WO2016147238A1 - Ad converter, image sensor, and image pickup device - Google Patents

Ad converter, image sensor, and image pickup device Download PDF

Info

Publication number
WO2016147238A1
WO2016147238A1 PCT/JP2015/006092 JP2015006092W WO2016147238A1 WO 2016147238 A1 WO2016147238 A1 WO 2016147238A1 JP 2015006092 W JP2015006092 W JP 2015006092W WO 2016147238 A1 WO2016147238 A1 WO 2016147238A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
circuit
switch
converter
voltage
Prior art date
Application number
PCT/JP2015/006092
Other languages
French (fr)
Japanese (ja)
Inventor
徳永 祐介
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016147238A1 publication Critical patent/WO2016147238A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present disclosure relates to an AD converter, and more particularly to an AD converter mounted on an image sensor.
  • Non-Patent Document 1 discloses that a highly accurate and low power consumption image sensor can be realized by using a ⁇ AD converter for an image sensor.
  • the AD converter includes a first amplifier circuit to which an analog signal is input, a second amplifier circuit to which a reference signal is input, and a first switch to which an output signal of the first amplifier circuit is connected.
  • a switched capacitor circuit having a capacitor and a second switch to which the output signal of the second amplifier circuit is connected, and between the interconnection point of the first switch, the second switch, and the capacitor and the reference voltage A precharge circuit connected to the capacitor; and an AD converter circuit connected to the capacitor.
  • This configuration provides an AD converter that can suppress the occurrence of streaking.
  • FIG. 1 is a schematic diagram illustrating an example of the appearance of an image sensor.
  • FIG. 2 is a block diagram showing a functional configuration of the image sensor of FIG.
  • FIG. 3 is a schematic diagram illustrating a reference voltage between the pixel unit and the ADC.
  • FIG. 4A is a schematic diagram for explaining input voltage dependency of current consumption in an ADC.
  • FIG. 4B is a schematic diagram for explaining the potential of GND2.
  • FIG. 4C is a schematic diagram for explaining the relationship between the lightness of light and the digital value output from the ADC.
  • FIG. 5 is a schematic diagram showing the configuration of the column ADC.
  • FIG. 6A is a schematic diagram showing an image in which white strip-like streaking has occurred.
  • FIG. 6B is a schematic diagram illustrating an image in which black strip-like streaking has occurred.
  • FIG. 7 is a circuit diagram of a switched capacitor integrator.
  • FIG. 8 is a block diagram illustrating a schematic configuration of the AD converter according to the first embodiment.
  • FIG. 9 is a circuit diagram illustrating an example of an amplifier circuit in the AD converter according to the first embodiment.
  • FIG. 10 is a circuit diagram showing another example of the amplifier circuit in the AD converter according to the first embodiment.
  • FIG. 11 is a time chart for explaining the operation of the AD converter according to the first embodiment.
  • FIG. 12 is a block diagram illustrating a schematic configuration of the AD converter according to the second embodiment.
  • FIG. 13 is a time chart for explaining the operation of the AD converter according to the second embodiment.
  • FIG. 14 is an external view of a digital camera according to the third embodiment.
  • streaking is a phenomenon in which, for example, when a bright point light source or the like is photographed in the dark, white straight lines rise to the left and right of the point light source on the photographed image.
  • streaking is, for example, when a strong light source such as the sun is photographed during the day, and on the photographed image, areas with band-like color changes appear on the left and right of the sun, or the areas on the left and right of the sun are black. It is a phenomenon that sinks.
  • FIG. 1 is a schematic diagram showing an example of the appearance of an image sensor.
  • FIG. 2 is a block diagram showing a functional configuration of the image sensor of FIG.
  • 1 and 2 includes a pixel unit (pixel array) 102, a row selector 103, a column ADC 104, and a parallel / serial conversion unit 105.
  • pixel unit pixel array
  • row selector 103 row selector
  • column ADC 104 column ADC
  • parallel / serial conversion unit 105 parallel / serial conversion unit
  • light is input to a plurality of photoelectric conversion elements (for example, photodiodes) arranged in a matrix in the pixel portion 102, and a corresponding voltage is output to the row selector 103.
  • photoelectric conversion elements for example, photodiodes
  • the row selector 103 outputs an output voltage corresponding to one pixel row of the pixel unit 102 to the column ADC 104.
  • the column ADC 104 is composed of a plurality of ADCs, converts the output voltage from analog to digital, and outputs digital data.
  • the output digital data is converted by the parallel / serial conversion unit 105 and output to the outside of the image sensor 101.
  • FIG. 3 is a schematic diagram showing a reference voltage between the pixel unit 102 and the ADC 107.
  • the row selector 103 is omitted.
  • each of the pixel unit 102 and the ADC 107 has independent impedances R1 and R2 in the path to the common GND. That is, the pixel unit 102 outputs a voltage based on GND1, and the ADC 107 receives a voltage (input voltage Vin) based on GND2. Therefore, when the consumption current of the ADC 107 (current flowing through R2 in FIG. 3) has a dependency on the input voltage Vin, an error occurs in the output of the ADC according to the input voltage Vin.
  • the dependency of the consumption current on the input voltage Vin means that there is some correlation between the magnitude of the input voltage and the magnitude of the consumption current.
  • FIG. 4A is a schematic diagram for explaining the input voltage dependence of current consumption in the ADC.
  • FIG. 4B is a schematic diagram for explaining the potential of GND2.
  • FIG. 4C is a schematic diagram for explaining the relationship between the lightness of light and the digital value output from the ADC.
  • the dotted line a indicates the ideal characteristic of the input voltage Vin
  • the solid line b indicates the actual characteristic of the input voltage Vin.
  • FIG. 4A shows the dependence of the consumption current flowing into the common GND on the input voltage Vin.
  • the potential of GND2 has characteristics as shown in FIG. 4B due to the impedance R2. That is, as shown in FIG. 4C, Vin (actual characteristic b) is lower than an ideal Vin (ideal characteristic a) based on the common GND.
  • the voltage output from the photoelectric conversion element is inversely proportional to the lightness of the light input to the photoelectric conversion element. Therefore, the light input to the pixel portion 102 and the digital value output from the ADC 107 have characteristics as shown in C of FIG. That is, the difference between the actual characteristic and the ideal characteristic increases as the lightness of the light input to the pixel unit 102 is lower (darker).
  • FIG. 5 is a schematic diagram showing the configuration of the column ADC.
  • FIG. 6A is a schematic diagram showing an image in which white strip-like streaking has occurred.
  • FIG. 6B is a schematic diagram illustrating an image in which black strip-like streaking has occurred.
  • the column ADC 104 has a configuration in which a large number of ADCs 107 are connected in parallel, and the plurality of ADCs 107 configuring the column ADC 104 have a common impedance R ⁇ b> 2 on the path to the common GND.
  • the image sensor 101 When the image sensor 101 is used to photograph an object having a uniform brightness as a whole but only a specific area, the current consumption flowing from the ADC 107 of the pixel corresponding to the specific area to R2 increases. For this reason, the potential of GND2 rises. As a result, the input voltage Vin of the other ADCs 107 connected in parallel is reduced by the increase in the potential of GND2, and a digital value offset in a direction brighter than the actual is output from these other ADCs 107. . That is, because of some low-luminance pixels, the digital values of other pixels in the same row change.
  • the image sensor 101 when the image sensor 101 is used to photograph an object having a uniform brightness but only a specific area as a whole, the current consumption flowing from the ADC 107 of the pixel for the specific area into R2 decreases. For this reason, the electric potential of GND2 falls. As a result, the input voltage Vin of the other ADCs 107 connected in parallel increases as the potential of the GND2 decreases, and a digital value offset in a darker direction than the actual is output from these other ADCs 107. . That is, because of some high-luminance pixels, the digital values of other pixels in the same row change.
  • the dependency of the consumption current on the input voltage Vin in the ADC 107 is due to the switched capacitor technology generally used in the ADC 107.
  • ADCs There are various types of ADCs, such as cyclic ADCs, SAR ADCs, and ⁇ modulation ADCs, but the basic element circuit is a switched capacitor circuit.
  • FIG. 7 is a circuit diagram of a switched capacitor integrator, which is an example of a switched capacitor circuit.
  • One terminal of the sampling capacitor 121 is virtually grounded by the operational amplifier 123. For this reason, the charge / discharge amount in the sampling capacitor 121 is determined by the potential of the other terminal of the sampling capacitor 121, that is, the voltage input to the input terminal 129.
  • the capacitance of the sampling capacitor 121 is Cs [F], and a voltage of Vin [V] is applied to the input terminal 129.
  • the switch 124 is short-circuited and the switch 125 is open, the other terminal of the sampling capacitor 121 is set to a voltage of Vin [V]. Therefore, the sampling capacitor 121 is charged with a charge of Cs ⁇ Vin [C].
  • FIG. 8 is a block diagram illustrating a schematic configuration of the AD converter according to the first embodiment.
  • the AD converter 20A includes an amplifier circuit 21, an amplifier circuit 22, a switched capacitor circuit 23, a precharge circuit 24, and an AD converter circuit 25.
  • Vin is an analog signal to be subjected to analog-digital conversion by the AD converter 20A.
  • Vin is given from the pixel portion 102 of the image sensor 101 as shown in FIG.
  • Vref is input to the amplifier circuit 22.
  • Vref is a reference signal serving as a reference for analog-digital conversion by the AD converter 20A. That is, the AD converter 20A performs analog-digital conversion on the differential voltage between Vin and Vref. Vref may be higher or lower than Vin.
  • Vin When Vref is higher than Vin, the input polarity of the AD converter 20A is inverted, and when Vref is lower than Vin, the input polarity of the AD converter 20A is not inverted and remains as it is.
  • FIG. 9 is a circuit diagram showing an example of the amplifier circuits 21 and 22.
  • the amplifier circuits 21 and 22 can be configured using a constant current source 26 and a source follower 27 including an NMOS transistor.
  • the constant current source 26 is connected between the output terminals of the amplifier circuits 21 and 22 and a reference voltage (here, GND).
  • GND a reference voltage
  • a signal is input to the input terminal IN connected to the gate of the source follower 27 (NMOS transistor), and a signal is output from the output terminal OUT connected to the source.
  • the gains of the amplifier circuits 21 and 22 shown in FIG. 9 are almost 1 times, and the output voltage of the amplifier circuits 21 and 22 is a voltage obtained by dropping the gate-source voltage of the source follower 27 from the input voltage. Further, the current flowing into the GND is maintained at a constant value regardless of the input / output voltage.
  • FIG. 10 is a circuit diagram showing another example of the amplifier circuits 21 and 22.
  • the amplifier circuits 21 and 22 can be configured using a constant current source 26 and a voltage follower 28 including an operational amplifier.
  • the inverting input terminal IN ⁇ and the output terminal OUT of the voltage follower 28 (operational amplifier) are connected to each other.
  • the constant current source 26 is connected as a tail current source of the voltage follower 28 between the output terminals OUT of the amplifier circuits 21 and 22 and the reference voltage (GND in this case).
  • a signal is input to the non-inverting input terminal IN + of the voltage follower 28 (operational amplifier), and a signal is output from the output terminal OUT.
  • the gains of the amplifier circuits 21 and 22 shown in FIG. 10 are almost 1 times, and the output voltages of the amplifier circuits 21 and 22 are almost equal to the input voltage. Further, the current flowing into the GND is maintained at a constant value regardless of the input / output voltage.
  • the switched capacitor circuit 23 includes a switch 231, a switch 232, and a capacitor 233.
  • the output signal of the amplifier circuit 21 is connected to one end of the switch 231, and the other end of the switch 231 is connected to one end of the capacitor 233.
  • the switch 231 performs a switching operation according to the control signal ⁇ 1, and switches between short circuit and open circuit between the amplifier circuit 21 and the capacitor 233.
  • the control signal ⁇ 1 is output from a controller (not shown).
  • the output signal of the amplifier circuit 22 is connected to one end of the switch 232, and the other end of the switch 232 is connected to one end of the capacitor 233.
  • the switch 232 performs a switching operation according to the control signal ⁇ ⁇ b> 2 and switches between short circuit and open circuit between the amplifier circuit 22 and the capacitor 233.
  • the control signal ⁇ 2 is output from a controller (not shown).
  • the capacitor 233 corresponds to the sampling capacitor 121 in FIG.
  • the precharge circuit 24 is connected between the interconnection point of the switch 231, the switch 232, and the capacitor 233 in the switched capacitor circuit 23 and a reference voltage (GND in this case).
  • the precharge circuit 24 can be configured by a switch 241 having one end connected to the interconnection point and the other end connected to GND.
  • the switch 241 performs a switching operation according to the control signal ⁇ 3, and switches between short-circuiting and opening of the capacitor 233 and GND.
  • the control signal ⁇ 3 is output from a controller (not shown).
  • the AD conversion circuit 25 is connected to the other end of the capacitor 233.
  • the AD conversion circuit 25 integrates the charging voltage of the capacitor 233, performs analog-digital conversion on the integrated voltage, and outputs a digital value Dout.
  • the AD conversion circuit 25 is a cyclic ADC, a SAR ADC, a ⁇ modulation ADC, or a composite type thereof.
  • FIG. 11 is a time chart for explaining the operation of the AD converter 20A according to the present embodiment.
  • ⁇ 1 and ⁇ 2 do not simultaneously become H level, and when one of them is H level, the other is L level. Further, ⁇ 3 becomes H level when both ⁇ 1 and ⁇ 2 are L level.
  • the driving capability of the amplifier circuit 22 is sufficiently large with respect to the capacitance of the capacitor 233, the charging voltage of the capacitor 233 immediately rises to Vref. Further, while the switch 232 is in the ON state, the current flowing into the GND is maintained at a constant value by the constant current source 26 in the amplifier circuit 22.
  • the capacitor 233 is immediately discharged and the charging voltage becomes the GND level. That is, the capacitor 233 is precharged to the GND level.
  • the charging voltage of the capacitor 233 rises from GND to Vin.
  • the driving capability of the amplifier circuit 21 is sufficiently larger than the capacitance of the capacitor 233, the charging voltage of the capacitor 233 immediately rises to Vin.
  • the switch 231 is in the ON state, the current flowing into the GND is maintained at a constant value by the constant current source 26 in the amplifier circuit 21.
  • the AD conversion circuit 25 integrates the input voltage Vin charged in the capacitor 233, converts the integrated voltage from analog to digital, and outputs a digital value Dout.
  • the AD converter 20A includes the amplifier circuit 21, the amplifier circuit 22, the switched capacitor circuit 23, the precharge circuit 24, and the AD converter circuit 25.
  • the analog signal (input voltage Vin) is input to the amplifier circuit 21, the reference signal (reference voltage Vref) is input to the amplifier circuit 22, and the current flowing into the GND in the amplifier circuits 21 and 22 is constant.
  • the switched capacitor circuit 23 has a capacitor 233 as a sampling capacitor in the AD converter 20A.
  • the switches 231 and 232 are connected to output signals of the amplifier circuits 21 and 22, and the capacitor 233 is connected to the AD converter circuit 25. Is done.
  • Precharge circuit 24 precharges capacitor 233 when both switches 231 and 232 are off.
  • the capacitor 233 is precharged to the GND level every time.
  • the capacitor 233 is charged in the direction of increasing from GND to Vin or Vref by the high-speed pull-up operation of the source follower 27 or the voltage follower 28.
  • FIG. 12 is a block diagram illustrating a schematic configuration of the AD converter according to the second embodiment.
  • the AD converter 20B includes an amplifier circuit 21, an amplifier circuit 22, a switched capacitor circuit 23, a precharge circuit 24, and an AD converter circuit 25. Note that the amplifier circuits 21 and 22, the switched capacitor circuit 23, and the AD conversion circuit 25 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the precharge circuit 24 is connected between the interconnection point of the switch 231, the switch 232, and the capacitor 233 in the switched capacitor circuit 23 and a reference voltage (GND in this case).
  • the precharge circuit 24 is configured as a switched capacitor circuit having a switch 241, a switch 242, and a capacitor 243.
  • One end of the switch 241 is connected to the interconnection point, and the other end of the switch 241 is connected to one end of the capacitor 243.
  • One end of the capacitor 243 is connected to a reference voltage (here, GND).
  • the switch 241 performs a switching operation according to the control signal ⁇ 3, and switches between short-circuit and open-circuit between the capacitor 233 and the capacitor 243.
  • the control signal ⁇ 3 is output from a controller (not shown).
  • One end of the switch 242 is connected to a reference voltage (here, GND), and the other end of the switch 242 is connected to one end of the capacitor 243. That is, the switch 242 is connected to both ends of the capacitor 243.
  • the switch 242 performs a switching operation according to the control signal ⁇ 4, and switches between short-circuiting and opening-up of both ends of the capacitor 243.
  • the control signal ⁇ 4 is output from a controller (not shown).
  • FIG. 13 is a time chart for explaining the operation of the AD converter 20B according to the present embodiment.
  • ⁇ 1 and ⁇ 2 do not simultaneously become H level, and when one of them is H level, the other is L level. Further, ⁇ 3 and ⁇ 4 are not simultaneously at the H level, and when one of them is at the H level, the other is at the L level. Further, ⁇ 3 and ⁇ 4 logically transition when both ⁇ 1 and ⁇ 2 are at the L level. That is, the switches 241 and 242 perform a switching operation when both the switches 231 and 232 are in the off state.
  • charge redistribution occurs between the capacitor 233 and the capacitor 243, and the capacitances of the capacitors 233 and 243 are equal to each other, so that the charging voltage of the capacitor 233 rapidly increases to the original half, that is, Vref / 2. Converge to. That is, the capacitor 233 is precharged to the voltage Vref / 2.
  • the charging voltage of the capacitor 233 increases from Vref / 2 to Vin.
  • the driving capability of the amplifier circuit 21 is sufficiently larger than the capacitance of the capacitor 233, the charging voltage of the capacitor 233 immediately rises to Vin.
  • the switch 231 is in the ON state, the current flowing into the GND is maintained at a constant value by the constant current source 26 in the amplifier circuit 21.
  • the capacitor 243 is discharged with both ends connected to a reference voltage (here, GND).
  • the AD conversion circuit 25 integrates the input voltage Vin charged in the capacitor 233, converts the integrated voltage from analog to digital, and outputs a digital value Dout.
  • the AD converter 20B includes the amplifier circuit 21, the amplifier circuit 22, the switched capacitor circuit 23, the precharge circuit 24, and the AD converter circuit 25.
  • An analog signal (input voltage Vin) is input to the amplifier circuit 21, and a reference signal (reference voltage Vref) is input to the amplifier circuit 22, and the current flowing into the GND in the amplifier circuits 21 and 22 is constant.
  • the switched capacitor circuit 23 has a capacitor 233 as a sampling capacitor in the AD converter 20B.
  • the switches 231 and 232 are connected to the output signals of the amplifier circuits 21 and 22, and the capacitor 233 is connected to the AD converter circuit 25. Is done.
  • the precharge circuit 24 is configured as a switched capacitor circuit having a switch 241, a switch 242, and a capacitor 243.
  • the capacitor 243 is discharged, and which of the switches 231 and 232 is In the off state, the switches 241 and 242 perform a switching operation, and charge redistribution occurs between the capacitors 233 and 243 to precharge the capacitor 233 to a predetermined voltage higher than GND.
  • the capacitor 233 serving as the sampling capacitor, the current flowing into the GND is always constant regardless of the magnitude of the input voltage Vin, and the input current dependence of the consumption current in the AD converter 20B. Sex is lost. Further, immediately before the capacitor 233 is connected to the output signal of the amplifier circuit 21 or 22, the capacitor 233 is precharged to a predetermined voltage higher than the GND level every time.
  • the constant current source 26 in the amplifier circuits 21 and 22 in order for the constant current source 26 in the amplifier circuits 21 and 22 to output a constant current, it is necessary to operate a transistor (not shown) constituting the constant current source 26 in a saturation region. In the meantime, a voltage equal to or higher than the voltage obtained by subtracting the threshold voltage from the gate-source voltage must be applied.
  • the capacitor 233 is precharged to the GND level immediately before the capacitor 233 is connected to the output signal of the amplifier circuit 21 or 22, the source voltage of a transistor (not shown) constituting the constant current source 26 is instantaneous. Therefore, there is a possibility that the constant current property may be lost due to the GND level and the transistor operating in the non-saturated region.
  • the capacitor 233 is precharged to a predetermined voltage higher than the GND level, so that the unillustrated transistor constituting the constant current source 26 does not operate in the non-saturated region.
  • the constant current property of the constant current source 26 can be maintained.
  • the capacitor 233 When the capacitor 233 is connected to the output signal of the amplifier circuit 21 or 22, the capacitor 233 is charged in the direction of increasing from a predetermined voltage to Vin or Vref by the high-speed pull-up operation of the source follower 27 or the voltage follower 28. Is done. Thereby, the charging speed of the capacitor 233 is increased, and the input analog signal can be sampled at high speed.
  • the capacitances of the capacitor 233 and the capacitor 243 are not necessarily equal as long as the constant current source 26 does not enter the non-saturation region operation.
  • Embodiment 3 will be described with reference to FIG.
  • FIG. 14 is an external view of the digital camera 30 according to the fourth embodiment.
  • the digital camera 30 includes an interchangeable lens (imaging optical system) 31 and a camera body 32 to which the interchangeable lens 31 can be attached.
  • the interchangeable lens 31 includes a focus lens and a zoom lens (not shown).
  • the camera body 32 includes a release button 33.
  • the camera body 32 incorporates an image sensor 101 (see FIG. 1) including the AD converter 20A according to the first embodiment and the AD converter 20B according to the second embodiment.
  • the camera body 32 When the camera body 32 receives a half-press operation by the user of the release button 33, the camera body 32 transmits a control signal to the interchangeable lens 31 so as to perform an autofocus operation. Further, when the camera body 32 receives an operation by the user of the release button 33, the camera body 32 performs a photographing operation of a subject image formed via the interchangeable lens 31.
  • the interchangeable lens 31 focuses the light from the subject and forms an image on the image sensor 101.
  • the image sensor 101 receives the formed subject image and photoelectrically converts the subject image to generate image data.
  • the image data is processed by a processor (not shown) in the camera body 32.
  • the digital camera 30 includes the image sensor 101 including the AD converter 20A according to the first embodiment and the AD converter 20B according to the second embodiment. It is possible to obtain a high-quality captured image in which streaking is suppressed.
  • Embodiments 1 to 3 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1 thru
  • the column ADCs 104 are provided on both sides of the pixel unit 102, but the column ADCs 104 may be provided only on one side.
  • the capacitances of the capacitor 233 and the capacitor 243 are assumed to be equal. In consideration of the characteristics of the transistor, it may be determined as appropriate according to how much the precharge voltage of the capacitor 233 is set.
  • the digital camera 30 is described as an example of an imaging device on which the image sensor 101 is mounted.
  • the application range of the image sensor 101 is not limited to the digital camera 30.
  • the image sensor 101 can be mounted on various devices such as a studio camera, a business camera, a digital video camera, a surveillance camera, an in-vehicle camera, a smartphone, and a tablet PC.
  • This disclosure is applicable to image sensors. Specifically, the present disclosure is applicable to image sensors mounted on studio cameras, business cameras, digital still cameras, movies, mobile phones with camera functions, smartphones, and the like.

