WO2016147294A1 - Resonance-type power transmission system and transmission device - Google Patents

Resonance-type power transmission system and transmission device Download PDF

Info

Publication number
WO2016147294A1
WO2016147294A1 PCT/JP2015/057667 JP2015057667W WO2016147294A1 WO 2016147294 A1 WO2016147294 A1 WO 2016147294A1 JP 2015057667 W JP2015057667 W JP 2015057667W WO 2016147294 A1 WO2016147294 A1 WO 2016147294A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
transmission
power
resonant
switch
Prior art date
Application number
PCT/JP2015/057667
Other languages
French (fr)
Japanese (ja)
Inventor
阿久澤 好幸
有基 伊藤
裕志 松盛
Original Assignee
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機エンジニアリング株式会社 filed Critical 三菱電機エンジニアリング株式会社
Priority to JP2015532229A priority Critical patent/JP5828994B1/en
Priority to PCT/JP2015/057667 priority patent/WO2016147294A1/en
Publication of WO2016147294A1 publication Critical patent/WO2016147294A1/en

Links

Images

Definitions

  • the present invention relates to a resonant power transmission system and a transmission device that perform power transmission between a transmission device having a plurality of transmission antennas and a reception device having a reception antenna.
  • the horizontal power transmission range can be expanded with high efficiency.
  • the receiving antenna is different from the size of the transmitting antenna, there is a problem that a position (null point) where power cannot be transmitted occurs and transmission efficiency is lowered.
  • a null point is generated and transmission efficiency is reduced.
  • the coupling of each transmitting antenna changes. For this reason, this also causes a null point and lowers transmission efficiency.
  • This invention was made in order to solve the above problems, and in a resonant power transmission system that performs power transmission between a transmission device having a plurality of transmission antennas and a reception device having a reception antenna, It is an object of the present invention to provide a resonant power transmission system and a transmission device that can eliminate the occurrence of a null point and prevent a decrease in transmission efficiency regardless of the size, number, and position of reception antennas that approach the transmission antenna.
  • a resonant power transmission system is a resonant power transmission system that performs power transmission between a transmission device having a plurality of transmission antennas and a reception device having a reception antenna.
  • a transmission power source that outputs power matched to the resonance frequency of the transmission antenna, a resonance antenna that is disposed opposite to at least one of the transmission antennas and resonates at the same frequency as the resonance frequency of the transmission antenna, and a resonance antenna
  • the dummy load connected to the supply line, the switch that can be switched to connect or disconnect the supply line, and the magnetic flux pattern when the supply line is connected and disconnected by the switch is linked to the switching state of the switch
  • a storage unit that stores the received position, an antenna position acquisition unit that acquires a position of the reception antenna approaching the transmission antenna, From the position of the receiving antenna obtained by antenna position acquisition unit, based on the information stored in the storage unit, in which a switch control section for switching the switch.
  • the present invention since it is configured as described above, in a resonant power transmission system that performs power transmission between a transmission device having a plurality of transmission antennas and a reception device having a reception antenna, reception close to the transmission antenna Regardless of the size, number, and position of the antennas, it is possible to eliminate the occurrence of null points and prevent a decrease in transmission efficiency.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram explaining the operating principle of the resonance type electric power transmission system which concerns on Embodiment 1 of this invention, (a) It is a figure which shows the case of a conventional structure, (b) The figure which shows the case of the structure of this invention It is.
  • FIG. 1 It is a flowchart which shows the switch switching operation example by the resonance type electric power transmission system which concerns on Embodiment 1 of this invention. It is a figure which shows an example of the effect by the resonance type electric power transmission system which concerns on Embodiment 1 of this invention, (a) It is a schematic diagram which shows the example of a structure of a resonance type electric power transmission system, (b) The structure of (a) It is a figure which shows the transmission efficiency in. It is a flowchart which shows the example of a position estimation operation
  • FIG. 8 is a diagram illustrating a signal change example when the reception antenna approaches the transmission antenna in the position estimation operation illustrated in FIG. 7. It is a flowchart which shows the example of a position estimation operation
  • FIG. 10 is a diagram illustrating a signal change example when the reception antenna approaches the transmission antenna in the position estimation operation illustrated in FIG. 9.
  • 5 is a list showing position estimation methods applicable to detected parameters in the resonant power transmission system according to Embodiment 1 of the present invention. It is a figure which shows another structural example of the resonance type electric power transmission system which concerns on Embodiment 1 of this invention.
  • FIG. 1 and 2 are diagrams showing a configuration example of a resonant power transmission system according to Embodiment 1 of the present invention.
  • the resonant power transmission system includes a transmission device 1 having a plurality of transmission antennas 105 and a reception device 2 having a reception antenna 201.
  • This resonant power transmission system performs power transmission between the transmission antenna 105 and the reception antenna 201 when the reception antenna 201 approaches the transmission antenna 105.
  • the transmission apparatus 1 includes a primary power source 101, a transmission power source 102, a transmission antenna unit 103, and a control unit 104 as shown in FIGS.
  • the transmission antenna unit 103 includes a plurality of transmission antennas 105, a resonance antenna 106, a dummy load 107, and a switch 108. In FIG. 2, only the transmitting antenna 105 and the resonant antenna 106 are shown.
  • the primary power supply 101 outputs DC or AC power.
  • the transmission power source 102 converts DC power or AC power (input power) from the primary power source 101 into power (high frequency power) that matches the resonance frequency of the transmission antenna 105 and outputs the power. Further, the transmission power source 102 has a function (parameter detection unit) for detecting a parameter related to the transmission power source 102 that changes when the reception antenna 201 approaches the transmission antenna 105 by its own protection function. Details of the transmission power supply 102 will be described later. In the example of FIG. 1, one transmission power source 102 is provided for a plurality of transmission antennas 105 and the output from the transmission power source 102 is output to each transmission antenna 105 in parallel. A plurality of them may be provided.
  • the transmission antenna 105 resonates at the same frequency as the frequency of the high frequency power from the transmission power source 102.
  • the size, shape, number, and arrangement position of the transmission antenna 105 can be arbitrarily set.
  • the example of FIGS. 1 and 2 shows a case where three transmission antennas 105 are arranged in an array.
  • the resonant antenna 106 is an antenna that is disposed opposite to at least one of the transmitting antennas 105 and resonates at the same frequency as the resonant frequency of the transmitting antenna 105.
  • the shape of the resonant antenna 106 can be arbitrarily set.
  • the arrangement position of the resonant antenna 106 is set according to the size of the receiving antenna 201. In the example of FIGS. 1 and 2, a case where one resonant antenna 106 is disposed opposite to the rightmost transmitting antenna 105 is shown.
  • the dummy load 107 is connected to the supply line of the resonant antenna 106.
  • the dummy load 107 is an element having some impedance, and examples thereof include an inductor, a capacitor, and a resistor.
  • the dummy load 107 may be a fixed load or may be variable discretely or continuously.
  • the switch 108 can be switched so as to connect or disconnect the supply line of the resonant antenna 106.
  • the resonant antenna 106 is turned on and the transmission mode is set.
  • the resonant antenna 106 is turned off and enters a non-transmission mode. Therefore, since the resonance frequency of the resonance antenna 106 is greatly different between the ON state and the OFF state, the surrounding transmission antennas 105 are not affected.
  • a relay, a photocoupler, or a transistor can be used as the switch 108.
  • the control unit 104 performs switching control of the switch 108.
  • the control unit 104 has a function (storage unit) for storing a magnetic flux pattern when the supply line is connected and disconnected by the switch 108 in association with the switching state of the switch 108.
  • the control unit 104 has a function (antenna position acquisition unit) for acquiring the position of the reception antenna 201 approaching the transmission antenna 105. In the following, it is assumed that the position of the receiving antenna 201 is estimated based on the parameter detected by the transmission power source 102.
  • the control unit 104 has a function (switch control unit) for switching the switch 108 based on the stored information from the acquired position of the receiving antenna 201.
  • the control unit 104 is executed by program processing using a CPU based on software.
  • the receiving device 2 includes a receiving antenna 201 and a rectifying circuit 202 as shown in FIGS. In FIG. 2, only the receiving antenna 201 is shown.
  • the reception antenna 201 resonates at the same frequency as the resonance frequency of the transmission antenna 105. Thereby, high frequency power is received from the transmission antenna 105.
  • the size and shape of the receiving antenna 201 can be arbitrarily set.
  • the rectifier circuit 202 converts high frequency power (AC power) received by the receiving antenna 201 into DC power.
  • the transmission power supply 102 includes an inverter circuit 1021, an input detection unit 1022, a power supply parameter detection unit 1023, an output detection unit 1024, and a matching circuit 1025.
  • the inverter circuit 1021 converts input power from the primary power supply 101 into high-frequency power to be output to each transmission antenna 105.
  • the input detection unit 1022 detects a parameter related to power input from the primary power supply 101 to the transmission power supply 102. At this time, the input detection unit 1022 detects at least one of the input current and the input voltage of the transmission power supply 102.
  • the power parameter detection unit 1023 detects a parameter related to the inverter circuit 1021 inside the transmission power source 102.
  • the power supply parameter detection unit 1023 for example, the resonance voltage of the inverter circuit 1021, the resonance current, the phase of the resonance voltage and the resonance current, the reflected power, the voltage Vds between the drain and the source of the switching element in the inverter circuit 1021 or the current
  • Ids and heat generation of an element FET (Field Effect Transistor), capacitor, inductor, etc.
  • the output detection unit 1024 detects a parameter related to power output from the transmission power supply 102 (high-frequency power converted by the inverter circuit 1021). At this time, the output detection unit 1024 detects at least one of the output voltage or output current (phase, amplitude, effective value, frequency) from the inverter circuit 1021, transmitted power, reflected power, and the like.
  • the input detection unit 1022, the power supply parameter detection unit 1023, and the output detection unit 1024 constitute a parameter detection unit that detects a parameter related to the transmission power supply 102 that changes when the reception antenna 201 approaches the transmission antenna 105.
  • the function of the parameter detection unit can be realized by combining the protection function (function for preventing the destruction of the power supply) that the transmission power supply 102 normally has, and no dedicated circuit is required.
  • FIG. 3 shows a case where all of the input detection unit 1022, the power supply parameter detection unit 1023, and the output detection unit 1024 are included as parameter detection units. However, at least one of these detection units 1022 to 1024 is shown. What is necessary is just to have it above. Note that the position estimation accuracy can be improved by detecting a plurality of parameters.
  • the matching circuit 1025 matches impedances of the transmission power source 102 and the transmission antenna 105.
  • FIG. 4 two transmitting antennas 105a and 105b are provided to supply power to each.
  • the receiving antenna 201 having a smaller size than the transmitting antennas 105a and 105b is brought close to the coil wire of the transmitting antenna 105a.
  • the arrow shown in FIG. 4 has shown the flow of magnetic flux.
  • FIG. 4A in the case of the conventional configuration, magnetic flux cancellation occurs between the transmission antennas 105a and 105b. As a result, no magnetic flux is linked to the small receiving antenna 201, and power cannot be transmitted to the receiving antenna 201. That is, a null point is generated.
  • FIG. 4B by providing the resonance antenna 106, the magnetic flux can be attracted to the resonance antenna 106, and the cancellation of the magnetic flux between the transmission antennas 105a and 105b can be reduced. it can. As a result, even if the receiving antenna 201 has a small size, the magnetic flux is interlinked, so that power can be transmitted to the receiving antenna 201. That is, the null point can be eliminated.
  • the control unit 104 stores in advance the magnetic flux pattern when the supply line of the resonant antenna 106 is connected and disconnected by the switch 108 in association with the switching state of the switch 108.
  • the control unit 104 acquires the position of the reception antenna 201 as shown in FIG. 5 (step ST501). The operation of acquiring the position of the receiving antenna 201 will be described later.
  • control unit 104 selects an optimum pattern from the stored magnetic flux patterns based on the estimated position of the receiving antenna 201 (step ST502). At this time, a magnetic flux pattern in which the estimated position of the receiving antenna 201 does not become a null point is selected.
  • control unit 104 performs switching control of the switch 108 according to the switching state of the switch 108 associated with the corresponding pattern stored so that the selected magnetic flux pattern is obtained (step ST503).
  • FIG. 6 is a diagram showing an example of the effect of the present invention.
  • three transmitting antennas 105a to 105c are provided to supply power to each of them, and the resonant antenna 106 is disposed opposite to the transmitting antennas 105b and 105c.
