WO2016147296A1 - Substrate treating device, method for manufacturing semiconductor, and recording medium - Google Patents

Substrate treating device, method for manufacturing semiconductor, and recording medium Download PDF

Info

Publication number
WO2016147296A1
WO2016147296A1 PCT/JP2015/057676 JP2015057676W WO2016147296A1 WO 2016147296 A1 WO2016147296 A1 WO 2016147296A1 JP 2015057676 W JP2015057676 W JP 2015057676W WO 2016147296 A1 WO2016147296 A1 WO 2016147296A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
magnetic field
plasma
substrate
film
Prior art date
Application number
PCT/JP2015/057676
Other languages
French (fr)
Japanese (ja)
Inventor
哲夫 山本
豊田 一行
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to PCT/JP2015/057676 priority Critical patent/WO2016147296A1/en
Publication of WO2016147296A1 publication Critical patent/WO2016147296A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a substrate processing apparatus using plasma, a method for manufacturing a semiconductor device, and a recording medium.
  • a substrate processing step is performed in which a processing gas is supplied into a processing chamber containing a substrate to form a thin film on the substrate.
  • An object of the present invention is to provide a technique capable of obtaining a uniform film thickness in substrate processing using plasma.
  • a reaction tube forming a processing chamber for processing a substrate;
  • a gas supply unit which is provided in the processing chamber and supplies a source gas and a reaction gas which form a predetermined film on the surface of the substrate into the processing chamber;
  • a plasma generating apparatus for exciting the reaction gas supplied from the gas supply unit;
  • a magnetic field generation device that is provided outside the plasma generation device and generates a magnetic field in the same direction as a supply direction of the reaction gas excited by the plasma generation device;
  • a technique is provided.
  • FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in the present embodiment, and is a view showing a processing furnace part by a cross-sectional view taken along line AA of FIG. It is the figure which showed the installation position of the magnetic field production
  • A) is the schematic which showed the movement with respect to the magnetic field of the cation and electron of a plasma.
  • (B) is the schematic which showed the relationship between plasma and a magnetic field.
  • the present invention is not limited to the substrate processing apparatus according to the present embodiment, and can be suitably applied to a substrate processing apparatus having a single wafer type, hot wall type, or cold wall type processing furnace.
  • the processing furnace 202 includes a reaction tube 203 that constitutes a reaction vessel (processing vessel).
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a processing chamber 201 is formed in a hollow cylindrical portion of the reaction tube 203, and is configured to be able to accommodate wafers 200 as substrates in a state of being aligned in multiple stages in a horizontal posture and in a vertical direction by a boat 217 described later.
  • a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the reaction tube 203.
  • the seal cap 219 is configured to contact the lower end of the reaction tube 203 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as stainless steel and has a disk shape.
  • An O-ring 220 is provided on the upper surface of the seal cap 219 as a seal member that contacts the lower end of the reaction tube 203.
  • a rotation mechanism 267 for rotating a boat 217 as a substrate holder described later is installed on the opposite side of the seal cap 219 from the processing chamber 201. A rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203.
  • the boat elevator 115 is configured such that the boat 217 can be carried into and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat 217 as a substrate holder is made of a heat-resistant material such as quartz or silicon carbide, and supports a plurality of wafers 200 in a horizontal posture and in a state where the centers are aligned with each other and supported in multiple stages. It is configured.
  • a heat insulating member 218 made of a heat resistant material such as quartz or silicon carbide is provided at the lower part of the boat 217 so that heat from the heater 207 described later is hardly transmitted to the seal cap 219 side. ing.
  • the heat insulating member 218 may be constituted by a plurality of heat insulating plates made of a heat resistant material such as quartz or silicon carbide, and a heat insulating plate holder that supports the heat insulating plates in a horizontal posture in multiple stages.
  • the processing furnace 202 has a heater 207 as a heating device (heating mechanism).
  • the heater 207 has a cylindrical shape, and is vertically installed by being supported by a heater base (not shown) as a holding plate so as to be concentric with the reaction tube 203.
  • the heater 207 also functions as an activation mechanism that activates gas with heat, as will be described later.
  • a first nozzle 233a as a first gas introduction unit and a second nozzle 233b as a second gas introduction unit are provided on the lower side wall of the reaction tube 203 or not shown. It is provided so as to penetrate the side wall surface of the manifold.
  • a first gas supply pipe 232a and a second gas supply pipe 232b are connected to the first nozzle 233a and the second nozzle 233b, respectively.
  • a third gas supply pipe 232c is connected to the second gas supply pipe 232b.
  • the reaction tube 203 is provided with the two nozzles 233a and 233b and the three gas supply tubes 232a, 232b, and 232c. It is comprised so that it can supply.
  • the first gas supply pipe 232a is provided with a mass flow controller (hereinafter referred to as MFC) 241a that is a flow rate controller (flow rate control unit) and a valve 243a that is an on-off valve in order from the upstream direction.
  • MFC mass flow controller
  • a first inert gas supply pipe 232d is connected to the downstream side of the valve 243a of the first gas supply pipe 232a.
  • the first inert gas supply pipe 232d is provided with an MFC 241d as a flow rate controller (flow rate control unit) and a valve 243d as an on-off valve in order from the upstream direction.
  • the first nozzle 233a is connected to the downstream end of the first gas supply pipe 232a.
  • the first nozzle 233a is provided in an annular space between the inner wall of the reaction tube 203 and the wafer 200 so as to rise upward from the lower portion of the inner wall of the reaction tube 203 in the stacking direction of the wafer 200. It has been. That is, the first nozzle 233a is provided on the side of the wafer arrangement area where the wafers 200 are arranged. The first nozzle 233a is configured as an L-shaped long nozzle.
  • a gas supply port 248a for supplying gas is provided on the side surface of the first nozzle 233a. The gas supply port 248 a is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200.
  • a plurality of gas supply ports 248a are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
  • the first gas supply system is configured by the first gas supply pipe 232a, the MFC 241a, and the valve 243a.
  • the first nozzle 233a may be included in the first gas supply system.
  • a first inert gas supply system is mainly configured by the first inert gas supply pipe 232d, the MFC 241d, and the valve 243d.
  • the first inert gas supply system also functions as a purge gas supply system.
  • the second gas supply pipe 232b is provided with an MFC 241b and an on-off valve 243b in order from the upstream direction.
  • a second inert gas supply pipe 232e is connected to the downstream side of the valve 243b of the second gas supply pipe 232b.
  • the second inert gas supply pipe 232e is provided with an MFC 241e and a valve 243e that is an on-off valve in order from the upstream direction.
  • the second nozzle 233b is connected to the downstream end of the second gas supply pipe 232b.
  • the second nozzle 233b is provided in a buffer chamber 237 that is a gas dispersion space.
  • the buffer chamber 237 is provided in an annular space between the inner wall of the reaction tube 203 and the wafer 200 in a portion extending from the lower portion to the upper portion of the inner wall of the reaction tube 203 along the loading direction of the wafer 200. That is, the buffer chamber 237 is provided on the side of the wafer arrangement region.
  • a gas supply port 248 c for supplying a gas is provided at the end of the buffer chamber 237 adjacent to the wafer 200.
  • the gas supply port 248 c is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200.
  • a plurality of gas supply ports 248c are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
  • the second nozzle 233b is located at the end of the buffer chamber 237 opposite to the end where the gas supply port 248c is provided, and extends upward from the bottom of the inner wall of the reaction tube 203 in the stacking direction of the wafer 200. It is provided to stand up. That is, the second nozzle 233b is provided on the side of the wafer arrangement region.
  • the second nozzle 233b is configured as an L-shaped long nozzle.
  • a gas supply hole 248b for supplying gas is provided on the side surface of the second nozzle 233b.
  • the gas supply hole 248 b is opened to face the center of the buffer chamber 237.
  • a plurality of gas supply holes 248 b are provided from the lower part to the upper part of the reaction tube 203, similarly to the gas supply port 248 c of the buffer chamber 237.
  • Each of the plurality of gas supply holes 248b has the same opening area from the upstream side (lower part) to the downstream side (upper part) when the differential pressure in the buffer chamber 237 and the processing chamber 201 is small. However, when the differential pressure is large, the opening area is increased or the opening pitch is decreased from the upstream side toward the downstream side.
  • the gas ejected into the buffer chamber 237 from each of the gas supply holes 248b of the second nozzle 233b is reduced in the particle velocity of each gas in the buffer chamber 237, and then is processed from the gas supply port 248c of the buffer chamber 237 into the processing chamber. It spouts into 201. Accordingly, when the gas ejected into the buffer chamber 237 from each of the gas supply holes 248b of the second nozzle 233b is ejected into the processing chamber 201 from each of the gas supply ports 248c of the buffer chamber 237, a uniform flow rate is obtained. And a gas having a flow rate.
  • a second gas supply system is mainly configured by the second gas supply pipe 232b, the MFC 241b, and the valve 243b. Note that the second nozzle 233b and the buffer chamber 237 may be included in the second gas supply system.
  • a second inert gas supply system is mainly configured by the second inert gas supply pipe 232e, the MFC 241e, and the valve 243e. The second inert gas supply system also functions as a purge gas supply system.
  • the third gas supply pipe 232c is provided with an MFC 241c and a valve 243c that is an on-off valve in order from the upstream direction.
  • a third inert gas supply pipe 232f is connected to the downstream side of the valve 243c of the third gas supply pipe 232c and upstream of the connection portion with the second gas supply pipe.
  • the third inert gas supply pipe 232f is provided with an MFC 241f and a valve 243f that is an on-off valve in order from the upstream direction.
  • the downstream end of the third gas supply pipe 232c is connected to the downstream side of the valve 243b of the second gas supply pipe 232b.
  • a third gas supply system is mainly configured by the third gas supply pipe 232c, the MFC 241c, and the valve 243c.
  • the second gas supply pipe 232b may be considered to include the second nozzle 233b and the buffer chamber 237 in the third gas supply system on the downstream side of the connection portion between the second gas supply pipe 232b and the third gas supply pipe 232c.
  • a third inert gas supply system is mainly configured by the third inert gas supply pipe 232f, the MFC 241f, and the valve 243f.
  • the third inert gas supply system also functions as a purge gas supply system.
  • the first gas supply pipe 232a for example, dichlorosilane (SiH 2 Cl 2 , abbreviated as DCS) gas is used as a source gas containing a predetermined element, that is, a source gas containing silicon (Si) as a predetermined element (silicon-containing gas).
  • DCS dichlorosilane
  • Si silicon
  • MFC 241a, valve 243a, and first nozzle 233a are supplied into the processing chamber 201.
  • the first gas supply system is configured as a source gas supply system (silicon-containing gas supply system).
  • the inert gas may be supplied from the first inert gas supply pipe 232d into the first gas supply pipe 232a via the MFC 241d and the valve 243d.
  • a first reaction gas containing a predetermined element that is, a source gas containing nitrogen atoms (N) as a predetermined element (nitrogen-containing gas), for example, NH 3 gas is used as an MFC 241b and a valve 243b.
  • the second nozzle 233b and the buffer chamber 237 are supplied into the processing chamber 201. That is, the second gas supply system is configured as a reaction gas supply system.
  • the inert gas may be supplied from the second inert gas supply pipe 232e into the second gas supply pipe 232b via the MFC 241e and the valve 243e.
  • oxygen (O 2 ) gas is used as the second reaction gas containing the predetermined element, that is, the source gas (oxygen-containing gas) containing oxygen atoms (O) as the predetermined element, as the MFC 241c.
  • the gas is supplied into the processing chamber 201 through the valve 243c, the second gas supply pipe 232b, the second nozzle 233b, and the buffer chamber 237. That is, the third gas supply system is configured as a hydrogen-containing gas supply system.
  • the inert gas may be supplied from the third inert gas supply pipe 232f into the third gas supply pipe 232c via the MFC 241f and the valve 243f.
  • NH 3 gas and O 2 gas are supplied from the same nozzle into the processing chamber 201 (in the buffer chamber 237), but each is processed from a separate nozzle and a separate buffer chamber. You may make it supply in the chamber 201.
  • a buffer chamber for accommodating the first nozzle 233a may be provided.
  • first rod-shaped electrode 269 which is a first electrode having a long and narrow structure as a plasma generation device
  • a second electrode which is a counter electrode of the first electrode.
  • a certain second rod-like electrode 270 is arranged along the stacking direction of the wafers 200 from the lower part to the upper part of the reaction tube 203.
  • Each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 is provided in parallel with the second nozzle 233b.
  • Each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 is protected by being covered with an electrode protection tube 275 that is a protection tube that protects each electrode from the top to the bottom.
  • first rod-shaped electrode 269 or the second rod-shaped electrode 270 is connected to the high-frequency power source 273 via the matching unit 272, and the other is connected to the ground as the reference potential.
  • plasma is generated in the plasma generation region 224 between the first rod-shaped electrode 269 and the second rod-shaped electrode 270.
  • the first rod-shaped electrode 269, the second rod-shaped electrode 270, the electrode protection tube 275, the matching unit 272, and the high-frequency power source 273 mainly constitute a plasma source as a plasma generator (plasma generating unit).
  • the plasma source functions as an activation mechanism that activates a gas with plasma as will be described later.
  • the electrode protection tube 275 has a structure in which each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 can be inserted into the buffer chamber 237 while being isolated from the atmosphere of the buffer chamber 237.
  • the inside of the electrode protection tube 275 has the same atmosphere as the outside air (atmosphere)
  • the first rod-shaped electrode 269 and the second rod-shaped electrode 270 inserted into the electrode protection tube 275 are oxidized by heat from the heater 207. Will be. Therefore, the inside of the electrode protection tube 275 is filled or purged with an inert gas such as nitrogen to suppress the oxygen concentration sufficiently low to prevent oxidation of the first rod-shaped electrode 269 or the second rod-shaped electrode 270.
  • An active gas purge mechanism is provided.
  • the plasma generation apparatus described above is not limited to the one using the above-described capacitively coupled plasma (abbreviation: CCP), but is also an inductively coupled plasma (abbreviation: ICP) electron cyclotron resonance plasma (Electrotron Cyclotron Resonance Plasma).
  • CCP capacitively coupled plasma
  • ICP inductively coupled plasma
  • ECR plasma a helicon wave excited plasma
  • HWP helicon wave excited plasma
  • SWP surface wave plasma
  • the reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • the exhaust pipe 231 is evacuated through a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 246 as an exhaust device is connected.
  • the APC valve 244 is an open / close valve configured to open and close the valve to stop evacuation / stop of evacuation in the processing chamber 201 and further adjust the pressure by adjusting the valve opening.
  • the pressure in the processing chamber 201 becomes a predetermined pressure (degree of vacuum). It is configured so that it can be evacuated.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, the vacuum pump 246, and the pressure sensor 245.
  • Magnetic field generator As shown in FIGS. 1, 2, and 3, between the reaction tube 203 and the heater 207, there is a magnetic coil 280 (electromagnet) as a magnetic field generating device that generates a magnetic field (magnetic field) in the processing chamber 201.
  • a variable DC power supply 282 is provided in connection. The current flowing in the magnetic coil 280 is the direction in which the direction of the magnetic field generated inside the coil by the variable DC power source 282 as the power source is from the heater 207 side to the reaction tube 203 side (the direction of the magnetic force line 402 that is the broken line arrow in FIG.
  • the positive terminal of the variable DC power supply 282 is electrically connected to the conductive wire 280a which is the input / output terminal of the magnetic coil 280, and the input / output terminal of the magnetic coil 280 is The negative terminal of the variable DC power supply 282 is electrically connected to the conducting wire 280b.
  • the magnetic coil 280 is arranged so as to cover the outer wall of the reaction tube 203 at a position corresponding to the buffer chamber 237 as shown in FIG. That is, the magnetic coil 280 is disposed so as to cover and partially cover a part of the outer wall surface of the reaction tube 203, and the direction of the magnetic field generated by the magnetic coil 280 is parallel to the surface of the wafer 200, more specifically, the processing.
  • the magnetic coil 280 is shown as the magnetic field generating device, the magnetic field generating device is not limited to this, and may include the conducting wires 280a and 280b and the variable DC power supply 282.
  • a plasma (active species, radical) 401 generated by exciting a reactive gas has a positive ion 401a having a positive charge and an electron 401b having a negative charge, and the plasma is generated in a magnetic field.
  • the electron 401b performs a spiral motion with a small diameter in the clockwise direction around the magnetic force line, and the positive ion 401a is in the direction opposite to the electron 401b around the magnetic force line.
  • the magnetic coil 280 is generated in the buffer chamber 237 by installing at least the gas supply port 248c of the buffer chamber 237 so as to cover from the lowermost part to the uppermost part. It is possible to efficiently affect the generated plasma with a magnetic field, and the magnetic field is generated in the direction from the heater 207 side to the reaction tube 203 side (preferably the direction from the gas supply port 248c of the buffer chamber 237 to the wafer 200). As described above, by passing a current through the magnetic coil 280, it is possible to obtain a force for moving the plasma generated in the buffer chamber 237 from the buffer chamber 237 to the wafer 200 by the magnetic field. As a result of this configuration, it is easier to move the wafer 200 while maintaining the activated state of the plasma as compared with the case where no magnetic field is generated, and the plasma is supplied uniformly onto the wafer 200. Is possible.
  • the magnetic coil 281 is arranged at a position facing the magnetic coil 280 provided on the buffer chamber 237 side, and the power supply is variable so that the magnetic field is generated in the same direction as the magnetic field generated by the magnetic coil 280.
  • the positive side terminal of the DC power supply 283 may be connected to the lead wire 281b which is an input / output terminal of the magnetic coil, and the negative side terminal may be connected to the lead wire 281a.
  • the magnetic field generator may include the magnetic coil 281, the conductive wires 281 a and 281 b, and the variable DC power supply 283. With this configuration, the directivity of the magnetic field generated in the reaction tube 203 is strengthened, and plasma can be supplied onto the wafer 200 more efficiently.
  • the direction of the magnetic field is described so as to be directed from the heater 207 side to the reaction tube 203 side.
  • the magnetic field is preferably generated in the direction from the gas supply port 248c of the buffer chamber 237 toward the wafer 200. Plasma can be efficiently supplied onto the wafer 200.
  • the magnetic coils 280 and 281 which are magnetic field generating devices for generating a magnetic field have been described as being provided between the heater 207 and the reaction tube 203.
  • the present invention is not limited to this, as shown in FIG. It may be configured to reduce the influence of the heating received from the heater 207 by being provided outside the heater.
  • a magnetic coil is exemplified as a magnetic field generation device that generates a magnetic field.
  • the permanent magnets 291a, 291b, and 291c may be provided at positions facing the permanent magnets 290a, 290b, and 290c via the reaction tube.
  • the surfaces of the permanent magnets 290a, 290b, and 290c facing the reaction tube side must be N poles, and the surface facing the heater side must be S poles.
  • the magnetic coil is exemplified as the magnetic field generating device that generates the magnetic field, but an electromagnet different from the magnetic coil may be provided.
  • cooling devices 284 and 285 for supplying a refrigerant such as an inert gas around the magnetic coils 280 and 281 as the magnetic field generating device current is supplied to the magnetic coils 280 and 281.
  • heat is generated in the magnetic coils 280 and 281 by continuously supplying current to the magnetic coils 280 and 281 and heat generated when a large current supply is required to stabilize the magnetic field in a short time.
  • what is used as a cooling medium may be an inert gas such as N 2 gas or a cooling gas such as air, or a cooling pipe to which a cooling liquid is supplied. Also good.
  • the cooling devices 284 and 285 may be provided between the reaction tube and the magnetic field generation device, or may be provided so as to correspond to the magnetic coils 280 and 281 that are the magnetic field generation devices. Alternatively, the cooling devices 284 and 285 may be configured as a single unit so that both the magnetic coils 280 and 281 are cooled.
  • the controller 121 which is a control unit (control device) includes MFCs 241a, 241b, 241c, 241d, 241e, 241f, valves 243a, 243b, 243c, 243d, 243e, 243f, pressure sensors 245, and APC valves. 244, a vacuum pump 246, a heater 207, a temperature sensor 263, a boat rotation mechanism 267, a boat elevator 115, a high frequency power supply 273, a matching unit 272, and the like.
  • the controller 121 is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of substrate processing such as thin film formation described later, and the like are stored in a readable manner.
  • the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in a substrate processing process such as a thin film forming process to be described later.
  • the process recipe, the control program, and the like are collectively referred to simply as a program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the above-described MFCs 241a to 241f, valves 243a to 243f, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, matching device 272, high frequency power supply 273, rotation mechanism 267, boat It is connected to the elevator 115, variable DC power sources 282, 283, and the like.
  • the CPU 121a is configured to read out and execute a control program from the storage device 121c, and to read out a process recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. Then, the CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241f, the opening / closing operation of the valves 243a to 243f, the opening / closing operation of the APC valve 244, and the APC valve 244 based on the pressure sensor 245 in accordance with the contents of the read process recipe.
  • the controller 272 is configured to control the impedance adjustment operation, power supply of the high frequency power supply 273, power supply of the variable DC power supplies 282 and 283, and the like.
  • the controller 121 is connected to an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card).
  • the stored program can be configured by installing it in a computer.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • a temperature sensor 263 as a temperature detector is installed in the reaction tube 203, and the temperature in the processing chamber 201 is adjusted by adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263. It is configured to have a desired temperature distribution. Similar to the first nozzle 233 a and the second nozzle 233 b, the temperature sensor 263 is configured in an L shape and is provided along the inner wall of the reaction tube 203.
  • a nitride film forming step for forming a silicon nitride film (SiN) on the surface of the wafer 200, and the wafer 200 on which the SiN film is formed are oxidized.
  • An oxidation process for forming a SiON film by processing is continuously performed. Thereby, for example, a gate insulating film of a MOS field effect transistor is formed.
  • wafer when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface”. In other words, it may be called a wafer including a predetermined layer or film formed on the surface.
  • wafer surface when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
  • the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas to the surface (exposed surface) of the wafer itself”, It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “determine a predetermined layer (or film) on the surface (exposed surface) of the wafer itself”. , Or “to form a predetermined layer (or film) on the layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate” There is.
  • substrate is also synonymous with the term “wafer”.
  • Ar gas as a purge gas is caused to flow into the processing chamber 201 via the first purge gas supply system.
  • the valve 243d is opened, and Ar gas is introduced into the processing chamber 201.
  • effects such as suppression of particle intrusion into the processing chamber 201 when the boat 217 is conveyed can be obtained.
  • the valves 243e and 243f are opened while the flow rate is adjusted by the MFCs 241e and 241f in the same manner as in the first purge gas supply system.
  • Ar gas may be controlled to be introduced into the processing chamber 201.
  • the degree of energization to the heater 207 is controlled based on the temperature information detected by the temperature sensor, and the inside of the processing chamber 201 is set to a predetermined temperature (for example, 300 to 600 ° C.). Then, the rotation mechanism 267 is operated to start the rotation of the wafer 200 loaded into the processing chamber 201. The rotation of the wafer 200 is continued until a nitride film formation step (S503) and an oxidation step (S504) described later are completed.
  • Nonride film forming step (S503) As shown in FIG. 6, in the nitride film forming step (S503), two or more kinds of processing gases are alternately supplied onto the wafer one by one under predetermined film forming conditions (temperature, time, etc.).
  • a SiN film is formed on the surface of the wafer 200 using a DCS gas and NH 3 gas by an alternating supply method, which is a method of forming a thin film in units of several atomic layers from less than one atomic layer using a reaction on 200. .
  • Film thickness control in this alternate supply method can be performed by controlling the number of times of alternate supply of the processing gas.
  • DCS gas as a source gas is supplied from the first nozzle 233a into the processing chamber 201, and the surface of the wafer 200 contains silicon (Si) having a thickness of less than one atomic layer to several atomic layers.
  • a layer is formed (source gas supply step (S503-1)).
  • Ar gas is supplied into the processing chamber 201 as a purge gas, and the DCS gas that is the source gas is exhausted (source gas exhausting step (S503-2)).
  • activated species (NH 3 radicals) generated by plasma excitation of NH 3 gas as the first reaction gas are supplied into the processing chamber 201 to form a SiN layer on the wafer 200 (first reaction gas supply). Step (S503-3)).
  • first reaction gas exhausting step (S503-4)
  • the SiN film having a desired thickness is obtained by performing this cycle a predetermined number of times, with the source gas supply step, the source gas exhaust step, the first reaction gas supply step, and the first reaction gas exhaust step as one cycle.
  • a DCS gas is filled in a gas reservoir (not shown) provided in the first gas supply pipe 232a.
  • supply of DCS gas as a raw material gas into the gas reservoir is started while the valve 243a is closed and the MFC 241a adjusts to a predetermined flow rate.
  • a predetermined time eg, 2 to 4 seconds
  • a predetermined pressure eg, 20000 Pa
  • the APC valve 244 When the inside of the processing chamber 201 reaches a predetermined pressure (for example, 20 Pa) and the inside of the gas reservoir reaches a predetermined pressure (for example, 20000 Pa), the APC valve 244 is closed to temporarily stop the exhaust in the processing chamber 201. To do. Then, the valve 243a is opened, and the high-pressure DCS gas filled in the gas reservoir is supplied in a pulsed manner (flash supply) into the buffer chamber 237 (that is, inside the processing chamber 201). At this time, since the valve of the APC valve 244 is closed, the pressure in the processing chamber 201 rapidly increases to, for example, 931 Pa (7 Torr).
  • the DCS gas supplied into the processing chamber 201 generates a silicon (Si) -containing layer having a thickness of less than one atomic layer to several atomic layers as a first layer on the outermost surface of the wafer 200.
  • DCS gas that has not contributed to the generation of the Si-containing layer flows down in the processing chamber 201 and is exhausted from the exhaust pipe 231.
  • the gas remaining in the processing chamber 201 may not be completely discharged, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effect will occur in the first reaction gas supply step performed thereafter.
  • the flow rate of Ar gas supplied into the processing chamber 201 does not need to be a large flow rate.
  • the first reaction is performed by supplying an amount of Ar gas equivalent to the volume of the reaction tube 203 (processing chamber 201). Purge can be performed to such an extent that no adverse effect occurs in the gas supply process. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. It is possible to minimize the consumption of Ar gas.
  • NH 3 gas is supplied into the buffer chamber 237 as a first reaction gas.
  • the valve 232b is opened while the NH 3 gas is supplied into the buffer chamber 237 while adjusting the flow rate within the range of 1 to 10 slm by MFC.
  • the NH 3 gas supplied into the buffer chamber 237 collides with activated Ar (Ar radical) and is indirectly activated (indirect excitation). Note that NH 3 gas may be directly activated (directly excited) in the same manner as O 2 gas described later.
  • the activated NH 3 (NH 3 radical) is ejected together with Ar radicals from the gas supply port 248 c toward the wafer 200 and supplied into the processing chamber 201. At this time, as shown in FIG.
  • a variable DC power source (not shown) is supplied to the magnetic coil 280 or 281 as the magnetic field generation device or both of the magnetic coils 280 and 281 by the control unit 121 during the process of supplying the raw material gas.
  • (Magnetic field source) 282 or 283 or both of the variable DC power sources 282 and 283 are controlled so that electric power (current) is supplied, and the magnetic field generation device is in an ON state, that is, a state in which a magnetic field is generated. Yes. Therefore, when the NH 3 radical is generated, a magnetic field is already generated, and the NH 3 radical moves toward the direction of the generated magnetic field, that is, the direction of the magnetic force line 402 and reaches the surface of the wafer 200. Become.
  • the magnetic field generation device requires a certain time from when a current is supplied to the magnetic coils 280 and 281 by the variable DC power source until the magnetic field is generated and stabilized. For this reason, as shown in FIG. 7, it is possible to always generate a stable magnetic field by always operating the magnetic field generating device during the nitride film forming step (S503) which is a film forming step.
  • electric power is supplied from the variable DC power supply 282 or 283 or both of the variable DC power supplies 282 and 283 before the first reaction gas supply step, and the magnetic field generator is in an ON state, that is, The magnetic field is preferably controlled so as to be generated.
  • the current supplied to the magnetic coils 280 and 281 is larger than the current supplied to generate the magnetic field in advance. It is preferable to do so.
  • it becomes possible to control in this way it becomes possible to control so that operation
  • the NH 3 radicals supplied into the processing chamber 201 react with at least a part of the first layer, that is, the Si-containing layer formed on the surface of the wafer 200 in the source gas supply process.
  • the first layer is plasma-nitrided and changed (modified) into a second layer containing Si and N, that is, a silicon nitride layer (SiN layer), and a SiN film is formed.
  • NH 3 gas and Ar gas that have not contributed to the deposition on the surface of the wafer 200 flow down in the processing chamber 201 and are exhausted from the gas exhaust pipe 231.
  • the Ar gas functions as an excitation gas that indirectly activates NH 3 and also functions as a carrier gas that promotes the supply of NH 3 radicals into the processing chamber 201.
  • First reactive gas exhausting step (S503-4) When a predetermined time (for example, 2 to 120 seconds) elapses, the supply of high-frequency power from the high-frequency power source 273 to the first rod-shaped electrode 269 and the second rod-shaped electrode 270 is stopped. Further, the valve 232b is closed, and the supply of NH 3 gas into the buffer chamber 237 is stopped. Then, NH 3 gas and reaction by-products remaining in the processing chamber 201 or contributed to the formation of the second layer are exhausted from the processing chamber 201 by the same processing procedure as the source gas exhaust process. . At this time, the gas remaining in the processing chamber 201 does not need to be completely exhausted, as in the raw material gas exhaust process.
  • a predetermined time for example, 2 to 120 seconds
  • a source gas supply step (S503-1), a source gas exhaust step (S503-2), a first reaction gas supply step (S503-3), and a first reaction gas exhaust step (S503-4) are performed a predetermined number of times to form a SiN film having a desired film thickness.
  • the thickness of the SiN layer formed when the above cycle is performed once is made smaller than the desired thickness, and the thickness of the SiN film formed by stacking the SiN layers becomes the desired thickness. It is preferable to repeat the above-described cycle a plurality of times until it becomes.
  • Processing temperature wafer temperature
  • Processing pressure pressure in the processing chamber
  • DCS gas supply flow rate 1 to 2000 sccm
  • NH 3 gas supply flow rate 100-10000 sccm
  • Ar gas supply flow rate 100 to 10,000 sccm
  • Is exemplified Is exemplified.
  • Oxidation step (S504) After the SiN film having a desired thickness is formed by the nitride film forming step, the SiN film is oxidized by supplying active species (O 2 radicals) of oxygen gas activated by plasma onto the wafer 200, An oxidation step (S504) for forming a silicon oxynitride (SiON) film is performed.
  • active species O 2 radicals
  • SiON silicon oxynitride
  • O 2 gas is supplied into the buffer chamber 237 as the second reactive gas. Specifically, the flow rate is adjusted by the MFC 241 c, the valve 243 c is opened, and O 2 gas is supplied into the buffer chamber 237. Then, by supplying high-frequency power from the high-frequency power source 273 to the first rod-shaped electrode 269 and the second rod-shaped electrode 270, O 2 gas plasma is generated in the buffer chamber 237, and the O 2 gas is directly activated. (Direct excitation). In addition, like NH 3 gas, O 2 gas may be indirectly activated (indirect excitation).
  • the activated O 2 (O 2 radical) is ejected together with Ar gas from the gas supply port 248 c of the buffer chamber 237 toward the wafer 200 and is supplied into the processing chamber 12.
  • the supply of O 2 radicals into the processing chamber 201 is performed by adjusting the flow rate with the MFC 241f, opening the valve 243f, and supplying Ar gas as a carrier gas into the buffer chamber 237 (that is, inside the processing chamber 201). Can be promoted.
  • the timing of magnetic field generation by the magnetic field generation device is the same as that in the above-described nitride film formation step, and at the timing when the O 2 gas is activated and supplied into the processing chamber 201, the magnetic field generation device is in the ON state. That is, the magnetic field is generated.
  • the magnetic field generation device may be controlled to be always ON during the oxidation step), or the magnetic field generation device is turned ON when the plasma generation device is turned ON. You may control as follows. Furthermore, it is possible to control so that the magnetic field generation device is always turned on from the start of the nitride film formation process to the completion of the oxidation process.
  • the O 2 radical supplied into the processing chamber 201 reacts with at least a part of the SiN film.
  • the SiN film is plasma oxidized and changed (modified) into a film containing Si, O, and N, that is, a SiON film.
  • a SiON film is formed on the wafer 200.
  • the flow of the SiON film formed by the above-described nitride film formation process and oxidation process is expressed as the following sequence.
  • Processing temperature wafer temperature
  • Processing pressure pressure in the processing chamber
  • O 2 gas supply flow rate 100 to 10,000 sccm
  • Ar gas supply flow rate 100 to 10,000 sccm
  • the nitride film forming step of the substrate processing step in the present embodiment is not limited to the above-described aspect, and can be changed as in the following modified example.
  • Modification 1 For example, as shown in FIG. 8, the order and length of supply of the source gas, the first reaction gas, and the inert gas are not changed, and the magnetic field generation unit is earlier than the high-frequency power source for plasma generation is turned on.
  • the variable DC power supply connected to is turned ON, and the variable DC power supply is turned OFF at a later timing than the high frequency power supply for plasma generation is turned OFF.
  • the power is turned on earlier than the plasma generator, and the power is turned off later. Thus, it is possible to obtain an effect that plasma can be stably supplied to the substrate surface.
  • Modification 2 Further, for example, as shown in FIG. 9, after supplying the first reaction gas, O 2 gas that is the second reaction gas is supplied, and the nitride film formation step and the oxidation step may be combined into one cycle. . That is, first, DCS, which is a raw material gas, is supplied to the processing chamber, and then NH 3 gas, which is the first reaction gas, is activated and supplied to the processing chamber, and then oxygen (O 2), which is the second reaction gas. 2 ) The process of supplying gas to the process chamber may be repeated as a cycle until a predetermined film thickness is obtained. That is, the following sequence may be used.
  • a buffer chamber for generating plasma is provided inside the reaction tube, and a first rod-shaped electrode 269 that is a first electrode as a plasma generating device and a second electrode that is a second electrode are provided inside the buffer chamber.
  • the buffer chamber 237 is provided on the side wall in the reaction tube so as to protrude toward the heater 207 and only the gas supply nozzle is provided in the buffer chamber.
  • the first electrode and the second electrode, which are plasma generation units, may be provided outside the reaction tube so as to sandwich the buffer chamber from the outside.
  • DCS hexachlorodisilane
  • MCS monochlorosilane
  • DCS dichlorosilane
  • Inorganic halosilanes such as gas, trichlorosilane (SiHCl 3 , abbreviation: TCS) gas, tetrachlorosilane, that is, silicon tetrachloride (SiCl 4 , abbreviation: STC) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas, etc.
  • Source gas trisdimethylaminosilane (Si [N (CH 3 ) 2 ] 3 H, abbreviation: 3DMAS) gas, tetrakisdimethylaminosilane (Si [N (CH 3 ) 2 ] 4 , abbreviation: 4DMAS) gas, bisdiethylaminosilane (Si [N (C 2 H 5) 2] 2 2, abbreviation: BDEAS) Gas, Bicester fischeri butylamino silane (SiH 2 [NH (C 4 H 9)] 2, abbreviated: BTBAS) halogen-free amino based such as a gas (amine) using a silane raw material gas Can do.
  • 3DMAS trisdimethylaminosilane
  • 4DMAS tetrakisdimethylaminosilane
  • 4DMAS bisdiethylaminosilane
  • BDEAS bisdiethylaminosilane
  • BTBAS Bicester fischeri butylamino si
  • the source gas contains no halogen group such as monosilane (SiH 4 , abbreviation: MS) gas, disilane (Si 2 H 6 , abbreviation: DS) gas, trisilane (Si 3 H 8 , abbreviation: TS) gas, etc.
  • An inorganic silane source gas can be used.
  • NH 3 gas used as the first reaction gas
  • the present invention is not limited to such an embodiment.
  • hydrogen nitride-based gas such as diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, and N 3 H 8 gas, and these compounds
  • the gas etc. which contain can be used.
  • an organic hydrazine-based gas such as trimethylhydrazine ((CH 3 ) 2 N 2 (CH 3 ) H, abbreviation: TMH) gas, or the like can be used.
  • O 2 gas used as the second reaction gas
  • the present invention is not limited to such an embodiment.
  • the second reaction gas in addition to O 2 gas, nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, ozone (O 3 ) gas, hydrogen (H 2 ) gas + O 2 gas, H 2 gas + O 3 gas, water vapor (H 2 O), carbon monoxide (CO) gas, carbon dioxide (CO 2 ) gas, or the like can be used.
  • a SiN film is formed using DCS as a source gas and a nitrogen (N) -containing gas (nitriding gas) such as NH 3 gas as a first reaction gas
  • a nitrogen (N) -containing gas such as NH 3 gas
  • an SiON film is formed using an oxygen (O) -containing gas (oxidizing gas) such as oxygen (O 2 ) gas after the formation of the SiN film
  • O oxygen
  • the present invention is not limited to such an embodiment.
  • carbon (C) -containing gas such as propylene (C 3 H 6 ) gas
  • boron (B) -containing gas such as boron trichloride (BCl 3 ) gas, etc.
  • a SiO film, a SiON film, a SiOCN film, a SiOC film, a SiCN film, a SiBN film, a SiBCN film, or the like can be formed by the following film forming sequence.
  • the order which flows each gas can be changed suitably. Even in the case where these films are formed, the film formation can be performed under the same processing conditions as in the above-described embodiment, and the same effect as in the above-described embodiment can be obtained.
  • the silicon-based insulating film such as the SiN film has been described.
  • the present invention is not limited to such an embodiment.
  • titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W) is formed on the wafer 200. Even when a film containing a metal element such as a metal film is formed, the present invention can be suitably applied.
  • the present invention provides a TiN film, a TiO film, a TiON film, a TiOCN film, a TiOC film, a TiCN film, a TiBN film, a TiBCN film, a ZrN film, a ZrO film, a ZrON film, a ZrOC film, a ZrOC film, ZrCN film, ZrBN film, ZrBCN film, HfN film, HfO film, HfON film, HfOCN film, HfOC film, HfCN film, HfBN film, HfBCN film, TaN film, TaO film, TaON film, TaOCN film, TaOC film, TaCN film , TaBN film, TaBCN film, NbN film, NbO film, NbON film, NbOCN film, NbOC film, NbCN film, NbBN film, NbBCN film, AlN film, AlO film, AlON film, AlOCN film, AlOC film, AlCN film, AlBN Film, Al
  • the present invention is also suitably applied to the case where a film doped (added) with any of these elements, such as a TiAlN film, a TaAlN film, a TiAlC film, a TaAlC film, or a TiSiN film is formed. Is possible.
  • titanium tetrachloride (TiCl 4 ) gas, titanium tetrafluoride (TiF 4 ) gas, zirconium tetrachloride (ZrCl 4 ) gas, zirconium tetrafluoride (ZrF 4 ) are used as source gases.
  • MoCl 5 Bed Den pentafluor
  • an organic metal source gas containing carbon and a metal element such as trimethylaluminum (Al (CH 3 ) 3 , abbreviation: TMA) gas can be used.
  • TMA trimethylaluminum
  • the first reaction gas and the second reaction gas the same gas as that of the above-described embodiment can be used.
  • a TiN film, a TiO film, a TiON film, a TiCN film, a TiAlC film, a TiAlN film, a TiSiN film, or the like can be formed on the wafer 200 by a film formation sequence described below.
  • each gas flows can be changed as appropriate. Even in the case where these films are formed, the film formation can be performed under the same processing conditions as in the above-described embodiment, and the same effect as in the above-described embodiment can be obtained.
  • the present invention can be suitably applied when forming a film containing a predetermined element such as a semiconductor element or a metal element.
  • the present invention can provide a technique capable of obtaining a uniform film thickness in substrate processing using plasma.
  • a reaction tube forming a processing chamber for processing a substrate;
  • a gas supply unit which is provided in the processing chamber and supplies a source gas and a reaction gas which form a predetermined film on the surface of the substrate into the processing chamber;
  • a plasma generating apparatus for exciting the reaction gas supplied from the gas supply unit;
  • a magnetic field generation device that is provided outside the plasma generation device and generates a magnetic field in the same direction as a supply direction of the reaction gas excited by the plasma generation device;
  • a substrate processing apparatus is provided.
  • Appendix 2 The substrate processing apparatus according to appendix 1, wherein the magnetic field is generated by the magnetic field generation apparatus in a direction parallel to the substrate surface.
  • the substrate processing apparatus further includes a heating device that heats the processing chamber outside the reaction tube, 6.
  • the substrate processing apparatus according to any one of appendices 1 to 5, wherein the magnetic field generation device is provided between the reaction tube and the heating device.
  • the magnetic field generation device according to any one of supplementary notes 1 to 6, further comprising: an electromagnetic coil that generates a magnetic field therein; and a power source that is connected to the electromagnetic coil and supplies a current of a predetermined strength to the electromagnetic coil.
  • the described substrate processing apparatus is provided.
  • the reaction tube further includes a buffer chamber in which the plasma generation device is disposed,
  • the substrate processing apparatus according to any one of appendices 1 to 9, wherein the magnetic field is generated in a direction penetrating the buffer chamber.
  • the buffer chamber further includes a plasma supply port for supplying the excited reaction gas,
  • the substrate processing apparatus according to appendix 10, wherein the plasma supply port, the central portion of the substrate, and the magnetic field generation device are installed in the same straight line.
  • the substrate processing apparatus further includes a controller that controls the plasma generation apparatus and the magnetic field generation apparatus so that the magnetic field generation apparatus operates to include at least a timing at which the plasma generation apparatus operates. To the substrate processing apparatus according to any one of 11 to 11.
  • a method for manufacturing a semiconductor device or a substrate processing method is provided.
  • Controller control unit
  • 200 Wafer (substrate), 201 ... processing chamber, 202 ... Processing furnace, 203 ... reaction tube, 207 ... heater, 231 ... exhaust pipe, 233a, 233b ... nozzles, 232a, 232b, 232c, 232d, 232e, 232f ... gas supply pipes, 237: Buffer room, 269 ... first rod-shaped electrode, 270 ... second rod-shaped electrode, 272: Matching device, 273 ... high frequency power supply, 275 ... Electrode protective tube, 280, 281 ... Magnetic coil, 280a, 280b, 281a, 281b ... Conductor wires 282, 283 ... Variable DC power supply

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

Provided is a technology with which it is possible to obtain uniform film thickness during a substrate treatment in which plasma is used. It is possible to provide a technology having: a reaction tube for forming a treatment chamber in which a substrate is treated; a gas supply part provided inside the treatment chamber, the gas supply part supplying, into the treatment chamber, a reaction gas and a feedstock gas for forming a prescribed film on the surface of the substrate; a plasma generation device for exciting the reaction gas supplied by the gas supply part; and a magnetic-field-generating device provided outside the plasma generation device, the magnetic-field-generating device generating a magnetic field in a direction that is the same as the direction in which the reaction gas excited by the plasma generation device is supplied.