Abstract

An AD converter (20A) is provided with: a first amplifying circuit (21) to which an analog signal Vin is inputted; a second amplifying circuit (22) to which a reference signal Vref is inputted; a switched capacitor circuit (23) that has a first switch (231) to which an output signal of the first amplifying circuit (21) is connected, a second switch (232) to which an output signal of the second amplifying circuit (22) is connected, and a capacitor (233); a precharge circuit (24) connected between a reference voltage GND and an interconnection point of the first switch (231), the second switch (232), and the capacitor (233); and an AD conversion circuit (25) connected to the capacitor (233).

Description

AD変換器、イメージセンサ、および撮像装置AD converter, image sensor, and imaging apparatus
 本開示は、AD変換器に関し、特にイメージセンサに搭載されるAD変換器に関する。 The present disclosure relates to an AD converter, and more particularly to an AD converter mounted on an image sensor.
 近年、イメージセンサの分野において、様々な回路形式のアナログ-デジタル変換回路(以下、AD変換器またはADCと記載する)が提案されている。特に、非特許文献1には、ΔΣAD変換器をイメージセンサに用いることで、高精度かつ低消費電力なイメージセンサが実現できることが開示されている。 In recent years, analog-digital conversion circuits (hereinafter referred to as AD converters or ADCs) of various circuit formats have been proposed in the field of image sensors. In particular, Non-Patent Document 1 discloses that a highly accurate and low power consumption image sensor can be realized by using a ΔΣ AD converter for an image sensor.
 本開示におけるAD変換器は、アナログ信号が入力される第1の増幅回路と、参照信号が入力される第2の増幅回路と、第1の増幅回路の出力信号が接続された第1のスイッチ、第2の増幅回路の出力信号が接続された第2のスイッチ、およびキャパシタを有するスイッチトキャパシタ回路と、第1のスイッチ、第2のスイッチ、およびキャパシタの相互接続点と基準電圧との間に接続されたプリチャージ回路と、キャパシタに接続されたAD変換回路とを備える。 The AD converter according to the present disclosure includes a first amplifier circuit to which an analog signal is input, a second amplifier circuit to which a reference signal is input, and a first switch to which an output signal of the first amplifier circuit is connected. A switched capacitor circuit having a capacitor and a second switch to which the output signal of the second amplifier circuit is connected, and between the interconnection point of the first switch, the second switch, and the capacitor and the reference voltage A precharge circuit connected to the capacitor; and an AD converter circuit connected to the capacitor.
 この構成により、ストリーキングの発生を抑制することが可能なAD変換器を提供する。 This configuration provides an AD converter that can suppress the occurrence of streaking.
図1は、イメージセンサの外観の一例を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of the appearance of an image sensor. 図2は、図1のイメージセンサの機能構成を表すブロック図である。FIG. 2 is a block diagram showing a functional configuration of the image sensor of FIG. 図3は、画素部とADCとの基準電圧を示す模式図である。FIG. 3 is a schematic diagram illustrating a reference voltage between the pixel unit and the ADC. 図4Aは、ADCにおける消費電流の入力電圧依存性を説明するための模式図である。FIG. 4A is a schematic diagram for explaining input voltage dependency of current consumption in an ADC. 図4Bは、GND2の電位を説明するための模式図である。FIG. 4B is a schematic diagram for explaining the potential of GND2. 図4Cは、光の明度とADCから出力されるデジタル値の関係を説明するための模式図である。FIG. 4C is a schematic diagram for explaining the relationship between the lightness of light and the digital value output from the ADC. 図5は、カラムADCの構成を示す模式図である。FIG. 5 is a schematic diagram showing the configuration of the column ADC. 図6Aは、白い帯状のストリーキングが発生した画像を示す模式図である。FIG. 6A is a schematic diagram showing an image in which white strip-like streaking has occurred. 図6Bは、黒い帯状のストリーキングが発生した画像を示す模式図である。FIG. 6B is a schematic diagram illustrating an image in which black strip-like streaking has occurred. 図7は、スイッチトキャパシタ型積分器の回路図である。FIG. 7 is a circuit diagram of a switched capacitor integrator. 図8は、実施の形態1に係るAD変換器の概略構成を示すブロック図である。FIG. 8 is a block diagram illustrating a schematic configuration of the AD converter according to the first embodiment. 図9は、実施の形態1に係るAD変換器における増幅回路の一例を示す回路図である。FIG. 9 is a circuit diagram illustrating an example of an amplifier circuit in the AD converter according to the first embodiment. 図10は、実施の形態1に係るAD変換器における増幅回路の別例を示す回路図である。FIG. 10 is a circuit diagram showing another example of the amplifier circuit in the AD converter according to the first embodiment. 図11は、実施の形態1に係るAD変換器の動作を説明するためのタイムチャートである。FIG. 11 is a time chart for explaining the operation of the AD converter according to the first embodiment. 図12は、実施の形態2に係るAD変換器の概略構成を示すブロック図である。FIG. 12 is a block diagram illustrating a schematic configuration of the AD converter according to the second embodiment. 図13は、実施の形態2に係るAD変換器の動作を説明するためのタイムチャートである。FIG. 13 is a time chart for explaining the operation of the AD converter according to the second embodiment. 図14は、実施の形態3に係るデジタルカメラの外観図である。FIG. 14 is an external view of a digital camera according to the third embodiment.
 (本発明の基礎となった知見)
 イメージセンサの性能に依存して、イメージセンサを用いて撮影した画像にストリーキングと呼ばれる現象が生じることがある。ストリーキングは、例えば、暗闇の中で明るい点光源等を撮影した場合、撮影した画像上において点光源の左右に白い直線が浮き上がる現象である。また、ストリーキングは、例えば、日中、太陽等の強力な光源を撮影した場合、撮影した画像上において、太陽の左右に帯状の色味が変わった領域が生じたり、太陽の左右の領域が黒く沈み込むような現象である。
(Knowledge that became the basis of the present invention)
Depending on the performance of the image sensor, a phenomenon called streaking may occur in an image taken using the image sensor. Streaking is a phenomenon in which, for example, when a bright point light source or the like is photographed in the dark, white straight lines rise to the left and right of the point light source on the photographed image. In addition, streaking is, for example, when a strong light source such as the sun is photographed during the day, and on the photographed image, areas with band-like color changes appear on the left and right of the sun, or the areas on the left and right of the sun are black. It is a phenomenon that sinks.
 まず、イメージセンサの構成と動作について具体例を挙げて説明する。 First, the configuration and operation of the image sensor will be described with specific examples.
 図1は、イメージセンサの外観の一例を示す模式図である。 FIG. 1 is a schematic diagram showing an example of the appearance of an image sensor.
 図2は、図1のイメージセンサの機能構成を表すブロック図である。 FIG. 2 is a block diagram showing a functional configuration of the image sensor of FIG.
 図1および図2に示されるイメージセンサ101は、画素部(画素アレイ)102と、行セレクタ103と、カラムADC104と、パラレル・シリアル変換部105とを備える。なお、図1では、周辺回路106内にパラレル・シリアル変換部105があるものとする。 1 and 2 includes a pixel unit (pixel array) 102, a row selector 103, a column ADC 104, and a parallel / serial conversion unit 105. In FIG. 1, it is assumed that the parallel / serial conversion unit 105 is provided in the peripheral circuit 106.
 以下、図1および図2に示されるイメージセンサの動作を簡略化して説明する。 Hereinafter, the operation of the image sensor shown in FIGS. 1 and 2 will be described in a simplified manner.
 まず、光が画素部102においてマトリクス状に配列された複数の光電変換素子(例えばフォトダイオード)に入力され、対応する電圧が行セレクタ103に出力される。 First, light is input to a plurality of photoelectric conversion elements (for example, photodiodes) arranged in a matrix in the pixel portion 102, and a corresponding voltage is output to the row selector 103.
 次に、行セレクタ103から、画素部102の画素1行分に相当する出力電圧がカラムADC104に出力される。カラムADC104は、複数のADCから構成され、上記出力電圧をアナログ-デジタル変換し、デジタルデータを出力する。出力されたデジタルデータは、パラレル・シリアル変換部105によって変換され、イメージセンサ101の外部に出力される。 Next, the row selector 103 outputs an output voltage corresponding to one pixel row of the pixel unit 102 to the column ADC 104. The column ADC 104 is composed of a plurality of ADCs, converts the output voltage from analog to digital, and outputs digital data. The output digital data is converted by the parallel / serial conversion unit 105 and output to the outside of the image sensor 101.
 図3は、画素部102とADC107との基準電圧を示す模式図である。なお、図3では、行セレクタ103は、省略されている。 FIG. 3 is a schematic diagram showing a reference voltage between the pixel unit 102 and the ADC 107. In FIG. 3, the row selector 103 is omitted.
 図3に示されるように、画素部102およびADC107は、各々独立したインピーダンスR1およびR2を共通GNDまでの経路に有する。つまり、画素部102は、GND1を基準とした電圧を出力し、ADC107は、GND2を基準とした電圧(入力電圧Vin)を受け取る。したがって、ADC107の消費電流(図3のR2に流れる電流)に、入力電圧Vinに対する依存性がある場合、入力電圧Vinに応じてADCの出力に誤差が生じる。なお、本明細書中において、消費電流の入力電圧Vinへの依存性とは、入力電圧の大きさと、消費電流の大きさとの間に何らかの相関関係があることを意味する。 As shown in FIG. 3, each of the pixel unit 102 and the ADC 107 has independent impedances R1 and R2 in the path to the common GND. That is, the pixel unit 102 outputs a voltage based on GND1, and the ADC 107 receives a voltage (input voltage Vin) based on GND2. Therefore, when the consumption current of the ADC 107 (current flowing through R2 in FIG. 3) has a dependency on the input voltage Vin, an error occurs in the output of the ADC according to the input voltage Vin. In this specification, the dependency of the consumption current on the input voltage Vin means that there is some correlation between the magnitude of the input voltage and the magnitude of the consumption current.
 図4Aは、ADCにおける消費電流の入力電圧依存性を説明するための模式図である。図4Bは、GND2の電位を説明するための模式図である。図4Cは、光の明度とADCから出力されるデジタル値の関係を説明するための模式図である。図4Cにおいて、点線aは入力電圧Vinの理想特性、実線bは入力電圧Vinの実際の特性を示す。 FIG. 4A is a schematic diagram for explaining the input voltage dependence of current consumption in the ADC. FIG. 4B is a schematic diagram for explaining the potential of GND2. FIG. 4C is a schematic diagram for explaining the relationship between the lightness of light and the digital value output from the ADC. In FIG. 4C, the dotted line a indicates the ideal characteristic of the input voltage Vin, and the solid line b indicates the actual characteristic of the input voltage Vin.
 図4Aは、共通GNDへ流れ込む消費電流の入力電圧Vinに対する依存性を示している。このとき、インピーダンスR2によって、GND2の電位は、図4Bに示されるような特性をもつ。つまり、図4Cに示されるように、Vin(実際の特性b)は、共通GNDを基準とした理想的なVin(理想特性a)よりも低下する。 FIG. 4A shows the dependence of the consumption current flowing into the common GND on the input voltage Vin. At this time, the potential of GND2 has characteristics as shown in FIG. 4B due to the impedance R2. That is, as shown in FIG. 4C, Vin (actual characteristic b) is lower than an ideal Vin (ideal characteristic a) based on the common GND.