  • the receiving antenna 201 having a smaller size than the transmitting antennas 105a to 105c is brought close to the coil wire of the transmitting antenna 105a.
  • the resonant antenna 106 when the resonant antenna 106 is in the OFF state (the same state as the conventional configuration), as shown by the broken line in FIG. 6B, the null point N that cannot transmit power at the resonant frequency f 0 is It has occurred.
  • the resonance antenna 106 when the resonance antenna 106 is turned on, the transmission efficiency at the resonance frequency f 0 is improved and the null point N is eliminated as shown by the solid line in FIG. Recognize.
  • the present invention is not limited to this, and the same applies even when a plurality of reception antennas 201 approach the transmission antenna 105. . That is, in the conventional configuration, when a plurality of receiving antennas 201 are approaching, a null point may occur even when the position is not on the coil wire. On the other hand, in the present invention, by appropriately switching the magnetic field pattern using the resonant antenna 106, even when a plurality of receiving antennas 201 are approaching, the occurrence of null points is eliminated, and the transmission efficiency is reduced. Can be prevented.
  • FIG. 8 shows the case where ten transmission antennas 105 are provided.
  • the transmitting apparatus 1 turns on all the transmitting antennas 105 simultaneously (step ST701).
  • all the transmitting antennas 105 may be steadily turned on, or may be turned on in a pulsed manner at an arbitrary cycle.
  • the output detection unit 1024 detects a parameter related to the transmission power source 102, and the control unit 104 determines whether there is a change (reaction) in the parameter (step ST702).
  • 8A shows the case where the output power is detected by the output detection unit 1024 for the first transmission antenna 105
  • FIG. 8B shows the case for the tenth transmission antenna 105.
  • the sequence returns to step ST702 again to enter a standby state.
  • the control unit 104 estimates the position of the receiving antenna 201 (step ST703). That is, in FIG. 8B, since the reflected power is equal to or lower than the detection threshold ⁇ 1 at time t2, it can be determined that the receiving antenna 201 is approaching the tenth transmitting antenna 105.
  • the position estimation accuracy can be improved by detecting a plurality of parameters by combining at least one of the input detection unit 1022 and the power supply parameter detection unit 1023.
  • FIG. 10 shows the case where ten transmission antennas 105 are provided.
  • transmission apparatus 1 sequentially turns on transmission antennas 105 one by one (step ST901). Note that the switching order at this time can be set as appropriate.
  • the parameter detection unit detects a parameter related to the transmission power supply 102, and the control unit 104 determines whether there is a change in the parameter (whether there is a reaction). Judgment is made (step ST902).
  • FIG. 10 is a diagram illustrating a case where the input current is detected by the input detection unit 1022. In FIG. 10, the case where the first transmission antenna 105 is turned on at time t1, the second transmission antenna 105 is turned on at time t2, and thereafter the transmission antennas 105 are turned on in numerical order. Show. As shown in FIG.
  • step ST902 since the input current does not change from time t1 to time t9 and the input current is lower than the detection threshold ⁇ 2, it can be determined that the reception antenna 201 is not approaching the first to ninth transmission antennas 105. . If it is determined in step ST902 that there is no change in the parameters related to the transmission power source 102, the sequence returns to step ST902 again to enter a standby state.
  • Step ST902 when the control unit 104 determines that there is a change in the parameter, the control unit 104 estimates the position of the reception antenna 201 (Step ST903). That is, in FIG. 10, since the input current is equal to or greater than the detection threshold ⁇ 2 at time t10, it can be determined that the reception antenna 201 is approaching the tenth transmission antenna 105. Whether the current value changes to increase or decreases depends on the circuit configuration.
  • FIG. 11 is a list showing position estimation methods applicable to the detected parameters. As shown in FIG. 11, when the parameter detected by the input detection unit 1022 and the parameter detected by the power supply parameter detection unit 1023 are used, only the second position estimation method is applicable. For the parameters detected by the output detection unit 1024, any of the first and second position estimation methods can be applied.
  • the present invention is not limited to this.
  • the control unit 104 (antenna position acquisition unit) communicates with the reception device 2.
  • the position of the receiving antenna 201 may be acquired.
  • the adjustment range of the magnetic flux can be expanded by changing the load. Therefore, even when the load connected to the receiving device 2 varies, by changing the load of the dummy load 107, it is possible to eliminate the null point and prevent a decrease in transmission efficiency.
  • FIG. 12 show the case where the resonance antenna 106, the dummy load 107, and the switch 108 are provided for one of the transmission antennas 105.
  • the present invention is not limited to this.
  • a plurality of transmitting antennas 105 may be provided with a resonant antenna 106, a dummy load 107, and a switch 108, respectively. Thereby, the pattern of magnetic flux can be increased.
  • the resonance antenna 106 may be arranged to act across a plurality of transmission antennas 105, and the same effect can be obtained.
  • a single resonant antenna 106 is disposed opposite to all the transmission antennas 105.
  • a magnetic flux pattern different from the configuration shown in FIG. 1 is obtained. Therefore, the configuration of the resonant antenna 106 is appropriately selected according to the size of the receiving antenna 201 to be used.
  • the transmitting device 1 is disposed to face at least one of the transmitting antennas 105 and resonates at the same frequency as the resonant frequency of the transmitting antenna 105.
  • a dummy load 107 connected to the supply line of the resonant antenna 106, a switch 108 that can be switched to connect or disconnect the supply line, and a magnetic flux pattern when the supply line is connected and disconnected by the switch 108.
  • the antenna position acquisition unit that acquires the position of the reception antenna 201 approaching the transmission antenna 105, and the acquired position of the reception antenna 201
  • a switch control unit for switching the switch 108 based on the In a resonant power transmission system that performs power transmission between the transmission device 1 having the antenna 105 and the reception device 2 having the reception antenna 201, the size does not depend on the size, number, and position of the reception antennas 201 approaching the transmission antenna 105.
  • production of a null point can be eliminated and the fall of transmission efficiency can be prevented.
  • FIG. FIG. 14 is a block diagram showing a configuration example of a resonant power transmission system according to Embodiment 2 of the present invention.
  • the resonant power transmission system according to the second embodiment shown in FIG. 14 is obtained by removing the dummy load 107 from the resonant power transmission system according to the first embodiment shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the magnetic field pattern can be changed by switching the resonance antenna 106 to the ON state or the OFF state. Therefore, the same effect as in the first embodiment can be obtained.
  • the change in the magnetic flux is smaller than that when the dummy load 107 is provided.
  • FIG. 15 is a block diagram showing a configuration example of a resonant power transmission system according to Embodiment 3 of the present invention.
  • the resonant power transmission system according to the third embodiment shown in FIG. 15 uses a rectifier circuit 1071 and a charge capacitor 1072 as the dummy load 107 of the resonant power transmission system according to the first embodiment shown in FIG. A circuit 109 is added.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the rectifier circuit 1071 is connected to the supply line of the resonant antenna 106 and converts the power (high frequency power) received by the resonant antenna 106 into DC power.
  • the charge capacitor 1072 is for charging the DC power converted by the rectifier circuit 1071.
  • the charge capacitor 1072 includes an inductor, a capacitor, a load such as a resistor, a battery 1073, or the like.
  • the power regeneration circuit 109 regenerates the DC power charged in the charge capacitor 1072 to the transmission power source 102.
  • power loss may occur depending on the configuration of the dummy load 107. Therefore, as shown in FIG. 15, the power received by the resonant antenna 106 is rectified by the rectifier circuit 1071, charged by the charge capacitor 1072, and regenerated to the transmission power source 102 by the power regeneration circuit 109. Thereby, power efficiency can be improved. Similarly, the configuration shown in FIG. 15 can be applied to the modification of the first embodiment shown in FIGS.
  • FIG. FIG. 16 is a block diagram showing a configuration example of a resonance type power transmission system according to Embodiment 4 of the present invention.
  • the resonant power transmission system according to the fourth embodiment shown in FIG. 16 uses a rectifier circuit 1071 and a battery 1073 as the dummy load 107 of the resonant power transmission system according to the first embodiment shown in FIG.
  • the power supply 110 is added and the switch 108 is changed to the switch 111.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the rectifier circuit 1071 is connected to the supply line of the resonant antenna 106 and converts the power (high frequency power) received by the resonant antenna 106 into DC power.
  • the battery 1073 is for charging the DC power converted by the rectifier circuit 1071.
  • the discharge transmission power supply 110 discharges the DC power charged in the battery 1073 to the resonance antenna 106.
  • the discharge transmission power supply 110 has the same configuration as the transmission power supply 102.
  • the switch 111 can switch connection or disconnection of the supply line of the resonant antenna 106 to the dummy load 107 or the discharge transmission power supply 110. That is, the switch 111 charges the battery 1073 with the power received by the resonant antenna 106, or outputs the power charged to the battery 1073 to the resonant antenna 106 via the discharge transmission power supply 110, or disconnects the circuit.
  • the resonance antenna 106 is switched to the OFF state.
  • the magnetic flux can also be changed by rectifying the electric power received by the resonant antenna 106 with the rectifier circuit 1071, charging with the battery 1073, and discharging through the discharge transmission power supply 110. Therefore, in the case of the configuration shown in FIG. 16, the switch 111 can switch to three types of magnetic flux patterns. Similarly, the configuration shown in FIG. 16 can be applied to the modification of the first embodiment shown in FIGS.
  • FIG. 17 is a block diagram showing a configuration example of a resonant power transmission system according to Embodiment 5 of the present invention.
  • the resonance type power transmission system according to the fifth embodiment shown in FIG. 17 is obtained by adding a phase control unit 112 to the resonance type power transmission system according to the first embodiment shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the phase control unit 112 controls the current phase from the transmission power source 102 to the transmission antenna 105. At this time, for example, the phase control unit 112 detects the power transmission state from the transmission device 1 to the reception device 2 based on the detection result by the parameter detection unit of the transmission power supply 102, and controls the current phase from the transmission state. Do. Thus, the magnetic flux can be changed also by controlling the current phase to the transmitting antenna 105, and the effect of the first embodiment can be complemented.
  • the present invention is not limited to the configuration in which the phase is controlled while detecting the power transmission state, and the current phase may be simply switched to an arbitrary value (90 degrees, 180 degrees, etc.) without detecting the power transmission state. Thereby, the pattern of magnetic flux can be increased.
  • FIG. FIG. 18 is a block diagram showing a configuration example of a resonant power transmission system according to Embodiment 6 of the present invention.
  • the resonant power transmission system according to the sixth embodiment shown in FIG. 18 is obtained by adding an output current control unit 113 to the resonant power transmission system according to the first embodiment shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the output current control unit 113 controls the amount of current from the transmission power source 102 to the transmission antenna 105. At this time, for example, the output current control unit 113 detects the transmission state of power from the transmission device 1 to the reception device 2 based on the detection result by the parameter detection unit of the transmission power supply 102, and controls the current phase from the transmission state. I do. Thus, the magnetic flux can be changed also by controlling the amount of current to the transmitting antenna 105, and the effect of the first embodiment can be complemented.
  • the current amount control is not limited to the configuration in which the current amount is controlled while detecting the power transmission state, and the current amount may be simply switched to an arbitrary value without detecting the power transmission state. Thereby, the pattern of magnetic flux can be increased.
  • FIG. 19 is a block diagram showing a configuration example of a resonant power transmission system according to Embodiment 7 of the present invention.
  • the resonant power transmission system according to the seventh embodiment shown in FIG. 19 is obtained by adding an antenna switching control unit 114 to the resonant power transmission system according to the first embodiment shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the antenna switching control unit 114 switches power supply from the transmission power source 102 to each transmission antenna 105 to connection or disconnection. That is, the transmission antenna 105 is switched between being used as a power transmission antenna for transmitting power from the transmission power source 102 or being separated from the transmission power source 102 and used as a resonance antenna. Thereby, the pattern of magnetic flux can be increased.
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • the resonant power transmission system according to the present invention can eliminate the occurrence of a null point and prevent a decrease in transmission efficiency regardless of the size, number, and position of reception antennas that are close to the transmission antenna. It is suitable for use in a resonant power transmission system that performs power transmission between a transmitting device having a receiving device and a receiving device having a receiving antenna.