Description

基板処理装置、半導体装置の製造方法および記録媒体Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
 本発明は、プラズマを用いた基板処理装置、半導体装置の製造方法および記録媒体に関するものである。 The present invention relates to a substrate processing apparatus using plasma, a method for manufacturing a semiconductor device, and a recording medium.
 半導体装置の製造工程の一工程として、基板を収容した処理室内へ処理ガスを供給し、基板上に薄膜を形成する基板処理工程が行われることがある。 As one step of a semiconductor device manufacturing process, there is a case where a substrate processing step is performed in which a processing gas is supplied into a processing chamber containing a substrate to form a thin film on the substrate.
 上述の基板処理工程においては、半導体装置が受ける熱履歴を低減するため、触媒ガスやプラズマなどを用いて比較的低温での成膜を行うことが望まれている。 In the above-described substrate processing step, it is desired to perform film formation at a relatively low temperature using a catalyst gas or plasma in order to reduce the thermal history received by the semiconductor device.
 しかしながら、従来のプラズマを用いた基板処理工程では、プラズマ自身の減衰やガスとの衝突による減衰等の理由から、十分な量のプラズマが基板表面に到達できず、形成する膜の膜厚を均一に得ることができない場合があった。 However, in the conventional substrate processing process using plasma, a sufficient amount of plasma cannot reach the substrate surface due to attenuation of the plasma itself or attenuation due to collision with gas, etc., and the film thickness to be formed is uniform. There was a case that could not get to.
 本発明の目的は、プラズマを用いた基板処理において均一な膜厚を得ることができる技術を提供することにある。 An object of the present invention is to provide a technique capable of obtaining a uniform film thickness in substrate processing using plasma.
本発明の一態様によれば、
基板を処理する処理室を形成する反応管と、
前記処理室内に設けられ、前記基板の表面に所定の膜を形成する原料ガスと反応ガスとを前記処理室内に供給するガス供給部と、
前記ガス供給部より供給された前記反応ガスを励起するプラズマ生成装置と、
前記プラズマ生成装置の外側に設けられ、前記プラズマ生成装置によって励起された前記反応ガスの供給方向と同じ方向に磁場を生成する磁場生成装置と、
を有する技術が提供される。
According to one aspect of the invention,
A reaction tube forming a processing chamber for processing a substrate;
A gas supply unit which is provided in the processing chamber and supplies a source gas and a reaction gas which form a predetermined film on the surface of the substrate into the processing chamber;
A plasma generating apparatus for exciting the reaction gas supplied from the gas supply unit;
A magnetic field generation device that is provided outside the plasma generation device and generates a magnetic field in the same direction as a supply direction of the reaction gas excited by the plasma generation device;
A technique is provided.
 本発明によれば、プラズマを用いた基板処理において均一な膜厚を得ることができる技術を提供することができる。 According to the present invention, it is possible to provide a technique capable of obtaining a uniform film thickness in substrate processing using plasma.
本実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面で示す図である。It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus used suitably by this embodiment, and is a figure which shows a processing furnace part with a vertical cross section. 本実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA-A線断面図で示す図である。FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in the present embodiment, and is a view showing a processing furnace part by a cross-sectional view taken along line AA of FIG. 本実施形態で好適に用いられる基板処理装置の磁場生成部の設置位置を示した図である。It is the figure which showed the installation position of the magnetic field production | generation part of the substrate processing apparatus used suitably by this embodiment. (A)はプラズマの陽イオンと電子の磁場に対する動きを示した概略図である。(B)はプラズマと磁場との関係を示した概略図である。(A) is the schematic which showed the movement with respect to the magnetic field of the cation and electron of a plasma. (B) is the schematic which showed the relationship between plasma and a magnetic field. 本実施形態で好適に用いられる基板処理装置のコントローラの概略構成図である。It is a schematic block diagram of the controller of the substrate processing apparatus used suitably by this embodiment. 本実施形態における処理フローを示す図である。It is a figure which shows the processing flow in this embodiment. 本実施形態の処理シーケンスにおけるガス供給とプラズマの生成および磁場の生成のタイミングを示す図である。It is a figure which shows the timing of the gas supply in the process sequence of this embodiment, the production | generation of a plasma, and the production | generation of a magnetic field. 本実施形態の処理シーケンスにおけるガス供給とプラズマの生成および磁場の生成のタイミングの変形例1を示す図である。It is a figure which shows the modification 1 of the timing of the gas supply in the process sequence of this embodiment, the production | generation of a plasma, and the production | generation of a magnetic field. 本実施形態の処理シーケンスにおけるガス供給とプラズマの生成および磁場の生成のタイミングの変形例2を示す図である。It is a figure which shows the modification 2 of the timing of the gas supply in the process sequence of this embodiment, the production | generation of a plasma, and the production | generation of a magnetic field. 本実施形態で好適に用いられる基板処理装置の磁場生成部の設置位置をヒータの外側として示した図である。It is the figure which showed the installation position of the magnetic field production | generation part of the substrate processing apparatus used suitably by this embodiment as the outer side of a heater. 本実施形態で好適に用いられる基板処理装置の磁場生成部を永久磁石として複数設けた場合を示した図である。It is the figure which showed the case where the magnetic field production | generation part of the substrate processing apparatus used suitably by this embodiment was provided with two or more as a permanent magnet. 本実施形態で好適に用いられる基板処理装置の磁場生成部の周囲に冷却装置を設けた場合を示した図である。It is the figure which showed the case where the cooling device was provided around the magnetic field production | generation part of the substrate processing apparatus used suitably by this embodiment.
 <本発明の一実施形態>
 以下に本発明の一実施形態を図面に基づいて説明する。
<One Embodiment of the Present Invention>
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(1)基板処理装置の構成
 図1と図2を用いて本発明の基板処理装置の一実施形態について説明する。なお、本発明は、本実施形態にかかる基板処理装置に限らず、枚葉式、Hot Wall型、Cold Wall型の処理炉を有する基板処理装置にも好適に適用できる。
(1) Configuration of Substrate Processing Apparatus One embodiment of the substrate processing apparatus of the present invention will be described with reference to FIGS. 1 and 2. The present invention is not limited to the substrate processing apparatus according to the present embodiment, and can be suitably applied to a substrate processing apparatus having a single wafer type, hot wall type, or cold wall type processing furnace.
(処理室)
 図1に示されているように、処理炉202は反応容器(処理容器)を構成する反応管203を備えている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の筒中空部には処理室201が形成されており、基板としてのウエハ200を後述するボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
(Processing room)
As shown in FIG. 1, the processing furnace 202 includes a reaction tube 203 that constitutes a reaction vessel (processing vessel). The reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened. A processing chamber 201 is formed in a hollow cylindrical portion of the reaction tube 203, and is configured to be able to accommodate wafers 200 as substrates in a state of being aligned in multiple stages in a horizontal posture and in a vertical direction by a boat 217 described later.
反応管203の下方には、反応管203の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は反応管203の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は例えばステンレス等の金属からなり、円盤状に形成されている。シールキャップ219の上面には反応管203の下端と当接するシール部材としてのOリング220が設けられている。シールキャップ219の処理室201と反対側には、後述する基板保持具としてのボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255はシールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内に対して搬入・搬出することが可能なように構成されている。 Below the reaction tube 203, a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the reaction tube 203. The seal cap 219 is configured to contact the lower end of the reaction tube 203 from the lower side in the vertical direction. The seal cap 219 is made of a metal such as stainless steel and has a disk shape. An O-ring 220 is provided on the upper surface of the seal cap 219 as a seal member that contacts the lower end of the reaction tube 203. On the opposite side of the seal cap 219 from the processing chamber 201, a rotation mechanism 267 for rotating a boat 217 as a substrate holder described later is installed. A rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203. The boat elevator 115 is configured such that the boat 217 can be carried into and out of the processing chamber 201 by moving the seal cap 219 up and down.
(基板保持具)
基板保持具としてのボート217は、例えば石英や炭化珪素等の耐熱性材料からなり、複数枚のウエハ200を水平姿勢で、かつ、互いに中心を揃えた状態で整列させて多段に支持するように構成されている。なお、ボート217の下部には、例えば石英や炭化珪素等の耐熱性材料からなる断熱部材218が設けられており、後述するヒータ207からの熱がシールキャップ219側に伝わりにくくなるように構成されている。なお、断熱部材218は、石英や炭化珪素等の耐熱性材料からなる複数枚の断熱板と、これら断熱板を水平姿勢で多段に支持する断熱板ホルダとにより構成してもよい。
(Substrate holder)
The boat 217 as a substrate holder is made of a heat-resistant material such as quartz or silicon carbide, and supports a plurality of wafers 200 in a horizontal posture and in a state where the centers are aligned with each other and supported in multiple stages. It is configured. A heat insulating member 218 made of a heat resistant material such as quartz or silicon carbide is provided at the lower part of the boat 217 so that heat from the heater 207 described later is hardly transmitted to the seal cap 219 side. ing. The heat insulating member 218 may be constituted by a plurality of heat insulating plates made of a heat resistant material such as quartz or silicon carbide, and a heat insulating plate holder that supports the heat insulating plates in a horizontal posture in multiple stages.
(加熱装置)
 処理炉202は加熱装置(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に反応管203と同心円状になるように支持されることにより垂直に据え付けられている。なお、ヒータ207は、後述するようにガスを熱で活性化させる活性化機構としても機能する。
(Heating device)
The processing furnace 202 has a heater 207 as a heating device (heating mechanism). The heater 207 has a cylindrical shape, and is vertically installed by being supported by a heater base (not shown) as a holding plate so as to be concentric with the reaction tube 203. The heater 207 also functions as an activation mechanism that activates gas with heat, as will be described later.
(ガス供給部)
 処理室201内における反応管203の下部には、第1ガス導入部としての第1ノズル233aと、第2ガス導入部としての第2ノズル233bとが、反応管203の下部側壁、または図示しないマニホールドの側壁面を貫通するように設けられている。第1ノズル233a、第2ノズル233bには、第1ガス供給管232a、第2ガス供給管232bが、それぞれ接続されている。第2ガス供給管232bには第3ガス供給管232cが接続されている。このように、反応管203には2本のノズル233a、233bと、3本のガス供給管232a、232b、232cが設けられており、処理室201内へ複数種類、ここでは3種類のガスを供給することができるように構成されている。
(Gas supply part)
In the lower part of the reaction tube 203 in the processing chamber 201, a first nozzle 233a as a first gas introduction unit and a second nozzle 233b as a second gas introduction unit are provided on the lower side wall of the reaction tube 203 or not shown. It is provided so as to penetrate the side wall surface of the manifold. A first gas supply pipe 232a and a second gas supply pipe 232b are connected to the first nozzle 233a and the second nozzle 233b, respectively. A third gas supply pipe 232c is connected to the second gas supply pipe 232b. As described above, the reaction tube 203 is provided with the two nozzles 233a and 233b and the three gas supply tubes 232a, 232b, and 232c. It is comprised so that it can supply.
 第1ガス供給管232aには上流方向から順に流量制御器(流量制御部)であるマスフローコントローラ(以下、MFCと称する)241a、及び開閉弁であるバルブ243aが設けられている。また、第1ガス供給管232aのバルブ243aよりも下流側には、第1不活性ガス供給管232dが接続されている。この第1不活性ガス供給管232dには、上流方向から順に、流量制御器(流量制御部)であるMFC241d、及び開閉弁であるバルブ243dが設けられている。また、第1ガス供給管232aの下流端部には、上述の第1ノズル233aが接続されている。第1ノズル233aは、反応管203の内壁とウエハ200との間における円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、第1ノズル233aは、ウエハ200が配列されるウエハ配列領域の側方に設けられている。第1ノズル233aはL字型のロングノズルとして構成されている。第1ノズル233aの側面にはガスを供給するガス供給口248aが設けられている。ガス供給口248aは反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。このガス供給口248aは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。 The first gas supply pipe 232a is provided with a mass flow controller (hereinafter referred to as MFC) 241a that is a flow rate controller (flow rate control unit) and a valve 243a that is an on-off valve in order from the upstream direction. A first inert gas supply pipe 232d is connected to the downstream side of the valve 243a of the first gas supply pipe 232a. The first inert gas supply pipe 232d is provided with an MFC 241d as a flow rate controller (flow rate control unit) and a valve 243d as an on-off valve in order from the upstream direction. The first nozzle 233a is connected to the downstream end of the first gas supply pipe 232a. The first nozzle 233a is provided in an annular space between the inner wall of the reaction tube 203 and the wafer 200 so as to rise upward from the lower portion of the inner wall of the reaction tube 203 in the stacking direction of the wafer 200. It has been. That is, the first nozzle 233a is provided on the side of the wafer arrangement area where the wafers 200 are arranged. The first nozzle 233a is configured as an L-shaped long nozzle. A gas supply port 248a for supplying gas is provided on the side surface of the first nozzle 233a. The gas supply port 248 a is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200. A plurality of gas supply ports 248a are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
 主に、第1ガス供給管232a、MFC241a、バルブ243aにより第1ガス供給系が構成される。なお、第1ノズル233aを第1ガス供給系に含めて考えてもよい。また、主に、第1不活性ガス供給管232d、MFC241d、バルブ243dにより、第1不活性ガス供給系が構成される。第1不活性ガス供給系はパージガス供給系としても機能する。 Mainly, the first gas supply system is configured by the first gas supply pipe 232a, the MFC 241a, and the valve 243a. The first nozzle 233a may be included in the first gas supply system. Further, a first inert gas supply system is mainly configured by the first inert gas supply pipe 232d, the MFC 241d, and the valve 243d. The first inert gas supply system also functions as a purge gas supply system.
 第2ガス供給管232bには上流方向から順にMFC241b、及び開閉弁であるバルブ243bが設けられている。また、第2ガス供給管232bのバルブ243bよりも下流側には、第2不活性ガス供給管232eが接続されている。この第2不活性ガス供給管232eには、上流方向から順に、MFC241e、及び開閉弁であるバルブ243eが設けられている。また、第2ガス供給管232bの下流端部には、上述の第2ノズル233bが接続されている。第2ノズル233bは、ガス分散空間であるバッファ室237内に設けられている。 The second gas supply pipe 232b is provided with an MFC 241b and an on-off valve 243b in order from the upstream direction. A second inert gas supply pipe 232e is connected to the downstream side of the valve 243b of the second gas supply pipe 232b. The second inert gas supply pipe 232e is provided with an MFC 241e and a valve 243e that is an on-off valve in order from the upstream direction. The second nozzle 233b is connected to the downstream end of the second gas supply pipe 232b. The second nozzle 233b is provided in a buffer chamber 237 that is a gas dispersion space.
 バッファ室237は反応管203の内壁とウエハ200との間における円環状の空間に、反応管203内壁の下部より上部にわたる部分に、ウエハ200の積載方向に沿って設けられている。すなわち、バッファ室237は、ウエハ配列領域の側方に設けられている。バッファ室237のウエハ200と隣接する壁の端部にはガスを供給するガス供給口248cが設けられている。ガス供給口248cは反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。このガス供給口248cは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。 The buffer chamber 237 is provided in an annular space between the inner wall of the reaction tube 203 and the wafer 200 in a portion extending from the lower portion to the upper portion of the inner wall of the reaction tube 203 along the loading direction of the wafer 200. That is, the buffer chamber 237 is provided on the side of the wafer arrangement region. A gas supply port 248 c for supplying a gas is provided at the end of the buffer chamber 237 adjacent to the wafer 200. The gas supply port 248 c is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200. A plurality of gas supply ports 248c are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
 第2ノズル233bは、バッファ室237のガス供給口248cが設けられた端部と反対側の端部に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、第2ノズル233bは、ウエハ配列領域の側方に設けられている。第2ノズル233bはL字型のロングノズルとして構成されている。第2ノズル233bの側面にはガスを供給するガス供給孔248bが設けられている。ガス供給孔248bはバッファ室237の中心を向くように開口している。このガス供給孔248bは、バッファ室237のガス供給口248cと同様に、反応管203の下部から上部にわたって複数設けられている。この複数のガス供給孔248bのそれぞれの開口面積は、バッファ室237内と処理室201内の差圧が小さい場合には、上流側(下部)から下流側(上部)まで、それぞれ同一の開口面積で同一の開口ピッチとするとよいが、差圧が大きい場合には上流側から下流側に向かって、それぞれ開口面積を大きくするか、開口ピッチを小さくするとよい。 The second nozzle 233b is located at the end of the buffer chamber 237 opposite to the end where the gas supply port 248c is provided, and extends upward from the bottom of the inner wall of the reaction tube 203 in the stacking direction of the wafer 200. It is provided to stand up. That is, the second nozzle 233b is provided on the side of the wafer arrangement region. The second nozzle 233b is configured as an L-shaped long nozzle. A gas supply hole 248b for supplying gas is provided on the side surface of the second nozzle 233b. The gas supply hole 248 b is opened to face the center of the buffer chamber 237. A plurality of gas supply holes 248 b are provided from the lower part to the upper part of the reaction tube 203, similarly to the gas supply port 248 c of the buffer chamber 237. Each of the plurality of gas supply holes 248b has the same opening area from the upstream side (lower part) to the downstream side (upper part) when the differential pressure in the buffer chamber 237 and the processing chamber 201 is small. However, when the differential pressure is large, the opening area is increased or the opening pitch is decreased from the upstream side toward the downstream side.
 本実施形態においては、第2ノズル233bのガス供給孔248bのそれぞれの開口面積や開口ピッチを、上流側から下流側にかけて上述のように調節することで、まず、ガス供給孔248bのそれぞれから、流速の差はあるものの、流量がほぼ同量であるガスを噴出させる。そしてこのガス供給孔248bのそれぞれから噴出するガスを、一旦、バッファ室237内に導入し、バッファ室237内においてガスの流速差の均一化を行うこととしている。すなわち、第2ノズル233bのガス供給孔248bのそれぞれよりバッファ室237内に噴出したガスはバッファ室237内で各ガスの粒子速度が緩和された後、バッファ室237のガス供給口248cより処理室201内に噴出する。これにより、第2ノズル233bのガス供給孔248bのそれぞれよりバッファ室237内に噴出したガスは、バッファ室237のガス供給口248cのそれぞれより処理室201内に噴出する際には、均一な流量と流速とを有するガスとなる。 In the present embodiment, by adjusting the opening area and the opening pitch of the gas supply holes 248b of the second nozzle 233b from the upstream side to the downstream side as described above, first, from each of the gas supply holes 248b, Although there is a difference in flow velocity, gas with the same flow rate is ejected. The gas ejected from each of the gas supply holes 248b is once introduced into the buffer chamber 237, and the difference in gas flow velocity is made uniform in the buffer chamber 237. That is, the gas ejected into the buffer chamber 237 from each of the gas supply holes 248b of the second nozzle 233b is reduced in the particle velocity of each gas in the buffer chamber 237, and then is processed from the gas supply port 248c of the buffer chamber 237 into the processing chamber. It spouts into 201. Accordingly, when the gas ejected into the buffer chamber 237 from each of the gas supply holes 248b of the second nozzle 233b is ejected into the processing chamber 201 from each of the gas supply ports 248c of the buffer chamber 237, a uniform flow rate is obtained. And a gas having a flow rate.
 主に、第2ガス供給管232b、MFC241b、バルブ243bにより第2ガス供給系が構成される。なお、第2ノズル233bおよびバッファ室237を第2ガス供給系に含めて考えてもよい。また、主に、第2不活性ガス供給管232e、MFC241e、バルブ243eにより第2不活性ガス供給系が構成される。第2不活性ガス供給系はパージガス供給系としても機能する。 A second gas supply system is mainly configured by the second gas supply pipe 232b, the MFC 241b, and the valve 243b. Note that the second nozzle 233b and the buffer chamber 237 may be included in the second gas supply system. In addition, a second inert gas supply system is mainly configured by the second inert gas supply pipe 232e, the MFC 241e, and the valve 243e. The second inert gas supply system also functions as a purge gas supply system.
 第3ガス供給管232cには上流方向から順にMFC241c、及び開閉弁であるバルブ243cが設けられている。また、第3ガス供給管232cのバルブ243cよりも下流側であって、第2ガス供給管との接続部よりも上流側には、第3不活性ガス供給管232fが接続されている。この第3不活性ガス供給管232fには、上流方向から順に、MFC241f、及び開閉弁であるバルブ243fが設けられている。また、第3ガス供給管232cの下流端部は、第2ガス供給管232bのバルブ243bよりも下流側に接続されている。 The third gas supply pipe 232c is provided with an MFC 241c and a valve 243c that is an on-off valve in order from the upstream direction. A third inert gas supply pipe 232f is connected to the downstream side of the valve 243c of the third gas supply pipe 232c and upstream of the connection portion with the second gas supply pipe. The third inert gas supply pipe 232f is provided with an MFC 241f and a valve 243f that is an on-off valve in order from the upstream direction. The downstream end of the third gas supply pipe 232c is connected to the downstream side of the valve 243b of the second gas supply pipe 232b.