 ここで、一般的に、光電変換素子から出力される電圧は、光電変換素子に入力される光の明度と反比例の関係をもつ。このため、画素部102に入力される光と、ADC107から出力されるデジタル値とは、図4のCに示されるような特性となる。すなわち、画素部102に入力される光の明度が低い(暗い)ほど、実際の特性と理想特性との差は大きくなる。 Here, generally, the voltage output from the photoelectric conversion element is inversely proportional to the lightness of the light input to the photoelectric conversion element. Therefore, the light input to the pixel portion 102 and the digital value output from the ADC 107 have characteristics as shown in C of FIG. That is, the difference between the actual characteristic and the ideal characteristic increases as the lightness of the light input to the pixel unit 102 is lower (darker).
 次に、ストリーキングについて説明する。 Next, streaking will be explained.
 図5は、カラムADCの構成を示す模式図である。 FIG. 5 is a schematic diagram showing the configuration of the column ADC.
 図6Aは、白い帯状のストリーキングが発生した画像を示す模式図である。図6Bは、黒い帯状のストリーキングが発生した画像を示す模式図である。 FIG. 6A is a schematic diagram showing an image in which white strip-like streaking has occurred. FIG. 6B is a schematic diagram illustrating an image in which black strip-like streaking has occurred.
 図5に示されるように、カラムADC104は、多数のADC107が並列に接続された構成であり、カラムADC104を構成する複数のADC107は、共通のインピーダンスR2を共通GNDまでの経路に有する。 As shown in FIG. 5, the column ADC 104 has a configuration in which a large number of ADCs 107 are connected in parallel, and the plurality of ADCs 107 configuring the column ADC 104 have a common impedance R <b> 2 on the path to the common GND.
 イメージセンサ101を用いて、全体的に明度が均一だが特定の領域だけが黒い対象物を撮影した場合、上記特定の領域に対応する画素のADC107からR2に流れ込む消費電流は増える。このため、GND2の電位が上がる。その結果、並列に接続された他のADC107の入力電圧Vinは、GND2の電位が上がった分だけ減少し、これらの他のADC107からは、実際よりも明るい方向にオフセットしたデジタル値が出力される。すなわち、一部の低輝度画素のために、同一行の他の画素のデジタル値が変化してしまう。 When the image sensor 101 is used to photograph an object having a uniform brightness as a whole but only a specific area, the current consumption flowing from the ADC 107 of the pixel corresponding to the specific area to R2 increases. For this reason, the potential of GND2 rises. As a result, the input voltage Vin of the other ADCs 107 connected in parallel is reduced by the increase in the potential of GND2, and a digital value offset in a direction brighter than the actual is output from these other ADCs 107. . That is, because of some low-luminance pixels, the digital values of other pixels in the same row change.
 よって、図6Aに示されるような、白い帯状のストリーキングが発生した画像110が得られる。 Therefore, an image 110 in which white strip-like streaking has occurred as shown in FIG. 6A is obtained.
 あるいは、イメージセンサ101を用いて、全体的に明度が均一だが特定の領域だけが白い対象物を撮影した場合、上記特定の領域に対する画素のADC107からR2に流れ込む消費電流は減少する。このため、GND2の電位が下がる。その結果、並列に接続された他のADC107の入力電圧Vinは、GND2の電位が下がった分だけ増加し、これらの他のADC107からは、実際よりも暗い方向にオフセットしたデジタル値が出力される。すなわち、一部の高輝度画素のために、同一行の他の画素のデジタル値が変化してしまう。 Alternatively, when the image sensor 101 is used to photograph an object having a uniform brightness but only a specific area as a whole, the current consumption flowing from the ADC 107 of the pixel for the specific area into R2 decreases. For this reason, the electric potential of GND2 falls. As a result, the input voltage Vin of the other ADCs 107 connected in parallel increases as the potential of the GND2 decreases, and a digital value offset in a darker direction than the actual is output from these other ADCs 107. . That is, because of some high-luminance pixels, the digital values of other pixels in the same row change.
 よって、図6Bに示されるような、黒い帯状のストリーキングが発生した画像111が得られる。 Therefore, an image 111 in which black strip-like streaking occurs as shown in FIG. 6B is obtained.
 これらのようなストリーキングを低減するためには、ADC107の消費電流の入力電圧Vinへの依存性をいかに低減するか(または平準化するか)が課題となる。 In order to reduce such streaking, how to reduce (or equalize) the dependency of the consumption current of the ADC 107 on the input voltage Vin becomes an issue.
 ADC107における消費電流の入力電圧Vinへの依存性は、ADC107において一般的に用いられるスイッチトキャパシタ技術に起因するものである。 The dependency of the consumption current on the input voltage Vin in the ADC 107 is due to the switched capacitor technology generally used in the ADC 107.
 ADCには、サイクリック型ADC、SAR型ADC、ΔΣ変調型ADCなどの様々な種類があるが、その基本要素回路はスイッチトキャパシタ回路である。 There are various types of ADCs, such as cyclic ADCs, SAR ADCs, and ΔΣ modulation ADCs, but the basic element circuit is a switched capacitor circuit.
 図7は、スイッチトキャパシタ型回路の一例である、スイッチトキャパシタ型積分器の回路図である。 FIG. 7 is a circuit diagram of a switched capacitor integrator, which is an example of a switched capacitor circuit.
 以下、図7に示される回路において、サンプリング容量121において充放電を行う場合について説明する。 Hereinafter, a case where charging and discharging are performed in the sampling capacitor 121 in the circuit shown in FIG. 7 will be described.
 サンプリング容量121は、一方の端子が演算増幅器123によって仮想接地されている。このため、サンプリング容量121における充放電量は、サンプリング容量121の他方の端子の電位、すなわち入力端子129に入力される電圧で決まる。 One terminal of the sampling capacitor 121 is virtually grounded by the operational amplifier 123. For this reason, the charge / discharge amount in the sampling capacitor 121 is determined by the potential of the other terminal of the sampling capacitor 121, that is, the voltage input to the input terminal 129.
 いま、サンプリング容量121の静電容量をCs[F]とし、入力端子129にVin[V]の電圧が印加されているとする。ここで、スイッチ124が短絡され、スイッチ125が開放されているとすると、サンプリング容量121の他方の端子は、Vin[V]の電圧にセットされる。このため、サンプリング容量121には、Cs・Vin[C]の電荷が充電される。 Now, assume that the capacitance of the sampling capacitor 121 is Cs [F], and a voltage of Vin [V] is applied to the input terminal 129. Here, if the switch 124 is short-circuited and the switch 125 is open, the other terminal of the sampling capacitor 121 is set to a voltage of Vin [V]. Therefore, the sampling capacitor 121 is charged with a charge of Cs · Vin [C].
 次に、スイッチ124が開放されるとともにスイッチ125が短絡されると、サンプリング容量121の他方の端子は、GNDにセットされる。このため、サンプリング容量121に充電されたCs・Vin[C]の電荷がGND経由で放電される。 Next, when the switch 124 is opened and the switch 125 is short-circuited, the other terminal of the sampling capacitor 121 is set to GND. For this reason, the charge of Cs · Vin [C] charged in the sampling capacitor 121 is discharged via GND.
 以上のように、スイッチトキャパシタ回路を基本要素回路としているAD変換器において、その消費電流が入力依存性をもつことは本質的な課題である。 As described above, in an AD converter using a switched capacitor circuit as a basic element circuit, it is an essential problem that the consumption current has input dependency.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより請求の範囲に記載の主題を限定することは意図されていない。 The accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the claimed subject matter.
 (実施の形態1)
 以下、図8~図11を用いて、実施の形態1を説明する。
(Embodiment 1)
The first embodiment will be described below with reference to FIGS.
 [1-1.構成]
 図8は、実施の形態1に係るAD変換器の概略構成を示すブロック図である。図8に示すように、AD変換器20Aは、増幅回路21、増幅回路22、スイッチトキャパシタ回路23、プリチャージ回路24、およびAD変換回路25を備える。
[1-1. Constitution]
FIG. 8 is a block diagram illustrating a schematic configuration of the AD converter according to the first embodiment. As shown in FIG. 8, the AD converter 20A includes an amplifier circuit 21, an amplifier circuit 22, a switched capacitor circuit 23, a precharge circuit 24, and an AD converter circuit 25.
 増幅回路21には入力電圧Vinが入力される。Vinは、AD変換器20Aによるアナログ-デジタル変換の対象となるアナログ信号である。Vinは、例えば、図3に示したようにイメージセンサ101の画素部102から与えられる。 The input voltage Vin is input to the amplifier circuit 21. Vin is an analog signal to be subjected to analog-digital conversion by the AD converter 20A. For example, Vin is given from the pixel portion 102 of the image sensor 101 as shown in FIG.
 増幅回路22には参照電圧Vrefが入力される。Vrefは、AD変換器20Aによるアナログ-デジタル変換の基準となる参照信号である。すなわち、AD変換器20Aは、VinとVrefの差分電圧をアナログ-デジタル変換する。Vrefは、Vinよりも高くても低くてもいずれでもよい。VrefがVinよりも高い場合にはAD変換器20Aの入力極性は反転し、VrefがVinよりも低い場合にはAD変換器20Aの入力極性は反転せずそのままである。 The reference voltage Vref is input to the amplifier circuit 22. Vref is a reference signal serving as a reference for analog-digital conversion by the AD converter 20A. That is, the AD converter 20A performs analog-digital conversion on the differential voltage between Vin and Vref. Vref may be higher or lower than Vin. When Vref is higher than Vin, the input polarity of the AD converter 20A is inverted, and when Vref is lower than Vin, the input polarity of the AD converter 20A is not inverted and remains as it is.
 図9は、増幅回路21および22の一例を示す回路図である。図9に示したように、増幅回路21および22は、定電流源26、およびNMOSトランジスタからなるソースフォロワ27を用いて構成することができる。定電流源26は、増幅回路21および22の出力端と基準電圧(ここではGND)との間に接続されている。増幅回路21および22において、ソースフォロワ27(NMOSトランジスタ)のゲートに接続された入力端INに信号が入力され、ソースに接続された出力端OUTから信号が出力される。 FIG. 9 is a circuit diagram showing an example of the amplifier circuits 21 and 22. As shown in FIG. 9, the amplifier circuits 21 and 22 can be configured using a constant current source 26 and a source follower 27 including an NMOS transistor. The constant current source 26 is connected between the output terminals of the amplifier circuits 21 and 22 and a reference voltage (here, GND). In the amplifier circuits 21 and 22, a signal is input to the input terminal IN connected to the gate of the source follower 27 (NMOS transistor), and a signal is output from the output terminal OUT connected to the source.
 図9に示した増幅回路21および22の利得はほぼ1倍であり、増幅回路21および22の出力電圧は入力電圧からソースフォロワ27のゲート-ソース間電圧だけ降下した電圧となる。また、GNDに流れ込む電流は入出力電圧にかかわらず一定値に保たれる。 The gains of the amplifier circuits 21 and 22 shown in FIG. 9 are almost 1 times, and the output voltage of the amplifier circuits 21 and 22 is a voltage obtained by dropping the gate-source voltage of the source follower 27 from the input voltage. Further, the current flowing into the GND is maintained at a constant value regardless of the input / output voltage.
 図10は、増幅回路21および22の別例を示す回路図である。図10に示したように、増幅回路21および22は、定電流源26、およびオペアンプからなるボルテージフォロワ28を用いて構成することができる。ボルテージフォロワ28(オペアンプ)の反転入力端IN-と出力端OUTとは互いに接続されている。定電流源26は、ボルテージフォロワ28のテール電流源として増幅回路21および22の出力端OUTと基準電圧(ここではGND)との間に接続されている。増幅回路21および22において、ボルテージフォロワ28(オペアンプ)の非反転入力端IN+に信号が入力され、出力端OUTから信号が出力される。 FIG. 10 is a circuit diagram showing another example of the amplifier circuits 21 and 22. As shown in FIG. 10, the amplifier circuits 21 and 22 can be configured using a constant current source 26 and a voltage follower 28 including an operational amplifier. The inverting input terminal IN− and the output terminal OUT of the voltage follower 28 (operational amplifier) are connected to each other. The constant current source 26 is connected as a tail current source of the voltage follower 28 between the output terminals OUT of the amplifier circuits 21 and 22 and the reference voltage (GND in this case). In the amplifier circuits 21 and 22, a signal is input to the non-inverting input terminal IN + of the voltage follower 28 (operational amplifier), and a signal is output from the output terminal OUT.