Abstract

The present invention includes: a resonant antenna (106) that is disposed facing at least one antenna among transmission antennas (105), and resonates at the same frequency as a resonance frequency for the transmission antennas (105); a dummy load (107) that is connected to a supply path of the resonant antenna (106); a switch (108) that is capable of switching the supply path between a connected and disconnected state; a storage unit that links, to the switching states of the switch (108), magnetic flux patterns when the supply path is connected and disconnected by the switch (108) and stores the same; an antenna position acquisition unit that acquires the position of a reception antenna (201) that has approached the transmission antennas (105); and a switch control unit that switches the switch (108) from the position of the reception antenna (201) acquired by the antenna position acquisition unit, on the basis of the information stored in the storage unit.

Description

共振型電力伝送システム及び送信装置Resonant power transmission system and transmitter
 この発明は、複数の送信アンテナを有する送信装置と、受信アンテナを有する受信装置との間で電力伝送を行う共振型電力伝送システム及び送信装置に関するものである。 The present invention relates to a resonant power transmission system and a transmission device that perform power transmission between a transmission device having a plurality of transmission antennas and a reception device having a reception antenna.
 従来、無線電力伝送において、複数の送信アンテナをアレイ化すると、送信アンテナ間の相互インダクタンスによって各送信アンテナの共振周波数が変化して伝送効率が低下するという課題がある。それに対し、相互インダクタンスも考慮して送信アンテナの共振周波数を一致させたものが知られている(例えば特許文献1参照)。これにより、アレイ化した送信アンテナの伝送効率を改善することができる。 Conventionally, when a plurality of transmission antennas are arrayed in wireless power transmission, there is a problem that the transmission frequency is lowered due to a change in the resonance frequency of each transmission antenna due to the mutual inductance between the transmission antennas. On the other hand, there is known one in which the resonance frequency of the transmitting antenna is matched in consideration of mutual inductance (for example, see Patent Document 1). Thereby, the transmission efficiency of the arrayed transmission antenna can be improved.
特開2014-90642号公報JP 2014-90642 A
 特許文献1に開示された従来構成では、高効率に水平方向の電力伝送範囲を拡大することができる。しかしながら、受信アンテナが送信アンテナのサイズと異なる場合、電力が伝送できない位置(ヌル点)が発生し、伝送効率が低下するという課題がある。また、受信装置に接続される負荷が変動した場合にも、ヌル点が発生し、伝送効率が低下する。
 また、受信アンテナが2個以上の場合には、各送信アンテナの結合が変化する。そのため、これによってもヌル点が発生し、伝送効率が低下する。
With the conventional configuration disclosed in Patent Document 1, the horizontal power transmission range can be expanded with high efficiency. However, when the receiving antenna is different from the size of the transmitting antenna, there is a problem that a position (null point) where power cannot be transmitted occurs and transmission efficiency is lowered. Also, when the load connected to the receiving apparatus fluctuates, a null point is generated and transmission efficiency is reduced.
When there are two or more receiving antennas, the coupling of each transmitting antenna changes. For this reason, this also causes a null point and lowers transmission efficiency.
 この発明は、上記のような課題を解決するためになされたもので、複数の送信アンテナを有する送信装置と、受信アンテナを有する受信装置との間で電力伝送を行う共振型電力伝送システムにおいて、送信アンテナに近づく受信アンテナのサイズ、数及び位置に依らず、ヌル点の発生を解消し、伝送効率の低下を防ぐことができる共振型電力伝送システム及び送信装置を提供することを目的としている。 This invention was made in order to solve the above problems, and in a resonant power transmission system that performs power transmission between a transmission device having a plurality of transmission antennas and a reception device having a reception antenna, It is an object of the present invention to provide a resonant power transmission system and a transmission device that can eliminate the occurrence of a null point and prevent a decrease in transmission efficiency regardless of the size, number, and position of reception antennas that approach the transmission antenna.
 この発明に係る共振型電力伝送システムは、複数の送信アンテナを有する送信装置と、受信アンテナを有する受信装置との間で電力伝送を行う共振型電力伝送システムであって、送信装置は、入力電力から送信アンテナの共振周波数に合わせた電力を出力する送信電源と、各々の送信アンテナのうちの少なくとも一つのアンテナに対向配置され、送信アンテナの共振周波数と同一周波数で共振する共振アンテナと、共振アンテナの供給線路に接続されたダミー負荷と、供給線路を接続又は切断するよう切替え可能なスイッチと、スイッチにより供給線路を接続及び切断した場合での磁束のパターンを、当該スイッチの切替え状態と紐付けて記憶する記憶部と、送信アンテナに近づいた受信アンテナの位置を取得するアンテナ位置取得部と、アンテナ位置取得部により取得された受信アンテナの位置から、記憶部に記憶された情報に基づいて、スイッチの切替えを行うスイッチ制御部とを有するものである。 A resonant power transmission system according to the present invention is a resonant power transmission system that performs power transmission between a transmission device having a plurality of transmission antennas and a reception device having a reception antenna. A transmission power source that outputs power matched to the resonance frequency of the transmission antenna, a resonance antenna that is disposed opposite to at least one of the transmission antennas and resonates at the same frequency as the resonance frequency of the transmission antenna, and a resonance antenna The dummy load connected to the supply line, the switch that can be switched to connect or disconnect the supply line, and the magnetic flux pattern when the supply line is connected and disconnected by the switch is linked to the switching state of the switch A storage unit that stores the received position, an antenna position acquisition unit that acquires a position of the reception antenna approaching the transmission antenna, From the position of the receiving antenna obtained by antenna position acquisition unit, based on the information stored in the storage unit, in which a switch control section for switching the switch.
 この発明によれば、上記のように構成したので、複数の送信アンテナを有する送信装置と、受信アンテナを有する受信装置との間で電力伝送を行う共振型電力伝送システムにおいて、送信アンテナに近づく受信アンテナのサイズ、数及び位置に依らず、ヌル点の発生を解消し、伝送効率の低下を防ぐことができる。 According to the present invention, since it is configured as described above, in a resonant power transmission system that performs power transmission between a transmission device having a plurality of transmission antennas and a reception device having a reception antenna, reception close to the transmission antenna Regardless of the size, number, and position of the antennas, it is possible to eliminate the occurrence of null points and prevent a decrease in transmission efficiency.
この発明の実施の形態1に係る共振型電力伝送システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the resonance type electric power transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る共振型電力伝送システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the resonance type electric power transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態1における送信電源の構成例を示す図である。It is a figure which shows the structural example of the transmission power supply in Embodiment 1 of this invention. この発明の実施の形態1に係る共振型電力伝送システムの動作原理を説明する模式図であり、(a)従来構成の場合を示す図であり、(b)本発明の構成の場合を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram explaining the operating principle of the resonance type electric power transmission system which concerns on Embodiment 1 of this invention, (a) It is a figure which shows the case of a conventional structure, (b) The figure which shows the case of the structure of this invention It is. この発明の実施の形態1に係る共振型電力伝送システムによるスイッチ切替え動作例を示すフローチャートである。It is a flowchart which shows the switch switching operation example by the resonance type electric power transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る共振型電力伝送システムによる効果の一例を示す図であり、(a)共振型電力伝送システムの構成例を示す模式図であり、(b)(a)の構成での伝送効率を示す図である。It is a figure which shows an example of the effect by the resonance type electric power transmission system which concerns on Embodiment 1 of this invention, (a) It is a schematic diagram which shows the example of a structure of a resonance type electric power transmission system, (b) The structure of (a) It is a figure which shows the transmission efficiency in. この発明の実施の形態1に係る共振型電力伝送システムによる位置推定動作例を示すフローチャートである(全ての送信アンテナを同時にON状態にする場合)。It is a flowchart which shows the example of a position estimation operation | movement by the resonance type electric power transmission system which concerns on Embodiment 1 of this invention (when all the transmission antennas are made into an ON state simultaneously). 図7に示す位置推定動作において、受信アンテナが送信アンテナに接近した場合の信号の変化例を示す図である。FIG. 8 is a diagram illustrating a signal change example when the reception antenna approaches the transmission antenna in the position estimation operation illustrated in FIG. 7. この発明の実施の形態1に係る共振型電力伝送システムによる位置推定動作例を示すフローチャートである(送信アンテナを順にON状態にする場合)。It is a flowchart which shows the example of a position estimation operation | movement by the resonance type electric power transmission system which concerns on Embodiment 1 of this invention (when setting a transmitting antenna to ON state in order). 図9に示す位置推定動作において、受信アンテナが送信アンテナに接近した場合の信号の変化例を示す図である。FIG. 10 is a diagram illustrating a signal change example when the reception antenna approaches the transmission antenna in the position estimation operation illustrated in FIG. 9. この発明の実施の形態1に係る共振型電力伝送システムにおいて、検出するパラメータに適用可能な位置推定方法を示す一覧表である。5 is a list showing position estimation methods applicable to detected parameters in the resonant power transmission system according to Embodiment 1 of the present invention. この発明の実施の形態1に係る共振型電力伝送システムの別の構成例を示す図である。It is a figure which shows another structural example of the resonance type electric power transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る共振型電力伝送システムの別の構成例を示す図である。It is a figure which shows another structural example of the resonance type electric power transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る共振型電力伝送システムの構成例を示す図である。It is a figure which shows the structural example of the resonance type electric power transmission system which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る共振型電力伝送システムの構成例を示す図である。It is a figure which shows the structural example of the resonance type electric power transmission system which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る共振型電力伝送システムの構成例を示す図である。It is a figure which shows the structural example of the resonance type electric power transmission system which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る共振型電力伝送システムの構成例を示す図である。It is a figure which shows the structural example of the resonance type electric power transmission system which concerns on Embodiment 5 of this invention. この発明の実施の形態6に係る共振型電力伝送システムの構成例を示す図である。It is a figure which shows the structural example of the resonance type electric power transmission system which concerns on Embodiment 6 of this invention. この発明の実施の形態7に係る共振型電力伝送システムの構成例を示す図である。It is a figure which shows the structural example of the resonance type electric power transmission system which concerns on Embodiment 7 of this invention.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1,2はこの発明の実施の形態1に係る共振型電力伝送システムの構成例を示す図である。
 共振型電力伝送システムは、図1,2に示すように、複数の送信アンテナ105を有する送信装置1と、受信アンテナ201を有する受信装置2とを備えている。この共振型電力伝送システムは、受信アンテナ201が送信アンテナ105に近づくことで、その送信アンテナ105と受信アンテナ201との間で電力伝送を行うものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
1 and 2 are diagrams showing a configuration example of a resonant power transmission system according to Embodiment 1 of the present invention.
As shown in FIGS. 1 and 2, the resonant power transmission system includes a transmission device 1 having a plurality of transmission antennas 105 and a reception device 2 having a reception antenna 201. This resonant power transmission system performs power transmission between the transmission antenna 105 and the reception antenna 201 when the reception antenna 201 approaches the transmission antenna 105.
 送信装置1は、図1,2に示すように、一次電源101、送信電源102、送信アンテナ部103及び制御部104を有している。また、送信アンテナ部103は、複数の送信アンテナ105、共振アンテナ106、ダミー負荷107及びスイッチ108を有している。なお図2では、送信アンテナ105及び共振アンテナ106のみを図示している。 The transmission apparatus 1 includes a primary power source 101, a transmission power source 102, a transmission antenna unit 103, and a control unit 104 as shown in FIGS. The transmission antenna unit 103 includes a plurality of transmission antennas 105, a resonance antenna 106, a dummy load 107, and a switch 108. In FIG. 2, only the transmitting antenna 105 and the resonant antenna 106 are shown.
 一次電源101は、直流又は交流の電力を出力するものである。
 送信電源102は、一次電源101からの直流又は交流の電力(入力電力)を、送信アンテナ105の共振周波数に合わせた電力(高周波電力)に変換して出力するものである。また、送信電源102は、自身の保護機能により、受信アンテナ201が送信アンテナ105に近づくことにより変化する送信電源102に関するパラメータを検出する機能(パラメータ検出部)を有している。この送信電源102の詳細については後述する。なお図1の例では、複数の送信アンテナ105に対して1つの送信電源102を設け、送信電源102からの出力を並列に各送信アンテナ105に出力する場合を示しているが、送信電源102を複数設けてもよい。
The primary power supply 101 outputs DC or AC power.
The transmission power source 102 converts DC power or AC power (input power) from the primary power source 101 into power (high frequency power) that matches the resonance frequency of the transmission antenna 105 and outputs the power. Further, the transmission power source 102 has a function (parameter detection unit) for detecting a parameter related to the transmission power source 102 that changes when the reception antenna 201 approaches the transmission antenna 105 by its own protection function. Details of the transmission power supply 102 will be described later. In the example of FIG. 1, one transmission power source 102 is provided for a plurality of transmission antennas 105 and the output from the transmission power source 102 is output to each transmission antenna 105 in parallel. A plurality of them may be provided.
