WO2016145641A1 - Component and method for converting modulation format of optical signal - Google Patents

Component and method for converting modulation format of optical signal Download PDF

Info

Publication number
WO2016145641A1
WO2016145641A1 PCT/CN2015/074551 CN2015074551W WO2016145641A1 WO 2016145641 A1 WO2016145641 A1 WO 2016145641A1 CN 2015074551 W CN2015074551 W CN 2015074551W WO 2016145641 A1 WO2016145641 A1 WO 2016145641A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
mmi
optical
ook
pulse
Prior art date
Application number
PCT/CN2015/074551
Other languages
French (fr)
Chinese (zh)
Inventor
王健
桂成程
王大伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580075186.XA priority Critical patent/CN107210816B/en
Priority to PCT/CN2015/074551 priority patent/WO2016145641A1/en
Publication of WO2016145641A1 publication Critical patent/WO2016145641A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • a device and method for converting a modulation pattern of an optical signal by splitting an optical pulse using a multimode interference coupler in an all-optical region, coupling two OOK optical signals and one optical pulse, and
  • the use of a silicon-based optical waveguide causes a cross-phase modulation effect of the coupled optical pulse and the two OOK optical signals to generate a QPSK optical signal, and a multi-mode interference coupler can couple the two QPSK optical signals to obtain a 16-QAM optical signal.
  • the rate of conversion of the modulation pattern of the optical signal can be improved.
  • the first MMI may be an asymmetric multimode interference coupler, and is further configured to split the first optical pulse according to the power of the first optical pulse to obtain a first optical pulse and a second optical pulse.
  • the ratio of the power of the first light pulse to the power of the second light pulse is 2:1.
  • the signal input from one end port can only be output from the port at the other end after being processed in the MMI.
  • a first light pulse is input from port 105, and two light pulses obtained after splitting through the first MMI can only be output from the opposite end of port 105, such as from ports 106, 107, and not from port 108.
  • the second MMI 102 can be an asymmetric multimode interference coupler, and the second MMI can include four ports: port 109, port 110, port 111, and port 112. Port 111 of the second MMI can be used to receive a first beam of light output from the first MMI, and port 112 is used to output the first beam of light.
  • the port 109 of the second MMI can be used to receive the first OOK optical signal, and the port 110 of the second MMI can be used to receive the second OOK optical signal.
  • the ratio of the power of the first OOK optical signal to the power of the second OOK optical signal is 1:1.
  • the second MMI can be configured to couple the first OOK optical signal, the second OOK optical signal, and the first optical pulse to obtain a first coupled optical signal.
  • the fourth MMI is configured to receive the light pulse emitted by the pulse generator and split the power of the received light pulse to obtain a first light pulse and a second light pulse.
  • the first MMI is for receiving the first light pulse and splitting the power of the first light pulse to obtain a first light pulse and a second light pulse.
  • FIG. 4 is a schematic flow chart of a method of converting a modulation pattern of an optical signal according to another embodiment of the present invention.
  • a device and method for converting a modulation pattern of an optical signal by splitting an optical pulse using a multimode interference coupler in an all-optical region, coupling an OOK optical signal and a pulsed light, and using silicon-based light
  • the waveguide causes a cross-phase modulation effect between the coupled optical pulse and the OOK optical signal to generate a QPSK optical signal.
  • the multi-mode interference coupler can couple the two QPSK optical signals to obtain a 16-QAM optical signal, and pass the two-dimensional photonic crystal grating.
  • the two 16-QAM optical signals can be coupled to obtain a PDM-16-QAM optical signal to realize conversion of a modulation pattern of the optical signal, thereby simplifying the device structure and improving the conversion rate of the modulation pattern of the optical signal. .

Abstract

Provided are a component and method for converting the modulation format of optical signals. The component comprises a first nonlinear silicon-based optical waveguide, a first MMI, a second MMI, and a third MMI. The first MMI divides a first light pulse into a first light pulse beam and a second light pulse beam. The second MMI is used for coupling two OOK optical signals with one of the light pulse beams into a first coupled optical signal. The third MMI is used for coupling another two OOK optical signals with the other of the light pulse beams into a second coupled optical signal. The first nonlinear silicon-based optical waveguide cross-phase modulates the first coupled optical signal into a first QPSK optical signal and cross-phase modulates the second coupled optical signal into a second QPSK optical signal. The first MMI synthesizes the first QPSK optical signal and the second QPSK optical signal into a first 16-QAM optical and outputs same. The described technical solution increases the rate of conversion of the modulation format of optical signals.