 図10に示した増幅回路21および22の利得はほぼ1倍であり、増幅回路21および22の出力電圧は入力電圧とほぼ等しくなる。また、GNDに流れ込む電流は入出力電圧にかかわらず一定値に保たれる。 The gains of the amplifier circuits 21 and 22 shown in FIG. 10 are almost 1 times, and the output voltages of the amplifier circuits 21 and 22 are almost equal to the input voltage. Further, the current flowing into the GND is maintained at a constant value regardless of the input / output voltage.
 図8へ戻り、スイッチトキャパシタ回路23は、スイッチ231、スイッチ232、およびキャパシタ233を有する。 Returning to FIG. 8, the switched capacitor circuit 23 includes a switch 231, a switch 232, and a capacitor 233.
 スイッチ231の一端に増幅回路21の出力信号が接続され、スイッチ231の他端はキャパシタ233の一端に接続されている。スイッチ231は、制御信号Φ1に従ってスイッチング動作し、増幅回路21とキャパシタ233との短絡および開放を切り替える。制御信号Φ1は図略のコントローラから出力される。 The output signal of the amplifier circuit 21 is connected to one end of the switch 231, and the other end of the switch 231 is connected to one end of the capacitor 233. The switch 231 performs a switching operation according to the control signal Φ1, and switches between short circuit and open circuit between the amplifier circuit 21 and the capacitor 233. The control signal Φ1 is output from a controller (not shown).
 スイッチ232の一端に増幅回路22の出力信号が接続され、スイッチ232の他端はキャパシタ233の一端に接続されている。スイッチ232は、制御信号Φ2に従ってスイッチング動作し、増幅回路22とキャパシタ233との短絡および開放を切り替える。制御信号Φ2は図略のコントローラから出力される。 The output signal of the amplifier circuit 22 is connected to one end of the switch 232, and the other end of the switch 232 is connected to one end of the capacitor 233. The switch 232 performs a switching operation according to the control signal Φ <b> 2 and switches between short circuit and open circuit between the amplifier circuit 22 and the capacitor 233. The control signal Φ2 is output from a controller (not shown).
 キャパシタ233は、図7におけるサンプリング容量121に相当する。 The capacitor 233 corresponds to the sampling capacitor 121 in FIG.
 プリチャージ回路24は、スイッチトキャパシタ回路23におけるスイッチ231、スイッチ232、およびキャパシタ233の相互接続点と基準電圧(ここではGND)との間に接続されている。プリチャージ回路24は、例えば、一端が上記相互接続点に接続され、他端がGNDに接続されたスイッチ241で構成することができる。スイッチ241は、制御信号Φ3に従ってスイッチング動作し、キャパシタ233とGNDとの短絡および開放を切り替える。制御信号Φ3は図略のコントローラから出力される。 The precharge circuit 24 is connected between the interconnection point of the switch 231, the switch 232, and the capacitor 233 in the switched capacitor circuit 23 and a reference voltage (GND in this case). For example, the precharge circuit 24 can be configured by a switch 241 having one end connected to the interconnection point and the other end connected to GND. The switch 241 performs a switching operation according to the control signal Φ3, and switches between short-circuiting and opening of the capacitor 233 and GND. The control signal Φ3 is output from a controller (not shown).
 AD変換回路25は、キャパシタ233の他端に接続されている。AD変換回路25は、キャパシタ233の充電電圧を積分し、積分した電圧をアナログ-デジタル変換してデジタル値Doutを出力する。AD変換回路25は、サイクリック型ADC、SAR型ADC、ΔΣ変調型ADC、およびこれらの複合型などである。 The AD conversion circuit 25 is connected to the other end of the capacitor 233. The AD conversion circuit 25 integrates the charging voltage of the capacitor 233, performs analog-digital conversion on the integrated voltage, and outputs a digital value Dout. The AD conversion circuit 25 is a cyclic ADC, a SAR ADC, a ΔΣ modulation ADC, or a composite type thereof.
 [1-2.動作]
 以上のように構成されたAD変換器20Aについて、その動作を以下説明する。なお、便宜上、VrefがVinよりも高いものとして説明する。また、スイッチ231、232、および241は、それぞれ、Φ1、Φ2、およびΦ3がHレベルのときにオン状態(短絡)となり、Φ1、Φ2、およびΦ3がLレベルのときにオフ状態(開放)になるものとする。
[1-2. Operation]
The operation of the AD converter 20A configured as described above will be described below. For convenience, the description will be made assuming that Vref is higher than Vin. The switches 231, 232, and 241 are turned on (short circuit) when Φ1, Φ2, and Φ3 are at the H level, respectively, and are turned off (open) when Φ1, Φ2, and Φ3 are at the L level. Shall be.
 また、キャパシタ233の他端はAD変換回路25内で仮想接地されているものとする。また、増幅回路21からはVinが出力され、増幅回路22からはVrefが出力されるものとする。 It is assumed that the other end of the capacitor 233 is virtually grounded in the AD conversion circuit 25. Further, it is assumed that Vin is output from the amplifier circuit 21 and Vref is output from the amplifier circuit 22.
 図11は、本実施の形態に係るAD変換器20Aの動作を説明するためのタイムチャートである。Φ1およびΦ2は同時にHレベルになることはなく、いずれか一方がHレベルのとき他方はLレベルである。また、Φ3は、Φ1およびΦ2がいずれもLレベルのときにHレベルとなる。 FIG. 11 is a time chart for explaining the operation of the AD converter 20A according to the present embodiment. Φ1 and Φ2 do not simultaneously become H level, and when one of them is H level, the other is L level. Further, Φ3 becomes H level when both Φ1 and Φ2 are L level.
 まず、Φ2がHレベルになると、スイッチ231、232、および241のうちスイッチ232のみがオン状態となり、キャパシタ233に増幅回路22の出力信号(参照電圧Vref)が接続される。これにより、キャパシタ233の充電電圧はGNDからVrefに上昇する。 First, when Φ2 becomes H level, only the switch 232 among the switches 231, 232, and 241 is turned on, and the output signal (reference voltage Vref) of the amplifier circuit 22 is connected to the capacitor 233. As a result, the charging voltage of the capacitor 233 rises from GND to Vref.
 このとき、キャパシタ233の静電容量に対して増幅回路22の駆動能力が十分に大きいため、キャパシタ233の充電電圧はすぐさまVrefに上昇する。また、スイッチ232がオン状態となっている間、GNDに流れ込む電流は、増幅回路22における定電流源26によって一定値に保たれる。 At this time, since the driving capability of the amplifier circuit 22 is sufficiently large with respect to the capacitance of the capacitor 233, the charging voltage of the capacitor 233 immediately rises to Vref. Further, while the switch 232 is in the ON state, the current flowing into the GND is maintained at a constant value by the constant current source 26 in the amplifier circuit 22.
 その後、Φ2がLレベルになるとスイッチ231、232、および241のすべてがオフ状態となり、キャパシタ233の充電電圧はVrefに維持される。そして、Φ2がLレベルになったすぐ後にΦ3がHレベルになると、スイッチ231、232、および241のうちスイッチ241のみがオン状態となり、キャパシタ233がGNDに接続される。 Thereafter, when Φ2 becomes L level, all of the switches 231, 232, and 241 are turned off, and the charging voltage of the capacitor 233 is maintained at Vref. When Φ3 becomes H level immediately after Φ2 becomes L level, only the switch 241 is turned on among the switches 231, 232, and 241, and the capacitor 233 is connected to GND.
 これにより、キャパシタ233はすぐさま放電して充電電圧はGNDレベルとなる。すなわち、キャパシタ233がGNDレベルにプリチャージされる。 As a result, the capacitor 233 is immediately discharged and the charging voltage becomes the GND level. That is, the capacitor 233 is precharged to the GND level.
 その後、Φ3がLレベルになるとスイッチ231、232、および241のすべてがオフ状態となり、キャパシタ233の充電電圧はGNDレベルに維持される。そして、Φ3がLレベルになったすぐ後に今度はΦ1がHレベルになると、スイッチ231、232、および241のうちスイッチ231のみがオン状態となり、キャパシタ233に増幅回路21の出力信号(入力電圧Vin)が接続される。 Thereafter, when Φ3 becomes L level, all of the switches 231, 232, and 241 are turned off, and the charging voltage of the capacitor 233 is maintained at the GND level. When Φ1 becomes H level immediately after Φ3 becomes L level, only the switch 231 among the switches 231, 232, and 241 is turned on, and the output signal (input voltage Vin) of the amplifier circuit 21 is supplied to the capacitor 233. ) Is connected.
 これにより、キャパシタ233の充電電圧はGNDからVinに上昇する。このとき、キャパシタ233の静電容量に対して増幅回路21の駆動能力が十分に大きいため、キャパシタ233の充電電圧はすぐさまVinに上昇する。また、スイッチ231がオン状態となっている間、GNDに流れ込む電流は、増幅回路21における定電流源26によって一定値に保たれる。 Thereby, the charging voltage of the capacitor 233 rises from GND to Vin. At this time, since the driving capability of the amplifier circuit 21 is sufficiently larger than the capacitance of the capacitor 233, the charging voltage of the capacitor 233 immediately rises to Vin. Further, while the switch 231 is in the ON state, the current flowing into the GND is maintained at a constant value by the constant current source 26 in the amplifier circuit 21.
 AD変換回路25は、キャパシタ233に充電された入力電圧Vinを積分し、積分した電圧をアナログ-デジタル変換してデジタル値Doutを出力する。 The AD conversion circuit 25 integrates the input voltage Vin charged in the capacitor 233, converts the integrated voltage from analog to digital, and outputs a digital value Dout.
 [1-3.効果等]
 以上のように、本実施の形態において、AD変換器20Aは、増幅回路21、増幅回路22、スイッチトキャパシタ回路23、プリチャージ回路24、およびAD変換回路25を備える。
[1-3. Effect]
As described above, in the present embodiment, the AD converter 20A includes the amplifier circuit 21, the amplifier circuit 22, the switched capacitor circuit 23, the precharge circuit 24, and the AD converter circuit 25.
 増幅回路21にはアナログ信号(入力電圧Vin)が入力され、増幅回路22には参照信号(参照電圧Vref)が入力され、増幅回路21および22においてGNDに流れ込む電流は一定である。スイッチトキャパシタ回路23は、AD変換器20Aにおけるサンプリング容量としてのキャパシタ233を有しており、スイッチ231および232は増幅回路21および22の各出力信号に接続され、キャパシタ233はAD変換回路25に接続される。プリチャージ回路24は、スイッチ231および232がいずれもオフ状態のときにキャパシタ233をプリチャージする。 The analog signal (input voltage Vin) is input to the amplifier circuit 21, the reference signal (reference voltage Vref) is input to the amplifier circuit 22, and the current flowing into the GND in the amplifier circuits 21 and 22 is constant. The switched capacitor circuit 23 has a capacitor 233 as a sampling capacitor in the AD converter 20A. The switches 231 and 232 are connected to output signals of the amplifier circuits 21 and 22, and the capacitor 233 is connected to the AD converter circuit 25. Is done. Precharge circuit 24 precharges capacitor 233 when both switches 231 and 232 are off.
 これにより、サンプリング容量としてのキャパシタ233に増幅回路21の出力信号が接続されたときにGNDに流れ込む電流は、入力電圧Vinの大小にかかわらず常に一定となり、AD変換器20Aにおいて消費電流の入力依存性がなくなる。 As a result, when the output signal of the amplifier circuit 21 is connected to the capacitor 233 serving as a sampling capacitor, the current flowing into the GND is always constant regardless of the magnitude of the input voltage Vin, and the input current dependence of the consumption current in the AD converter 20A. Sex is lost.
 また、キャパシタ233が増幅回路21または22の出力信号に接続される直前にキャパシタ233は毎回GNDレベルにプリチャージされる。そして、キャパシタ233が増幅回路21または22の出力信号に接続されたとき、キャパシタ233は、ソースフォロワ27またはボルテージフォロワ28の高速なプルアップ動作により、GNDからVinまたはVrefに上昇する方向へ充電される。 Further, immediately before the capacitor 233 is connected to the output signal of the amplifier circuit 21 or 22, the capacitor 233 is precharged to the GND level every time. When the capacitor 233 is connected to the output signal of the amplifier circuit 21 or 22, the capacitor 233 is charged in the direction of increasing from GND to Vin or Vref by the high-speed pull-up operation of the source follower 27 or the voltage follower 28. The
