2006029200A (en) Centrifugal pump and operation method for the same
CN116857206A (en) Explosion-proof slurry pump system
Samarasekera et al. Pipeline Pumps for Energy Efficiency and High Reliability
JP2018091237A (en) Preceding standby operation pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516816

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006319

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885565

Country of ref document: EP

Kind code of ref document: A1