 主に、第3ガス供給管232c、MFC241c、バルブ243cにより第3ガス供給系が構成される。なお、第2ガス供給管232bの第3ガス供給管232cとの接続部よりも下流側、第2ノズル233bおよびバッファ室237を第3ガス供給系に含めて考えてもよい。また、主に、第3不活性ガス供給管232f、MFC241f、バルブ243fにより第3不活性ガス供給系が構成される。第3不活性ガス供給系はパージガス供給系としても機能する。 A third gas supply system is mainly configured by the third gas supply pipe 232c, the MFC 241c, and the valve 243c. The second gas supply pipe 232b may be considered to include the second nozzle 233b and the buffer chamber 237 in the third gas supply system on the downstream side of the connection portion between the second gas supply pipe 232b and the third gas supply pipe 232c. In addition, a third inert gas supply system is mainly configured by the third inert gas supply pipe 232f, the MFC 241f, and the valve 243f. The third inert gas supply system also functions as a purge gas supply system.
第1ガス供給管232aからは、所定元素を含む原料ガス、すなわち所定元素としてのシリコン(Si)を含む原料ガス(シリコン含有ガス)として、例えばジクロロシラン(SiHCl、略称DCS)ガスが、MFC241a、バルブ243a、第1ノズル233aを介して処理室201内に供給される。すなわち、第1ガス供給系は原料ガス供給系(シリコン含有ガス供給系)として構成される。このとき同時に、第1不活性ガス供給管232dから、不活性ガスが、MFC241d、バルブ243dを介して第1ガス供給管232a内に供給されるようにしてもよい。 From the first gas supply pipe 232a, for example, dichlorosilane (SiH 2 Cl 2 , abbreviated as DCS) gas is used as a source gas containing a predetermined element, that is, a source gas containing silicon (Si) as a predetermined element (silicon-containing gas). , MFC 241a, valve 243a, and first nozzle 233a are supplied into the processing chamber 201. That is, the first gas supply system is configured as a source gas supply system (silicon-containing gas supply system). At the same time, the inert gas may be supplied from the first inert gas supply pipe 232d into the first gas supply pipe 232a via the MFC 241d and the valve 243d.
第2ガス供給管232bからは、所定元素を含む第1の反応ガス、すなわち所定元素としての窒素原子(N)を含む原料ガス(窒素含有ガス)として、例えばNHガスが、MFC241b、バルブ243b、第2ノズル233b、バッファ室237を介して処理室201内に供給される。すなわち、第2ガス供給系は反応ガス供給系として構成される。このとき同時に、第2不活性ガス供給管232eから、不活性ガスが、MFC241e、バルブ243eを介して第2ガス供給管232b内に供給されるようにしてもよい。 From the second gas supply pipe 232b, as a first reaction gas containing a predetermined element, that is, a source gas containing nitrogen atoms (N) as a predetermined element (nitrogen-containing gas), for example, NH 3 gas is used as an MFC 241b and a valve 243b. The second nozzle 233b and the buffer chamber 237 are supplied into the processing chamber 201. That is, the second gas supply system is configured as a reaction gas supply system. At the same time, the inert gas may be supplied from the second inert gas supply pipe 232e into the second gas supply pipe 232b via the MFC 241e and the valve 243e.
 第3ガス供給管232cからは、所定元素を含む第2の反応ガス、すなわち所定元素としての酸素原子(O)を含む原料ガス(酸素含有ガス)として、例えば酸素(O)ガスが、MFC241c、バルブ243c、第2ガス供給管232b、第2ノズル233b、バッファ室237を介して処理室201内に供給される。すなわち、第3ガス供給系は水素含有ガス供給系として構成される。このとき同時に、第3不活性ガス供給管232fから、不活性ガスが、MFC241f、バルブ243fを介して第3ガス供給管232c内に供給されるようにしてもよい。 From the third gas supply pipe 232c, for example, oxygen (O 2 ) gas is used as the second reaction gas containing the predetermined element, that is, the source gas (oxygen-containing gas) containing oxygen atoms (O) as the predetermined element, as the MFC 241c. The gas is supplied into the processing chamber 201 through the valve 243c, the second gas supply pipe 232b, the second nozzle 233b, and the buffer chamber 237. That is, the third gas supply system is configured as a hydrogen-containing gas supply system. At the same time, the inert gas may be supplied from the third inert gas supply pipe 232f into the third gas supply pipe 232c via the MFC 241f and the valve 243f.
 なお、本実施形態では、NHガスとOガスとを同じノズルから処理室201内(バッファ室237内)に供給するようにしているが、それぞれを別々のノズル、別々のバッファ室から処理室201内に供給するようにしてもよい。すなわち、NHガス専用のノズルとバッファ室およびOガス専用のノズルとバッファ室をそれぞれ設けるようにしても良い。
 また、第1ノズル233aを収容するバッファ室を設けるように構成しても良い。
In the present embodiment, NH 3 gas and O 2 gas are supplied from the same nozzle into the processing chamber 201 (in the buffer chamber 237), but each is processed from a separate nozzle and a separate buffer chamber. You may make it supply in the chamber 201. FIG. That, NH 3 gas only nozzle and the buffer chamber and the O 2 gas only nozzle and the buffer chamber may be provided, respectively.
Further, a buffer chamber for accommodating the first nozzle 233a may be provided.
(プラズマ生成装置)
バッファ室237内には、図2に示すように、プラズマ生成装置としての細長い構造を有する第1の電極である第1の棒状電極269及び第1の電極の対向電極としての第2の電極である第2の棒状電極270が、反応管203の下部より上部にわたりウエハ200の積層方向に沿って配設されている。第1の棒状電極269及び第2の棒状電極270のそれぞれは、第2ノズル233bと平行に設けられている。第1の棒状電極269及び第2の棒状電極270のそれぞれは、上部より下部にわたって各電極を保護する保護管である電極保護管275により覆われることで保護されている。この第1の棒状電極269又は第2の棒状電極270のいずれか一方は整合器272を介して高周波電源273に接続され、他方は基準電位であるアースに接続されている。この結果、第1の棒状電極269及び第2の棒状電極270間のプラズマ生成領域224にプラズマが生成される。主に、第1の棒状電極269、第2の棒状電極270、電極保護管275、整合器272、高周波電源273によりプラズマ発生器(プラズマ発生部)としてのプラズマ源が構成される。なお、プラズマ源は、後述するようにガスをプラズマで活性化させる活性化機構として機能する。
(Plasma generator)
In the buffer chamber 237, as shown in FIG. 2, there are a first rod-shaped electrode 269 which is a first electrode having a long and narrow structure as a plasma generation device, and a second electrode which is a counter electrode of the first electrode. A certain second rod-like electrode 270 is arranged along the stacking direction of the wafers 200 from the lower part to the upper part of the reaction tube 203. Each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 is provided in parallel with the second nozzle 233b. Each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 is protected by being covered with an electrode protection tube 275 that is a protection tube that protects each electrode from the top to the bottom. Either the first rod-shaped electrode 269 or the second rod-shaped electrode 270 is connected to the high-frequency power source 273 via the matching unit 272, and the other is connected to the ground as the reference potential. As a result, plasma is generated in the plasma generation region 224 between the first rod-shaped electrode 269 and the second rod-shaped electrode 270. The first rod-shaped electrode 269, the second rod-shaped electrode 270, the electrode protection tube 275, the matching unit 272, and the high-frequency power source 273 mainly constitute a plasma source as a plasma generator (plasma generating unit). The plasma source functions as an activation mechanism that activates a gas with plasma as will be described later.
電極保護管275は、第1の棒状電極269及び第2の棒状電極270のそれぞれをバッファ室237の雰囲気と隔離した状態でバッファ室237内に挿入できる構造となっている。ここで、電極保護管275の内部は外気(大気)と同一雰囲気であると、電極保護管275にそれぞれ挿入された第1の棒状電極269及び第2の棒状電極270はヒータ207による熱で酸化されてしまう。そこで、電極保護管275の内部には窒素などの不活性ガスを充填あるいはパージし、酸素濃度を充分低く抑えて第1の棒状電極269又は第2の棒状電極270の酸化を防止するための不活性ガスパージ機構が設けられている。 The electrode protection tube 275 has a structure in which each of the first rod-shaped electrode 269 and the second rod-shaped electrode 270 can be inserted into the buffer chamber 237 while being isolated from the atmosphere of the buffer chamber 237. Here, if the inside of the electrode protection tube 275 has the same atmosphere as the outside air (atmosphere), the first rod-shaped electrode 269 and the second rod-shaped electrode 270 inserted into the electrode protection tube 275 are oxidized by heat from the heater 207. Will be. Therefore, the inside of the electrode protection tube 275 is filled or purged with an inert gas such as nitrogen to suppress the oxygen concentration sufficiently low to prevent oxidation of the first rod-shaped electrode 269 or the second rod-shaped electrode 270. An active gas purge mechanism is provided.
上述のプラズマ生成装置は、上述の容量結合プラズマ(Capacitively Coupled Plasma、略称:CCP)を用いたものに限らず、誘導結合プラズマ(Inductively CoupledPlasuma、略称:ICP)電子サイクロトロン共鳴プラズマ(Electron Cyclotron Resonance Plasma、略称:ECRプラズマ)、ヘリコン波励起プラズマ(Helicon Wave Excited Plasma、略称:HWP)、表面波プラズマ(Surface Wave Plasma、略称:SWP)のいずれを用いても良い。 The plasma generation apparatus described above is not limited to the one using the above-described capacitively coupled plasma (abbreviation: CCP), but is also an inductively coupled plasma (abbreviation: ICP) electron cyclotron resonance plasma (Electrotron Cyclotron Resonance Plasma). Either an abbreviation: ECR plasma, a helicon wave excited plasma (Helicon Wave Excited Plasma, abbreviation: HWP), or a surface wave plasma (Surface Wave Plasma, abbreviation: SWP) may be used.
(ガス排気手段)
 反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して真空排気装置としての真空ポンプ246が接続されている。なお、APCバルブ244は弁を開閉して処理室201内の真空排気・真空排気停止ができ、更に弁開度を調節して圧力調整可能なように構成されている開閉弁である。真空ポンプ246を作動させつつ、圧力センサ245により検出された圧力情報に基づいてAPCバルブ244の弁の開度を調節することにより、処理室201内の圧力が所定の圧力(真空度)となるよう真空排気し得るように構成されている。主に、排気管231、APCバルブ244、真空ポンプ246、圧力センサ245により排気系が構成される。
(Gas exhaust means)
The reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201. The exhaust pipe 231 is evacuated through a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit). A vacuum pump 246 as an exhaust device is connected. The APC valve 244 is an open / close valve configured to open and close the valve to stop evacuation / stop of evacuation in the processing chamber 201 and further adjust the pressure by adjusting the valve opening. By adjusting the opening degree of the APC valve 244 based on the pressure information detected by the pressure sensor 245 while operating the vacuum pump 246, the pressure in the processing chamber 201 becomes a predetermined pressure (degree of vacuum). It is configured so that it can be evacuated. An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, the vacuum pump 246, and the pressure sensor 245.
(磁場生成装置)
 図1、図2、図3のそれぞれに示すように反応管203とヒータ207との間には、処理室201内に磁場(磁界)を生成させる磁場生成装置としての磁気コイル280(電磁石)が可変式直流電源282と接続されて設けられている。磁気コイル280に流れる電流は、電源としての可変式直流電源282によってコイル内部に生成される磁場の向きがヒータ207側から反応管203側に向かう方向(図2の破線矢印である磁力線402の方向)に生成されるように電流が供給されており、磁気コイル280の入出力端子である導線280aには可変式直流電源282のプラス側端子が電気的に接続され、磁気コイル280の入出力端子である導線280bには可変式直流電源282のマイナス側端子が電気的に接続されている。また、磁気コイル280は、図1に示すようにバッファ室237に対応する位置の反応管203の外壁を覆うように配設されている。すなわち、磁気コイル280は、反応管203の外壁面の一部を離間して覆うように配置され、磁気コイル280が生成する磁場の向きがウエハ200の表面と平行に、さらに具体的には処理ガスが供給される方向と平行となる向きに生成されるように設けられる。
 ここで、磁場生成装置として磁気コイル280を示したが、これに限らず、導線280a、280bおよび可変式直流電源282を含めて磁場生成装置としても良い。
(Magnetic field generator)
As shown in FIGS. 1, 2, and 3, between the reaction tube 203 and the heater 207, there is a magnetic coil 280 (electromagnet) as a magnetic field generating device that generates a magnetic field (magnetic field) in the processing chamber 201. A variable DC power supply 282 is provided in connection. The current flowing in the magnetic coil 280 is the direction in which the direction of the magnetic field generated inside the coil by the variable DC power source 282 as the power source is from the heater 207 side to the reaction tube 203 side (the direction of the magnetic force line 402 that is the broken line arrow in FIG. ) Is generated, and the positive terminal of the variable DC power supply 282 is electrically connected to the conductive wire 280a which is the input / output terminal of the magnetic coil 280, and the input / output terminal of the magnetic coil 280 is The negative terminal of the variable DC power supply 282 is electrically connected to the conducting wire 280b. Further, the magnetic coil 280 is arranged so as to cover the outer wall of the reaction tube 203 at a position corresponding to the buffer chamber 237 as shown in FIG. That is, the magnetic coil 280 is disposed so as to cover and partially cover a part of the outer wall surface of the reaction tube 203, and the direction of the magnetic field generated by the magnetic coil 280 is parallel to the surface of the wafer 200, more specifically, the processing. It is provided so as to be generated in a direction parallel to the direction in which the gas is supplied.
Here, although the magnetic coil 280 is shown as the magnetic field generating device, the magnetic field generating device is not limited to this, and may include the conducting wires 280a and 280b and the variable DC power supply 282.
 ここで、図4を用いて磁場がプラズマに及ぼす性質について簡単に説明する。
 図4において、反応ガスを励起して生成したプラズマ(活性種、ラジカル)401は、正の電荷を有する陽イオン401aと負の電荷を有する電子401bとを有しており、磁場の中にプラズマ401を存在させると、図4(A)に示すように、電子401bは磁力線を中心に右回りの向きで小さな径のらせん運動を行い、陽イオン401aは磁力線を中心に電子401bとは反対方向に回る左回りのらせん運動を行う。このようならせん運動(回転運動)はいわゆるサイクロトロン運動と呼ばれ、この運動によって図4(B)に示すようにプラズマ401が磁場の向きと同方向に磁力線402に沿って移動する。
Here, the property of the magnetic field on the plasma will be briefly described with reference to FIG.
In FIG. 4, a plasma (active species, radical) 401 generated by exciting a reactive gas has a positive ion 401a having a positive charge and an electron 401b having a negative charge, and the plasma is generated in a magnetic field. When 401 is present, as shown in FIG. 4A, the electron 401b performs a spiral motion with a small diameter in the clockwise direction around the magnetic force line, and the positive ion 401a is in the direction opposite to the electron 401b around the magnetic force line. Perform a counterclockwise spiral movement around Such a spiral motion (rotational motion) is called a so-called cyclotron motion, and as a result of this motion, the plasma 401 moves along the magnetic field lines 402 in the same direction as the direction of the magnetic field, as shown in FIG.
 このように磁場がプラズマに及ぼす性質を利用して、磁気コイル280を少なくともバッファ室237が有するガス供給口248cを最下部から最上部までを覆うように設置することで、バッファ室237内で生成されたプラズマに効率良く磁場を影響させることが可能となり、さらに磁場がヒータ207側から反応管203側に向かう方向(好ましくはバッファ室237のガス供給口248cからウエハ200上に向かう方向)に生成されるように磁気コイル280に電流を流すことで、バッファ室237内で生成されたプラズマが磁場によってバッファ室237からウエハ200へ移動する力を得ることができる。
このように構成した結果、磁場を生成しない場合に比べて、プラズマを活性化させた状態を維持したままウエハ200上に移動させることが容易になり、ウエハ200上に均一にプラズマを供給することが可能となる。
Using the property that the magnetic field exerts on the plasma in this way, the magnetic coil 280 is generated in the buffer chamber 237 by installing at least the gas supply port 248c of the buffer chamber 237 so as to cover from the lowermost part to the uppermost part. It is possible to efficiently affect the generated plasma with a magnetic field, and the magnetic field is generated in the direction from the heater 207 side to the reaction tube 203 side (preferably the direction from the gas supply port 248c of the buffer chamber 237 to the wafer 200). As described above, by passing a current through the magnetic coil 280, it is possible to obtain a force for moving the plasma generated in the buffer chamber 237 from the buffer chamber 237 to the wafer 200 by the magnetic field.
As a result of this configuration, it is easier to move the wafer 200 while maintaining the activated state of the plasma as compared with the case where no magnetic field is generated, and the plasma is supplied uniformly onto the wafer 200. Is possible.
このとき、バッファ室237側に設けられた磁気コイル280に対向する位置に磁気コイル281を配置し、磁気コイル280によって生成された磁場の向きと同じ向きに磁場を生成するように電源としての可変式直流電源283のプラス側端子を磁気コイルの入出力端子である導線281bに接続し、マイナス側端子を導線281aに接続するように構成しても良い。その場合、磁気コイル281、導線281a、281b、可変式直流電源283を含めて磁場生成装置としても良い。
このように構成することによって、反応管203内に生成される磁場の指向性が強くなり、より効率よくプラズマをウエハ200上に供給させることが可能となる。
At this time, the magnetic coil 281 is arranged at a position facing the magnetic coil 280 provided on the buffer chamber 237 side, and the power supply is variable so that the magnetic field is generated in the same direction as the magnetic field generated by the magnetic coil 280. The positive side terminal of the DC power supply 283 may be connected to the lead wire 281b which is an input / output terminal of the magnetic coil, and the negative side terminal may be connected to the lead wire 281a. In that case, the magnetic field generator may include the magnetic coil 281, the conductive wires 281 a and 281 b, and the variable DC power supply 283.
With this configuration, the directivity of the magnetic field generated in the reaction tube 203 is strengthened, and plasma can be supplied onto the wafer 200 more efficiently.
なお、本実施形態では磁場の向きがヒータ207側から反応管203側に向かうように記載したが、好ましくはバッファ室237のガス供給口248cからウエハ200上に向かう方向に磁場を生成することで効率よくプラズマをウエハ200上に供給することが可能となる。
 また、本実施形態では、磁場を生成する磁場生成装置である磁気コイル280、281をヒータ207と反応管203との間に設けるように説明したが、これに限らず、図10に示すようにヒータの外側に設けることでヒータ207からの受ける加熱の影響を低減するように構成しても良い。
In the present embodiment, the direction of the magnetic field is described so as to be directed from the heater 207 side to the reaction tube 203 side. However, the magnetic field is preferably generated in the direction from the gas supply port 248c of the buffer chamber 237 toward the wafer 200. Plasma can be efficiently supplied onto the wafer 200.
In the present embodiment, the magnetic coils 280 and 281 which are magnetic field generating devices for generating a magnetic field have been described as being provided between the heater 207 and the reaction tube 203. However, the present invention is not limited to this, as shown in FIG. It may be configured to reduce the influence of the heating received from the heater 207 by being provided outside the heater.
 また、本実施形態では、磁場を生成する磁場生成装置として磁気コイルを例示したが、これに限らず、図11に示すように、電源を不要とした永久磁石290a、290b、290cをそれぞれ1つずつ設けても良いし、永久磁石290a、290b、290cに反応管を介して対向する位置に永久磁石291a、291b、291cを設けるように構成しても良い。なお、この永久磁石を用いた場合、永久磁石290a、290b、290cの反応管側に対向する面はN極となり、ヒータ側に対向する面はS極となるように設ける必要がある。また、永久磁石291a、291b、291cの反応管側に対向する面はS極となり、ヒータ側に対向する面はN極となるように設ける必要がある。 In the present embodiment, a magnetic coil is exemplified as a magnetic field generation device that generates a magnetic field. However, the present invention is not limited thereto, and one permanent magnet 290a, 290b, and 290c that does not require a power source is provided as shown in FIG. The permanent magnets 291a, 291b, and 291c may be provided at positions facing the permanent magnets 290a, 290b, and 290c via the reaction tube. When this permanent magnet is used, the surfaces of the permanent magnets 290a, 290b, and 290c facing the reaction tube side must be N poles, and the surface facing the heater side must be S poles. Further, it is necessary to provide the permanent magnets 291a, 291b, and 291c so that the surfaces facing the reaction tube side are S poles and the surfaces facing the heater side are N poles.
 また、本実施形態では、磁場を生成する磁場生成装置として磁気コイルを例示したが、磁気コイルとは異なる電磁石を設けるようにしても良い。 In the present embodiment, the magnetic coil is exemplified as the magnetic field generating device that generates the magnetic field, but an electromagnet different from the magnetic coil may be provided.
 さらに、図12に示すように、磁場生成装置としての磁気コイル280、281の周囲に不活性ガスなどの冷媒を供給する冷却装置284、285を設けることで、磁気コイル280、281に電流を供給することによって生じる熱を冷却するように構成しても良い。このように構成することによって、磁気コイル280、281に連続的に電流を供給ことで磁気コイル280、281に生じる熱や、短時間で磁場を安定させるために大きな電流供給を要した際の発熱を冷却することが可能となり、これらの理由によって生じた熱が各成膜工程に影響を与えることを抑制することが可能となる。このとき、冷却媒体として用いられるものは、Nガスのような不活性ガスや、空気といった冷却ガスであっても良いし、内部に冷却液が供給される冷却パイプのようなものであっても良い。また、冷却装置284、285は、反応管と磁場生成装置との間に設けるようにしても良いし、磁場生成装置である磁気コイル280、281のそれぞれに対応するように設けるようにしても良く、冷却装置284、285を一体として構成し、磁気コイル280と281の両方を冷却するように設けるようにしても良い。 Furthermore, as shown in FIG. 12, by providing cooling devices 284 and 285 for supplying a refrigerant such as an inert gas around the magnetic coils 280 and 281 as the magnetic field generating device, current is supplied to the magnetic coils 280 and 281. You may comprise so that the heat which arises by doing may be cooled. With this configuration, heat is generated in the magnetic coils 280 and 281 by continuously supplying current to the magnetic coils 280 and 281 and heat generated when a large current supply is required to stabilize the magnetic field in a short time. Thus, it is possible to suppress the heat generated for these reasons from affecting each film forming step. At this time, what is used as a cooling medium may be an inert gas such as N 2 gas or a cooling gas such as air, or a cooling pipe to which a cooling liquid is supplied. Also good. The cooling devices 284 and 285 may be provided between the reaction tube and the magnetic field generation device, or may be provided so as to correspond to the magnetic coils 280 and 281 that are the magnetic field generation devices. Alternatively, the cooling devices 284 and 285 may be configured as a single unit so that both the magnetic coils 280 and 281 are cooled.
(制御装置)
図5に示すように、制御部(制御装置)であるコントローラ121は、MFC241a、241b、241c、241d、241e、241f、バルブ243a、243b、243c、243d、243e、243f、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、ボート回転機構267、ボートエレベータ115、高周波電源273、整合器272等に接続されている。コントローラ121により、MFC241a、241b、241c、241d、241e、241fによる各種ガスの流量調整動作、バルブ243a、243b、243c、243d、243e、243fの開閉動作、APCバルブ244の開閉及び圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動・停止、ボート回転機構267の回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等の制御や、高周波電源273の電力供給制御、整合器272によるインピーダンス制御、可変式直流電源282、283の電力供給制御が行われる。