 これにより、キャパシタ233の充電速度が高速化され、入力アナログ信号の高速なサンプリングが可能となる。 Thereby, the charging speed of the capacitor 233 is increased, and the input analog signal can be sampled at high speed.
 (実施の形態2)
 以下、図12および図13を用いて、実施の形態2を説明する。
(Embodiment 2)
Hereinafter, the second embodiment will be described with reference to FIGS. 12 and 13.
 [2-1.構成]
 図12は、実施の形態2に係るAD変換器の概略構成を示すブロック図である。図12に示すように、AD変換器20Bは、増幅回路21、増幅回路22、スイッチトキャパシタ回路23、プリチャージ回路24、およびAD変換回路25を備える。なお、増幅回路21および22、スイッチトキャパシタ回路23、およびAD変換回路25は、実施の形態1と同様であるため説明を省略する。
[2-1. Constitution]
FIG. 12 is a block diagram illustrating a schematic configuration of the AD converter according to the second embodiment. As shown in FIG. 12, the AD converter 20B includes an amplifier circuit 21, an amplifier circuit 22, a switched capacitor circuit 23, a precharge circuit 24, and an AD converter circuit 25. Note that the amplifier circuits 21 and 22, the switched capacitor circuit 23, and the AD conversion circuit 25 are the same as those in the first embodiment, and thus description thereof is omitted.
 プリチャージ回路24は、スイッチトキャパシタ回路23におけるスイッチ231、スイッチ232、およびキャパシタ233の相互接続点と基準電圧(ここではGND)との間に接続されている。プリチャージ回路24は、スイッチ241、スイッチ242、およびキャパシタ243を有するスイッチトキャパシタ回路として構成されている。 The precharge circuit 24 is connected between the interconnection point of the switch 231, the switch 232, and the capacitor 233 in the switched capacitor circuit 23 and a reference voltage (GND in this case). The precharge circuit 24 is configured as a switched capacitor circuit having a switch 241, a switch 242, and a capacitor 243.
 スイッチ241の一端は上記相互接続点に接続され、スイッチ241の他端はキャパシタ243の一端に接続されている。キャパシタ243の一端は基準電圧(ここではGND)に接続されている。スイッチ241は、制御信号Φ3に従ってスイッチング動作し、キャパシタ233とキャパシタ243との短絡および開放を切り替える。制御信号Φ3は図略のコントローラから出力される。 One end of the switch 241 is connected to the interconnection point, and the other end of the switch 241 is connected to one end of the capacitor 243. One end of the capacitor 243 is connected to a reference voltage (here, GND). The switch 241 performs a switching operation according to the control signal Φ3, and switches between short-circuit and open-circuit between the capacitor 233 and the capacitor 243. The control signal Φ3 is output from a controller (not shown).
 スイッチ242の一端は基準電圧(ここではGND)に接続され、スイッチ242の他端はキャパシタ243の一端に接続されている。すなわち、スイッチ242はキャパシタ243の両端に接続されている。スイッチ242は、制御信号Φ4に従ってスイッチング動作し、キャパシタ243の両端の短絡および開放を切り替える。制御信号Φ4は図略のコントローラから出力される。 One end of the switch 242 is connected to a reference voltage (here, GND), and the other end of the switch 242 is connected to one end of the capacitor 243. That is, the switch 242 is connected to both ends of the capacitor 243. The switch 242 performs a switching operation according to the control signal Φ4, and switches between short-circuiting and opening-up of both ends of the capacitor 243. The control signal Φ4 is output from a controller (not shown).
 [2-2.動作]
 以上のように構成されたAD変換器20Bについて、その動作を以下説明する。なお、便宜上、VrefがVinよりも高いものとして説明する。また、キャパシタ233とキャパシタ243の静電容量は等しいものとする。また、スイッチ231、232、241、および242は、それぞれ、Φ1、Φ2、Φ3、およびΦ4がHレベルのときにオン状態(短絡)となり、Φ1、Φ2、Φ3、およびΦ4がLレベルのときにオフ状態(開放)になるものとする。また、キャパシタ233の他端はAD変換回路25内でGNDに仮想接地されているものとする。また、増幅回路21からはVinが出力され、増幅回路22からはVrefが出力されるものとする。
[2-2. Operation]
The operation of the AD converter 20B configured as described above will be described below. For convenience, the description will be made assuming that Vref is higher than Vin. Further, it is assumed that the capacitances of the capacitor 233 and the capacitor 243 are equal. The switches 231, 232, 241, and 242 are turned on (short circuit) when Φ1, Φ2, Φ3, and Φ4 are at the H level, respectively, and when Φ1, Φ2, Φ3, and Φ4 are at the L level. It shall be in the off state (open). Further, it is assumed that the other end of the capacitor 233 is virtually grounded to GND in the AD conversion circuit 25. Further, it is assumed that Vin is output from the amplifier circuit 21 and Vref is output from the amplifier circuit 22.
 図13は、本実施の形態に係るAD変換器20Bの動作を説明するためのタイムチャートである。Φ1およびΦ2は同時にHレベルになることはなく、いずれか一方がHレベルのとき他方はLレベルである。また、Φ3およびΦ4は同時にHレベルになることはなく、いずれか一方がHレベルのとき他方はLレベルである。さらに、Φ3およびΦ4は、Φ1およびΦ2がいずれもLレベルのときに論理遷移する。すなわち、スイッチ241および242は、スイッチ231および232がいずれもオフ状態のときにスイッチング動作する。 FIG. 13 is a time chart for explaining the operation of the AD converter 20B according to the present embodiment. Φ1 and Φ2 do not simultaneously become H level, and when one of them is H level, the other is L level. Further, Φ3 and Φ4 are not simultaneously at the H level, and when one of them is at the H level, the other is at the L level. Further, Φ3 and Φ4 logically transition when both Φ1 and Φ2 are at the L level. That is, the switches 241 and 242 perform a switching operation when both the switches 231 and 232 are in the off state.
 まず、Φ2がHレベルになると、スイッチ231、232、241、および242のうちスイッチ232および242がオン状態となり、キャパシタ233に増幅回路22の出力信号(参照電圧Vref)が接続される。これにより、キャパシタ233の充電電圧はVref/2からVrefに上昇する。 First, when Φ2 becomes H level, the switches 232 and 242 among the switches 231, 232, 241, and 242 are turned on, and the output signal (reference voltage Vref) of the amplifier circuit 22 is connected to the capacitor 233. As a result, the charging voltage of the capacitor 233 increases from Vref / 2 to Vref.
 このとき、キャパシタ233の静電容量に対して増幅回路22の駆動能力が十分に大きいため、キャパシタ233の充電電圧はすぐさまVrefに上昇する。また、スイッチ232がオン状態となっている間、GNDに流れ込む電流は、増幅回路22における定電流源26によって一定値に保たれる。また、キャパシタ243は両端が基準電圧(ここではGND)に接続されて放電状態にある。 At this time, since the driving capability of the amplifier circuit 22 is sufficiently large with respect to the capacitance of the capacitor 233, the charging voltage of the capacitor 233 immediately rises to Vref. Further, while the switch 232 is in the ON state, the current flowing into the GND is maintained at a constant value by the constant current source 26 in the amplifier circuit 22. Further, both ends of the capacitor 243 are connected to a reference voltage (here, GND) and are in a discharged state.
 その後、Φ2がLレベルになり、それとほぼ同時にΦ4がLレベルになると、スイッチ231、232、241、および242のすべてがオフ状態となり、キャパシタ233の充電電圧はVrefに維持され、キャパシタ243の充電電圧はゼロ(放電状態)に維持される。そして、Φ2およびΦ4がLレベルになったすぐ後にΦ3がHレベルになると、スイッチ231、232、241、および242のうちスイッチ242のみがオン状態となり、キャパシタ233とキャパシタ243が直列接続される。 Thereafter, when Φ2 goes to L level and Φ4 goes to L level almost simultaneously, all of the switches 231, 232, 241, and 242 are turned off, the charging voltage of the capacitor 233 is maintained at Vref, and the charging of the capacitor 243 is performed. The voltage is maintained at zero (discharged state). When Φ3 becomes H level immediately after Φ2 and Φ4 become L level, only the switch 242 among the switches 231, 232, 241, and 242 is turned on, and the capacitor 233 and the capacitor 243 are connected in series.
 これにより、キャパシタ233とキャパシタ243との間で電荷再分配(エコライズ)が起き、キャパシタ233および243の静電容量が等しいことからキャパシタ233の充電電圧は元の半分、つまり、Vref/2に急速に収束する。すなわち、キャパシタ233が電圧Vref/2にプリチャージされる。 As a result, charge redistribution (ecorise) occurs between the capacitor 233 and the capacitor 243, and the capacitances of the capacitors 233 and 243 are equal to each other, so that the charging voltage of the capacitor 233 rapidly increases to the original half, that is, Vref / 2. Converge to. That is, the capacitor 233 is precharged to the voltage Vref / 2.
 その後、Φ3がLレベルになるとスイッチ231、232、241、242、および242のすべてがオフ状態となり、キャパシタ233の充電電圧はVref/2に維持される。そして、Φ3がLレベルになったすぐ後に今度はΦ1がHレベルになり、それとほぼ同時にΦ4もHレベルになり、スイッチ231、232、241、および242のうちスイッチ231および242がオン状態となり、キャパシタ233に増幅回路21の出力信号(入力電圧Vin)が接続される。 Thereafter, when Φ3 becomes L level, all of the switches 231, 232, 241, 242, and 242 are turned off, and the charging voltage of the capacitor 233 is maintained at Vref / 2. Then, immediately after Φ3 becomes L level, Φ1 becomes H level, and at the same time, Φ4 also becomes H level, and among the switches 231, 232, 241, and 242, the switches 231 and 242 are turned on, The output signal (input voltage Vin) of the amplifier circuit 21 is connected to the capacitor 233.
 これにより、キャパシタ233の充電電圧はVref/2からVinに上昇する。このとき、キャパシタ233の静電容量に対して増幅回路21の駆動能力が十分に大きいため、キャパシタ233の充電電圧はすぐさまVinに上昇する。また、スイッチ231がオン状態となっている間、GNDに流れ込む電流は、増幅回路21における定電流源26によって一定値に保たれる。また、キャパシタ243は両端が基準電圧(ここではGND)に接続されて放電される。 Thereby, the charging voltage of the capacitor 233 increases from Vref / 2 to Vin. At this time, since the driving capability of the amplifier circuit 21 is sufficiently larger than the capacitance of the capacitor 233, the charging voltage of the capacitor 233 immediately rises to Vin. Further, while the switch 231 is in the ON state, the current flowing into the GND is maintained at a constant value by the constant current source 26 in the amplifier circuit 21. The capacitor 243 is discharged with both ends connected to a reference voltage (here, GND).
 AD変換回路25は、キャパシタ233に充電された入力電圧Vinを積分し、積分した電圧をアナログ-デジタル変換してデジタル値Doutを出力する。 The AD conversion circuit 25 integrates the input voltage Vin charged in the capacitor 233, converts the integrated voltage from analog to digital, and outputs a digital value Dout.
 [2-3.効果等]
 以上のように、本実施の形態において、AD変換器20Bは、増幅回路21、増幅回路22、スイッチトキャパシタ回路23、プリチャージ回路24、およびAD変換回路25を備える。増幅回路21にはアナログ信号(入力電圧Vin)が入力され、増幅回路22には参照信号(参照電圧Vref)が入力され、増幅回路21および22においてGNDに流れ込む電流は一定である。スイッチトキャパシタ回路23は、AD変換器20Bにおけるサンプリング容量としてのキャパシタ233を有しており、スイッチ231および232は増幅回路21および22の各出力信号に接続され、キャパシタ233はAD変換回路25に接続される。
[2-3. Effect]
As described above, in the present embodiment, the AD converter 20B includes the amplifier circuit 21, the amplifier circuit 22, the switched capacitor circuit 23, the precharge circuit 24, and the AD converter circuit 25. An analog signal (input voltage Vin) is input to the amplifier circuit 21, and a reference signal (reference voltage Vref) is input to the amplifier circuit 22, and the current flowing into the GND in the amplifier circuits 21 and 22 is constant. The switched capacitor circuit 23 has a capacitor 233 as a sampling capacitor in the AD converter 20B. The switches 231 and 232 are connected to the output signals of the amplifier circuits 21 and 22, and the capacitor 233 is connected to the AD converter circuit 25. Is done.