 送信アンテナ105は、送信電源102からの高周波電力の周波数と同一周波数で共振するものである。この送信アンテナ105のサイズ、形状、数及び配置位置は任意に設定可能である。図1,2の例では、3つの送信アンテナ105をアレイ状に配置した場合を示している。 The transmission antenna 105 resonates at the same frequency as the frequency of the high frequency power from the transmission power source 102. The size, shape, number, and arrangement position of the transmission antenna 105 can be arbitrarily set. The example of FIGS. 1 and 2 shows a case where three transmission antennas 105 are arranged in an array.
 共振アンテナ106は、各送信アンテナ105のうち少なくとも一つのアンテナに対向配置され、送信アンテナ105の共振周波数と同一周波数で共振するアンテナである。この共振アンテナ106の形状は任意に設定可能である。また、共振アンテナ106の配置位置は、受信アンテナ201のサイズに応じて設定される。図1,2の例では、右端の送信アンテナ105に1つの共振アンテナ106を対向配置した場合を示している。 The resonant antenna 106 is an antenna that is disposed opposite to at least one of the transmitting antennas 105 and resonates at the same frequency as the resonant frequency of the transmitting antenna 105. The shape of the resonant antenna 106 can be arbitrarily set. The arrangement position of the resonant antenna 106 is set according to the size of the receiving antenna 201. In the example of FIGS. 1 and 2, a case where one resonant antenna 106 is disposed opposite to the rightmost transmitting antenna 105 is shown.
 ダミー負荷107は、共振アンテナ106の供給線路に接続されたものである。このダミー負荷107は、何らかのインピーダンスをもった素子であり、インダクタ、キャパシタ、抵抗等が挙げられる。なお、ダミー負荷107は、負荷が固定のものでもよいし、離散的又は連続的に可変可能なものでもよい。 The dummy load 107 is connected to the supply line of the resonant antenna 106. The dummy load 107 is an element having some impedance, and examples thereof include an inductor, a capacitor, and a resistor. The dummy load 107 may be a fixed load or may be variable discretely or continuously.
 スイッチ108は、共振アンテナ106の供給線路を接続又は切断するよう切替え可能なものである。このスイッチ108により供給線路が接続された場合には、共振アンテナ106はON状態となり伝送モードとなる。一方、スイッチ108により供給線路が切断された場合には、共振アンテナ106はOFF状態となり非伝送モードとなる。よって、ON状態とOFF状態とで共振アンテナ106の共振周波数が大きく異なるため、周囲の送信アンテナ105に影響を及ぼさない。このスイッチ108としては、例えば、リレー、フォトカプラ、トランジスタ等を用いることができる。 The switch 108 can be switched so as to connect or disconnect the supply line of the resonant antenna 106. When the supply line is connected by the switch 108, the resonant antenna 106 is turned on and the transmission mode is set. On the other hand, when the supply line is cut off by the switch 108, the resonant antenna 106 is turned off and enters a non-transmission mode. Therefore, since the resonance frequency of the resonance antenna 106 is greatly different between the ON state and the OFF state, the surrounding transmission antennas 105 are not affected. For example, a relay, a photocoupler, or a transistor can be used as the switch 108.
 制御部104は、スイッチ108の切替え制御を行うものである。この制御部104は、スイッチ108により供給線路を接続及び切断した場合での磁束のパターンを、当該スイッチ108の切替え状態と紐付けて記憶する機能(記憶部)を有している。また、制御部104は、送信アンテナ105に近づいた受信アンテナ201の位置を取得する機能(アンテナ位置取得部)を有している。以下では、送信電源102によりで検出されたパラメータに基づいて受信アンテナ201の位置を推定するものとする。さらに、制御部104は、上記取得した受信アンテナ201の位置から、上記記憶した情報に基づいて、スイッチ108の切替えを行う機能(スイッチ制御部)を有している。この制御部104は、ソフトウェアに基づくCPUを用いたプログラム処理によって実行される。 The control unit 104 performs switching control of the switch 108. The control unit 104 has a function (storage unit) for storing a magnetic flux pattern when the supply line is connected and disconnected by the switch 108 in association with the switching state of the switch 108. In addition, the control unit 104 has a function (antenna position acquisition unit) for acquiring the position of the reception antenna 201 approaching the transmission antenna 105. In the following, it is assumed that the position of the receiving antenna 201 is estimated based on the parameter detected by the transmission power source 102. Further, the control unit 104 has a function (switch control unit) for switching the switch 108 based on the stored information from the acquired position of the receiving antenna 201. The control unit 104 is executed by program processing using a CPU based on software.
 一方、受信装置2は、図1,2に示すように、受信アンテナ201及び整流回路202を有している。なお図2では、受信アンテナ201のみを図示している。 On the other hand, the receiving device 2 includes a receiving antenna 201 and a rectifying circuit 202 as shown in FIGS. In FIG. 2, only the receiving antenna 201 is shown.
 受信アンテナ201は、送信アンテナ105の共振周波数と同一周波数で共振するものである。これにより、送信アンテナ105から高周波電力を受信する。この受信アンテナ201のサイズ及び形状は任意に設定可能である。
 整流回路202は、受信アンテナ201により受信された高周波電力(交流電力)を直流電力に変換するものである。
The reception antenna 201 resonates at the same frequency as the resonance frequency of the transmission antenna 105. Thereby, high frequency power is received from the transmission antenna 105. The size and shape of the receiving antenna 201 can be arbitrarily set.
The rectifier circuit 202 converts high frequency power (AC power) received by the receiving antenna 201 into DC power.
 また、送信電源102は、図3に示すように、インバータ回路1021、入力検出部1022、電源パラメータ検出部1023、出力検出部1024及び整合回路1025を有している。 Further, as shown in FIG. 3, the transmission power supply 102 includes an inverter circuit 1021, an input detection unit 1022, a power supply parameter detection unit 1023, an output detection unit 1024, and a matching circuit 1025.
 インバータ回路1021は、一次電源101からの入力電力を、各送信アンテナ105に出力するための高周波電力に変換するものである。
 入力検出部1022は、一次電源101から送信電源102に入力される電力に関するパラメータを検出するものである。この際、入力検出部1022は、送信電源102の入力電流、入力電圧のうち少なくとも1つ以上を検出する。
The inverter circuit 1021 converts input power from the primary power supply 101 into high-frequency power to be output to each transmission antenna 105.
The input detection unit 1022 detects a parameter related to power input from the primary power supply 101 to the transmission power supply 102. At this time, the input detection unit 1022 detects at least one of the input current and the input voltage of the transmission power supply 102.
 電源パラメータ検出部1023は、送信電源102内部のインバータ回路1021に関するパラメータを検出するものである。この際、電源パラメータ検出部1023は、例えば、インバータ回路1021の共振電圧、共振電流、共振電圧と共振電流の位相、反射電力、インバータ回路1021内のスイッチング素子のドレイン-ソース間の電圧Vds又は電流Ids、インバータ回路1021内の素子(FET(Field Effect Transistor)、キャパシタ、インダクタ等)の発熱等のうち少なくとも1つ以上を検出する。 The power parameter detection unit 1023 detects a parameter related to the inverter circuit 1021 inside the transmission power source 102. At this time, the power supply parameter detection unit 1023, for example, the resonance voltage of the inverter circuit 1021, the resonance current, the phase of the resonance voltage and the resonance current, the reflected power, the voltage Vds between the drain and the source of the switching element in the inverter circuit 1021 or the current At least one or more of Ids and heat generation of an element (FET (Field Effect Transistor), capacitor, inductor, etc.) in the inverter circuit 1021 is detected.
 出力検出部1024は、送信電源102から出力された電力(インバータ回路1021により変換された高周波電力)に関するパラメータを検出するものである。この際、出力検出部1024は、例えば、インバータ回路1021からの出力電圧又は出力電流(位相、振幅、実効値、周波数)、透過電力、反射電力等のうち少なくとも1つ以上を検出する。 The output detection unit 1024 detects a parameter related to power output from the transmission power supply 102 (high-frequency power converted by the inverter circuit 1021). At this time, the output detection unit 1024 detects at least one of the output voltage or output current (phase, amplitude, effective value, frequency) from the inverter circuit 1021, transmitted power, reflected power, and the like.
 なお、入力検出部1022、電源パラメータ検出部1023及び出力検出部1024は、受信アンテナ201が送信アンテナ105に近づくことにより変化する送信電源102に関するパラメータを検出するパラメータ検出部を構成する。そして、このパラメータ検出部の機能は、送信電源102が通常に有している保護機能(電源の破壊を防止するための機能)を兼用することで実現可能であり、専用回路は不要である。また図3では、パラメータ検出部として、入力検出部1022、電源パラメータ検出部1023及び出力検出部1024を全て有している場合を示しているが、これらの検出部1022~1024のうち少なくとも1つ以上有していればよい。なお、複数のパラメータを検出することで、位置推定精度を向上させることができる。 The input detection unit 1022, the power supply parameter detection unit 1023, and the output detection unit 1024 constitute a parameter detection unit that detects a parameter related to the transmission power supply 102 that changes when the reception antenna 201 approaches the transmission antenna 105. The function of the parameter detection unit can be realized by combining the protection function (function for preventing the destruction of the power supply) that the transmission power supply 102 normally has, and no dedicated circuit is required. FIG. 3 shows a case where all of the input detection unit 1022, the power supply parameter detection unit 1023, and the output detection unit 1024 are included as parameter detection units. However, at least one of these detection units 1022 to 1024 is shown. What is necessary is just to have it above. Note that the position estimation accuracy can be improved by detecting a plurality of parameters.
 整合回路1025は、送信電源102と送信アンテナ105とのインピーダンスを整合するものである。 The matching circuit 1025 matches impedances of the transmission power source 102 and the transmission antenna 105.
 次に、本発明に係る共振型電力伝送システムの動作原理について、図4を参照しながら説明する。図4では、2つの送信アンテナ105a,105bを設けてそれぞれに電力を供給している。そして、送信アンテナ105a,105bよりサイズが小さい受信アンテナ201を、送信アンテナ105aのコイル線上に近づけている。また図4に示す矢印は、磁束の流れを示している。 Next, the operation principle of the resonant power transmission system according to the present invention will be described with reference to FIG. In FIG. 4, two transmitting antennas 105a and 105b are provided to supply power to each. The receiving antenna 201 having a smaller size than the transmitting antennas 105a and 105b is brought close to the coil wire of the transmitting antenna 105a. Moreover, the arrow shown in FIG. 4 has shown the flow of magnetic flux.
 ここで、図4(a)に示すように、従来構成の場合には、送信アンテナ105a,105b間で磁束の打消しが生じる。その結果、サイズの小さい受信アンテナ201には磁束が鎖交せず、この受信アンテナ201に電力伝送を行うことができない。すなわち、ヌル点が発生することになる。
 それに対し、図4(b)に示すように、共振アンテナ106を設けることで、この共振アンテナ106に磁束を引き寄せることができ、送信アンテナ105a,105b間での磁束の打消しを低減させることができる。その結果、サイズの小さい受信アンテナ201であっても磁束が鎖交するため、この受信アンテナ201に電力伝送を行うことができる。すなわち、ヌル点を解消することができる。
Here, as shown in FIG. 4A, in the case of the conventional configuration, magnetic flux cancellation occurs between the transmission antennas 105a and 105b. As a result, no magnetic flux is linked to the small receiving antenna 201, and power cannot be transmitted to the receiving antenna 201. That is, a null point is generated.
On the other hand, as shown in FIG. 4B, by providing the resonance antenna 106, the magnetic flux can be attracted to the resonance antenna 106, and the cancellation of the magnetic flux between the transmission antennas 105a and 105b can be reduced. it can. As a result, even if the receiving antenna 201 has a small size, the magnetic flux is interlinked, so that power can be transmitted to the receiving antenna 201. That is, the null point can be eliminated.
 次に、上記のように構成された共振型電力伝送システムのスイッチ切替え動作について、図5を参照しながら説明する。なお、制御部104では、事前に、スイッチ108により共振アンテナ106の供給線路を接続及び切断した場合での磁束のパターンを、当該スイッチ108の切替え状態と紐付けて記憶している。 Next, the switch switching operation of the resonant power transmission system configured as described above will be described with reference to FIG. The control unit 104 stores in advance the magnetic flux pattern when the supply line of the resonant antenna 106 is connected and disconnected by the switch 108 in association with the switching state of the switch 108.
 共振型電力伝送システムのスイッチ切替え動作では、受信アンテナ201が送信アンテナ105に近づくと、図5に示すように、制御部104は、この受信アンテナ201の位置を取得する(ステップST501)。この受信アンテナ201の位置取得動作については後述する。 In the switch switching operation of the resonant power transmission system, when the reception antenna 201 approaches the transmission antenna 105, the control unit 104 acquires the position of the reception antenna 201 as shown in FIG. 5 (step ST501). The operation of acquiring the position of the receiving antenna 201 will be described later.
 次いで、制御部104は、推定した受信アンテナ201の位置に基づいて、記憶している磁束のパターンの中から最適なパターンを選択する(ステップST502)。この際、推定した受信アンテナ201の位置がヌル点とならない磁束のパターンを選択する。 Next, the control unit 104 selects an optimum pattern from the stored magnetic flux patterns based on the estimated position of the receiving antenna 201 (step ST502). At this time, a magnetic flux pattern in which the estimated position of the receiving antenna 201 does not become a null point is selected.
 次いで、制御部104は、選択した磁束のパターンとなるように、記憶している該当パターンに紐付けたスイッチ108の切替え状態に従い、スイッチ108の切替え制御を行う(ステップST503)。 Next, the control unit 104 performs switching control of the switch 108 according to the switching state of the switch 108 associated with the corresponding pattern stored so that the selected magnetic flux pattern is obtained (step ST503).
 図6は本発明の効果の一例を示す図である。図6(a)では、3つの送信アンテナ105a~105cを設けてそれぞれに電力を供給し、送信アンテナ105b,105cに共振アンテナ106をそれぞれ対向配置している。そして、送信アンテナ105a~105cよりサイズが小さい受信アンテナ201を、送信アンテナ105aのコイル線上に近づけている。 FIG. 6 is a diagram showing an example of the effect of the present invention. In FIG. 6A, three transmitting antennas 105a to 105c are provided to supply power to each of them, and the resonant antenna 106 is disposed opposite to the transmitting antennas 105b and 105c. The receiving antenna 201 having a smaller size than the transmitting antennas 105a to 105c is brought close to the coil wire of the transmitting antenna 105a.
 ここで、共振アンテナ106をOFF状態とした場合(従来構成と同様の状態)では、図6(b)に破線で示すように、共振周波数fにおいて、電力伝送することができないヌル点Nが発生している。
 一方、共振アンテナ106をON状態とした場合には、図6(b)に実線で示すように、共振周波数fでの伝送効率が向上しており、ヌル点Nが解消されていることがわかる。
Here, when the resonant antenna 106 is in the OFF state (the same state as the conventional configuration), as shown by the broken line in FIG. 6B, the null point N that cannot transmit power at the resonant frequency f 0 is It has occurred.
On the other hand, when the resonance antenna 106 is turned on, the transmission efficiency at the resonance frequency f 0 is improved and the null point N is eliminated as shown by the solid line in FIG. Recognize.