(Control device)
As shown in FIG. 5, the controller 121 which is a control unit (control device) includes MFCs 241a, 241b, 241c, 241d, 241e, 241f, valves 243a, 243b, 243c, 243d, 243e, 243f, pressure sensors 245, and APC valves. 244, a vacuum pump 246, a heater 207, a temperature sensor 263, a boat rotation mechanism 267, a boat elevator 115, a high frequency power supply 273, a matching unit 272, and the like. Based on the controller 121, various gas flow rate adjustment operations by the MFCs 241 a, 241 b, 241 c, 241 d, 241 e, and 241 f, the opening and closing operations of the valves 243 a, 243 b, 243 c, 243 d, 243 e, 243 f, the opening and closing of the APC valve 244, and the pressure sensor 245. Control of pressure adjustment operation, temperature adjustment operation of the heater 207 based on the temperature sensor 263, start / stop of the vacuum pump 246, rotation speed adjustment operation of the boat rotation mechanism 267, raising / lowering operation of the boat 217 by the boat elevator 115, etc., high frequency power supply The power supply control of 273, the impedance control by the matching unit 272, and the power supply control of the variable DC power sources 282 and 283 are performed.
また、コントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。 The controller 121 is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e. For example, an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する薄膜形成等の基板処理の手順や条件などが記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する薄膜形成工程等の基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like. In the storage device 121c, a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of substrate processing such as thin film formation described later, and the like are stored in a readable manner. The process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in a substrate processing process such as a thin film forming process to be described later. Hereinafter, the process recipe, the control program, and the like are collectively referred to simply as a program. When the term “program” is used in this specification, it may include only a process recipe alone, may include only a control program alone, or may include both. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
I/Oポート121dは、上述のMFC241a~241f、バルブ243a~243f、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、整合器272、高周波電源273、回転機構267、ボートエレベータ115、可変式直流電源282、283等に接続されている。 The I / O port 121d includes the above-described MFCs 241a to 241f, valves 243a to 243f, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, matching device 272, high frequency power supply 273, rotation mechanism 267, boat It is connected to the elevator 115, variable DC power sources 282, 283, and the like.
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。そして、CPU121aは、読み出したプロセスレシピの内容に沿うように、MFC241a~241fによる各種ガスの流量調整動作、バルブ243a~243fの開閉動作、APCバルブ244の開閉動作及び圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、整合器272によるインピーダンス調整動作、高周波電源273の電力供給、可変式直流電源282、283の電力供給等を制御するように構成されている。 The CPU 121a is configured to read out and execute a control program from the storage device 121c, and to read out a process recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. Then, the CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241f, the opening / closing operation of the valves 243a to 243f, the opening / closing operation of the APC valve 244, and the APC valve 244 based on the pressure sensor 245 in accordance with the contents of the read process recipe. Pressure adjustment operation by means of, the start and stop of the vacuum pump 246, the temperature adjustment operation of the heater 207 based on the temperature sensor 263, the rotation and rotation speed adjustment operation of the boat 217 by the rotation mechanism 267, the raising and lowering operation of the boat 217 by the boat elevator 115, and the alignment The controller 272 is configured to control the impedance adjustment operation, power supply of the high frequency power supply 273, power supply of the variable DC power supplies 282 and 283, and the like.
なお、コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 121 is connected to an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card). The stored program can be configured by installing it in a computer. The storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both. The program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
(周辺構成)
反応管203内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、第1ノズル233a及び第2ノズル233bと同様に、L字型に構成されており、反応管203の内壁に沿って設けられている。
(Peripheral configuration)
A temperature sensor 263 as a temperature detector is installed in the reaction tube 203, and the temperature in the processing chamber 201 is adjusted by adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263. It is configured to have a desired temperature distribution. Similar to the first nozzle 233 a and the second nozzle 233 b, the temperature sensor 263 is configured in an L shape and is provided along the inner wall of the reaction tube 203.
(2)基板処理工程
次に、上述の基板処理装置の処理炉を用いて、半導体装置(デバイス)の製造工程の一工程として、基板上に絶縁膜としての窒化酸化シリコン膜(SiON)を形成する方法の例について説明する。なお、以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。 
(2) Substrate Processing Step Next, using a processing furnace of the above-described substrate processing apparatus, a silicon nitride oxide film (SiON) as an insulating film is formed on the substrate as one step of the semiconductor device (device) manufacturing process. An example of how to do this will be described. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
 図6および図7に示すように、本実施形態の処理シーケンスでは、ウエハ200表面上に窒化シリコン膜(SiN)を形成する窒化膜形成工程と、SiN膜が形成されたウエハ200に対して酸化処理することによりSiON膜を形成する酸化工程と、を連続して実施する。これにより、例えばMOS型電界効果トランジスタのゲート絶縁膜を形成する。 As shown in FIGS. 6 and 7, in the processing sequence of the present embodiment, a nitride film forming step for forming a silicon nitride film (SiN) on the surface of the wafer 200, and the wafer 200 on which the SiN film is formed are oxidized. An oxidation process for forming a SiON film by processing is continuously performed. Thereby, for example, a gate insulating film of a MOS field effect transistor is formed.
 本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合、すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。 In this specification, when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface”. In other words, it may be called a wafer including a predetermined layer or film formed on the surface. In addition, when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
 従って、本明細書において「ウエハに対して所定のガスを供給する」と記載した場合は、「ウエハそのものの表面(露出面)に対して所定のガスを供給する」ことを意味する場合や、「ウエハ上に形成されている層や膜等に対して、すなわち、積層体としてのウエハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウエハ上に所定の層(または膜)を形成する」と記載した場合は、「ウエハそのものの表面(露出面)上に所定の層(または膜)を形成する」ことを意味する場合や、「ウエハ上に形成されている層や膜等の上、すなわち、積層体としてのウエハの最表面の上に所定の層(または膜)を形成する」ことを意味する場合がある。 Therefore, in the present specification, the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas to the surface (exposed surface) of the wafer itself”, It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “determine a predetermined layer (or film) on the surface (exposed surface) of the wafer itself”. , Or "to form a predetermined layer (or film) on the layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate" There is.
また、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 In this specification, the term “substrate” is also synonymous with the term “wafer”.
(搬入工程(S501))
 先ず、ボート217に複数枚のウエハ200を装填(ウエハチャージ)する。次に、コントローラ121の制御に基づいてボートエレベータ115を駆動し、ボート217を上昇させる。これにより、図1および図2に示されているように、複数枚のウエハ200を保持したボート217が処理室201内に搬入(ボートローディング)される。このとき、シールキャップ219は、Oリング220を介して反応管203の下端を閉塞する。これにより、処理室201は気密に封止される。
(Import process (S501))
First, a plurality of wafers 200 are loaded into the boat 217 (wafer charge). Next, the boat elevator 115 is driven based on the control of the controller 121 to raise the boat 217. As a result, as shown in FIGS. 1 and 2, the boat 217 holding a plurality of wafers 200 is loaded into the processing chamber 201 (boat loading). At this time, the seal cap 219 closes the lower end of the reaction tube 203 via the O-ring 220. Thereby, the processing chamber 201 is hermetically sealed.
 また、ボート217の搬入時において、処理室201内には第1のパージガス供給系を介してパージガスとしてのArガスを流すようにしている。具体的には、MFC241dにより流量調整しつつ、バルブ243dを開とし、処理室201内にArガスを導入する。これにより、ボート217の搬送時における処理室201内へのパーティクル侵入抑制等の効果が得られる。このとき、他のパージガス供給系である第2のパージガス供給系、第3のパージガス供給系においても、第1のパージガス供給系と同様にMFC241e、241fにより流量調整しつつ、バルブ243e、243fを開とし、処理室201内にArガスを導入するように制御しても良い。 Further, when the boat 217 is carried in, Ar gas as a purge gas is caused to flow into the processing chamber 201 via the first purge gas supply system. Specifically, while adjusting the flow rate by the MFC 241d, the valve 243d is opened, and Ar gas is introduced into the processing chamber 201. Thereby, effects such as suppression of particle intrusion into the processing chamber 201 when the boat 217 is conveyed can be obtained. At this time, in the second purge gas supply system and the third purge gas supply system, which are other purge gas supply systems, the valves 243e and 243f are opened while the flow rate is adjusted by the MFCs 241e and 241f in the same manner as in the first purge gas supply system. And Ar gas may be controlled to be introduced into the processing chamber 201.
(圧力調整工程及び昇温工程(S502))
 処理室201内へのボート217の搬入が完了したら、処理室201内が所定の圧力(例えば10~100Pa)となるよう処理室201内の雰囲気を排気する。具体的には、真空ポンプ246により排気しつつ、圧力センサにより検出された圧力情報に基づいてAPCバルブ244の弁開度をフィードバック制御し、処理室201内を所定の圧力とする。また、処理室201内が所定温度となるようヒータ207によって加熱される。具体的には、温度センサにより検出された温度情報に基づいてヒータ207への通電具合を制御して、処理室201内を所定の温度(例えば300~600℃)とする。そして、回転機構267を作動させ、処理室201内に搬入されたウエハ200の回転を開始する。なお、ウエハ200の回転は、後述する窒化膜形成工程(S503)及び酸化工程(S504)が終了するまで継続する。
(Pressure adjustment step and temperature raising step (S502))
When the loading of the boat 217 into the processing chamber 201 is completed, the atmosphere in the processing chamber 201 is exhausted so that the inside of the processing chamber 201 becomes a predetermined pressure (for example, 10 to 100 Pa). More specifically, the valve opening degree of the APC valve 244 is feedback-controlled based on the pressure information detected by the pressure sensor while evacuating by the vacuum pump 246, and the inside of the processing chamber 201 is set to a predetermined pressure. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to reach a predetermined temperature. Specifically, the degree of energization to the heater 207 is controlled based on the temperature information detected by the temperature sensor, and the inside of the processing chamber 201 is set to a predetermined temperature (for example, 300 to 600 ° C.). Then, the rotation mechanism 267 is operated to start the rotation of the wafer 200 loaded into the processing chamber 201. The rotation of the wafer 200 is continued until a nitride film formation step (S503) and an oxidation step (S504) described later are completed.
 (窒化膜形成工程(S503))
 図6に示すように窒化膜形成工程(S503)では、所定の成膜条件(温度、時間等)下で2種類以上の処理ガスを1種類ずつ交互にウエハ上に供給し、処理ガスのウエハ200上での反応を利用して1原子層未満から数原子層単位で薄膜を形成する手法である交互供給法により、DCSガスおよびNHガスを用いてウエハ200の表面にSiN膜を形成する。この交互供給法における膜厚制御は、処理ガスの交互供給回数を制御することで行うことができる。
(Nitride film forming step (S503))
As shown in FIG. 6, in the nitride film forming step (S503), two or more kinds of processing gases are alternately supplied onto the wafer one by one under predetermined film forming conditions (temperature, time, etc.). A SiN film is formed on the surface of the wafer 200 using a DCS gas and NH 3 gas by an alternating supply method, which is a method of forming a thin film in units of several atomic layers from less than one atomic layer using a reaction on 200. . Film thickness control in this alternate supply method can be performed by controlling the number of times of alternate supply of the processing gas.
 窒化膜形成工程では、まず、原料ガスであるDCSガスを第1ノズル233aから処理室201内に供給し、ウエハ200の表面に1原子層未満から数原子層の厚さのシリコン(Si)含有層を形成する(原料ガス供給工程(S503-1))。その後、パージガスとしてArガスを処理室201内に供給し、原料ガスであるDCSガスを排気する(原料ガス排気工程(S503-2))。その後、第1の反応ガスであるNHガスをプラズマ励起して生成した活性種(NHラジカル)を処理室201内に供給し、ウエハ200にSiN層を形成する(第1の反応ガス供給工程(S503-3))。その後、パージガスとしてArガスを処理室201内に供給し、第1の反応ガスであるNHガスを排気する(第1の反応ガス排気工程(S503-4))。そして、原料ガス供給工程と、原料ガス排気工程と、第1の反応ガス供給工程と、第1の反応ガス排気工程を1サイクルとしてこのサイクルを所定回数行うことで、所望の厚さのSiN膜を形成する。 In the nitride film forming step, first, DCS gas as a source gas is supplied from the first nozzle 233a into the processing chamber 201, and the surface of the wafer 200 contains silicon (Si) having a thickness of less than one atomic layer to several atomic layers. A layer is formed (source gas supply step (S503-1)). Thereafter, Ar gas is supplied into the processing chamber 201 as a purge gas, and the DCS gas that is the source gas is exhausted (source gas exhausting step (S503-2)). Thereafter, activated species (NH 3 radicals) generated by plasma excitation of NH 3 gas as the first reaction gas are supplied into the processing chamber 201 to form a SiN layer on the wafer 200 (first reaction gas supply). Step (S503-3)). Thereafter, Ar gas is supplied as a purge gas into the processing chamber 201, and NH 3 gas as the first reaction gas is exhausted (first reaction gas exhausting step (S503-4)). The SiN film having a desired thickness is obtained by performing this cycle a predetermined number of times, with the source gas supply step, the source gas exhaust step, the first reaction gas supply step, and the first reaction gas exhaust step as one cycle. Form.
 本明細書では、この成膜シーケンスを、便宜上、以下のように示すこともある。なお、以下の変形例や他の実施形態の説明においても、同様の表記を用いることとする。 In this specification, this film forming sequence may be indicated as follows for convenience. Note that the same notation is used in the description of the following modified examples and other embodiments.
(DCS→NH)×n ⇒ SiN (DCS → NH 3 ) × n => SiN
以下、窒化膜形成工程を具体的に説明する。 Hereinafter, the nitride film forming step will be specifically described.
 (原料ガス供給工程(S503-1))
 先ず、第1ガス供給管232aに設けられている図示しないガス溜り部内にDCSガスを充填しておく。具体的には、先ず、バルブ243aを閉めた状態で、MFC241aにより所定の流量に調整しつつ、ガス溜り部内への原料ガスとしてのDCSガスの供給を開始する。そして、所定時間(例えば2~4秒)経過してガス溜り部内の圧力が所定の圧力(例えば20000Pa)に到達したら、ガス溜り部内に高圧のDCSガスを閉じ込めておく。
(Raw material gas supply process (S503-1))
First, a DCS gas is filled in a gas reservoir (not shown) provided in the first gas supply pipe 232a. Specifically, first, supply of DCS gas as a raw material gas into the gas reservoir is started while the valve 243a is closed and the MFC 241a adjusts to a predetermined flow rate. When a predetermined time (eg, 2 to 4 seconds) elapses and the pressure in the gas reservoir reaches a predetermined pressure (eg, 20000 Pa), high-pressure DCS gas is confined in the gas reservoir.
 処理室201内が所定の圧力(例えば20Pa)に到達し、ガス溜り部内が所定の圧力(例えば20000Pa)に到達したら、APCバルブ244の弁を閉じて処理室201内の排気を一時的に停止する。そして、バルブ243aを開とし、ガス溜り部内に充填されていた高圧のDCSガスを、バッファ室237内(すなわち処理室201内)にパルス的に供給(フラッシュ供給)する。このとき、APCバルブ244の弁が閉じられているため、処理室201内の圧力は例えば931Pa(7Torr)にまで急激に上昇する。処理室201内に供給されたDCSガスは、ウエハ200最表面上に第1の層として1原子層未満から数原子層の厚さのシリコン(Si)含有層が生成される。Si含有層の生成に寄与しなかったDCSガスは、処理室201内を流下して排気管231から排気される。 When the inside of the processing chamber 201 reaches a predetermined pressure (for example, 20 Pa) and the inside of the gas reservoir reaches a predetermined pressure (for example, 20000 Pa), the APC valve 244 is closed to temporarily stop the exhaust in the processing chamber 201. To do. Then, the valve 243a is opened, and the high-pressure DCS gas filled in the gas reservoir is supplied in a pulsed manner (flash supply) into the buffer chamber 237 (that is, inside the processing chamber 201). At this time, since the valve of the APC valve 244 is closed, the pressure in the processing chamber 201 rapidly increases to, for example, 931 Pa (7 Torr). The DCS gas supplied into the processing chamber 201 generates a silicon (Si) -containing layer having a thickness of less than one atomic layer to several atomic layers as a first layer on the outermost surface of the wafer 200. DCS gas that has not contributed to the generation of the Si-containing layer flows down in the processing chamber 201 and is exhausted from the exhaust pipe 231.
(原料ガス排気工程(S503-2))
所定時間(例えば2~4秒)が経過したら、バルブ243aを閉とし、バッファ室237内(すなわち処理室201内)へのDCSガスの供給を停止する。このとき、APCバルブ244は開いたままとして、真空ポンプ246により処理室201内に残留する未反応もしくは第1の層の形成に寄与した後のDCSガスを処理室201内から排出する。このとき、バルブ243aを閉とした後、バルブ243dを開とし、処理室201内にパージガスとしてArガスを供給することで、処理室201内に残留しているDCSガスや反応副生成物を排出する効果を高めることができる。
(Raw material gas exhaust process (S503-2))
When a predetermined time (for example, 2 to 4 seconds) elapses, the valve 243a is closed, and the supply of DCS gas into the buffer chamber 237 (that is, the processing chamber 201) is stopped. At this time, the APC valve 244 is kept open, and the DCS gas remaining in the processing chamber 201 or contributing to the formation of the first layer is discharged from the processing chamber 201 by the vacuum pump 246. At this time, after the valve 243a is closed, the valve 243d is opened, and Ar gas is supplied into the processing chamber 201 as a purge gas, thereby discharging DCS gas and reaction byproducts remaining in the processing chamber 201. Can enhance the effect.
このとき、処理室201内に残留するガスを完全に排出しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われる第1の反応ガス供給工程において悪影響が生じることはない。処理室201内へ供給するArガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量のArガスを供給することで、第1の反応ガス供給工程において悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。Arガスの消費も必要最小限に抑えることが可能となる。 At this time, the gas remaining in the processing chamber 201 may not be completely discharged, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effect will occur in the first reaction gas supply step performed thereafter. The flow rate of Ar gas supplied into the processing chamber 201 does not need to be a large flow rate. For example, the first reaction is performed by supplying an amount of Ar gas equivalent to the volume of the reaction tube 203 (processing chamber 201). Purge can be performed to such an extent that no adverse effect occurs in the gas supply process. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. It is possible to minimize the consumption of Ar gas.
(第1の反応ガス供給工程(S503-3))
原料ガス排気工程が完了すると、励起用ガスとしてのArガスをバッファ室237内に供給する。具体的には、MFC241eにより流量調整しつつ、バルブ243eを開とし、バッファ室237内にArガスを供給する。そして、高周波電源273から第1の棒状電極269及び第2の棒状電極270に高周波電力を供給することにより、バッファ室237内のプラズマ生成領域224にArガスプラズマを生成し、Arを活性化させる。
(First reactive gas supply step (S503-3))
When the source gas exhaust process is completed, Ar gas as an excitation gas is supplied into the buffer chamber 237. Specifically, the flow rate is adjusted by the MFC 241 e, the valve 243 e is opened, and Ar gas is supplied into the buffer chamber 237. Then, by supplying high-frequency power from the high-frequency power source 273 to the first rod-shaped electrode 269 and the second rod-shaped electrode 270, Ar gas plasma is generated in the plasma generation region 224 in the buffer chamber 237, and Ar is activated. .
 次に、第1の反応ガスとしてNHガスをバッファ室237内に供給する。具体的には、MFCにより流量が例えば1~10slmの範囲内になるよう調整しつつ、バルブ232bを開とし、バッファ室237内にNHガスを供給する。バッファ室237内に供給されたNHガスは、活性化したAr(Arラジカル)と衝突して、間接的に活性化させられる(間接励起)。なお、後述するOガスと同様、NHガスを、直接的に活性化(直接励起)させてもよい。
活性化したNH(NHラジカル)は、ガス供給口248cからウエハ200に向けてArラジカルと共に噴出されて処理室201内に供給される。このとき、図7に示すように磁場生成装置としての磁気コイル280または281、もしくは、磁気コイル280および281の両方には、原料ガスを供給する工程のときに制御部121によって可変式直流電源(磁場源)282または283、もしくは、可変式直流電源282および283の両方から電力(電流)が供給されるように制御され、磁場生成装置はON状態、すなわち磁場を生成している状態となっている。したがって、NHラジカルが生成されたときには既に磁場が生成されており、NHラジカルは生成された磁場の向き、すなわち、磁力線402の向きに向かって移動し、ウエハ200表面上に到達することとなる。
Next, NH 3 gas is supplied into the buffer chamber 237 as a first reaction gas. Specifically, the valve 232b is opened while the NH 3 gas is supplied into the buffer chamber 237 while adjusting the flow rate within the range of 1 to 10 slm by MFC. The NH 3 gas supplied into the buffer chamber 237 collides with activated Ar (Ar radical) and is indirectly activated (indirect excitation). Note that NH 3 gas may be directly activated (directly excited) in the same manner as O 2 gas described later.