 プリチャージ回路24は、スイッチ241、スイッチ242、およびキャパシタ243を有するスイッチトキャパシタ回路として構成されており、スイッチ231および232のいずれかがオン状態のときにはキャパシタ243を放電し、スイッチ231および232がいずれもオフ状態のときにスイッチ241および242がスイッチング動作してキャパシタ233とキャパシタ243との間で電荷再分配が起きてキャパシタ233をGNDよりも高い所定電圧にプリチャージする。 The precharge circuit 24 is configured as a switched capacitor circuit having a switch 241, a switch 242, and a capacitor 243. When one of the switches 231 and 232 is in an on state, the capacitor 243 is discharged, and which of the switches 231 and 232 is In the off state, the switches 241 and 242 perform a switching operation, and charge redistribution occurs between the capacitors 233 and 243 to precharge the capacitor 233 to a predetermined voltage higher than GND.
 これにより、サンプリング容量としてのキャパシタ233に増幅回路21の出力信号が接続されたときにGNDに流れ込む電流は、入力電圧Vinの大小にかかわらず常に一定となり、AD変換器20Bにおいて消費電流の入力依存性がなくなる。また、キャパシタ233が増幅回路21または22の出力信号に接続される直前にキャパシタ233は毎回GNDレベルよりも高い所定電圧にプリチャージされる。 As a result, when the output signal of the amplifier circuit 21 is connected to the capacitor 233 serving as the sampling capacitor, the current flowing into the GND is always constant regardless of the magnitude of the input voltage Vin, and the input current dependence of the consumption current in the AD converter 20B. Sex is lost. Further, immediately before the capacitor 233 is connected to the output signal of the amplifier circuit 21 or 22, the capacitor 233 is precharged to a predetermined voltage higher than the GND level every time.
 ここで、増幅回路21および22における定電流源26が定電流を出力するためには定電流源26を構成する図略のトランジスタを飽和領域で動作させる必要があり、それにはトランジスタのドレイン-ソース間に、ゲート-ソース間電圧から閾値電圧を引いた電圧以上の電圧を印加しなければならない。 Here, in order for the constant current source 26 in the amplifier circuits 21 and 22 to output a constant current, it is necessary to operate a transistor (not shown) constituting the constant current source 26 in a saturation region. In the meantime, a voltage equal to or higher than the voltage obtained by subtracting the threshold voltage from the gate-source voltage must be applied.
 実施の形態1ではキャパシタ233が増幅回路21または22の出力信号に接続される直前にキャパシタ233がGNDレベルにプリチャージされるため、定電流源26を構成する図略のトランジスタのソース電圧が瞬間的にGNDレベルになってトランジスタが非飽和領域で動作して定電流性が崩れるおそれがある。 In the first embodiment, since the capacitor 233 is precharged to the GND level immediately before the capacitor 233 is connected to the output signal of the amplifier circuit 21 or 22, the source voltage of a transistor (not shown) constituting the constant current source 26 is instantaneous. Therefore, there is a possibility that the constant current property may be lost due to the GND level and the transistor operating in the non-saturated region.
 これに対して、本実施の形態では、キャパシタ233はGNDレベルよりも高い所定電圧にプリチャージされるため、定電流源26を構成する図略のトランジスタが非飽和領域で動作することはなく、定電流源26の定電流性を維持することができる。 On the other hand, in the present embodiment, the capacitor 233 is precharged to a predetermined voltage higher than the GND level, so that the unillustrated transistor constituting the constant current source 26 does not operate in the non-saturated region. The constant current property of the constant current source 26 can be maintained.
 そして、キャパシタ233が増幅回路21または22の出力信号に接続されたとき、キャパシタ233は、ソースフォロワ27またはボルテージフォロワ28の高速なプルアップ動作により、所定電圧からVinまたはVrefに上昇する方向へ充電される。これにより、キャパシタ233の充電速度が高速化され、入力アナログ信号の高速なサンプリングが可能となる。 When the capacitor 233 is connected to the output signal of the amplifier circuit 21 or 22, the capacitor 233 is charged in the direction of increasing from a predetermined voltage to Vin or Vref by the high-speed pull-up operation of the source follower 27 or the voltage follower 28. Is done. Thereby, the charging speed of the capacitor 233 is increased, and the input analog signal can be sampled at high speed.
 なお、定電流源26が非飽和領域動作に陥らない限り、キャパシタ233とキャパシタ243の静電容量は必ずしも等しくなくてもよい。 Note that the capacitances of the capacitor 233 and the capacitor 243 are not necessarily equal as long as the constant current source 26 does not enter the non-saturation region operation.
 (実施の形態3)
 以下、図14を用いて、実施の形態3を説明する。
(Embodiment 3)
Hereinafter, Embodiment 3 will be described with reference to FIG.
 図14は、実施の形態4に係るデジタルカメラ30の外観図である。図14に示すように、デジタルカメラ30は、交換レンズ(撮像光学系)31と、交換レンズ31を装着可能なカメラボディ32とからなる。交換レンズ31は、図略のフォーカスレンズとズームレンズとを含んで構成される。カメラボディ32は、レリーズ釦33を備える。また、カメラボディ32には、実施の形態1に係るAD変換器20Aや実施の形態2に係るAD変換器20Bを備えたイメージセンサ101(図1を参照)が内蔵されている。 FIG. 14 is an external view of the digital camera 30 according to the fourth embodiment. As shown in FIG. 14, the digital camera 30 includes an interchangeable lens (imaging optical system) 31 and a camera body 32 to which the interchangeable lens 31 can be attached. The interchangeable lens 31 includes a focus lens and a zoom lens (not shown). The camera body 32 includes a release button 33. The camera body 32 incorporates an image sensor 101 (see FIG. 1) including the AD converter 20A according to the first embodiment and the AD converter 20B according to the second embodiment.
 以下、図14に示されるデジタルカメラ30の動作を簡略化して説明する。 Hereinafter, the operation of the digital camera 30 shown in FIG. 14 will be described in a simplified manner.
 カメラボディ32は、レリーズ釦33のユーザによる半押し操作を受け付けると、交換レンズ31に対して、オートフォーカス動作するよう制御信号を送信する。また、カメラボディ32は、レリーズ釦33のユーザによる操作を受け付けると、交換レンズ31を介して形成される被写体像の撮影動作を実行する。 When the camera body 32 receives a half-press operation by the user of the release button 33, the camera body 32 transmits a control signal to the interchangeable lens 31 so as to perform an autofocus operation. Further, when the camera body 32 receives an operation by the user of the release button 33, the camera body 32 performs a photographing operation of a subject image formed via the interchangeable lens 31.
 交換レンズ31は、被写体からの光を集光してイメージセンサ101に結像する。イメージセンサ101は、結像された被写体像を受像し、被写体像を光電変換して画像データを生成する。画像データは、カメラボディ32内の図略のプロセッサで処理される。 The interchangeable lens 31 focuses the light from the subject and forms an image on the image sensor 101. The image sensor 101 receives the formed subject image and photoelectrically converts the subject image to generate image data. The image data is processed by a processor (not shown) in the camera body 32.
 以上のように、本実施の形態によると、デジタルカメラ30に、実施の形態1に係るAD変換器20Aや実施の形態2に係るAD変換器20Bを備えたイメージセンサ101を搭載したことにより、ストリーキングが抑制された高画質な撮影画像を得ることができる。 As described above, according to the present embodiment, the digital camera 30 includes the image sensor 101 including the AD converter 20A according to the first embodiment and the AD converter 20B according to the second embodiment. It is possible to obtain a high-quality captured image in which streaking is suppressed.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1ないし3を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1ないし3で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, Embodiments 1 to 3 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1 thru | or 3 into a new embodiment.
 そこで、以下、他の実施の形態を例示する。 Therefore, other embodiments will be exemplified below.
 図1に示したイメージセンサ101では、画素部102の両側にカラムADC104を設けているが、片側のみにカラムADC104を設けるようにしてもよい。 In the image sensor 101 shown in FIG. 1, the column ADCs 104 are provided on both sides of the pixel unit 102, but the column ADCs 104 may be provided only on one side.
 実施の形態2に係るAD変換器20Bにおいてキャパシタ233とキャパシタ243の静電容量を等しいとしたが、キャパシタ243の静電容量は、増幅回路21および22における定電流源26を構成する図略のトランジスタの特性を考慮して、キャパシタ233のプリチャージ電圧をどの程度にするのかに応じて適宜決めればよい。 In the AD converter 20B according to the second embodiment, the capacitances of the capacitor 233 and the capacitor 243 are assumed to be equal. In consideration of the characteristics of the transistor, it may be determined as appropriate according to how much the precharge voltage of the capacitor 233 is set.
 実施の形態3では、イメージセンサ101を搭載する撮像装置の一例としてデジタルカメラ30を挙げたが、イメージセンサ101の応用範囲はデジタルカメラ30に限定されない。イメージセンサ101は、スタジオ用カメラ、業務用カメラ、デジタルビデオカメラ、監視カメラ、車載カメラ、スマートフォン、タブレットPCなどの各種装置に搭載可能である。 In the third embodiment, the digital camera 30 is described as an example of an imaging device on which the image sensor 101 is mounted. However, the application range of the image sensor 101 is not limited to the digital camera 30. The image sensor 101 can be mounted on various devices such as a studio camera, a business camera, a digital video camera, a surveillance camera, an in-vehicle camera, a smartphone, and a tablet PC.
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、必須な構成要素だけでなく、上記技術を例示するために、必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Therefore, among the constituent elements described in the accompanying drawings and the detailed description, not only essential constituent elements but also non-essential constituent elements may be included to exemplify the above technique. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiment is for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be performed within the scope of the claims or an equivalent scope thereof.
 本開示は、イメージセンサに適用可能である。具体的には、スタジオ用カメラ、業務用カメラ、デジタルスチルカメラ、ムービー、カメラ機能付き携帯電話機、スマートフォンなどに搭載されるイメージセンサに、本開示は適用可能である。 This disclosure is applicable to image sensors. Specifically, the present disclosure is applicable to image sensors mounted on studio cameras, business cameras, digital still cameras, movies, mobile phones with camera functions, smartphones, and the like.
 20A AD変換器
 20B AD変換器
 21 増幅回路(第1の増幅回路)
 22 増幅回路(第2の増幅回路)
 23 スイッチトキャパシタ回路
 24 プリチャージ回路
 25 AD変換回路
 26 定電流源
 27 ソースフォロワ
 28 ボルテージフォロワ
 30 デジタルカメラ(撮像装置)
 31 交換レンズ(撮影光学系)
 32 カメラボディ
 33 レリーズ釦
 101 イメージセンサ
 102 画素部(画素アレイ)
 103 行セレクタ
 104 カラムADC
 105 パラレル・シリアル変換部
 106 周辺回路
 107 ADC
 110 画像
 111 画像
 121 サンプリング容量
 123 演算増幅器
 124 スイッチ
 125 スイッチ
 129 入力端子
 231 スイッチ(第1のスイッチ)
 232 スイッチ(第2のスイッチ)
 233 キャパシタ
 241 スイッチ(第3のスイッチ)
 242 スイッチ(第4のスイッチ)
 243 キャパシタ
20A AD converter 20B AD converter 21 Amplifier circuit (first amplifier circuit)
22 Amplifier circuit (second amplifier circuit)
23 switched capacitor circuit 24 precharge circuit 25 AD converter circuit 26 constant current source 27 source follower 28 voltage follower 30 digital camera (imaging device)
31 Interchangeable lens (shooting optics)
32 Camera body 33 Release button 101 Image sensor 102 Pixel unit (pixel array)
103 row selector 104 column ADC
105 Parallel-serial converter 106 Peripheral circuit 107 ADC
110 image 111 image 121 sampling capacity 123 operational amplifier 124 switch 125 switch 129 input terminal 231 switch (first switch)
232 switch (second switch)
233 capacitor 241 switch (third switch)
242 switch (fourth switch)
243 capacitors