Description

转换光信号的调制码型的器件和方法Device and method for converting modulation pattern of optical signal 技术领域Technical field
本发明实施例涉及光通信领域,并且更具体地,涉及转换光信号的调制码型的器件和方法。Embodiments of the present invention relate to the field of optical communications and, more particularly, to a device and method for converting a modulation pattern of an optical signal.
背景技术Background technique
二进制调制(On-off keying,OOK)码型广泛应用在局域网等进行低速传输的网络场景中。相对于二进制调制码型而言,高阶调制码型的一个符号可以表示更多的信号状态,这样,可以大幅提升信息传输的容量,从而在波特率不变的情况下实现更高的比特速率。高阶调制码型多用在骨干网等需要进行高速传输的网络场景中。On-off keying (OOK) patterns are widely used in network scenarios such as local area networks for low-speed transmission. Compared with the binary modulation pattern, one symbol of the high-order modulation pattern can indicate more signal states, so that the capacity of information transmission can be greatly increased, thereby realizing higher bits with the same baud rate. rate. High-order modulation patterns are often used in network scenarios such as backbone networks where high-speed transmission is required.
光信号从局域网传输到骨干网时,需要经历从二进制调制码型到高阶调制码型的转换过程。传统的转换方法是利用半导体光放大器(Semiconductor Optical Amplifier,SOA)中的四路混频(Four Wave Mixing,FWM)现象将两路OOK光信号(例如第一OOK光信号和第二OOK光信号)转换成一路正交相移键控(Quadrature Phase Shift Keying,QPSK)光信号。再由两路QPSK光信号合成16进制正交幅度调制(Quadurature Amplitude Modulation,QAM)光信号。将两路OOK光信号(例如第一OOK光信号和第二OOK光信号)转换成一路QPSK光信号的具体流程如下:第一OOK光信号首先与两束不同波长的辅助光进入到第一SOA器件中,产生二进制相移键控(Binary Phase Shift Keying,BPSK)光信号,然后BPSK光信号、第二OOK光信号和第三束不同波长的辅助光输入SOA器件中,产生QPSK光信号。这种方法使用耦合器、多个SOA以及多束辅助光来实现光信号的调制码型的转换,器件结构比较复杂,光信号的调制码型转换速率慢。When an optical signal is transmitted from a local area network to a backbone network, it needs to undergo a conversion process from a binary modulation pattern to a high-order modulation pattern. The conventional conversion method is to use a Four Wave Mixing (FWM) phenomenon in a Semiconductor Optical Amplifier (SOA) to convert two OOK optical signals (for example, a first OOK optical signal and a second OOK optical signal). Converted into a Quadrature Phase Shift Keying (QPSK) optical signal. Then, a Quaternary Amplitude Modulation (QAM) optical signal is synthesized by two QPSK optical signals. The specific process of converting two OOK optical signals (for example, the first OOK optical signal and the second OOK optical signal) into one QPSK optical signal is as follows: the first OOK optical signal first enters the first SOA with two different wavelengths of auxiliary light. In the device, a Binary Phase Shift Keying (BPSK) optical signal is generated, and then the BPSK optical signal, the second OOK optical signal, and the third auxiliary light of different wavelengths are input into the SOA device to generate a QPSK optical signal. This method uses a coupler, a plurality of SOAs, and a plurality of auxiliary lights to realize modulation of a modulation pattern of an optical signal. The device structure is relatively complicated, and the modulation pattern of the optical signal has a slow conversion rate.
发明内容Summary of the invention
本发明实施例提供一种转换光信号的调制码型的器件和方法,能够提高光信号的调制码型转换的速率。Embodiments of the present invention provide a device and method for converting a modulation pattern of an optical signal, which can improve a modulation pattern conversion rate of an optical signal.
第一方面,提供了一种转换光信号的调制码型的器件,包括:第一非线性硅基光波导、第一多模干涉光耦合器MMI、第二MMI和第三MMI;所 述第一MMI与第二MMI用第一硅基光波导连接,所述第一MMI与所述第三MMI用第一硅基光波导连接,所述第一非线性硅基光波导与所述第二MMI用第一硅基光波导连接,所述第一非线性硅基光波导与所述第三MMI用第一硅基光波导连接;所述第一MMI用于接收第一光脉冲,并对所述第一光脉冲进行分束,得到第一束光脉冲和第二束光脉冲;所述第二MMI用于接收第一OOK光信号、第二OOK光信号和第一束光脉冲,并对所述第一OOK光信号、所述第二OOK光信号和所述第一束光脉冲进行耦合,得到第一耦合光信号;所述第三MMI用于接收第三OOK光信号、第四OOK光信号和所述第二束光脉冲,并对所述第三OOK光信号、所述第四OOK光信号和所述第二束光脉冲进行耦合,得到第二耦合光信号;所述第一非线性硅基光波导用于对所述第一耦合光信号中的所述第一OOK光信号、所述第二OOK光信号和所述第一束光脉冲进行交叉相位调制,得到第一正交相移键控QPSK光信号,所述第一非线性硅基光波导还用于对所述第二耦合光信号中的所述第三OOK光信号、所述第四OOK光信号和所述第二束光脉冲进行交叉相位调制,得到第二QPSK光信号;所述第一QPSK信号通过所述第三MMI到达所述第一MMI,所述第二QPSK信号通过所述第二MMI到达所述第一MMI;所述第一MMI还用于对所述第一QPSK光信号和所述第二QPSK光信号进行合成,得到第一16-正交幅度调制QAM光信号,并输出所述第一16-QAM光信号。In a first aspect, a device for converting a modulation pattern of an optical signal includes: a first nonlinear silicon-based optical waveguide, a first multimode interference optical coupler MMI, a second MMI, and a third MMI; The first MMI and the second MMI are connected by a first silicon-based optical waveguide, the first MMI and the third MMI are connected by a first silicon-based optical waveguide, the first nonlinear silicon-based optical waveguide and the The second MMI is connected by a first silicon-based optical waveguide, and the first nonlinear silicon-based optical waveguide is connected to the third MMI by a first silicon-based optical waveguide; the first MMI is configured to receive a first optical pulse, And splitting the first light pulse to obtain a first light pulse and a second light pulse; the second MMI is configured to receive the first OOK light signal, the second OOK light signal, and the first light pulse And coupling the first OOK optical signal, the second OOK optical signal, and the first optical pulse to obtain a first coupled optical signal; the third MMI is configured to receive a third OOK optical signal, a fourth OOK optical signal and the second optical pulse, and coupling the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse to obtain a second coupled optical signal; The first nonlinear silicon-based optical waveguide is configured to use the first OOK optical signal and the second OOK light in the first coupled optical signal And performing cross-phase modulation with the first beam of light to obtain a first quadrature phase shift keying QPSK optical signal, wherein the first nonlinear silicon-based optical waveguide is further used in the second coupled optical signal Performing cross-phase modulation on the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse to obtain a second QPSK optical signal; the first QPSK signal reaching the a first MMI, the second QPSK signal reaching the first MMI through the second MMI; the first MMI is further configured to synthesize the first QPSK optical signal and the second QPSK optical signal, A first 16-quadrature amplitude modulated QAM optical signal is obtained, and the first 16-QAM optical signal is output.
结合第一方面,在第一方面的一种实现方式中,所述第一MMI还用于对所述第一光脉冲进行分束包括根据所述第一光脉冲的功率对所述第一光脉冲进行分束,其中,所述第一束光脉冲的功率与所述第二束光脉冲的功率的比值为2:1;所述第一耦合光信号中的所述第一OOK光信号的功率与所述第二OOK光信号的功率的比值为2:1;所述第二耦合光信号中的所述第三OOK光信号的功率与所述第四OOK光信号的功率的比值为2:1。In conjunction with the first aspect, in an implementation of the first aspect, the first MMI is further configured to split the first optical pulse, including the first light according to a power of the first optical pulse Pulse splitting, wherein a ratio of a power of the first beam of light pulses to a power of the second beam of light pulses is 2:1; the first of the first coupled optical signals is of the first OOK optical signal The ratio of the power to the power of the second OOK optical signal is 2:1; the ratio of the power of the third OOK optical signal to the power of the fourth OOK optical signal in the second coupled optical signal is 2 :1.
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中所述器件还包括:第四MMI、第五MMI、第六MMI、第七MMI、第二非线性硅基光波导和二维光子晶体光栅;所述第一MMI与所述第四MMI用第一硅基光波导连接,所述第四MMI与所述第五MMI用第一硅基光波导连接,所述第五MMI与所述第六MMI用第一硅基光波导连接,所述第五MMI与所述第七MMI用第一硅基光波导连接,所述第二非线性硅基光波导与所述第 六MMI用第一硅基光波导连接,所述第二非线性硅基光波导与所述第七MMI用第一硅基光波导连接,所述第一MMI与所述二维光子晶体光栅用第一硅基光波导连接,所述第五MMI与所述二维光子晶体光栅用第一硅基光波导连接;所述第四MMI用于接收脉冲发生器发出的光脉冲,并对接收到的所述光脉冲的功率进行分束,得到所述第一光脉冲和第二光脉冲;所述第五MMI用于接收第二光脉冲,并对所述第二光脉冲进行分束,得到第三束光脉冲和第四束光脉冲;所述第六MMI用于接收第五OOK光信号、第六OOK光信号和第三束光脉冲,并对所述第五OOK光信号、所述第六OOK光信号和所述第三束光脉冲进行耦合,得到第三耦合光信号;所述第七MMI用于接收第七OOK光信号、第八OOK光信号和第四束光脉冲,并对所述第七OOK光信号、所述第八OOK光信号和所述第四束光脉冲进行耦合,得到第四耦合光信号;所述第二非线性硅基光波导用于将所述第三耦合光信号中的所述第五OOK光信号、所述第六OOK光信号和所述第三束光脉冲进行交叉相位调制,得到第三QPSK光信号,所述第二非线性硅基光波导还用于将所述第四耦合光信号中的所述第七OOK光信号、所述第八OOK光信号和所述第四束光脉冲进行交叉相位调制,得到第四QPSK光信号;所述第三QPSK信号通过所述第七MMI到达所述第五MMI,所述第四QPSK信号通过所述第六MMI到达所述第五MMI;所述第五MMI还用于将所述第三QPSK光信号和所述第四QPSK光信号合成,得到第二16-QAM光信号,并输出所述第二16-QAM光信号;所述二维光子晶体光栅用于接收所述第一MMI输出的第一16-QAM光信号和所述第五MMI输出的第二16-QAM光信号,并对所述第一16-QAM光信号和所述第二16-QAM光信号进行耦合,得到偏振复用PDM-16-QAM光信号。In combination with the first aspect and the foregoing implementation manner, in another implementation manner of the first aspect, the device further includes: a fourth MMI, a fifth MMI, a sixth MMI, a seventh MMI, and a second nonlinear silicon-based light. a waveguide and a two-dimensional photonic crystal grating; the first MMI and the fourth MMI are connected by a first silicon-based optical waveguide, and the fourth MMI and the fifth MMI are connected by a first silicon-based optical waveguide, The fifth MMI is connected to the sixth MMI by a first silicon-based optical waveguide, the fifth MMI is connected to the seventh MMI by a first silicon-based optical waveguide, and the second nonlinear silicon-based optical waveguide is Narrative The six MMIs are connected by a first silicon-based optical waveguide, and the second nonlinear silicon-based optical waveguide is connected to the seventh MMI by a first silicon-based optical waveguide, the first MMI and the two-dimensional photonic crystal grating a first silicon-based optical waveguide connected, the fifth MMI being coupled to the two-dimensional photonic crystal grating by a first silicon-based optical waveguide; and the fourth MMI for receiving a light pulse from a pulse generator and receiving The power of the light pulse is split to obtain the first light pulse and the second light pulse; the fifth MMI is for receiving the second light pulse, and splitting the second light pulse to obtain a third light pulse and a fourth light pulse; the sixth MMI is configured to receive the fifth OOK light signal, the sixth OOK light signal, and the third light pulse, and the fifth OOK light signal, the The sixth OOK optical signal and the third optical pulse are coupled to obtain a third coupled optical signal; the seventh MMI is configured to receive the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse, and Coupling the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse, a fourth coupled optical signal; the second nonlinear silicon-based optical waveguide is configured to use the fifth OOK optical signal, the sixth OOK optical signal, and the third beam of the third coupled optical signal The optical pulse is cross-phase modulated to obtain a third QPSK optical signal, and the second nonlinear silicon-based optical waveguide is further configured to use the seventh OOK optical signal in the fourth coupled optical signal, the eighth OK The optical signal and the fourth optical pulse are cross-phase modulated to obtain a fourth QPSK optical signal; the third QPSK signal reaches the fifth MMI through the seventh MMI, and the fourth QPSK signal passes the The sixth MMI reaches the fifth MMI; the fifth MMI is further configured to synthesize the third QPSK optical signal and the fourth QPSK optical signal to obtain a second 16-QAM optical signal, and output the first a two-six-QAM optical signal; the two-dimensional photonic crystal grating is configured to receive a first 16-QAM optical signal output by the first MMI and a second 16-QAM optical signal output by the fifth MMI, and Coupling the first 16-QAM optical signal and the second 16-QAM optical signal to obtain a polarization multiplexed PDM-16-QAM optical signal
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一MMI、所述第二MMI、所述第三MMI、所述第五MMI、所述第六MMI和所述第七MMI为非对称的MMI,所述第四MMI为对称的MMI。In conjunction with the first aspect and the foregoing implementation manner, in another implementation manner of the first aspect, the first MMI, the second MMI, the third MMI, the fifth MMI, and the sixth The MMI and the seventh MMI are asymmetric MMIs, and the fourth MMI is a symmetric MMI.
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一光脉冲的功率与所述第二光脉冲的功率的比值为1:1;所述第五MMI还用于对所述第二光脉冲进行分束包括根据所述第二光脉冲的功率对所述第二光脉冲进行分束,其中,所述第三束光脉冲的功率与所述第四束光脉冲的功率的比值为2:1;所述第三耦合光信号中的所述第五OOK光信号的功率 与所述第六OOK光信号的功率的比值为2:1;所述第四耦合光信号中的所述第七OOK光信号的功率与所述第八OOK光信号的功率的比值为2:1。In conjunction with the first aspect and the foregoing implementation manner, in another implementation manner of the first aspect, a ratio of a power of the first optical pulse to a power of the second optical pulse is 1:1; The MMI is further configured to split the second optical pulse, comprising splitting the second optical pulse according to a power of the second optical pulse, wherein a power of the third optical pulse is the same as the first The ratio of the power of the four optical pulses is 2:1; the power of the fifth OOK optical signal in the third coupled optical signal The ratio of the power of the sixth OOK optical signal is 2:1; the ratio of the power of the seventh OOK optical signal to the power of the eighth OK optical signal in the fourth coupled optical signal is 2: 1.
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第四MMI为1*2的MMI耦合器,所述第一MMI和所述第五MMI为2*2的MMI耦合器,所述第二MMI、所述第三MMI、所述第六MMI和所述第七MMI为1*3的MMI耦合器。In conjunction with the first aspect and the foregoing implementation manner, in another implementation manner of the first aspect, the fourth MMI is a 1*2 MMI coupler, and the first MMI and the fifth MMI are 2* The MMI coupler of 2, the second MMI, the third MMI, the sixth MMI, and the seventh MMI are 1*3 MMI couplers.
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一非线性硅基光波导和所述第二非线性硅基光波导具有交叉相位调制效应。In conjunction with the first aspect and the above implementation thereof, in another implementation of the first aspect, the first nonlinear silicon-based optical waveguide and the second nonlinear silicon-based optical waveguide have a cross-phase modulation effect.
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一非线性硅基光波导或所述第二非线性硅基光波导为下列波导中的任意一种:脊波导、狭缝波导、平板波导和光子晶体波导。In combination with the first aspect and the foregoing implementation manner, in another implementation manner of the first aspect, the first nonlinear silicon-based optical waveguide or the second nonlinear silicon-based optical waveguide is any one of the following waveguides Species: ridge waveguide, slot waveguide, slab waveguide, and photonic crystal waveguide.
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,,所述器件设置在第一网络节点,其特征在于,所述第一OOK光信号、所述第二OOK光信号、所述第三OOK光信号、所述第四OOK光信号、所述第五OOK光信号、所述第六OOK光信号、所述第七OOK光信号和所述第八OOK光信号由所述第一网络节点的电信号调制产生;或所述第一OOK光信号、所述第二OOK光信号、所述第三OOK光信号、所述第四OOK光信号、所述第五OOK光信号、所述第六OOK光信号、所述第七OOK光信号和所述第八OOK光信号由第二网络节点产生,并由第二网络节点传输至所述第一网络节点。In conjunction with the first aspect and the foregoing implementation manner, in another implementation manner of the first aspect, the device is disposed in a first network node, where the first OOK optical signal and the second OOK are An optical signal, the third OOK optical signal, the fourth OOK optical signal, the fifth OOK optical signal, the sixth OOK optical signal, the seventh OOK optical signal, and the eighth OOK optical signal Generating by electrical signal modulation of the first network node; or the first OOK optical signal, the second OOK optical signal, the third OOK optical signal, the fourth OOK optical signal, the fifth The OOK optical signal, the sixth OOK optical signal, the seventh OOK optical signal, and the eighth OK optical signal are generated by a second network node and transmitted by the second network node to the first network node.
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述器件设置在硅片上。In conjunction with the first aspect and the above implementation thereof, in another implementation of the first aspect, the device is disposed on a silicon wafer.
第二方面,提供了一种光信号的调制码型转换的方法,所述方法用于光信号调制码型转换的器件,所述器件包括第一非线性硅基光波导、第一多模干涉光耦合器MMI、第二MMI和第三MMI,其中,所述第一MMI与第二MMI用第一硅基光波导连接,所述第一MMI与所述第三MMI用第一硅基光波导连接,所述第一非线性硅基光波导与所述第二MMI用第一硅基光波导连接,所述第一非线性硅基光波导与所述第三MMI用第一硅基光波导连接,其特征在于,所述方法包括:所述第一MMI接收第一光脉冲,并对所述第一光脉冲进行分束,得到第一束光脉冲和第二束光脉冲;所述第二MMI 接收第一OOK光信号、第二OOK光信号和所述第一束光脉冲,并对所述第一OOK光信号、所述第二OOK光信号和所述第一束光脉冲进行耦合,得到第一耦合光信号;所述第三MMI接收第三OOK光信号、第四OOK光信号和所述第二束光脉冲,并对所述第三OOK光信号、所述第四OOK光信号和所述第二束光脉冲进行耦合,得到第二耦合光信号;所述第一非线性硅基光波导将所述第一耦合光信号中的所述第一OOK光信号、所述第二OOK光信号和所述第一束光脉冲进行交叉相位调制,得到第一正交相移键控QPSK光信号;所述第一非线性硅基光波导将所述第二耦合光信号中的所述第三OOK光信号、所述第四OOK光信号和所述第二束光脉冲进行交叉相位调制,得到第二QPSK光信号;所述第一QPSK光信号通过所述第三MMI到达所述第一MMI,所述第二QPSK信号通过所述第二MMI到达所述第一MMI;所述第一MMI对所述第一QPSK光信号与所述第二QPSK光信号进行合成,得到第一16-正交幅度调制QAM光信号;所述第一MMI输出所述第一16-QAM光信号。In a second aspect, there is provided a method of modulation pattern conversion of an optical signal, the method being used for a device for optical signal modulation pattern conversion, the device comprising a first nonlinear silicon-based optical waveguide, a first multimode interference An optical coupler MMI, a second MMI, and a third MMI, wherein the first MMI and the second MMI are connected by a first silicon-based optical waveguide, and the first MMI and the third MMI are first silicon-based light a waveguide connection, the first nonlinear silicon-based optical waveguide is connected to the second MMI by a first silicon-based optical waveguide, and the first nonlinear silicon-based optical waveguide and the third MMI are first silicon-based optical waveguide a waveguide connection, the method comprising: the first MMI receiving a first optical pulse, and splitting the first optical pulse to obtain a first beam of light and a second beam of light; Second MMI Receiving a first OOK optical signal, a second OOK optical signal, and the first optical pulse, and coupling the first OOK optical signal, the second OOK optical signal, and the first optical pulse to obtain a first coupled optical signal; the third MMI receiving a third OOK optical signal, a fourth OOK optical signal, and the second optical pulse, and the third OOK optical signal, the fourth OOK optical signal, and The second beam of light pulses are coupled to obtain a second coupled optical signal; the first nonlinear silicon-based optical waveguide is to be the first OOK optical signal of the first coupled optical signal, the second OOK Performing cross-phase modulation of the optical signal and the first beam of light to obtain a first quadrature phase shift keying QPSK optical signal; the first nonlinear silicon-based optical waveguide to be the one of the second coupled optical signals Performing cross-phase modulation on the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse to obtain a second QPSK optical signal; the first QPSK optical signal reaching the first through the third MMI An MMI, the second QPSK signal reaching the first MMI through the second MMI; the first The MMI synthesizes the first QPSK optical signal and the second QPSK optical signal to obtain a first 16-quadrature amplitude modulated QAM optical signal; the first MMI outputs the first 16-QAM optical signal.
结合第二方面,在第二方面的一种实现方式中,所述第一MMI对所述第一光脉冲进行分束包括:所述第一MMI根据所述第一光脉冲的功率对所述第一光脉冲进行分束;其中,所述第一束光脉冲的功率与所述第二束光脉冲的功率的比值为2:1;所述第一耦合光信号中的所述第一OOK光信号的功率与所述第二OOK光信号的功率的比值为2:1;所述第二耦合光信号中的所述第三OOK光信号的功率与所述第四OOK光信号的功率的比值为2:1。In conjunction with the second aspect, in an implementation of the second aspect, the splitting, by the first MMI, the first optical pulse comprises: the first MMI according to a power of the first optical pulse The first optical pulse is splitting; wherein a ratio of a power of the first optical pulse to a power of the second optical pulse is 2:1; the first OOK in the first coupled optical signal a ratio of a power of the optical signal to a power of the second OOK optical signal is 2:1; a power of the third OOK optical signal in the second coupled optical signal and a power of the fourth OOK optical signal The ratio is 2:1.
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,当所述器件还包括:第四MMI、第五MMI、第六MMI、第七MMI、第二非线性硅基光波导和二维光子晶体光栅,所述方法还包括:所述第四MMI接收脉冲发生器发出的光脉冲,并根据功率对接收到的所述光脉冲进行分束,得到所述第一光脉冲和第二光脉冲;所述第五MMI接收第二光脉冲,并对所述第二光脉冲进行分束,得到第一束光脉冲和第二束光脉冲;所述第六MMI接收第五OOK光信号、第六OOK光信号和所述第三束光脉冲,并对所述第五OOK光信号、所述第六OOK光信号和所述第三束光脉冲进行耦合,得到第三耦合光信号;所述第七MMI接收第七OOK光信号、第八OOK光信号和所述第四束光脉冲,并对所述第七OOK光信号、所述第八OOK光信号和所述第四束光脉冲进行耦合,得到第四耦合光信号;所述第二非线 性硅基光波导对所述第三耦合光信号中的所述第五OOK光信号、所述第六OOK光信号和所述第三束光脉冲进行交叉相位调制,得到第三QPSK光信号;所述第二非线性硅基光波导将所述第四耦合光信号中的所述第七OOK光信号、所述第八OOK光信号和所述第四束光脉冲进行交叉相位调制,得到第四QPSK光信号;所述第三QPSK信号通过所述第七MMI到达所述第五MMI,所述第四QPSK信号通过所述第六MMI到达所述第五MMI;所述第五MMI对所述第三QPSK光信号和所述第四QPSK光信号进行合成,得到第二16-QAM光信号;所述第五MMI输出所述第二16-QAM光信号;所述二维光子晶体光栅接收所述第一MMI输出的第一16-QAM光信号和所述第五MMI输出的第二16-QAM光信号,并对所述第一16-QAM光信号和所述第二16-QAM光信号进行耦合,得到偏振复用PDM-16-QAM光信号。With reference to the second aspect and the foregoing implementation manner, in another implementation manner of the second aspect, when the device further includes: a fourth MMI, a fifth MMI, a sixth MMI, a seventh MMI, and a second nonlinear silicon The base optical waveguide and the two-dimensional photonic crystal grating, the method further includes: the fourth MMI receiving the optical pulse emitted by the pulse generator, and splitting the received optical pulse according to the power to obtain the first a light pulse and a second light pulse; the fifth MMI receives the second light pulse, and splits the second light pulse to obtain a first light pulse and a second light pulse; the sixth MMI receiving a fifth OOK optical signal, a sixth OOK optical signal, and the third optical pulse, and coupling the fifth OOK optical signal, the sixth OOK optical signal, and the third optical pulse to obtain a first a third coupled optical signal; the seventh MMI receiving the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse, and the seventh OOK optical signal, the eighth OOK optical signal, and the The fourth beam of light is coupled to obtain a fourth coupled optical signal; the second non-linear The silicon-based optical waveguide cross-phase-modulates the fifth OOK optical signal, the sixth OOK optical signal, and the third optical pulse in the third coupled optical signal to obtain a third QPSK optical signal; The second nonlinear silicon-based optical waveguide cross-phase-modulates the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse of the fourth coupled optical signal to obtain a first a fourth QPSK optical signal; the third QPSK signal reaches the fifth MMI through the seventh MMI, and the fourth QPSK signal reaches the fifth MMI through the sixth MMI; the fifth MMI pair Synthesizing the third QPSK optical signal and the fourth QPSK optical signal to obtain a second 16-QAM optical signal; the fifth MMI outputting the second 16-QAM optical signal; the two-dimensional photonic crystal grating receiving a first 16-QAM optical signal output by the first MMI and a second 16-QAM optical signal output by the fifth MMI, and the first 16-QAM optical signal and the second 16-QAM light The signals are coupled to obtain a polarization multiplexed PDM-16-QAM optical signal.
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述第一光脉冲的功率与所述第二光脉冲的功率的比值为1:1;所述第五MMI还用于对所述第二光脉冲进行分束包括根据所述第二光脉冲的功率对所述第二光脉冲进行分束,其中,所述第三束光脉冲的功率与所述第四束光脉冲的功率的比值为2:1;所述第三耦合光信号中的所述第五OOK光信号的功率与所述第六OOK光信号的功率的比值为2:1;所述第四耦合光信号中的所述第七OOK光信号的功率与所述第八OOK光信号的功率的比值为2:1。With reference to the second aspect and the foregoing implementation manner, in another implementation manner of the second aspect, a ratio of a power of the first optical pulse to a power of the second optical pulse is 1:1; The MMI is further configured to split the second optical pulse, comprising splitting the second optical pulse according to a power of the second optical pulse, wherein a power of the third optical pulse is the same as the first The ratio of the power of the four optical pulses is 2:1; the ratio of the power of the fifth OOK optical signal to the power of the sixth OOK optical signal in the third coupled optical signal is 2:1; The ratio of the power of the seventh OOK optical signal in the fourth coupled optical signal to the power of the eighth OK optical signal is 2:1.
本发明实施例的转换光信号的调制码型的器件和方法,通过在全光域使用多模干涉耦合器对光脉冲进行分束、对两路OOK光信号和一束光脉冲进行耦合,并使用硅基光波导使得耦合后的光脉冲和两路OOK光信号发生交叉相位调制效应,产生QPSK光信号,并通过多模干涉耦合器可以对两路QPSK光信号进行耦合得到16-QAM光信号,以实现对光信号的调制码型的转换,能够提高光信号的调制码型的转换的速率。A device and method for converting a modulation pattern of an optical signal according to an embodiment of the present invention, by splitting an optical pulse using a multimode interference coupler in an all-optical region, coupling two OOK optical signals and one optical pulse, and The use of a silicon-based optical waveguide causes a cross-phase modulation effect of the coupled optical pulse and the two OOK optical signals to generate a QPSK optical signal, and a multi-mode interference coupler can couple the two QPSK optical signals to obtain a 16-QAM optical signal. In order to realize the conversion of the modulation pattern of the optical signal, the rate of conversion of the modulation pattern of the optical signal can be improved.
附图说明DRAWINGS
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings to be used in the embodiments of the present invention will be briefly described below. It is obvious that the drawings described below are only some embodiments of the present invention, Those skilled in the art can also obtain other drawings based on these drawings without paying any creative work.
图1是本发明一个实施例的转换光信号的调制码型的器件的示意图。 1 is a schematic diagram of a device for converting a modulation pattern of an optical signal according to an embodiment of the present invention.
图2是本发明另一实施例的转换光信号的调制码型的器件的示意图。2 is a schematic diagram of a device for converting a modulation pattern of an optical signal according to another embodiment of the present invention.
图3是本发明一个实施例的转换光信号的调制码型的方法的示意性流程图。3 is a schematic flow chart of a method of converting a modulation pattern of an optical signal according to an embodiment of the present invention.
图4是本发明另一实施例的转换光信号的调制码型的方法的示意性流程图。4 is a schematic flow chart of a method of converting a modulation pattern of an optical signal according to another embodiment of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are a part of the embodiments of the present invention, but not all embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts shall fall within the scope of the present invention.
图1是本发明一个实施例的转换光信号的调制码型的器件的示意图。图1的器件包括第一多模干涉耦合器(Multimode Interference,MMI)101、第二MMI 102、第三MMI 103和第一非线性硅基光波导104。1 is a schematic diagram of a device for converting a modulation pattern of an optical signal according to an embodiment of the present invention. The device of FIG. 1 includes a first multimode interference coupler (MMI) 101, a second MMI 102, a third MMI 103, and a first nonlinear silicon-based optical waveguide 104.
第一MMI与第二MMI用第一硅基光波导连接,第一MMI与第三MMI用第一硅基光波导连接,第一非线性硅基光波导与第二MMI用第一硅基光波导连接,第一非线性硅基光波导与第三MMI用第一硅基光波导连接。The first MMI and the second MMI are connected by a first silicon-based optical waveguide, the first MMI and the third MMI are connected by a first silicon-based optical waveguide, and the first nonlinear silicon-based optical waveguide and the second MMI are first silicon-based optical waveguide The waveguide is connected, and the first nonlinear silicon-based optical waveguide is connected to the third MMI by the first silicon-based optical waveguide.
第一MMI用于接收第一光脉冲,并对第一光脉冲的功率进行分束,得到第一束光脉冲和第二束光脉冲。The first MMI is for receiving the first light pulse and splitting the power of the first light pulse to obtain a first light pulse and a second light pulse.
第二MMI用于将第一OOK光信号(图1中的OOK1)、第二OOK光信号(图1中的OOK2)和第一束光脉冲进行耦合,得到第一耦合光信号。The second MMI is used to couple the first OOK optical signal (OOK1 in FIG. 1), the second OOK optical signal (OOK2 in FIG. 1), and the first optical pulse to obtain a first coupled optical signal.
第三MMI用于将第三OOK光信号(图1中的OOK3)、第四OOK光信号(图1中的OOK4)和第二束光脉冲进行耦合,得到第二耦合光信号。The third MMI is used to couple the third OOK optical signal (OOK3 in FIG. 1), the fourth OOK optical signal (OOK4 in FIG. 1), and the second optical pulse to obtain a second coupled optical signal.
第一非线性硅基光波导用于将第一耦合光信号中的第一OOK光信号(图1中的OOK1)、第二OOK光信号(图1中的OOK2)和第一束光脉冲发生交叉相位调制效应,得到第一QPSK光信号(图1中的QPSK1),第一非线性硅基光波导还用于将第二耦合光信号中的第三MMI用于将第三OOK光信号(图1中的OOK3)、第四OOK光信号(图1中的OOK4)和第二束光脉冲发生交叉相位调制,得到第二QPSK光信号(图1中的QPSK2)。The first nonlinear silicon-based optical waveguide is configured to generate a first OOK optical signal (OOK1 in FIG. 1), a second OOK optical signal (OOK2 in FIG. 1), and a first optical pulse in the first coupled optical signal. Cross-phase modulation effect, obtaining a first QPSK optical signal (QPSK1 in FIG. 1), and the first nonlinear silicon-based optical waveguide is further configured to use a third MMI in the second coupled optical signal to use the third OOK optical signal ( The OOK3), the fourth OOK optical signal (OOK4 in Fig. 1) and the second optical pulse in Fig. 1 are cross-phase modulated to obtain a second QPSK optical signal (QPSK2 in Fig. 1).
第一QPSK光信号通过第三MMI到达第一MMI,第二QPSK光信号通过第二MMI到达第一MMI。 The first QPSK optical signal reaches the first MMI through the third MMI, and the second QPSK optical signal reaches the first MMI through the second MMI.
所述第一MMI还用于将第一QPSK光信号和所述第二QPSK光信号合成,得到第一16-QAM光信号,并输出所述第一16-QAM光信号。The first MMI is further configured to combine the first QPSK optical signal and the second QPSK optical signal to obtain a first 16-QAM optical signal, and output the first 16-QAM optical signal.
本发明实施例的转换光信号的调制码型的器件和方法,通过在全光域使用多模干涉耦合器对光脉冲进行分束、对两路OOK光信号和一束光脉冲进行耦合,并使用硅基光波导使得耦合后的光脉冲和两路OOK光信号发生交叉相位调制效应,产生QPSK光信号,并通过多模干涉耦合器可以对两路QPSK光信号进行耦合得到16-QAM光信号,以实现对光信号的调制码型的转换,能够提高光信号的调制码型的转换的速率。A device and method for converting a modulation pattern of an optical signal according to an embodiment of the present invention, by splitting an optical pulse using a multimode interference coupler in an all-optical region, coupling two OOK optical signals and one optical pulse, and The use of a silicon-based optical waveguide causes a cross-phase modulation effect of the coupled optical pulse and the two OOK optical signals to generate a QPSK optical signal, and a multi-mode interference coupler can couple the two QPSK optical signals to obtain a 16-QAM optical signal. In order to realize the conversion of the modulation pattern of the optical signal, the rate of conversion of the modulation pattern of the optical signal can be improved.
应理解,本发明实施例中对两路OOK光信号和一束光脉冲进行耦合之后得到耦合光信号。这里的耦合是将两路OOK光信号和一束光脉冲三个端口输入的信号耦合在一起,从一个端口输出。耦合光信号的实质还是原来的三路信号,只不过耦合之后可以从一个端口输出。It should be understood that in the embodiment of the present invention, the two-way OOK optical signal and one optical pulse are coupled to obtain a coupled optical signal. The coupling here is to couple two OOK optical signals and a signal input from three ports of a light pulse, and output from one port. The essence of the coupled optical signal is still the original three signals, but can be output from one port after coupling.
第一硅基光波导也可以称为硅基波导线,用于传输光。第一非线性硅基光波导可以由在第二硅基光波导中加入非线性材料制成。应理解,第一硅基光波导和第二硅基光波导均为普通的硅基光波导,二者可以相同,也可以不同。The first silicon-based optical waveguide may also be referred to as a silicon-based waveguide line for transmitting light. The first nonlinear silicon-based optical waveguide can be made by adding a nonlinear material to the second silicon-based optical waveguide. It should be understood that the first silicon-based optical waveguide and the second silicon-based optical waveguide are both ordinary silicon-based optical waveguides, and the two may be the same or different.
第一非线性硅基光波导中加入的非线性材料的克尔系数大于硅的克尔系数、非线性材料的折射率小于硅的折射率。本发明对具体的非线性材料不做限定。例如,非线性材料可以为有机高分子聚合物等。The Kerr coefficient of the nonlinear material added to the first nonlinear silicon-based optical waveguide is greater than the Kerr coefficient of silicon, and the refractive index of the nonlinear material is smaller than the refractive index of silicon. The present invention does not limit a specific non-linear material. For example, the nonlinear material may be an organic high molecular polymer or the like.
本发明实施例中第一MMI、第二MMI、第一非线性硅基光波导和第三MMI形成环状结构,使得第一QPSK光信号在第一非线性硅基光波导中产生之后,可以通过第三MMI到达第一MMI。同理,第二QPSK光信号在第一非线性硅基光波导中产生之后可以通过第二MMI到达第一MMI。In the embodiment of the present invention, the first MMI, the second MMI, the first nonlinear silicon-based optical waveguide, and the third MMI form a ring structure, so that after the first QPSK optical signal is generated in the first nonlinear silicon-based optical waveguide, The first MMI is reached through the third MMI. Similarly, the second QPSK optical signal can reach the first MMI through the second MMI after being generated in the first nonlinear silicon-based optical waveguide.
多模干涉耦合器MMI可以是由宽波导和窄波导组成的,其中,宽波导用于传输光,窄波导用于构成耦合器的端口。多模干涉耦合器的工作原理是多模波导的自映像效应。MMI通过光信号在波导中的自映像效应实现对光信号的分束和耦合。The multimode interference coupler MMI can be composed of a wide waveguide and a narrow waveguide, wherein a wide waveguide is used to transmit light and a narrow waveguide is used to form a port of the coupler. The working principle of multimode interference couplers is the self-image effect of multimode waveguides. The MMI achieves splitting and coupling of the optical signal by the self-imaging effect of the optical signal in the waveguide.
在整个器件中,当MMI的宽波导两侧的窄波导关于用于传输的宽波导对称时认为是对称的MMI。对称的MMI可以对光的功率进行平均分配,例如,光脉冲经过对称的MMI可以将光脉冲分为功率相等的两束光脉冲。当窄波导的位置关于宽波导不对称时认为该MMI为非对称的MMI。MMI中 宽波导的尺寸和窄波导构成的端口的位置可以决定通过MMI的光的功率分配比例。非对称的MMI可以对光的功率进行不平均分配,例如,光脉冲经过非对称的MMI可以将光脉冲分为功率不等的两束光脉冲。Throughout the device, the narrow waveguides on either side of the wide waveguide of the MMI are considered to be symmetric MMIs when symmetric about the wide waveguide used for transmission. Symmetrical MMI can evenly distribute the power of light. For example, a light pulse can be divided into two pulses of equal power by a symmetric MMI. The MMI is considered to be an asymmetric MMI when the position of the narrow waveguide is asymmetric with respect to the wide waveguide. MMI The size of the wide waveguide and the position of the port formed by the narrow waveguide can determine the power distribution ratio of the light passing through the MMI. The asymmetric MMI can distribute the power of the light unevenly. For example, the optical pulse can divide the optical pulse into two optical pulses of different powers through the asymmetric MMI.
第一MMI可以为非对称的多模干涉耦合器,还用于根据第一光脉冲的功率对第一光脉冲进行分束,得到第一束光脉冲和第二束光脉冲。其中,第一束光脉冲的功率和第二束光脉冲的功率之比为2:1。The first MMI may be an asymmetric multimode interference coupler, and is further configured to split the first optical pulse according to the power of the first optical pulse to obtain a first optical pulse and a second optical pulse. Wherein, the ratio of the power of the first light pulse to the power of the second light pulse is 2:1.
第一MMI可以为2*2的MMI耦合器,第二MMI和第三MMI可以为1*3的MMI耦合器。对于2*2的MMI耦合器,其中MMI的一端包括两个端口,另一端包括两个端口。1*3的MMI耦合器的一端包括一个端口,另一端包括三个端口。从一端端口输入的信号在MMI中进行处理后只能从另一端端口输出。但本发明对端口的输入输出不做具体限定,例如,同一个端口在不同的光信号流向过程中,既可以作为输入端口,也可以作为输出端口。The first MMI may be a 2*2 MMI coupler, and the second MMI and the third MMI may be a 1*3 MMI coupler. For a 2*2 MMI coupler, one end of the MMI includes two ports and the other end includes two ports. The 1*3 MMI coupler includes one port at one end and three ports at the other end. Signals input from one end port can only be output from the other end port after being processed in the MMI. However, the present invention does not specifically limit the input and output of the port. For example, the same port can be used as an input port or an output port during different optical signal flow directions.
应理解,本发明实施例对MMI的端口数目和具体位置不做限定,只要能够满足本发明实施例中对信号的输入和信号耦合后的功率比即可。例如,第一MMI可以为2*3的MMI耦合器,从左端的两个端口中的一个端口输入第一光脉冲,从右端的三个端口中的两个端口输出第一束光脉冲和第二束光脉冲。只要这两个输出端口可以保证第一束光脉冲的功率和第二束光脉冲的功率之比为2:1即可。下面仅以第一MMI是2*2的MMI耦合器,第二MMI和第三MMI是1*3的MMI耦合器为例进行示例性说明。It should be understood that the number of ports and the specific location of the MMI are not limited in the embodiment of the present invention, as long as the power ratio of the signal input and the signal coupling in the embodiment of the present invention can be satisfied. For example, the first MMI may be a 2*3 MMI coupler, the first light pulse is input from one of the two ports on the left end, and the first light pulse is outputted from two of the three ports on the right end. Two beams of light. As long as the two output ports can ensure that the ratio of the power of the first light pulse to the power of the second light pulse is 2:1. The following is an example of an MMI coupler in which the first MMI is 2*2, and the second MMI and the third MMI are 1*3 MMI couplers.
第一MMI 101可以包括四个端口:端口105,端口106,端口107和端口108。端口105用于接收第一光脉冲。第一光脉冲可以是由脉冲发生器产生的,也可以是脉冲发生器产生光脉冲并经过可以对光脉冲进行分束的器件(例如MMI)进行分束得到的。第一MMI在端口105接收第一光脉冲之后,对第一光脉冲进行分束,得到第一束光脉冲和第二束光脉冲。其中,第一束光脉冲从端口106输出,沿着环的顺时针方向传输到第二MMI。第二束光脉冲从端口107输出,沿着硅基器件环的逆时针方向传输到第三MMI。The first MMI 101 can include four ports: port 105, port 106, port 107, and port 108. Port 105 is for receiving a first light pulse. The first light pulse may be generated by a pulse generator or may be generated by a pulse generator generating a light pulse and passing through a device (e.g., MMI) that can split the light pulse. After receiving the first light pulse at port 105, the first MMI splits the first light pulse to obtain a first light pulse and a second light pulse. Wherein, the first beam of light is output from port 106 and transmitted in a clockwise direction of the ring to the second MMI. A second beam of light is output from port 107 and transmitted in a counterclockwise direction along the silicon-based device ring to the third MMI.
应理解,从一端端口输入的信号在MMI中进行处理后只能从另一端的端口输出。例如,第一光脉冲从端口105输入,经过第一MMI分束之后得到的两束光脉冲只能从端口105的对端输出,比如从端口106、107输出,而不会从端口108输出。It should be understood that the signal input from one end port can only be output from the port at the other end after being processed in the MMI. For example, a first light pulse is input from port 105, and two light pulses obtained after splitting through the first MMI can only be output from the opposite end of port 105, such as from ports 106, 107, and not from port 108.
应理解,第一束光脉冲和第二束光脉冲的功率之比也可以为1:2。 It should be understood that the ratio of the power of the first beam of light to the second beam of light may also be 1:2.
第二MMI 102可以为非对称的多模干涉耦合器,第二MMI可以包括四个端口:端口109、端口110、端口111和端口112。第二MMI的端口111可以用于接收从第一MMI输出的第一束光脉冲,端口112用于输出该第一束光脉冲。第二MMI的端口109可以用于接收第一OOK光信号,第二MMI的端口110可以用于接收第二OOK光信号。其中,第一OOK光信号的功率与第二OOK光信号的功率之比为1:1。第二MMI可以用于对第一OOK光信号、第二OOK光信号和第一束光脉冲进行耦合,得到第一耦合光信号。第一耦合光信号中的第一OOK光信号的功率与第二OOK光信号的功率的比值为2:1。第一OOK光信号和第二OOK光信号经过第二MMI之后,第二OOK光信号的功率减小一半。The second MMI 102 can be an asymmetric multimode interference coupler, and the second MMI can include four ports: port 109, port 110, port 111, and port 112. Port 111 of the second MMI can be used to receive a first beam of light output from the first MMI, and port 112 is used to output the first beam of light. The port 109 of the second MMI can be used to receive the first OOK optical signal, and the port 110 of the second MMI can be used to receive the second OOK optical signal. The ratio of the power of the first OOK optical signal to the power of the second OOK optical signal is 1:1. The second MMI can be configured to couple the first OOK optical signal, the second OOK optical signal, and the first optical pulse to obtain a first coupled optical signal. The ratio of the power of the first OOK optical signal in the first coupled optical signal to the power of the second OOK optical signal is 2:1. After the first OOK optical signal and the second OOK optical signal pass through the second MMI, the power of the second OOK optical signal is reduced by half.
第二MMI还用于从端口112输出第一耦合光信号。The second MMI is also used to output a first coupled optical signal from port 112.
第三MMI 103可以为非对称的多模干涉耦合器,第三MMI可以包括四个端口:端口113、端口114、端口115和端口116。第三MMI的端口115可以用于接收从第一MMI输出的第二束光脉冲,端口116用于输出该第二束光脉冲。第三MMI的端口113可以用于接收第三OOK光信号,第三MMI的端口114可以用于接收第四OOK光信号。其中,第三OOK光信号的功率与第四OOK光信号的功率之比为1:1。第三MMI可以用于对第三OOK光信号、第四OOK光信号和第二束光脉冲进行耦合,得到第二耦合光信号。第二耦合光信号中的第三OOK光信号的功率与第四OOK光信号的功率的比值为2:1。第三OOK光信号和第四OOK光信号经过第三MMI之后,第四OOK光信号的功率减小一半。第三MMI还用于从端口116输出第二耦合光信号。The third MMI 103 can be an asymmetric multimode interference coupler, and the third MMI can include four ports: port 113, port 114, port 115, and port 116. Port 115 of the third MMI can be used to receive a second beam of light output from the first MMI, and port 116 is used to output the second beam of light. The port 113 of the third MMI can be used to receive a third OOK optical signal, and the port 114 of the third MMI can be used to receive a fourth OOK optical signal. The ratio of the power of the third OOK optical signal to the power of the fourth OOK optical signal is 1:1. The third MMI can be used to couple the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse to obtain a second coupled optical signal. The ratio of the power of the third OOK optical signal in the second coupled optical signal to the power of the fourth OOK optical signal is 2:1. After the third OOK optical signal and the fourth OOK optical signal pass through the third MMI, the power of the fourth OOK optical signal is reduced by half. The third MMI is also used to output a second coupled optical signal from port 116.
本发明实施例的光信号调制码型转换的方法在全光域对光信号进行处理,通过使用MMI对不同光信号的功率进行调节或耦合,避免使用耦合器和半导体光放大器对不同光信号进行耦合,能够降低器件结构的复杂度,简化器件结构。The optical signal modulation pattern conversion method of the embodiment of the invention processes the optical signal in the whole optical domain, and adjusts or couples the power of different optical signals by using the MMI, thereby avoiding using the coupler and the semiconductor optical amplifier to perform different optical signals. Coupling can reduce the complexity of the device structure and simplify the device structure.
应理解,本发明实施例对第二MMI和第三MMI的接收OOK光信号并对OOK光信号进行耦合的先后顺序不做限定,第二MMI和第三MMI还可以同时对接收的两路OOK光信号进行耦合。第二MMI和第三MMI相互独立,互不干扰。It should be understood that the embodiment of the present invention does not limit the order of receiving the OOK optical signal and coupling the OOK optical signal to the second MMI and the third MMI, and the second MMI and the third MMI can also simultaneously receive the two OOKs. The optical signals are coupled. The second MMI and the third MMI are independent of each other and do not interfere with each other.
第一非线性硅基光波导用于接收第二MMI的端口112输出的第一耦合 光信号,还用于接收第三MMI的端口116输出的第二耦合光信号。硅基光波导具有三阶非线性效应中的交叉相位调制效应。也就是说,当耦合光信号中的光信号和光脉冲同时进入硅基光波导中,且光脉冲的强度为1时,光信号与光脉冲发生交叉相位调制,使得光信号的相位发生改变。第一非线性硅基光波导中输入第一耦合光信号,并将第一耦合光信号中的第一OOK光信号、第二OOK光信号和第一束光脉冲进行交叉相位调制,得到第一QPSK光信号。第一非线性硅基光波导中还输入第二耦合光信号,并将第二耦合光信号中的第三OOK光信号、第四OOK光信号和第二束光脉冲进行交叉相位调制,得到第二QPSK光信号。a first nonlinear silicon-based optical waveguide for receiving a first coupling of a port 112 output of the second MMI The optical signal is also used to receive a second coupled optical signal output by port 116 of the third MMI. Silicon-based optical waveguides have cross-phase modulation effects in third-order nonlinear effects. That is, when the optical signal and the optical pulse in the coupled optical signal simultaneously enter the silicon-based optical waveguide, and the intensity of the optical pulse is 1, the optical signal is cross-phase modulated with the optical pulse, so that the phase of the optical signal changes. Inputting a first coupled optical signal into the first nonlinear silicon-based optical waveguide, and performing cross-phase modulation on the first OOK optical signal, the second OOK optical signal, and the first optical pulse in the first coupled optical signal to obtain a first QPSK optical signal. a second coupled optical signal is further input to the first nonlinear silicon-based optical waveguide, and the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse of the second coupled optical signal are cross-phase modulated to obtain a first Two QPSK optical signals.
本发明实施例中的第一耦合光信号中的第一OOK光信号、第二OOK光信号和第一束光脉冲需要同时到达第一非线性硅基光波导中,三者才能在第一非线性硅基光波导中发生交叉相位调制效应。同理,第二耦合光信号中的第三OOK光信号、第四OOK光信号和第二束光脉冲也要同时到达第一非线性硅基光波导中才能发生交叉相位调制效应。The first OOK optical signal, the second OOK optical signal, and the first optical pulse in the first coupled optical signal in the embodiment of the present invention need to arrive at the first nonlinear silicon-based optical waveguide at the same time, and the three can be in the first non- Cross-phase modulation effects occur in linear silicon-based optical waveguides. Similarly, the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse in the second coupled optical signal also arrive at the first nonlinear silicon-based optical waveguide to have a cross-phase modulation effect.
本发明实施例对如何控制上述OOK光信号和光脉冲同时到达第一非线性硅基光波导中不做限定。例如,可以通过在转换光信号的调制码型的器件的外部设置一个控制电路,控制电路用于控制光脉冲信号的发生时间,以及控制OOK光信号的输出时间,来调整OOK光信号和光脉冲到达非线性硅基光波导中的时间,以保证发生交叉相位调制效应。The embodiment of the present invention does not limit how to control the above OOK optical signal and the optical pulse to reach the first nonlinear silicon-based optical waveguide at the same time. For example, a control circuit can be provided outside the device for converting the modulation pattern of the optical signal, the control circuit is used to control the occurrence time of the optical pulse signal, and the output time of the OOK optical signal is controlled to adjust the OOK optical signal and the arrival of the optical pulse. Time in a nonlinear silicon-based optical waveguide to ensure cross-phase modulation effects occur.
第一非线性硅基光波导可以下列波导中的任意一种:脊波导、狭缝波导、平板波导和光子晶体波导。The first nonlinear silicon-based optical waveguide may be any one of the following waveguides: a ridge waveguide, a slit waveguide, a slab waveguide, and a photonic crystal waveguide.
本发明实施例中使用硅基光波导(例如,第一非线性硅基光波导)来代替传统的高非线性光纤。由于硅基光波导具有非线性效应,可以将光更好的限制在微米级器件中,能够降低光的有效作用面积,进而能够提高整个器件的非线性。In the embodiment of the present invention, a silicon-based optical waveguide (for example, a first nonlinear silicon-based optical waveguide) is used instead of the conventional highly nonlinear optical fiber. Since the silicon-based optical waveguide has a nonlinear effect, the light can be better confined to the micron-sized device, and the effective effective area of the light can be reduced, thereby improving the nonlinearity of the entire device.
本发明实施例整个器件可以设置在硅片上实现,器件中的各个部件都为硅基器件。由于硅基器件尺寸小,而且硅基器件的加工工艺能够与互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺相兼容,这就意味着硅基器件的制作成本较低,且易实现,可以提高整个器件的集成度。另外,光信号和光脉冲发生交叉相位调制的效率与器件的非线性和输入光的功率成正比。由于硅基光波导的高非线性,可以在低功率下发生 交叉相位调制,这样可以降低整个器件的功率损耗。In the embodiment of the invention, the entire device can be implemented on a silicon wafer, and each component in the device is a silicon-based device. Due to the small size of silicon-based devices and the compatibility of silicon-based devices with Complementary Metal Oxide Semiconductor (CMOS) processes, this means that silicon-based devices are less expensive to manufacture and easier to implement. Can increase the integration of the entire device. In addition, the efficiency of cross-phase modulation of the optical signal and the optical pulse is proportional to the nonlinearity of the device and the power of the input light. Due to the high nonlinearity of silicon-based optical waveguides, it can occur at low power Cross-phase modulation, which reduces the power loss of the entire device.
第一QPSK光信号通过第三MMI到第一MMI,第二QPSK光信号通过第二MMI到第一MMI。第一MMI分别从端口107和端口106接收第一非线性硅基光波导中得到的第一QPSK光信号和第二QPSK光信号。第一MMI并将第一QPSK光信号和第二QPSK光信号进行合成,得到第一16-QAM光信号,并从端口108输出第一16-QAM光信号。The first QPSK optical signal passes through the third MMI to the first MMI, and the second QPSK optical signal passes through the second MMI to the first MMI. The first MMI receives the first QPSK optical signal and the second QPSK optical signal obtained in the first nonlinear silicon-based optical waveguide from the port 107 and the port 106, respectively. The first MMI combines the first QPSK optical signal and the second QPSK optical signal to obtain a first 16-QAM optical signal, and outputs a first 16-QAM optical signal from the port 108.
本发明实施例中的MMI的多个端口相互独立,不同的端口可以独立输入不同的OOK光信号,并在MMI中对不同的OOK光信号进行耦合,这样可以与实际链路的光信号传输情景相一致。The multiple ports of the MMI in the embodiment of the present invention are independent of each other, and different ports can independently input different OOK optical signals, and couple different OOK optical signals in the MMI, so that the optical signal transmission scenario with the actual link can be performed. Consistent.
可选地,作为本发明的一个实施例,整个器件设置在硅片上。器件中的MMI为硅基器件,器件之间的连接线为第一硅基光波导(即普通的硅基光波导)。Alternatively, as an embodiment of the invention, the entire device is disposed on a silicon wafer. The MMI in the device is a silicon-based device, and the connection line between the devices is a first silicon-based optical waveguide (ie, a common silicon-based optical waveguide).
传统的实现光信号的调制码型的转换方法还可以在“光-电-光”领域对信号进行处理,使用马赫-曾德调制器对电信号进行调制最终产生16-QAM光信号。本发明实施例使用硅基器件代替高非线性光纤,在全光领域对信号进行处理,实现信号的调制码型的转换,这样可以避免采用传统的“光-电-光”在电领域处理信号时带来的速率限制,进而能够提高信号调制码型转换速率。The conventional conversion method for realizing the modulation pattern of an optical signal can also process the signal in the field of "optical-electric-optical", and modulate the electrical signal using a Mach-Zehnder modulator to finally generate a 16-QAM optical signal. In the embodiment of the present invention, a silicon-based device is used instead of a highly nonlinear optical fiber, and the signal is processed in the all-optical field to realize conversion of a modulation pattern of the signal, thereby avoiding the use of the conventional "optical-electric-light" to process signals in the electrical field. The rate limit imposed by the time can further increase the signal modulation pattern conversion rate.
传统的实现信号的调制码型的转换方法还可以在全光领域采用使用高非线性光纤,本发明实施例中采用硅基器件,这样可以避免使用SOA器件造成对码型转化速率的限制,进而可以降低成本,能够提高信号调制码型转换速率。The conventional method for converting the modulation pattern of the signal can also adopt the use of a highly nonlinear optical fiber in the all-optical field. In the embodiment of the present invention, a silicon-based device is used, which can avoid the limitation of the conversion rate of the pattern caused by using the SOA device, and further It can reduce the cost and improve the signal modulation pattern conversion rate.
上述第一16-QAM光信号为单偏振信号。要想得到偏振复用的16-QAM光信号,需要将两个16-QAM光信号进行耦合,下面结合图2具体介绍如何将多路OOK光信号转换为偏振复用的16-QAM光信号。The first 16-QAM optical signal is a single polarization signal. To obtain a polarization-multiplexed 16-QAM optical signal, two 16-QAM optical signals need to be coupled. The following describes how to convert a multi-channel OOK optical signal into a polarization-multiplexed 16-QAM optical signal in conjunction with FIG.
图2是本发明另一实施例的转换光信号的调制码型的器件的示意图。图2的器件包括第一MMI 101、第二MMI 102、第三MMI 10、和第一非线性硅基光波导104、第四MMI 117、第五MMI 118、第六MMI 119、第七MMI 120、第二非线性硅基光波导121和二维光子晶体光栅122。2 is a schematic diagram of a device for converting a modulation pattern of an optical signal according to another embodiment of the present invention. The device of FIG. 2 includes a first MMI 101, a second MMI 102, a third MMI 10, and a first nonlinear silicon-based optical waveguide 104, a fourth MMI 117, a fifth MMI 118, a sixth MMI 119, and a seventh MMI 120. a second nonlinear silicon-based optical waveguide 121 and a two-dimensional photonic crystal grating 122.
第一MMI与第二MMI用第一硅基光波导连接,第一MMI与第三MMI用第一硅基光波导连接,第一非线性硅基光波导与第二MMI用第一硅基光 波导连接,第一非线性硅基光波导与第三MMI用第一硅基光波导连接,第一MMI与第四MMI用第一硅基光波导连接,第四MMI与第五MMI用第一硅基光波导连接,第五MMI与第六MMI用第一硅基光波导连接,第五MMI与第七MMI用第一硅基光波导连接,第二非线性硅基光波导与第六MMI用第一硅基光波导连接,第二非线性硅基光波导与第七MMI用第一硅基光波导连接,第一MMI与二维光子晶体光栅用第一硅基光波导连接,第五MMI与二维光子晶体光栅用第一硅基光波导连接。The first MMI and the second MMI are connected by a first silicon-based optical waveguide, the first MMI and the third MMI are connected by a first silicon-based optical waveguide, and the first nonlinear silicon-based optical waveguide and the second MMI are first silicon-based optical waveguide a waveguide connection, the first nonlinear silicon-based optical waveguide is connected to the third MMI by the first silicon-based optical waveguide, the first MMI and the fourth MMI are connected by the first silicon-based optical waveguide, and the fourth MMI and the fifth MMI are used first. a silicon-based optical waveguide connection, a fifth MMI and a sixth MMI are connected by a first silicon-based optical waveguide, a fifth MMI and a seventh MMI are connected by a first silicon-based optical waveguide, and a second nonlinear silicon-based optical waveguide and a sixth MMI Connected by the first silicon-based optical waveguide, the second nonlinear silicon-based optical waveguide is connected to the seventh MMI by the first silicon-based optical waveguide, and the first MMI and the two-dimensional photonic crystal grating are connected by the first silicon-based optical waveguide, and the fifth The MMI is connected to the two-dimensional photonic crystal grating using a first silicon-based optical waveguide.
第四MMI用于接收脉冲发生器发出的光脉冲,并对接收到的光脉冲的功率进行分束,得到第一光脉冲和第二光脉冲。The fourth MMI is configured to receive the light pulse emitted by the pulse generator and split the power of the received light pulse to obtain a first light pulse and a second light pulse.
第一MMI用于接收第一光脉冲,并对第一光脉冲的功率进行分束,得到第一束光脉冲和第二束光脉冲。The first MMI is for receiving the first light pulse and splitting the power of the first light pulse to obtain a first light pulse and a second light pulse.
第二MMI用于将第一OOK光信号(图1中的OOK1)、第二OOK光信号(图1中的OOK2)和第一束光脉冲进行耦合,得到第一耦合光信号。The second MMI is used to couple the first OOK optical signal (OOK1 in FIG. 1), the second OOK optical signal (OOK2 in FIG. 1), and the first optical pulse to obtain a first coupled optical signal.
第三MMI用于将第三OOK光信号(图1中的OOK3)、第四OOK光信号(图1中的OOK4)和第二束光脉冲进行耦合,得到第二耦合光信号。The third MMI is used to couple the third OOK optical signal (OOK3 in FIG. 1), the fourth OOK optical signal (OOK4 in FIG. 1), and the second optical pulse to obtain a second coupled optical signal.
第一非线性硅基光波导用于将第一耦合光信号中的第一OOK光信号(图1中的OOK1)、第二OOK光信号(图1中的OOK2)和第一束光脉冲发生交叉相位调制效应,得到第一QPSK光信号(图1中的QPSK1),第一非线性硅基光波导还用于将第二耦合光信号中的第三MMI用于将第三OOK光信号(图1中的OOK3)、第四OOK光信号(图1中的OOK4)和第二束光脉冲发生交叉相位调制,得到第二QPSK光信号(图1中的QPSK2)。The first nonlinear silicon-based optical waveguide is configured to generate a first OOK optical signal (OOK1 in FIG. 1), a second OOK optical signal (OOK2 in FIG. 1), and a first optical pulse in the first coupled optical signal. Cross-phase modulation effect, obtaining a first QPSK optical signal (QPSK1 in FIG. 1), and the first nonlinear silicon-based optical waveguide is further configured to use a third MMI in the second coupled optical signal to use the third OOK optical signal ( The OOK3), the fourth OOK optical signal (OOK4 in Fig. 1) and the second optical pulse in Fig. 1 are cross-phase modulated to obtain a second QPSK optical signal (QPSK2 in Fig. 1).
第一QPSK光信号通过第三MMI到达第一MMI,第二QPSK光信号通过第二MMI到达第一MMI。The first QPSK optical signal reaches the first MMI through the third MMI, and the second QPSK optical signal reaches the first MMI through the second MMI.
第一MMI还用于将第一QPSK光信号和所述第二QPSK光信号合成,得到第一16-QAM光信号,并输出所述第一16-QAM光信号。The first MMI is further configured to synthesize the first QPSK optical signal and the second QPSK optical signal to obtain a first 16-QAM optical signal, and output the first 16-QAM optical signal.
第五MMI用于接收第二光脉冲,并对第二光脉冲进行分束,得到第三束光脉冲和第四束光脉冲。The fifth MMI is for receiving the second light pulse and splitting the second light pulse to obtain a third light pulse and a fourth light pulse.
第六MMI用于接收第五OOK光信号(图2中的OOK5)、第六OOK光信号(图2中的OOK6)和第三束光脉冲,并将第五OOK光信号、第六OOK光信号和第三束光脉冲进行耦合,得到第三耦合光信号。The sixth MMI is configured to receive the fifth OOK optical signal (OOK5 in FIG. 2), the sixth OOK optical signal (OOK6 in FIG. 2), and the third optical pulse, and the fifth OOK optical signal and the sixth OOK light. The signal is coupled to the third beam of light to obtain a third coupled optical signal.
第七MMI用于接收第七OOK光信号(图2中的OOK7)、第八OOK 光信号(图2中的OOK8)和第四束光脉冲,并将第七OOK光信号、第八OOK光信号和第四束光脉冲进行耦合,得到第四耦合光信号。The seventh MMI is for receiving the seventh OOK optical signal (OOK7 in FIG. 2), the eighth OOK An optical signal (OOK8 in FIG. 2) and a fourth optical pulse are coupled, and the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse are coupled to obtain a fourth coupled optical signal.
第二非线性硅基光波导用于将第三耦合光信号中的第五OOK光信号(图2中的OOK5)、第六OOK光信号(图2中的OOK6)和第三束光脉冲进行交叉相位调制,得到第三QPSK光信号(图2中的QPSK3)。第二非线性硅基光波导还用于将第四耦合光信号中的第七OOK光信号(图2中的OOK7)、第八OOK光信号(图2中的OOK8)和第四束光脉冲进行交叉相位调制,得到第四QPSK光信号(图2中的QPSK4)。The second nonlinear silicon-based optical waveguide is configured to perform a fifth OOK optical signal (OOK5 in FIG. 2), a sixth OOK optical signal (OOK6 in FIG. 2), and a third optical pulse in the third coupled optical signal. Cross phase modulation yields a third QPSK optical signal (QPSK3 in Figure 2). The second nonlinear silicon-based optical waveguide is further configured to use a seventh OOK optical signal (OOK7 in FIG. 2), an eighth OOK optical signal (OOK8 in FIG. 2), and a fourth optical pulse in the fourth coupled optical signal. Cross-phase modulation is performed to obtain a fourth QPSK optical signal (QPSK4 in Fig. 2).
第三QPSK信号通过第七MMI到达第五MMI,第四QPSK信号通过第六MMI到达第五MMI。The third QPSK signal reaches the fifth MMI through the seventh MMI, and the fourth QPSK signal reaches the fifth MMI through the sixth MMI.
第五MMI还用于将第三QPSK光信号和第四QPSK光信号合成,得到第二16-QAM光信号,并输出第二16-QAM光信号。The fifth MMI is further configured to combine the third QPSK optical signal and the fourth QPSK optical signal to obtain a second 16-QAM optical signal, and output a second 16-QAM optical signal.
二维光子晶体光栅用于接收第一MMI输出的第一16-QAM光信号和第五MMI输出的第二16-QAM光信号,并对第一16-QAM光信号和第二16-QAM光信号进行耦合,得到偏振复用(Polarization-division multiplexing,PDM)16-QAM光信号。The two-dimensional photonic crystal grating is configured to receive a first 16-QAM optical signal output by the first MMI and a second 16-QAM optical signal output by the fifth MMI, and to the first 16-QAM optical signal and the second 16-QAM light The signals are coupled to obtain a Polarization-division multiplexing (PDM) 16-QAM optical signal.
本发明实施例的转换光信号的调制码型的器件和方法,通过在全光域使用多模干涉耦合器对光脉冲进行分束、对两路OOK光信号和一束光脉冲进行耦合,并使用硅基光波导使得耦合后的光脉冲和两路OOK光信号发生交叉相位调制效应,产生QPSK光信号,通过多模干涉耦合器可以对两路QPSK光信号进行耦合得到16-QAM光信号,通过二维光子晶体光栅可以对两路16-QAM光信号进行耦合,得到PDM-16-QAM光信号,以实现对光信号的调制码型的转换,从而能够简化器件结构,能够提高光信号的调制码型的转换速率。A device and method for converting a modulation pattern of an optical signal according to an embodiment of the present invention, by splitting an optical pulse using a multimode interference coupler in an all-optical region, coupling two OOK optical signals and one optical pulse, and The use of a silicon-based optical waveguide causes a cross-phase modulation effect of the coupled optical pulse and the two OOK optical signals to generate a QPSK optical signal, and the multi-mode interference coupler can couple the two QPSK optical signals to obtain a 16-QAM optical signal. The two-way 16-QAM optical signal can be coupled by a two-dimensional photonic crystal grating to obtain a PDM-16-QAM optical signal to realize conversion of a modulation pattern of the optical signal, thereby simplifying the device structure and improving the optical signal. The conversion rate of the modulation pattern.
第一MMI、第二MMI、第三MMI和第一非线性硅基光波导的具体功能和详细介绍参见图1中的描述,在此不再赘述。The specific functions and detailed descriptions of the first MMI, the second MMI, the third MMI, and the first nonlinear silicon-based optical waveguide are described in the description of FIG. 1, and details are not described herein again.
第四MMI可以为对称的多模干涉耦合器,用于接收脉冲发生器发出的光脉冲,并对接收到的光脉冲的功率进行分束,得到第一光脉冲和第二光脉冲。其中,第一光脉冲的功率与第二光脉冲的功率相等。第四MMI通过第一MMI和第四MMI之间连接的第一硅基光波导向第一MMI传输第一光脉冲,并通过第四MMI和第五MMI之间连接的第一硅基光波导向第五MMI 传输第二光脉冲。The fourth MMI may be a symmetric multimode interference coupler for receiving the light pulses emitted by the pulse generator and splitting the power of the received light pulses to obtain a first light pulse and a second light pulse. Wherein the power of the first light pulse is equal to the power of the second light pulse. The fourth MMI transmits a first optical pulse to the first MMI through the first silicon-based optical waveguide connected between the first MMI and the fourth MMI, and passes through the first silicon-based optical waveguide connected between the fourth MMI and the fifth MMI Five MMI A second light pulse is transmitted.
第五MMI可以为非对称的多模干涉耦合器,用于接收第二光脉冲,还用于根据第二光脉冲的功率对第二光脉冲进行分束,得到第三束光脉冲和第四束光脉冲。其中,第三束光脉冲的功率与第四束光脉冲的功率之比为2:1。应理解,第三束光脉冲和第四束光脉冲的功率之比也可以为1:2。The fifth MMI may be an asymmetric multimode interference coupler for receiving the second optical pulse, and for splitting the second optical pulse according to the power of the second optical pulse to obtain a third optical pulse and a fourth Beam light pulse. The ratio of the power of the third beam of light to the power of the fourth beam of light is 2:1. It should be understood that the ratio of the power of the third beam of light to the fourth beam of light may also be 1:2.
在本发明的一个实施例中,第四MMI可以为1*2的MMI耦合器,第一MMI和第五MMI可以为2*2的MMI耦合器,第二MMI、第三MMI、第六MMI和第七MMI可以为1*3的MMI耦合器。In an embodiment of the present invention, the fourth MMI may be a 1*2 MMI coupler, and the first MMI and the fifth MMI may be a 2*2 MMI coupler, a second MMI, a third MMI, and a sixth MMI. And the seventh MMI can be a 1*3 MMI coupler.
对于2*2的MMI耦合器,其中MMI的一端包括两个端口,另一端包括两个端口。1*3的MMI耦合器的一端包括一个端口,另一端包括三个端口。从一端端口输入的信号在MMI中进行处理后只能从另一端端口输出。但本发明对端口的输入输出不做具体限定,例如,同一个端口在不同的光信号流向过程中,既可以作为输入端口,也可以作为输出端口。For a 2*2 MMI coupler, one end of the MMI includes two ports and the other end includes two ports. The 1*3 MMI coupler includes one port at one end and three ports at the other end. Signals input from one end port can only be output from the other end port after being processed in the MMI. However, the present invention does not specifically limit the input and output of the port. For example, the same port can be used as an input port or an output port during different optical signal flow directions.
第五MMI可以包括四个端口:端口123,端口124,端口125和端口126。端口123用于接收第二光脉冲。第五MMI在端口123接收第二光脉冲之后,对第二光脉冲进行分束,得到第三束光脉冲和第四束光脉冲。其中,第三束光脉冲从端口124输出,沿着硅基器件环的顺时针方向传输到第六MMI。第四束光脉冲从端口125输出,沿着硅基器件环的逆时针方向传输到第七MMI。The fifth MMI can include four ports: port 123, port 124, port 125, and port 126. Port 123 is for receiving a second light pulse. After receiving the second light pulse at port 123, the fifth MMI splits the second light pulse to obtain a third light pulse and a fourth light pulse. The third beam of light is output from port 124 and is transmitted clockwise along the silicon-based device ring to the sixth MMI. The fourth beam of light is output from port 125 and transmitted in a counterclockwise direction along the silicon-based device ring to the seventh MMI.
第六MMI 119可以为非对称的多模干涉耦合器,第六MMI可以包括四个端口:端口127、端口128、端口129和端口130。第六MMI的端口129可以用于接收从第五MMI输出的第三束光脉冲,端口130用于输出该第三束光脉冲。第六MMI的端口127可以用于接收第五OOK光信号,第六MMI的端口128可以用于接收第六OOK光信号。其中,第五OOK光信号的功率与第六OOK光信号的功率之比为1:1。第六MMI可以用于对第五OOK光信号、第六OOK光信号和第三束光脉冲进行耦合,得到第三耦合光信号。第三耦合信号中的第五OOK光信号的功率与第六OOK光信号的功率之比为2:1。可以认为第六OOK光信号经过第六MMI之后功率减半,而第五OOK光信号的功率不变。第六MMI还用于从端口130输出第三耦合光信号。The sixth MMI 119 can be an asymmetric multimode interference coupler, and the sixth MMI can include four ports: port 127, port 128, port 129, and port 130. The port 129 of the sixth MMI can be used to receive a third beam of light output from the fifth MMI, and the port 130 is for outputting the third beam of light. Port 127 of the sixth MMI can be used to receive the fifth OOK optical signal, and port 128 of the sixth MMI can be used to receive the sixth OOK optical signal. The ratio of the power of the fifth OOK optical signal to the power of the sixth OOK optical signal is 1:1. The sixth MMI can be used to couple the fifth OOK optical signal, the sixth OOK optical signal, and the third optical pulse to obtain a third coupled optical signal. The ratio of the power of the fifth OOK optical signal in the third coupled signal to the power of the sixth OOK optical signal is 2:1. It can be considered that the power of the sixth OOK optical signal is halved after passing through the sixth MMI, and the power of the fifth OOK optical signal is unchanged. The sixth MMI is also used to output a third coupled optical signal from port 130.
第七MMI 120可以为非对称的多模干涉耦合器,第七MMI可以包括四个端口:端口131、端口132、端口133和端口134。第七MMI的端口131 可以用于接收从第五MMI输出的第四束光脉冲,端口134用于输出该第四束光脉冲。第七MMI的端口132可以用于接收第七OOK光信号,第七MMI的端口133可以用于接收第八OOK光信号。其中,第七OOK光信号的功率与第八OOK光信号的功率之比为1:1。第七MMI可以用于对第七OOK光信号、第八OOK光信号和第四束光脉冲进行耦合,得到第四耦合光信号。第四耦合信号中的第七OOK光信号的功率与第八OOK光信号的功率之比为2:1。第七MMI还用于从端口134输出第四耦合光信号。The seventh MMI 120 can be an asymmetric multimode interference coupler, and the seventh MMI can include four ports: port 131, port 132, port 133, and port 134. Port 131 of the seventh MMI It may be used to receive a fourth beam of light output from a fifth MMI, and port 134 is for outputting the fourth beam of light. The port 132 of the seventh MMI can be used to receive the seventh OOK optical signal, and the port 133 of the seventh MMI can be used to receive the eighth OOK optical signal. The ratio of the power of the seventh OOK optical signal to the power of the eighth OK optical signal is 1:1. The seventh MMI can be used to couple the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse to obtain a fourth coupled optical signal. The ratio of the power of the seventh OOK optical signal in the fourth coupled signal to the power of the eighth OK optical signal is 2:1. The seventh MMI is also used to output a fourth coupled optical signal from port 134.
第二非线性硅基光波导可以由在第二硅基光波导中加入非线性材料。第二非线性硅基光波导中加入的非线性材料的克尔系数大于硅的克尔系数、非线性材料的折射率小于硅的折射率。第二硅基光波导可以为普通的硅基光波导。本发明对具体的非线性材料不做限定。例如,非线性材料可以为有机高分子聚合物等。The second nonlinear silicon-based optical waveguide may be made by adding a nonlinear material to the second silicon-based optical waveguide. The Kerr coefficient of the nonlinear material added to the second nonlinear silicon-based optical waveguide is greater than the Kerr coefficient of silicon, and the refractive index of the nonlinear material is smaller than the refractive index of silicon. The second silicon-based optical waveguide may be a conventional silicon-based optical waveguide. The present invention does not limit a specific non-linear material. For example, the nonlinear material may be an organic high molecular polymer or the like.
本发明实施例中的第三耦合光信号中的第五OOK光信号、第六OOK光信号和第三束光脉冲要同时到达第二非线性硅基光波导中,二者才能在第二非线性硅基光波导中发生交叉相位调制效应。第四耦合光信号中的第七OOK光信号、第八OOK光信号和第四束光脉冲要同时到达第二非线性硅基光波导,二者才能在第二非线性硅基光波导中发生交叉相位调制效应。应理解,本发明实施例可以通过控制电路来保证交叉相位调制效应的发生,具体可参见图1中对第一硅基光波导中发生交叉相位调制效应的详细描述,在此不再详细赘述。The fifth OOK optical signal, the sixth OOK optical signal, and the third optical pulse in the third coupled optical signal in the embodiment of the present invention are simultaneously reached in the second nonlinear silicon-based optical waveguide, and the two can be in the second non- Cross-phase modulation effects occur in linear silicon-based optical waveguides. The seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse of the fourth coupled optical signal simultaneously arrive at the second nonlinear silicon-based optical waveguide, and the two can occur in the second nonlinear silicon-based optical waveguide. Cross phase modulation effect. It should be understood that the embodiment of the present invention can ensure the occurrence of the cross-phase modulation effect through the control circuit. For details, refer to FIG. 1 for a detailed description of the cross-phase modulation effect in the first silicon-based optical waveguide, which will not be described in detail herein.
第二非线性硅基光波导用于接收第六MMI的端口130输出的第三束光脉冲和第三耦合光信号,还用于接收第三MMI的端口134输出的第四束光脉冲和第四耦合光信号。第二非线性硅基光波导具有三阶非线性效应中的交叉相位调制效应。第二非线性硅基光波导用于将第三耦合光信号中的第五OOK光信号、第六OOK光信号和第三束光脉冲进行交叉相位调制,得到第三QPSK光信号(图2中的QPSK3),并将第四耦合光信号中的第七OOK光信号、第八OOK光信号和第四束光脉冲进行交叉相位调制,得到第四QPSK光信号(图2中的QPSK4)。The second nonlinear silicon-based optical waveguide is configured to receive the third beam of light and the third coupled optical signal output by the port 130 of the sixth MMI, and is further configured to receive the fourth beam of light and the output of the port 134 of the third MMI. Four coupled optical signals. The second nonlinear silicon-based optical waveguide has a cross-phase modulation effect in the third-order nonlinear effect. The second nonlinear silicon-based optical waveguide is configured to cross-phase modulate the fifth OOK optical signal, the sixth OOK optical signal, and the third optical pulse of the third coupled optical signal to obtain a third QPSK optical signal (in FIG. 2 QPSK3), and cross-phase-modulating the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse in the fourth coupled optical signal to obtain a fourth QPSK optical signal (QPSK4 in FIG. 2).
整个器件中第一非线性硅基光波导、第一MMI、第二MMI和第三MMI构成环状结构,使得第一非线性硅基光波导中产生的第一QPSK信号可以通过第三MMI到达第一MMI,第二QPSK光信号可以通过第二MMI到达第 一MMI。第二非线性硅基光波导、第五MMI、第六MMI和第七MMI构成环状结构,使得第二非线性硅基光波导中产生的第三QPSK光信号可以通过第七MMI到达第五MMI,第四QPSK信号可以通过六MMI到达第五MMI。因此,本发明实施例通过各个部件构成环状,可以简化整个器件的结构。The first nonlinear silicon-based optical waveguide, the first MMI, the second MMI, and the third MMI form a ring structure in the entire device, so that the first QPSK signal generated in the first nonlinear silicon-based optical waveguide can be reached through the third MMI The first MMI, the second QPSK optical signal can reach the first through the second MMI An MMI. The second nonlinear silicon-based optical waveguide, the fifth MMI, the sixth MMI, and the seventh MMI form a ring structure such that the third QPSK optical signal generated in the second nonlinear silicon-based optical waveguide can reach the fifth through the seventh MMI MMI, the fourth QPSK signal can reach the fifth MMI through the six MMI. Therefore, the embodiment of the present invention can form a ring shape by various components, and the structure of the entire device can be simplified.
第一非线性硅基光波导或第二非线性硅基光波导可以下列波导中的任意一种:脊波导、狭缝波导、平板波导和光子晶体波导。The first nonlinear silicon-based optical waveguide or the second nonlinear silicon-based optical waveguide may be any one of the following waveguides: a ridge waveguide, a slit waveguide, a slab waveguide, and a photonic crystal waveguide.
本发明实施例中使用硅基光波导(例如,第一非线性硅基光波导、第二非线性硅基光波导),由于硅基光波导具有非线性效应,这样可以进一步提高整个器件的非线性。本发明实施例整个器件可以设置在硅片上,整个器件中七个MMI、第一非线性硅基光波导、第二非线性硅基光波导和二维光子晶体光栅都为硅基器件,这样可以降低整个器件的功率损耗,提高整个器件的集成度。In the embodiment of the present invention, a silicon-based optical waveguide (for example, a first nonlinear silicon-based optical waveguide and a second nonlinear silicon-based optical waveguide) is used. Since the silicon-based optical waveguide has a nonlinear effect, the non-linearity of the entire device can be further improved. Linear. In the embodiment of the present invention, the entire device may be disposed on a silicon wafer, and the entire device has seven MMIs, a first nonlinear silicon-based optical waveguide, a second nonlinear silicon-based optical waveguide, and a two-dimensional photonic crystal grating, all of which are silicon-based devices. It can reduce the power loss of the entire device and improve the integration of the entire device.
第五MMI还用于接收硅基光波导中得到的第三QPSK光信号和第四QPSK光信号,并将第三QPSK光信号和第四QPSK光信号进行合成,得到第二16-QAM光信号,并从端口126输出第二16-QAM光信号。The fifth MMI is further configured to receive the third QPSK optical signal and the fourth QPSK optical signal obtained in the silicon-based optical waveguide, and synthesize the third QPSK optical signal and the fourth QPSK optical signal to obtain a second 16-QAM optical signal. And outputting a second 16-QAM optical signal from port 126.
二维光子晶体光栅可以接收第一MMI从端口108输出的第一16-QAM光信号,并接收第五MMI从端口126输出的第二16-QAM光信号。二维光子晶体光栅还用于对第一16-QAM光信号和第二16-QAM光信号进行合成,得到PDM-16-QAM光信号,并将PDM-16-QAM光信号输出。The two-dimensional photonic crystal grating can receive the first 16-QAM optical signal output by the first MMI from port 108 and receive the second 16-QAM optical signal output by the fifth MMI from port 126. The two-dimensional photonic crystal grating is further configured to synthesize the first 16-QAM optical signal and the second 16-QAM optical signal to obtain a PDM-16-QAM optical signal, and output the PDM-16-QAM optical signal.
本发明实施例的器件中左边的环路包括:第一MMI、第二MMI、第三MMI和第一非线性硅基光波导,右边的环路包括:第五MMI、第六MMI、第七MMI和第二非线性硅基光波导。左右两边各个器件对称分布,这样可以尽可能地同步产生第一16-QAM信号和第二16-QAM信号,使得二者在二维光子晶体光栅中进行耦合,这样可以提高耦合得到偏振复用PDM-16-QAM光信号的效率。The left loop in the device of the embodiment of the present invention includes: a first MMI, a second MMI, a third MMI, and a first nonlinear silicon-based optical waveguide, and the right loop includes: a fifth MMI, a sixth MMI, and a seventh MMI and a second nonlinear silicon-based optical waveguide. The left and right sides of each device are symmetrically distributed, so that the first 16-QAM signal and the second 16-QAM signal can be generated as synchronously as possible, so that the two are coupled in the two-dimensional photonic crystal grating, so that the coupling can be improved to obtain polarization-multiplexed PDM. -16-QAM optical signal efficiency.
可选地,作为本发明的一个实施例,器件设置在硅片上。器件中所有部件都为硅基器件,器件之间的连接线都为第一硅基光波导,即器件之间的连接线为普通的硅基波导线即可。Alternatively, as an embodiment of the invention, the device is disposed on a silicon wafer. All components in the device are silicon-based devices, and the connection lines between the devices are the first silicon-based optical waveguides, that is, the connection lines between the devices are ordinary silicon-based waveguide lines.
本发明实施例对OOK光信号的来源不做限定。假设本发明实施例中的器件设置在第一网络节点。第一OOK光信号、第二OOK光信号、第三OOK光信号、第四OOK光信号、第五OOK光信号、第六OOK光信号、第七 OOK光信号和第八OOK光信号可以由第一网络节点的电信号调制产生,也可以由第二网络节点产生,并由第二网络节点传输至第一网络节点。第二网络节点可以与第一网络节点不同。The source of the OOK optical signal is not limited in the embodiment of the present invention. It is assumed that the device in the embodiment of the present invention is disposed at the first network node. a first OOK optical signal, a second OOK optical signal, a third OOK optical signal, a fourth OOK optical signal, a fifth OOK optical signal, a sixth OOK optical signal, and a seventh The OOK optical signal and the eighth OK optical signal may be generated by an electrical signal modulation of the first network node, or may be generated by the second network node and transmitted by the second network node to the first network node. The second network node can be different from the first network node.
由于硅基器件的加工工艺能够与CMOS工艺相兼容,这就意味着硅基器件的制作成本较低,且易实现。传统的信号调制码型的转换使用分立的非线性光学器件,例如非线性光纤、SOA等。本发明实施例中整个器件可以设置在硅片上实现,器件中的部件都为硅基器件,各个器件之间的连接线均为第一硅基光波导,整个器件使用集成的硅基器件,这样可以降低器件成本,能够提高器件的集成度,简化器件结构。Since the processing of silicon-based devices can be compatible with CMOS processes, this means that silicon-based devices are relatively inexpensive to manufacture and easy to implement. Traditional signal modulation patterns are converted using discrete nonlinear optics such as nonlinear fiber, SOA, and the like. In the embodiment of the present invention, the entire device can be disposed on a silicon chip, and the components in the device are all silicon-based devices, and the connection lines between the devices are all first silicon-based optical waveguides, and the entire device uses an integrated silicon-based device. This reduces device cost, increases device integration, and simplifies device structure.
以上结合图1和图2详细描述了根据本发明实施例的转换信号的调制码型的器件,下面将结合图3和图4详细描述根据本发明实施例的转换信号的调制码型的方法。A device for converting a modulation pattern of a signal according to an embodiment of the present invention is described in detail above with reference to FIGS. 1 and 2. A method of converting a modulation pattern of a signal according to an embodiment of the present invention will be described in detail below with reference to FIGS. 3 and 4.
图3是本发明一个实施例的转换信号的调制码型的方法的示意性流程图。3 is a schematic flow chart of a method of converting a modulation pattern of a signal according to an embodiment of the present invention.
301,第一MMI接收第一光脉冲,并对第一光脉冲进行分束,得到第一束光脉冲和第二束光脉冲。301. The first MMI receives the first optical pulse, and splits the first optical pulse to obtain a first optical pulse and a second optical pulse.
302,第二MMI接收第一OOK光信号、第二OOK光信号和第一束光脉冲,并对第一OOK光信号、第二OOK光信号和第一束光脉冲进行耦合,得到第一耦合光信号。302. The second MMI receives the first OOK optical signal, the second OOK optical signal, and the first optical pulse, and couples the first OOK optical signal, the second OOK optical signal, and the first optical pulse to obtain a first coupling. Optical signal.
303,第三MMI接收第三OOK光信号、第四OOK光信号和第二束光脉冲,并对第三OOK光信号、第四OOK光信号和第二束光脉冲进行耦合,得到第二耦合光信号。303. The third MMI receives the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse, and couples the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse to obtain a second coupling. Optical signal.
304,第一非线性硅基光波导将第一耦合光信号中的第一OOK光信号、第二OOK光信号和第一束光脉冲进行交叉相位调制,得到第一QPSK光信号。304. The first nonlinear silicon-based optical waveguide cross-phase-modulates the first OOK optical signal, the second OOK optical signal, and the first optical pulse of the first coupled optical signal to obtain a first QPSK optical signal.
305,第一非线性硅基光波导将第二耦合光信号中的第三OOK光信号、第四OOK光信号和第二束光脉冲进行交叉相位调制,得到第二QPSK光信号。305. The first nonlinear silicon-based optical waveguide cross-phase-modulates the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse of the second coupled optical signal to obtain a second QPSK optical signal.
306,第一QPSK光信号通过第三MMI到达第一MMI,第二QPSK光信号通过第二MMI到达第一MMI。306. The first QPSK optical signal reaches the first MMI through the third MMI, and the second QPSK optical signal reaches the first MMI through the second MMI.
307,第一MMI对第一QPSK光信号与第二QPSK光信号进行合成,得 到第一16-QAM光信号。307. The first MMI synthesizes the first QPSK optical signal and the second QPSK optical signal. To the first 16-QAM optical signal.
308,第一MMI输出第一16-QAM光信号。308. The first MMI outputs the first 16-QAM optical signal.
本发明实施例的转换光信号的调制码型的器件和方法,通过在全光域使用多模干涉耦合器对光脉冲进行分束、对两路OOK光信号和一束光脉冲进行耦合,并使用硅基光波导使得耦合后的光脉冲和两路OOK光信号发生交叉相位调制效应,产生QPSK光信号,通过多模干涉耦合器可以对两路QPSK光信号进行耦合得到16-QAM光信号,以实现对光信号的调制码型的转换,能够提高光信号的调制码型的转换的速率。A device and method for converting a modulation pattern of an optical signal according to an embodiment of the present invention, by splitting an optical pulse using a multimode interference coupler in an all-optical region, coupling two OOK optical signals and one optical pulse, and The use of a silicon-based optical waveguide causes a cross-phase modulation effect of the coupled optical pulse and the two OOK optical signals to generate a QPSK optical signal, and the multi-mode interference coupler can couple the two QPSK optical signals to obtain a 16-QAM optical signal. In order to realize the conversion of the modulation pattern of the optical signal, the rate of conversion of the modulation pattern of the optical signal can be improved.
图3的实施例中转换器件调制码型的方法的相应流程可对应由前述本发明实施例的图1器件中的各个部件执行,为了简洁,在此不再赘述。The corresponding flow of the method for converting the modulation pattern of the device in the embodiment of FIG. 3 may be performed by the respective components in the device of FIG. 1 of the foregoing embodiment of the present invention. For brevity, no further details are provided herein.
图4是本发明另一实施例的转换光信号的调制码型的方法的示意性流程图。4 is a schematic flow chart of a method of converting a modulation pattern of an optical signal according to another embodiment of the present invention.
401,第四MMI接收脉冲发生器发出的光脉冲,并根据功率对接收到的光脉冲进行分束,得到第一光脉冲和第二光脉冲。401. The fourth MMI receives the light pulse emitted by the pulse generator, and splits the received light pulse according to the power to obtain the first light pulse and the second light pulse.
402,第一MMI接收第一光脉冲,并对第一光脉冲进行分束,得到第一束光脉冲和第二束光脉冲。402. The first MMI receives the first light pulse, and splits the first light pulse to obtain a first light pulse and a second light pulse.
403,第二MMI接收第一OOK光信号、第二OOK光信号和第一束光脉冲,并对第一OOK光信号、第二OOK光信号和第一束光脉冲进行耦合,得到第一耦合光信号。403. The second MMI receives the first OOK optical signal, the second OOK optical signal, and the first optical pulse, and couples the first OOK optical signal, the second OOK optical signal, and the first optical pulse to obtain a first coupling. Optical signal.
404,第三MMI接收第三OOK光信号、第四OOK光信号和第二束光脉冲,并对第三OOK光信号、第四OOK光信号和第二束光脉冲进行耦合,得到第二耦合光信号。404. The third MMI receives the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse, and couples the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse to obtain a second coupling. Optical signal.
405,第一非线性硅基光波导将第一耦合光信号中的第一OOK光信号、第二OOK光信号和第一束光脉冲进行交叉相位调制,得到第一QPSK光信号。405. The first nonlinear silicon-based optical waveguide cross-phase-modulates the first OOK optical signal, the second OOK optical signal, and the first optical pulse of the first coupled optical signal to obtain a first QPSK optical signal.
406,第一非线性硅基光波导将第二耦合光信号中的第三OOK光信号、第四OOK光信号和第二束光脉冲进行交叉相位调制,得到第二QPSK光信号。406. The first nonlinear silicon-based optical waveguide cross-phase-modulates the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse of the second coupled optical signal to obtain a second QPSK optical signal.
407,第一QPSK光信号通过第三MMI到达第一MMI,第二QPSK光信号通过第二MMI到达第一MMI。407. The first QPSK optical signal reaches the first MMI through the third MMI, and the second QPSK optical signal reaches the first MMI through the second MMI.
408,第一MMI对第一QPSK光信号与第二QPSK光信号进行合成,得 到第一16-QAM光信号。408. The first MMI synthesizes the first QPSK optical signal and the second QPSK optical signal. To the first 16-QAM optical signal.
409,第一MMI输出第一16-QAM光信号。409. The first MMI outputs the first 16-QAM optical signal.
410,第五MMI接收第二光脉冲,并对第二光脉冲进行分束,得到第三束光脉冲和第四束光脉冲。410. The fifth MMI receives the second optical pulse and splits the second optical pulse to obtain a third optical pulse and a fourth optical pulse.
411,第六MMI接收第五OOK光信号、第六OOK光信号和第三束光脉冲,并将第五OOK光信号、第六OOK光信号和第三束光脉冲耦合,得到第三耦合光信号。411. The sixth MMI receives the fifth OOK optical signal, the sixth OOK optical signal, and the third optical pulse, and couples the fifth OOK optical signal, the sixth OOK optical signal, and the third optical pulse to obtain a third coupled light. signal.
412,第七MMI接收第七OOK光信号、第八OOK光信号和第四束光脉冲,并将第七OOK光信号、第八OOK光信号和第四束光脉冲耦合,得到第四耦合光信号。412. The seventh MMI receives the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse, and couples the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse to obtain a fourth coupled light. signal.
413,第二非线性硅基光波导将第三耦合光信号中的第五OOK光信号、第六OOK光信号和第三束光脉冲进行交叉相位调制,得到第三QPSK光信号。413. The second nonlinear silicon-based optical waveguide cross-phase-modulates the fifth OOK optical signal, the sixth OOK optical signal, and the third optical pulse of the third coupled optical signal to obtain a third QPSK optical signal.
414,第二非线性硅基光波导将第四耦合光信号中的第七OOK光信号、第八OOK光信号和第四束光脉冲进行交叉相位调制,得到第四QPSK光信号。414. The second nonlinear silicon-based optical waveguide cross-phase-modulates the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse of the fourth coupled optical signal to obtain a fourth QPSK optical signal.
415,第三QPSK光信号通过第七MMI到达第五MMI,第四QPSK光信号通过第六MMI到达第五MMI。415. The third QPSK optical signal reaches the fifth MMI through the seventh MMI, and the fourth QPSK optical signal reaches the fifth MMI through the sixth MMI.
416,第五MMI对第三QPSK光信号和第四QPSK光信号进合成,得到第二16-QAM信号。416. The fifth MMI combines the third QPSK optical signal and the fourth QPSK optical signal to obtain a second 16-QAM signal.
417,第五MMI输出第二16-QAM光信号。417. The fifth MMI outputs the second 16-QAM optical signal.
418,二维光子晶体光栅接收第一16-QAM光信号和第二16-QAM光信号,并对第一16-QAM光信号和第二16-QAM光信号进行耦合,得到PDM-16-QAM光信号。418. The two-dimensional photonic crystal grating receives the first 16-QAM optical signal and the second 16-QAM optical signal, and couples the first 16-QAM optical signal and the second 16-QAM optical signal to obtain PDM-16-QAM. Optical signal.
本发明实施例的转换光信号的调制码型的器件和方法,通过在全光域使用多模干涉耦合器对光脉冲进行分束、对OOK光信号和脉冲光进行耦合,并使用硅基光波导使得耦合后的光脉冲和OOK光信号发生交叉相位调制效应,产生QPSK光信号,通过多模干涉耦合器可以对两路QPSK光信号进行耦合得到16-QAM光信号,通过二维光子晶体光栅可以对两路16-QAM光信号进行耦合,得到PDM-16-QAM光信号,以实现对光信号的调制码型的转换,从而能够简化器件结构,能够提高光信号的调制码型的转换速率。 A device and method for converting a modulation pattern of an optical signal according to an embodiment of the present invention, by splitting an optical pulse using a multimode interference coupler in an all-optical region, coupling an OOK optical signal and a pulsed light, and using silicon-based light The waveguide causes a cross-phase modulation effect between the coupled optical pulse and the OOK optical signal to generate a QPSK optical signal. The multi-mode interference coupler can couple the two QPSK optical signals to obtain a 16-QAM optical signal, and pass the two-dimensional photonic crystal grating. The two 16-QAM optical signals can be coupled to obtain a PDM-16-QAM optical signal to realize conversion of a modulation pattern of the optical signal, thereby simplifying the device structure and improving the conversion rate of the modulation pattern of the optical signal. .
图4的实施例中转换光信号的调制码型的方法的相应流程可对应由前述本发明实施例的图2器件中的各个部件执行,为了简洁,在此不再赘述。The corresponding flow of the method for converting the modulation pattern of the optical signal in the embodiment of FIG. 4 may be performed by the various components in the device of FIG. 2 of the foregoing embodiment of the present invention. For brevity, no further details are provided herein.
应理解,本发明中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。It is to be understood that the specific examples of the invention are intended to be illustrative of the embodiments of the invention.
说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。The phrase "one embodiment" or "an embodiment" as used throughout the specification means that a particular feature, structure, or characteristic relating to an embodiment is included in at least one embodiment of the invention. Thus, "in one embodiment" or "in an embodiment" or "an" In addition, these particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。It should be understood that, in various embodiments of the present invention, the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention. The implementation process constitutes any limitation.
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。It should be understood that in the embodiment of the present invention, "B corresponding to A" means that B is associated with A, and B can be determined according to A. However, it should also be understood that determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those of ordinary skill in the art will appreciate that the elements and algorithm steps of the various examples described in connection with the embodiments disclosed herein can be implemented in electronic hardware or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的方法的具体流程,可以参考前述系统实施例中的响应描述,在此不再赘述。A person skilled in the art can clearly understand that for the convenience and brevity of the description, the specific process of the foregoing method may refer to the response description in the foregoing system embodiment, and details are not described herein again.
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided by the present application, it should be understood that the disclosed systems, devices, and methods may be implemented in other manners. For example, the device embodiments described above are merely illustrative. For example, the division of the unit is only a logical function division. In actual implementation, there may be another division manner, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed. In addition, the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separate. The components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。The functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention. The foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。 The above is only a specific embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of changes or substitutions within the technical scope of the present invention. It should be covered by the scope of the present invention. Therefore, the scope of the invention should be determined by the scope of the appended claims.

Claims (14)

  1. 一种转换光信号的调制码型的器件,其特征在于,包括:A device for converting a modulation pattern of an optical signal, comprising:
    第一非线性硅基光波导、第一多模干涉光耦合器MMI、第二MMI和第三MMI;a first nonlinear silicon-based optical waveguide, a first multimode interference optical coupler MMI, a second MMI, and a third MMI;
    所述第一MMI与第二MMI用第一硅基光波导连接,所述第一MMI与所述第三MMI用第一硅基光波导连接,所述第一非线性硅基光波导与所述第二MMI用第一硅基光波导连接,所述第一非线性硅基光波导与所述第三MMI用第一硅基光波导连接;The first MMI and the second MMI are connected by a first silicon-based optical waveguide, and the first MMI and the third MMI are connected by a first silicon-based optical waveguide, the first nonlinear silicon-based optical waveguide The second MMI is connected by a first silicon-based optical waveguide, and the first nonlinear silicon-based optical waveguide is connected to the third MMI by a first silicon-based optical waveguide;
    所述第一MMI用于接收第一光脉冲,并对所述第一光脉冲进行分束,得到第一束光脉冲和第二束光脉冲;The first MMI is configured to receive a first optical pulse, and split the first optical pulse to obtain a first beam of light and a second beam of light;
    所述第二MMI用于接收第一OOK光信号、第二OOK光信号和第一束光脉冲,并对所述第一OOK光信号、所述第二OOK光信号和所述第一束光脉冲进行耦合,得到第一耦合光信号;The second MMI is configured to receive a first OOK optical signal, a second OOK optical signal, and a first optical pulse, and to the first OOK optical signal, the second OOK optical signal, and the first beam Pulses are coupled to obtain a first coupled optical signal;
    所述第三MMI用于接收第三OOK光信号、第四OOK光信号和所述第二束光脉冲,并对所述第三OOK光信号、所述第四OOK光信号和所述第二束光脉冲进行耦合,得到第二耦合光信号;The third MMI is configured to receive a third OOK optical signal, a fourth OOK optical signal, and the second optical pulse, and to the third OOK optical signal, the fourth OOK optical signal, and the second Beam light pulses are coupled to obtain a second coupled optical signal;
    所述第一非线性硅基光波导用于对所述第一耦合光信号中的所述第一OOK光信号、所述第二OOK光信号和所述第一束光脉冲进行交叉相位调制,得到第一正交相移键控QPSK光信号,所述第一非线性硅基光波导还用于对所述第二耦合光信号中的所述第三OOK光信号、所述第四OOK光信号和所述第二束光脉冲进行交叉相位调制,得到第二QPSK光信号;The first nonlinear silicon-based optical waveguide is configured to perform cross-phase modulation on the first OOK optical signal, the second OOK optical signal, and the first optical pulse in the first coupled optical signal, Obtaining a first quadrature phase shift keying QPSK optical signal, wherein the first nonlinear silicon based optical waveguide is further configured to use the third OOK optical signal and the fourth OOK light in the second coupled optical signal Performing cross-phase modulation on the signal and the second beam of light to obtain a second QPSK optical signal;
    所述第一QPSK光信号通过所述第三MMI到达所述第一MMI,所述第二QPSK光信号通过所述第二MMI到达所述第一MMI;The first QPSK optical signal reaches the first MMI through the third MMI, and the second QPSK optical signal reaches the first MMI through the second MMI;
    所述第一MMI还用于对所述第一QPSK光信号和所述第二QPSK光信号进行合成,得到第一16-正交幅度调制QAM光信号,并输出所述第一16-QAM光信号。The first MMI is further configured to synthesize the first QPSK optical signal and the second QPSK optical signal to obtain a first 16-quadrature amplitude modulated QAM optical signal, and output the first 16-QAM light. signal.
  2. 如权利要求1所述的器件,其特征在于,The device of claim 1 wherein
    所述第一MMI具体用于根据所述第一光脉冲的功率对所述第一光脉冲进行分束,其中,所述第一束光脉冲的功率与所述第二束光脉冲的功率的比值为2:1; The first MMI is specifically configured to split the first optical pulse according to the power of the first optical pulse, wherein a power of the first optical pulse and a power of the second optical pulse The ratio is 2:1;
    所述第一耦合光信号中的所述第一OOK光信号的功率与所述第二OOK光信号的功率的比值为2:1;The ratio of the power of the first OOK optical signal to the power of the second OOK optical signal in the first coupled optical signal is 2:1;
    所述第二耦合光信号中的所述第三OOK光信号的功率与所述第四OOK光信号的功率的比值为2:1。The ratio of the power of the third OOK optical signal to the power of the fourth OOK optical signal in the second coupled optical signal is 2:1.
  3. 如权利要求1或2所述的器件,其特征在于,所述器件还包括:第四MMI、第五MMI、第六MMI、第七MMI、第二非线性硅基光波导和二维光子晶体光栅;The device according to claim 1 or 2, wherein the device further comprises: a fourth MMI, a fifth MMI, a sixth MMI, a seventh MMI, a second nonlinear silicon-based optical waveguide, and a two-dimensional photonic crystal Grating
    所述第一MMI与所述第四MMI用第一硅基光波导连接,所述第四MMI与所述第五MMI用第一硅基光波导连接,所述第五MMI与所述第六MMI用第一硅基光波导连接,所述第五MMI与所述第七MMI用第一硅基光波导连接,所述第二非线性硅基光波导与所述第六MMI用第一硅基光波导连接,所述第二非线性硅基光波导与所述第七MMI用第一硅基光波导连接,所述第一MMI与所述二维光子晶体光栅用第一硅基光波导连接,所述第五MMI与所述二维光子晶体光栅用第一硅基光波导连接;The first MMI and the fourth MMI are connected by a first silicon-based optical waveguide, the fourth MMI and the fifth MMI are connected by a first silicon-based optical waveguide, the fifth MMI and the sixth The MMI is connected by a first silicon-based optical waveguide, the fifth MMI is connected to the seventh MMI by a first silicon-based optical waveguide, and the second nonlinear silicon-based optical waveguide and the sixth silicon for the sixth MMI a second optical silicon-based optical waveguide connected to the seventh MMI by a first silicon-based optical waveguide, the first MMI and the first silicon-based optical waveguide for the two-dimensional photonic crystal grating Connecting, the fifth MMI and the two-dimensional photonic crystal grating are connected by a first silicon-based optical waveguide;
    所述第四MMI用于接收脉冲发生器发出的光脉冲,并对接收到的所述光脉冲的功率进行分束,得到所述第一光脉冲和第二光脉冲;The fourth MMI is configured to receive a light pulse emitted by the pulse generator, and split the received power of the light pulse to obtain the first light pulse and the second light pulse;
    所述第五MMI用于接收第二光脉冲,并对所述第二光脉冲进行分束,得到第三束光脉冲和第四束光脉冲;The fifth MMI is configured to receive a second optical pulse, and split the second optical pulse to obtain a third optical pulse and a fourth optical pulse;
    所述第六MMI用于接收第五OOK光信号、第六OOK光信号和第三束光脉冲,并对所述第五OOK光信号、所述第六OOK光信号和所述第三束光脉冲进行耦合,得到第三耦合光信号;The sixth MMI is configured to receive a fifth OOK optical signal, a sixth OOK optical signal, and a third optical pulse, and to the fifth OOK optical signal, the sixth OOK optical signal, and the third beam Pulses are coupled to obtain a third coupled optical signal;
    所述第七MMI用于接收第七OOK光信号、第八OOK光信号和第四束光脉冲,并对所述第七OOK光信号、所述第八OOK光信号和所述第四束光脉冲进行耦合,得到第四耦合光信号;The seventh MMI is configured to receive a seventh OOK optical signal, an eighth OOK optical signal, and a fourth optical pulse, and to the seventh OOK optical signal, the eighth OOK optical signal, and the fourth beam The pulses are coupled to obtain a fourth coupled optical signal;
    所述第二非线性硅基光波导用于将所述第三耦合光信号中的所述第五OOK光信号、所述第六OOK光信号和所述第三束光脉冲进行交叉相位调制,得到第三QPSK光信号,所述第二非线性硅基光波导还用于将所述第四耦合光信号中的所述第七OOK光信号、所述第八OOK光信号和所述第四束光脉冲进行交叉相位调制,得到第四QPSK光信号;The second nonlinear silicon-based optical waveguide is configured to cross-phase modulate the fifth OOK optical signal, the sixth OOK optical signal, and the third optical pulse in the third coupled optical signal, Obtaining a third QPSK optical signal, wherein the second nonlinear silicon-based optical waveguide is further configured to: the seventh OOK optical signal, the eighth OOK optical signal, and the fourth of the fourth coupled optical signal The beam of light pulses is cross-phase modulated to obtain a fourth QPSK optical signal;
    所述第三QPSK光信号通过所述第七MMI到达所述第五MMI,所述第四QPSK光信号通过所述第六MMI到达所述第五MMI; The third QPSK optical signal reaches the fifth MMI through the seventh MMI, and the fourth QPSK optical signal reaches the fifth MMI through the sixth MMI;
    所述第五MMI还用于将所述第三QPSK光信号和所述第四QPSK光信号合成,得到第二16-QAM光信号,并输出所述第二16-QAM光信号;The fifth MMI is further configured to synthesize the third QPSK optical signal and the fourth QPSK optical signal to obtain a second 16-QAM optical signal, and output the second 16-QAM optical signal;
    所述二维光子晶体光栅用于接收所述第一MMI输出的第一16-QAM光信号和所述第五MMI输出的第二16-QAM光信号,并对所述第一16-QAM光信号和所述第二16-QAM光信号进行耦合,得到偏振复用PDM-16-QAM光信号。The two-dimensional photonic crystal grating is configured to receive a first 16-QAM optical signal output by the first MMI and a second 16-QAM optical signal output by the fifth MMI, and to the first 16-QAM light The signal is coupled to the second 16-QAM optical signal to obtain a polarization multiplexed PDM-16-QAM optical signal.
  4. 如权利要求3所述的器件,其特征在于,所述第一MMI、所述第二MMI、所述第三MMI、所述第五MMI、所述第六MMI和所述第七MMI为非对称的MMI,所述第四MMI为对称的MMI。The device according to claim 3, wherein said first MMI, said second MMI, said third MMI, said fifth MMI, said sixth MMI, and said seventh MMI are non- A symmetric MMI, the fourth MMI being a symmetric MMI.
  5. 如权利要求3或4所述的器件,其特征在于,A device according to claim 3 or 4, wherein
    所述第一光脉冲的功率与所述第二光脉冲的功率的比值为1:1;The ratio of the power of the first light pulse to the power of the second light pulse is 1:1;
    所述第五MMI具体用于根据所述第二光脉冲的功率对所述第二光脉冲进行分束,其中,所述第三束光脉冲的功率与所述第四束光脉冲的功率的比值为2:1;The fifth MMI is specifically configured to split the second optical pulse according to the power of the second optical pulse, wherein a power of the third optical pulse and a power of the fourth optical pulse The ratio is 2:1;
    所述第三耦合光信号中的所述第五OOK光信号的功率与所述第六OOK光信号的功率的比值为2:1;The ratio of the power of the fifth OOK optical signal to the power of the sixth OOK optical signal in the third coupled optical signal is 2:1;
    所述第四耦合光信号中的所述第七OOK光信号的功率与所述第八OOK光信号的功率的比值为2:1。The ratio of the power of the seventh OOK optical signal to the power of the eighth OOK optical signal in the fourth coupled optical signal is 2:1.
  6. 如权利要求3至5中任一项所述的器件,其特征在于,所述第四MMI为1*2的MMI耦合器,所述第一MMI和所述第五MMI为2*2的MMI耦合器,所述第二MMI、所述第三MMI、所述第六MMI和所述第七MMI为1*3的MMI耦合器。The device according to any one of claims 3 to 5, wherein the fourth MMI is a 1*2 MMI coupler, and the first MMI and the fifth MMI are 2*2 MMI The coupler, the second MMI, the third MMI, the sixth MMI, and the seventh MMI are 1*3 MMI couplers.
  7. 如权利要求3至6中任一项所述的器件,其特征在于,所述第一非线性硅基光波导和所述第二非线性硅基光波导具有交叉相位调制效应。The device according to any one of claims 3 to 6, wherein the first nonlinear silicon-based optical waveguide and the second nonlinear silicon-based optical waveguide have a cross-phase modulation effect.
  8. 如权利要求3至7中任一项所述的器件,其特征在于,所述第一非线性硅基光波导或所述第二非线性硅基光波导为下列波导中的一种:脊波导、狭缝波导、平板波导和光子晶体波导。The device according to any one of claims 3 to 7, wherein the first nonlinear silicon-based optical waveguide or the second nonlinear silicon-based optical waveguide is one of the following waveguides: a ridge waveguide , slot waveguides, slab waveguides, and photonic crystal waveguides.
  9. 如权利要求3至8中任一项所述的器件,所述器件设置在第一网络节点,其特征在于,A device according to any one of claims 3 to 8, the device being arranged at a first network node, characterized in that
    所述第一OOK光信号、所述第二OOK光信号、所述第三OOK光信号、所述第四OOK光信号、所述第五OOK光信号、所述第六OOK光信号、所 述第七OOK光信号和所述第八OOK光信号由所述第一网络节点的电信号调制产生;或The first OOK optical signal, the second OOK optical signal, the third OOK optical signal, the fourth OOK optical signal, the fifth OOK optical signal, the sixth OOK optical signal, Generating a seventh OOK optical signal and the eighth OK optical signal by an electrical signal of the first network node; or
    所述第一OOK光信号、所述第二OOK光信号、所述第三OOK光信号、所述第四OOK光信号、所述第五OOK光信号、所述第六OOK光信号、所述第七OOK光信号和所述第八OOK光信号由第二网络节点产生,并由第二网络节点传输至所述第一网络节点。The first OOK optical signal, the second OOK optical signal, the third OOK optical signal, the fourth OOK optical signal, the fifth OOK optical signal, the sixth OOK optical signal, the The seventh OOK optical signal and the eighth OK optical signal are generated by the second network node and transmitted by the second network node to the first network node.
  10. 如权利要求1至9中任一项所述的器件,其特征在于,所述器件设置在硅片上。A device according to any one of claims 1 to 9, wherein the device is disposed on a silicon wafer.
  11. 一种转换光信号的调制码型的方法,所述方法用于光信号调制码型转换的器件,所述器件包括第一非线性硅基光波导、第一多模干涉光耦合器MMI、第二MMI和第三MMI,其中,所述第一MMI与第二MMI用第一硅基光波导连接,所述第一MMI与所述第三MMI用第一硅基光波导连接,所述第一非线性硅基光波导与所述第二MMI用第一硅基光波导连接,所述第一非线性硅基光波导与所述第三MMI用第一硅基光波导连接,其特征在于,所述方法包括:A method for converting a modulation pattern of an optical signal, the method being used for a device for optical signal modulation pattern conversion, the device comprising a first nonlinear silicon-based optical waveguide, a first multimode interference optical coupler MMI, a second MMI and a third MMI, wherein the first MMI and the second MMI are connected by a first silicon-based optical waveguide, and the first MMI and the third MMI are connected by a first silicon-based optical waveguide, the A nonlinear silicon-based optical waveguide is coupled to the second MMI by a first silicon-based optical waveguide, and the first nonlinear silicon-based optical waveguide is coupled to the third MMI by a first silicon-based optical waveguide, wherein , the method includes:
    所述第一MMI接收第一光脉冲,并对所述第一光脉冲进行分束,得到第一束光脉冲和第二束光脉冲;Receiving, by the first MMI, a first light pulse, and splitting the first light pulse to obtain a first light pulse and a second light pulse;
    所述第二MMI接收第一OOK光信号、第二OOK光信号和所述第一束光脉冲,并对所述第一OOK光信号、所述第二OOK光信号和所述第一束光脉冲进行耦合,得到第一耦合光信号;The second MMI receives the first OOK optical signal, the second OOK optical signal, and the first optical pulse, and the first OOK optical signal, the second OOK optical signal, and the first beam Pulses are coupled to obtain a first coupled optical signal;
    所述第三MMI接收第三OOK光信号、第四OOK光信号和所述第二束光脉冲,并对所述第三OOK光信号、所述第四OOK光信号和所述第二束光脉冲进行耦合,得到第二耦合光信号;The third MMI receives a third OOK optical signal, a fourth OOK optical signal, and the second optical pulse, and the third OOK optical signal, the fourth OOK optical signal, and the second beam Pulses are coupled to obtain a second coupled optical signal;
    所述第一非线性硅基光波导将所述第一耦合光信号中的所述第一OOK光信号、所述第二OOK光信号和所述第一束光脉冲进行交叉相位调制,得到第一正交相移键控QPSK光信号;The first nonlinear silicon-based optical waveguide cross-phase-modulates the first OOK optical signal, the second OOK optical signal, and the first optical pulse in the first coupled optical signal to obtain a first a quadrature phase shift keying QPSK optical signal;
    所述第一非线性硅基光波导将所述第二耦合光信号中的所述第三OOK光信号、所述第四OOK光信号和所述第二束光脉冲进行交叉相位调制,得到第二QPSK光信号;The first nonlinear silicon-based optical waveguide cross-phase-modulates the third OOK optical signal, the fourth OOK optical signal, and the second optical pulse in the second coupled optical signal to obtain a first Two QPSK optical signals;
    所述第一QPSK光信号通过所述第三MMI到达所述第一MMI,所述第二QPSK光信号通过所述第二MMI到达所述第一MMI; The first QPSK optical signal reaches the first MMI through the third MMI, and the second QPSK optical signal reaches the first MMI through the second MMI;
    所述第一MMI对所述第一QPSK光信号与所述第二QPSK光信号进行合成,得到第一16-正交幅度调制QAM光信号;The first MMI synthesizes the first QPSK optical signal and the second QPSK optical signal to obtain a first 16-quadrature amplitude modulated QAM optical signal;
    所述第一MMI输出所述第一16-QAM光信号。The first MMI outputs the first 16-QAM optical signal.
  12. 如权利要求11所述的方法,其特征在于,所述第一MMI对所述第一光脉冲进行分束包括:The method of claim 11 wherein said splitting said first optical pulse by said first MMI comprises:
    所述第一MMI根据所述第一光脉冲的功率对所述第一光脉冲进行分束;The first MMI splits the first optical pulse according to a power of the first optical pulse;
    其中,among them,
    所述第一束光脉冲的功率与所述第二束光脉冲的功率的比值为2:1;The ratio of the power of the first beam of light pulses to the power of the second beam of light pulses is 2:1;
    所述第一耦合光信号中的所述第一OOK光信号的功率与所述第二OOK光信号的功率的比值为2:1;The ratio of the power of the first OOK optical signal to the power of the second OOK optical signal in the first coupled optical signal is 2:1;
    所述第二耦合光信号中的所述第三OOK光信号的功率与所述第四OOK光信号的功率的比值为2:1。The ratio of the power of the third OOK optical signal to the power of the fourth OOK optical signal in the second coupled optical signal is 2:1.
  13. 如权利要求11或12所述的方法,其特征在于,当所述器件还包括:第四MMI、第五MMI、第六MMI、第七MMI、第二非线性硅基光波导和二维光子晶体光栅时,所述方法还包括:The method according to claim 11 or 12, wherein when said device further comprises: a fourth MMI, a fifth MMI, a sixth MMI, a seventh MMI, a second nonlinear silicon-based optical waveguide, and two-dimensional photons In the case of a crystal grating, the method further includes:
    所述第四MMI接收脉冲发生器发出的光脉冲,并根据功率对接收到的所述光脉冲进行分束,得到所述第一光脉冲和第二光脉冲;The fourth MMI receives the light pulse emitted by the pulse generator, and splits the received light pulse according to the power to obtain the first light pulse and the second light pulse;
    所述第五MMI接收第二光脉冲,并对所述第二光脉冲进行分束,得到第三束光脉冲和第四束光脉冲;The fifth MMI receives the second light pulse, and splits the second light pulse to obtain a third light pulse and a fourth light pulse;
    所述第六MMI接收第五OOK光信号、第六OOK光信号和所述第三束光脉冲,并对所述第五OOK光信号、所述第六OOK光信号和所述第三束光脉冲进行耦合,得到第三耦合光信号;The sixth MMI receives a fifth OOK optical signal, a sixth OOK optical signal, and the third optical pulse, and the fifth OOK optical signal, the sixth OOK optical signal, and the third beam Pulses are coupled to obtain a third coupled optical signal;
    所述第七MMI接收第七OOK光信号、第八OOK光信号和所述第四束光脉冲,并对所述第七OOK光信号、所述第八OOK光信号和所述第四束光脉冲进行耦合,得到第四耦合光信号;The seventh MMI receives the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse, and the seventh OOK optical signal, the eighth OOK optical signal, and the fourth beam The pulses are coupled to obtain a fourth coupled optical signal;
    所述第二非线性硅基光波导对所述第三耦合光信号中的所述第五OOK光信号、所述第六OOK光信号和所述第三束光脉冲进行交叉相位调制,得到第三QPSK光信号;The second nonlinear silicon-based optical waveguide performs cross-phase modulation on the fifth OOK optical signal, the sixth OOK optical signal, and the third optical pulse in the third coupled optical signal to obtain a first Three QPSK optical signals;
    所述第二非线性硅基光波导将所述第四耦合光信号中的所述第七OOK光信号、所述第八OOK光信号和所述第四束光脉冲进行交叉相位调制,得 到第四QPSK光信号;The second nonlinear silicon-based optical waveguide cross-phase-modulates the seventh OOK optical signal, the eighth OOK optical signal, and the fourth optical pulse of the fourth coupled optical signal. To the fourth QPSK optical signal;
    所述第三QPSK光信号通过所述第七MMI到达所述第五MMI,所述第四QPSK光信号通过所述第六MMI到达所述第五MMI;The third QPSK optical signal reaches the fifth MMI through the seventh MMI, and the fourth QPSK optical signal reaches the fifth MMI through the sixth MMI;
    所述第五MMI对所述第三QPSK光信号和所述第四QPSK光信号进行合成,得到第二16-QAM光信号;The fifth MMI synthesizes the third QPSK optical signal and the fourth QPSK optical signal to obtain a second 16-QAM optical signal;
    所述第五MMI输出所述第二16-QAM光信号;The fifth MMI outputs the second 16-QAM optical signal;
    所述二维光子晶体光栅接收所述第一MMI输出的第一16-QAM光信号和所述第五MMI输出的第二16-QAM光信号,并对所述第一16-QAM光信号和所述第二16-QAM光信号进行耦合,得到偏振复用PDM-16-QAM光信号。The two-dimensional photonic crystal grating receives a first 16-QAM optical signal output by the first MMI and a second 16-QAM optical signal output by the fifth MMI, and the first 16-QAM optical signal and The second 16-QAM optical signal is coupled to obtain a polarization multiplexed PDM-16-QAM optical signal.
  14. 如权利要求13所述的方法,其特征在于,The method of claim 13 wherein:
    所述第一光脉冲的功率与所述第二光脉冲的功率的比值为1:1;The ratio of the power of the first light pulse to the power of the second light pulse is 1:1;
    所述第五MMI还用于对所述第二光脉冲进行分束包括根据所述第二光脉冲的功率对所述第二光脉冲进行分束,其中,所述第三束光脉冲的功率与所述第四束光脉冲的功率的比值为2:1;The fifth MMI is further configured to split the second optical pulse, comprising splitting the second optical pulse according to a power of the second optical pulse, wherein a power of the third optical pulse The ratio of the power of the fourth beam of light pulses is 2:1;
    所述第三耦合光信号中的所述第五OOK光信号的功率与所述第六OOK光信号的功率的比值为2:1;The ratio of the power of the fifth OOK optical signal to the power of the sixth OOK optical signal in the third coupled optical signal is 2:1;
    所述第四耦合光信号中的所述第七OOK光信号的功率与所述第八OOK光信号的功率的比值为2:1。 The ratio of the power of the seventh OOK optical signal to the power of the eighth OOK optical signal in the fourth coupled optical signal is 2:1.
PCT/CN2015/074551 2015-03-19 2015-03-19 Component and method for converting modulation format of optical signal WO2016145641A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580075186.XA CN107210816B (en) 2015-03-19 2015-03-19 The Apparatus and method for of the modulation format of transmitting photo-signal
PCT/CN2015/074551 WO2016145641A1 (en) 2015-03-19 2015-03-19 Component and method for converting modulation format of optical signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074551 WO2016145641A1 (en) 2015-03-19 2015-03-19 Component and method for converting modulation format of optical signal

Publications (1)

Publication Number Publication Date
WO2016145641A1 true WO2016145641A1 (en) 2016-09-22

Family

ID=56918149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074551 WO2016145641A1 (en) 2015-03-19 2015-03-19 Component and method for converting modulation format of optical signal

Country Status (2)

Country Link
CN (1) CN107210816B (en)
WO (1) WO2016145641A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005972A2 (en) * 2002-07-02 2004-01-15 Celight, Inc. Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
CN101626274A (en) * 2008-07-10 2010-01-13 华为技术有限公司 Method for generating star hexadecimal optical signals, optical transmitter and system
CN101977076B (en) * 2010-11-17 2013-06-19 烽火通信科技股份有限公司 Transmitter for generating various 16QAM (Quadrature Amplitude Modulation) code types
CN103607246A (en) * 2013-11-22 2014-02-26 哈尔滨工业大学深圳研究生院 Optical transmitter capable of configuring modulation modes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583894B2 (en) * 2006-09-21 2009-09-01 Alcatel-Lucent Usa Inc. Interferometric operation of electroabsorption modulators
AU2010305311B2 (en) * 2009-10-07 2016-06-16 Ofidium Pty Ltd Multichannel nonlinearity compensation in an optical communications link
EP2548269A4 (en) * 2010-03-19 2017-12-13 The Governing Council Of The University Of Toronto Amplitude and phase modulation of a laser by modulation of an output coupler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005972A2 (en) * 2002-07-02 2004-01-15 Celight, Inc. Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
CN101626274A (en) * 2008-07-10 2010-01-13 华为技术有限公司 Method for generating star hexadecimal optical signals, optical transmitter and system
CN101977076B (en) * 2010-11-17 2013-06-19 烽火通信科技股份有限公司 Transmitter for generating various 16QAM (Quadrature Amplitude Modulation) code types
CN103607246A (en) * 2013-11-22 2014-02-26 哈尔滨工业大学深圳研究生院 Optical transmitter capable of configuring modulation modes

Also Published As

Publication number Publication date
CN107210816A (en) 2017-09-26
CN107210816B (en) 2019-11-12

Similar Documents

Publication Publication Date Title
JP4837041B2 (en) All-optical method and system
CN105531946B (en) A kind of method of sending and receiving of equation of light sub-signal, device and system
KR20060084259A (en) Offset quadrature phase-shift-keying method and optical transmitter using the same
US20120002978A1 (en) Optical single-sideband transmitter
JP2001147411A (en) Optical modulator
US20150086201A1 (en) Data Multiplexing And Mixing Of Optical Signals Across Propagation Modes
WO2017177372A1 (en) Device and method for generating optical signal, and chip
WO2013113287A1 (en) Arrayed optical device block for photonic integration
Shinada et al. 16-QAM optical packet switching and real-time self-homodyne detection using polarization-multiplexed pilot-carrier
WO2017028158A1 (en) Signal transmission method, apparatus and system
JP2008216824A (en) Light intensity modulating device and method thereof, and optical transmission system using the same
CN108616310A (en) Increase the method that Dare modulator carries out level Four pulse amplitude modulation based on Mach
Milanizadeh et al. Multibeam free space optics receiver enabled by a programmable photonic mesh
US20180054273A1 (en) Optical Transceiver and Network Device
CN110149208B (en) Transmitting end coding module of integrated time phase coding quantum key distribution system
US10425166B2 (en) Optical transmitter, optical transmission apparatus, and optical modulation method
WO2016145641A1 (en) Component and method for converting modulation format of optical signal
US10644822B2 (en) Network system
Gurkan et al. Simultaneous label swapping and wavelength conversion of multiple independent WDM channels in an all-optical MPLS network using PPLN waveguides as wavelength converters
EP3738227A1 (en) Transmitter and receiver for quantum key distribution
Zhang et al. Crosstalk-mitigated AWGR-based two-dimensional IR beam-steered indoor optical wireless communication system with a high spatial resolution
RU80637U1 (en) INTEGRAL OPTICAL SWITCH FOR PHASE CODING QUANTUM CRYPTOGRAPHY SYSTEMS
US20120251111A1 (en) Optoelectronic wavelength converter for polarization multiplexed optical signals
US20230353245A1 (en) Ic-trosa optical network system
US20230353246A1 (en) Ic-trosa optical network system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885024

Country of ref document: EP

Kind code of ref document: A1