The activated NH 3 (NH 3 radical) is ejected together with Ar radicals from the gas supply port 248 c toward the wafer 200 and supplied into the processing chamber 201. At this time, as shown in FIG. 7, a variable DC power source (not shown) is supplied to the magnetic coil 280 or 281 as the magnetic field generation device or both of the magnetic coils 280 and 281 by the control unit 121 during the process of supplying the raw material gas. (Magnetic field source) 282 or 283 or both of the variable DC power sources 282 and 283 are controlled so that electric power (current) is supplied, and the magnetic field generation device is in an ON state, that is, a state in which a magnetic field is generated. Yes. Therefore, when the NH 3 radical is generated, a magnetic field is already generated, and the NH 3 radical moves toward the direction of the generated magnetic field, that is, the direction of the magnetic force line 402 and reaches the surface of the wafer 200. Become.
 ここで、磁場生成装置は、可変式直流電源によって磁気コイル280、281に電流が供給されてから、磁場が生成されて安定するまでには一定の時間を要する。このため、図7に示すように成膜工程である窒化膜形成工程(S503)の間は、常に磁場生成装置を動作させておくことで常時安定した磁場を生成することが可能となる。また、好適には、第1の反応ガス供給工程よりも前に可変式直流電源282または283、もしくは、可変式直流電源282および283の両方から電力が供給され、磁場生成装置はON状態、すなわち、磁場を生成している状態となるように制御されることが好ましい。さらに好適には、磁場生成装置がONとなった直後に安定した磁場を生成するために、磁気コイル280、281に供給する電流を、事前に磁場を生成するために供給する電流よりも大きくなるようにすることが好ましい。このように制御することによってプラズマ生成装置がONとなるタイミングと同一のタイミングで磁場生成装置がONとなるように制御することが可能となる。さらに、このように制御することが可能となることで、プラズマ生成装置と磁場生成装置の動作が連動するように制御することが可能となり、省電力化を図ることができる。 Here, the magnetic field generation device requires a certain time from when a current is supplied to the magnetic coils 280 and 281 by the variable DC power source until the magnetic field is generated and stabilized. For this reason, as shown in FIG. 7, it is possible to always generate a stable magnetic field by always operating the magnetic field generating device during the nitride film forming step (S503) which is a film forming step. Preferably, electric power is supplied from the variable DC power supply 282 or 283 or both of the variable DC power supplies 282 and 283 before the first reaction gas supply step, and the magnetic field generator is in an ON state, that is, The magnetic field is preferably controlled so as to be generated. More preferably, in order to generate a stable magnetic field immediately after the magnetic field generating device is turned on, the current supplied to the magnetic coils 280 and 281 is larger than the current supplied to generate the magnetic field in advance. It is preferable to do so. By controlling in this way, it is possible to control the magnetic field generator to be turned on at the same timing as the plasma generator is turned on. Furthermore, since it becomes possible to control in this way, it becomes possible to control so that operation | movement of a plasma production | generation apparatus and a magnetic field production | generation apparatus may interlock | cooperate, and a power saving can be achieved.
 処理室201内に供給されたNHラジカルは、原料ガス供給工程でウエハ200の表面上に形成された第1の層、すなわちSi含有層の少なくとも一部と反応する。これにより第1の層は、プラズマ窒化され、SiおよびNを含む第2の層、すなわちシリコン窒化層(SiN層)へと変化させられ(改質され)、SiN膜が形成される。このとき、ウエハ200表面への堆積に寄与しなかったNHガス及びArガスは、処理室201内を流下してガス排気管231から排気される。このように、Arガスは、NHを間接的に活性化させる励起用ガスとして機能すると共に、処理室201内へのNHラジカルの供給を促進させるキャリアガスとしても機能する。 The NH 3 radicals supplied into the processing chamber 201 react with at least a part of the first layer, that is, the Si-containing layer formed on the surface of the wafer 200 in the source gas supply process. Thereby, the first layer is plasma-nitrided and changed (modified) into a second layer containing Si and N, that is, a silicon nitride layer (SiN layer), and a SiN film is formed. At this time, NH 3 gas and Ar gas that have not contributed to the deposition on the surface of the wafer 200 flow down in the processing chamber 201 and are exhausted from the gas exhaust pipe 231. Thus, the Ar gas functions as an excitation gas that indirectly activates NH 3 and also functions as a carrier gas that promotes the supply of NH 3 radicals into the processing chamber 201.
(第1の反応ガス排気工程(S503-4))
 所定時間(例えば2~120秒)が経過したら、高周波電源273から第1の棒状電極269及び第2の棒状電極270への高周波電力の供給を停止する。また、バルブ232bを閉とし、バッファ室237内へのNHガスの供給を停止する。そして、原料ガス排気工程と同様の処理手順により、処理室201内に残留する未反応もしくは第2の層の形成に寄与した後のNHガスや反応副生成物を処理室201内から排出する。このとき、処理室201内に残留するガス等を完全に排出しなくても良い点は、原料ガス排気工程と同様である。
(First reactive gas exhausting step (S503-4))
When a predetermined time (for example, 2 to 120 seconds) elapses, the supply of high-frequency power from the high-frequency power source 273 to the first rod-shaped electrode 269 and the second rod-shaped electrode 270 is stopped. Further, the valve 232b is closed, and the supply of NH 3 gas into the buffer chamber 237 is stopped. Then, NH 3 gas and reaction by-products remaining in the processing chamber 201 or contributed to the formation of the second layer are exhausted from the processing chamber 201 by the same processing procedure as the source gas exhaust process. . At this time, the gas remaining in the processing chamber 201 does not need to be completely exhausted, as in the raw material gas exhaust process.
(所定回数実施)
 その後、原料ガス供給工程(S503-1)と、原料ガス排気工程(S503-2)と、第1の反応ガス供給工程(S503-3)と、第1の反応ガス排気工程(S503-4)とを1サイクルとしてこのサイクルを所定回数行うことで、所望の膜厚のSiN膜を形成する。例えば、上述のサイクルを1回行う際に形成されるSiN層の厚さを所望の膜厚よりも小さくし、SiN層を積層することで形成されるSiN膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
(Performed times)
Thereafter, a source gas supply step (S503-1), a source gas exhaust step (S503-2), a first reaction gas supply step (S503-3), and a first reaction gas exhaust step (S503-4) Are performed a predetermined number of times to form a SiN film having a desired film thickness. For example, the thickness of the SiN layer formed when the above cycle is performed once is made smaller than the desired thickness, and the thickness of the SiN film formed by stacking the SiN layers becomes the desired thickness. It is preferable to repeat the above-described cycle a plurality of times until it becomes.
 窒化膜形成工程を行う際の処理条件としては、例えば、
 処理温度(ウエハ温度):200~600℃、
 処理圧力(処理室内内圧力):10~100Pa、
 磁場の強さ:100~1000G(=0.01~0.1T)
 DCSガス供給流量:1~2000sccm、
 NHガス供給流量:100~10000sccm、
 Arガス供給流量:100~10000sccm、
 が例示される。それぞれの処理条件を、それぞれの範囲内のある値に設定することで、成膜処理を適正に進行させることが可能となる。
As processing conditions when performing the nitride film forming step, for example,
Processing temperature (wafer temperature): 200 to 600 ° C.
Processing pressure (pressure in the processing chamber): 10 to 100 Pa,
Magnetic field strength: 100-1000G (= 0.01-0.1T)
DCS gas supply flow rate: 1 to 2000 sccm,
NH 3 gas supply flow rate: 100-10000 sccm,
Ar gas supply flow rate: 100 to 10,000 sccm,
Is exemplified. By setting each processing condition to a certain value within each range, the film forming process can be appropriately advanced.
(酸化工程(S504))
 窒化膜形成工程により所望の膜厚のSiN膜を成膜した後は、プラズマによって活性化された酸素ガスの活性種(Oラジカル)をウエハ200上に供給することでSiN膜を酸化させ、酸窒化シリコン(SiON)膜を形成する酸化工程(S504)を実施する。
(Oxidation step (S504))
After the SiN film having a desired thickness is formed by the nitride film forming step, the SiN film is oxidized by supplying active species (O 2 radicals) of oxygen gas activated by plasma onto the wafer 200, An oxidation step (S504) for forming a silicon oxynitride (SiON) film is performed.
 先ず、第2の反応性ガスとしてOガスをバッファ室237内に供給する。具体的には、MFC241cにより流量調整しつつ、バルブ243cを開とし、バッファ室237内にOガスを供給する。そして、高周波電源273から第1の棒状電極269及び第2の棒状電極270に高周波電力を供給することにより、バッファ室237内にOガスプラズマを生成し、Oガスを直接的に活性化させる(直接励起)。なお、NHガスと同様、Oガスを間接的に活性化(間接励起)させてもよい。
活性化したO(Oラジカル)は、バッファ室237のガス供給口248cからウエハ200に向けてArガスと共に噴出されて処理室12内に供給される。なお、MFC241fにより流量調整しつつ、バルブ243fを開とし、バッファ室237内(すなわち処理室201内)にキャリアガスとしてのArガスを供給することで、処理室201内へのOラジカルの供給を促進させることができる。このとき、磁場生成装置による磁場生成のタイミングは、上述した窒化膜形成工程と同様であり、Oガスが活性化されて処理室201内に供給されるタイミングにおいて、磁場生成装置はON状態、すなわち磁場を生成している状態となっている。したがって、Oラジカルが生成されたときには既に磁場が生成されており、Oラジカルは生成された磁場の向き、すなわち、磁力線402の向きに向かって移動し、ウエハ200表面上に到達することとなる。なお、窒化膜形成工程と同様に、磁場生成装置は、酸化工程)の間は常時ONとするように制御しても良いし、プラズマ生成装置がONとなるタイミングで磁場生成装置がONとするように制御しても良い。さらに、窒化膜形成工程を開始してから酸化工程が完了するまでの間、常に磁場生成装置をONとするように制御することも可能である。
First, O 2 gas is supplied into the buffer chamber 237 as the second reactive gas. Specifically, the flow rate is adjusted by the MFC 241 c, the valve 243 c is opened, and O 2 gas is supplied into the buffer chamber 237. Then, by supplying high-frequency power from the high-frequency power source 273 to the first rod-shaped electrode 269 and the second rod-shaped electrode 270, O 2 gas plasma is generated in the buffer chamber 237, and the O 2 gas is directly activated. (Direct excitation). In addition, like NH 3 gas, O 2 gas may be indirectly activated (indirect excitation).
The activated O 2 (O 2 radical) is ejected together with Ar gas from the gas supply port 248 c of the buffer chamber 237 toward the wafer 200 and is supplied into the processing chamber 12. Note that the supply of O 2 radicals into the processing chamber 201 is performed by adjusting the flow rate with the MFC 241f, opening the valve 243f, and supplying Ar gas as a carrier gas into the buffer chamber 237 (that is, inside the processing chamber 201). Can be promoted. At this time, the timing of magnetic field generation by the magnetic field generation device is the same as that in the above-described nitride film formation step, and at the timing when the O 2 gas is activated and supplied into the processing chamber 201, the magnetic field generation device is in the ON state. That is, the magnetic field is generated. Therefore, when the O 2 radical is generated, a magnetic field is already generated, and the O 2 radical moves toward the direction of the generated magnetic field, that is, the direction of the magnetic force line 402 and reaches the surface of the wafer 200. Become. As in the nitride film formation step, the magnetic field generation device may be controlled to be always ON during the oxidation step), or the magnetic field generation device is turned ON when the plasma generation device is turned ON. You may control as follows. Furthermore, it is possible to control so that the magnetic field generation device is always turned on from the start of the nitride film formation process to the completion of the oxidation process.
 処理室201内に供給されたOラジカルは、SiN膜の少なくとも一部と反応する。これによりSiN膜は、プラズマ酸化され、Si、OおよびNを含む膜、すなわち、SiON膜へと変化(改質)させられる。これにより、ウエハ200上にSiON膜が形成されることとなる。所定時間(例えば2~120秒)が経過したら、高周波電源273から第1の棒状電極269及び第2の棒状電極270への高周波電力の供給を停止する。また、バルブ232cを閉とし、バッファ室237内へのOガスの供給を停止する。そして、原料ガス排気工程と同様の処理手順により、処理室201内に残留する未反応もしくはSiON膜の形成に寄与した後のOガスや反応副生成物を処理室201内から排出する。このとき、処理室201内に残留するガス等を完全に排出しなくても良い点や、処理室内にパージガスとしてArガスを供給しても良い点は、原料ガス排気工程と同様である。 The O 2 radical supplied into the processing chamber 201 reacts with at least a part of the SiN film. Thereby, the SiN film is plasma oxidized and changed (modified) into a film containing Si, O, and N, that is, a SiON film. As a result, a SiON film is formed on the wafer 200. When a predetermined time (for example, 2 to 120 seconds) elapses, the supply of high-frequency power from the high-frequency power source 273 to the first rod-shaped electrode 269 and the second rod-shaped electrode 270 is stopped. Further, the valve 232c is closed, and the supply of O 2 gas into the buffer chamber 237 is stopped. Then, O 2 gas and reaction by-products remaining in the processing chamber 201 or contributed to the formation of the SiON film are discharged from the processing chamber 201 by the same processing procedure as the source gas exhaust process. At this time, the point that it is not necessary to completely discharge the gas remaining in the processing chamber 201 and that the Ar gas may be supplied as the purge gas into the processing chamber is the same as in the raw material gas exhausting step.
 上述した窒化膜形成工程と酸化工程によって形成されるSiON膜の流れを表すと以下のシーケンスとなる。 The flow of the SiON film formed by the above-described nitride film formation process and oxidation process is expressed as the following sequence.
(DCS→NH)×n→O ⇒ SiON (DCS → NH 3 ) × n → O 2 ⇒ SiON
 酸化工程を行う際の処理条件としては、例えば、
 処理温度(ウエハ温度):200~600℃、
 処理圧力(処理室内内圧力):10~100Pa、
 磁場の強さ:100~1000G(=0.01~0.1T)
 Oガス供給流量:100~10000sccm、
 Arガス供給流量:100~10000sccm、
As processing conditions when performing the oxidation step, for example,
Processing temperature (wafer temperature): 200 to 600 ° C.
Processing pressure (pressure in the processing chamber): 10 to 100 Pa,
Magnetic field strength: 100-1000G (= 0.01-0.1T)
O 2 gas supply flow rate: 100 to 10,000 sccm,
Ar gas supply flow rate: 100 to 10,000 sccm,
(大気圧復帰工程及び降温工程(S505))
 酸化工程(S504)が完了したら、ボート217の回転を停止させてウエハ200の回転を停止する。そして、処理室201内の圧力を大気圧に復帰させつつ、ウエハ200を降温させる。具体的には、バルブ243eを開のままとして処理室201内にArガスを供給しつつ、圧力センサにより検出された圧力情報に基づいてAPCバルブ244の弁開度をフィードバック制御し、処理室201内の圧力を大気圧に昇圧する。そして、ヒータ207への通電量を制御して、ウエハ200の温度を降温させる。
(Atmospheric pressure return step and temperature drop step (S505))
When the oxidation step (S504) is completed, the rotation of the boat 217 is stopped and the rotation of the wafer 200 is stopped. Then, the temperature of the wafer 200 is lowered while returning the pressure in the processing chamber 201 to atmospheric pressure. Specifically, the valve opening of the APC valve 244 is feedback-controlled based on the pressure information detected by the pressure sensor while supplying the Ar gas into the processing chamber 201 with the valve 243e kept open, and the processing chamber 201 The internal pressure is increased to atmospheric pressure. Then, the energization amount to the heater 207 is controlled to lower the temperature of the wafer 200.
(搬出工程(S506))
 その後、上述の搬入工程を逆の手順により基板処理されたウエハ200を処理室201内から搬出し、本実施形態に係る基板処理工程を終了する。
(Unloading step (S506))
Thereafter, the wafer 200 that has been subjected to the substrate processing in the reverse order of the above-described loading process is unloaded from the processing chamber 201, and the substrate processing process according to this embodiment is completed.
(3)本実施形態による効果
 本発明によれば、以下に示す1つ又は複数の効果が得られる。
(3) Effects According to the Embodiment According to the present invention, one or more effects shown below can be obtained.
(a)磁場生成装置によって処理室201内に磁場を生成することによって、磁場の方向にプラズマを移動させる量を大きくすることが可能となり、処理室201内に搬入された基板200の表面上にプラズマが達する前に失活することを抑制することができる。 (A) By generating a magnetic field in the processing chamber 201 by the magnetic field generation device, it is possible to increase the amount of movement of plasma in the direction of the magnetic field, and on the surface of the substrate 200 carried into the processing chamber 201. Inactivation before plasma reaches can be suppressed.
(b)プラズマが失活せずに高効率で処理基板200の表面上に供給されることにより、所定の膜を均一に形成することが可能となり、膜厚が均一になることによって、形成された膜の特性である膜質も均一に得ることが可能となる。 (B) Since the plasma is supplied on the surface of the processing substrate 200 with high efficiency without being deactivated, a predetermined film can be formed uniformly, and the film can be formed with a uniform film thickness. It is also possible to obtain uniform film quality, which is a characteristic of the film.
(c)磁場生成装置をバッファ室237を覆うように設置することによって、バッファ室237内のプラズマに効率よく影響を与えることが可能となり、基板200の表面上に活性化したプラズマを効率よく供給することが可能となる。 (C) By installing the magnetic field generator so as to cover the buffer chamber 237, it is possible to efficiently affect the plasma in the buffer chamber 237, and efficiently supply the activated plasma on the surface of the substrate 200. It becomes possible to do.
(d)磁場の向きをバッファ室237のガス供給口から基板200に向かうように生成し、プラズマの移動方向に指向性を持たせることによって、生成されたプラズマが不要な箇所に衝突して失活する可能性を抑制することが可能となり、基板200の表面上にプラズマを効率よく供給することが可能となる。 (D) By generating the direction of the magnetic field from the gas supply port of the buffer chamber 237 toward the substrate 200 and providing directivity in the direction of plasma movement, the generated plasma collides with an unnecessary portion and is lost. It is possible to suppress the possibility of being activated, and it is possible to efficiently supply plasma onto the surface of the substrate 200.
(e)従来の基板処理装置の構成を大きく変更させることなく、磁場生成装置を追加するのみで本発明を実施可能となるため、低コストで装置変更が可能となり、安定した磁場を生成することが可能となる。 (E) Since the present invention can be implemented only by adding a magnetic field generator without greatly changing the configuration of a conventional substrate processing apparatus, the apparatus can be changed at low cost and a stable magnetic field can be generated. Is possible.
(f)ヒータの外部に磁場生成装置を設ける場合、加熱源の外に磁場生成装置が配置されることになるため、磁場生成装置への熱影響を最小限にすることが可能となる。 (F) When the magnetic field generation device is provided outside the heater, since the magnetic field generation device is disposed outside the heating source, the thermal influence on the magnetic field generation device can be minimized.
(4)変形例
 本実施形態における基板処理工程の窒化膜形成工程は、上述の態様に限定されず、以下に示す変形例のように変更することができる。
(4) Modified Example The nitride film forming step of the substrate processing step in the present embodiment is not limited to the above-described aspect, and can be changed as in the following modified example.
(変形例1)
 例えば、図8に示すように原料ガス、第1の反応ガス、不活性ガスの供給の順番や長さは変わらず、プラズマ生成の為の高周波電源がONされるよりも早いタイミングで磁場生成部に接続された可変式直流電源をONし、プラズマ生成の為の高周波電源がOFFされるよりも遅いタイミングで可変式直流電源をOFFする。
 このように制御することで、磁場を必要とするガスを供給する時にだけ磁場を生成することが可能となり、さらにプラズマ生成部よりも早く電源が入り、遅く電源が落ちることで安定した磁場の生成を処理室内にすることが可能となり、安定して基板表面にプラズマ供給を行うことができるという効果を得ることが可能となる。
(Modification 1)
For example, as shown in FIG. 8, the order and length of supply of the source gas, the first reaction gas, and the inert gas are not changed, and the magnetic field generation unit is earlier than the high-frequency power source for plasma generation is turned on. The variable DC power supply connected to is turned ON, and the variable DC power supply is turned OFF at a later timing than the high frequency power supply for plasma generation is turned OFF.
By controlling in this way, it is possible to generate a magnetic field only when supplying a gas that requires a magnetic field. Furthermore, the power is turned on earlier than the plasma generator, and the power is turned off later. Thus, it is possible to obtain an effect that plasma can be stably supplied to the substrate surface.
(変形例2)
 また例えば、図9に示すように、第1の反応ガスの供給の後に第2の反応ガスであるOガスを供給し、窒化膜形成工程と酸化工程とを合わせて1つのサイクルとしても良い。すなわち、初めに原料ガスであるDCSを処理室へ供給し、その後、第1の反応ガスであるNHガスを活性化して処理室へ供給し、その後、第2の反応ガスである酸素(O)ガスを処理室へ供給するという工程を1サイクルとして所定の膜厚となるまで所定のサイクル繰り返すこととしても良い。すなわち、以下のシーケンスとしても良い。
(Modification 2)
Further, for example, as shown in FIG. 9, after supplying the first reaction gas, O 2 gas that is the second reaction gas is supplied, and the nitride film formation step and the oxidation step may be combined into one cycle. . That is, first, DCS, which is a raw material gas, is supplied to the processing chamber, and then NH 3 gas, which is the first reaction gas, is activated and supplied to the processing chamber, and then oxygen (O 2), which is the second reaction gas. 2 ) The process of supplying gas to the process chamber may be repeated as a cycle until a predetermined film thickness is obtained. That is, the following sequence may be used.
 (DCS→NH→O)×n ⇒ SiON (DCS → NH 3 → O 2 ) × n ⇒ SiON
 このように制御することで、SiN膜の表面を酸化してSiON膜を形成する第1実施形態に比べて均一にSiON膜を積層することが可能となり、SiN膜とSiO膜との中間の物性値や電気的特性を有するため、第1実施形態で形成するSiON膜に比べてウェットエッチング耐性や、ドライエッチング耐性をより向上させることが可能となるという効果を得ることが可能となる。 By controlling in this way, it becomes possible to stack the SiON film more uniformly than in the first embodiment in which the surface of the SiN film is oxidized to form the SiON film, and an intermediate between the SiN film and the SiO 2 film. Since it has physical property values and electrical characteristics, it is possible to obtain an effect that wet etching resistance and dry etching resistance can be further improved as compared with the SiON film formed in the first embodiment.
 以上、本発明を実施形態に沿って説明してきたが、上述の実施形態や各変形例などは、上述の内容に限定されるものではなく、その要旨を逸脱しない範囲で適宜組み合わせて用いることができ、その効果も得ることができる。
 例えば、本実施形態では、プラズマを生成するバッファ室を反応管の内側に設け、バッファ室内部にプラズマ生成装置としての第1の電極である第1の棒状電極269及び第2の電極である第2の棒状電極270を設けるようにして説明したが、これに限らず、バッファ室237を反応管内の側壁にヒータ207側に突出するように設けるとともにそのバッファ室内にはガス供給ノズルのみを設けて、前記バッファ室を外側から挟み込むように反応管の外側にプラズマ生成部である第1の電極と第2の電極を設けた構成としても良い。