Claims (8)

  1.  アナログ信号が入力される第1の増幅回路と、
     参照信号が入力される第2の増幅回路と、
     前記第1の増幅回路の出力信号が接続された第1のスイッチ、前記第2の増幅回路の出力信号が接続された第2のスイッチ、およびキャパシタを有するスイッチトキャパシタ回路と、
     前記第1のスイッチ、前記第2のスイッチ、および前記キャパシタの相互接続点と基準電圧との間に接続されたプリチャージ回路と、
     前記キャパシタに接続されたAD変換回路と、
     を備えるAD変換器。
    A first amplifier circuit to which an analog signal is input;
    A second amplifier circuit to which a reference signal is input;
    A switched capacitor circuit having a first switch to which an output signal of the first amplifier circuit is connected, a second switch to which an output signal of the second amplifier circuit is connected, and a capacitor;
    A precharge circuit connected between an interconnection point of the first switch, the second switch, and the capacitor and a reference voltage;
    An AD conversion circuit connected to the capacitor;
    An AD converter comprising:
  2.  前記第1および第2の増幅回路は、出力端と前記基準電圧との間に接続された定電流源を有する、
    請求項1に記載のAD変換器。
    The first and second amplifier circuits have constant current sources connected between an output terminal and the reference voltage.
    The AD converter according to claim 1.
  3.  前記プリチャージ回路は、前記相互接続点に接続された第3のスイッチ、前記基準電圧が接続された第4のスイッチ、および前記基準電圧が接続されたキャパシタを有するスイッチトキャパシタ回路を有する、
     請求項1に記載のAD変換器。
    The precharge circuit includes a switched capacitor circuit having a third switch connected to the interconnection point, a fourth switch connected to the reference voltage, and a capacitor connected to the reference voltage.
    The AD converter according to claim 1.
  4.  前記第3および第4のスイッチは、前記第1および第2のスイッチがいずれもオフ状態のときにスイッチング動作する、
     請求項3に記載のAD変換器。
    The third and fourth switches perform a switching operation when both the first and second switches are in an off state.
    The AD converter according to claim 3.
  5.  前記第1および第2の増幅回路は、ソースフォロワを有する、
     請求項1または請求項2に記載のAD変換器。
    The first and second amplifier circuits have a source follower,
    The AD converter according to claim 1 or 2.
  6.  前記第1および第2の増幅回路は、ボルテージフォロワを有する、
     請求項1または請求項2に記載のAD変換器。
    The first and second amplifier circuits have a voltage follower,
    The AD converter according to claim 1 or 2.
  7.  複数の光電変換素子がマトリクス状に配列された画素アレイと、
     請求項1から請求項6のいずれかに記載のAD変換器を複数個有し、前記画素アレイの画素1行分に相当する出力電圧が入力されるカラムAD変換器と、
     を備えるイメージセンサ。
    A pixel array in which a plurality of photoelectric conversion elements are arranged in a matrix;
    A column AD converter having a plurality of AD converters according to any one of claims 1 to 6, to which an output voltage corresponding to one row of pixels of the pixel array is input,
    An image sensor.
  8.  撮影光学系と、
     前記撮影光学系によって結像された被写体像を受像する請求項7に記載のイメージセンサと、
     を備える撮像装置。
    Photographic optics,
    The image sensor according to claim 7, which receives a subject image formed by the photographing optical system;
    An imaging apparatus comprising:
PCT/JP2015/006092 2015-03-19 2015-12-08 Ad converter, image sensor, and image pickup device WO2016147238A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-056414 2015-03-19
JP2015056414A JP2018078350A (en) 2015-03-19 2015-03-19 AD converter, image sensor, and imaging device