 このように、送信アンテナ105に近づいた受信アンテナ201の位置に応じて磁束のパターンを切替えることで、受信アンテナ201が送信アンテナ105のサイズと異なる場合であっても、ヌル点をなくし、伝送効率の低下を防ぐことができる。 In this way, by switching the magnetic flux pattern according to the position of the receiving antenna 201 approaching the transmitting antenna 105, even if the receiving antenna 201 is different from the size of the transmitting antenna 105, the null point is eliminated and the transmission efficiency is improved. Can be prevented.
 また上記では、単一の受信アンテナ201が送信アンテナ105に近づいた場合について示したが、これに限るものではなく、複数の受信アンテナ201が送信アンテナ105に近づいた場合であっても同様である。すなわち、従来構成では、複数の受信アンテナ201が近づいた場合、その位置がコイル線上ではない場合であっても、ヌル点が発生する場合がある。それに対し、本発明では、共振アンテナ106を用いて磁界のパターンを適切に切替えることで、複数の受信アンテナ201が近づいた場合であっても、ヌル点の発生を解消し、伝送効率の低下を防ぐことができる。 In the above description, the case where the single reception antenna 201 approaches the transmission antenna 105 has been described. However, the present invention is not limited to this, and the same applies even when a plurality of reception antennas 201 approach the transmission antenna 105. . That is, in the conventional configuration, when a plurality of receiving antennas 201 are approaching, a null point may occur even when the position is not on the coil wire. On the other hand, in the present invention, by appropriately switching the magnetic field pattern using the resonant antenna 106, even when a plurality of receiving antennas 201 are approaching, the occurrence of null points is eliminated, and the transmission efficiency is reduced. Can be prevented.
 次に、受信アンテナ201の位置取得動作の一例として、送信電源102のパラメータ検出部による検出結果を用いて、受信アンテナ201の位置を推定する動作について説明する。
 パラメータ検出部による検出結果を用いた位置推定動作には、全ての送信アンテナ105を同時にON状態にして受信アンテナ201の位置推定を行う方法(第1の位置推定方法)と、送信アンテナ105を順にON状態にして受信アンテナ201の位置推定を行う方法(第2の位置推定方法)とがある。
Next, as an example of the position acquisition operation of the receiving antenna 201, an operation of estimating the position of the receiving antenna 201 using the detection result by the parameter detection unit of the transmission power source 102 will be described.
For the position estimation operation using the detection result by the parameter detection unit, the method of estimating the position of the reception antenna 201 with all the transmission antennas 105 turned ON simultaneously (first position estimation method), and the transmission antenna 105 are sequentially performed. There is a method of estimating the position of the receiving antenna 201 in the ON state (second position estimation method).
 まず、全ての送信アンテナ105を同時にON状態にして受信アンテナ201の位置推定を行う方法について、図7,8を参照しながら説明する。なお図8では、10個の送信アンテナ105を設けた場合について示している。
 この場合、図7に示すように、まず、送信装置1は、全ての送信アンテナ105を同時にON状態にする(ステップST701)。なおこの際、全ての送信アンテナ105を定常的にON状態としてもよいし、任意の周期でパルス状にON状態としてもよい。
First, a method for estimating the position of the receiving antenna 201 with all the transmitting antennas 105 turned on simultaneously will be described with reference to FIGS. FIG. 8 shows the case where ten transmission antennas 105 are provided.
In this case, as shown in FIG. 7, first, the transmitting apparatus 1 turns on all the transmitting antennas 105 simultaneously (step ST701). At this time, all the transmitting antennas 105 may be steadily turned on, or may be turned on in a pulsed manner at an arbitrary cycle.
 次いで、出力検出部1024は送信電源102に関するパラメータを検出し、制御部104は当該パラメータに変化があるか(反応があるか)を判断する(ステップST702)。図8(a)では1番目の送信アンテナ105に対し、図8(b)では10番目の送信アンテナ105に対し、それぞれ出力検出部1024で反射電力を検出した場合を示している。この図8(a),(b)に示すように、時刻t1では、反射電力に変化はなく、反射電力が検出閾値α1より大きいため、1番目と10番目の送信アンテナ105には受信アンテナ201が近づいていないと判断できる。このステップST702において、送信電源102に関するパラメータの変化がないと判断した場合には、シーケンスは再びステップST702に戻り待機状態となる。 Next, the output detection unit 1024 detects a parameter related to the transmission power source 102, and the control unit 104 determines whether there is a change (reaction) in the parameter (step ST702). 8A shows the case where the output power is detected by the output detection unit 1024 for the first transmission antenna 105, and FIG. 8B shows the case for the tenth transmission antenna 105. As shown in FIGS. 8A and 8B, at time t1, there is no change in the reflected power, and the reflected power is larger than the detection threshold value α1, so that the first and tenth transmitting antennas 105 have the receiving antenna 201. It can be judged that is not approaching. If it is determined in step ST702 that there is no change in the parameters related to the transmission power source 102, the sequence returns to step ST702 again to enter a standby state.
 一方、ステップST702において、制御部104は、パラメータに変化があると判断した場合には、受信アンテナ201の位置を推定する(ステップST703)。すなわち、図8(b)では、時刻t2において反射電力が検出閾値α1以下となっているため、10番目の送信アンテナ105に受信アンテナ201が近づいていると判断できる。なお、出力検出部1024に加えて、入力検出部1022、電源パラメータ検出部1023のうち少なくとも1つ以上を組み合わせて、複数のパラメータを検出することで、位置推定精度を向上させることができる。 On the other hand, when determining in step ST702 that there is a change in the parameter, the control unit 104 estimates the position of the receiving antenna 201 (step ST703). That is, in FIG. 8B, since the reflected power is equal to or lower than the detection threshold α1 at time t2, it can be determined that the receiving antenna 201 is approaching the tenth transmitting antenna 105. In addition to the output detection unit 1024, the position estimation accuracy can be improved by detecting a plurality of parameters by combining at least one of the input detection unit 1022 and the power supply parameter detection unit 1023.
 次に、送信アンテナ105を順にON状態にして受信アンテナ201の位置推定を行う方法について、図9,10を参照しながら説明する。なお図10では、10個の送信アンテナ105を設けた場合について示している。
 この場合、図9に示すように、まず、送信装置1は、送信アンテナ105を1つずつ順にON状態にする(ステップST901)。なおこの際の切替え順序は適宜設定可能である。
Next, a method for estimating the position of the receiving antenna 201 with the transmitting antenna 105 turned on in order will be described with reference to FIGS. FIG. 10 shows the case where ten transmission antennas 105 are provided.
In this case, as shown in FIG. 9, first, transmission apparatus 1 sequentially turns on transmission antennas 105 one by one (step ST901). Note that the switching order at this time can be set as appropriate.
 次いで、パラメータ検出部(入力検出部1022、電源パラメータ検出部1023、出力検出部1024)は送信電源102に関するパラメータを検出し、制御部104は当該パラメータに変化があるか(反応があるか)を判断する(ステップST902)。図10は入力検出部1022により入力電流を検出した場合を示す図である。図10では、時刻t1のときに1番目の送信アンテナ105をON状態とし、時刻t2のときに2番目の送信アンテナ105をON状態にし、以降、番号順に送信アンテナ105をON状態とする場合を示している。この図10に示すように、時刻t1~t9では入力電流に変化はなく、入力電流が検出閾値α2より低いため、1~9番目の送信アンテナ105には受信アンテナ201が近づいていないと判断できる。このステップST902において、送信電源102に関するパラメータの変化がないと判断した場合には、シーケンスは再びステップST902に戻り待機状態となる。 Next, the parameter detection unit (input detection unit 1022, power supply parameter detection unit 1023, output detection unit 1024) detects a parameter related to the transmission power supply 102, and the control unit 104 determines whether there is a change in the parameter (whether there is a reaction). Judgment is made (step ST902). FIG. 10 is a diagram illustrating a case where the input current is detected by the input detection unit 1022. In FIG. 10, the case where the first transmission antenna 105 is turned on at time t1, the second transmission antenna 105 is turned on at time t2, and thereafter the transmission antennas 105 are turned on in numerical order. Show. As shown in FIG. 10, since the input current does not change from time t1 to time t9 and the input current is lower than the detection threshold α2, it can be determined that the reception antenna 201 is not approaching the first to ninth transmission antennas 105. . If it is determined in step ST902 that there is no change in the parameters related to the transmission power source 102, the sequence returns to step ST902 again to enter a standby state.
 一方、ステップST902において、制御部104は、パラメータに変化があると判断した場合には、受信アンテナ201の位置を推定する(ステップST903)。すなわち、図10では、時刻t10において入力電流が検出閾値α2以上となっているため、10番目の送信アンテナ105に受信アンテナ201が近づいていると判断できる。なお、電流値が増加する方に変化するか、減少する方に変化するかは回路構成で決定される。 On the other hand, in Step ST902, when the control unit 104 determines that there is a change in the parameter, the control unit 104 estimates the position of the reception antenna 201 (Step ST903). That is, in FIG. 10, since the input current is equal to or greater than the detection threshold α2 at time t10, it can be determined that the reception antenna 201 is approaching the tenth transmission antenna 105. Whether the current value changes to increase or decreases depends on the circuit configuration.
 図11は検出するパラメータに適用可能な位置推定方法を示す一覧表である。
 この図11に示すように、入力検出部1022により検出されるパラメータ、電源パラメータ検出部1023により検出されるパラメータを用いる場合には、第2の位置推定方法のみ適用可能である。出力検出部1024により検出されるパラメータについては、第1,2の位置推定方法のいずれも適用可能である。
FIG. 11 is a list showing position estimation methods applicable to the detected parameters.
As shown in FIG. 11, when the parameter detected by the input detection unit 1022 and the parameter detected by the power supply parameter detection unit 1023 are used, only the second position estimation method is applicable. For the parameters detected by the output detection unit 1024, any of the first and second position estimation methods can be applied.
 なお上記では、送信電源102のパラメータ検出部による検出結果を用いて、受信アンテナ201の位置を推定する場合を示した。しかしながら、これに限るものではなく、例えば、受信装置2に位置センサ(ジャイロセンサ等)が搭載されている場合には、制御部104(アンテナ位置取得部)は、この受信装置2と通信することで、受信アンテナ201の位置を取得してもよい。 In the above, the case where the position of the reception antenna 201 is estimated using the detection result by the parameter detection unit of the transmission power source 102 is shown. However, the present invention is not limited to this. For example, when a position sensor (gyro sensor or the like) is mounted on the reception device 2, the control unit 104 (antenna position acquisition unit) communicates with the reception device 2. Thus, the position of the receiving antenna 201 may be acquired.
 また、共振アンテナ106に接続されているダミー負荷107が可変式のものである場合には、その負荷を可変することで、磁束の調整範囲を広げることができる。よって、受信装置2に接続されている負荷が変動する場合であっても、ダミー負荷107の負荷を可変することで、ヌル点をなくし、伝送効率の低下を防ぐことが可能となる。 Further, when the dummy load 107 connected to the resonance antenna 106 is a variable type, the adjustment range of the magnetic flux can be expanded by changing the load. Therefore, even when the load connected to the receiving device 2 varies, by changing the load of the dummy load 107, it is possible to eliminate the null point and prevent a decrease in transmission efficiency.
 また図1,2では、各送信アンテナ105のうち一つのアンテナに対して共振アンテナ106、ダミー負荷107及びスイッチ108を設けた場合について示した。しかしながら、これに限るものではなく、例えば図12に示すように、複数の送信アンテナ105に、共振アンテナ106、ダミー負荷107及びスイッチ108をそれぞれ設けてもよい。これにより、磁束のパターンを増やすことができる。 1 and 2 show the case where the resonance antenna 106, the dummy load 107, and the switch 108 are provided for one of the transmission antennas 105. However, the present invention is not limited to this. For example, as shown in FIG. 12, a plurality of transmitting antennas 105 may be provided with a resonant antenna 106, a dummy load 107, and a switch 108, respectively. Thereby, the pattern of magnetic flux can be increased.
 また図1,2では、一つの送信アンテナ105に対して一つの共振アンテナ106を設けた場合について示した。しかしながら、これに限るものではなく、例えば図13に示すように、共振アンテナ106を、複数の送信アンテナ105に跨って対向配置して作用させるようにしてもよく、同様の効果を得ることができる。図13の例では、全ての送信アンテナ105に対して単一の共振アンテナ106を対向配置させた場合を示している。
 なお、図13に示す構成では、図1に示す構成とは異なる磁束のパターンが得られる。よって、用いる受信アンテナ201のサイズに応じて、共振アンテナ106の構成を適宜選択する。
1 and 2 show the case where one resonance antenna 106 is provided for one transmission antenna 105. However, the present invention is not limited to this. For example, as shown in FIG. 13, the resonance antenna 106 may be arranged to act across a plurality of transmission antennas 105, and the same effect can be obtained. . In the example of FIG. 13, a single resonant antenna 106 is disposed opposite to all the transmission antennas 105.
In the configuration shown in FIG. 13, a magnetic flux pattern different from the configuration shown in FIG. 1 is obtained. Therefore, the configuration of the resonant antenna 106 is appropriately selected according to the size of the receiving antenna 201 to be used.
 以上のように、この実施の形態1によれば、送信装置1に、各送信アンテナ105のうちの少なくとも一つのアンテナに対向配置され、送信アンテナ105の共振周波数と同一周波数で共振する共振アンテナ106と、共振アンテナ106の供給線路に接続されたダミー負荷107と、供給線路を接続又は切断するよう切替え可能なスイッチ108と、スイッチ108により供給線路を接続及び切断した場合での磁束のパターンを、当該スイッチ108の切替え状態と紐付けて記憶する記憶部と、送信アンテナ105に近づいた受信アンテナ201の位置を取得するアンテナ位置取得部と、取得された受信アンテナ201の位置から、記憶された情報に基づいて、スイッチ108の切替えを行うスイッチ制御部とを設けたので、複数の送信アンテナ105を有する送信装置1と、受信アンテナ201を有する受信装置2との間で電力伝送を行う共振型電力伝送システムにおいて、送信アンテナ105に近づく受信アンテナ201のサイズ、数及び位置に依らず、ヌル点の発生を解消し、伝送効率の低下を防ぐことができる。 As described above, according to the first embodiment, the transmitting device 1 is disposed to face at least one of the transmitting antennas 105 and resonates at the same frequency as the resonant frequency of the transmitting antenna 105. A dummy load 107 connected to the supply line of the resonant antenna 106, a switch 108 that can be switched to connect or disconnect the supply line, and a magnetic flux pattern when the supply line is connected and disconnected by the switch 108. Information stored from the storage unit associated with the switching state of the switch 108, the antenna position acquisition unit that acquires the position of the reception antenna 201 approaching the transmission antenna 105, and the acquired position of the reception antenna 201 And a switch control unit for switching the switch 108 based on the In a resonant power transmission system that performs power transmission between the transmission device 1 having the antenna 105 and the reception device 2 having the reception antenna 201, the size does not depend on the size, number, and position of the reception antennas 201 approaching the transmission antenna 105. Generation | occurrence | production of a null point can be eliminated and the fall of transmission efficiency can be prevented.