As mentioned above, although this invention has been demonstrated along embodiment, the above-mentioned embodiment, each modification, etc. are not limited to the above-mentioned content, It uses combining suitably in the range which does not deviate from the summary. And the effect can be obtained.
For example, in this embodiment, a buffer chamber for generating plasma is provided inside the reaction tube, and a first rod-shaped electrode 269 that is a first electrode as a plasma generating device and a second electrode that is a second electrode are provided inside the buffer chamber. However, the present invention is not limited to this, and the buffer chamber 237 is provided on the side wall in the reaction tube so as to protrude toward the heater 207 and only the gas supply nozzle is provided in the buffer chamber. The first electrode and the second electrode, which are plasma generation units, may be provided outside the reaction tube so as to sandwich the buffer chamber from the outside.
 また、例えば、上述の実施形態や各変形例などは、原料ガスとしてDCSを用いる例について説明した。しかしながら、本発明はこのような態様に限定されない。例えば、原料ガスとしては、DCSの他、ヘキサクロロジシラン(SiCl、略称:HCDS)ガス、モノクロロシラン(SiHCl、略称:MCS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシランすなわちシリコンテトラクロライド(SiCl、略称:STC)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等の無機系ハロシラン原料ガスや、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガス、テトラキスジメチルアミノシラン(Si[N(CH、略称:4DMAS)ガス、ビスジエチルアミノシラン(Si[N(C、略称:BDEAS)ガス、ビスターシャリブチルアミノシラン(SiH[NH(C)]、略称:BTBAS)ガス等のハロゲン基非含有のアミノ系(アミン系)シラン原料ガスを用いることができる。また、原料ガスとしては、モノシラン(SiH、略称:MS)ガス、ジシラン(Si、略称:DS)ガス、トリシラン(Si、略称:TS)ガス等のハロゲン基非含有の無機系シラン原料ガスを用いることができる。 In addition, for example, in the above-described embodiment and each modification, an example in which DCS is used as the source gas has been described. However, the present invention is not limited to such an embodiment. For example, as the source gas, in addition to DCS, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas, monochlorosilane (SiH 3 Cl, abbreviation: MCS) gas, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) Inorganic halosilanes such as gas, trichlorosilane (SiHCl 3 , abbreviation: TCS) gas, tetrachlorosilane, that is, silicon tetrachloride (SiCl 4 , abbreviation: STC) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas, etc. Source gas, trisdimethylaminosilane (Si [N (CH 3 ) 2 ] 3 H, abbreviation: 3DMAS) gas, tetrakisdimethylaminosilane (Si [N (CH 3 ) 2 ] 4 , abbreviation: 4DMAS) gas, bisdiethylaminosilane (Si [N (C 2 H 5) 2] 2 2, abbreviation: BDEAS) Gas, Bicester fischeri butylamino silane (SiH 2 [NH (C 4 H 9)] 2, abbreviated: BTBAS) halogen-free amino based such as a gas (amine) using a silane raw material gas Can do. The source gas contains no halogen group such as monosilane (SiH 4 , abbreviation: MS) gas, disilane (Si 2 H 6 , abbreviation: DS) gas, trisilane (Si 3 H 8 , abbreviation: TS) gas, etc. An inorganic silane source gas can be used.
また例えば、上述の実施形態では、第1の反応ガスとしてNHガスを用いる例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、第1の反応ガスとしては、NHガスの他、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等の窒化水素系ガスや、これらの化合物を含むガス等を用いることができる。また、第1の反応ガスとしては、トリエチルアミン((CN、略称:TEA)ガス、ジエチルアミン((CNH、略称:DEA)ガス、モノエチルアミン(CNH、略称:MEA)ガス等のエチルアミン系ガスや、トリメチルアミン((CHN、略称:TMA)ガス、ジメチルアミン((CHNH、略称:DMA)ガス、モノメチルアミン(CHNH、略称:MMA)ガス等のメチルアミン系ガス等を用いることができる。また、第1の反応ガスとしては、トリメチルヒドラジン((CH(CH)H、略称:TMH)ガス等の有機ヒドラジン系ガス等を用いることができる。 For example, in the above-described embodiment, an example in which NH 3 gas is used as the first reaction gas has been described. However, the present invention is not limited to such an embodiment. For example, as the first reaction gas, in addition to NH 3 gas, hydrogen nitride-based gas such as diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, and N 3 H 8 gas, and these compounds The gas etc. which contain can be used. As the first reaction gas, triethylamine ((C 2 H 5 ) 3 N, abbreviation: TEA) gas, diethylamine ((C 2 H 5 ) 2 NH, abbreviation: DEA) gas, monoethylamine (C 2 H) 5 NH 2 , abbreviation: MEA) gas such as ethylamine gas, trimethylamine ((CH 3 ) 3 N, abbreviation: TMA) gas, dimethylamine ((CH 3 ) 2 NH, abbreviation: DMA) gas, monomethylamine ( A methylamine gas such as CH 3 NH 2 (abbreviation: MMA) gas or the like can be used. As the first reaction gas, an organic hydrazine-based gas such as trimethylhydrazine ((CH 3 ) 2 N 2 (CH 3 ) H, abbreviation: TMH) gas, or the like can be used.
また例えば、上述の実施形態では、第2の反応ガスとしてOガスを用いる例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、第2の反応ガスとしては、Oガスの他、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、オゾン(O)ガス、水素(H)ガス+Oガス、Hガス+Oガス、水蒸気(HO)、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等を用いることができる。 For example, in the above-described embodiment, an example in which O 2 gas is used as the second reaction gas has been described. However, the present invention is not limited to such an embodiment. For example, as the second reaction gas, in addition to O 2 gas, nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, ozone (O 3 ) gas, hydrogen (H 2 ) gas + O 2 gas, H 2 gas + O 3 gas, water vapor (H 2 O), carbon monoxide (CO) gas, carbon dioxide (CO 2 ) gas, or the like can be used.
また例えば、上述の実施形態では、原料ガスとしてDCSを用い、第1の反応ガスとしてNHガスのような窒素(N)含有ガス(窒化ガス)を用いてSiN膜を形成する例、および、SiN膜形成後、酸素(O)ガスのような酸素(O)含有ガス(酸化ガス)を用いてSiON膜を形成する例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、これらのガスの他、もしくは、これらのガスに加え、プロピレン(C)ガス等の炭素(C)含有ガス、三塩化硼素(BCl)ガス等の硼素(B)含有ガス等を用い、例えば、以下に示す成膜シーケンスにより、SiO膜、SiON膜、SiOCN膜、SiOC膜、SiCN膜、SiBN膜、SiBCN膜等を形成することができる。なお、各ガスを流す順番は適宜変更することができる。これらの成膜を行う場合においても、上述の実施形態と同様な処理条件にて成膜を行うことができ、上述の実施形態と同様の効果が得られる。 Also, for example, in the above-described embodiment, an example in which a SiN film is formed using DCS as a source gas and a nitrogen (N) -containing gas (nitriding gas) such as NH 3 gas as a first reaction gas, and An example in which an SiON film is formed using an oxygen (O) -containing gas (oxidizing gas) such as oxygen (O 2 ) gas after the formation of the SiN film has been described. However, the present invention is not limited to such an embodiment. For example, in addition to these gases, or in addition to these gases, carbon (C) -containing gas such as propylene (C 3 H 6 ) gas, boron (B) -containing gas such as boron trichloride (BCl 3 ) gas, etc. For example, a SiO film, a SiON film, a SiOCN film, a SiOC film, a SiCN film, a SiBN film, a SiBCN film, or the like can be formed by the following film forming sequence. In addition, the order which flows each gas can be changed suitably. Even in the case where these films are formed, the film formation can be performed under the same processing conditions as in the above-described embodiment, and the same effect as in the above-described embodiment can be obtained.
(3DMAS→O)×n ⇒ SiO (3DMAS → O 3 ) × n => SiO
(HCDS→NH→O)×n ⇒ SiON (HCDS → NH 3 → O 2 ) × n ⇒ SiON
(HCDS→C→O→NH)×n ⇒ SiOCN (HCDS → C 3 H 6 → O 2 → NH 3 ) × n ⇒ SiOCN
(HCDS→TEA→O)×n ⇒ SiOC (HCDS → TEA → O 2 ) × n ⇒ SiOC
(HCDS→C→NH)×n ⇒ SiCN (HCDS → C 3 H 6 → NH 3 ) × n ⇒ SiCN
(HCDS→BCl→NH)×n ⇒ SiBN (HCDS → BCl 3 → NH 3 ) × n ⇒ SiBN
(HCDS→C→BCl→NH)×n ⇒ SiBCN (HCDS → C 3 H 6 → BCl 3 → NH 3 ) × n ⇒ SiBCN
 また例えば、上述の実施形態では、SiN膜等のシリコン系絶縁膜を形成する例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、本発明は、ウエハ200上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等の金属元素を含む膜、すなわち、金属系膜を形成する場合においても、好適に適用可能である。 For example, in the above-described embodiment, the example in which the silicon-based insulating film such as the SiN film is formed has been described. However, the present invention is not limited to such an embodiment. For example, in the present invention, titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W) is formed on the wafer 200. Even when a film containing a metal element such as a metal film is formed, the present invention can be suitably applied.
 例えば、本発明は、ウエハ200上に、TiN膜、TiO膜、TiON膜、TiOCN膜、TiOC膜、TiCN膜、TiBN膜、TiBCN膜、ZrN膜、ZrO膜、ZrON膜、ZrOCN膜、ZrOC膜、ZrCN膜、ZrBN膜、ZrBCN膜、HfN膜、HfO膜、HfON膜、HfOCN膜、HfOC膜、HfCN膜、HfBN膜、HfBCN膜、TaN膜、TaO膜、TaON膜、TaOCN膜、TaOC膜、TaCN膜、TaBN膜、TaBCN膜、NbN膜、NbO膜、NbON膜、NbOCN膜、NbOC膜、NbCN膜、NbBN膜、NbBCN膜、AlN膜、AlO膜、AlON膜、AlOCN膜、AlOC膜、AlCN膜、AlBN膜、AlBCN膜、MoN膜、MoO膜、MoON膜、MoOCN膜、MoOC膜、MoCN膜、MoBN膜、MoBCN膜、WN膜、WO膜、WON膜、WOCN膜、WOC膜、WCN膜、WBN膜、WBCN膜等を形成する場合にも、好適に適用することが可能となる。またこれらの他、これらのいずれかに他の元素をドープ(添加)した膜、例えば、TiAlN膜、TaAlN膜、TiAlC膜、TaAlC膜、TiSiN膜等を形成する場合にも、好適に適用することが可能となる。 For example, the present invention provides a TiN film, a TiO film, a TiON film, a TiOCN film, a TiOC film, a TiCN film, a TiBN film, a TiBCN film, a ZrN film, a ZrO film, a ZrON film, a ZrOC film, a ZrOC film, ZrCN film, ZrBN film, ZrBCN film, HfN film, HfO film, HfON film, HfOCN film, HfOC film, HfCN film, HfBN film, HfBCN film, TaN film, TaO film, TaON film, TaOCN film, TaOC film, TaCN film , TaBN film, TaBCN film, NbN film, NbO film, NbON film, NbOCN film, NbOC film, NbCN film, NbBN film, NbBCN film, AlN film, AlO film, AlON film, AlOCN film, AlOC film, AlCN film, AlBN Film, AlBCN film, MoN film, MoO film, MoON film, MoOCN film, MoO It can be suitably applied to the formation of films, MoCN films, MoBN films, MoBCN films, WN films, WO films, WON films, WOCN films, WOC films, WCN films, WBN films, WBCN films, etc. Become. In addition to these, the present invention is also suitably applied to the case where a film doped (added) with any of these elements, such as a TiAlN film, a TaAlN film, a TiAlC film, a TaAlC film, or a TiSiN film is formed. Is possible.
 金属系膜を形成する場合、原料ガスとして、例えば、チタニウムテトラクロライド(TiCl)ガス、チタニウムテトラフルオライド(TiF)ガス、ジルコニウムテトラクロライド(ZrCl)ガス、ジルコニウムテトラフルオライド(ZrF)ガス、ハフニウムテトラクロライド(HfCl)ガス、ハフニウムテトラフルオライド(HfF)ガス、タンタルペンタクロライド(TaCl)ガス、タンタルペンタフルオライド(TaF)ガス、ニオビウムペンタクロライド(NbCl)ガス、ニオビウムペンタフルオライド(NbF)ガス、アルミニウムトリクロライド(AlCl)ガス、アルミニウムトリフルオライド(AlF)ガス、モリブデンペンタクロライド(MoCl)ガス、モリブデンペンタフルオライド(MoF)ガス、タングステンヘキサクロライド(WCl)ガス、タングステンヘキサフルオライド(WF)ガス等の金属元素およびハロゲン元素を含む無機金属原料ガスを用いることができる。また、原料ガスとして、例えば、トリメチルアルミニウム(Al(CH、略称:TMA)ガス等の金属元素および炭素を含む有機金属原料ガスを用いることもできる。第1の反応ガス、第2の反応ガスとしては、上述の実施形態と同様なガスを用いることができる。 When forming a metal film, for example, titanium tetrachloride (TiCl 4 ) gas, titanium tetrafluoride (TiF 4 ) gas, zirconium tetrachloride (ZrCl 4 ) gas, zirconium tetrafluoride (ZrF 4 ) are used as source gases. Gas, hafnium tetrachloride (HfCl 4 ) gas, hafnium tetrafluoride (HfF 4 ) gas, tantalum pentachloride (TaCl 5 ) gas, tantalum pentafluoride (TaF 5 ) gas, niobium pentachloride (NbCl 5 ) gas, niobium pentafluoride (NbF 5) gas, aluminum trichloride (AlCl 3) gas, aluminum trifluoride (AlF 3) gas, molybdenum pentachloride (MoCl 5) gas, Mo It can be used Bed Den pentafluoride (MoF 5) Gas, tungsten hexachloride (WCl 6) gas, a tungsten hexafluoride (WF 6) inorganic metal source gas containing a metal element and a halogen element such as a gas. As the source gas, for example, an organic metal source gas containing carbon and a metal element such as trimethylaluminum (Al (CH 3 ) 3 , abbreviation: TMA) gas can be used. As the first reaction gas and the second reaction gas, the same gas as that of the above-described embodiment can be used.
 例えば、以下に示す成膜シーケンスにより、ウエハ200上に、TiN膜、TiO膜、TiON膜、TiCN膜、TiAlC膜、TiAlN、TiSiN膜等を形成することができる。 For example, a TiN film, a TiO film, a TiON film, a TiCN film, a TiAlC film, a TiAlN film, a TiSiN film, or the like can be formed on the wafer 200 by a film formation sequence described below.
 (TiCl→NH)×n ⇒ TiN (TiCl 4 → NH 3 ) × n ⇒ TiN
 (TiCl→O)×n ⇒ TiO (TiCl 4 → O 2 ) × n ⇒ TiO
 (TiCl→NH→O)×n ⇒ TiON (TiCl 4 → NH 3 → O 2 ) × n ⇒ TiON
 (TiCl→C→NH)×n ⇒ TiCN (TiCl 4 → C 3 H 6 → NH 3 ) × n ⇒ TiCN
 (TiCl→TMA)×n ⇒ TiAlC (TiCl 4 → TMA) × n ⇒ TiAlC
 (TiCl→TMA→NH)×n ⇒ TiAlN (TiCl 4 → TMA → NH 3 ) × n ⇒ TiAlN
 (TiCl→HCDS→NH)×n ⇒ TiSiN (TiCl 4 → HCDS → NH 3 ) × n ⇒ TiSiN
 なお、各ガスを流す順番は適宜変更することができる。これらの成膜を行う場合においても、上述の実施形態と同様な処理条件にて成膜を行うことができ、上述の実施形態と同様の効果が得られる。 In addition, the order in which each gas flows can be changed as appropriate. Even in the case where these films are formed, the film formation can be performed under the same processing conditions as in the above-described embodiment, and the same effect as in the above-described embodiment can be obtained.
 すなわち、本発明は、半導体元素や金属元素等の所定元素を含む膜を形成する場合に好適に適用することができる。 That is, the present invention can be suitably applied when forming a film containing a predetermined element such as a semiconductor element or a metal element.
 以上述べたように、本発明は、プラズマを用いた基板処理において均一な膜厚を得ることができる技術を提供することができる。 As described above, the present invention can provide a technique capable of obtaining a uniform film thickness in substrate processing using plasma.
<本発明の好ましい態様>
 以下、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.
(付記1)
本発明の一態様によれば、
基板を処理する処理室を形成する反応管と、
前記処理室内に設けられ、前記基板の表面に所定の膜を形成する原料ガスと反応ガスとを前記処理室内に供給するガス供給部と、
前記ガス供給部より供給された前記反応ガスを励起するプラズマ生成装置と、
前記プラズマ生成装置の外側に設けられ、前記プラズマ生成装置によって励起された前記反応ガスの供給方向と同じ方向に磁場を生成する磁場生成装置と、
を有する基板処理装置が提供される。
(Appendix 1)
According to one aspect of the invention,
A reaction tube forming a processing chamber for processing a substrate;
A gas supply unit which is provided in the processing chamber and supplies a source gas and a reaction gas which form a predetermined film on the surface of the substrate into the processing chamber;
A plasma generating apparatus for exciting the reaction gas supplied from the gas supply unit;
A magnetic field generation device that is provided outside the plasma generation device and generates a magnetic field in the same direction as a supply direction of the reaction gas excited by the plasma generation device;
A substrate processing apparatus is provided.
(付記2)
前記磁場は、基板表面と平行となる方向に前記磁場生成装置によって生成される付記1に記載の基板処理装置が提供される。
(Appendix 2)
The substrate processing apparatus according to appendix 1, wherein the magnetic field is generated by the magnetic field generation apparatus in a direction parallel to the substrate surface.
(付記3)
前記磁場生成装置は、前記反応管を挟みこむように対向して設置される付記1または2に記載の基板処理装置が提供される。
(Appendix 3)
The substrate processing apparatus according to Supplementary Note 1 or 2, wherein the magnetic field generation device is installed to face each other so as to sandwich the reaction tube.
(付記4)
 前記磁場は、前記プラズマ生成装置を覆うように生成される付記1から3のいずれか1つに記載の基板処理装置が提供される。
(Appendix 4)
The substrate processing apparatus according to any one of supplementary notes 1 to 3, wherein the magnetic field is generated so as to cover the plasma generation apparatus.
(付記5)
 前記磁場生成装置によって生成される磁場は、前記反応管から前記基板に向かう方向に生成される付記1から4のいずれか1つに記載の基板処理装置が提供される。
(Appendix 5)
The substrate processing apparatus according to any one of appendices 1 to 4, wherein the magnetic field generated by the magnetic field generation apparatus is generated in a direction from the reaction tube toward the substrate.
(付記6)
前記基板処理装置は、前記反応管の外側に前記処理室内を加熱する加熱装置を更に備え、
 前記磁場生成装置は、前記反応管と前記加熱装置との間に設けられる付記1から5のいずれか1つに記載の基板処理装置が提供される。
(Appendix 6)
The substrate processing apparatus further includes a heating device that heats the processing chamber outside the reaction tube,
6. The substrate processing apparatus according to any one of appendices 1 to 5, wherein the magnetic field generation device is provided between the reaction tube and the heating device.
(付記7)
 前記磁場生成装置は、内部に磁場を生成する電磁コイルと、前記電磁コイルと接続されて前記電磁コイルに所定の強さの電流を供給する電源とを有する付記1から6のいずれか1つに記載の基板処理装置が提供される。
(Appendix 7)
The magnetic field generation device according to any one of supplementary notes 1 to 6, further comprising: an electromagnetic coil that generates a magnetic field therein; and a power source that is connected to the electromagnetic coil and supplies a current of a predetermined strength to the electromagnetic coil. The described substrate processing apparatus is provided.
(付記8)
 前記磁場生成装置は、永久磁石である付記1から6のいずれか1つに記載の基板処理装置が提供される。
(Appendix 8)
The substrate processing apparatus according to any one of appendices 1 to 6, wherein the magnetic field generation device is a permanent magnet.
(付記9)
 前記磁場生成部の周囲には、前記磁場生成部が磁場を生成することによって生じる熱を冷却するための冷却装置が設けられている付記1から8のいずれか1つに記載の基板処理装置が提供される。
(Appendix 9)
The substrate processing apparatus according to any one of appendices 1 to 8, wherein a cooling device for cooling heat generated by the magnetic field generation unit generating a magnetic field is provided around the magnetic field generation unit. Provided.
(付記10)
 前記反応管は、前記プラズマ生成装置を内部に配置するバッファ室を更に備え、
 前記磁場は、前記バッファ室を貫通する向きに生成される付記1から9のいずれか1つに記載の基板処理装置が提供される。
(Appendix 10)
The reaction tube further includes a buffer chamber in which the plasma generation device is disposed,
The substrate processing apparatus according to any one of appendices 1 to 9, wherein the magnetic field is generated in a direction penetrating the buffer chamber.
(付記11)
 前記バッファ室は前記励起された反応ガスを供給するプラズマ供給口をさらに備え、
 前記プラズマ供給口と前記基板の中心部と前記磁場生成装置のそれぞれが同一直線に並ぶように設置される付記10に記載の基板処理装置が提供される。
(Appendix 11)
The buffer chamber further includes a plasma supply port for supplying the excited reaction gas,
The substrate processing apparatus according to appendix 10, wherein the plasma supply port, the central portion of the substrate, and the magnetic field generation device are installed in the same straight line.
(付記12)
 前記基板処理装置は、少なくとも前記プラズマ生成装置が動作するタイミングを包含するように前記磁場生成装置が動作するように前記プラズマ生成装置と前記磁場生成装置とを制御する制御部を更に備えた付記1から11のいずれか1つに記載の基板処理装置が提供される。
(Appendix 12)
The substrate processing apparatus further includes a controller that controls the plasma generation apparatus and the magnetic field generation apparatus so that the magnetic field generation apparatus operates to include at least a timing at which the plasma generation apparatus operates. To the substrate processing apparatus according to any one of 11 to 11.
(付記13)
 本発明の他の態様によれば、
処理室内に搬送された基板に対して供給された反応ガスを励起して前記反応ガスのプラズマを生成する反応ガス供給工程と、
前記基板に対して原料ガスを供給する原料ガス供給工程と、
前記励起された反応ガスの供給方向と同じ方向に磁場を生成する磁場生成工程と、
 を有する半導体装置の製造方法、または、基板処理方法が提供される。
(Appendix 13)
According to another aspect of the invention,
A reaction gas supply step of generating a plasma of the reaction gas by exciting the reaction gas supplied to the substrate conveyed into the processing chamber;
A source gas supply step for supplying source gas to the substrate;
A magnetic field generation step of generating a magnetic field in the same direction as the supply direction of the excited reaction gas;
A method for manufacturing a semiconductor device or a substrate processing method is provided.
(付記14)
付記13に記載の方法であって、少なくとも前記プラズマ生成装置と前記磁場生成装置とを連動して動作させるように制御する。
(Appendix 14)
The method according to attachment 13, wherein at least the plasma generation device and the magnetic field generation device are controlled to operate in conjunction with each other.
(付記15)
 本発明の他の態様によれば、
処理室内に搬送された基板に対して供給された反応ガスを励起して前記反応ガスのプラズマを生成する反応ガス供給手順と、
前記基板に対して原料ガスを供給する原料ガス供給手順と、
前記励起された反応ガスの供給方向と同じ方向に磁場を生成する磁場生成手順と、
をコンピュータに実行させるプログラム、または、当該プログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
(Appendix 15)
According to another aspect of the invention,
A reaction gas supply procedure for generating a plasma of the reaction gas by exciting the reaction gas supplied to the substrate conveyed into the processing chamber;
A source gas supply procedure for supplying source gas to the substrate;
A magnetic field generation procedure for generating a magnetic field in the same direction as the supply direction of the excited reaction gas;
Or a computer-readable recording medium on which the program is recorded is provided.
121・・・コントローラ(制御部)、
200・・・ウエハ(基板)、
201・・・処理室、
202・・・処理炉、
203・・・反応管、
207・・・ヒータ、
231・・・排気管、
233a、233b・・・ノズル、
232a、232b、232c、232d、232e、232f・・・ガス供給管、
237・・・バッファ室、
269・・・第1の棒状電極、
270・・・第2の棒状電極、
272・・・整合器、
273・・・高周波電源、
275・・・電極保護管、
280、281・・・磁気コイル、
280a、280b、281a、281b・・・導線
282、283・・・可変式直流電源
121... Controller (control unit),
200: Wafer (substrate),
201 ... processing chamber,
202 ... Processing furnace,
203 ... reaction tube,
207 ... heater,
231 ... exhaust pipe,
233a, 233b ... nozzles,
232a, 232b, 232c, 232d, 232e, 232f ... gas supply pipes,
237: Buffer room,
269 ... first rod-shaped electrode,
270 ... second rod-shaped electrode,
272: Matching device,
273 ... high frequency power supply,
275 ... Electrode protective tube,
280, 281 ... Magnetic coil,
280a, 280b, 281a, 281b ... Conductor wires 282, 283 ... Variable DC power supply