Publications (1)

Publication Number Publication Date
WO2016147238A1 true WO2016147238A1 (en) 2016-09-22

Family

ID=56918725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006092 WO2016147238A1 (en) 2015-03-19 2015-12-08 Ad converter, image sensor, and image pickup device

Country Status (2)

Country Link
JP (1) JP2018078350A (en)
WO (1) WO2016147238A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114422731A (en) * 2022-01-17 2022-04-29 华中科技大学 Infrared reading circuit and pixel circuit
JP7407794B2 (en) 2018-08-10 2024-01-04 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Aerosol delivery device with charging circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020072435A (en) * 2018-11-02 2020-05-07 ソニーセミコンダクタソリューションズ株式会社 Signal processing device, image sensor, imaging apparatus, and information processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091860A (en) * 1998-06-15 2000-03-31 Texas Instr Inc <Ti> Charge coupled amplifier matching offset and converter
JP2006303604A (en) * 2005-04-15 2006-11-02 Sony Corp Switched capacitor amplifier circuit and solid state imaging device
JP2008306325A (en) * 2007-06-06 2008-12-18 Sony Corp A/d conversion circuit, control method of a/d conversion circuit, solid-state imaging device, and imaging apparatus
WO2011036697A1 (en) * 2009-09-24 2011-03-31 株式会社 東芝 A/d conversion device and radio device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091860A (en) * 1998-06-15 2000-03-31 Texas Instr Inc <Ti> Charge coupled amplifier matching offset and converter
JP2006303604A (en) * 2005-04-15 2006-11-02 Sony Corp Switched capacitor amplifier circuit and solid state imaging device
JP2008306325A (en) * 2007-06-06 2008-12-18 Sony Corp A/d conversion circuit, control method of a/d conversion circuit, solid-state imaging device, and imaging apparatus
WO2011036697A1 (en) * 2009-09-24 2011-03-31 株式会社 東芝 A/d conversion device and radio device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7407794B2 (en) 2018-08-10 2024-01-04 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Aerosol delivery device with charging circuit
CN114422731A (en) * 2022-01-17 2022-04-29 华中科技大学 Infrared reading circuit and pixel circuit
CN114422731B (en) * 2022-01-17 2023-09-22 华中科技大学 Infrared reading circuit and pixel circuit

Also Published As

Publication number Publication date
JP2018078350A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
US8854244B2 (en) Imagers with improved analog-to-digital converters
JP5375277B2 (en) Solid-state imaging device, imaging device, electronic device, AD conversion device, AD conversion method
US10523889B2 (en) Image sensor, electronic apparatus, comparator, and drive method
US8184184B2 (en) Analog multiplexer configured to reduce kickback perturbation in image sensor readout
US20110194007A1 (en) Cmos image sensor
WO2009148107A1 (en) Solid-state imaging device, imaging device, electronic apparatus, ad converting device, and ad converting method
US9635298B2 (en) Comparator circuit, imaging apparatus using the same, and method of controlling comparator circuit
JP2017005435A (en) Imaging apparatus and signal processing circuit
US20140146210A1 (en) Solid state imaging devices and methods using single slope adc with adjustable slope ramp signal
JP2016201649A (en) Imaging apparatus, imaging system, and driving method for imaging apparatus
JP2010109888A (en) Solid-state imaging apparatus, imaging system, and driving method of solid-state imaging apparatus
JP6893325B2 (en) Inversion amplifier, integrator, sample hold circuit, AD converter, image sensor, and imaging device
WO2016147238A1 (en) Ad converter, image sensor, and image pickup device
WO2014038140A1 (en) Solid-state imaging device and imaging device
US10044950B2 (en) Image pickup device
JP2019062398A5 (en)
WO2013179573A1 (en) Solid-state imaging device and camera
JP3948433B2 (en) Solid-state imaging device
US11025851B2 (en) Fast image sensor with pixel binning
WO2013129512A1 (en) Solid-state imaging device and electronic camera using same
US10484618B1 (en) Ultra-high dynamic range CMOS sensor
JP6213599B2 (en) Imaging device and imaging apparatus
US20230345152A1 (en) Analog-to-digital converting circuit for decreasing decision delay and operation method thereof
US20240080583A1 (en) Image sensor including power management unit for noise reduction using chopping operation and operation, method thereof
US20220303486A1 (en) Photoelectric conversion device, electronic device, and substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15885336

Country of ref document: EP

Kind code of ref document: A1