実施の形態2.
 図14はこの発明の実施の形態2に係る共振型電力伝送システムの構成例を示すブロック図である。この図14に示す実施の形態2に係る共振型電力伝送システムは、図1に示す実施の形態1に係る共振型電力伝送システムからダミー負荷107を取除いたものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 2. FIG.
FIG. 14 is a block diagram showing a configuration example of a resonant power transmission system according to Embodiment 2 of the present invention. The resonant power transmission system according to the second embodiment shown in FIG. 14 is obtained by removing the dummy load 107 from the resonant power transmission system according to the first embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 このように、ダミー負荷107を設けない場合であっても、共振アンテナ106をON状態又はOFF状態に切替えることで、磁界のパターンを変えることができる。よって、実施の形態1と同様の効果を得ることができる。ただし、その磁束の変化は、ダミー負荷107を設けた場合に対して小さくなる。 Thus, even when the dummy load 107 is not provided, the magnetic field pattern can be changed by switching the resonance antenna 106 to the ON state or the OFF state. Therefore, the same effect as in the first embodiment can be obtained. However, the change in the magnetic flux is smaller than that when the dummy load 107 is provided.
実施の形態3.
 図15はこの発明の実施の形態3に係る共振型電力伝送システムの構成例を示すブロック図である。この図15に示す実施の形態3に係る共振型電力伝送システムは、図1に示す実施の形態1に係る共振型電力伝送システムのダミー負荷107として整流回路1071及びチャージコンデンサ1072を用い、電力回生回路109を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 3 FIG.
FIG. 15 is a block diagram showing a configuration example of a resonant power transmission system according to Embodiment 3 of the present invention. The resonant power transmission system according to the third embodiment shown in FIG. 15 uses a rectifier circuit 1071 and a charge capacitor 1072 as the dummy load 107 of the resonant power transmission system according to the first embodiment shown in FIG. A circuit 109 is added. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 整流回路1071は、共振アンテナ106の供給線路に接続され、当該共振アンテナ106により受信された電力(高周波電力)を直流電力に変換するものである。
 チャージコンデンサ1072は、整流回路1071により変換された直流電力を充電するものである。このチャージコンデンサ1072は、インダクタ、キャパシタ、抵抗等の負荷、又はバッテリ1073等から構成される。
 電力回生回路109は、チャージコンデンサ1072に充電された直流電力を、送信電源102へ回生するものである。
The rectifier circuit 1071 is connected to the supply line of the resonant antenna 106 and converts the power (high frequency power) received by the resonant antenna 106 into DC power.
The charge capacitor 1072 is for charging the DC power converted by the rectifier circuit 1071. The charge capacitor 1072 includes an inductor, a capacitor, a load such as a resistor, a battery 1073, or the like.
The power regeneration circuit 109 regenerates the DC power charged in the charge capacitor 1072 to the transmission power source 102.
 実施の形態1では、ダミー負荷107の構成によっては電力損失となる場合がある。そこで、図15に示すように、共振アンテナ106により受信された電力を整流回路1071で整流してチャージコンデンサ1072で充電し、電力回生回路109で送信電源102に回生する。これにより、電力効率を高めることができる。
 また、図12,13に示す実施の形態1の変形例についても同様に、図15に示す構成を適用可能である。
In the first embodiment, power loss may occur depending on the configuration of the dummy load 107. Therefore, as shown in FIG. 15, the power received by the resonant antenna 106 is rectified by the rectifier circuit 1071, charged by the charge capacitor 1072, and regenerated to the transmission power source 102 by the power regeneration circuit 109. Thereby, power efficiency can be improved.
Similarly, the configuration shown in FIG. 15 can be applied to the modification of the first embodiment shown in FIGS.
実施の形態4.
 図16はこの発明の実施の形態4に係る共振型電力伝送システムの構成例を示すブロック図である。この図16に示す実施の形態4に係る共振型電力伝送システムは、図1に示す実施の形態1に係る共振型電力伝送システムのダミー負荷107として整流回路1071及びバッテリ1073を用い、放電用送信電源110を追加し、スイッチ108をスイッチ111に変更したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 4 FIG.
FIG. 16 is a block diagram showing a configuration example of a resonance type power transmission system according to Embodiment 4 of the present invention. The resonant power transmission system according to the fourth embodiment shown in FIG. 16 uses a rectifier circuit 1071 and a battery 1073 as the dummy load 107 of the resonant power transmission system according to the first embodiment shown in FIG. The power supply 110 is added and the switch 108 is changed to the switch 111. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 整流回路1071は、共振アンテナ106の供給線路に接続され、当該共振アンテナ106により受信された電力(高周波電力)を直流電力に変換するものである。
 バッテリ1073は、整流回路1071により変換された直流電力を充電するものである。
 放電用送信電源110は、バッテリ1073に充電された直流電力を共振アンテナ106に放電するものである。放電用送信電源110は、送信電源102と同様の構成である。
The rectifier circuit 1071 is connected to the supply line of the resonant antenna 106 and converts the power (high frequency power) received by the resonant antenna 106 into DC power.
The battery 1073 is for charging the DC power converted by the rectifier circuit 1071.
The discharge transmission power supply 110 discharges the DC power charged in the battery 1073 to the resonance antenna 106. The discharge transmission power supply 110 has the same configuration as the transmission power supply 102.
 スイッチ111は、共振アンテナ106の供給線路をダミー負荷107又は放電用送信電源110に接続又は切断を切替え可能なものである。すなわち、スイッチ111により、共振アンテナ106により受信された電力をバッテリ1073に充電するか、バッテリ1073に充電された電力を放電用送信電源110を介して共振アンテナ106に出力するか、回路を切り離して共振アンテナ106をOFF状態とするかを切替える。 The switch 111 can switch connection or disconnection of the supply line of the resonant antenna 106 to the dummy load 107 or the discharge transmission power supply 110. That is, the switch 111 charges the battery 1073 with the power received by the resonant antenna 106, or outputs the power charged to the battery 1073 to the resonant antenna 106 via the discharge transmission power supply 110, or disconnects the circuit. The resonance antenna 106 is switched to the OFF state.
 図16に示すように、共振アンテナ106により受信された電力を整流回路1071で整流してバッテリ1073で充電し、放電用送信電源110を介して放電することでも、磁束を変化させることができる。よって、図16に示す構成の場合、スイッチ111によって3種類の磁束のパターンに切替えることができる。
 また、図12,13に示す実施の形態1の変形例についても同様に、図16に示す構成を適用可能である。
As shown in FIG. 16, the magnetic flux can also be changed by rectifying the electric power received by the resonant antenna 106 with the rectifier circuit 1071, charging with the battery 1073, and discharging through the discharge transmission power supply 110. Therefore, in the case of the configuration shown in FIG. 16, the switch 111 can switch to three types of magnetic flux patterns.
Similarly, the configuration shown in FIG. 16 can be applied to the modification of the first embodiment shown in FIGS.
実施の形態5.
 図17はこの発明の実施の形態5に係る共振型電力伝送システムの構成例を示すブロック図である。この図17に示す実施の形態5に係る共振型電力伝送システムは、図1に示す実施の形態1に係る共振型電力伝送システムに位相制御部112を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 5 FIG.
FIG. 17 is a block diagram showing a configuration example of a resonant power transmission system according to Embodiment 5 of the present invention. The resonance type power transmission system according to the fifth embodiment shown in FIG. 17 is obtained by adding a phase control unit 112 to the resonance type power transmission system according to the first embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 位相制御部112は、送信電源102から送信アンテナ105への電流位相を制御するものである。この際、位相制御部112は、例えば、送信電源102のパラメータ検出部による検出結果に基づいて送信装置1から受信装置2への電力の伝送状態を検出し、その伝送状態から電流位相の制御を行う。このように、送信アンテナ105への電流位相を制御することでも磁束を変化させることができ、実施の形態1の効果を補完することができる。 The phase control unit 112 controls the current phase from the transmission power source 102 to the transmission antenna 105. At this time, for example, the phase control unit 112 detects the power transmission state from the transmission device 1 to the reception device 2 based on the detection result by the parameter detection unit of the transmission power supply 102, and controls the current phase from the transmission state. Do. Thus, the magnetic flux can be changed also by controlling the current phase to the transmitting antenna 105, and the effect of the first embodiment can be complemented.
 なお、電力の伝送状態を検出しながら位相制御する構成に限らず、電力の伝送状態の検出は行わず、単に電流位相を任意の値(90度、180度等)に切替え可能としてもよい。これにより、磁束のパターンを増やすことができる。 It should be noted that the present invention is not limited to the configuration in which the phase is controlled while detecting the power transmission state, and the current phase may be simply switched to an arbitrary value (90 degrees, 180 degrees, etc.) without detecting the power transmission state. Thereby, the pattern of magnetic flux can be increased.
実施の形態6.
 図18はこの発明の実施の形態6に係る共振型電力伝送システムの構成例を示すブロック図である。この図18に示す実施の形態6に係る共振型電力伝送システムは、図1に示す実施の形態1に係る共振型電力伝送システムに出力電流制御部113を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 6 FIG.
FIG. 18 is a block diagram showing a configuration example of a resonant power transmission system according to Embodiment 6 of the present invention. The resonant power transmission system according to the sixth embodiment shown in FIG. 18 is obtained by adding an output current control unit 113 to the resonant power transmission system according to the first embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 出力電流制御部113は、送信電源102から送信アンテナ105への電流量を制御するものである。この際、出力電流制御部113は、例えば、送信電源102のパラメータ検出部による検出結果に基づいて送信装置1から受信装置2への電力の伝送状態を検出し、その伝送状態から電流位相の制御を行う。このように、送信アンテナ105への電流量を制御することでも磁束を変化させることができ、実施の形態1の効果を補完することができる。 The output current control unit 113 controls the amount of current from the transmission power source 102 to the transmission antenna 105. At this time, for example, the output current control unit 113 detects the transmission state of power from the transmission device 1 to the reception device 2 based on the detection result by the parameter detection unit of the transmission power supply 102, and controls the current phase from the transmission state. I do. Thus, the magnetic flux can be changed also by controlling the amount of current to the transmitting antenna 105, and the effect of the first embodiment can be complemented.
 なお、電力の伝送状態を検出しながら電流量制御する構成に限らず、電力の伝送状態の検出は行わず、単に電流量を任意の値に切替え可能としてもよい。これにより、磁束のパターンを増やすことができる。 It should be noted that the current amount control is not limited to the configuration in which the current amount is controlled while detecting the power transmission state, and the current amount may be simply switched to an arbitrary value without detecting the power transmission state. Thereby, the pattern of magnetic flux can be increased.
実施の形態7.
 図19はこの発明の実施の形態7に係る共振型電力伝送システムの構成例を示すブロック図である。この図19に示す実施の形態7に係る共振型電力伝送システムは、図1に示す実施の形態1に係る共振型電力伝送システムにアンテナ切替え制御部114を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 7 FIG.
FIG. 19 is a block diagram showing a configuration example of a resonant power transmission system according to Embodiment 7 of the present invention. The resonant power transmission system according to the seventh embodiment shown in FIG. 19 is obtained by adding an antenna switching control unit 114 to the resonant power transmission system according to the first embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 アンテナ切替え制御部114は、送信電源102から各送信アンテナ105への電力の供給を接続又は切断に切替えるものである。すなわち、送信アンテナ105を、送信電源102からの電力を伝送する電力伝送用アンテナとして用いるか、送信電源102から切り離して共振アンテナとして用いるかを切替える。これにより、磁束のパターンを増やすことができる。 The antenna switching control unit 114 switches power supply from the transmission power source 102 to each transmission antenna 105 to connection or disconnection. That is, the transmission antenna 105 is switched between being used as a power transmission antenna for transmitting power from the transmission power source 102 or being separated from the transmission power source 102 and used as a resonance antenna. Thereby, the pattern of magnetic flux can be increased.
 なお上記の実施の形態5~7では、実施の形態1の構成を元にした場合について示したが、これに限るものではなく、実施の形態2~4の構成と組み合わせることも可能である。 In the above fifth to seventh embodiments, the case based on the configuration of the first embodiment has been described. However, the present invention is not limited to this, and can be combined with the configurations of the second to fourth embodiments.
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Further, within the scope of the present invention, the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
 この発明に係る共振型電力伝送システムは、送信アンテナに近づく受信アンテナのサイズ、数及び位置に依らず、ヌル点の発生を解消し、伝送効率の低下を防ぐことができ、複数の送信アンテナを有する送信装置と、受信アンテナを有する受信装置との間で電力伝送を行う共振型電力伝送システム等に用いるのに適している。 The resonant power transmission system according to the present invention can eliminate the occurrence of a null point and prevent a decrease in transmission efficiency regardless of the size, number, and position of reception antennas that are close to the transmission antenna. It is suitable for use in a resonant power transmission system that performs power transmission between a transmitting device having a receiving device and a receiving device having a receiving antenna.
 1 送信装置、2 受信装置、101 一次電源、102 送信電源、103 送信アンテナ部、104 制御部、105 送信アンテナ、106 共振アンテナ、107 ダミー負荷、108 スイッチ、109 電力回生回路、110 放電用送信電源、111 スイッチ、112 位相制御部、113 出力電流制御部、114 アンテナ切替え制御部、201 受信アンテナ、202 整流回路、1021 インバータ回路、1022 入力検出部、1023 電源パラメータ検出部、1024 出力検出部、1025 整合回路、1071 整流回路、1072 チャージコンデンサ、1073 バッテリ。 1 transmitting device, 2 receiving device, 101 primary power source, 102 transmitting power source, 103 transmitting antenna unit, 104 control unit, 105 transmitting antenna, 106 resonant antenna, 107 dummy load, 108 switch, 109 power regeneration circuit, 110 transmitting power source for discharge , 111 switch, 112 phase control unit, 113 output current control unit, 114 antenna switching control unit, 201 receiving antenna, 202 rectifier circuit, 1021 inverter circuit, 1022 input detection unit, 1023 power supply parameter detection unit, 1024 output detection unit, 1025 Matching circuit, 1071 rectifier circuit, 1072 charge capacitor, 1073 battery.

Claims (15)

  1.  複数の送信アンテナを有する送信装置と、受信アンテナを有する受信装置との間で電力伝送を行う共振型電力伝送システムにおいて、
     前記送信装置は、
     入力電力から前記送信アンテナの共振周波数に合わせた電力を出力する送信電源と、
     各々の前記送信アンテナのうちの少なくとも一つのアンテナに対向配置され、前記送信アンテナの共振周波数と同一周波数で共振する共振アンテナと、
     前記共振アンテナの供給線路に接続されたダミー負荷と、
     前記供給線路を接続又は切断するよう切替え可能なスイッチと、
     前記スイッチにより前記供給線路を接続及び切断した場合での磁束のパターンを、当該スイッチの切替え状態と紐付けて記憶する記憶部と、
     前記送信アンテナに近づいた前記受信アンテナの位置を取得するアンテナ位置取得部と、
     前記アンテナ位置取得部により取得された前記受信アンテナの位置から、前記記憶部に記憶された情報に基づいて、前記スイッチの切替えを行うスイッチ制御部とを有する
     ことを特徴とする共振型電力伝送システム。
    In a resonant power transmission system that performs power transmission between a transmission device having a plurality of transmission antennas and a reception device having a reception antenna,
    The transmitter is
    A transmission power supply that outputs power matched to the resonant frequency of the transmission antenna from input power;
    A resonant antenna disposed opposite to at least one of the transmitting antennas and resonating at the same frequency as the resonant frequency of the transmitting antenna;
    A dummy load connected to the supply line of the resonant antenna;
    A switch switchable to connect or disconnect the supply line;
    A storage unit that stores a magnetic flux pattern when the supply line is connected and disconnected by the switch in association with a switching state of the switch;
    An antenna position acquisition unit for acquiring a position of the reception antenna approaching the transmission antenna;
    A resonance type power transmission system comprising: a switch control unit configured to switch the switch based on information stored in the storage unit from the position of the reception antenna acquired by the antenna position acquisition unit. .
  2.  前記送信電源の保護機能を兼用し、前記受信アンテナが前記送信アンテナに近づくことにより変化する当該送信電源に関するパラメータを検出するパラメータ検出部を有し、
     前記アンテナ位置取得部は、前記パラメータ検出部による検出結果から前記受信アンテナの位置を推定する
     ことを特徴とする請求項1記載の共振型電力伝送システム。
    Having a parameter detection unit that also functions as a protection function of the transmission power source and detects a parameter related to the transmission power source that changes when the reception antenna approaches the transmission antenna;
    The resonance type power transmission system according to claim 1, wherein the antenna position acquisition unit estimates the position of the reception antenna from a detection result of the parameter detection unit.
  3.  前記共振アンテナは、各々の前記送信アンテナのうちの複数に跨って対向配置された
     ことを特徴とする請求項1記載の共振型電力伝送システム。
    The resonant power transmission system according to claim 1, wherein the resonant antennas are arranged to face each other across a plurality of the transmitting antennas.
  4.  前記ダミー負荷は、
     前記共振アンテナにより受信された電力を直流電力に変換する整流回路と、
     前記整流回路により変換された直流電力を充電するチャージコンデンサとを有し、
     前記チャージコンデンサに充電された直流電力を前記送信電源に回生する電力回生回路を有する
     ことを特徴とする請求項1記載の共振型電力伝送システム。
    The dummy load is
    A rectifier circuit that converts the power received by the resonant antenna into DC power;
    A charge capacitor for charging the DC power converted by the rectifier circuit,
    The resonance type power transmission system according to claim 1, further comprising: a power regeneration circuit that regenerates DC power charged in the charge capacitor to the transmission power source.
  5.  前記ダミー負荷は、
     前記共振アンテナにより受信された電力を直流電力に変換する整流回路と、
     前記整流回路により変換された直流電力を充電するバッテリとを有する
     ことを特徴とする請求項1記載の共振型電力伝送システム。
    The dummy load is
    A rectifier circuit that converts the power received by the resonant antenna into DC power;
    The resonance-type power transmission system according to claim 1, further comprising a battery that charges DC power converted by the rectifier circuit.
  6.  前記バッテリに充電された直流電力を前記共振アンテナに放電する放電用送信電源を有し、
     前記スイッチは、前記供給線路を前記バッテリ又は前記放電用送信電源に接続又は切断するよう切替え可能である
     ことを特徴とする請求項5記載の共振型電力伝送システム。
    A transmission power source for discharging that discharges the DC power charged in the battery to the resonant antenna;
    The resonance type power transmission system according to claim 5, wherein the switch is switchable to connect or disconnect the supply line to or from the battery or the discharge transmission power source.
  7.  前記送信電源から前記送信アンテナへの電流位相を制御する移相制御部を有する
     ことを特徴とする請求項1記載の共振型電力伝送システム。
    The resonant power transmission system according to claim 1, further comprising a phase shift control unit that controls a current phase from the transmission power source to the transmission antenna.
  8.  前記送信電源から前記送信アンテナへの電流量を制御する出力電流制御部を有する
     ことを特徴とする請求項1記載の共振型電力伝送システム。
    The resonant power transmission system according to claim 1, further comprising an output current control unit configured to control an amount of current from the transmission power source to the transmission antenna.
  9.  前記送信電源から前記送信アンテナへの電力の供給を接続又は切断するよう切替え可能なアンテナ切替え制御部を有する
     ことを特徴とする請求項1記載の共振型電力伝送システム。
    The resonance type power transmission system according to claim 1, further comprising an antenna switching control unit capable of switching so as to connect or disconnect power supply from the transmission power source to the transmission antenna.
  10.  前記送信アンテナと前記受信アンテナとは、磁界共鳴により電力伝送を行う
     ことを特徴とする請求項1記載の共振型電力伝送システム。
    The resonant power transmission system according to claim 1, wherein the transmission antenna and the reception antenna perform power transmission by magnetic field resonance.
  11.  前記送信アンテナと前記受信アンテナとは、電界共鳴により電力伝送を行う
     ことを特徴とする請求項1記載の共振型電力伝送システム。
    The resonant power transmission system according to claim 1, wherein the transmission antenna and the reception antenna perform power transmission by electric field resonance.
  12.  前記送信アンテナと前記受信アンテナとは、電磁誘導により電力伝送を行う
     ことを特徴とする請求項1記載の共振型電力伝送システム。
    The resonant power transmission system according to claim 1, wherein the transmission antenna and the reception antenna perform power transmission by electromagnetic induction.
  13.  複数の送信アンテナを有する送信装置と、受信アンテナを有する受信装置との間で電力伝送を行う共振型電力伝送システムにおいて、
     前記送信装置は、
     入力電力から前記送信アンテナの共振周波数に合わせた電力を出力する送信電源と、
     各々の前記送信アンテナのうちの少なくとも一つのアンテナに対向配置され、前記送信アンテナの共振周波数と同一周波数で共振する共振アンテナと、
     前記共振アンテナの線路を接続又は切断するよう切替え可能なスイッチと、
     前記スイッチにより前記線路を接続及び切断した場合での磁束のパターンを、当該スイッチの切替え状態と紐付けて記憶する記憶部と、
     前記送信アンテナに近づいた前記受信アンテナの位置を取得するアンテナ位置取得部と、
     前記アンテナ位置取得部により取得された前記受信アンテナの位置から、前記記憶部に記憶された情報に基づいて、前記スイッチの切替えを行うスイッチ制御部とを有する
     ことを特徴とする共振型電力伝送システム。
    In a resonant power transmission system that performs power transmission between a transmission device having a plurality of transmission antennas and a reception device having a reception antenna,
    The transmitter is
    A transmission power supply that outputs power matched to the resonant frequency of the transmission antenna from input power;
    A resonant antenna disposed opposite to at least one of the transmitting antennas and resonating at the same frequency as the resonant frequency of the transmitting antenna;
    A switch that can be switched to connect or disconnect the line of the resonant antenna;
    A storage unit that stores a pattern of magnetic flux when the line is connected and disconnected by the switch in association with a switching state of the switch,
    An antenna position acquisition unit for acquiring a position of the reception antenna approaching the transmission antenna;
    A resonance type power transmission system comprising: a switch control unit configured to switch the switch based on information stored in the storage unit from the position of the reception antenna acquired by the antenna position acquisition unit. .
  14.  受信アンテナを有する受信装置との間で電力伝送を行う複数の送信アンテナを有する送信装置において、
     入力電力から前記送信アンテナの共振周波数に合わせた電力を出力する送信電源と、
     各々の前記送信アンテナのうちの少なくとも一つのアンテナに対向配置され、前記送信アンテナの共振周波数と同一周波数で共振する共振アンテナと、
     前記共振アンテナの供給線路に接続されたダミー負荷と、
     前記供給線路を接続又は切断するよう切替え可能なスイッチと、
     前記スイッチにより前記供給線路を接続及び切断した場合での磁束のパターンを、当該スイッチの切替え状態と紐付けて記憶する記憶部と、
     前記送信アンテナに近づいた前記受信アンテナの位置を取得するアンテナ位置取得部と、
     前記アンテナ位置取得部により取得された前記受信アンテナの位置から、前記記憶部に記憶された情報に基づいて、前記スイッチの切替えを行うスイッチ制御部とを有する
     ことを特徴とする送信装置。
    In a transmission apparatus having a plurality of transmission antennas that perform power transmission with a reception apparatus having a reception antenna,
    A transmission power supply that outputs power matched to the resonant frequency of the transmission antenna from input power;
    A resonant antenna disposed opposite to at least one of the transmitting antennas and resonating at the same frequency as the resonant frequency of the transmitting antenna;
    A dummy load connected to the supply line of the resonant antenna;
    A switch switchable to connect or disconnect the supply line;
    A storage unit that stores a magnetic flux pattern when the supply line is connected and disconnected by the switch in association with a switching state of the switch;
    An antenna position acquisition unit for acquiring a position of the reception antenna approaching the transmission antenna;
    A transmission apparatus comprising: a switch control unit configured to switch the switch based on information stored in the storage unit based on the position of the reception antenna acquired by the antenna position acquisition unit.
  15.  受信アンテナを有する受信装置との間で電力伝送を行う複数の送信アンテナを有する送信装置において、
     入力電力から前記送信アンテナの共振周波数に合わせた電力を出力する送信電源と、
     各々の前記送信アンテナのうちの少なくとも一つのアンテナに対向配置され、前記送信アンテナの共振周波数と同一周波数で共振する共振アンテナと、
     前記共振アンテナの線路を接続又は切断するよう切替え可能なスイッチと、
     前記スイッチにより前記線路を接続及び切断した場合での磁束のパターンを、当該スイッチの切替え状態と紐付けて記憶する記憶部と、
     前記送信アンテナに近づいた前記受信アンテナの位置を取得するアンテナ位置取得部と、
     前記アンテナ位置取得部により取得された前記受信アンテナの位置から、前記記憶部に記憶された情報に基づいて、前記スイッチの切替えを行うスイッチ制御部とを有する
     ことを特徴とする送信装置。
    In a transmission apparatus having a plurality of transmission antennas that perform power transmission with a reception apparatus having a reception antenna,
    A transmission power supply that outputs power matched to the resonant frequency of the transmission antenna from input power;
    A resonant antenna disposed opposite to at least one of the transmitting antennas and resonating at the same frequency as the resonant frequency of the transmitting antenna;
    A switch that can be switched to connect or disconnect the line of the resonant antenna;
    A storage unit that stores a pattern of magnetic flux when the line is connected and disconnected by the switch in association with a switching state of the switch,
    An antenna position acquisition unit for acquiring a position of the reception antenna approaching the transmission antenna;
    A transmission apparatus comprising: a switch control unit configured to switch the switch based on information stored in the storage unit based on the position of the reception antenna acquired by the antenna position acquisition unit.
PCT/JP2015/057667 2015-03-16 2015-03-16 Resonance-type power transmission system and transmission device WO2016147294A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015532229A JP5828994B1 (en) 2015-03-16 2015-03-16 Resonant power transmission system and transmitter
PCT/JP2015/057667 WO2016147294A1 (en) 2015-03-16 2015-03-16 Resonance-type power transmission system and transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057667 WO2016147294A1 (en) 2015-03-16 2015-03-16 Resonance-type power transmission system and transmission device

Publications (1)

Publication Number Publication Date
WO2016147294A1 true WO2016147294A1 (en) 2016-09-22

Family

ID=54784337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057667 WO2016147294A1 (en) 2015-03-16 2015-03-16 Resonance-type power transmission system and transmission device

Country Status (2)

Country Link
JP (1) JP5828994B1 (en)
WO (1) WO2016147294A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175806A (en) * 2011-02-22 2012-09-10 Panasonic Corp Non-contact type feeding device
JP2014090652A (en) * 2012-10-31 2014-05-15 Mitsubishi Electric Engineering Co Ltd Multiplexing transmission system by wireless power transmission and transmission side multiplexing transmitter
JP2014090642A (en) * 2012-10-31 2014-05-15 Toyota Motor Corp Power incoming apparatus and power transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175806A (en) * 2011-02-22 2012-09-10 Panasonic Corp Non-contact type feeding device
JP2014090652A (en) * 2012-10-31 2014-05-15 Mitsubishi Electric Engineering Co Ltd Multiplexing transmission system by wireless power transmission and transmission side multiplexing transmitter
JP2014090642A (en) * 2012-10-31 2014-05-15 Toyota Motor Corp Power incoming apparatus and power transmission system

Also Published As

Publication number Publication date
JP5828994B1 (en) 2015-12-09
JPWO2016147294A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US9276434B2 (en) Wireless power supply apparatus, wireless charging apparatus, and wireless charging system using the same
US10320234B2 (en) Multimode wireless power receivers and related methods
JP6702688B2 (en) Wireless power transmission system and power receiving device
JP5241381B2 (en) Power receiver
EP2761723B1 (en) Wireless power transmitter, wirless power repeater and wireless power transmission method
US20110133569A1 (en) Wireless power transmission device and wireless power reception device
JP5892234B2 (en) Power transmission device and power transmission / reception system
JP5690251B2 (en) Resonance type wireless charger
JP5587165B2 (en) Non-contact power transmission system and power receiving antenna
KR101968687B1 (en) Method for driving power supply system
KR102267415B1 (en) Apparatus for determining abnormal status of wireless power transmission coil
JP6223472B2 (en) Resonant power transmission system and resonant power transmitter
JP2013537796A (en) Multi-loop wireless power receiver coil
JP6555517B2 (en) Wireless power supply system
CN104600767A (en) Electronic device
WO2015083202A1 (en) Array coil system
KR20170109299A (en) Resonance apparatus and apparatus for transmitting power wirelessly using the same
KR101532131B1 (en) Resonant type power supplying apparatus
JP5828994B1 (en) Resonant power transmission system and transmitter
KR101294481B1 (en) Apparatus for receiving a wireless power and touch panel combined therein
KR102272354B1 (en) Apparatus for wireless power transmission
JP6496678B2 (en) Power receiving device
KR102060479B1 (en) Circuit breaker
JP2017139899A (en) Non-contact transmission device, non-contact power reception device and non-contact power transmission system
JP5911449B2 (en) Transmission system using wireless power transmission and transmission apparatus on transmission side

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015532229

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885392

Country of ref document: EP

Kind code of ref document: A1