Claims (13)

  1. 基板を処理する処理室を形成する反応管と、
    前記処理室内に設けられ、前記基板の表面に所定の膜を形成する原料ガスと反応ガスとを前記処理室内に供給するガス供給部と、
    前記ガス供給部より供給された前記反応ガスを励起するプラズマ生成装置と、
    前記プラズマ生成装置の外側に設けられ、前記プラズマ生成装置によって励起された前記反応ガスの供給方向と同じ方向に磁場を生成する磁場生成装置と、
    を有する基板処理装置。
    A reaction tube forming a processing chamber for processing a substrate;
    A gas supply unit which is provided in the processing chamber and supplies a source gas and a reaction gas which form a predetermined film on the surface of the substrate into the processing chamber;
    A plasma generating apparatus for exciting the reaction gas supplied from the gas supply unit;
    A magnetic field generation device that is provided outside the plasma generation device and generates a magnetic field in the same direction as a supply direction of the reaction gas excited by the plasma generation device;
    A substrate processing apparatus.
  2. 前記磁場は、基板表面と平行となる方向に前記磁場生成装置によって生成される請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the magnetic field is generated by the magnetic field generation device in a direction parallel to the substrate surface.
  3. 前記磁場生成装置は、前記反応管を挟みこむように対向して設置される請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the magnetic field generation device is installed so as to face the reaction tube.
  4.  前記磁場は、前記プラズマ生成装置を覆うように生成される請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the magnetic field is generated so as to cover the plasma generation apparatus.
  5. 前記磁場生成部の周囲には、前記磁場生成部が磁場を生成することによって生じる熱を冷却するための冷却装置が設けられている請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein a cooling device for cooling heat generated by the magnetic field generation unit generating a magnetic field is provided around the magnetic field generation unit.
  6.  前記反応管は、前記プラズマ生成装置を内部に配置するバッファ室を更に備え、
     前記磁場は、前記バッファ室を貫通する向きに生成される請求項1に記載の基板処理装置。
    The reaction tube further includes a buffer chamber in which the plasma generation device is disposed,
    The substrate processing apparatus according to claim 1, wherein the magnetic field is generated in a direction penetrating the buffer chamber.
  7.  前記バッファ室は前記励起された反応ガスを供給するプラズマ供給口をさらに備え、
     前記プラズマ供給口と前記基板の中心部と前記磁場生成装置のそれぞれが同一直線上に並ぶように設置される請求項6に記載の基板処理装置。
    The buffer chamber further includes a plasma supply port for supplying the excited reaction gas,
    The substrate processing apparatus according to claim 6, wherein the plasma supply port, the central portion of the substrate, and the magnetic field generation device are installed so as to be aligned on the same straight line.
  8.  前記基板処理装置は、少なくとも前記プラズマ生成装置が動作するタイミングを包含するように前記磁場生成装置が動作するように前記プラズマ生成装置と前記磁場生成装置とを制御する制御部を更に備えた請求項1に記載の基板処理装置。 The substrate processing apparatus further includes a control unit that controls the plasma generation apparatus and the magnetic field generation apparatus so that the magnetic field generation apparatus operates to include at least a timing at which the plasma generation apparatus operates. 2. The substrate processing apparatus according to 1.
  9.  前記基板処理装置はさらに、前記反応管内部を加熱する加熱装置を備え、
     前記磁場生成装置は、前記加熱装置の外側に設けられる請求項1に記載の基板処理装置。
    The substrate processing apparatus further includes a heating device for heating the inside of the reaction tube,
    The substrate processing apparatus according to claim 1, wherein the magnetic field generation device is provided outside the heating device.
  10.  処理室内に搬送された基板に対して供給された反応ガスを励起して前記反応ガスのプラズマを生成する反応ガス供給工程と、
    前記基板に対して原料ガスを供給する原料ガス供給工程と、
    前記励起された反応ガスの供給方向と同じ方向に磁場を生成する磁場生成工程と、
    を有する半導体装置の製造方法。
    A reaction gas supply step of generating a plasma of the reaction gas by exciting the reaction gas supplied to the substrate conveyed into the processing chamber;
    A source gas supply step for supplying source gas to the substrate;
    A magnetic field generation step of generating a magnetic field in the same direction as the supply direction of the excited reaction gas;
    A method for manufacturing a semiconductor device comprising:
  11. 前記磁場は、基板表面と平行となる方向に生成される請求項10に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 10, wherein the magnetic field is generated in a direction parallel to the substrate surface.
  12.  前記反応ガス供給工程は、前記反応ガスを励起するプラズマ生成装置によって前記反応ガスのプラズマを生成するプラズマ生成工程をさらに備え、
    前記磁場生成工程は、前記プラズマ生成工程を包含するタイミングで実施される請求項10に記載の半導体装置の製造方法。
    The reaction gas supply step further includes a plasma generation step of generating plasma of the reaction gas by a plasma generation device that excites the reaction gas,
    The method of manufacturing a semiconductor device according to claim 10, wherein the magnetic field generation step is performed at a timing including the plasma generation step.
  13. 処理室内に搬送された基板に対して供給された反応ガスを励起して前記反応ガスのプラズマを生成する反応ガス供給手順と、
    前記基板に対して原料ガスを供給する原料ガス供給手順と、
    前記励起された反応ガスの供給方向と同じ方向に磁場を生成する磁場生成手順と、
    をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
    A reaction gas supply procedure for generating a plasma of the reaction gas by exciting the reaction gas supplied to the substrate conveyed into the processing chamber;
    A source gas supply procedure for supplying source gas to the substrate;
    A magnetic field generation procedure for generating a magnetic field in the same direction as the supply direction of the excited reaction gas;
    The computer-readable recording medium which recorded the program which makes a computer perform.
PCT/JP2015/057676 2015-03-16 2015-03-16 Substrate treating device, method for manufacturing semiconductor, and recording medium WO2016147296A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057676 WO2016147296A1 (en) 2015-03-16 2015-03-16 Substrate treating device, method for manufacturing semiconductor, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057676 WO2016147296A1 (en) 2015-03-16 2015-03-16 Substrate treating device, method for manufacturing semiconductor, and recording medium

Publications (1)

Publication Number Publication Date
WO2016147296A1 true WO2016147296A1 (en) 2016-09-22

Family

ID=56919747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057676 WO2016147296A1 (en) 2015-03-16 2015-03-16 Substrate treating device, method for manufacturing semiconductor, and recording medium

Country Status (1)

Country Link
WO (1) WO2016147296A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054855A1 (en) * 2020-09-10 2022-03-17 株式会社Kokusai Electric Substrate processing device, semiconductor device manufacturing method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794478A (en) * 1993-09-24 1995-04-07 Toshiba Corp Substrate processing device using plasma
JP2000054145A (en) * 1998-08-04 2000-02-22 Komatsu Ltd Surface treating device
JP2001351908A (en) * 2000-06-06 2001-12-21 Hitachi Kokusai Electric Inc Semiconductor manufacturing device and method
WO2006077735A1 (en) * 2004-12-28 2006-07-27 Hitachi Kokusai Electric Inc. Substrate processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794478A (en) * 1993-09-24 1995-04-07 Toshiba Corp Substrate processing device using plasma
JP2000054145A (en) * 1998-08-04 2000-02-22 Komatsu Ltd Surface treating device
JP2001351908A (en) * 2000-06-06 2001-12-21 Hitachi Kokusai Electric Inc Semiconductor manufacturing device and method
WO2006077735A1 (en) * 2004-12-28 2006-07-27 Hitachi Kokusai Electric Inc. Substrate processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054855A1 (en) * 2020-09-10 2022-03-17 株式会社Kokusai Electric Substrate processing device, semiconductor device manufacturing method, and program
TWI798819B (en) * 2020-09-10 2023-04-11 日商國際電氣股份有限公司 Substrate processing apparatus, method and program for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US10229829B2 (en) Method for manufacturing semiconductor device, substrate-processing apparatus, and recording medium
KR102241665B1 (en) Reaction tube, substrate processing device and semiconductor device manufacturing method
JP6042656B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
KR102372555B1 (en) Substrate processing apparatus, heater and method of manufacturing semiconductor device
JP6030378B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
KR102242146B1 (en) Substrate processing apparatus, electrode for substrate processing apparatus, and method of manufacturing semiconductor device
WO2012090738A1 (en) Method for manufacturing semiconductor device, substrate treatment method, and substrate treatment device
JP2013077805A (en) Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and program
JP2014216342A (en) Semiconductor device manufacturing method, substrate processing apparatus and program
US10796934B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device and electrode fixing part
JP6091940B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
KR20170108831A (en) Semiconductor device manufacturing method, substrate processing apparatus, recording medium and program
US11072859B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
US20210202213A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and plasma generator
US20230197408A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and plasma generating apparatus
JP5646984B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
WO2016147296A1 (en) Substrate treating device, method for manufacturing semiconductor, and recording medium
JP2017034067A (en) Substrate processing apparatus and manufacturing method for semiconductor device using the same, and program for use therein
JP2013187324A (en) Method for manufacturing semiconductor device, substrate processing method, and substrate processing device
US20230207261A1 (en) Substrate processing apparatus, plasma generating apparatus, and method of manufacturing semiconductor device
JP7457818B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, program, auxiliary plate, and substrate holder
WO2022201242A1 (en) Electrodes, substrate treatment device, method for manufacturing semiconductor device, and program
TW202234553A (en) Substrate processing apparatus, plasma generating device, method of manufacturing semiconductor device, and substrate processing method
CN117693805A (en) Substrate processing apparatus, plasma generating apparatus, method for manufacturing semiconductor device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP