WO2016145566A1 - 数据并行传输的方法和设备 - Google Patents

数据并行传输的方法和设备 Download PDF

Info

Publication number
WO2016145566A1
WO2016145566A1 PCT/CN2015/074192 CN2015074192W WO2016145566A1 WO 2016145566 A1 WO2016145566 A1 WO 2016145566A1 CN 2015074192 W CN2015074192 W CN 2015074192W WO 2016145566 A1 WO2016145566 A1 WO 2016145566A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
sta
information
scheduled
syn
Prior art date
Application number
PCT/CN2015/074192
Other languages
English (en)
French (fr)
Inventor
廖湘柏
孙俊
于健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/074192 priority Critical patent/WO2016145566A1/zh
Publication of WO2016145566A1 publication Critical patent/WO2016145566A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • the present invention relates to communication technologies, and in particular, to a method and device for data parallel transmission.
  • the existing Wireless Fidelity (WiFi) technology adopts the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol to achieve interference avoidance.
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • the communication pair that obtains the channel usage right monopolizes the channel resource. Only when the communication pair is completed, other communication pairs around can compete for the channel.
  • This method achieves better protection for the link being communicated, but in the case of high-density networking, its spectral efficiency is greatly limited. Therefore, controlling interference to enable concurrent communication on adjacent communication links to improve spectrum efficiency is of great significance in high-density WIFI networking scenarios.
  • the coverage area of the BSS1 includes a wireless access point (AP) 1
  • the coverage area of the BSS2 includes the AP2
  • the BSS1 and the BSS2 partially overlap on the coverage area, and the AP1 is covered with a station (Station, referred to as STA).
  • STA station
  • STA2 and STA3 AP2 is covered with STAa, STAb, and STAc.
  • Embodiments of the present invention provide a data parallel transmission method and device, which are used to solve the prior art.
  • the way to eliminate interference is single, and the technical problem of data stream gain in parallel transmission cannot be guaranteed.
  • an embodiment of the present invention provides a data parallel transmission method, which is applicable to a wireless fidelity WIFI downlink multi-user multiple input multiple output MU-MIMO system, where the MU-MIMO system includes a first basic service set BSS and a a second BSS, where the coverage area of the first BSS and the coverage area of the second BSS partially overlap, the first wireless access point AP is located in the coverage area of the first BSS, and the second AP is located in the second BSS
  • the first AP serves the first station STA, and the second AP serves the second STA.
  • the method includes:
  • the second AP receives the synchronization request sent by the first AP to send a SYN-RTS frame; the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted and the The number of antennas of the first STA to be scheduled by the first AP;
  • the first AP sends a synchronization to allow the SYN-CTS frame to be sent; the SYN-CTS frame is used to indicate to the first AP the working mode of the first AP, and the maximum of the first STA that the first AP can schedule.
  • the second AP schedules the second STA according to the content indicated by the SYN-CTS frame, and performs downlink data transmission in parallel with the first AP.
  • the SYN-RTS frame includes a medium access control packet header MAC Header information, an interference only alignment IA_ONLY information, and a basic service set scheduling site.
  • the number of antennas BSS_STA_ATN_NUM information and the frame check sequence FCS, wherein the IA_ONLY information is used to indicate to the second AP that the working mode of the first AP is restricted, and the BSS_STA_ATN_NUM is used for the second AP Indicates the number of antennas of the first STA to be scheduled by the first AP.
  • the SYN-CTS frame includes a media access control packet header MAC Header information, Part, second part and frame check sequence FCS;
  • the first part includes a first working mode MODE information, a first reserved direction quantity DIR_NUM information, a first station number STA_NUM information, and a first data stream quantity STREAM_NUM information; wherein the first MODE information is used to An AP indicates an operation mode of the first AP, the first DIR_NUM information is used to indicate the number of the first reserved direction to the first AP, and the first STA_NUM information is used to the first The AP indicates the maximum number of the first STAs that can be scheduled by the first AP, and the first STREAM_NUM is used to indicate to the first AP, the maximum number of downlink data flows that can be scheduled by the first AP;
  • the second part includes second MODE information, second DIR_NUM information, second STA_NUM information, and second STREAM_NUM information; wherein the second MODE information is used to indicate the work of the second AP to the first AP a mode, the second DIR_NUM information is used to indicate, to the first AP, a quantity of a second reserved direction reserved for the first AP to send and receive data when the second AP works in an IA mode, where the second The STA_NUM information is used to indicate to the first AP, the maximum number of second STAs that can be scheduled by the second AP, and the second STREAM_NUM is used to indicate to the first AP that the second AP can be scheduled. The maximum number of downstream data streams.
  • the second AP in conjunction with the first aspect to any one of the second possible implementation manners of the first aspect, in a third possible implementation manner of the first aspect, the second AP, according to the SYN-RTS frame, Determining, by the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP, determining to send a synchronization to send the SYN-CTS frame to the first AP, specifically including :
  • the second AP according to the IA_ONLY information in the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, the number of antennas of the first STA to be scheduled by the first AP, Determining, by the second AP, the number of antennas of the second STA to be scheduled, determining an operating mode of the first AP and the second AP;
  • the second AP determines to send the SYN-CTS frame to the first AP according to the working mode of the first AP and the working mode of the second AP.
  • a minimum value of the number of antennas of the first STA to be scheduled by the first AP is N1
  • the number of antennas of the first AP is M1
  • the minimum number of antennas of the second STA to be scheduled by the second AP is N2
  • the number of antennas of the second AP is M2
  • the second AP is according to the The working mode of the first AP and the working mode of the second AP determine to send the SYN-CTS frame to the first AP, specifically:
  • the IA_ONLY information in the SYN-RTS frame is that the first AP working mode is only the IA mode, then And Or when And And the second AP determines to send the SYN-CTS frame to the first AP;
  • the second AP determines to send the SYN-CTS frame to the first AP, where Indicates a rounding down operation
  • the second AP determines to send the SYN-CTS frame to the first AP, specifically:
  • the mode operation parameter of the first AP includes a maximum number of first STAs that can be scheduled by the first AP, a maximum number of downlink data flows that can be scheduled by the first AP, and a quantity of the first reserved direction.
  • the mode operation parameter of the second AP includes a maximum number of second STAs that can be scheduled by the second AP, a maximum number of downlink data flows that can be scheduled by the second AP, and a second reserved direction.
  • the second AP carries the working mode of the first AP, the working mode of the second AP, the mode working parameter of the first AP, and the mode working parameter of the second AP in the SYN-CTS
  • the frame is sent to the first AP.
  • the second AP is IA_ONLY information in the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, the number of antennas of the first STA to be scheduled by the first AP, and the second AP to be scheduled.
  • the number of the antennas of the second STA is determined, and the working modes of the first AP and the second AP are determined, specifically:
  • the IA_ONLY information in the SYN-RTS frame is that the first AP working mode is only the IA mode, then And The second AP determines that the working mode of the first AP is an IA mode, and the working mode of the second AP is a beamforming BF mode; or, when And The second AP determines that the working modes of the first AP and the second AP are both IA modes;
  • the IA_ONLY information in the SYN-RTS frame is that the first AP working mode is not limited
  • the second AP determines that the working modes of the first AP and the second AP are both BF modes; or, when And The second AP determines that the working mode of the first AP is an IA mode, and the working mode of the second AP is a BF mode; or, when And The second AP determines that the working mode of the first AP is the BF mode, and the working mode of the second AP is the IA mode; or, when And The second AP determines that the working modes of the first AP and the second AP are both IA modes.
  • the method further And Or when And And the second AP determines to send the SYN-DENY frame to the first AP, where the SYN-DENY frame includes a media access control packet header MAC Header information, a reject reason DENY_REASON information, and a frame check. a sequence FCS, the DENY_REASON information, used to indicate to the first AP that the second AP rejects downlink parallel transmission with the first AP;
  • the second AP is configured according to the SYN-CTS frame
  • the second STA performs downlink data transmission in parallel with the first AP, and specifically includes:
  • the second AP broadcasts the second reserved direction; the second reserved direction is used to enable the second a first STA scheduled by an AP determines a receiving equalization matrix according to the second reserved direction and the channel matrix; the receiving equalization matrix is configured to enable the first STA scheduled by the first AP to receive the first
  • the data sent by the second AP performs interference cancellation;
  • the second AP encodes the to-be-sent data of the second AP according to the pre-coding matrix to obtain encoded data; the encoded data is orthogonal to the second reserved direction;
  • an embodiment of the present invention provides a data parallel transmission method, which is applicable to a wireless fidelity WIFI downlink multi-user multiple input multiple output MU-MIMO system, where the MU-MIMO system includes a first basic service set BSS and a The second BSS, the first BSS coverage area and the second BSS coverage area partially overlap, the first wireless access point AP is located in the coverage area of the first BSS, and the second AP is located in the coverage of the second BSS The first AP serves the first station STA, and the second AP serves the second STA.
  • the method includes:
  • the first AP sends a synchronization request to the second AP to send a SYN-RTS frame, where the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted and the The number of antennas of the first STA to be scheduled by an AP;
  • the antenna of the second STA according to the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the second STA to be scheduled by the second AP
  • the synchronization of the number of transmissions is allowed to send a SYN-CTS frame; the SYN-CTS frame is used to indicate to the first AP the working mode of the first AP, and the maximum number of first STAs that the first AP can schedule.
  • the first AP schedules the first STA according to the content indicated by the SYN-CTS frame, and performs downlink data transmission in parallel with the second AP.
  • the SYN-RTS The frame includes a media access control packet header MAC Header information, an interference only alignment IA_ONLY message, an antenna number BSS_STA_ATN_NUM information of a site scheduled by the basic service set, and a frame check sequence FCS, wherein the IA_ONLY information is used to
  • the second AP indicates a limited working mode of the first AP, and the BSS_STA_ATN_NUM is used to indicate to the second AP the number of antennas of the first STA to be scheduled by the first AP.
  • the SYN-CTS frame includes a media access control packet header MAC Header information, Part, second part and frame check sequence FCS;
  • the first part includes a first working mode MODE information, a first reserved direction quantity DIR_NUM information, a first station number STA_NUM information, and a first data stream quantity STREAM_NUM information; wherein the first MODE information is used to An AP indicates an operation mode of the first AP, the first DIR_NUM information is used to indicate the number of the first reserved direction to the first AP, and the first STA_NUM information is used to the first The AP indicates the maximum number of the first STAs that can be scheduled by the first AP, and the first STREAM_NUM is used to indicate to the first AP, the maximum number of downlink data flows that can be scheduled by the first AP;
  • the second part includes second MODE information, second DIR_NUM information, second STA_NUM information, and second STREAM_NUM information; wherein the second MODE information is used to indicate the work of the second AP to the first AP a mode, the second DIR_NUM information is used to indicate, to the first AP, a quantity of a second reserved direction reserved for the first AP to send and receive data when the second AP works in an IA mode, where the second The STA_NUM information is used to indicate to the first AP, the maximum number of second STAs that can be scheduled by the second AP, and the second STREAM_NUM is used to indicate to the first AP that the second AP can be scheduled. The maximum number of downstream data streams.
  • the first AP is configured according to the SYN-CTS frame
  • the first STA performs downlink data transmission in parallel with the second AP, and specifically includes:
  • the first AP broadcasts the first reserved direction; the first reserved direction is used to enable the first a second STA scheduled by the second AP determines a receiving equalization matrix according to the first reserved direction and the channel matrix; the receiving equalization matrix is configured to enable the second STA scheduled by the second AP to receive the first
  • the data sent by an AP performs interference cancellation
  • the first AP encodes the to-be-sent data of the first AP according to the pre-coding matrix to obtain encoded data; the encoded data is orthogonal to the first reserved direction;
  • the encoded data is sent to the first STA.
  • an embodiment of the present invention provides a device, where the device is a second wireless access point AP, and the device is applicable to a wireless fidelity WIFI downlink multi-user multiple input multiple output MU-MIMO system, where the MU- The MIMO system includes a first basic service set BSS and a second BSS, the coverage area of the first BSS and the coverage area of the second BSS partially overlapping, and the first AP is located in a coverage area of the first BSS, The second AP is located in the coverage area of the second BSS, the first AP serves the first station STA, and the second AP serves the second STA; the device includes:
  • a receiving module configured to receive a synchronization request sent by the first AP, to send a SYN-RTS frame, where the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted and the The number of antennas of the first STA to be scheduled by the first AP;
  • a sending module configured to determine, according to the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP,
  • the first AP sending synchronization allows to send a SYN-CTS frame;
  • the SYN-CTS frame is used to indicate to the first AP the working mode of the first AP, and the first STA that the first AP can schedule
  • a scheduling module configured to schedule the second STA according to the content indicated by the SYN-CTS frame, and perform downlink data transmission in parallel with the first AP.
  • the SYN-RTS The frame includes a media access control packet header MAC Header information, an interference only alignment IA_ONLY message, an antenna number BSS_STA_ATN_NUM information of a site scheduled by the basic service set, and a frame check sequence FCS, wherein the IA_ONLY information is used to
  • the second AP indicates a limited working mode of the first AP, and the BSS_STA_ATN_NUM is used to indicate to the second AP the number of antennas of the first STA to be scheduled by the first AP.
  • the SYN-CTS frame includes a media access control packet header MAC Header information, Part, second part and frame check sequence FCS;
  • the first part includes a first working mode MODE information, a first reserved direction quantity DIR_NUM information, a first station number STA_NUM information, and a first data stream quantity STREAM_NUM information; wherein the first MODE information is used to An AP indicates an operation mode of the first AP, the first DIR_NUM information is used to indicate the number of the first reserved direction to the first AP, and the first STA_NUM information is used to the first The AP indicates the maximum number of the first STAs that can be scheduled by the first AP, and the first STREAM_NUM is used to indicate to the first AP, the maximum number of downlink data flows that can be scheduled by the first AP;
  • the second part includes second MODE information, second DIR_NUM information, second STA_NUM information, and second STREAM_NUM information; wherein the second MODE information is used to indicate the work of the second AP to the first AP a mode, the second DIR_NUM information is used to indicate, to the first AP, a quantity of a second reserved direction reserved for the first AP to send and receive data when the second AP works in an IA mode, where the second The STA_NUM information is used to indicate to the first AP, the maximum number of second STAs that can be scheduled by the second AP, and the second STREAM_NUM is used to indicate to the first AP that the second AP can be scheduled. The maximum number of downstream data streams.
  • the determining the sending module includes:
  • a first determining unit configured to: according to the IA_ONLY information in the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the antenna of the first STA to be scheduled by the first AP a quantity, an antenna number of the second STA to be scheduled by the second AP, determining an operating mode of the first AP and the second AP;
  • Determining a sending unit configured to work according to the working mode of the first AP and the second AP The mode determines to send the SYN-CTS frame to the first AP.
  • the minimum number of antennas of the first STA to be scheduled by the first AP is N1, where The number of antennas of an AP is M1, the minimum number of antennas of the second STA to be scheduled by the second AP is N2, and the number of antennas of the second AP is M2, and the determining sending unit is specifically used if The IA_ONLY information in the SYN-RTS frame is that the first AP working mode is only the IA mode, then when the And Or when And Determining to send the SYN-CTS frame to the first AP;
  • the determining sending unit is configured to: if the IA_ONLY information in the SYN-RTS frame is that the working mode of the first AP is not restricted, determine to send the SYN-CTS frame to the first AP, where Indicates a rounding down operation.
  • the determining the sending unit includes:
  • Determining a subunit configured to determine a mode operation parameter of the first AP and a mode operation parameter of the second AP according to an operation mode of the first AP and an operation mode of the second AP, where
  • the mode working parameter of the first AP includes a maximum number of first STAs that can be scheduled by the first AP, a maximum number of downlink data flows that can be scheduled by the first AP, and a quantity of the first reserved direction.
  • the mode operation parameter of the second AP includes a maximum number of second STAs that can be scheduled by the second AP, a maximum number of downlink data flows that can be scheduled by the second AP, and a second reserved direction. quantity;
  • a sending subunit configured to carry the working mode of the first AP, the working mode of the second AP, the mode working parameter of the first AP, and the mode working parameter of the second AP in the SYN-
  • the CTS frame is sent to the first AP.
  • the first determining unit Specifically, if the IA_ONLY information in the SYN-RTS frame is that the first AP working mode is only the IA mode, then when And Determining that the working mode of the first AP is an IA mode, and the working mode of the second AP is a beamforming BF mode; or the first determining unit is specifically configured to be used when And Determining that the working modes of the first AP and the second AP are all in the IA mode; or
  • the first determining unit is specifically configured to: if the IA_ONLY information in the SYN-RTS frame is an unrestricted working mode of the first AP, And Determining that the working modes of the first AP and the second AP are both BF modes; or, the first determining unit is specifically configured to be used when And Determining that the working mode of the first AP is the IA mode, and the working mode of the second AP is the BF mode; or the first determining unit is specifically used when And Determining that the working mode of the first AP is the BF mode, and the working mode of the second AP is the IA mode; or the first determining unit is specifically used when And The working mode of the first AP and the second AP is determined to be the IA mode.
  • the determining sending unit is further configured to And Or when And Determining that the SYN-DENY frame is sent to the first AP; wherein the SYN-DENY frame includes a media access control packet header MAC Header information, a reject reason DENY_REASON message, and a frame check sequence FCS;
  • the DENY_REASON information is used to indicate to the first AP that the second AP rejects downlink parallel transmission with the first AP.
  • the scheduling module includes:
  • a second determining unit configured to acquire a channel matrix between the second AP and the first STA scheduled by the first AP, and determine, according to the channel matrix, that the second AP is reserved for working in an IA mode
  • the second reserved direction of the data sent and received by the first AP; the determining sending module is further configured to broadcast the second reserved direction; and the second reserved direction is used to enable the first AP
  • the scheduled first STA determines a receiving equalization matrix according to the second reserved direction and the channel matrix;
  • the equalization matrix is configured to enable the first STA scheduled by the first AP to perform interference cancellation on the received data sent by the second AP.
  • a third determining unit configured to determine a precoding matrix according to the second reserved direction or the channel matrix
  • a coding unit configured to encode, according to the precoding matrix, data to be transmitted of the second AP, to obtain coded data; the coded data is orthogonal to the second reserved direction;
  • the determining the sending module further configured to determine an operating mode of the second AP according to the second MODE information in the SYN-CTS frame, and according to the second DIR_NUM information, the second STA_NUM information And transmitting the encoded data to the second STA with the second STREAM_NUM information.
  • an embodiment of the present invention provides a device, where the device is a first wireless access point AP, and the device is applicable to a wireless fidelity WIFI downlink multi-user multiple input multiple output MU-MIMO system, where the MU- The MIMO system includes a first basic service set BSS and a second BSS, the first BSS coverage area and the second BSS coverage area partially overlapping, the first AP is located in a coverage area of the first BSS, and second The AP is located in the coverage area of the second BSS, the first AP serves the first station STA, and the second AP serves the second STA.
  • the device includes:
  • a sending module configured to send a synchronization request to the second AP to send a SYN-RTS frame, where the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted and the The number of antennas of the first STA to be scheduled by an AP;
  • a receiving module configured to receive, according to the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and an antenna of a second STA to be scheduled by the second AP
  • the synchronization of the number of transmissions is allowed to send a SYN-CTS frame; the SYN-CTS frame is used to indicate to the first AP the working mode of the first AP, and the maximum number of first STAs that the first AP can schedule.
  • a scheduling module configured to schedule the first STA according to the content indicated by the SYN-CTS frame, and perform downlink data transmission in parallel with the second AP.
  • the SYN-RTS frame includes a medium access control packet header MAC Header information, an interference only alignment IA_ONLY information, and a basic service set scheduling site.
  • the number of antennas BSS_STA_ATN_NUM information and the frame check sequence FCS, wherein the IA_ONLY information is used to indicate to the second AP that the working mode of the first AP is restricted, and the BSS_STA_ATN_NUM is used for the second AP Indicates the number of antennas of the first STA to be scheduled by the first AP.
  • the SYN-CTS frame includes a media access control packet header MAC Header information, Part, second part and frame check sequence FCS;
  • the first part includes a first working mode MODE information, a first reserved direction quantity DIR_NUM information, a first station number STA_NUM information, and a first data stream quantity STREAM_NUM information; wherein the first MODE information is used to An AP indicates an operation mode of the first AP, the first DIR_NUM information is used to indicate the number of the first reserved direction to the first AP, and the first STA_NUM information is used to the first The AP indicates the maximum number of the first STAs that can be scheduled by the first AP, and the first STREAM_NUM is used to indicate to the first AP, the maximum number of downlink data flows that can be scheduled by the first AP;
  • the second part includes second MODE information, second DIR_NUM information, second STA_NUM information, and second STREAM_NUM information; wherein the second MODE information is used to indicate the work of the second AP to the first AP a mode, the second DIR_NUM information is used to indicate, to the first AP, a quantity of a second reserved direction reserved for the first AP to send and receive data when the second AP works in an IA mode, where the second The STA_NUM information is used to indicate to the first AP, the maximum number of second STAs that can be scheduled by the second AP, and the second STREAM_NUM is used to indicate to the first AP that the second AP can be scheduled. The maximum number of downstream data streams.
  • the scheduling module includes:
  • a first determining unit configured to acquire a channel matrix between the first AP and the second STA scheduled by the second AP, and determine, according to the channel matrix, that the first AP is reserved in an IA mode
  • the first reserved direction of the data sent and received by the second AP is further configured to broadcast the first reserved direction; the first reserved direction is used to schedule the second AP
  • the STA determines, according to the first reserved direction and the channel matrix, a receive equalization matrix, where the receive equalization matrix is used to enable the second STA scheduled by the second AP to send data to the received first AP. Perform interference cancellation;
  • a second determining unit configured to determine a precoding matrix according to the first reserved direction or the channel matrix
  • a coding unit configured to encode, according to the precoding matrix, data to be transmitted of the first AP, to obtain coded data; the coded data is orthogonal to the first reserved direction;
  • the sending module is further configured to determine, according to the first MODE information in the SYN-CTS frame, an operation mode of the first AP, and according to the first DIR_NUM information, the first STA_NUM information, and the The first STREAM_NUM information is sent to the first STA.
  • an embodiment of the present invention provides a device, where the device is a second wireless access point AP, and the device is applicable to a wireless fidelity WIFI downlink multi-user multiple input multiple output MU-MIMO system, where the MU- The MIMO system includes a first basic service set BSS and a second BSS, the coverage area of the first BSS and the coverage area of the second BSS partially overlapping, and the first AP is located in a coverage area of the first BSS, The second AP is located in the coverage area of the second BSS, the first AP serves the first station STA, and the second AP serves the second STA; the device includes:
  • a receiver configured to receive a synchronization request sent by the first AP, to send a SYN-RTS frame, where the SYN-RTS frame is used to indicate to the second AP that a working mode limitation of the first AP is The number of antennas of the first STA to be scheduled by the first AP;
  • a processor configured to determine, according to the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP,
  • the first AP sends a synchronization to allow the SYN-CTS frame to be sent, and sends the SYN-CTS frame to the first AP, and the second STA is scheduled according to the content indicated by the SYN-CTS frame, and the first AP.
  • the SYN-CTS frame is used to indicate, to the first AP, an operating mode of the first AP, a maximum number of first STAs that the first AP can schedule, and the The maximum number of downlink data flows that can be scheduled by the first AP, the number of first reserved directions reserved for the second AP to transmit and receive data when the first AP works in the interference aligned IA mode, and the second AP
  • the working mode, the maximum number of second STAs that can be scheduled by the second AP, the maximum number of downlink data that can be scheduled by the second AP, and the second AP working in the IA mode The number of second reserved directions reserved for the first AP to send and receive data.
  • the SYN-RTS frame includes a medium access control packet header MAC Header information, an interference only alignment IA_ONLY information, and a basic service set scheduling site.
  • the number of antennas BSS_STA_ATN_NUM information and the frame check sequence FCS, wherein the IA_ONLY information is used to indicate to the second AP that the working mode of the first AP is restricted, and the BSS_STA_ATN_NUM is used for the second AP Indicates the number of antennas of the first STA to be scheduled by the first AP.
  • the SYN-CTS frame includes a media access control packet header MAC Header information, Part, second part and frame check sequence FCS;
  • the first part includes a first working mode MODE information, a first reserved direction quantity DIR_NUM information, a first station number STA_NUM information, and a first data stream quantity STREAM_NUM information; wherein the first MODE information is used to An AP indicates an operation mode of the first AP, the first DIR_NUM information is used to indicate the number of the first reserved direction to the first AP, and the first STA_NUM information is used to the first The AP indicates the maximum number of the first STAs that can be scheduled by the first AP, and the first STREAM_NUM is used to indicate to the first AP, the maximum number of downlink data flows that can be scheduled by the first AP;
  • the second part includes second MODE information, second DIR_NUM information, second STA_NUM information, and second STREAM_NUM information; wherein the second MODE information is used to indicate the work of the second AP to the first AP a mode, the second DIR_NUM information is used to indicate, to the first AP, a quantity of a second reserved direction reserved for the first AP to send and receive data when the second AP works in an IA mode, where the second The STA_NUM information is used to indicate to the first AP, the maximum number of second STAs that can be scheduled by the second AP, and the second STREAM_NUM is used to indicate to the first AP that the second AP can be scheduled. The maximum number of downstream data streams.
  • the processor is specifically used according to the SYN-RTS IA_ONLY information in the frame, the number of antennas of the first AP, the number of antennas of the second AP, the number of antennas of the first STA to be scheduled by the first AP, and the second STA to be scheduled by the second AP.
  • the number of antennas, determining the working mode of the first AP and the second AP, and according to The working mode of the first AP and the working mode of the second AP determine to send the SYN-CTS frame to the first AP.
  • a minimum value of the number of antennas of the first STA to be scheduled by the first AP is N1
  • the number of antennas of the first AP is M1
  • the minimum number of antennas of the second STA to be scheduled by the second AP is N2
  • the number of antennas of the second AP is M2
  • the processor is specifically used if The IA_ONLY information in the SYN-RTS frame is that the first AP working mode is only the IA mode, then when the And Or when And Determining to send the SYN-CTS frame to the first AP;
  • the processor is configured to: if the IA_ONLY information in the SYN-RTS frame is that the working mode of the first AP is not restricted, determine to send the SYN-CTS frame to the first AP; Indicates a rounding down operation.
  • the processor is configured to be used according to the working mode of the first AP and the second AP a working mode, respectively, determining a mode working parameter of the first AP and a mode working parameter of the second AP, where the mode working parameter of the first AP includes a first STA that can be scheduled by the first AP.
  • the mode operation parameter of the second AP includes the second AP can schedule a maximum number of two STAs, a maximum number of downlink data streams that can be scheduled by the second AP, and a quantity of the second reserved direction;
  • the transmitter is specifically configured to: determine, by the processor, an operating mode of the first AP, an operating mode of the second AP, a mode working parameter of the first AP, and a second AP
  • the mode working parameter is carried in the SYN-CTS frame and sent to the first AP.
  • the processor specifically And if the IA_ONLY information in the SYN-RTS frame is that the first AP working mode is only an IA mode, when And Determining that the working mode of the first AP is an IA mode, and the working mode of the second AP is a beamforming BF mode; or the processor, specifically for when And Determining that the working modes of the first AP and the second AP are all in the IA mode; or
  • the processor is specifically configured to: if the IA_ONLY information in the SYN-RTS frame is an unrestricted working mode of the first AP, And Determining that the working modes of the first AP and the second AP are both BF modes; or, the processor is specifically used when And Determining that the working mode of the first AP is the IA mode, and the working mode of the second AP is the BF mode; or the processor is specifically used when And Determining that the working mode of the first AP is the BF mode, and the working mode of the second AP is the IA mode; or the processor is specifically used when And The working mode of the first AP and the second AP is determined to be the IA mode.
  • a seventh possible implementation manner of the fifth aspect And Or when And Determining that the SYN-DENY frame is sent to the first AP; wherein the SYN-DENY frame includes a media access control packet header MAC Header information, a reject reason DENY_REASON message, and a frame check sequence FCS;
  • the DENY_REASON information is used to indicate to the first AP that the second AP rejects downlink parallel transmission with the first AP.
  • the processor is specifically configured to acquire the second AP a channel matrix between the first STAs scheduled by the first AP, and determining, according to the channel matrix, the second pre-reserved data for the first AP to transmit and receive data when the second AP works in the IA mode And determining a precoding matrix according to the second reserved direction or the channel matrix, and encoding the to-be-sent data of the second AP according to the precoding matrix to obtain encoded data; the encoded data Orthogonal to the second reserved direction;
  • the transmitter is specifically configured to broadcast the second reserved direction, and according to the working mode and location of the second AP determined by the processor according to the second MODE information in the SYN-CTS frame Transmitting, by the second DIR_NUM information, the second STA_NUM information and the second STREAM_NUM information, the encoded data obtained by the processor to the second STA; wherein the second reserved direction is used to enable the The first STA scheduled by the first AP determines a receiving equalization matrix according to the second reserved direction and the channel matrix; the receiving equalization matrix is configured to enable the first STA scheduled by the first AP to receive the received The data sent by the second AP performs interference cancellation.
  • an embodiment of the present invention provides a device, where the device is a first wireless access point AP, and the device is applicable to a wireless fidelity WIFI downlink multi-user multiple input multiple output MU-MIMO system, where the MU- The MIMO system includes a first basic service set BSS and a second BSS, the first BSS coverage area and the second BSS coverage area partially overlapping, the first AP is located in a coverage area of the first BSS, and second The AP is located in the coverage area of the second BSS, the first AP serves the first station STA, and the second AP serves the second STA.
  • the device includes:
  • a sender configured to send a synchronization request to the second AP to send a SYN-RTS frame, where the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted and the The number of antennas of the first STA to be scheduled by an AP;
  • a receiver configured to receive, according to the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and an antenna of a second STA to be scheduled by the second AP
  • the synchronization of the number of transmissions is allowed to send a SYN-CTS frame; the SYN-CTS frame is used to indicate to the first AP the working mode of the first AP, and the maximum number of first STAs that the first AP can schedule.
  • a processor configured to schedule the first STA according to the content indicated by the SYN-CTS frame, and perform downlink data transmission in parallel with the second AP.
  • the SYN-RTS frame includes a medium access control packet header MAC Header information, an interference only alignment IA_ONLY information, and a basic service set scheduling site.
  • the SYN-CTS frame includes a media access control packet header MAC Header information, Part, second part and frame check sequence FCS;
  • the first part includes a first working mode MODE information, a first reserved direction quantity DIR_NUM information, a first station number STA_NUM information, and a first data stream quantity STREAM_NUM information; wherein the first MODE information is used to An AP indicates an operation mode of the first AP, the first DIR_NUM information is used to indicate the number of the first reserved direction to the first AP, and the first STA_NUM information is used to the first The AP indicates the maximum number of the first STAs that can be scheduled by the first AP, and the first STREAM_NUM is used to indicate to the first AP, the maximum number of downlink data flows that can be scheduled by the first AP;
  • the second part includes second MODE information, second DIR_NUM information, second STA_NUM information, and second STREAM_NUM information; wherein the second MODE information is used to indicate the work of the second AP to the first AP a mode, the second DIR_NUM information is used to indicate, to the first AP, a quantity of a second reserved direction reserved for the first AP to send and receive data when the second AP works in an IA mode, where the second The STA_NUM information is used to indicate to the first AP, the maximum number of second STAs that can be scheduled by the second AP, and the second STREAM_NUM is used to indicate to the first AP that the second AP can be scheduled. The maximum number of downstream data streams.
  • the processor is configured to acquire the first AP a channel matrix between the second STAs scheduled by the second AP, and determining, according to the channel matrix, the first pre-reserved data that is reserved for the second AP to transmit and receive data when the first AP works in the IA mode And determining a precoding matrix according to the first reserved direction or the channel matrix, and encoding the to-be-transmitted data of the first AP according to the precoding matrix to obtain encoded data; the encoded data Orthogonal to the first reserved direction;
  • the transmitter is specifically configured to broadcast the first reserved direction, and according to the working mode of the first AP determined by the processor according to the first MODE information in the SYN-CTS frame, Transmitting the encoded data to the first STA by using the first DIR_NUM information, the first STA_NUM information, and the first STREAM_NUM information; wherein the first reserved direction is used to enable the second AP And the second STA that is scheduled to determine the receiving equalization matrix according to the first reserved direction and the channel matrix; the receiving equalization matrix is used to enable the second STA scheduled by the second AP to receive the first AP
  • the delivered data is used for interference cancellation.
  • the second AP receives the SYN-RTS frame sent by the first AP, and determines to send the SYN-CTS frame to the first AP by using the SYN-RTS frame, thereby making the first An AP and the second AP are configured to work with the current antenna configuration scenario, so that the first AP schedules the first STA according to the content indicated by the SYN-CTS frame, and the second AP is configured according to the SYN-CTS frame.
  • the indicated content schedules the second STA.
  • the second AP determines, according to the content in the SYN-RTS frame reported by the first AP, the working mode in the current antenna configuration scenario of the second AP and the first AP, so that the second AP is configured.
  • the first AP may perform corresponding STA scheduling and downlink data transmission according to the content in the SYN-CTS frame determined above, thereby ensuring data stream gain of the system.
  • FIG. 1 is a network topology diagram of a bidirectional cross interference according to an embodiment of the present invention
  • FIG. 2 is a network topology diagram of a WIFI MU-MIMO system according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart diagram of Embodiment 1 of a method for data parallel transmission according to an embodiment of the present disclosure
  • Embodiment 4 is a schematic flowchart of Embodiment 2 of a method for data parallel transmission according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of Embodiment 3 of a method for data parallel transmission according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart diagram of Embodiment 4 of a method for data parallel transmission according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of Embodiment 5 of a method for data parallel transmission according to an embodiment of the present disclosure
  • FIG. 8 is a schematic flowchart diagram of Embodiment 6 of a method for data parallel transmission according to an embodiment of the present disclosure
  • FIG. 9 is a signaling flowchart of Embodiment 7 of a method for data parallel transmission according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of an apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of an apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of an apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of Embodiment 4 of an apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of Embodiment 5 of an apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of Embodiment 6 of an apparatus according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of Embodiment 7 of an apparatus according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of Embodiment 8 of an apparatus according to an embodiment of the present disclosure.
  • the method of the embodiment of the present invention can be applied to a Wireless Fidelity (WIFI) downlink multi-user Multiple-Input Multiple-Output (MU-MIMO) system.
  • WIFI Wireless Fidelity
  • MU-MIMO multiple-Input Multiple-Output
  • FIG. 2 the MU-MIMO system includes a first basic service set (Basic Service Set, BSS for short) and a second BSS, the first BSS coverage area and the second BSS coverage area part In the coverage area of the first BSS, the second AP is located in the coverage area of the second BSS, and the first AP serves the first station (Station, Referred to as STA), the second AP serves the second STA.
  • BSS Basic Service Set
  • the first BSS coverage area may include a first AP
  • the second BSS coverage area may include a second AP
  • the system may include a second BSS, and may also include multiple second BSSs.
  • the first AP may serve one or more first STAs
  • the second AP may serve one or more second STAs.
  • the system network topology diagram shown in FIG. 2 is only an example.
  • the first BSS coverage area includes a first AP
  • the second BSS coverage area includes a second AP
  • the first AP and the second AP The AP is located in an overlapping area of the first BSS and the second BSS, and the first AP serves four first
  • the STAs are STA1, STA2, STA3, and STA4, and the second AP serves four second STAs, namely, STA5, STA6, STA7, and STA8.
  • the data exchange between the first AP and the STA1, the STA2, the STA3, and the STA4 may cause interference to the second AP and the site under the coverage, and the second AP and the STA5,
  • STA6, STA7, and STA8 perform data interaction, they will cause interference to the first AP and its covered sites.
  • the foregoing second AP may be an AP that causes cross-interference to the first STA in the first AP by using any one of the multiple second BSS coverage areas, that is, the second AP may not be located in FIG. 2 The overlapping area shown.
  • the second AP may also be an AP that is determined by the first AP from the coverage area of the multiple second BSSs to be smaller than the number of antennas of the first AP and located in the overlapping area in FIG. 2 .
  • a second AP located in an overlapping area and having a smaller number of antennas than the number of antennas of the first AP is taken as an example.
  • the method according to the embodiment of the present invention can specifically solve the technical problem that the method for eliminating cross interference in the prior art is single and cannot guarantee the data stream gain in parallel transmission.
  • the technical solutions of the present invention will be described in detail below with specific embodiments. The following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be described in some embodiments.
  • FIG. 3 is a schematic flowchart diagram of Embodiment 1 of a method for data parallel transmission according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • the second AP receives a Synchronize Request To Send (SYN-RTS) frame sent by the first AP, where the SYN-RTS frame is used to indicate the first AP to the second AP.
  • SYN-RTS Synchronize Request To Send
  • the working mode is limited and the number of antennas of the first STA to be scheduled by the first AP.
  • the downlink synchronization transmission cooperation object is determined according to the interference situation of the first STA in the first AP.
  • the first AP determines that the first AP may be given the first
  • the second AP that interferes with the first STA of the AP is a downlink synchronization transmission cooperation object, and sends a SYN-RTS frame to the second AP.
  • the second AP After receiving the SYN-RTS frame, the second AP learns the working mode limitation of the first AP according to the SYN-RTS frame, that is, learns the working mode preference of the first AP, for example, the first AP only supports working in the IA mode or The first AP has no restrictions on the working mode.
  • the second AP may also learn, according to the SYN-RTS frame, the number of first STAs to be scheduled by the first AP. As shown in FIG. 2 above, it is assumed that the first AP is about to schedule all of the first STAs that it serves.
  • the second AP determines, according to the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP,
  • the first AP sends a Synchronize Clear To Send (SYN-CTS) frame.
  • the SYN-CTS frame is used to indicate to the first AP, the working mode of the first AP, the maximum number of first STAs that can be scheduled by the first AP, and the first AP can be scheduled.
  • the maximum number of downlink data flows and the number of first reserved directions reserved for the second AP to transmit and receive data when the first AP operates in the Interference Alignment (IA) mode, the second AP.
  • the working mode, the maximum number of second STAs that can be scheduled by the second AP, the maximum number of downlink data that can be scheduled by the second AP, and the second AP are reserved for the IA mode.
  • the number of the second reserved directions of the first AP to send and receive data.
  • the second AP may determine whether to send the SYN to the first AP by combining the foregoing SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP. CTS frame.
  • the second AP may determine whether the current AP supports the first AP in combination with the foregoing SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP.
  • the second AP determines to send a SYN-CTS frame to the first AP; and, the second AP may notify the first AP by using the SYN-CTS frame.
  • the maximum number of the first STAs that can be scheduled by the first AP is also notified by the SYN-CTS frame, for example, the first AP sends the second message through the SYN-RTS frame.
  • the AP itself is about to schedule all the first STAs that are covered, but the second AP combines the number of antennas of the first AP with the number of antennas of the second AP and the number of antennas of the second STA to be scheduled by the second AP. Scheduling the three first STAs, the second AP carries the maximum number of the first STAs that can be scheduled by the first AP in the SYN-CTS frame and sends the first STA to the first AP.
  • the second AP may also combine the above SYN-RTS frame,
  • the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP determine the maximum number of downlink data streams that can be scheduled by the first AP, and notify the first through the SYN-CTS frame.
  • An AP; the second AP may also determine the number of the first reserved direction that the first AP can reserve and send data to and from the second AP when the IA mode is working, and notify the first AP in the SYN-CTS frame.
  • the number of antennas of the first AP and the second AP The number of antennas and the number of antennas of the second STA to be scheduled by the second AP are both predicted, or the second AP can learn the information by means of interception detection.
  • the number of antennas of the second STA to be scheduled by the second AP may be the number of antennas on each second STA to be scheduled by the second AP, or may be all the second STAs to be scheduled by the second AP. The minimum number of antennas.
  • the first AP receives the SYN-CTS frame sent by the second AP, and learns, by using the SYN-CTS frame, the working mode of the first AP, the maximum number of the first STAs that can be scheduled by the first AP, and the first AP can schedule.
  • the maximum number of downlink data flows and the number of first reserved directions that the first AP can reserve for the second AP to transmit and receive data when the first AP works in the interference alignment IA mode, and the first AP determines how to schedule the first according to the SYN-CTS frame.
  • STA and performs data transmission with the scheduled first STA.
  • the first reserved direction is a direction that the first AP reserves the data for sending and receiving data to the second AP.
  • the first AP In the first reserved direction, the first AP also sends and receives data, but because of the first The data transmitted by the AP is orthogonal to the direction, and the data transmitted by the first AP in the first reserved direction is empty, that is, when the first AP and the second AP transmit data in parallel, the first There is only data transmitted by the second AP in a reserved direction, and the first AP and the second AP may not interfere with each other in the direction. Therefore, the second AP needs to inform the first AP to reserve the number of the first reserved direction for the second AP to send and receive data, so that the next two APs perform downlink parallel transmission.
  • the second AP when the second AP works in the IA mode, the second AP also reserves a second reserved direction.
  • the second AP also sends and receives data, but because the second AP The transmitted data is orthogonal to the direction, so in an ideal case, the data transmitted by the second AP in the second reserved direction is empty, that is, the second AP and the second AP are finally transmitted in parallel.
  • the second reservation direction only the data transmitted by the first AP is used, and the first AP and the second AP may not interfere with each other in the second reserved direction (generally, there is an error due to channel detection).
  • the second AP may still have some interference with the first AP in the second reserved direction, but the interference may be relatively small and within an acceptable range). Therefore, the second AP may also notify the first AP of the second reserved direction by using the above SYN-CTS frame. And the second AP may further notify, by using the foregoing SYN-CTS frame, a working mode of the current second AP of the first AP, a number of second STAs that can be scheduled by the second AP, and a maximum downlink data that can be scheduled by the second AP. The number is obtained, so that the first AP learns the data transmission situation in the second BSS, and further knows that the second BSS may cause interference to itself, thereby facilitating the subsequent channel interception and the like to perform cross-drying. Elimination of disturbances.
  • the second AP schedules the second STA according to the content indicated by the SYN-CTS frame, and performs downlink data transmission in parallel with the first AP.
  • the second AP sends the foregoing SYN-CTS frame to the first AP, and not only can notify the second AP of related information during data transmission (for example, the working mode of the second AP and the second AP can be scheduled).
  • the content indicated by the SYN-CTS frame determines how to schedule the second STA to perform downlink data transmission in parallel with the first AP.
  • the two APs when two APs perform downlink data transmission in parallel, in order to eliminate cross interference, the two APs often adopt a single working mode, for example, a single IA mode or a single (Beamforming, BF for short) mode.
  • the single mode of operation employed is often not the best mode of operation for the current communication scenario.
  • the system when the number of antennas at the transmitting end is large, the system often adopts the BF working mode, but the BF working mode often brings less data gain, which cannot guarantee the data gain requirement of the current communication development; for example, in order to obtain higher Data gain, the system uses a single IA mode, although the IA mode can obtain high data gain, but the IA mode is not available at all in the antenna configuration scenario.
  • the second AP determines, according to the content indicated by the SYN-RTS frame reported by the first AP, the working mode in the current antenna configuration scenario of the second AP and the first AP (ie, the work).
  • the mode is determined according to the current antenna configuration scenario of the first AP and the second AP, so that the second AP and the first AP can perform corresponding STA scheduling and downlink data transmission according to the content in the determined SYN-CTS frame. Therefore, the method provided by the embodiment of the present invention determines that the working modes of the two APs are adapted to the antenna configurations of the current two APs, thereby ensuring the data stream gain of the system.
  • the second AP receives the SYN-RTS frame sent by the first AP, and determines to send the SYN-CTS frame to the first AP by using the SYN-RTS frame, thereby making the first AP
  • the second AP is configured to work with the current antenna configuration scenario, so that the first AP schedules the first STA according to the content indicated by the SYN-CTS frame, and the second AP passes the content indicated by the SYN-CTS.
  • the frame schedules the second STA.
  • the second AP determines, according to the content in the SYN-RTS frame reported by the first AP, the working mode in the current antenna configuration scenario of the second AP and the first AP, so that the second AP and the first AP can be configured according to the second AP and the first AP.
  • the content in the SYN-CTS frame determined above performs corresponding STA scheduling and downlink data transmission, thereby ensuring the data stream gain of the system.
  • the foregoing SYN-RTS frame may include a Media Access Control Header (MAC Header) information, and only interference alignment (Interference Alignment). Only, referred to as IA_ONLY) information, the BSS Station Antenna Number (BSS_STA_ATN_NUM) information and the Frame Check Sequence (FCS), wherein the IA_ONLY information is used for the
  • the second AP indicates a limited working mode of the first AP, and the BSS_STA_ATN_NUM is used to indicate to the second AP the number of antennas of the first STA to be scheduled by the first AP.
  • the structure of the SYN-RTS frame can be seen in Table 1 below:
  • the first AP (the number of antennas is M1) competing for the channel usage right
  • the first AP (the number of antennas) may be selected according to the number of antennas (M2) of the second AP, and the number of antennas is ⁇ M1.
  • the second AP is used as a downlink synchronization transmission cooperation object, and the antenna number information can be obtained by capability information of a beacon frame or the like sent by the first AP when the first AP is idle.
  • the first AP sends a SYN-RTS frame to the second AP.
  • the SYN-RTS frame carries IA_ONLY information and BSS_STA_ATN_NUM information.
  • the IA_ONLY information and the BSS_STA_ATN_NUM information may be embodied in a SYN-RTS frame in the form of a field.
  • the foregoing BSS_STA_ATN_NUM field may be 4 bits, and is used to indicate to the second AP the number of antennas of the first STA to be scheduled by the first AP.
  • the MAC Header in Table 1 above is the frame header of the MAC frame, and the FCS is a sequence for performing check protection on the contents of the frame.
  • the foregoing SYN-CTS frame may include MAC header information, a first part, and a second part.
  • FCS specifically refer to the frame structure shown in Table 2 below:
  • the MODE in front of the MAC Header the Direction Reserved Number (DIR_NUM), the Station Number (STA_NUM), and the Stream Number (STREAM_NUM) are the above SYNs.
  • the content of the first part of the CTS frame corresponds to the first AP, that is, the previous MODE is the first MODE information, the previous DIR_NUM is the first DIR_NUM information, the previous STA_NUM is the first STA_NUM, and the previous STREAM_NUM is the first STREAM_NUM;
  • the following MODE, DIR_NUM, STA_NUM, and STREAM_NUM are the contents of the second part of the SYN-CTS frame, corresponding to the second AP, that is, the latter MODE is the second MODE information, and the latter DIR_NUM is the second DIR_NUM information, and the following STA_NUM For the second STA_NUM, the following STREAM_NUM is the second AP
  • the first MODE information is used to indicate the working mode of the first AP to the first AP, where the first DIR_NUM information is used to indicate the number of the first reserved directions to the first AP.
  • the first STA_NUM information is used to indicate to the first AP, the maximum number of first STAs that can be scheduled by the first AP, and the first STREAM_NUM is used to indicate the first to the first AP.
  • the maximum number of downlink data flows that the AP can schedule is used to indicate the working mode of the second AP to the first AP, and the second DIR_NUM information is used to the first AP And indicating a quantity of a second reserved direction reserved for the first AP to send and receive data when the second AP works in the IA mode, where the second STA_NUM information is used to indicate the second AP to the first AP.
  • the maximum number of second STAs that can be scheduled, and the second STREAM_NUM is used to indicate to the first AP the maximum number of downlink data flows that can be scheduled by the second AP.
  • the first MODE field (or the first MODE information) and the second MODE field (or the second MODE information) may be 1 bit, and when the value of the first MODE field is 1, the first is indicated.
  • the AP works in the IA mode.
  • the value of the first MODE field is 0, the first AP is in the BF mode.
  • the value of the second MODE field is 1, the second AP is in the IA mode.
  • the value of the field is 0, it indicates that the second AP works in BF mode.
  • the first DIR_NUM field (or the first DIR_NUM information) and the second DIR_NUM field (or the second DIR_NUM information) may be 4 bits, and when the first AP operates in the BF mode, the value of the first DIR_NUM field is 0, when the second When the AP works in BF mode, the value of the second DIR_NUM field is 0. It should be noted that when the first AP works in the BF mode, the value of the first DIR_NUM field is 0, except that the first DIR_NUM field may not require an indication; when the second AP works in the BF mode, the second DIR_NUM field A value of 0 also indicates that the second DIR_NUM field may not require an indication.
  • the first STA_NUM field (or the first STA_NUM information) and the second STA_NUM field (or the second STA_NUM information) may be 4 bits, and when the first AP operates in the IA mode, the second STA_NUM field is a value greater than 0; When an AP works in the BF mode, the second STA_NUM field is 0 (or does not indicate the second STA_NUM field); when the second AP works in the IA mode, the first STA_NUM field is a value greater than 0; when the second AP When operating in the BF mode, the first STA_NUM field is a value of 0 (or the first STA_NUM field is not indicated).
  • the first STREAM_NUM field (or the first STREAM_NUM information) and the second STREAM_NUM field (or the second STREAM_NUM information) may be 3 bits indicating the maximum number of downlink data streams that the first AP and the second AP can schedule, respectively.
  • FIG. 4 is a schematic flowchart diagram of Embodiment 2 of a method for data parallel transmission according to an embodiment of the present invention. Based on the foregoing embodiment, the foregoing S102 may specifically include the following steps:
  • the second AP is configured according to the IA_ONLY information in the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, the number of antennas of the first STA to be scheduled by the first AP, The number of antennas of the second STA to be scheduled by the second AP determines an operating mode of the first AP and the second AP.
  • the minimum number of antennas of the first STA to be scheduled by the first AP is N1
  • the number of antennas of the first AP is M1
  • the number of antennas of the second STA to be scheduled by the second AP The minimum value is N2, and the number of antennas of the second AP is M2.
  • the IA_ONLY field in the SYN-RTS frame shown in Table 1 is 1, that is, if the first AP working mode is only the IA mode, then And The second AP determines that the working mode of the first AP is an IA mode, and the working mode of the second AP is a BF mode; or when And The second AP determines that the working modes of the first AP and the second AP are both IA modes; Indicates a rounding down operation.
  • the IA_ONLY field in the SYN-RTS frame shown in Table 1 is 0, that is, if the working mode of the first AP is not limited, then And The second AP determines that the working modes of the first AP and the second AP are both BF modes; or, when And The second AP determines that the working mode of the first AP is an IA mode, and the working mode of the second AP is a BF mode; or, when And The second AP determines that the working mode of the first AP is the BF mode, and the working mode of the second AP is the IA mode; or, when And The second AP determines that the working modes of the first AP and the second AP are both IA modes.
  • the IA_ONLY field in the SYN-RTS frame shown in Table 1 is 1, that is, if the first AP working mode is only the IA mode, then And Or when And When the second AP determines that the parallel data transmission cannot be performed with the first AP, the second AP determines that the downlink AP cannot perform downlink and parallel data transmission with the first AP in the IA mode, and the second AP determines that the second AP is no longer determined.
  • the first AP indicates the reason why the second AP rejects downlink parallel transmission with the first AP.
  • the MAC Header information, the DENY_REASON information, and the FCS can be embodied in the form of fields in SYN-DENY, as shown in Table 3.
  • the SYN_DENY frame may carry a 4-bit DENY_REASON field to indicate a reason for rejection, for example, 0001 indicates that the unbuffered downlink data is used for parallel transmission, and 0010 indicates that the Overlapping BSS (OBSS) region overlapped within the cell.
  • the STA capability is low, and the reason for the rejection may also be that the second AP cannot satisfy the request for full bandwidth parallel transmission.
  • the second AP may also refuse to perform parallel transmission with the first AP for no reason, so the DENY_REASON field may also indicate that there is no reason (Out of no reason).
  • the foregoing second AP determines that the working modes of the first AP and the second AP may be determined by referring to the foregoing condition-result mapping relationship, or may be determined according to the form of the table shown in Table 4 and Table 5 below. Convenient identification, with AP 1 for the first AP and AP 2 for the second AP). "Unavailable" in Table 5 indicates that the second AP cannot perform downlink parallel data transmission with the first AP in the IA mode when the first AP works.
  • the second AP determines, according to the working mode of the first AP and the working mode of the second AP, whether to send the SYN-CTS frame to the first AP.
  • first determining whether to send the SYN-CTS frame or the SYN-DENY frame to the first AP according to the working modes of the first AP and the second AP first determining whether to send the SYN-CTS frame or the SYN-DENY frame to the first AP according to the working modes of the first AP and the second AP .
  • the second AP determines that the SYN-CTS frame can be sent to the first AP. That is, when the second AP determines that the working mode of the first AP is the IA mode, and the working mode of the second AP is the BF mode, the second AP determines that the SYN-CTS frame can be sent to the first AP; When the AP determines that the working modes of the first AP and the second AP are all in the IA mode, the second AP determines that the SYN-CTS frame can be sent to the first AP.
  • the two APs determine that the SYN-CTS frame can be sent to the first AP, except that the indicated content in the sent SYN-CTS frame is different.
  • the second AP determines that the SYN-CTS frame is sent to the first AP
  • the second AP determines the content of the SYN-CTS frame sent to the first AP in different working modes.
  • the method includes:
  • the second AP determines, according to the working mode of the first AP and the working mode of the second AP, a mode working parameter of the first AP and a mode working parameter of the second AP, where
  • the mode operation parameter of the first AP includes a maximum number of first STAs that can be scheduled by the first AP, a maximum number of downlink data flows that can be scheduled by the first AP, and a quantity of the first reserved direction.
  • the mode operation parameter of the second AP includes a maximum number of second STAs that can be scheduled by the second AP, a maximum number of downlink data flows that can be scheduled by the second AP, and a second reserved direction. Quantity.
  • the first AP is represented by AP 1
  • the second AP is represented by AP 2 .
  • the embodiment of the present invention does not limit the formula for determining the mode working parameter of the first AP and the mode working parameter of the second AP.
  • the following formula is only an example. Specifically:
  • the first type when the first AP and the second AP are both in the IA mode, the second AP determines the mode working parameter of the first AP and the mode working parameter of the second AP according to the following formula, specifically:
  • the second type when the first AP works in the IA mode and the second AP works in the BF mode, the second AP determines the mode working parameter of the first AP and the mode working parameter of the second AP according to the following formula, specifically :
  • the third type when the first AP works in the BF mode and the second AP works in the IA mode, the second AP determines the mode working parameter of the first AP and the mode working parameter of the second AP according to the following formula, specifically :
  • the second AP can determine
  • the fourth type when the first AP and the second AP are both in the BF mode, the second AP determines the mode working parameter of the first AP and the mode working parameter of the second AP according to the following formula, specifically:
  • the second AP can determine the mode operating parameters when both the first AP and the second AP are operating in the BF mode.
  • the second AP carries the working mode of the first AP, the working mode of the second AP, the mode working parameter of the first AP, and the mode working parameter of the second AP in the SYN-CTS.
  • the frame is sent to the first AP.
  • the second AP has sent the SYN-CTS frame to the first AP according to the working mode of the first AP and the second AP, and the second AP also determines the mode working parameter of the first AP and the second AP.
  • Mode working parameter therefore, the second AP carries the working mode of the first AP, the working mode of the second AP, the mode working parameter of the first AP, and the mode working parameter of the second AP in the form of a field in the SYN-CTS frame.
  • the SYN-CTS frame can be seen in Table 2 above.
  • the first AP After receiving the SYN-CTS frame, the first AP determines the working mode of the first AP according to the first MODE information in the SYN-CTS frame. If the value of the first MODE information (or the first MODE field) is 1, The first AP determines that it operates in the IA mode. If the value of the first MODE information is 0, the first AP determines that it is operating in the BF mode. Thereafter, the first AP may determine, according to the first STA_NUM information (or the first STA_NUM field), the first STREAM_NUM information (or the first STREAM_NUM field), and the second DIR_NUM information (or the second DIR_NUM field) in the SYN-CTS frame. The first STA is scheduled.
  • the second AP schedules the second STA according to the content in the SYN-CTS frame.
  • the interaction referred to herein refers to the interaction of signaling frames, rather than data interaction.
  • the interaction may be a frame interaction between the first AP and the first STA regarding channel sounding information, including null data packet declaration (Null).
  • Null Data Packet Announcement
  • NDP Null Data Packet
  • BRP Beamforming Report Poll
  • BR Beamforming Report
  • the interaction may also be that the first AP sends a synchronization frame to the second AP after the interaction with the first STA.
  • the solution of the present invention is between the first AP and the first STA and the first AP and the second AP.
  • the content of the interaction is not limited.
  • the second AP obtains scheduling information when the first AP schedules the first STA (in accordance with the example shown in FIG. 2, the first STA scheduled by the first AP is STA1, STA2, and STA3), so when the second When the AP detects the uplink frame of the STA 3 (the uplink frame is a channel sounding frame), it can be known that the first AP has already completed the interaction; or the first AP can also send a synchronization frame to notify the first before sending the downlink data.
  • the effect of the two APs having been interactively completed is not limited by the solution of the present invention.
  • the second AP receives the SYN-RTS frame sent by the first AP, and determines the working mode of the first AP and the second AP by using the SYN-RTS frame, and then according to the first
  • the working mode of the AP and the second AP determines that the SYN-CTS frame is sent to the first AP, so that the first AP and the second AP both know the working mode that is adapted to the current antenna configuration scenario, so that the first AP is configured according to the foregoing SYN.
  • the content indicated by the CTS frame schedules the first STA, and the second AP schedules the second STA according to the content indicated by the SYN-CTS frame.
  • the second AP determines, according to the content in the SYN-RTS frame reported by the first AP, the working mode in the current antenna configuration scenario of the second AP and the first AP, so that the second AP is configured.
  • the first AP may perform corresponding STA scheduling according to the content in the SYN-CTS frame determined above.
  • downlink data transmission which can ensure the data stream gain of the system.
  • FIG. 6 is a schematic flowchart diagram of Embodiment 4 of a method for data parallel transmission according to an embodiment of the present invention.
  • the embodiment of the present invention relates to determining, by the second AP, the working mode of the first AP and the second AP by using the SYN-RTS frame that is exchanged with the first AP, and the antenna configuration scenario of the first AP and the antenna configuration scenario of the second AP. And the working mode parameter, and then the SYN-CTS frame is used to inform the first AP how to schedule the first STA, so that the first AP and the second AP perform downlink data transmission in parallel, and perform the entire process of cross interference cancellation.
  • the method includes:
  • the second AP receives the SYN-RTS frame sent by the first AP, where the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted and the first AP.
  • the number of antennas of the first STA to be scheduled, the SYN-RTS frame including MAC Header information, IA_ONLY information, BSS_STA_ATN_NUM information, and FCS.
  • the second AP is configured according to the IA_ONLY information in the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, the number of antennas of the first STA to be scheduled by the first AP, The number of antennas of the second STA to be scheduled by the second AP determines an operating mode of the first AP and the second AP.
  • S403 The second AP determines, according to the working mode of the first AP and the working mode of the second AP, whether to send the SYN-CTS frame to the first AP. If not, S404 is executed, and if so, S405 is executed.
  • the second AP sends a SYN-DENY frame to the first AP, so that the first AP performs a MU-MIMO downlink transmission procedure in a normal single BSS.
  • the second AP determines, according to the working mode of the first AP and the working mode of the second AP, a mode working parameter of the first AP and a mode working parameter of the second AP, respectively.
  • the mode operation parameter of the first AP includes a maximum number of first STAs that can be scheduled by the first AP, a maximum number of downlink data flows that can be scheduled by the first AP, and the first reservation.
  • the number of directions; the mode operation parameter of the second AP includes a maximum number of second STAs that can be scheduled by the second AP, and a maximum number of downlink data that can be scheduled by the second AP, The number of the second reserved directions.
  • the second AP carries the working mode of the first AP, the working mode of the second AP, the mode working parameter of the first AP, and the mode working parameter of the second AP in the SYN-CTS.
  • the frame is sent to the first AP.
  • the second AP acquires a channel matrix between the second AP and the first STA scheduled by the first AP, and determines, according to the channel matrix, that the second AP is reserved in the IA mode.
  • the second AP transmits and receives the second reserved direction of data.
  • the foregoing second AP may obtain, by means of the interception, a channel matrix between the second AP and the first STA scheduled by the first AP, specifically: according to the example shown in FIG. 2, the first AP scheduling The first STAs are STA1, STA2, and STA3.
  • the first AP scheduling STA1, STA2, and STA3, STA1, STA2, and STA3 transmit the uplink frame to the first AP in turn, so that the second AP can be detected by means of interception.
  • the second AP to the channel matrix G1 of STA1, the matrix G2 of the second AP to STA2, and the channel matrix G3 of the second AP to STA3.
  • the first AP may also detect, by means of interception, the channel matrix between the first AP and the second STA scheduled by the second AP when the second AP schedules the second STA, according to the example shown in FIG. 2 above.
  • the second STA scheduled by the second AP is STA5, STA6, and STA7
  • STA5, STA6, and STA7 transmit the uplink frame to the second AP in turn, and thus the first AP may
  • the channel matrix Ga of the first AP to STA5, the matrix Gb of the second AP to STA6, and the channel matrix Gc of the second AP to STA7 are measured by means of interception.
  • the second AP determines, according to the determined channel matrix between the first AP and the first STA scheduled by the first AP, and the formula 11 that the second AP is reserved for the first AP to send and receive data when the IA mode is working.
  • Reserved direction set to R2
  • Equation 11 is specifically: Among them, NULL ( ⁇ ) indicates that the zero space vector is obtained.
  • the first reserved direction is a direction that the second AP reserves the data for the first AP to send and receive data
  • the second AP also sends and receives data, but, because of the second The data transmitted by the AP is orthogonal to the direction, and the data transmitted by the second AP in the second reserved direction is empty, that is, in an ideal situation, finally, the first AP is in parallel with the second AP.
  • the data is transmitted, only the data transmitted by the first AP is in the second reserved direction, and the first AP and the second AP do not interfere with each other in the second reserved direction.
  • the first AP determines, according to the determined channel matrix between the first AP and the second STA scheduled by the second AP, and the formula 12, the first AP reserves the data to be sent and received to the second AP when the IA mode works.
  • a reserved direction (set to R1), the formula 12 is specifically: It should be noted that the first reserved direction is a direction that the first AP reserves the data for sending and receiving data to the second AP. In the first reserved direction, the first AP also sends and receives data, but because of the first The data transmitted by the AP is orthogonal to the direction. Therefore, in an ideal situation, the data transmitted by the first AP in the first reserved direction is empty, that is, finally, the first AP and the second AP are in parallel. When the data is transmitted, only the data transmitted by the second AP is in the first reserved direction, and the first AP and the second AP may not interfere with each other in the direction.
  • the second AP broadcasts the second reserved direction, where the second reserved direction is used to enable the first STA scheduled by the first AP to determine receive equalization according to the second reserved direction and the channel matrix.
  • the receiving equalization matrix is configured to enable the first STA scheduled by the first AP to perform interference cancellation on the received data sent by the second AP.
  • the second AP determines a precoding matrix according to the second reserved direction or the channel matrix.
  • S410 The second AP encodes the to-be-transmitted data of the second AP according to the precoding matrix to obtain encoded data, where the encoded data is orthogonal to the second reserved direction.
  • the second reserved direction is broadcasted, and after obtaining the first reserved direction, the first AP broadcasts the first reserved direction, so that the first AP is obtained.
  • the direction in which the second AP is reserved for sending and receiving data in the IA mode is the second reserved direction (R2), and the second AP learns that the direction in which the first AP is reserved for sending and receiving data when the IA mode is working in the IA mode is First reserved direction (R1).
  • the second AP broadcasts the second reserved direction or the first AP broadcasts the first reserved direction, and the broadcast may be broadcast by using the reserved direction frame.
  • the downlink data to be sent by the first AP is precoded by using the P1 to obtain the encoded data of the first AP, where the encoded data of the first AP is orthogonal to the first reserved direction R1. .
  • the second AP determines, according to the second MODE information in the SYN-CTS frame, an operation mode of the second AP, and according to the second DIR_NUM information, the second STA_NUM information, and the second STREAM_NUM information. Transmitting the encoded data to the second STA.
  • the working mode of the second AP is determined according to the second MODE information in the SYN-CTS frame, and according to the second DIR_NUM information, the second STA_NUM information, and the The second STREAM_NUM information is sent to the second STA for the P2 encoded encoded data.
  • the first STA scheduled by the first AP also receives the second reserved direction broadcasted by the second AP, and then the first STA scheduled by the first AP is configured according to the second AP.
  • the data is subjected to interference cancellation, that is, when the first AP and the second AP perform parallel transmission, the data received by the first STA scheduled by the first AP includes not only the pre-coding of the first AP delivered by the first AP.
  • the coded data encoded by the matrix P1 further includes coded data encoded by the second AP through the precoding matrix P2 of the second AP, and then the first AP is equalized with the received data by using the received equalization matrix w 2 .
  • Elimination (the principle of equalization cancellation is based on the data sent by the second AP being orthogonal to the second reserved direction) Dissipating the interference data of the second AP in the second reserved direction, so that only the data sent by the first AP is finally left in the second reserved direction, so that the first STA scheduled by the first AP (STA1) STA2 and STA3) do not suffer interference from the second AP when transmitting and receiving data in the R2 direction.
  • the working mode of the first AP is determined according to the first MODE information in the SYN-CTS frame, and according to the first DIR_NUM information, the first STA_NUM information, and The first STREAM_NUM information is sent to the first STA for the P1 encoded encoded data.
  • the second STA scheduled by the second AP also receives the first reserved direction broadcasted by the first AP, and then the second STA scheduled by the second AP
  • the data that is sent is used for interference cancellation.
  • the data received by the second STA scheduled by the second AP includes not only the second AP that is sent by the second AP.
  • precoding matrix P2 coded data encoded the encoded data further comprising delivered by the AP after a first precoding matrix P1 encoded first AP, the second AP and received by the equalization matrix w 1, the received
  • the data is equalized and eliminated (the principle of equalization cancellation is based on the fact that the data sent by the first AP is orthogonal to the first reserved direction, The interference data of the first AP in the first reserved direction is eliminated, so that only the data sent by the second AP is finally left in the first reserved direction, so that the second STA scheduled by the second AP (STA5, STA6 and STA7) do not suffer interference from the first AP when transmitting and receiving data in the R1 direction.
  • the second AP receives the SYN-RTS frame sent by the first AP, and determines the working mode of the first AP and the second AP by using the SYN-RTS frame, and then according to the first The working mode of the AP and the second AP determines that the SYN-CTS frame is sent to the first AP, so that the first AP and the second AP both know the working mode that is adapted to the current antenna configuration scenario, so that the first AP is configured according to the foregoing SYN.
  • the content indicated by the CTS frame schedules the first STA, and the second AP schedules the second STA according to the content indicated by the SYN-CTS frame, so that the first AP and the second AP perform interference cancellation in parallel transmission.
  • the method provided by the embodiment of the present invention the second AP Determining, according to the content in the SYN-RTS frame reported by the first AP, the working mode in the current antenna configuration scenario of the second AP and the first AP, so that the second AP and the first AP can be determined according to the SYN determined above.
  • the content in the CTS frame performs corresponding STA scheduling and downlink data transmission, thereby ensuring the data stream gain of the system.
  • FIG. 7 is a schematic flowchart diagram of Embodiment 5 of a method for data parallel transmission according to an embodiment of the present invention.
  • the method according to this embodiment is also applicable to the MU-MIMO system shown in FIG. 2 described above. As shown in FIG. 7, the method includes:
  • the first AP sends a synchronization request to the second AP to send a SYN-RTS frame, where the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted and the The number of antennas of the first STA to be scheduled by an AP.
  • the downlink synchronization transmission cooperation object is determined according to the interference situation of the first STA in the first AP.
  • the first AP determines that the first AP may be given the first
  • the second AP that interferes with the first STA of the AP is a downlink synchronization transmission cooperation object, and sends a SYN-RTS frame to the second AP.
  • the first AP After the first AP determines that the downlink synchronization transmission cooperative transmission object is the second AP, the first AP sends a SYN-RTS frame to the second AP; after receiving the SYN-RTS frame, the second AP learns the SYN-RTS frame according to the SYN-RTS frame.
  • the working mode of an AP is limited, that is, the working mode preference of the first AP is known. For example, the first AP only supports working in the IA mode or the first AP has no limitation on the working mode.
  • the second AP may also learn, according to the SYN-RTS frame, the number of first STAs to be scheduled by the first AP. As shown in FIG. 2 above, it is assumed that the first AP is about to schedule all of the first STAs that it serves.
  • the first AP receives, according to the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the antenna of the second STA to be scheduled by the second AP. Synchronization of the number of transmissions allows the transmission of SYN-CTS frames.
  • the SYN-CTS frame is used to indicate to the first AP, the working mode of the first AP, the maximum number of first STAs that can be scheduled by the first AP, and the first AP can be scheduled.
  • the maximum number of downlink data flows, the number of first reserved directions reserved for the second AP to transmit and receive data when the first AP operates in the interference aligned IA mode, the working mode of the second AP, and the The maximum number of the second STAs that can be scheduled by the second AP, the maximum number of downlink data flows that can be scheduled by the second AP, and the number of the first APs that are sent and received by the second AP when the second AP works in the IA mode According to the number of second reserved directions.
  • the second AP may determine whether to send the SYN to the first AP by combining the foregoing SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP. CTS frame.
  • the second AP may determine whether the current AP supports the first AP in combination with the foregoing SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP. Parallel transmission is performed.
  • the second AP determines to send the SYN-CTS frame to the first AP.
  • the second AP may notify the first AP that the first AP is suitable for the working mode in the current communication scenario of the first AP by using the SYN-CTS frame, and may also notify the first AP of the maximum number of STAs that can be scheduled by the SYN-CTS frame.
  • the first AP sends the SYN-RTS frame to inform the second AP that it is to schedule all the first STAs to be covered, but the number of antennas of the second AP combined with the first AP and the number of antennas of the second AP and the second AP will be The number of antennas of the scheduled second STA determines that the first AP can only schedule three first STAs, and the second AP carries the maximum number of the first STAs that can be scheduled by the first AP in the SYN-CTS frame.
  • the second AP may also combine the foregoing SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the second AP.
  • the number of antennas of the second STA to be scheduled determines the maximum number of downlink data streams that can be scheduled by the first AP, and is notified to the first AP through the SYN-CTS frame; the second AP can also determine that the first AP works in the IA mode.
  • the number of the first reserved directions that can be reserved for the second AP to send and receive data, and is SYN-CTS frame informs the first AP.
  • the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP, the second AP is predicted, or the second AP may be detected by the interception.
  • the number of antennas of the second STA to be scheduled by the second AP may be the number of antennas on each second STA to be scheduled by the second AP, or may be all the second STAs to be scheduled by the second AP. The minimum number of antennas.
  • the first AP receives the SYN-CTS frame sent by the second AP, and learns, by using the SYN-CTS frame, the working mode of the first AP, the maximum number of the first STAs that can be scheduled by the first AP, and the first AP can schedule.
  • the maximum number of downlink data flows and the number of first reserved directions that the first AP can reserve for the second AP to transmit and receive data when the first AP works in the interference alignment IA mode, and the first AP determines how to schedule the first according to the SYN-CTS frame.
  • STA and performs data transmission with the scheduled first STA. Need to explain
  • the first reserved direction is the direction in which the first AP reserves the data for the second AP to transmit and receive data.
  • the first AP In the first reserved direction, the first AP also sends and receives data, but the first AP transmits.
  • the data is orthogonal to the direction, so in an ideal case, the data transmitted by the first AP in the first reserved direction is empty, that is, the data is finally transmitted in parallel between the first AP and the second AP.
  • the data in the first reserved direction is only transmitted by the second AP, and the first AP and the second AP may not interfere with each other in the direction. Therefore, the second AP needs to inform the first AP to reserve the number of the first reserved direction for the second AP to send and receive data, so that the next two APs perform downlink parallel transmission.
  • the second AP when the second AP works in the IA mode, the second AP also reserves a second reserved direction.
  • the second AP also sends and receives data, but because the second AP Orthogonality of the transmitted data and the direction, the data transmitted by the second AP in the second reserved direction is empty, that is, when the first AP and the second AP transmit data in parallel, the second The data transmitted by the first AP is only in the reserved direction, and the first AP and the second AP may not interfere with each other in the second reserved direction. Therefore, the second AP may also notify the first AP of the second reserved direction by using the above SYN-CTS frame.
  • the second AP may further notify, by using the foregoing SYN-CTS frame, a working mode of the current second AP of the first AP, a number of second STAs that can be scheduled by the second AP, and a maximum downlink data that can be scheduled by the second AP.
  • the number is obtained, so that the first AP learns the data transmission situation in the second BSS, and further knows that the second BSS may cause interference to itself, thereby facilitating the elimination of cross interference by processes such as subsequent channel interception.
  • the first AP schedules the first STA according to the content indicated by the SYN-CTS frame, and performs downlink data transmission in parallel with the second AP.
  • the first AP sends a SYN-RTS frame to the second AP, so that the second AP can determine to send the SYN-CTS frame to the first AP according to the SYN-RTS frame, thereby
  • the first AP and the second AP are configured to learn the working mode that is adapted to the current antenna configuration scenario, so that the first AP schedules the first STA according to the content indicated by the SYN-CTS frame, and the second AP is configured according to the SYN-CTS.
  • the content indicated by the frame schedules the second STA.
  • the second AP determines, according to the content in the SYN-RTS frame reported by the first AP, the working mode in the current antenna configuration scenario of the second AP and the first AP, so that the second AP is configured.
  • the first AP may perform corresponding STA scheduling and downlink data transmission according to the content in the SYN-CTS frame determined above, thereby ensuring data stream gain of the system.
  • the SYN-RTS frame packet The MAC header information, the IA_ONLY information, the BSS_STA_ATN_NUM information, and the frame FCS, wherein the IA_ONLY information is used to indicate to the second AP that the working mode of the first AP is restricted, and the BSS_STA_ATN_NUM is used to
  • the second AP indicates the number of antennas of the first STA to be scheduled by the first AP.
  • the structure of the SYN-RTS frame refer to the frame structure shown in Table 1 above.
  • the second AP may be selected according to the number of antennas (M2) of the second AP and the number of antennas ⁇ M1.
  • the AP is used as a downlink synchronization transmission cooperation object, and the antenna number information can be obtained by capability information of a beacon frame or the like sent by the first AP when the first AP is idle.
  • the first AP sends a SYN-RTS frame to the second AP.
  • the SYN-RTS frame carries IA_ONLY information and BSS_STA_ATN_NUM information.
  • the IA_ONLY information and the BSS_STA_ATN_NUM information may be embodied in a SYN-RTS frame in the form of a field.
  • the foregoing BSS_STA_ATN_NUM field may be 4 bits, and is used to indicate to the second AP the number of antennas of the first STA to be scheduled by the first AP.
  • the SYN-CTS frame includes a MAC header information, a first part, a second part, and a frame check sequence FCS, where Reference can be made to the frame structure shown in Table 2 above.
  • the first MODE information is used to indicate the working mode of the first AP to the first AP, where the first DIR_NUM information is used to indicate the number of the first reserved directions to the first AP.
  • the first STA_NUM information is used to indicate to the first AP, the maximum number of first STAs that can be scheduled by the first AP, and the first STREAM_NUM is used to indicate the first to the first AP.
  • the maximum number of downlink data flows that the AP can schedule is used to indicate the working mode of the second AP to the first AP, and the second DIR_NUM information is used to the first AP And indicating a quantity of a second reserved direction reserved for the first AP to send and receive data when the second AP works in the IA mode, where the second STA_NUM information is used to indicate the second AP to the first AP.
  • the maximum number of second STAs that can be scheduled, and the second STREAM_NUM is used to indicate to the first AP the maximum number of downlink data flows that can be scheduled by the second AP.
  • the first MODE field (or the first MODE information) and the second MODE field (or the second MODE information) may be 1 bit, and when the value of the first MODE field is 1, the first AP is instructed to work in the IA. Mode, when the value of the first MODE field is 0, indicating that the first AP works in the BF mode; when the value of the second MODE field is 1, indicating that the second AP works in the IA mode, when the value of the second MODE field is 0, indicating that the second AP works in BF mode.
  • the value of the first DIR_NUM field is 0, except that the first DIR_NUM field may not require an indication; when the second AP works in the BF mode, the second DIR_NUM field A value of 0 also indicates that the second DIR_NUM field may not require an indication.
  • the first DIR_NUM field (or the first DIR_NUM information) and the second DIR_NUM field (or the second DIR_NUM information) may be 4 bits, and when the first AP operates in the BF mode, the value of the first DIR_NUM field is 0, when the second When the AP works in BF mode, the value of the second DIR_NUM field is 0.
  • the first STA_NUM field (or the first STA_NUM information) and the second STA_NUM field (or the second STA_NUM information) may be 4 bits, and when the first AP operates in the IA mode, the second STA_NUM field is a value greater than 0; When an AP works in the BF mode, the second STA_NUM field is 0 (or does not indicate the second STA_NUM field); when the second AP works in the IA mode, the first STA_NUM field is a value greater than 0; when the second AP When operating in the BF mode, the first STA_NUM field is a value of 0 (or the first STA_NUM field is not indicated).
  • the first STREAM_NUM field (or the first STREAM_NUM information) and the second STREAM_NUM field (or the second STREAM_NUM information) may be 3 bits indicating the maximum number of downlink data streams that the first AP and the second AP can schedule, respectively.
  • FIG. 8 is a schematic flowchart of Embodiment 6 of a method for data parallel transmission according to an embodiment of the present invention.
  • the embodiment relates to a SYN-RTS frame that is exchanged between the first AP and the second AP, so that the second AP determines, according to the SYN-RTS frame, the antenna configuration scenario of the first AP, and the antenna configuration scenario of the second AP.
  • the method includes:
  • the first AP sends a synchronization request to the second AP to send a SYN-RTS frame, where the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted and the The number of antennas of the first STA to be scheduled by an AP, the SYN-RTS frame including MAC Header information, IA_ONLY information, BSS_STA_ATN_NUM information, and FCS.
  • the first AP receives, according to the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the antenna of the second STA to be scheduled by the second AP. Synchronization of the number of transmissions allows the transmission of SYN-CTS frames.
  • the SYN-CTS frame is used to indicate to the first AP, the working mode of the first AP, the maximum number of first STAs that can be scheduled by the first AP, and the first AP can be scheduled.
  • the maximum number of downlink data flows, the number of first reserved directions reserved for the second AP to transmit and receive data when the first AP operates in the interference aligned IA mode, the working mode of the second AP, and the The maximum number of the second STAs that can be scheduled by the second AP, the maximum number of downlink data flows that can be scheduled by the second AP, and the data that is sent and received by the first AP when the second AP works in the IA mode The number of second reserved directions.
  • the minimum number of antennas of the first STA to be scheduled by the first AP is N1
  • the number of antennas of the first AP is M1
  • the number of antennas of the second STA to be scheduled by the second AP The minimum value is N2, and the number of antennas of the second AP is M2.
  • the second AP After receiving the SYN-RTS frame sent by the first AP, the second AP firstly according to the SYN-RTS IA_ONLY information in the frame, the number of antennas of the first AP, the number of antennas of the second AP, the number of antennas of the first STA to be scheduled by the first AP, and the number of antennas of the second STA to be scheduled by the second AP, Determining an operation mode of the first AP and the second AP, and determining, according to an operation mode of the first AP and the second AP, whether to send a SYN-CTS frame or a SYN-DENY frame to the first AP.
  • the second AP determines the mode operation parameter of the first AP according to the working mode of the first AP and the working mode of the second AP, respectively.
  • a mode operation parameter of the second AP where the mode operation parameter of the first AP includes a maximum number of first STAs that can be scheduled by the first AP, and a downlink data flow that can be scheduled by the first AP.
  • the maximum number of the first reserved direction and the number of the first reserved direction; the mode operation parameter of the second AP includes a maximum number of second STAs that can be scheduled by the second AP, and a downlink that can be scheduled by the second AP
  • the second AP carries the determined working mode of the first AP, the working mode of the second AP, the mode working parameter of the first AP, and the mode working parameter of the second AP in a form of a field and is sent in a SYN-CTS frame.
  • the SYN-CTS frame can be seen in Table 2 above.
  • the first AP After receiving the SYN-CTS frame, the first AP determines the working mode of the first AP according to the first MODE information in the SYN-CTS frame. If the value of the first MODE information (or the first MODE field) is 1, The first AP determines that it operates in the IA mode. If the value of the first MODE information is 0, the first AP determines that it is operating in the BF mode. Thereafter, the first AP may determine, according to the first STA_NUM information (or the first STA_NUM field), the first STREAM_NUM information (or the first STREAM_NUM field), and the second DIR_NUM information (or the second DIR_NUM field) in the SYN-CTS frame. The first STA is scheduled.
  • the second AP learns that the interaction of the first AP is completed (the interaction referred to herein refers to the interaction of the signaling frame between the first AP and the second AP, instead of the data interaction, reference may be made to the foregoing S302. Description), scheduling the second STA according to the content in the SYN-CTS frame.
  • the second AP obtains scheduling information when the first AP schedules the first STA (in accordance with the example shown in FIG.
  • the first STA scheduled by the first AP is STA1, STA2, and STA3), so when the second When the AP detects the uplink frame of the STA 3 (the uplink frame is a channel sounding frame), it can be known that the first AP has already completed the interaction; or the first AP can also send a synchronization frame to notify the first before sending the downlink data.
  • the effect of the two APs having been interactively completed is not limited by the solution of the present invention.
  • the first AP acquires a channel matrix between the first AP and the second STA scheduled by the second AP, and determines, according to the channel matrix, that the first AP is reserved in the IA mode. The first reserved direction of the second AP to send and receive data.
  • the first AP may also detect, by means of the interception, the channel matrix between the first AP and the second STA scheduled by the second AP, when the second AP schedules the second STA, according to the example shown in FIG. 2 above. Assuming that the second STA scheduled by the second AP is STA5, STA6, and STA7, then the second When the AP is scheduling STA5, STA6, and STA7, STA5, STA6, and STA7 transmit the uplink frame to the second AP in turn. Therefore, the first AP can detect the channel matrix Ga of the first AP to STA5 and the second AP by means of interception. The matrix Gb of STA6 and the channel matrix Gc of the second AP to STA7.
  • the first AP determines, according to the determined channel matrix between the first AP and the second STA scheduled by the second AP, and the foregoing formula 12, the first pre-reserved data that is reserved for the second AP to transmit and receive data when the first AP works in the IA mode. Leave the direction (set to R1).
  • the first reserved direction is a direction that the first AP reserves the data for sending and receiving data to the second AP.
  • the first AP also sends and receives data, but because of the first The data transmitted by the AP is orthogonal to the direction, and the data transmitted by the first AP in the first reserved direction is empty, that is, in an ideal situation, finally, the first AP and the second AP are in parallel.
  • the data is transmitted, only the data transmitted by the second AP is in the first reserved direction, and the first AP and the second AP may not interfere with each other in the direction.
  • the second AP may obtain the channel matrix between the second AP and the first STA scheduled by the first AP by using the interception manner, specifically: according to the example shown in FIG. 2, the first AP.
  • the scheduled first STAs are STA1, STA2, and STA3.
  • STA1, STA2, and STA3 transmit the uplink frame to the first AP in turn, and the second AP can be detected by means of interception.
  • a channel matrix G1 of the second AP to STA1, a matrix G2 of the second AP to STA2, and a channel matrix G3 of the second AP to STA3 are obtained.
  • the second AP determines, according to the determined channel matrix between the first AP and the first STA scheduled by the first AP, and the foregoing formula 11 that the second AP is reserved for transmitting and receiving data to the first AP when operating in the IA mode.
  • Two reserved directions (set to R2).
  • the first reserved direction is a direction that the second AP reserves the data for the first AP to send and receive data
  • the second AP also sends and receives data, but, because of the second The data transmitted by the AP is orthogonal to the direction. Therefore, in an ideal situation, the data transmitted by the second AP in the second reserved direction is empty, that is, finally in the first AP and the second AP.
  • the data is transmitted in parallel, only the data transmitted by the first AP is in the second reserved direction, and the first AP and the second AP do not interfere with each other in the second reserved direction.
  • the first AP broadcasts the first reserved direction, where the first reserved direction is used to enable the second STA scheduled by the second AP to determine receive equalization according to the first reserved direction and the channel matrix. a matrix; the receiving equalization matrix is configured to enable the second STA scheduled by the second AP to perform interference cancellation on the received data sent by the first AP.
  • the first AP determines a precoding matrix according to the first reserved direction or the channel matrix.
  • the first AP encodes the to-be-transmitted data of the first AP according to the precoding matrix to obtain encoded data; the encoded data is orthogonal to the first reserved direction.
  • the first reserved direction is broadcasted, and after obtaining the second reserved direction, the second AP broadcasts the second reserved direction, so that the first AP is obtained.
  • the direction in which the second AP is reserved for sending and receiving data in the IA mode is the second reserved direction (R2), and the second AP learns that the direction in which the first AP is reserved for sending and receiving data when the IA mode is working in the IA mode is First reserved direction (R1).
  • the second AP broadcasts the second reserved direction or the first AP broadcasts the first reserved direction, and the broadcast may be broadcast by using the reserved direction frame.
  • the first AP calculates the precoding matrix P1 according to the first reserved direction R1 reserved for the second AP to send and receive data and the above formula 15; when the first AP works in the BF mode, Then, the precoding matrix P1 is determined according to the channel matrix Ga, Gb, Gc between the first STA scheduled by the first AP and the second STA scheduled by the second AP, and the above formula 16.
  • the first AP determines the precoding matrix P1
  • the downlink data to be sent by the first AP is precoded by using P1 to obtain encoded data, and the encoded data is orthogonal to the first reserved direction R1.
  • the second AP calculates the precoding matrix P2 according to the second reserved direction R2 reserved for the first AP to send and receive data and the above formula 13; when the second AP works in In the BF mode, the precoding matrix P2 is determined according to the channel matrix G1, G2, G3 between the first AP determined by the second AP and the first STA scheduled by the first AP, and the above formula 14.
  • the second AP determines the precoding matrix P2
  • the downlink data to be sent by the second AP is precoded by the P2 to obtain the encoded data of the second AP, and the encoded data of the second AP is orthogonal to the second reserved direction R2. .
  • the first AP determines an operation mode of the first AP according to the first MODE information in the SYN-CTS frame, and according to the first DIR_NUM information, the first STA_NUM information, and the first STREAM_NUM Information, the encoded data is sent to the first STA.
  • the working mode of the first AP is determined according to the first MODE information in the SYN-CTS frame, and according to the first DIR_NUM information, the first STA_NUM information, and the first The STREAM_NUM information is sent to the first STA for the P1 encoded encoded data.
  • the second STA scheduled by the second AP receives the first reserved direction broadcasted by the first AP; and then, the second STA scheduled by the second AP a reserved direction, a channel matrix Ga, Gb, Gc between the first AP and the second STA scheduled by the second AP, and a receiving equalization matrix w 1 determined by the above formula 18, the receiving equalization matrix w 1 being used for
  • the second STA scheduled by the second AP performs interference cancellation on the received data sent by the first AP, that is, when the first AP and the second AP perform parallel transmission, the second AP schedules
  • the data received by the second STA includes not only the coded data of the precoding matrix P2 of the second AP that is sent by the second AP but also the code of the precoding matrix P1 of the first AP that is sent by the first AP.
  • the second AP performs equalization cancellation with the received data through the received equalization matrix w 1 (the principle of the equalization cancellation is that the data sent by the first AP is orthogonal to the first reserved direction, and the first AP is Interference data cancellation in the first reserved direction), thus making the final in the first The remaining data sent by the second AP direction only, so that the second STA (STA5, STA6 and STA7) send and receive data in the R1 direction of the second AP scheduled first AP does not suffer interference.
  • the principle of the equalization cancellation is that the data sent by the first AP is orthogonal to the first reserved direction, and the first AP is Interference data cancellation in the first reserved direction
  • the working mode of the second AP is determined according to the second MODE information in the SYN-CTS frame, and according to the second DIR_NUM information, the second STA_NUM information, and The second STREAM_NUM information is sent to the second STA for the P2 encoded encoded data.
  • the first STA scheduled by the first AP also receives the second reserved direction broadcasted by the second AP, and then the first STA scheduled by the first AP is configured according to the second AP.
  • the second reserve direction, the channel matrix G1 between the first STA to the first AP, the second AP scheduled, G2, G3 and the expression 17 determines that the received equalization matrix w 2, w 2 the receiver for the equalization matrix
  • the first STA scheduled by the first AP performs interference cancellation on the received data sent by the second AP, that is, when the first AP and the second AP perform parallel transmission, the first AP schedules
  • the data received by the first STA includes not only the coded data of the precoding matrix P1 of the first AP that is sent by the first AP but also the coded data of the precoding matrix P2 of the second AP that is sent by the second AP.
  • the first AP performs equalization cancellation with the received data through the foregoing receiving equalization matrix w 2 (the principle of equalization cancellation is that the data sent by the second AP is orthogonal to the second reserved direction, and the second AP is used. Interference data in the second reserved direction is eliminated), thus making the final Only the data sent by the first AP is left in the second direction, so that the first STAs (STA1, STA2, and STA3) scheduled by the first AP do not suffer interference from the second AP when transmitting and receiving data in the R2 direction.
  • the principle of equalization cancellation is that the data sent by the second AP is orthogonal to the second reserved direction, and the second AP is used. Interference data in the second reserved direction is eliminated
  • the first AP by using the SYN-RTS frame sent to the second AP, the second AP may determine the working mode of the first AP and the second AP according to the SYN-RTS frame, and further Determining, according to the working mode of the first AP and the second AP, that the SYN-CTS frame is sent to the first AP, so that the first AP and the second AP both know the working mode that is adapted to the current antenna configuration scenario, thereby enabling the first AP.
  • the first STA is scheduled according to the content indicated by the SYN-CTS frame
  • the second AP schedules the second STA according to the content indicated by the SYN-CTS frame, so that the first AP and the second AP perform interference cancellation in parallel transmission.
  • the second AP determines, according to the content in the SYN-RTS frame reported by the first AP, the working mode in the current antenna configuration scenario of the second AP and the first AP, so that the second AP is configured.
  • the first AP may perform corresponding STA scheduling and downlink data transmission according to the content in the SYN-CTS frame determined above, thereby ensuring data stream gain of the system.
  • FIG. 9 is a signaling flowchart of Embodiment 7 of a method for data parallel transmission according to an embodiment of the present invention.
  • the embodiment relates to the negotiation and interaction between the first AP and the second AP through the SYN-RTS frame and the SYN-CTS frame, so that the second AP is configured according to the SYN-RTS frame and the antenna configuration scenario of the first AP.
  • the antenna configuration scenario of the second AP determines the working mode and the working mode parameter of the first AP and the second AP, and further informs the first AP how to schedule the first STA by using the SYN-CTS frame, so that the first AP and the second AP perform downlink in parallel.
  • Data transmission and the entire process of cross interference cancellation includes:
  • the first AP sends a synchronization request to the second AP to send a SYN-RTS frame.
  • the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is limited, and the number of antennas of the first STA to be scheduled by the first AP, the SYN-RTS frame. Includes MAC Header information, IA_ONLY information, BSS_STA_ATN_NUM information, and FCS.
  • the second AP is configured according to the IA_ONLY information in the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, the number of antennas of the first STA to be scheduled by the first AP, The number of antennas of the second STA to be scheduled by the second AP determines an operating mode of the first AP and the second AP.
  • S703 The second AP determines, according to the working mode of the first AP and the working mode of the second AP, whether to send the SYN-CTS frame to the first AP. If not, execute S704, and if yes, execute S705.
  • S704 The second AP determines to send a SYN-DENY frame to the first AP.
  • the second AP determines, according to the working mode of the first AP and the working mode of the second AP, a mode working parameter of the first AP and a mode working parameter of the second AP, respectively.
  • the mode operation parameter of the first AP includes a maximum number of first STAs that can be scheduled by the first AP, a maximum number of downlink data flows that can be scheduled by the first AP, and the first reservation.
  • the number of directions, the mode operation parameter of the second AP, the maximum number of second STAs that can be scheduled by the second AP, the maximum number of downlink data that can be scheduled by the second AP, and the second The number of reserved directions.
  • the second AP carries the working mode of the first AP, the working mode of the second AP, the mode working parameter of the first AP, and the mode working parameter of the second AP in the SYN-CTS.
  • the frame is sent to the first AP.
  • the first AP receives the SYN-CTS frame sent by the second AP.
  • the second AP acquires a channel matrix between the second AP and the first STA scheduled by the first AP, and determines, according to the channel matrix, that the second AP is reserved in the IA mode.
  • the second AP transmits and receives the second reserved direction of data.
  • the first AP acquires a channel matrix between the first AP and the second STA scheduled by the second AP, and determines, according to the channel matrix, that the first AP is reserved in the IA mode. The first reserved direction of the second AP to send and receive data.
  • S708 and S709 may be specifically referred to the execution process of S503 in the foregoing Embodiment 5, and details are not described herein again. And this The order of execution of S708 and S709 is not limited in the embodiment of the invention.
  • the second reserved direction is used to enable the first STA scheduled by the first AP to determine a receive equalization matrix according to the second reserved direction and the channel matrix; the receive equalization matrix is used to enable the The first STA scheduled by the first AP performs interference cancellation on the received data sent by the second AP.
  • the first reserved direction is used to enable the second STA scheduled by the second AP to determine a receive equalization matrix according to the first reserved direction and the channel matrix; the receive equalization matrix is used to enable the The second STA scheduled by the second AP performs interference cancellation on the received data sent by the first AP.
  • the second AP determines the precoding matrix P2 according to the second reserved direction or a channel matrix between the second AP and the first STA scheduled by the first AP.
  • the first AP determines the precoding matrix P1 according to the first reserved direction or a channel matrix between the first AP and the second STA scheduled by the second AP.
  • S713 may refer to the implementation process of S505 in the foregoing Embodiment 5, and details are not described herein again.
  • the order of execution of S712 and S713 is not limited in the embodiment of the present invention.
  • the second AP encodes the data to be sent of the second AP according to the precoding matrix P2, and obtains encoded data of the second AP.
  • the encoded data of the second AP and the second reserved direction are positive. cross.
  • the first AP encodes the to-be-transmitted data of the first AP according to the pre-coding matrix P1, and obtains encoded data of the first AP; the encoded data of the first AP and the first reserved direction are positive. cross.
  • the second AP determines, according to the second MODE information in the SYN-CTS frame, an operation mode of the second AP, and according to the second DIR_NUM information, the second STA_NUM information, and the second STREAM_NUM information. Transmitting, to the second STA, encoded data of the second AP.
  • the first AP determines an operation mode of the first AP according to the first MODE information in the SYN-CTS frame, and according to the first DIR_NUM information, the first STA_NUM information, and the first STREAM_NUM And transmitting, to the first STA, the encoded data of the first AP.
  • S716 and S717 of the present invention can be performed in parallel, that is, the first AP and the second AP can perform downlink data transmission in parallel.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of an apparatus according to an embodiment of the present disclosure.
  • the device may be the second AP in the foregoing method embodiment, the device WIFI MU-MIMO system, the MU-MIMO system includes a first BSS and a second BSS, a coverage area of the first BSS, and the second The coverage area of the BSS is partially overlapped, the first AP is located in the coverage area of the first BSS, the second AP is located in the coverage area of the second BSS, and the first AP serves the first station STA, The second AP serves the second STA, that is, the device is applicable to the MU-MIMO system shown in FIG. 2 above.
  • the device includes: a receiving module 10, a determining transmitting module 11, and a scheduling module 12.
  • the receiving module 10 is configured to receive a synchronization request sent by the first AP to send a SYN-RTS frame, where the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted. And the number of antennas of the first STA to be scheduled by the first AP;
  • the SYN-RTS frame Determining, by the sending module 11, the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP, Determining that the synchronization request is sent to the first AP to allow the SYN-CTS frame to be sent; the SYN-CTS frame is used to indicate to the first AP, the working mode of the first AP, and the first AP can be scheduled.
  • the maximum number of STAs, the maximum number of downlink data streams that can be scheduled by the first AP, and the first reserved direction reserved for the second AP to transmit and receive data when the first AP works in the interference aligned IA mode.
  • the number, the working mode of the second AP, the maximum number of second STAs that the second AP can schedule, the maximum number of downlink data that can be scheduled by the second AP, and the second AP work.
  • the scheduling module 12 is configured to schedule the second STA according to the content indicated by the SYN-CTS frame, and perform downlink data transmission in parallel with the first AP.
  • the device provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the SYN-RTS frame includes a media access control packet header MAC Header information, an interference only alignment IA_ONLY information, an antenna number BSS_STA_ATN_NUM information of a site scheduled by the basic service set, and a frame check sequence FCS, where
  • the IA_ONLY information is used to indicate to the second AP that the working mode of the first AP is limited, and the BSS_STA_ATN_NUM is used to indicate to the second AP the number of antennas of the first STA to be scheduled by the first AP.
  • the SYN-CTS frame includes a media access control packet header MAC Header information, a first part, a second part, and a frame check sequence FCS;
  • the first part includes a first working mode MODE information, a first reserved direction quantity DIR_NUM information, a first station number STA_NUM information, and a first data stream quantity STREAM_NUM information; wherein the first MODE information is used to An AP indicates an operation mode of the first AP, the first DIR_NUM information is used to indicate the number of the first reserved direction to the first AP, and the first STA_NUM information is used to the first The AP indicates the maximum number of the first STAs that can be scheduled by the first AP, and the first STREAM_NUM is used to indicate to the first AP, the maximum number of downlink data flows that can be scheduled by the first AP;
  • the second part includes second MODE information, second DIR_NUM information, second STA_NUM information, and second STREAM_NUM information; wherein the second MODE information is used to indicate the work of the second AP to the first AP a mode, the second DIR_NUM information is used to indicate to the first AP that the second AP is reserved for the first AP when working in an IA mode. a second number of reserved directions for transmitting and receiving data, the second STA_NUM information is used to indicate to the first AP, a maximum number of second STAs that can be scheduled by the second AP, and the second STREAM_NUM is used to The first AP indicates a maximum number of downlink data flows that the second AP can schedule.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of an apparatus according to an embodiment of the present disclosure.
  • the above-mentioned determination transmitting module 11 includes: a first determining unit 111 and a determining transmitting unit 112.
  • the first determining unit 111 is configured to: according to the IA_ONLY information in the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the first to be scheduled by the first AP. Determining an operation mode of the first AP and the second AP, the number of antennas of the STA, and the number of antennas of the second STA to be scheduled by the second AP;
  • the determining sending unit 112 is configured to determine, according to the working mode of the first AP and the working mode of the second AP, to send the SYN-CTS frame to the first AP.
  • the determining sending unit 112 is specifically configured to: if the IA_ONLY information in the SYN-RTS frame is the first AP working mode, only the IA mode Then when And Or when And Determining to send the SYN-CTS frame to the first AP;
  • the determining sending unit 112 is specifically configured to: if the IA_ONLY information in the SYN-RTS frame is that the first AP working mode is not restricted, determine to send the SYN-CTS frame to the first AP; , Indicates a rounding down operation.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of a device according to an embodiment of the present disclosure.
  • the above-mentioned determination transmitting unit 112 further includes a determining subunit 1121 and a transmitting subunit 1122.
  • the determining subunit 1121 is configured to determine, according to the working mode of the first AP and the working mode of the second AP, a mode working parameter of the first AP and a mode of the second AP, respectively.
  • a working parameter of the first AP where the mode working parameter of the first AP includes a maximum number of first STAs that can be scheduled by the first AP, a maximum number of downlink data that can be scheduled by the first AP, and the The number of the first reserved directions;
  • the mode operation parameter of the second AP includes a maximum number of second STAs that can be scheduled by the second AP, and a maximum number of downlink data that can be scheduled by the second AP, The number of the second reserved directions;
  • the sending subunit 1122 is configured to carry the working mode of the first AP, the working mode of the second AP, the mode working parameter of the first AP, and the mode working parameter of the second AP in the SYN Sending to the first AP in a CTS frame.
  • the first determining unit 111 is specifically configured to: if the IA_ONLY information in the SYN-RTS frame is that the first AP working mode is only an IA mode, And Determining that the working mode of the first AP is an IA mode, and the working mode of the second AP is a beamforming BF mode; or the first determining unit 111 is specifically configured to And Determining that the working modes of the first AP and the second AP are all in the IA mode; or
  • the first determining unit 111 is specifically configured to: if the IA_ONLY information in the SYN-RTS frame is an unrestricted working mode of the first AP, And Determining that the working modes of the first AP and the second AP are both BF modes; or, the first determining unit 111 is specifically configured to be used when And Determining that the working mode of the first AP is the IA mode, and the working mode of the second AP is the BF mode; or the first determining unit 111 is specifically configured to be used when And Determining that the working mode of the first AP is the BF mode, and the working mode of the second AP is the IA mode; or the first determining unit 111 is specifically configured to be used when And The working mode of the first AP and the second AP is determined to be the IA mode.
  • the determining sending unit 112 is further configured to: And Or when And Determining that the SYN-DENY frame is sent to the first AP; wherein the SYN-DENY frame includes a media access control packet header MAC Header information, a reject reason DENY_REASON message, and a frame check sequence FCS;
  • the DENY_REASON information is used to indicate to the first AP that the second AP rejects downlink parallel transmission with the first AP.
  • FIG. 13 is a schematic structural diagram of Embodiment 4 of an apparatus according to an embodiment of the present disclosure.
  • the scheduling module 12 further includes: a second determining unit 121, a third determining unit 122, and an encoding unit 123.
  • the second determining unit 121 is configured to acquire a channel matrix between the second AP and the first STA scheduled by the first AP, and determine, according to the channel matrix, that the second AP works in an IA mode.
  • the second reserved direction is reserved for the first AP to send and receive data; the determining sending module 11 is further configured to broadcast the second reserved direction; and the second reserved direction is used for
  • the first STA scheduled by the first AP determines a receiving equalization matrix according to the second reserved direction and the channel matrix; the receiving equalization matrix is used to enable the first STA scheduled by the first AP to receive the received location
  • the data sent by the second AP is used for interference cancellation;
  • a third determining unit 122 configured to determine a precoding matrix according to the second reserved direction or the channel matrix
  • the encoding unit 123 is configured to encode, according to the precoding matrix, data to be transmitted of the second AP, to obtain encoded data; the encoded data is orthogonal to the second reserved direction;
  • the determining the sending module 11 is further configured to determine an operating mode of the second AP according to the second MODE information in the SYN-CTS frame, and according to the second DIR_NUM information, the second STA_NUM The information and the second STREAM_NUM information are sent to the second STA for the encoded data.
  • the device provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of Embodiment 5 of an apparatus according to an embodiment of the present disclosure.
  • the device may be the first AP in the foregoing method embodiment.
  • the device is applicable to a WIFI MU-MIMO system, where the MU-MIMO system includes a first BSS and a second BSS, the first BSS coverage area and the second BSS coverage area partially overlap, and the first AP is located at the In the coverage area of the first BSS, the second AP is located in the coverage area of the second BSS, the first AP serves the first station STA, and the second AP serves the second STA. That is, the device is suitable for the MU-MIMO shown in FIG. 2 above. system. As shown in FIG. 14, the device includes: a sending module 20, a receiving module 21, and a scheduling module 22.
  • the sending module 20 is configured to send a synchronization request to the second AP to send a SYN-RTS frame, where the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted and The number of antennas of the first STA to be scheduled by the first AP;
  • the receiving module 21 is configured to receive, according to the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the second STA that the second AP is to schedule.
  • the synchronization of the number of antennas is transmitted to allow the transmission of the SYN-CTS frame; the SYN-CTS frame is used to indicate to the first AP the working mode of the first AP, and the maximum of the first STA that the first AP can schedule.
  • the scheduling module 22 is configured to schedule the first STA according to the content indicated by the SYN-CTS frame, and perform downlink data transmission in parallel with the second AP.
  • the device provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the SYN-RTS frame includes a media access control packet header MAC Header information, an interference only alignment IA_ONLY information, an antenna number BSS_STA_ATN_NUM information of a site scheduled by the basic service set, and a frame check sequence FCS, where
  • the IA_ONLY information is used to indicate to the second AP that the working mode of the first AP is limited, and the BSS_STA_ATN_NUM is used to indicate to the second AP the number of antennas of the first STA to be scheduled by the first AP.
  • the SYN-CTS frame includes a media access control packet header MAC Header information, a first part, a second part, and a frame check sequence FCS;
  • the first part includes a first working mode MODE information, a first reserved direction quantity DIR_NUM information, a first station number STA_NUM information, and a first data stream quantity STREAM_NUM information; wherein the first MODE information is used to An AP indicates an operation mode of the first AP, the first DIR_NUM information is used to indicate the number of the first reserved direction to the first AP, and the first STA_NUM information is used to the first AP refers to The maximum number of the first STAs that can be scheduled by the first AP, where the first STREAM_NUM is used to indicate to the first AP, the maximum number of downlink data flows that can be scheduled by the first AP;
  • the second part includes second MODE information, second DIR_NUM information, second STA_NUM information, and second STREAM_NUM information; wherein the second MODE information is used to indicate the work of the second AP to the first AP a mode, the second DIR_NUM information is used to indicate, to the first AP, a quantity of a second reserved direction reserved for the first AP to send and receive data when the second AP works in an IA mode, where the second The STA_NUM information is used to indicate to the first AP, the maximum number of second STAs that can be scheduled by the second AP, and the second STREAM_NUM is used to indicate to the first AP that the second AP can be scheduled. The maximum number of downstream data streams.
  • FIG. 15 is a schematic structural diagram of Embodiment 6 of a device according to an embodiment of the present disclosure.
  • the scheduling module 22 includes: a first determining unit 221, a second determining unit 222, and an encoding unit 223.
  • the first determining unit 221 is configured to acquire a channel matrix between the first AP and the second STA scheduled by the second AP, and determine, according to the channel matrix, that the first AP works in an IA mode.
  • the first reserved direction is reserved for the second AP to send and receive data; the sending module 20 is further configured to broadcast the first reserved direction; the first reserved direction is used to enable the a second STA scheduled by the second AP determines a receiving equalization matrix according to the first reserved direction and the channel matrix; the receiving equalization matrix is configured to enable the second STA scheduled by the second AP to receive the received
  • the data sent by the first AP performs interference cancellation;
  • a second determining unit 222 configured to determine a precoding matrix according to the first reserved direction or the channel matrix
  • the encoding unit 223 is configured to encode, according to the precoding matrix, data to be transmitted of the first AP, to obtain encoded data; the encoded data is orthogonal to the first reserved direction;
  • the sending module 20 is further configured to determine, according to the first MODE information in the SYN-CTS frame, an operating mode of the first AP, and according to the first DIR_NUM information, the first STA_NUM information, and The first STREAM_NUM information, the encoded data is sent to the first STA.
  • the device provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of Embodiment 7 of an apparatus according to an embodiment of the present disclosure.
  • the device may be the second AP in the foregoing method embodiment, and the device is also applicable to the WIFI MU-MIMO system, where the MU-MIMO system includes a first BSS and a second BSS, and the coverage area and the location of the first BSS The coverage area of the second BSS is partially overlapped, the first AP is located in the coverage area of the first BSS, the second AP is located in the coverage area of the second BSS, and the first AP serves the first station STA. The second AP serves the second STA. That is, the device is suitable for the MU-MIMIO system shown in FIG. 2 described above. As shown in FIG. 16, the device includes a receiver 30, a processor 31, and a transmitter 32.
  • the receiver 30 is configured to receive a synchronization request sent by the first AP to send a SYN-RTS frame, where the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted. And the number of antennas of the first STA to be scheduled by the first AP;
  • the processor 31 is configured to determine, according to the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the number of antennas of the second STA to be scheduled by the second AP,
  • the first AP transmission synchronization allows the SYN-CTS frame to be sent, and is sent to the first AP by the transmitter 32, and the second STA is scheduled according to the content indicated by the SYN-CTS frame, and the first An AP performs downlink data transmission in parallel; wherein the SYN-CTS frame is used to indicate, to the first AP, an operating mode of the first AP, a maximum number of first STAs that can be scheduled by the first AP, The maximum number of downlink data flows that can be scheduled by the first AP, and the number of the first reserved directions that are reserved for the second AP to transmit and receive data when the first AP works in the interference aligned IA mode, the number The working mode of the second AP, the maximum number of second
  • the SYN-RTS frame includes a media access control packet header MAC Header information, an interference only alignment IA_ONLY information, an antenna number BSS_STA_ATN_NUM information of a site scheduled by the basic service set, and a frame check sequence FCS, where
  • the IA_ONLY information is used to indicate to the second AP that the working mode of the first AP is limited, and the BSS_STA_ATN_NUM is used to indicate to the second AP the number of antennas of the first STA to be scheduled by the first AP.
  • the SYN-CTS frame includes a MAC Header information of a media access control packet header, The first part, the second part and the frame check sequence FCS;
  • the first part includes a first working mode MODE information, a first reserved direction quantity DIR_NUM information, a first station number STA_NUM information, and a first data stream quantity STREAM_NUM information; wherein the first MODE information is used to An AP indicates an operation mode of the first AP, the first DIR_NUM information is used to indicate the number of the first reserved direction to the first AP, and the first STA_NUM information is used to the first The AP indicates the maximum number of the first STAs that can be scheduled by the first AP, and the first STREAM_NUM is used to indicate to the first AP, the maximum number of downlink data flows that can be scheduled by the first AP;
  • the second part includes second MODE information, second DIR_NUM information, second STA_NUM information, and second STREAM_NUM information; wherein the second MODE information is used to indicate the work of the second AP to the first AP a mode, the second DIR_NUM information is used to indicate, to the first AP, a quantity of a second reserved direction reserved for the first AP to send and receive data when the second AP works in an IA mode, where the second The STA_NUM information is used to indicate to the first AP, the maximum number of second STAs that can be scheduled by the second AP, and the second STREAM_NUM is used to indicate to the first AP that the second AP can be scheduled. The maximum number of downstream data streams.
  • the processor 31 is specifically configured to: according to the IA_ONLY information in the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the first AP to be scheduled Determining the working mode of the first AP and the second AP according to the number of antennas of the first STA and the number of antennas of the second STA to be scheduled by the second AP, and according to the working mode of the first AP and The working mode of the second AP determines to send the SYN-CTS frame to the first AP.
  • the determining, by the processor 31, the working mode of the first AP and the second AP specifically: if the minimum number of antennas of the first STA to be scheduled by the first AP is N1, The number of antennas of the first AP is M1, the minimum number of antennas of the second STA to be scheduled by the second AP is N2, and the number of antennas of the second AP is M2, and the processor 31 is specifically used.
  • the processor 31 is specifically configured to: if the IA_ONLY information in the SYN-RTS frame is the first AP working mode is not restricted And determining to send the SYN-CTS frame to the first AP; Indicates a rounding down operation.
  • the processor 31 is specifically configured to determine a mode working parameter of the first AP and a second AP according to an operating mode of the first AP and an operating mode of the second AP, respectively.
  • a mode operation parameter where the mode operation parameter of the first AP includes a maximum number of first STAs that can be scheduled by the first AP, a maximum number of downlink data flows that the first AP can schedule, and the The number of the first reserved directions;
  • the mode operation parameter of the second AP includes a maximum number of second STAs that can be scheduled by the second AP, and a maximum number of downlink data that can be scheduled by the second AP, The number of the second reserved directions;
  • the transmitter 32 is specifically configured to: determine, by the processor 31, an operating mode of the first AP, an operating mode of the second AP, and the first The mode working parameter of the AP and the mode working parameter of the second AP are carried in the SYN-CTS frame and sent to the first AP.
  • the processor 31 is specifically configured to: if the IA_ONLY information in the SYN-RTS frame is that the first AP working mode is only an IA mode, And Determining that the working mode of the first AP is an IA mode, and the working mode of the second AP is a beamforming BF mode; or the processor 31 is specifically configured to And Determining that the working mode of the first AP and the second AP are all in the IA mode; or the processor 31 is specifically configured to: if the IA_ONLY information in the SYN-RTS frame is the first AP Working mode is not limited, then when And Determining that the working modes of the first AP and the second AP are both BF modes; or, the processor 31 is specifically configured to be used when And Determining that the working mode of the first AP is the IA mode, and the working mode of the second AP is the BF mode; or the processor 31 is specifically configured to be used when And Determining that the working mode of the first AP is the BF mode, and
  • the processor 31 is further configured to: And Or when And Determining that the SYN-DENY frame is sent to the first AP; wherein the SYN-DENY frame includes a media access control packet header MAC Header information, a reject reason DENY_REASON message, and a frame check sequence FCS;
  • the DENY_REASON information is used to indicate to the first AP that the second AP rejects downlink parallel transmission with the first AP.
  • the processor 31 is specifically configured to acquire a channel matrix between the second AP and the first STA scheduled by the first AP, and determine, according to the channel matrix, that the second AP works in the IA. And storing, in the mode, the second reserved direction of the first AP to send and receive data, and determining a precoding matrix according to the second reserved direction or the channel matrix, and according to the precoding matrix.
  • the to-be-transmitted data of the second AP is encoded to obtain encoded data; the encoded data is orthogonal to the second reserved direction;
  • the transmitter 32 is configured to broadcast the second reserved direction, and according to the working mode of the second AP determined by the processor 31 according to the second MODE information in the SYN-CTS frame. Transmitting, by the second DIR_NUM information, the second STA_NUM information and the second STREAM_NUM information, the encoded data obtained by the processor 31 to the second STA; wherein the second reserved direction is used for And the first STA scheduled by the first AP determines a receiving equalization matrix according to the second reserved direction and the channel matrix; the receiving equalization matrix is used to enable the first STA pair scheduled by the first AP to receive The data sent by the second AP performs interference cancellation.
  • the device provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 17 is a schematic structural diagram of Embodiment 8 of an apparatus according to an embodiment of the present disclosure.
  • the device may be the first AP in the foregoing method embodiment, and the device is also applicable to a WIFI MU-MIMO system, where the MU-MIMO system includes a first BSS and a second BSS, and a coverage area and a location of the first BSS The coverage area of the second BSS is partially overlapped, the first AP is located in the coverage area of the first BSS, the second AP is located in the coverage area of the second BSS, and the first AP serves the first station STA. The second AP serves the second STA. That is, the device is suitable for the MU-MIMIO system shown in FIG. 2 described above. As shown in FIG. 17, the device includes: a transmitter 40, a receiver 41, and Processor 42.
  • the transmitter 40 is configured to send a synchronization request to the second AP to send a SYN-RTS frame, where the SYN-RTS frame is used to indicate to the second AP that the working mode of the first AP is restricted.
  • the receiver 41 is configured to receive, according to the SYN-RTS frame, the number of antennas of the first AP, the number of antennas of the second AP, and the second STA that the second AP is to schedule.
  • the synchronization of the number of antennas is transmitted to allow the transmission of the SYN-CTS frame; the SYN-CTS frame is used to indicate to the first AP the working mode of the first AP, and the maximum of the first STA that the first AP can schedule.
  • the processor 42 is configured to schedule the first STA according to the content indicated by the SYN-CTS frame, and perform downlink data transmission in parallel with the second AP.
  • the SYN-RTS frame includes a media access control packet header MAC Header information, an interference only alignment IA_ONLY information, an antenna number BSS_STA_ATN_NUM information of a site scheduled by the basic service set, and a frame check sequence FCS, where
  • the IA_ONLY information is used to indicate to the second AP that the working mode of the first AP is limited, and the BSS_STA_ATN_NUM is used to indicate to the second AP the number of antennas of the first STA to be scheduled by the first AP.
  • the SYN-CTS frame includes a media access control packet header MAC Header information, a first part, a second part, and a frame check sequence FCS;
  • the first part includes a first working mode MODE information, a first reserved direction quantity DIR_NUM information, a first station number STA_NUM information, and a first data stream quantity STREAM_NUM information; wherein the first MODE information is used to An AP indicates an operation mode of the first AP, the first DIR_NUM information is used to indicate the number of the first reserved direction to the first AP, and the first STA_NUM information is used to the first The AP indicates the maximum number of the first STAs that can be scheduled by the first AP, and the first STREAM_NUM is used to indicate to the first AP, the maximum number of downlink data flows that can be scheduled by the first AP;
  • the second part includes second MODE information, second DIR_NUM information, second STA_NUM information, and second STREAM_NUM information; wherein the second MODE information is used to indicate the work of the second AP to the first AP a mode, the second DIR_NUM information is used to indicate, to the first AP, a quantity of a second reserved direction reserved for the first AP to send and receive data when the second AP works in an IA mode, where the second The STA_NUM information is used to indicate to the first AP, the maximum number of second STAs that can be scheduled by the second AP, and the second STREAM_NUM is used to indicate to the first AP that the second AP can be scheduled. The maximum number of downstream data streams.
  • the processor 42 is specifically configured to acquire a channel matrix between the first AP and the second STA scheduled by the second AP, and determine, according to the channel matrix, that the first AP works. Determining, in the IA mode, the first reserved direction of the second AP to send and receive data, and determining a precoding matrix according to the first reserved direction or the channel matrix, and according to the precoding matrix Transmitting data to be transmitted of the first AP, obtaining encoded data; the encoded data is orthogonal to the first reserved direction;
  • the transmitter 40 is configured to broadcast the first reserved direction, and according to the working mode of the first AP determined by the processor 42 according to the first MODE information in the SYN-CTS frame, Transmitting the encoded data to the first STA by using the first DIR_NUM information, the first STA_NUM information, and the first STREAM_NUM information; wherein the first reserved direction is used to enable the second AP And the second STA that is scheduled to determine the receiving equalization matrix according to the first reserved direction and the channel matrix; the receiving equalization matrix is used to enable the second STA scheduled by the second AP to receive the first AP
  • the delivered data is used for interference cancellation.
  • the device provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种数据并行传输的方法和设备。该方法包括:第二AP接收第一AP发送的SYN-RTS帧;所述第二AP根据SYN-RTS帧、第一AP的天线数量、第二AP的天线数量和第二AP将要调度的第二STA的天线数量,确定向第一AP发送SYN-CTS帧;第二AP根据SYN-CTS帧所指示的内容调度所述第二STA,与所述第一AP并行进行下行数据传输。本发明实施例提供的方法,可以保证系统中数据流的增益。

Description

数据并行传输的方法和设备 技术领域
本发明涉及通信技术,尤其涉及一种数据并行传输的方法和设备。
背景技术
现有的无线保真(Wireless Fidelity,以下简称WiFi)技术采用带碰撞避免的载波侦听多址接入(Carrier Sense Multiple Access with Collision Avoidance简称CSMA/CA)协议以实现干扰避免,让通过竞争首先获得信道使用权的通信对独占信道资源。只有该通信对通信完毕,周围其他的通信对才可竞争该信道。这种方式对正在通信的链路实现了较好的保护,但在高密度组网情况下,其频谱效率受到了很大的限制。因此,控制干扰让相邻通信链路实现并发通信从而提高频谱效率在高密度WIFI组网场景下具有重要的意义。
但在高密度组网情况下,特别是两个基础服务集合(Basic Service Set,简称BSS)大部分重叠的情况下,由于存在双向的交叉干扰要实现并发通信尤其困难,参见图1所示,BSS1的覆盖区域内包括无线访问接入点(Wireless Access Point,简称AP)1,BSS2的覆盖区域内包括AP2,且BSS1和BSS2在覆盖区域上部分重叠,AP1下覆盖有站点(Station,简称STA)1、STA2和STA3,AP2覆盖有STAa、STAb和STAc,交叉干扰即AP1与AP2并行进行数据传输时,AP1与STA1、STA2和STA3进行数据交互时会给AP2及其覆盖下的站点带来干扰,且AP2与STAa、STAb和STAc进行数据交互时会给AP1及其覆盖下的站点带来干扰。现有技术中,为了能够进行并行传输,常采用发送端联合波束成形或干扰对齐的方式来处理交叉干扰。
但是,现有技术消除干扰的方式单一,无法保证并行传输时的数据流增益。
发明内容
本发明实施例提供一种数据并行传输的方法和设备,用以解决现有技术 消除干扰的方式单一,无法保证并行传输时的数据流增益的技术问题。
第一方面,本发明实施例提供一种数据并行传输的方法,适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS的覆盖区域和所述第二BSS的覆盖区域部分重叠,第一无线接入点AP位于所述第一BSS的覆盖区域内,第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA;所述方法包括:
所述第二AP接收所述第一AP发送的同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量,确定向所述第一AP发送同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
所述第二AP根据所述SYN-CTS帧所指示的内容调度所述第二STA,与所述第一AP并行进行下行数据传输。
结合第一方面,在第一方面的第一种可能的实施方式中,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
结合第一方面或第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式中,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
结合第一方面至第一方面的第二种可能的实施方式中的任一项,在第一方面的第三种可能的实施方式中,所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量,确定向所述第一AP发送同步允许发送SYN-CTS帧,具体包括:
所述第二AP根据所述SYN-RTS帧中的IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式;
所述第二AP根据所述第一AP的工作模式和所述第二AP的工作模式确定向所述第一AP发送所述SYN-CTS帧。
结合第一方面的第三种可能的实施方式,在第一方面的第四种可能的实施方式中,若所述第一AP将要调度的第一STA的天线数量的最小值为N1,所述第一AP的天线数量为M1,所述第二AP将要调度的第二STA的天线数量的最小值为N2,所述第二AP的天线数量为M2,则所述第二AP根据所述 第一AP的工作模式和所述第二AP的工作模式确定向所述第一AP发送所述SYN-CTS帧,具体包括:
若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
Figure PCTCN2015074192-appb-000001
Figure PCTCN2015074192-appb-000002
或者,当所述
Figure PCTCN2015074192-appb-000003
Figure PCTCN2015074192-appb-000004
时,所述第二AP确定向所述第一AP发送所述SYN-CTS帧;
或者,
若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则所述第二AP确定向所述第一AP发送所述SYN-CTS帧;其中,
Figure PCTCN2015074192-appb-000005
表示向下取整操作;
结合第一方面的第四种可能的实施方式,在第一方面的第五种可能的实施方式中,所述第二AP确定向所述第一AP发送所述SYN-CTS帧,具体包括:
所述第二AP根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模式工作参数;其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、所述第二预留方向的数量;
所述第二AP将所述第一AP的工作模式、所述第二AP的工作模式、所述第一AP的模式工作参数和所述第二AP的模式工作参数携带在所述SYN-CTS帧中发送给所述第一AP。
结合第一方面的第三种可能的实施方式至第一方面的第三种可能的实施方式中的任一项,在第一方面的第六种可能的实施方式中,所述第二AP根据所述SYN-RTS帧中IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式,具体包括:
若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA 模式,则当所述
Figure PCTCN2015074192-appb-000006
Figure PCTCN2015074192-appb-000007
时,所述第二AP确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为波束成型BF模式;或者,当所述
Figure PCTCN2015074192-appb-000008
Figure PCTCN2015074192-appb-000009
时,所述第二AP确定所述第一AP和所述第二AP的工作模式均为IA模式;
若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则当
Figure PCTCN2015074192-appb-000010
Figure PCTCN2015074192-appb-000011
时,则所述第二AP确定所述第一AP和所述第二AP的工作模式均为BF模式;或者,当
Figure PCTCN2015074192-appb-000012
Figure PCTCN2015074192-appb-000013
时,则所述第二AP确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为BF模式;或者,当
Figure PCTCN2015074192-appb-000014
Figure PCTCN2015074192-appb-000015
时,则所述第二AP确定所述第一AP的工作模式为BF模式,所述第二AP的工作模式为IA模式;或者,当
Figure PCTCN2015074192-appb-000016
Figure PCTCN2015074192-appb-000017
时,则所述第二AP确定所述第一AP和所述第二AP的工作模式均为IA模式。
结合第一方面的第四种可能的实施方式,在第一方面的第七种可能的实施方式中,所述方法还包括:若所述
Figure PCTCN2015074192-appb-000018
Figure PCTCN2015074192-appb-000019
或者,当所述
Figure PCTCN2015074192-appb-000020
Figure PCTCN2015074192-appb-000021
时,所述第二AP确定向所述第一AP发送所述SYN-DENY帧;其中,所述SYN-DENY帧包括媒体接入控制报文头MAC Header信息、拒绝原因DENY_REASON信息和帧校验序列FCS;所述DENY_REASON信息,用于向所述第一AP指示所述第二AP拒绝与所述第一AP进行下行并行传输的原因;
结合第一方面至第一方面的第七种可能的实施方式中的任一项,在第一方面的第八种可能的实施方式中,所述第二AP根据所述SYN-CTS帧调度所述第二STA,与所述第一AP并行进行下行数据传输,具体包括:
所述第二AP获取所述第二AP到所述第一AP调度的第一STA之间的信道矩阵,并根据所述信道矩阵确定所述第二AP工作在IA模式时预留给所述第一AP收发数据的所述第二预留方向;
所述第二AP广播所述第二预留方向;所述第二预留方向用于使所述第 一AP调度的第一STA根据所述第二预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除;
所述第二AP根据所述第二预留方向或所述信道矩阵确定预编码矩阵;
所述第二AP根据所述预编码矩阵对所述第二AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第二预留方向正交;
所述第二AP根据所述SYN-CTS帧中的所述第二MODE信息确定所述第二AP的工作模式,并根据所述第二DIR_NUM信息、所述第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送所述编码数据。
第二方面,本发明实施例提供一种数据并行传输的方法,适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS覆盖区域和所述第二BSS覆盖区域部分重叠,第一无线接入点AP位于所述第一BSS的覆盖区域内,第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA;所述方法包括:
所述第一AP向所述第二AP发送同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
所述第一AP接收所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量发送的同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
所述第一AP根据所述SYN-CTS帧所指示的内容调度所述第一STA,与所述第二AP并行进行下行数据传输。
结合第二方面,在第二方面的第一种可能的实施方式中,所述SYN-RTS 帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
结合第二方面或第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式中,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
结合第二方面至第二方面的第二种可能的实施方式中的任一项,在第二方面的第三种可能的实施方式中,所述第一AP根据所述SYN-CTS帧调度所述第一STA,与所述第二AP并行进行下行数据传输,具体包括:
所述第一AP获取所述第一AP到所述第二AP调度的第二STA之间的信道矩阵,并根据所述信道矩阵确定所述第一AP工作在IA模式时预留给所述第二AP收发数据的所述第一预留方向;
所述第一AP广播所述第一预留方向;所述第一预留方向用于使所述第 二AP调度的第二STA根据所述第一预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除;
所述第一AP根据所述第一预留方向或所述信道矩阵确定预编码矩阵;
所述第一AP根据所述预编码矩阵对所述第一AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第一预留方向正交;
所述第一AP根据所述SYN-CTS帧中所述第一MODE信息确定所述第一AP的工作模式,并根据所述第一DIR_NUM信息、所述第一STA_NUM信息和所述第一STREAM_NUM信息,向所述第一STA发送所述编码数据。
第三方面,本发明实施例提供一种设备,所述设备为第二无线接入点AP,所述设备适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS的覆盖区域和所述第二BSS的覆盖区域部分重叠,第一AP位于所述第一BSS的覆盖区域内,所述第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA;所述设备包括:
接收模块,用于接收所述第一AP发送的同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
确定发送模块,用于根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量,确定向所述第一AP发送同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
调度模块,用于根据所述SYN-CTS帧所指示的内容调度所述第二STA,与所述第一AP并行进行下行数据传输。
结合第三方面,在第三方面的第一种可能的实施方式中,所述SYN-RTS 帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
结合第三方面或第三方面的第一种可能的实施方式,在第三方面的第二种可能的实施方式中,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
结合第三方面至第三方面的第二种可能的实施方式中的任一项,在第三方面的第三种可能的实施方式中,所述确定发送模块,包括:
第一确定单元,用于根据所述SYN-RTS帧中的IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式;
确定发送单元,用于根据所述第一AP的工作模式和所述第二AP的工作 模式确定向所述第一AP发送所述SYN-CTS帧。
结合第三方面的第三种可能的实施方式,在第三方面的第四种可能的实施方式中,所述第一AP将要调度的第一STA的天线数量的最小值为N1,所述第一AP的天线数量为M1,所述第二AP将要调度的第二STA的天线数量的最小值为N2,所述第二AP的天线数量为M2,则所述确定发送单元,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
Figure PCTCN2015074192-appb-000022
Figure PCTCN2015074192-appb-000023
或者,当所述
Figure PCTCN2015074192-appb-000024
Figure PCTCN2015074192-appb-000025
时,确定向所述第一AP发送所述SYN-CTS帧;
或者,
所述确定发送单元,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则确定向所述第一AP发送所述SYN-CTS帧;其中,
Figure PCTCN2015074192-appb-000026
表示向下取整操作。
结合第三方面的第四种可能的实施方式,在第三方面的第五种可能的实施方式中,所述确定发送单元,包括:
确定子单元,用于根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模式工作参数;其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、所述第二预留方向的数量;
发送子单元,用于将所述第一AP的工作模式、所述第二AP的工作模式、所述第一AP的模式工作参数和所述第二AP的模式工作参数携带在所述SYN-CTS帧中发送给所述第一AP。
结合第三方面的第三种可能的实施方式至第三方面的第五种可能的实施方式中的任一项,在第三方面的第六种可能的实施方式中,所述第一确定单元,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
Figure PCTCN2015074192-appb-000027
Figure PCTCN2015074192-appb-000028
时,确定所述第一AP 的工作模式为IA模式,所述第二AP的工作模式为波束成型BF模式;或者,所述第一确定单元,具体用于当所述
Figure PCTCN2015074192-appb-000029
Figure PCTCN2015074192-appb-000030
时,确定所述第一AP和所述第二AP的工作模式均为IA模式;或者,
所述第一确定单元,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则当
Figure PCTCN2015074192-appb-000031
Figure PCTCN2015074192-appb-000032
时,确定所述第一AP和所述第二AP的工作模式均为BF模式;或者,所述第一确定单元,具体用于当
Figure PCTCN2015074192-appb-000033
Figure PCTCN2015074192-appb-000034
时,则确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为BF模式;或者,所述第一确定单元,具体用于当
Figure PCTCN2015074192-appb-000035
Figure PCTCN2015074192-appb-000036
时,则确定所述第一AP的工作模式为BF模式,所述第二AP的工作模式为IA模式;或者,所述第一确定单元,具体用于当
Figure PCTCN2015074192-appb-000037
Figure PCTCN2015074192-appb-000038
时,则确定所述第一AP和所述第二AP的工作模式均为IA模式。
结合第三方面的第四种可能的实施方式,在第三方面的第七种可能的实施方式中,所述确定发送单元,还用于若所述
Figure PCTCN2015074192-appb-000039
Figure PCTCN2015074192-appb-000040
或者,当所述
Figure PCTCN2015074192-appb-000041
Figure PCTCN2015074192-appb-000042
时,确定向所述第一AP发送所述SYN-DENY帧;其中,所述SYN-DENY帧包括媒体接入控制报文头MAC Header信息、拒绝原因DENY_REASON信息和帧校验序列FCS;所述DENY_REASON信息,用于向所述第一AP指示所述第二AP拒绝与所述第一AP进行下行并行传输的原因。
结合第三方面至第三方面的第七种可能的实施方式中的任一项,在第三方面的第八种可能的实施方式中,所述调度模块,具体包括:
第二确定单元,用于获取所述第二AP到所述第一AP调度的第一STA之间的信道矩阵,并根据所述信道矩阵确定所述第二AP工作在IA模式时预留给所述第一AP收发数据的所述第二预留方向;则所述确定发送模块,还用于广播所述第二预留方向;所述第二预留方向用于使所述第一AP调度的第一STA根据所述第二预留方向和所述信道矩阵确定接收均衡矩阵;所述接 收均衡矩阵用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除;
第三确定单元,用于根据所述第二预留方向或所述信道矩阵确定预编码矩阵;
编码单元,用于根据所述预编码矩阵对所述第二AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第二预留方向正交;
则所述确定发送模块,还用于根据所述SYN-CTS帧中的所述第二MODE信息确定所述第二AP的工作模式,并根据所述第二DIR_NUM信息、所述第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送所述编码数据。
第四方面,本发明实施例提供一种设备,所述设备为第一无线接入点AP,所述设备适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS覆盖区域和所述第二BSS覆盖区域部分重叠,所述第一AP位于所述第一BSS的覆盖区域内,第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA;所述设备包括:
发送模块,用于向所述第二AP发送同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
接收模块,用于接收所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量发送的同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
调度模块,用于根据所述SYN-CTS帧所指示的内容调度所述第一STA,与所述第二AP并行进行下行数据传输。
结合第四方面,在第四方面的第一种可能的实施方式中,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
结合第四方面或第四方面的第一种可能的实施方式,在第四方面的第二种可能的实施方式中,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
结合第四方面至第四方面的第二种可能的实施方式中的任一项,在第四方面的第三种可能的实施方式中,所述调度模块,包括:
第一确定单元,用于获取所述第一AP到所述第二AP调度的第二STA之间的信道矩阵,并根据所述信道矩阵确定所述第一AP工作在IA模式时预留给所述第二AP收发数据的所述第一预留方向;则所述发送模块,还用于广播所述第一预留方向;所述第一预留方向用于使所述第二AP调度的第二 STA根据所述第一预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除;
第二确定单元,用于根据所述第一预留方向或所述信道矩阵确定预编码矩阵;
编码单元,用于根据所述预编码矩阵对所述第一AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第一预留方向正交;
则所述发送模块,还用于根据所述SYN-CTS帧中所述第一MODE信息确定所述第一AP的工作模式,并根据所述第一DIR_NUM信息、所述第一STA_NUM信息和所述第一STREAM_NUM信息,向所述第一STA发送所述编码数据。
第五方面,本发明实施例提供一种设备,所述设备为第二无线接入点AP,所述设备适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS的覆盖区域和所述第二BSS的覆盖区域部分重叠,第一AP位于所述第一BSS的覆盖区域内,所述第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA;所述设备包括:
接收器,用于接收所述第一AP发送的同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
处理器,用于根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量,确定向所述第一AP发送同步允许发送SYN-CTS帧,并通过发送器发送给所述第一AP,并根据根据所述SYN-CTS帧所指示的内容调度所述第二STA,与所述第一AP并行进行下行数据传输;其中,所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式 时预留给所述第一AP收发数据的第二预留方向的数量。
结合第五方面,在第五方面的第一种可能的实施方式中,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
结合第五方面或第五方面的第一种可能的实施方式,在第五方面的第二种可能的实施方式中,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
结合第五方面至第五方面的第二种可能的实施方式中的任一项,在第五方面的第三种可能的实施方式中,所述处理器,具体用于根据所述SYN-RTS帧中的IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式,并根据 所述第一AP的工作模式和所述第二AP的工作模式确定向所述第一AP发送所述SYN-CTS帧。
结合第五方面的第三种可能的实施方式,在第五方面的第四种可能的实施方式中,若所述第一AP将要调度的第一STA的天线数量的最小值为N1,所述第一AP的天线数量为M1,所述第二AP将要调度的第二STA的天线数量的最小值为N2,所述第二AP的天线数量为M2,则所述处理器,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
Figure PCTCN2015074192-appb-000043
Figure PCTCN2015074192-appb-000044
或者,当所述
Figure PCTCN2015074192-appb-000045
Figure PCTCN2015074192-appb-000046
时,确定向所述第一AP发送所述SYN-CTS帧;
或者,
所述处理器,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则确定向所述第一AP发送所述SYN-CTS帧;其中,
Figure PCTCN2015074192-appb-000047
表示向下取整操作。
结合第五方面的第四种可能的实施方式,在第五方面的第五种可能的实施方式中,所述处理器,具体用于根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模式工作参数;其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、所述第二预留方向的数量;
则所述发送器,具体用于将所述处理器确定的所述第一AP的工作模式、所述第二AP的工作模式、所述第一AP的模式工作参数和所述第二AP的模式工作参数携带在所述SYN-CTS帧中发送给所述第一AP。
结合第五方面的第三种可能的实施方式至第五方面的第五种可能的实施方式中的任一项,在第五方面的第六种可能的实施方式中,所述处理器,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
Figure PCTCN2015074192-appb-000048
Figure PCTCN2015074192-appb-000049
时,确定所述第一AP的工作模 式为IA模式,所述第二AP的工作模式为波束成型BF模式;或者,所述处理器,具体用于当所述
Figure PCTCN2015074192-appb-000050
Figure PCTCN2015074192-appb-000051
时,确定所述第一AP和所述第二AP的工作模式均为IA模式;或者,
所述处理器,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则当
Figure PCTCN2015074192-appb-000052
Figure PCTCN2015074192-appb-000053
时,则确定所述第一AP和所述第二AP的工作模式均为BF模式;或者,所述处理器,具体用于当
Figure PCTCN2015074192-appb-000054
Figure PCTCN2015074192-appb-000055
时,则确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为BF模式;或者,所述处理器,具体用于当
Figure PCTCN2015074192-appb-000056
Figure PCTCN2015074192-appb-000057
时,则确定所述第一AP的工作模式为BF模式,所述第二AP的工作模式为IA模式;或者,所述处理器,具体用于当
Figure PCTCN2015074192-appb-000058
Figure PCTCN2015074192-appb-000059
时,则确定所述第一AP和所述第二AP的工作模式均为IA模式。
结合第五方面的第六种可能的实施方式,在第五方面的第七种可能的实施方式中,所述处理器,还用于若所述
Figure PCTCN2015074192-appb-000060
Figure PCTCN2015074192-appb-000061
或者,当所述
Figure PCTCN2015074192-appb-000062
Figure PCTCN2015074192-appb-000063
时,确定向所述第一AP发送所述SYN-DENY帧;其中,所述SYN-DENY帧包括媒体接入控制报文头MAC Header信息、拒绝原因DENY_REASON信息和帧校验序列FCS;所述DENY_REASON信息,用于向所述第一AP指示所述第二AP拒绝与所述第一AP进行下行并行传输的原因。
结合第五方面至第五方面的第七种可能的实施方式中的任一项,在第五方面的第八种可能的实施方式中,所述处理器,具体用于获取所述第二AP到所述第一AP调度的第一STA之间的信道矩阵,并根据所述信道矩阵确定所述第二AP工作在IA模式时预留给所述第一AP收发数据的所述第二预留方向,并根据所述第二预留方向或所述信道矩阵确定预编码矩阵,并根据所述预编码矩阵对所述第二AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第二预留方向正交;
所述发送器,具体用于广播所述第二预留方向,并根据所述处理器根据所述SYN-CTS帧中的所述第二MODE信息确定的所述第二AP的工作模式、所述第二DIR_NUM信息、所述第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送所述处理器获得的所述编码数据;其中,所述第二预留方向用于使所述第一AP调度的第一STA根据所述第二预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除。
第六方面,本发明实施例提供一种设备,所述设备为第一无线接入点AP,所述设备适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS覆盖区域和所述第二BSS覆盖区域部分重叠,所述第一AP位于所述第一BSS的覆盖区域内,第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA;所述设备包括:
发送器,用于向所述第二AP发送同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
接收器,用于接收所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量发送的同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
处理器,用于根据所述SYN-CTS帧所指示的内容调度所述第一STA,与所述第二AP并行进行下行数据传输。
结合第六方面,在第六方面的第一种可能的实施方式中,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验 序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
结合第六方面或第六方面的第一种可能的实施方式,在第六方面的第二种可能的实施方式中,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
结合第六方面至第六方面的第二种可能的实施方式中的任一项,在第六方面的第三种可能的实施方式中,所述处理器,具体用于获取所述第一AP到所述第二AP调度的第二STA之间的信道矩阵,并根据所述信道矩阵确定所述第一AP工作在IA模式时预留给所述第二AP收发数据的所述第一预留方向,并根据所述第一预留方向或所述信道矩阵确定预编码矩阵,并根据所述预编码矩阵对所述第一AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第一预留方向正交;
所述发送器,具体用于广播所述第一预留方向,并根据所述处理器根据所述SYN-CTS帧中所述第一MODE信息确定的所述第一AP的工作模式、 所述第一DIR_NUM信息、所述第一STA_NUM信息和所述第一STREAM_NUM信息,向所述第一STA发送所述编码数据;其中,所述第一预留方向用于使所述第二AP调度的第二STA根据所述第一预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除。
本发明实施例提供的数据并行传输的方法和设备,第二AP通过接收第一AP发送的SYN-RTS帧,并通过该SYN-RTS帧确定向第一AP发送SYN-CTS帧,从而使得第一AP和第二AP均获知与当前的天线配置场景适配的工作模式,进而使得第一AP根据上述SYN-CTS帧所指示的内容调度第一STA,第二AP根据上述SYN-CTS帧所指示的内容调度第二STA。本发明实施例提供的方法,第二AP通过根据第一AP上报的SYN-RTS帧中的内容,确定适合于第二AP与第一AP当前天线配置场景下的工作模式,从而使得第二AP和第一AP可以根据上述所确定的SYN-CTS帧中的内容进行相应的STA调度以及下行数据传输,进而可以保证系统的数据流增益。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的存在双向交叉干扰的网络拓扑图;
图2为本发明实施例提供的WIFI MU-MIMO系统的网络拓扑图;
图3为本发明实施例提供的数据并行传输的方法实施例一的流程示意图;
图4为本发明实施例提供的数据并行传输的方法实施例二的流程示意图;
图5为本发明实施例提供的数据并行传输的方法实施例三的流程示意图;
图6为本发明实施例提供的数据并行传输的方法实施例四的流程示意图;
图7为本发明实施例提供的数据并行传输的方法实施例五的流程示意图;
图8为本发明实施例提供的数据并行传输的方法实施例六的流程示意图;
图9为本发明实施例提供的数据并行传输的方法实施例七的信令流程图;
图10为本发明实施例提供的设备实施例一的结构示意图;
图11为本发明实施例提供的设备实施例二的结构示意图;
图12为本发明实施例提供的设备实施例三的结构示意图;
图13为本发明实施例提供的设备实施例四的结构示意图;
图14为本发明实施例提供的设备实施例五的结构示意图;
图15为本发明实施例提供的设备实施例六的结构示意图;
图16为本发明实施例提供的设备实施例七的结构示意图;
图17为本发明实施例提供的设备实施例八的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例涉及的方法,可以适用于无线保真(Wireless Fidelity,以下简称WIFI)下行多用户多输入多输出(Multi-User Multiple-Input Multiple-Output,以下简称MU-MIMO)系统,可以参见图2所示的MU-MIMO系统,该MU-MIMO系统包括第一基础服务集合(Basic Service Set,简称BSS)和第二BSS,所述第一BSS覆盖区域和所述第二BSS覆盖区域部分重叠,第一无线接入点(Access Point,以下简称AP)位于第一BSS的覆盖区域内,第二AP位于上述第二BSS的覆盖区域内,所述第一AP服务第一站点(Station,简称STA),所述第二AP服务第二STA。需要说明的是,第一BSS覆盖区域内可以包括一个第一AP,第二BSS覆盖区域内可以包括一个第二AP,并且该系统中可以包括一个第二BSS,也可以包括多个第二BSS;第一AP可以服务于一个或多个第一STA,第二AP可以服务于一个或多个第二STA。
图2所示的系统网络拓扑图仅是一种示例,图2中,第一BSS覆盖区域内包括一个第一AP,第二BSS覆盖区域内包括一个第二AP,且第一AP和第二AP位于第一BSS和第二BSS的重叠区域内,第一AP服务于四个第一 STA,分别是STA1、STA2、STA3和STA4,第二AP服务于四个第二STA,分别是STA5、STA6、STA7和STA8。第一AP与第二AP并行进行数据传输时,第一AP与STA1、STA2、STA3和STA4进行数据交互时会给第二AP及其覆盖下的站点带来干扰,且第二AP与STA5、STA6、STA7和STA8进行数据交互时,会给第一AP及其覆盖下的站点带来干扰。可选的,上述第二AP可以为多个第二BSS覆盖区域内的任一个会对第一AP下的第一STA带来交叉干扰的AP,也就是说第二AP也可以不位于图2所示的重叠区域。可选的,第二AP还可以为第一AP从多个第二BSS的覆盖区域内确定的天线数量小于第一AP的天线数量并且位于图2中的重叠区域中的AP。本发明实施例以位于重叠区域并且天线数量小于第一AP的天线数量的第二AP为例。
本发明实施例涉及的方法,具体可以解决现有技术中消除交叉干扰的方式单一,无法保证并行传输时的数据流增益的技术问题。下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图3为本发明实施例提供的数据并行传输的方法实施例一的流程示意图。如图3所示,该方法包括:
S101:第二AP接收所述第一AP发送的同步请求发送(Synchronize Request To Send,简称SYN-RTS)帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量。
具体的,第一AP通过信道竞争获得信道使用权之后,会根据第一AP下的第一STA的受干扰情况确定下行同步传输合作对象,本实施例中,第一AP确定可能会给第一AP下的第一STA带来干扰的第二AP为下行同步传输合作对象,并向该第二AP发送SYN-RTS帧。
第二AP接收到该SYN-RTS帧后,根据该SYN-RTS帧获知第一AP的工作模式受限情况,即获知第一AP的工作模式偏好,例如第一AP仅支持工作在IA模式或者第一AP对工作模式没有限制。第二AP还可以根据该SYN-RTS帧获知第一AP将要调度的第一STA的数量。按照上述图2所示,假设第一AP将要调度自己所服务的所有的第一STA。
S102:第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量,确定向所述第一AP发送同步允许发送(Synchronize Clear To Send,简称SYN-CTS)帧。
其中,所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量以及所述第一AP工作在干扰对齐(Interference Alignment,简称IA)模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量。
具体的,第二AP可以结合上述SYN-RTS帧、第一AP的天线数量、第二AP的天线数量和第二AP将要调度的第二STA的天线数量,确定是否向第一AP发送SYN-CTS帧。可选的,第二AP可以结合上述SYN-RTS帧、第一AP的天线数量、第二AP的天线数量和第二AP将要调度的第二STA的天线数量判断自身当前是否支持与第一AP进行并行传输,当第二AP判断自身可以与第一AP进行下行并行传输时,第二AP确定向第一AP发送SYN-CTS帧;并且,第二AP可以通过SYN-CTS帧告知第一AP适合于第一AP当前通信场景下的工作模式;还可以通过该SYN-CTS帧告知第一AP所能调度的第一STA的最大数量,例如:上述第一AP通过SYN-RTS帧告知第二AP自身将要调度所覆盖的所有第一STA,但是第二AP结合第一AP的天线数量和第二AP的天线数量以及第二AP将要调度的第二STA的天线数量确定第一AP当前只能调度3个第一STA,则第二AP将该第一AP所能调度的第一STA的最大数量携带在SYN-CTS帧中发送给第一AP,假设第一AP可以调度的第一STA为STA1、STA2和STA3;第二AP还可以结合上述SYN-RTS帧、第一AP的天线数量、第二AP的天线数量和第二AP将要调度的第二STA的天线数量确定第一AP所能调度的下行数据流的最大数量,并通过SYN-CTS帧告知给第一AP;第二AP还可以确定第一AP工作在IA模式时可以预留给第二AP收发数据的第一预留方向的数量,并通过SYN-CTS帧中告知给第一AP。可选的,上述第一AP的天线数量、第二AP 的天线数量和第二AP将要调度的第二STA的天线数量,第二AP均是预知的,或者,第二AP可以通过侦听探测的方式获知这些信息。可选的,上述第二AP将要调度的第二STA的天线数量,可以是第二AP将要调度的每个第二STA上的天线数量,还可以是第二AP将要调度的所有第二STA中的最小天线数量。
第一AP接收第二AP发送的SYN-CTS帧,并通过该SYN-CTS帧获知第一AP的工作模式、第一AP所能调度的第一STA的最大数量、第一AP所能调度的下行数据流的最大数量以及第一AP工作在干扰对齐IA模式时所能预留给第二AP收发数据的第一预留方向的数量,第一AP根据该SYN-CTS帧确定如何调度第一STA,并与所调度的第一STA进行数据传输。需要说明的是,第一预留方向是第一AP预留给第二AP进行收发数据的方向,在该第一预留方向上时,第一AP虽然也会收发数据,但是,由于第一AP传输的数据与该方向的正交性,在该第一预留方向上第一AP所传输的数据即为空,也就是说最终在第一AP与第二AP并行传输数据时,该第一预留方向上只有第二AP所传输的数据,第一AP和第二AP在该方向上是可以互不干扰的。故,第二AP要告知第一AP留给第二AP收发数据的第一预留方向的数量,以便于后面的两个AP进行下行并行传输。
当然,第二AP工作在IA模式时也会给第一AP收发数据预留第二预留方向,在该第二预留方向上时,第二AP也会收发数据,但是,由于第二AP传输的数据与该方向的正交性,因此在理想情况下,在该第二预留方向上第二AP所传输的数据即为空,也就是说最终在第一AP与第二AP并行传输数据时,该第二预留方向上只有第一AP所传输的数据,第一AP和第二AP在该第二预留方向上也是可以互不干扰的(一般情况下,由于信道探测有误差,量化误差等情况,第二AP对第一AP在该第二预留方向上可能还是会存在一定干扰的,但是该干扰会比较小,并且在可以接受的范围内)。因此,第二AP也可以通过上述SYN-CTS帧告知第一AP第二预留方向的数量。并且,第二AP还可以通过上述SYN-CTS帧告知第一AP当前第二AP的工作模式、第二AP所能调度的第二STA的数量和第二AP所能调度的下行数据流的最大数量,以便于第一AP得知第二BSS下的数据传输情况,进而得知第二BSS可能会对其本身造成的干扰,从而可以辅助后续信道侦听等流程进行交叉干 扰的消除。
S103:第二AP根据所述SYN-CTS帧所指示的内容调度所述第二STA,与所述第一AP并行进行下行数据传输。
具体的,第二AP将上述SYN-CTS帧发送给第一AP,不仅可以告知第二AP在数据传输时的相关信息(例如上述的第二AP的工作模式、第二AP所能调度的第二STA的最大数量、第二AP所能调度的下行数据流的最大数量和第二AP工作在IA模式时预留给第一AP收发数据的第二预留方向的数量),还可以根据该SYN-CTS帧所指示的内容确定如何调度第二STA,从而与第一AP并行进行下行数据传输。
现有技术中,在两个AP并行进行下行数据传输时,为了消除交叉干扰,两个AP往往采用单一的工作模式,例如采用单一的IA模式或者单一的(Beamforming,简称BF)模式,但是所采用的单一的工作模式往往不是最适合当前通信场景的工作模式。例如,当发送端天线数较多时,系统往往采用BF工作模式,但是BF工作模式往往带来的数据增益较小,根据无法保证当前的通信发展对数据增益的要求;又例如,为了获得较高的数据增益,系统采用单一的IA模式,虽然IA模式可以获得高的数据增益,但IA模式在一些天线配置场景中根本不可用,若在不可用IA模式的天线配置场景中继续使用IA模式,往往导致系统通信质量下降,数据增益急剧下降,从而也无法保证系统的数据增益。但是,在本发明实施例中,第二AP通过根据第一AP上报的SYN-RTS帧所指示的内容,确定适合于第二AP与第一AP当前天线配置场景下的工作模式(即该工作模式是根据第一AP和第二AP当前的天线配置场景确定的),从而使得第二AP和第一AP可以根据上述所确定的SYN-CTS帧中的内容进行相应的STA调度以及下行数据传输,故,本发明实施例提供的方法,所确定的两个AP的工作模式是与当前两个AP的天线配置适配的模式,因此可以保证系统的数据流增益
本发明实施例提供的数据并行传输的方法,第二AP通过接收第一AP发送的SYN-RTS帧,并通过该SYN-RTS帧确定向第一AP发送SYN-CTS帧,从而使得第一AP和第二AP均获知与当前的天线配置场景适配的工作模式,进而使得第一AP根据上述SYN-CTS帧所指示的内容调度第一STA,第二AP通过上述SYN-CTS所指示的内容帧调度第二STA。本发明实施例提供的 方法,第二AP通过根据第一AP上报的SYN-RTS帧中的内容,确定适合于第二AP与第一AP当前天线配置场景下的工作模式,从而使得第二AP和第一AP可以根据上述所确定的SYN-CTS帧中的内容进行相应的STA调度以及下行数据传输,进而可以保证系统的数据流增益。
作为本发明实施例的一种可能的实施方式,可选的,上述SYN-RTS帧可以包括媒体接入控制报文头(Media Access Control Header,简称MAC Header)信息、仅限干扰对齐(Interference Alignment Only,简称IA_ONLY)信息、基础服务集调度的站点的天线数量(BSS Station Antenna Number,简称BSS_STA_ATN_NUM)信息和帧校验序列(Frame Check Sequence,简称FCS),其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。该SYN-RTS帧的结构可以参见下述表1所示:
表1
MAC Header IA_ONLY BSS_STA_ATN_NUM FCS
具体的,以图2为例,第一AP(天线数量为M1)竞争获得信道使用权后,可以根据其收集的第二AP的天线数信息(M2)选择处于其覆盖区域且天线数≥M1的第二AP作为其下行同步传输合作对象,该天线数信息可由第一AP在空闲时通过第二AP发送的信标帧(beacon)等的能力信息获得。
然后,第一AP给第二AP发送SYN-RTS帧。该SYN-RTS帧携带IA_ONLY信息和BSS_STA_ATN_NUM信息。其中,IA_ONLY信息和BSS_STA_ATN_NUM信息均可以以字段的形式在SYN-RTS帧中体现。可选的,IA_ONLY字段(或者IA_ONLY信息)可以为1比特,当IA_ONLY=1时,表示第一AP只愿意工作在IA模式,当IA_ONLY=0表示第一AP对工作模式无限制。可选的,上述BSS_STA_ATN_NUM字段(或者BSS_STA_ATN_NUM信息)可以为4比特,用于向第二AP指示第一AP将要调度的第一STA的天线数量。上述表1中的MAC Header为MAC帧的帧头,FCS为对帧的内容进行校验保护的序列。
作为本发明实施例的另一种可能的实施方式,在上述实施例的基础上,可选的,上述SYN-CTS帧可以包括MAC Header信息、第一部分、第二部分 和FCS,具体可以参照下述表2所示的帧结构:
表2
MAC Header MODE DIR_NUM STA_NUM STREAM_NUM MODE DIR_NUM STA_NUM STREAM_NUM FCS
具体的,表2中,靠近MAC Header的前面的MODE、预留方向数量Direction Reserved Number,简称DIR_NUM)、站点数量(Station Number,简称STA_NUM)和数据流数量(Stream Number,简称STREAM_NUM)为上述SYN-CTS帧的第一部分的内容,对应于第一AP,即前面的MODE为第一MODE信息,前面的DIR_NUM为第一DIR_NUM信息,前面的STA_NUM为第一STA_NUM,前面的STREAM_NUM为第一STREAM_NUM;后面的MODE、DIR_NUM、STA_NUM和STREAM_NUM为上述SYN-CTS帧的第二部分的内容,对应于第二AP,即后面的MODE为第二MODE信息,后面的DIR_NUM为第二DIR_NUM信息,后面的STA_NUM为第二STA_NUM,后面的STREAM_NUM为第二STREAM_NUM。需要说明的是,上述MODE信息、DIR_NUM信息、STA_NUM信息和STREAM_NUM信息均可以以字段的形式在帧中体现。
其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
表2中,第一MODE字段(或者第一MODE信息)和第二MODE字段(或者第二MODE信息)可以为1比特,当第一MODE字段的值为1时,指示第一 AP工作于IA模式,当第一MODE字段的值为0时,指示第一AP工作于BF模式;当第二MODE字段的值为1时,指示第二AP工作于IA模式,当第二MODE字段的值为0时,指示第二AP工作于BF模式。
第一DIR_NUM字段(或者第一DIR_NUM信息)和第二DIR_NUM字段(或者第二DIR_NUM信息)可以为4比特,当第一AP工作在BF模式时,第一DIR_NUM字段的值为0,当第二AP工作在BF模式时,第二DIR_NUM字段的值为0。需要说明的是,当第一AP工作在BF模式时,第一DIR_NUM字段的值为0,只是说明该第一DIR_NUM字段可以不需要指示;当第二AP工作在BF模式时,第二DIR_NUM字段的值为0,也只是说明该第二DIR_NUM字段可以不需要指示。
第一STA_NUM字段(或者第一STA_NUM信息)和第二STA_NUM字段(或者第二STA_NUM信息)可以为4比特,当第一AP工作于IA模式时,第二STA_NUM字段为大于0的值;当第一AP工作于BF模式时,第二STA_NUM字段为0值(或不对第二STA_NUM字段进行指示);当第二AP工作于IA模式时,第一STA_NUM字段为大于0的值;当第二AP工作于BF模式时,第一STA_NUM字段为0值(或不对第一STA_NUM字段进行指示)。
第一STREAM_NUM字段(或者第一STREAM_NUM信息)和第二STREAM_NUM字段(或者第二STREAM_NUM信息)可以为3比特,分别指示第一AP和第二AP所能调度的下行数据流的最大数量。
图4为本发明实施例提供的数据并行传输的方法实施例二的流程示意图。在上述实施例的基础上,进一步地,上述S102具体可以包括如下步骤:
S201:第二AP根据所述SYN-RTS帧中的IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式。
具体的,假设所述第一AP将要调度的第一STA的天线数量的最小值为N1,所述第一AP的天线数量为M1,所述第二AP将要调度的第二STA的天线数量的最小值为N2,所述第二AP的天线数量为M2。
可选的,若上述表1所示的SYN-RTS帧中的IA_ONLY字段为1,即若 所述第一AP工作模式仅为IA模式,则当所述
Figure PCTCN2015074192-appb-000064
Figure PCTCN2015074192-appb-000065
时,所述第二AP确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为BF模式;或者当所述
Figure PCTCN2015074192-appb-000067
时,所述第二AP确定所述第一AP和所述第二AP的工作模式均为IA模式;其中,
Figure PCTCN2015074192-appb-000068
表示向下取整操作。
可选的,若表1所示的SYN-RTS帧中的IA_ONLY字段为0,即若所述第一AP工作模式不受限制,则当
Figure PCTCN2015074192-appb-000069
Figure PCTCN2015074192-appb-000070
时,则所述第二AP确定所述第一AP和所述第二AP的工作模式均为BF模式;或者,当
Figure PCTCN2015074192-appb-000071
Figure PCTCN2015074192-appb-000072
时,则所述第二AP确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为BF模式;或者,当
Figure PCTCN2015074192-appb-000073
Figure PCTCN2015074192-appb-000074
时,则所述第二AP确定所述第一AP的工作模式为BF模式,所述第二AP的工作模式为IA模式;或者,当
Figure PCTCN2015074192-appb-000075
Figure PCTCN2015074192-appb-000076
时,则所述第二AP确定所述第一AP和所述第二AP的工作模式均为IA模式。
可选的,若上述表1所示的SYN-RTS帧中的IA_ONLY字段为1,即若所述第一AP工作模式仅为IA模式,则当上述
Figure PCTCN2015074192-appb-000077
Figure PCTCN2015074192-appb-000078
或者,当所述
Figure PCTCN2015074192-appb-000079
Figure PCTCN2015074192-appb-000080
时,所述第二AP确定无法与第一AP进行并行数据传输,故第二AP确定无法在第一AP工作在IA模式下与第一AP进行下行并行数据传输,则第二AP确定不再向第一AP发送SYN-CTS帧,而确定可以向第一AP发送SYN-DENY帧,该SYN-DENY帧包括MAC Header信息、拒绝原因(DENY_REASON)信息和FCS;所述DENY_REASON信息,用于向第一AP指示第二AP拒绝与第一AP进行下行并行传输的原因。并且,MAC Header信息、DENY_REASON信息和FCS在SYN-DENY中可以以字段的形式进行体现,参见表3所示。可选的,该SYN_DENY帧可以携带4比特的DENY_REASON字段指示拒绝原因,例如用0001表示没有缓存的下行数据用于并行传输,0010表示小区内重叠的基础服务集合 (Overlapping BSS,简称OBSS)区域的STA能力较低,拒绝原因还可以为第二AP无法满足全带宽并行传输的请求。可选的,第二AP也可以无理由的拒绝与第一AP进行并行传输,故DENY_REASON字段还可以指示为没有理由(Out of no reason)等。
表3
MAC Header DENY_REASON FCS
可选的,上述第二AP确定第一AP和第二AP的工作模式可以参照上述条件-结果映射关系的形式确定,也可以根据下述表4和表5所示的表格的形式确定(为方便标识,用AP1表示第一AP,用AP2表示第二AP)。表5中的“Unavailable(无法达到)”表示第二AP无法在第一AP工作在IA模式下与第一AP进行下行并行数据传输。
表4:IA_ONLY=0
Figure PCTCN2015074192-appb-000081
表5:IA_ONLY=1
Figure PCTCN2015074192-appb-000082
S202:第二AP根据所述第一AP的工作模式和所述第二AP的工作模式确定是否向所述第一AP发送所述SYN-CTS帧。
具体的,当第二AP确定第一AP和第二AP的工作模式之后,首先会根据第一AP和第二AP的工作模式确定是向第一AP发送SYN-CTS帧还是发送SYN-DENY帧。具体为:
若上述表1所示的SYN-RTS帧中的IA_ONLY字段为1,即若所述第一 AP工作模式仅为IA模式,则
Figure PCTCN2015074192-appb-000083
Figure PCTCN2015074192-appb-000084
或者,当所述
Figure PCTCN2015074192-appb-000085
Figure PCTCN2015074192-appb-000086
时,第二AP确定可以向第一AP发送所述SYN-CTS帧。也就是说,当第二AP确定第一AP的工作模式为IA模式,第二AP的工作模式为BF模式时,第二AP确定可以向第一AP发送所述SYN-CTS帧;当第二AP确定第一AP和第二AP的工作模式均为IA模式时,第二AP确定可以向第一AP发送SYN-CTS帧。
若表1所示的SYN-RTS帧中的IA_ONLY字段为0,即若所述第一AP工作模式不受限制,则无论第二AP确定的第一AP和第二AP为何种工作模式,第二AP均确定可以向第一AP发送SYN-CTS帧,只是发送的SYN-CTS帧中的所指示的内容不同。
进一步地,当第二AP确定会向第一AP发送SYN-CTS帧时,第二AP确定不同工作模式下发送给第一AP的SYN-CTS帧的内容。具体可以参见图5所示的实施例三。如图5所示,该方法包括:
S301:第二AP根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模式工作参数;其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、所述第二预留方向的数量。
具体可以分为下述4种情况,为了方便公式标识,第一AP用AP1表示,第二AP用AP2表示。当然,本发明实施例对确定第一AP的模式工作参数和所述第二AP的模式工作参数所应用的公式并不做限制,以下公式仅是一种示例。具体为:
第一种:当第一AP和第二AP均工作在IA模式时,第二AP根据如下公式分别确定第一AP的模式工作参数和所述第二AP的模式工作参数,具体为:
第二AP根据
Figure PCTCN2015074192-appb-000087
(公式1)确定第一预留方向(即AP1_DIR_NUM)的数量,其中,K1为正整数;第二AP根据
Figure PCTCN2015074192-appb-000088
(公式2)确定第二AP所能调度的第二STA的最大数量(即AP2_STA_NUM),其中,
Figure PCTCN2015074192-appb-000089
为公式1中AP1_DIR_NUM取最小值时的K1的值;第二AP根据
Figure PCTCN2015074192-appb-000090
(公式3)确定第二预留方向的数量(即AP2_DIR_NUM),其中,K2为正整数;第二AP根据
Figure PCTCN2015074192-appb-000091
(公式4)确定第一AP所能调度的第一STA的最大数量(即AP1_STA_NUM),其中,
Figure PCTCN2015074192-appb-000092
为公式3中AP2_DIR_NUM取最小值时的K2的值;第二AP根据AP1_STREAM_NUM=M1-AP1_DIR_NUM(公式5)确定第一AP所能调度的下行数据流的最大数量(即AP1_STREAM_NUM);第二AP根据AP2_STREAM_NUM=M2-AP2_DIR_NUM(公式6)确定第二AP所能调度的下行数据流的最大数量(即AP2_STREAM_NUM)。通过公式1至公式6,第二AP可以确定出当第一AP和第二AP工作在IA模式下时的模式工作参数。
第二种:当第一AP工作在IA模式,第二AP工作在BF模式时,第二AP根据如下公式分别确定第一AP的模式工作参数和所述第二AP的模式工作参数,具体为:
第二AP根据上述公式1确定第一预留方向AP1_DIR_NUM的数量;第二AP根据上述公式2确定第二AP所能调度的第二STA的最大数量AP2_STA_NUM;在第一AP工作在IA模式,第二AP工作在BF模式的场景下,第二AP确定的第二预留方向的数量AP2_DIR_NUM=0,并且,第二AP确定的第一AP所能调度的第一STA的数量AP1_STA_NUM=0;第二AP根据上述公式5确定第一AP所能调度的下行数据流的最大数量AP1_STREAM_NUM;第二AP根据AP2_STREAM_NUM=M2-AP1_STREAM_NUM(公式7)确定第二AP所能调度的下行数据流的最大数量AP2_STREAM_NUM。由此,第二AP可以确定出第一 AP工作在IA模式的模式工作参数和第二AP工作在BF模式下时的模式工作参数。
第三种:当第一AP工作在BF模式,第二AP工作在IA模式时,第二AP根据如下公式分别确定第一AP的模式工作参数和所述第二AP的模式工作参数,具体为:
第二AP根据上述公式3确定第二预留方向的数量AP2_DIR_NUM;第二AP根据上述公式4确定第一AP所能调度的第一STA的最大数量AP1_STA_NUM;在第一AP工作在BF模式,第二AP工作在IA模式时,第二AP确定的第一预留方向的数量AP1_DIR_NUM=0,以及确定的第二AP所能调度的第二STA的最大数量AP2_STA_NUM=0;第二AP可以根据上述公式6确定第二AP所能调度的下行数据流的最大数量AP2_STREAM_NUM;第二AP可以根据AP1_STREAM_NUM=M1-AP2_STREAM_NUM(公式8)确定第一AP所能调度的下行数据流的最大数量AP1_STREAM_NUM。由此,第二AP可以确定出第一AP工作在BF模式,第二AP工作在IA模式下时的模式工作参数。
第四种:当第一AP和第二AP均工作在BF模式时,第二AP根据如下公式分别确定第一AP的模式工作参数和所述第二AP的模式工作参数,具体为:
在第一AP和第二AP工作在BF模式时,第二AP确定第一预留方向的数量AP1_DIR_NUM=0、确定第一AP所能调度的第一STA的最大数量AP1_STA_NUM=0、确定第二预留方向的数量AP2_DIR_NUM=0、确定第二AP所能调度的第二STA的数量AP2_STA_NUM=0;第二AP根据
Figure PCTCN2015074192-appb-000093
(公式9)确定第一AP所能调度的下行数据流的最大数量AP1_STREAM_NUM;第二AP根据
Figure PCTCN2015074192-appb-000094
(公式10)确定第二AP所能调度的下行数据流的最大数量AP2_STREAM_NUM。由此,第二AP可以确定出第一AP和第二AP均工作在BF模式下时的模式工作参数。
S302:第二AP将所述第一AP的工作模式、所述第二AP的工作模式、所述第一AP的模式工作参数和所述第二AP的模式工作参数携带在所述SYN-CTS帧中发送给所述第一AP。
具体的,由于上述第二AP已经根据第一AP和第二AP的工作模式确定可以向第一AP发送SYN-CTS帧,并且第二AP也确定出第一AP的模式工作参数和第二AP的模式工作参数,因此,第二AP将第一AP的工作模式、第二AP的工作模式、第一AP的模式工作参数和第二AP的模式工作参数以字段的形式携带在SYN-CTS帧中发送给第一AP,SYN-CTS帧的结构可以参见上述表2所示。
第一AP接收到该SYN-CTS帧后,根据该SYN-CTS帧中的第一MODE信息确定第一AP的工作模式,若第一MODE信息(或者第一MODE字段)的值为1,则第一AP确定其工作于IA模式,若第一MODE信息的值为0,则第一AP确定其工作于BF模式。之后,第一AP可以根据SYN-CTS帧中的第一STA_NUM信息(或者第一STA_NUM字段)、第一STREAM_NUM信息(或者第一STREAM_NUM字段)和第二DIR_NUM信息(或者第二DIR_NUM字段)确定如何调度第一STA。如果第一STA_NUM信息的值为0(即上述AP1_STA_NUM=0),则第一AP调度的第一STA的总天线数和分配的总数据流均不超过第一STREAM_NUM(即不超过上述AP1_STEARM_NUM);如果第一STA_NUM信息的值大于0,则第一AP调度的第一STA的个数最大不超过第一STA_NUM(即最大不超过上述AP1_STA_NUM),且第一AP预留给第二AP收发数据的第一预留方向的数量最大不超过上述AP2_DIR_NUM,第一AP所调度的下行数据流最大不超过第一STREAM_NUM(即最大不超过AP1_STEARM_NUM)。
同理,第二AP在获知第一AP交互完毕后,根据SYN-CTS帧中的内容调度第二STA。这里所说的交互指的是信令帧的交互,而非数据交互,例如,该交互可以为第一AP和第一STA之间的关于信道探测信息的帧交互, 包括空数据分组声明(Null Data Packet Announcement,简称NDPA)或空数据分组(Null Data Packet,简称NDP)或波束成形报告轮询(Beamforming Report Poll,简称BRP)或者波束成形报告(Beamforming Report,简称BR)等;又例如,该交互还可以为第一AP在与第一STA交互完之后,给第二AP单独发送一个同步帧,本发明方案对此处第一AP与第一STA之间及第一AP与第二AP之间交互的内容并不做限制。可选的,第二AP在第一AP调度第一STA(按照图2所示的例子,第一AP调度的第一STA为STA1、STA2和STA3)时可获得其调度信息,因此当第二AP侦听到STA3的上行帧(该上行帧为信道探测帧)时,其可知第一AP已交互完毕;或者,第一AP也可以在发送下行数据之前,预先发送一个同步帧来通知第二AP其已经交互完毕的效果,本发明方案对此不做限制。第二AP确定调度第二STA,具体为:如果第二STA_NUM信息的值为0(即上述AP2_STA_NUM=0),则第二AP调度的第二STA的总天线数和分配的总数据流均不超过第一STREAM_NUM(即不超过上述AP2_STEARM_NUM);如果第二STA_NUM信息的值大于0,则第二AP调度的第二STA的个数最大不超过第二STA_NUM(即最大不超过上述AP2_STA_NUM),且第二AP预留给第一AP收发数据的第二预留方向的数量最大不超过上述AP1_DIR_NUM,第二AP所调度的下行数据流最大不超过第二STREAM_NUM(即最大不超过AP2_STEARM_NUM)。在第二AP根据SYN-CTS帧确定如何调度第二STA后,第二AP可以与第一AP进行并行数据传输。
本发明实施例提供的数据并行传输的方法,第二AP通过接收第一AP发送的SYN-RTS帧,并通过该SYN-RTS帧确定第一AP和第二AP的工作模式,进而根据第一AP和第二AP的工作模式确定向第一AP发送SYN-CTS帧,从而使得第一AP和第二AP均获知与当前的天线配置场景适配的工作模式,进而使得第一AP根据上述SYN-CTS帧所指示的内容调度第一STA,第二AP根据上述SYN-CTS帧所指示的内容调度第二STA。本发明实施例提供的方法,第二AP通过根据第一AP上报的SYN-RTS帧中的内容,确定适合于第二AP与第一AP当前天线配置场景下的工作模式,从而使得第二AP和第一AP可以根据上述所确定的SYN-CTS帧中的内容进行相应的STA调度 以及下行数据传输,进而可以保证系统的数据流增益。
图6为本发明实施例提供的数据并行传输的方法实施例四的流程示意图。本实施例涉及的是第二AP通过与第一AP之间交互的SYN-RTS帧、以及第一AP的天线配置场景、第二AP的天线配置场景确定第一AP和第二AP的工作模式以及工作模式参数,进而通过SYN-CTS帧告知第一AP如何调度第一STA,从而使得第一AP与第二AP并行进行下行数据传输,并进行交叉干扰消除的整个过程。如图6所示,该方法包括:
S401:第二AP接收所述第一AP发送的SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量,所述SYN-RTS帧包括MAC Header信息、IA_ONLY信息、BSS_STA_ATN_NUM信息和FCS。
该步骤具体参见上述实施例一中的S101的具体描述,在此不再赘述。
S402:第二AP根据所述SYN-RTS帧中的IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式。
该步骤具体可以参见上述实施例二中的S201的描述,在此不再赘述。
S403:第二AP根据所述第一AP的工作模式和所述第二AP的工作模式确定是否向所述第一AP发送所述SYN-CTS帧。若否,执行S404,若是,执行S405。
该步骤具体可以参见上述实施例二中的S202的描述,在此不再赘述。
S404:第二AP向第一AP发送SYN-DENY帧,以使第一AP执行正常的单BSS内的MU-MIMO下行传输流程。
该步骤具体可以参见上述实施例二中的S201的描述,在此不再赘述。
S405:第二AP根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模式工作参数。
其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、 所述第二预留方向的数量。
该步骤具体可以参见上述实施例三中的S301的描述,在此不再赘述。
S406:第二AP将所述第一AP的工作模式、所述第二AP的工作模式、所述第一AP的模式工作参数和所述第二AP的模式工作参数携带在所述SYN-CTS帧中发送给所述第一AP。
该步骤具体可以参见上述实施例三中的S302的描述,在此不再赘述。
S407:第二AP获取所述第二AP到所述第一AP调度的第一STA之间的信道矩阵,并根据所述信道矩阵确定所述第二AP工作在IA模式时预留给所述第一AP收发数据的所述第二预留方向。
具体的,上述第二AP可以通过侦听的方式获得第二AP到所述第一AP调度的第一STA之间的信道矩阵,具体为:按照上述图2所示的例子,第一AP调度的第一STA为STA1、STA2和STA3,当第一AP在调度STA1、STA2和STA3时,STA1、STA2和STA3轮流发送上行帧给第一AP,因而第二AP可以通过侦听的方式测得第二AP到STA1的信道矩阵G1、第二AP到STA2的矩阵G2和第二AP到STA3的信道矩阵G3。同理,第一AP也可以在第二AP调度第二STA时通过侦听的方式测得第一AP到第二AP调度的第二STA之间的信道矩阵,按照上述图2所示的例子,假设第二AP调度的第二STA为STA5、STA6和STA7,则当第二AP在调度STA5、STA6和STA7时,STA5、STA6和STA7轮流发送上行帧给第二AP,因而第一AP可以通过侦听的方式测得第一AP到STA5的信道矩阵Ga、第二AP到STA6的矩阵Gb和第二AP到STA7的信道矩阵Gc。
然后,第二AP根据所确定的第二AP到第一AP所调度的第一STA之间的信道矩阵和公式11确定第二AP工作在IA模式时预留给第一AP收发数据的第二预留方向(设为R2),公式11具体为:
Figure PCTCN2015074192-appb-000095
其中,NULL(·)表示求取零空间向量。需要说明的是,该第一预留方向是第二AP预留给第一AP进行收发数据的方向,在该第二预留方向上时,第二AP也会收发数据,但是,由于第二AP传输的数据与该方向的正交性,在该第二预留方向上第二AP所传输的数据即为空,也就是说,在理想情况下,最终在 第一AP与第二AP并行传输数据时,该第二预留方向上只有第一AP所传输的数据,第一AP和第二AP在该第二预留方向上是互不干扰的。
同样的,第一AP根据所确定的第一AP到第二AP所调度的第二STA之间的信道矩阵和公式12确定第一AP工作在IA模式时预留给第二AP收发数据的第一预留方向(设为R1),该公式12具体为:
Figure PCTCN2015074192-appb-000096
需要说明的是,第一预留方向是第一AP预留给第二AP进行收发数据的方向,在该第一预留方向上时,第一AP虽然也会收发数据,但是,由于第一AP传输的数据与该方向的正交性,因此在理想情况下,在该第一预留方向上第一AP所传输的数据即为空,也就是说最终在第一AP与第二AP并行传输数据时,该第一预留方向上只有第二AP所传输的数据,第一AP和第二AP在该方向上是可以互不干扰的。
S408:第二AP广播所述第二预留方向;所述第二预留方向用于使所述第一AP调度的第一STA根据所述第二预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除。
S409:第二AP根据所述第二预留方向或所述信道矩阵确定预编码矩阵。
S410:第二AP根据所述预编码矩阵对所述第二AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第二预留方向正交。
具体的,在第二AP获得第二预留方向之后,将第二预留方向进行广播,第一AP在获得第一预留方向之后,将第一预留方向进行广播,从而使得第一AP获知第二AP工作在IA模式时预留给自己收发数据的方向为第二预留方向(R2),并使得第二AP获知第一AP工作在IA模式时预留给自己收发数据的方向为第一预留方向(R1)。可选的,第二AP广播第二预留方向或第一AP广播第一预留方向均可以通过广播预留方向帧进行广播。
当第二AP工作在IA模式时,第二AP根据自身预留给第一AP收发数据的第二预留方向R2和公式13计算预编码矩阵P2,公式13具体为:P2=NULL(R2),其中NULL(Rk)={x|Rkx=0},它用来获得零空间矢量的操作;当 第二AP工作在BF模式时,则根据上述第二AP所确定的第二AP到第一AP所调度的第一STA之间的信道矩阵G1、G2、G3和公式14确定预编码矩阵P2,公式14具体为:P2=NULL(G1G2G3)。当第二AP确定预编码矩阵P2后,利用P2对第二AP待发送的下行数据进行预编码,获得编码数据,该编码数据与第二预留方向R2正交。
另一方面,当第一AP工作在IA模式时,第一AP根据自身预留给第二AP收发数据的第一预留方向R1和公式15计算预编码矩阵P1,公式15具体为:P1=NULL(R1);当第一AP工作在BF模式时,则根据上述第一AP所确定的第一AP到第二AP所调度的第二STA之间的信道矩阵Ga、Gb、Gc和公式16确定预编码矩阵P1,公式16具体为:P1=NULL(Ga Gb Gc)。当第一AP确定预编码矩阵P1后,利用P1对第一AP待发送的下行数据进行预编码,获得第一AP的编码数据,该第一AP的编码数据与第一预留方向R1正交。
S411:第二AP根据所述SYN-CTS帧中的所述第二MODE信息确定所述第二AP的工作模式,并根据所述第二DIR_NUM信息、所述第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送所述编码数据。
具体的,当第二AP根据预编码矩阵P2获得编码数据后,根据SYN-CTS帧中的第二MODE信息确定该第二AP的工作模式,并根据第二DIR_NUM信息、第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送该经过P2编码后的编码数据。
由于上述第二AP会广播第二预留方向,因此第一AP所调度的第一STA也会接收到第二AP广播的第二预留方向;然后,第一AP所调度的第一STA根据该第二预留方向、第二AP到第一AP所调度的第一STA之间的信道矩阵G1、G2、G3以及公式17确定接收均衡矩阵,公式17具体为:w2=(GGH)-1G·R2;其中,公式17中的G可以为G1、G2、G3,该接收均衡矩阵用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除,也就是说,在第一AP和第二AP进行并行传输时,第一AP所调度的第一STA接收到的数据不仅包括第一AP下发的经过第一AP的预编码矩阵P1编码后的编码数据,还包括第二AP下发的经过第二AP的预编码矩阵P2编码后的编码数据,然后第一AP通过上述接收均衡矩阵w2,与接收到的数据进行均衡消除(均衡消除的原理是基于第二AP下发 的数据与第二预留方向正交,将第二AP在第二预留方向的干扰数据消除),从而使得最终在第二预留方向上仅剩下第一AP下发的数据,因此使得第一AP所调度的第一STA(STA1、STA2和STA3)在R2方向上收发数据时不会遭受第二AP的干扰。
另一方面,当第一AP根据预编码矩阵P1获得编码数据后,根据SYN-CTS帧中的第一MODE信息确定该第一AP的工作模式,并根据第一DIR_NUM信息、第一STA_NUM信息和第一STREAM_NUM信息,向所述第一STA发送该经过P1编码后的编码数据。
由于上述第一AP会广播第一预留方向,因此第二AP所调度的第二STA也会接收到第一AP广播的第一预留方向;然后,第二AP所调度的第二STA该第一预留方向、第一AP到第二AP所调度的第二STA之间的信道矩阵Ga、Gb、Gc以及公式18确定接收均衡矩阵w1,公式18具体为:w1=(GGH)-1G·R1;其中,公式18中的G可以为Ga、Gb、Gc,该接收均衡矩阵w1用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除,也就是说,在第一AP和第二AP进行并行传输时,第二AP所调度的第二STA接收到的数据不仅包括第二AP下发的经过第二AP的预编码矩阵P2编码后的编码数据,还包括第一AP下发的经过第一AP的预编码矩阵P1编码后的编码数据,然后第二AP通过该接收均衡矩阵w1,与接收到的数据进行均衡消除(均衡消除的原理是基于第一AP下发的数据与第一预留方向正交,将第一AP在第一预留方向的干扰数据消除),从而使得最终在第一预留方向上仅剩下第二AP下发的数据,因此使得第二AP所调度的第二STA(STA5、STA6和STA7)在R1方向上收发数据时不会遭受第一AP的干扰。
本发明实施例提供的数据并行传输的方法,第二AP通过接收第一AP发送的SYN-RTS帧,并通过该SYN-RTS帧确定第一AP和第二AP的工作模式,进而根据第一AP和第二AP的工作模式确定向第一AP发送SYN-CTS帧,从而使得第一AP和第二AP均获知与当前的天线配置场景适配的工作模式,进而使得第一AP根据上述SYN-CTS帧所指示的内容调度第一STA,第二AP根据上述SYN-CTS帧所指示的内容调度第二STA,进而使得第一AP和第二AP在并行传输时进行干扰消除。本发明实施例提供的方法,第二AP 通过根据第一AP上报的SYN-RTS帧中的内容,确定适合于第二AP与第一AP当前天线配置场景下的工作模式,从而使得第二AP和第一AP可以根据上述所确定的SYN-CTS帧中的内容进行相应的STA调度以及下行数据传输,进而可以保证系统的数据流增益。
图7为本发明实施例提供的数据并行传输的方法实施例五的流程示意图。本实施例涉及的方法同样适用于上述图2所示的MU-MIMO系统。如图7所示,该方法包括:
S501:第一AP向所述第二AP发送同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量。
具体的,第一AP通过信道竞争获得信道使用权之后,会根据第一AP下的第一STA的受干扰情况确定下行同步传输合作对象,本实施例中,第一AP确定可能会给第一AP下的第一STA带来干扰的第二AP为下行同步传输合作对象,并向该第二AP发送SYN-RTS帧。
在第一AP确定下行同步传输合作传输对象为第二AP后,第一AP向第二AP发送SYN-RTS帧;第二AP接收到该SYN-RTS帧后,根据该SYN-RTS帧获知第一AP的工作模式受限情况,即获知第一AP的工作模式偏好,例如第一AP仅支持工作在IA模式或者第一AP对工作模式没有限制。第二AP还可以根据该SYN-RTS帧获知第一AP将要调度的第一STA的数量。按照上述图2所示,假设第一AP将要调度自己所服务的所有的第一STA。
S502:第一AP接收所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量发送的同步允许发送SYN-CTS帧。
其中,所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数 据的第二预留方向的数量。
具体的,第二AP可以结合上述SYN-RTS帧、第一AP的天线数量、第二AP的天线数量和第二AP将要调度的第二STA的天线数量,确定是否向第一AP发送SYN-CTS帧。可选的,第二AP可以结合上述SYN-RTS帧、第一AP的天线数量、第二AP的天线数量和第二AP将要调度的第二STA的天线数量判断自身当前是否支持与第一AP进行并行传输,当第二AP判断自身可以与第一AP进行下行并行传输时,第二AP确定向第一AP发送SYN-CTS帧。并且,第二AP可以通过SYN-CTS帧告知第一AP适合于第一AP当前通信场景下的工作模式;还可以通过该SYN-CTS帧告知第一AP所能调度的第一STA的最大数量,例如:上述第一AP通过SYN-RTS帧告知第二AP自身将要调度所覆盖的所有第一STA,但是第二AP结合第一AP的天线数量和第二AP的天线数量以及第二AP将要调度的第二STA的天线数量确定第一AP当前只能调度3个第一STA,则第二AP将该第一AP所能调度的第一STA的最大数量携带在SYN-CTS帧中发送给第一AP,假设第一AP可以调度的第一STA为STA1、STA2和STA3;第二AP还可以结合上述SYN-RTS帧、第一AP的天线数量、第二AP的天线数量和第二AP将要调度的第二STA的天线数量确定第一AP所能调度的下行数据流的最大数量,并通过SYN-CTS帧告知给第一AP;第二AP还可以确定第一AP工作在IA模式时可以预留给第二AP收发数据的第一预留方向的数量,并通过SYN-CTS帧中告知给第一AP。可选的,上述第一AP的天线数量、第二AP的天线数量和第二AP将要调度的第二STA的天线数量,第二AP均是预知的,或者,第二AP可以通过侦听探测的方式获知这些信息。可选的,上述第二AP将要调度的第二STA的天线数量,可以是第二AP将要调度的每个第二STA上的天线数量,还可以是第二AP将要调度的所有第二STA中的最小天线数量。
第一AP接收第二AP发送的SYN-CTS帧,并通过该SYN-CTS帧获知第一AP的工作模式、第一AP所能调度的第一STA的最大数量、第一AP所能调度的下行数据流的最大数量以及第一AP工作在干扰对齐IA模式时所能预留给第二AP收发数据的第一预留方向的数量,第一AP根据该SYN-CTS帧确定如何调度第一STA,并与所调度的第一STA进行数据传输。需要说明 的是,第一预留方向是第一AP预留给第二AP进行收发数据的方向,在该第一预留方向上时,第一AP虽然也会收发数据,但是,由于第一AP传输的数据与该方向的正交性,因此在理想情况下,在该第一预留方向上第一AP所传输的数据即为空,也就是说最终在第一AP与第二AP并行传输数据时,该第一预留方向上只有第二AP所传输的数据,第一AP和第二AP在该方向上是可以互不干扰的。故,第二AP要告知第一AP留给第二AP收发数据的第一预留方向的数量,以便于后面的两个AP进行下行并行传输。
当然,第二AP工作在IA模式时也会给第一AP收发数据预留第二预留方向,在该第二预留方向上时,第二AP也会收发数据,但是,由于第二AP传输的数据与该方向的正交性,在该第二预留方向上第二AP所传输的数据即为空,也就是说最终在第一AP与第二AP并行传输数据时,该第二预留方向上只有第一AP所传输的数据,第一AP和第二AP在该第二预留方向上也是可以互不干扰的。因此,第二AP也可以通过上述SYN-CTS帧告知第一AP第二预留方向的数量。并且,第二AP还可以通过上述SYN-CTS帧告知第一AP当前第二AP的工作模式、第二AP所能调度的第二STA的数量和第二AP所能调度的下行数据流的最大数量,以便于第一AP得知第二BSS下的数据传输情况,进而得知第二BSS可能会对其本身造成的干扰,从而可以辅助后续信道侦听等流程进行交叉干扰的消除。
S503:第一AP根据所述SYN-CTS帧所指示的内容调度所述第一STA,与所述第二AP并行进行下行数据传输。
本发明实施例提供的数据并行传输的方法,第一AP通过向第二AP发送的SYN-RTS帧,使得第二AP可以根据该SYN-RTS帧确定向第一AP发送SYN-CTS帧,从而使得第一AP和第二AP均获知与当前的天线配置场景适配的工作模式,进而使得第一AP根据上述SYN-CTS帧所指示的内容调度第一STA,第二AP根据上述SYN-CTS帧所指示的内容调度第二STA。本发明实施例提供的方法,第二AP通过根据第一AP上报的SYN-RTS帧中的内容,确定适合于第二AP与第一AP当前天线配置场景下的工作模式,从而使得第二AP和第一AP可以根据上述所确定的SYN-CTS帧中的内容进行相应的STA调度以及下行数据传输,进而可以保证系统的数据流增益。
作为本发明实施例的一种可能的实施方式,可选的,所述SYN-RTS帧包 括MAC Header信息、IA_ONLY信息、BSS_STA_ATN_NUM信息和帧FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。该SYN-RTS帧的结构可以参见上述表1所示的帧结构。
以图2为例,第一AP(天线数量为M1)竞争获得信道使用权后,可以根据其收集的第二AP的天线数信息(M2)选择处于其覆盖区域且天线数≥M1的第二AP作为其下行同步传输合作对象,该天线数信息可由第一AP在空闲时通过第二AP发送的信标帧(beacon)等的能力信息获得。
然后,第一AP给第二AP发送SYN-RTS帧。该SYN-RTS帧携带IA_ONLY信息和BSS_STA_ATN_NUM信息。其中,IA_ONLY信息和BSS_STA_ATN_NUM信息均可以以字段的形式在SYN-RTS帧中体现。可选的,IA_ONLY字段(或者IA_ONLY信息)可以为1比特,当IA_ONLY=1时,表示第一AP只愿意工作在IA模式,当IA_ONLY=0表示第一AP对工作模式无限制。可选的,上述BSS_STA_ATN_NUM字段(或者BSS_STA_ATN_NUM信息)可以为4比特,用于向第二AP指示第一AP将要调度的第一STA的天线数量。
作为本发明实施例的另一种可能的实施方式,在上述实施例的基础上,可选的,上述SYN-CTS帧包括MAC Header信息、第一部分、第二部分和帧校验序列FCS,具体可以参照上述表2所示的帧结构。
具体的,表2中,靠近MAC Header的前面的MODE、DIR_NUM、STA_NUM和STREAM_NUM为上述SYN-CTS帧的第一部分的内容,对应于第一AP,即前面的MODE为第一MODE信息,前面的DIR_NUM为第一DIR_NUM信息,前面的STA_NUM为第一STA_NUM,前面的STREAM_NUM为第一STREAM_NUM;后面的MODE、DIR_NUM、STA_NUM和STREAM_NUM为上述SYN-CTS帧的第二部分的内容,对应于第二AP,即后面的MODE为第二MODE信息,后面的DIR_NUM为第二DIR_NUM信息,后面的STA_NUM为第二STA_NUM,后面的STREAM_NUM为第二STREAM_NUM。需要说明的是,上述MODE信息、DIR_NUM信息、STA_NUM信息和STREAM_NUM信息均可以以字段的形 式在帧中体现。
其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
表2中,第一MODE字段(或者第一MODE信息)和第二MODE字段(或者第二MODE信息)可以为1比特,当第一MODE字段的值为1时,指示第一AP工作于IA模式,当第一MODE字段的值为0时,指示第一AP工作于BF模式;当第二MODE字段的值为1时,指示第二AP工作于IA模式,当第二MODE字段的值为0时,指示第二AP工作于BF模式。需要说明的是,当第一AP工作在BF模式时,第一DIR_NUM字段的值为0,只是说明该第一DIR_NUM字段可以不需要指示;当第二AP工作在BF模式时,第二DIR_NUM字段的值为0,也只是说明该第二DIR_NUM字段可以不需要指示。
第一DIR_NUM字段(或者第一DIR_NUM信息)和第二DIR_NUM字段(或者第二DIR_NUM信息)可以为4比特,当第一AP工作在BF模式时,第一DIR_NUM字段的值为0,当第二AP工作在BF模式时,第二DIR_NUM字段的值为0。
第一STA_NUM字段(或者第一STA_NUM信息)和第二STA_NUM字段(或者第二STA_NUM信息)可以为4比特,当第一AP工作于IA模式时,第二STA_NUM字段为大于0的值;当第一AP工作于BF模式时,第二STA_NUM字段为0值(或不对第二STA_NUM字段进行指示);当第二AP工作于IA模式时,第一STA_NUM字段为大于0的值;当第二AP工作于BF模式时,第一STA_NUM字段为0值(或不对第一STA_NUM字段进行指示)。
第一STREAM_NUM字段(或者第一STREAM_NUM信息)和第二STREAM_NUM字段(或者第二STREAM_NUM信息)可以为3比特,分别指示第一AP和第二AP所能调度的下行数据流的最大数量。
图8为本发明实施例提供的数据并行传输的方法实施例六的流程示意图。本实施例涉及的是第一AP通过与第二AP之间交互的SYN-RTS帧,使得第二AP根据该SYN-RTS帧以及第一AP的天线配置场景、第二AP的天线配置场景确定第一AP和第二AP的工作模式以及工作模式参数,进而通过SYN-CTS帧告知第一AP如何调度第一STA,从而使得第一AP与第二AP并行进行下行数据传输,并进行交叉干扰消除的整个过程。如图8所示,该方法包括:
S601:第一AP向所述第二AP发送同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量,所述SYN-RTS帧包括MAC Header信息、IA_ONLY信息、BSS_STA_ATN_NUM信息和FCS。
该步骤具体参见上述实施例五中的S501的具体描述,在此不再赘述。
S602:第一AP接收所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量发送的同步允许发送SYN-CTS帧。
其中,所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量。
具体的,假设所述第一AP将要调度的第一STA的天线数量的最小值为N1,所述第一AP的天线数量为M1,所述第二AP将要调度的第二STA的天线数量的最小值为N2,所述第二AP的天线数量为M2。
第二AP在接收到第一AP发送的SYN-RTS帧之后,首先根据SYN-RTS 帧中的IA_ONLY信息、第一AP的天线数量、第二AP的天线数量、第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式,并根据第一AP和第二AP的工作模式确定是向第一AP发送SYN-CTS帧还是SYN-DENY帧。第二AP确定第一AP和第二AP的工作模式的具体执行过程以及第二AP根据第一AP和第二AP的工作模式确定是否向第一AP发送SYN-CTS帧以及SYN-DENY帧的结构可以参见上述实施例二中S201的描述,在此不再赘述。
当第二AP确定向第一AP发送SYN-CTS帧之后,第二AP根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模式工作参数;其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、所述第二预留方向的数量。需要说明的是,第二AP确定所述第一AP的模式工作参数和所述第二AP的模式工作参数可以参见上述实施例三中的S301的具体描述,在此不再赘述。
最后,第二AP将所确定的第一AP的工作模式、第二AP的工作模式、第一AP的模式工作参数和第二AP的模式工作参数以字段的形式携带在SYN-CTS帧中发送给第一AP,SYN-CTS帧的结构可以参见上述表2所示。
第一AP接收到该SYN-CTS帧后,根据该SYN-CTS帧中的第一MODE信息确定第一AP的工作模式,若第一MODE信息(或者第一MODE字段)的值为1,则第一AP确定其工作于IA模式,若第一MODE信息的值为0,则第一AP确定其工作于BF模式。之后,第一AP可以根据SYN-CTS帧中的第一STA_NUM信息(或者第一STA_NUM字段)、第一STREAM_NUM信息(或者第一STREAM_NUM字段)和第二DIR_NUM信息(或者第二DIR_NUM字段)确定如何调度第一STA。如果第一STA_NUM信息的值为0(即上述AP1_STA_NUM=0),则第一AP调度的第一STA的总天线数和分配的总数据流均不超过第一STREAM_NUM(即不超过上述 AP1_STEARM_NUM);如果第一STA_NUM信息的值大于0,则第一AP调度的第一STA的个数最大不超过第一STA_NUM(即最大不超过上述AP1_STA_NUM),且第一AP预留给第二AP收发数据的第一预留方向的数量最大不超过上述AP2_DIR_NUM,第一AP所调度的下行数据流最大不超过第一STREAM_NUM(即最大不超过AP1_STEARM_NUM)。
同理,第二AP在获知第一AP交互完毕后(这里所说的交互指的是第一AP和第二AP之间的信令帧的交互,而非数据交互,可以参照上述S302中的描述),根据SYN-CTS帧中的内容调度第二STA。可选的,第二AP在第一AP调度第一STA(按照图2所示的例子,第一AP调度的第一STA为STA1、STA2和STA3)时可获得其调度信息,因此当第二AP侦听到STA3的上行帧(该上行帧为信道探测帧)时,其可知第一AP已交互完毕;或者,第一AP也可以在发送下行数据之前,预先发送一个同步帧来通知第二AP其已经交互完毕的效果,本发明方案对此不做限制。第二AP确定调度第二STA,具体为:如果第二STA_NUM信息的值为0(即上述AP2_STA_NUM=0),则第二AP调度的第二STA的总天线数和分配的总数据流均不超过第一STREAM_NUM(即不超过上述AP2_STEARM_NUM);如果第二STA_NUM信息的值大于0,则第二AP调度的第二STA的个数最大不超过第二STA_NUM(即最大不超过上述AP2_STA_NUM),且第二AP预留给第一AP收发数据的第二预留方向的数量最大不超过上述AP1_DIR_NUM,第二AP所调度的下行数据流最大不超过第二STREAM_NUM(即最大不超过AP2_STEARM_NUM)。在第二AP根据SYN-CTS帧确定如何调度第二STA后,第二AP可以与第一AP进行并行数据传输。
S603:第一AP获取所述第一AP到所述第二AP调度的第二STA之间的信道矩阵,并根据所述信道矩阵确定所述第一AP工作在IA模式时预留给所述第二AP收发数据的所述第一预留方向。
具体的,第一AP也可以在第二AP调度第二STA时通过侦听的方式测得第一AP到第二AP调度的第二STA之间的信道矩阵,按照上述图2所示的例子,假设第二AP调度的第二STA为STA5、STA6和STA7,则当第二 AP在调度STA5、STA6和STA7时,STA5、STA6和STA7轮流发送上行帧给第二AP,因而第一AP可以通过侦听的方式测得第一AP到STA5的信道矩阵Ga、第二AP到STA6的矩阵Gb和第二AP到STA7的信道矩阵Gc。
第一AP根据所确定的第一AP到第二AP所调度的第二STA之间的信道矩阵和上述公式12确定第一AP工作在IA模式时预留给第二AP收发数据的第一预留方向(设为R1)。需要说明的是,第一预留方向是第一AP预留给第二AP进行收发数据的方向,在该第一预留方向上时,第一AP虽然也会收发数据,但是,由于第一AP传输的数据与该方向的正交性,在该第一预留方向上第一AP所传输的数据即为空,也就是说,在理想情况下,最终在第一AP与第二AP并行传输数据时,该第一预留方向上只有第二AP所传输的数据,第一AP和第二AP在该方向上是可以互不干扰的。
同理,上述第二AP也可以通过侦听的方式获得第二AP到所述第一AP调度的第一STA之间的信道矩阵,具体为:按照上述图2所示的例子,第一AP调度的第一STA为STA1、STA2和STA3,当第一AP在调度STA1、STA2和STA3时,STA1、STA2和STA3轮流发送上行帧给第一AP,因而第二AP可以通过侦听的方式测得第二AP到STA1的信道矩阵G1、第二AP到STA2的矩阵G2和第二AP到STA3的信道矩阵G3。
然后,第二AP根据所确定的第二AP到第一AP所调度的第一STA之间的信道矩阵和上述公式11确定第二AP工作在IA模式时预留给第一AP收发数据的第二预留方向(设为R2)。需要说明的是,该第一预留方向是第二AP预留给第一AP进行收发数据的方向,在该第二预留方向上时,第二AP也会收发数据,但是,由于第二AP传输的数据与该方向的正交性,因此,在理想情况下,在该第二预留方向上第二AP所传输的数据即为空,也就是说最终在第一AP与第二AP并行传输数据时,该第二预留方向上只有第一AP所传输的数据,第一AP和第二AP在该第二预留方向上是互不干扰的。
S604:第一AP广播所述第一预留方向;所述第一预留方向用于使所述第二AP调度的第二STA根据所述第一预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除。
S605:第一AP根据所述第一预留方向或所述信道矩阵确定预编码矩阵。
S606:第一AP根据所述预编码矩阵对所述第一AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第一预留方向正交。
具体的,在第一AP获得第一预留方向之后,将第一预留方向进行广播,第二AP在获得第二预留方向之后,将第二预留方向进行广播,从而使得第一AP获知第二AP工作在IA模式时预留给自己收发数据的方向为第二预留方向(R2),并使得第二AP获知第一AP工作在IA模式时预留给自己收发数据的方向为第一预留方向(R1)。可选的,第二AP广播第二预留方向或第一AP广播第一预留方向均可以通过广播预留方向帧进行广播。
当第一AP工作在IA模式时,第一AP根据自身预留给第二AP收发数据的第一预留方向R1和上述公式15计算预编码矩阵P1;当第一AP工作在BF模式时,则根据上述第一AP所确定的第一AP到第二AP所调度的第二STA之间的信道矩阵Ga、Gb、Gc和上述公式16确定预编码矩阵P1。当第一AP确定预编码矩阵P1后,利用P1对第一AP待发送的下行数据进行预编码,获得编码数据,该编码数据与第一预留方向R1正交。
另一方面,当第二AP工作在IA模式时,第二AP根据自身预留给第一AP收发数据的第二预留方向R2和上述公式13计算预编码矩阵P2;当第二AP工作在BF模式时,则根据上述第二AP所确定的第二AP到第一AP所调度的第一STA之间的信道矩阵G1、G2、G3和上述公式14确定预编码矩阵P2。当第二AP确定预编码矩阵P2后,利用P2对第二AP待发送的下行数据进行预编码,获得第二AP的编码数据,该第二AP的编码数据与第二预留方向R2正交。
S607:第一AP根据所述SYN-CTS帧中所述第一MODE信息确定所述第一AP的工作模式,并根据所述第一DIR_NUM信息、所述第一STA_NUM信息和所述第一STREAM_NUM信息,向所述第一STA发送所述编码数据。
具体的,当第一AP根据预编码矩阵P1获得编码数据后,根据SYN-CTS帧中的第一MODE信息确定该第一AP的工作模式,并根据第一DIR_NUM信息、第一STA_NUM信息和第一STREAM_NUM信息,向所述第一STA发送该经过P1编码后的编码数据。
由于上述第一AP会广播第一预留方向,因此第二AP所调度的第二STA会接收到第一AP广播的第一预留方向;然后,第二AP所调度的第二STA 该第一预留方向、第一AP到第二AP所调度的第二STA之间的信道矩阵Ga、Gb、Gc以及会上述公式18确定接收均衡矩阵w1,该接收均衡矩阵w1用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除,也就是说,在第一AP和第二AP进行并行传输时,第二AP所调度的第二STA接收到的数据不仅包括第二AP下发的经过第二AP的预编码矩阵P2编码后的编码数据,还包括第一AP下发的经过第一AP的预编码矩阵P1编码后的编码数据,然后第二AP通过该接收均衡矩阵w1,与接收到的数据进行均衡消除(均衡消除的原理是基于第一AP下发的数据与第一预留方向正交,将第一AP在第一预留方向的干扰数据消除),从而使得最终在第一预留方向上仅剩下第二AP下发的数据,因此使得第二AP所调度的第二STA(STA5、STA6和STA7)在R1方向上收发数据时不会遭受第一AP的干扰。
另一方面,当第二AP根据预编码矩阵P2获得编码数据后,根据SYN-CTS帧中的第二MODE信息确定该第二AP的工作模式,并根据第二DIR_NUM信息、第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送该经过P2编码后的编码数据。
由于上述第二AP会广播第二预留方向,因此第一AP所调度的第一STA也会接收到第二AP广播的第二预留方向;然后,第一AP所调度的第一STA根据该第二预留方向、第二AP到第一AP所调度的第一STA之间的信道矩阵G1、G2、G3以及上述公式17确定接收均衡矩阵w2,该接收均衡矩阵w2用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除,也就是说,在第一AP和第二AP进行并行传输时,第一AP所调度的第一STA接收到的数据不仅包括第一AP下发的经过第一AP的预编码矩阵P1编码后的编码数据,还包括第二AP下发的经过第二AP的预编码矩阵P2编码后的编码数据,然后第一AP通过上述接收均衡矩阵w2,与接收到的数据进行均衡消除(均衡消除的原理是基于第二AP下发的数据与第二预留方向正交,将第二AP在第二预留方向的干扰数据消除),从而使得最终在第二预留方向上仅剩下第一AP下发的数据,因此使得第一AP所调度的第一STA(STA1、STA2和STA3)在R2方向上收发数据时不会遭受第二AP的干扰。
本发明实施例提供的数据并行传输的方法,第一AP通过向第二AP发送的SYN-RTS帧,使得第二AP可以根据SYN-RTS帧确定第一AP和第二AP的工作模式,进而根据第一AP和第二AP的工作模式确定向第一AP发送SYN-CTS帧,从而使得第一AP和第二AP均获知与当前的天线配置场景适配的工作模式,进而使得第一AP根据SYN-CTS帧所指示的内容调度第一STA,第二AP根据上述SYN-CTS帧所指示的内容调度第二STA,进而使得第一AP和第二AP在并行传输时进行干扰消除。本发明实施例提供的方法,第二AP通过根据第一AP上报的SYN-RTS帧中的内容,确定适合于第二AP与第一AP当前天线配置场景下的工作模式,从而使得第二AP和第一AP可以根据上述所确定的SYN-CTS帧中的内容进行相应的STA调度以及下行数据传输,进而可以保证系统的数据流增益。
图9为本发明实施例提供的数据并行传输的方法实施例七的信令流程图。本实施例涉及的是第一AP和第二AP通过SYN-RTS帧和SYN-CTS帧之间的协商与交互,使得第二AP根据该SYN-RTS帧以及第一AP的天线配置场景、第二AP的天线配置场景确定第一AP和第二AP的工作模式以及工作模式参数,进而通过SYN-CTS帧告知第一AP如何调度第一STA,从而使得第一AP与第二AP并行进行下行数据传输,并进行交叉干扰消除的整个过程。如图9所示,该方法包括:
S701:第一AP向所述第二AP发送同步请求发送SYN-RTS帧。
其中,所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量,所述SYN-RTS帧包括MAC Header信息、IA_ONLY信息、BSS_STA_ATN_NUM信息和FCS。
该步骤具体可以参见上述实施例五中的S501的具体描述,在此不再赘述。
S702:第二AP根据所述SYN-RTS帧中的IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式。
该步骤具体可以参见上述实施例二中的S201的具体描述,在此不再赘 述。
S703:第二AP根据所述第一AP的工作模式和所述第二AP的工作模式确定是否向所述第一AP发送所述SYN-CTS帧。若否,则执行S704,若是在,则执行S705。
S704:第二AP确定向所述第一AP发送SYN-DENY帧。
S703-S704具体可以参见上述实施例二的S202的具体描述,在此不再赘述。
S705:第二AP根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模式工作参数。
其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、所述第二预留方向的数量。
该步骤具体可以参见上述实施例三中的S301的具体描述,在此不再赘述。
S706:第二AP将所述第一AP的工作模式、所述第二AP的工作模式、所述第一AP的模式工作参数和所述第二AP的模式工作参数携带在所述SYN-CTS帧中发送给所述第一AP。
该步骤具体可以参见上述实施例三中的S302的具体描述,在此不再赘述。
S707:第一AP接收所述第二AP发送的SYN-CTS帧。
S708:第二AP获取所述第二AP到所述第一AP调度的第一STA之间的信道矩阵,并根据所述信道矩阵确定所述第二AP工作在IA模式时预留给所述第一AP收发数据的所述第二预留方向。
S709:第一AP获取所述第一AP到所述第二AP调度的第二STA之间的信道矩阵,并根据所述信道矩阵确定所述第一AP工作在IA模式时预留给所述第二AP收发数据的所述第一预留方向。
具体的,S708具体可以参见上述实施例四的S407的具体执行过程,S709具体可以参见上述实施例五中的S503的执行过程,在此不再赘述。并且,本 发明实施例对S708和S709的执行先后顺序并不做限定。
S710:第二AP广播所述第二预留方向。
其中,所述第二预留方向用于使所述第一AP调度的第一STA根据所述第二预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除。
S711:第一AP广播所述第一预留方向。
其中,所述第一预留方向用于使所述第二AP调度的第二STA根据所述第一预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除。
具体的,S710具体可以参见上述实施例四的S408的具体执行过程,S711具体可以参见上述实施例五中的S504的执行过程,在此不再赘述。并且,本发明实施例对S710和S711的执行先后顺序并不做限定。
S712:第二AP根据所述第二预留方向或第二AP到第一AP所调度的第一STA之间的信道矩阵确定预编码矩阵P2。
S713:第一AP根据所述第一预留方向或第一AP到第二AP所调度的第二STA之间的信道矩阵确定预编码矩阵P1。
具体的,S712具体可以参见上述实施例四的S409的具体执行过程,S713具体可以参见上述实施例五中的S505的执行过程,在此不再赘述。并且,本发明实施例对S712和S713的执行先后顺序并不做限定。
S714:第二AP根据所述预编码矩阵P2对所述第二AP的待发送数据进行编码,获得第二AP的编码数据;所述第二AP的编码数据与所述第二预留方向正交。
S715:第一AP根据所述预编码矩阵P1对所述第一AP的待发送数据进行编码,获得第一AP的编码数据;所述第一AP的编码数据与所述第一预留方向正交。
具体的,S714具体可以参见上述实施例四的S410的具体执行过程,S715具体可以参见上述实施例五中的S506的执行过程,在此不再赘述。并且,本发明实施例对S717和S715的执行先后顺序并不做限定。
S716:第二AP根据所述SYN-CTS帧中的所述第二MODE信息确定所述第二AP的工作模式,并根据所述第二DIR_NUM信息、所述第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送所述第二AP的编码数据。
S717:第一AP根据所述SYN-CTS帧中所述第一MODE信息确定所述第一AP的工作模式,并根据所述第一DIR_NUM信息、所述第一STA_NUM信息和所述第一STREAM_NUM信息,向所述第一STA发送所述第一AP的编码数据。
具体的,S716具体可以参见上述实施例四的S411的具体执行过程,S717具体可以参见上述实施例五中的S507的执行过程,在此不再赘述。并且,本发明实施例S716和S717可以并行进行,即第一AP和第二AP可以并行进行下行数据传输。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图10为本发明实施例提供的设备实施例一的结构示意图。该设备可以为上述方法实施例中的第二AP,该设备WIFI MU-MIMO系统,所述MU-MIMO系统包括第一BSS和第二BSS,所述第一BSS的覆盖区域和所述第二BSS的覆盖区域部分重叠,第一AP位于所述第一BSS的覆盖区域内,所述第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA,也即该设备适用于上述图2所示的MU-MIMO系统。如图10所示,该设备包括:接收模块10、确定发送模块11和调度模块12。
其中,接收模块10,用于接收所述第一AP发送的同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
确定发送模块11,用于根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量, 确定向所述第一AP发送同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
调度模块12,用于根据所述SYN-CTS帧所指示的内容调度所述第二STA,与所述第一AP并行进行下行数据传输。
本发明实施例提供的设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
进一步地,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
进一步地,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP 收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
图11为本发明实施例提供的设备实施例二的结构示意图。在上述图10所示实施例的基础上,如图11所示,进一步地,上述确定发送模块11,包括:第一确定单元111和确定发送单元112。
其中,第一确定单元111,用于根据所述SYN-RTS帧中的IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式;
确定发送单元112,用于根据所述第一AP的工作模式和所述第二AP的工作模式确定向所述第一AP发送所述SYN-CTS帧。
进一步地,若所述第一AP将要调度的第一STA的天线数量的最小值为N1,所述第一AP的天线数量为M1,所述第二AP将要调度的第二STA的天线数量的最小值为N2,所述第二AP的天线数量为M2,则所述确定发送单元112,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
Figure PCTCN2015074192-appb-000097
Figure PCTCN2015074192-appb-000098
或者,当所述
Figure PCTCN2015074192-appb-000099
Figure PCTCN2015074192-appb-000100
时,确定向所述第一AP发送所述SYN-CTS帧;
或者,
所述确定发送单元112,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则确定向所述第一AP发送所述SYN-CTS帧;其中,
Figure PCTCN2015074192-appb-000101
表示向下取整操作。
图12为本发明实施例提供的设备实施例三的结构示意图。在上述图11所示实施例的基础上,如图12所示,进一步地,上述确定发送单元112,包括:确定子单元1121和发送子单元1122。
其中,确定子单元1121,用于根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模 式工作参数;其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、所述第二预留方向的数量;
发送子单元1122,用于将所述第一AP的工作模式、所述第二AP的工作模式、所述第一AP的模式工作参数和所述第二AP的模式工作参数携带在所述SYN-CTS帧中发送给所述第一AP。
进一步地,所述第一确定单元111,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
Figure PCTCN2015074192-appb-000102
Figure PCTCN2015074192-appb-000103
时,确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为波束成型BF模式;或者,所述第一确定单元111,具体用于当所述
Figure PCTCN2015074192-appb-000104
Figure PCTCN2015074192-appb-000105
时,确定所述第一AP和所述第二AP的工作模式均为IA模式;或者,
所述第一确定单元111,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则当
Figure PCTCN2015074192-appb-000106
Figure PCTCN2015074192-appb-000107
时,确定所述第一AP和所述第二AP的工作模式均为BF模式;或者,所述第一确定单元111,具体用于当
Figure PCTCN2015074192-appb-000108
Figure PCTCN2015074192-appb-000109
时,则确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为BF模式;或者,所述第一确定单元111,具体用于当
Figure PCTCN2015074192-appb-000110
Figure PCTCN2015074192-appb-000111
时,则确定所述第一AP的工作模式为BF模式,所述第二AP的工作模式为IA模式;或者,所述第一确定单元111,具体用于当
Figure PCTCN2015074192-appb-000112
Figure PCTCN2015074192-appb-000113
时,则确定所述第一AP和所述第二AP的工作模式均为IA模式。
可选的,所述确定发送单元112,还用于若所述
Figure PCTCN2015074192-appb-000114
Figure PCTCN2015074192-appb-000115
或者,当所述
Figure PCTCN2015074192-appb-000116
Figure PCTCN2015074192-appb-000117
时,确定向所述第一AP发送所述SYN-DENY帧;其中,所述SYN-DENY帧包括媒体接入控制 报文头MAC Header信息、拒绝原因DENY_REASON信息和帧校验序列FCS;所述DENY_REASON信息,用于向所述第一AP指示所述第二AP拒绝与所述第一AP进行下行并行传输的原因。
图13为本发明实施例提供的设备实施例四的结构示意图。在上述图12所示实施例的基础上,如图13所示,进一步地,所述调度模块12,具体包括:第二确定单元121、第三确定单元122、编码单元123。
其中,第二确定单元121,用于获取所述第二AP到所述第一AP调度的第一STA之间的信道矩阵,并根据所述信道矩阵确定所述第二AP工作在IA模式时预留给所述第一AP收发数据的所述第二预留方向;则所述确定发送模块11,还用于广播所述第二预留方向;所述第二预留方向用于使所述第一AP调度的第一STA根据所述第二预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除;
第三确定单元122,用于根据所述第二预留方向或所述信道矩阵确定预编码矩阵;
编码单元123,用于根据所述预编码矩阵对所述第二AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第二预留方向正交;
则所述确定发送模块11,还用于根据所述SYN-CTS帧中的所述第二MODE信息确定所述第二AP的工作模式,并根据所述第二DIR_NUM信息、所述第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送所述编码数据。
本发明实施例提供的设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图14为本发明实施例提供的设备实施例五的结构示意图。该设备可以为上述方法实施例中的第一AP。该设备适用于WIFI MU-MIMO系统,所述MU-MIMO系统包括第一BSS和第二BSS,所述第一BSS覆盖区域和所述第二BSS覆盖区域部分重叠,所述第一AP位于所述第一BSS的覆盖区域内,第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA。也即,该设备适用于上述图2所示的MU-MIMO 系统。如图14所示,该设备包括:发送模块20、接收模块21和调度模块22。
其中,发送模块20,用于向所述第二AP发送同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
接收模块21,用于接收所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量发送的同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
调度模块22,用于根据所述SYN-CTS帧所指示的内容调度所述第一STA,与所述第二AP并行进行下行数据传输。
本发明实施例提供的设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
进一步地,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
进一步地,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指 示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
图15为本发明实施例提供的设备实施例六的结构示意图。在上述图14实施例的基础上,进一步地,如图15所示,上述调度模块22,包括:第一确定单元221、第二确定单元222和编码单元223。
其中,第一确定单元221,用于获取所述第一AP到所述第二AP调度的第二STA之间的信道矩阵,并根据所述信道矩阵确定所述第一AP工作在IA模式时预留给所述第二AP收发数据的所述第一预留方向;则所述发送模块20,还用于广播所述第一预留方向;所述第一预留方向用于使所述第二AP调度的第二STA根据所述第一预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除;
第二确定单元222,用于根据所述第一预留方向或所述信道矩阵确定预编码矩阵;
编码单元223,用于根据所述预编码矩阵对所述第一AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第一预留方向正交;
则所述发送模块20,还用于根据所述SYN-CTS帧中所述第一MODE信息确定所述第一AP的工作模式,并根据所述第一DIR_NUM信息、所述第一STA_NUM信息和所述第一STREAM_NUM信息,向所述第一STA发送所述编码数据。
本发明实施例提供的设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图16为本发明实施例提供的设备实施例七的结构示意图。该设备可以为上述方法实施例中的第二AP,该设备同样适用于WIFI MU-MIMO系统,所述MU-MIMO系统包括第一BSS和第二BSS,所述第一BSS的覆盖区域和所述第二BSS的覆盖区域部分重叠,第一AP位于所述第一BSS的覆盖区域内,所述第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA。也即,该设备适用于上述图2所示的MU-MIMIO系统。如图16所示,该设备包括:接收器30、处理器31和发送器32。
其中,接收器30,用于接收所述第一AP发送的同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
处理器31,用于根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量,确定向所述第一AP发送同步允许发送SYN-CTS帧,并通过发送器32发送给所述第一AP,并根据根据所述SYN-CTS帧所指示的内容调度所述第二STA,与所述第一AP并行进行下行数据传输;其中,所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量。
进一步地,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
进一步地,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、 第一部分、第二部分和帧校验序列FCS;
所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
更进一步地,所述处理器31,具体用于根据所述SYN-RTS帧中的IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式,并根据所述第一AP的工作模式和所述第二AP的工作模式确定向所述第一AP发送所述SYN-CTS帧。
更进一步地,所述处理器31确定所述第一AP和所述第二AP的工作模式,具体包括:若所述第一AP将要调度的第一STA的天线数量的最小值为N1,所述第一AP的天线数量为M1,所述第二AP将要调度的第二STA的天线数量的最小值为N2,所述第二AP的天线数量为M2,则所述处理器31,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
Figure PCTCN2015074192-appb-000118
Figure PCTCN2015074192-appb-000119
或者,当所述
Figure PCTCN2015074192-appb-000120
Figure PCTCN2015074192-appb-000121
时,确定向所述第一AP发送所述SYN-CTS帧;或者,所述处理 器31,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则确定向所述第一AP发送所述SYN-CTS帧;其中,
Figure PCTCN2015074192-appb-000122
表示向下取整操作。
更进一步地,所述处理器31,具体用于根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模式工作参数;其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、所述第二预留方向的数量;则所述发送器32,具体用于将所述处理器31确定的所述第一AP的工作模式、所述第二AP的工作模式、所述第一AP的模式工作参数和所述第二AP的模式工作参数携带在所述SYN-CTS帧中发送给所述第一AP。
更进一步地,所述处理器31,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
Figure PCTCN2015074192-appb-000123
Figure PCTCN2015074192-appb-000124
时,确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为波束成型BF模式;或者,所述处理器31,具体用于当所述
Figure PCTCN2015074192-appb-000125
Figure PCTCN2015074192-appb-000126
时,确定所述第一AP和所述第二AP的工作模式均为IA模式;或者,所述处理器31,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则当
Figure PCTCN2015074192-appb-000127
Figure PCTCN2015074192-appb-000128
时,则确定所述第一AP和所述第二AP的工作模式均为BF模式;或者,所述处理器31,具体用于当
Figure PCTCN2015074192-appb-000129
Figure PCTCN2015074192-appb-000130
时,则确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为BF模式;或者,所述处理器31,具体用于当
Figure PCTCN2015074192-appb-000131
Figure PCTCN2015074192-appb-000132
时,则确定所述第一AP的工作模式为BF模式,所述第二AP的工作模式为IA模式;或者,所述处理器31,具体用于当
Figure PCTCN2015074192-appb-000133
Figure PCTCN2015074192-appb-000134
时,则确定所述第一AP和所述第二AP的工作模式均为IA模式。
可选的,所述处理器31,还用于若所述
Figure PCTCN2015074192-appb-000135
Figure PCTCN2015074192-appb-000136
或者,当所述
Figure PCTCN2015074192-appb-000137
Figure PCTCN2015074192-appb-000138
时,确定向所述第一AP发送所述SYN-DENY帧;其中,所述SYN-DENY帧包括媒体接入控制报文头MAC Header信息、拒绝原因DENY_REASON信息和帧校验序列FCS;所述DENY_REASON信息,用于向所述第一AP指示所述第二AP拒绝与所述第一AP进行下行并行传输的原因。
进一步地,所述处理器31,具体用于获取所述第二AP到所述第一AP调度的第一STA之间的信道矩阵,并根据所述信道矩阵确定所述第二AP工作在IA模式时预留给所述第一AP收发数据的所述第二预留方向,并根据所述第二预留方向或所述信道矩阵确定预编码矩阵,并根据所述预编码矩阵对所述第二AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第二预留方向正交;
所述发送器32,具体用于广播所述第二预留方向,并根据所述处理器31根据所述SYN-CTS帧中的所述第二MODE信息确定的所述第二AP的工作模式、所述第二DIR_NUM信息、所述第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送所述处理器31获得的所述编码数据;其中,所述第二预留方向用于使所述第一AP调度的第一STA根据所述第二预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除。
本发明实施例提供的设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图17为本发明实施例提供的设备实施例八的结构示意图。该设备可以为上述方法实施例中的第一AP,该设备同样适用于WIFI MU-MIMO系统,所述MU-MIMO系统包括第一BSS和第二BSS,所述第一BSS的覆盖区域和所述第二BSS的覆盖区域部分重叠,第一AP位于所述第一BSS的覆盖区域内,所述第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA。也即,该设备适用于上述图2所示的MU-MIMIO系统。如图17所示,该设备包括:发送器40、接收器41和 处理器42。
其中,发送器40,用于向所述第二AP发送同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
接收器41,用于接收所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量发送的同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
处理器42,用于根据所述SYN-CTS帧所指示的内容调度所述第一STA,与所述第二AP并行进行下行数据传输。
进一步地,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
进一步地,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
更进一步地,所述处理器42,具体用于获取所述第一AP到所述第二AP调度的第二STA之间的信道矩阵,并根据所述信道矩阵确定所述第一AP工作在IA模式时预留给所述第二AP收发数据的所述第一预留方向,并根据所述第一预留方向或所述信道矩阵确定预编码矩阵,并根据所述预编码矩阵对所述第一AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第一预留方向正交;
所述发送器40,具体用于广播所述第一预留方向,并根据所述处理器42根据所述SYN-CTS帧中所述第一MODE信息确定的所述第一AP的工作模式、所述第一DIR_NUM信息、所述第一STA_NUM信息和所述第一STREAM_NUM信息,向所述第一STA发送所述编码数据;其中,所述第一预留方向用于使所述第二AP调度的第二STA根据所述第一预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除。
本发明实施例提供的设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (39)

  1. 一种数据并行传输的方法,其特征在于,适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS的覆盖区域和所述第二BSS的覆盖区域部分重叠,第一无线接入点AP位于所述第一BSS的覆盖区域内,第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA;所述方法包括:
    所述第二AP接收所述第一AP发送的同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
    所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量,确定向所述第一AP发送同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
    所述第二AP根据所述SYN-CTS帧所指示的内容调度所述第二STA,与所述第一AP并行进行下行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
    所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
    所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量,确定向所述第一AP发送同步允许发送SYN-CTS帧,具体包括:
    所述第二AP根据所述SYN-RTS帧中的IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式;
    所述第二AP根据所述第一AP的工作模式和所述第二AP的工作模式确定向所述第一AP发送所述SYN-CTS帧。
  5. 根据权利要求4所述的方法,其特征在于,若所述第一AP将要调度的第一STA的天线数量的最小值为N1,所述第一AP的天线数量为M1,所述第二AP将要调度的第二STA的天线数量的最小值为N2,所述第二AP的天线数量为M2,则所述第二AP根据所述第一AP的工作模式和所述第二AP的工作模式确定向所述第一AP发送所述SYN-CTS帧,具体包括:
    若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA 模式,则当所述
    Figure PCTCN2015074192-appb-100001
    Figure PCTCN2015074192-appb-100002
    或者,当所述
    Figure PCTCN2015074192-appb-100003
    Figure PCTCN2015074192-appb-100004
    时,所述第二AP确定向所述第一AP发送所述SYN-CTS帧;
    或者,
    若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则所述第二AP确定向所述第一AP发送所述SYN-CTS帧;其中,
    Figure PCTCN2015074192-appb-100005
    表示向下取整操作
  6. 根据权利要求5所述的方法,其特征在于,所述第二AP确定向所述第一AP发送所述SYN-CTS帧,具体包括:
    所述第二AP根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模式工作参数;其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、所述第二预留方向的数量;
    所述第二AP将所述第一AP的工作模式、所述第二AP的工作模式、所述第一AP的模式工作参数和所述第二AP的模式工作参数携带在所述SYN-CTS帧中发送给所述第一AP。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,所述第二AP根据所述SYN-RTS帧中IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式,具体包括:
    若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
    Figure PCTCN2015074192-appb-100006
    Figure PCTCN2015074192-appb-100007
    时,所述第二AP确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为波束成型BF模式;或者,当所述
    Figure PCTCN2015074192-appb-100008
    Figure PCTCN2015074192-appb-100009
    时,所述第二AP确定所述第一AP和所述第二AP的工作模式均为IA模式;
    若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则当
    Figure PCTCN2015074192-appb-100010
    Figure PCTCN2015074192-appb-100011
    时,则所述第二AP确定所述第一AP和所述第二AP的工作模式均为BF模式;或者,当
    Figure PCTCN2015074192-appb-100012
    Figure PCTCN2015074192-appb-100013
    时,则所述第二AP确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为BF模式;或者,当
    Figure PCTCN2015074192-appb-100014
    Figure PCTCN2015074192-appb-100015
    时,则所述第二AP确定所述第一AP的工作模式为BF模式,所述第二AP的工作模式为IA模式;或者,当
    Figure PCTCN2015074192-appb-100016
    Figure PCTCN2015074192-appb-100017
    时,则所述第二AP确定所述第一AP和所述第二AP的工作模式均为IA模式。
  8. 根据权利要求5所述的方法,其特征在于,所述方法还包括:所述第二AP确定向所述第一AP发送所述SYN-DENY帧;其中,所述SYN-DENY帧包括媒体接入控制报文头MAC Header信息、拒绝原因DENY_REASON信息和帧校验序列FCS;所述DENY_REASON信息,用于向所述第一AP指示所述第二AP拒绝与所述第一AP进行下行并行传输的原因。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第二AP根据所述SYN-CTS帧调度所述第二STA,与所述第一AP并行进行下行数据传输,具体包括:
    所述第二AP获取所述第二AP到所述第一AP调度的第一STA之间的信道矩阵,并根据所述信道矩阵确定所述第二AP工作在IA模式时预留给所述第一AP收发数据的所述第二预留方向;
    所述第二AP广播所述第二预留方向;所述第二预留方向用于使所述第一AP调度的第一STA根据所述第二预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除;
    所述第二AP根据所述第二预留方向或所述信道矩阵确定预编码矩阵;
    所述第二AP根据所述预编码矩阵对所述第二AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第二预留方向正交;
    所述第二AP根据所述SYN-CTS帧中的所述第二MODE信息确定所述 第二AP的工作模式,并根据所述第二DIR_NUM信息、所述第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送所述编码数据。
  10. 一种数据并行传输的方法,其特征在于,适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS覆盖区域和所述第二BSS覆盖区域部分重叠,第一无线接入点AP位于所述第一BSS的覆盖区域内,第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA;所述方法包括:
    所述第一AP向所述第二AP发送同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
    所述第一AP接收所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量发送的同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
    所述第一AP根据所述SYN-CTS帧所指示的内容调度所述第一STA,与所述第二AP并行进行下行数据传输。
  11. 根据权利要求10所述的方法,其特征在于,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
  12. 根据权利要求10或11所述的方法,其特征在于,所述SYN-CTS 帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
    所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
    所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述第一AP根据所述SYN-CTS帧调度所述第一STA,与所述第二AP并行进行下行数据传输,具体包括:
    所述第一AP获取所述第一AP到所述第二AP调度的第二STA之间的信道矩阵,并根据所述信道矩阵确定所述第一AP工作在IA模式时预留给所述第二AP收发数据的所述第一预留方向;
    所述第一AP广播所述第一预留方向;所述第一预留方向用于使所述第二AP调度的第二STA根据所述第一预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除;
    所述第一AP根据所述第一预留方向或所述信道矩阵确定预编码矩阵;
    所述第一AP根据所述预编码矩阵对所述第一AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第一预留方向正交;
    所述第一AP根据所述SYN-CTS帧中所述第一MODE信息确定所述第一AP的工作模式,并根据所述第一DIR_NUM信息、所述第一STA_NUM信息和所述第一STREAM_NUM信息,向所述第一STA发送所述编码数据。
  14. 一种设备,其特征在于,所述设备为第二无线接入点AP,所述设备适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS的覆盖区域和所述第二BSS的覆盖区域部分重叠,第一AP位于所述第一BSS的覆盖区域内,所述第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA;所述设备包括:
    接收模块,用于接收所述第一AP发送的同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
    确定发送模块,用于根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量,确定向所述第一AP发送同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
    调度模块,用于根据所述SYN-CTS帧所指示的内容调度所述第二STA,与所述第一AP并行进行下行数据传输。
  15. 根据权利要求14所述的设备,其特征在于,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
  16. 根据权利要求14或15所述的设备,其特征在于,所述SYN-CTS 帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
    所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
    所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
  17. 根据权利要求14-16任一项所述的设备,其特征在于,所述确定发送模块,包括:
    第一确定单元,用于根据所述SYN-RTS帧中的IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式;
    确定发送单元,用于根据所述第一AP的工作模式和所述第二AP的工作模式确定向所述第一AP发送所述SYN-CTS帧。
  18. 根据权利要求17所述的设备,其特征在于,所述第一AP将要调度的第一STA的天线数量的最小值为N1,所述第一AP的天线数量为M1,所述第二AP将要调度的第二STA的天线数量的最小值为N2,所述第二AP的天线数量为M2,则所述确定发送单元,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
    Figure PCTCN2015074192-appb-100018
    Figure PCTCN2015074192-appb-100019
    或者,当所述
    Figure PCTCN2015074192-appb-100020
    Figure PCTCN2015074192-appb-100021
    时,确定向所述第一AP发送所述SYN-CTS帧;
    或者,
    所述确定发送单元,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则确定向所述第一AP发送所述SYN-CTS帧;其中,
    Figure PCTCN2015074192-appb-100022
    表示向下取整操作。
  19. 根据权利要求18所述的设备,其特征在于,所述确定发送单元,包括:
    确定子单元,用于根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模式工作参数;其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、所述第二预留方向的数量;
    发送子单元,用于将所述第一AP的工作模式、所述第二AP的工作模式、所述第一AP的模式工作参数和所述第二AP的模式工作参数携带在所述SYN-CTS帧中发送给所述第一AP。
  20. 根据权利要求17-19任一项所述的设备,其特征在于,所述第一确定单元,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
    Figure PCTCN2015074192-appb-100023
    Figure PCTCN2015074192-appb-100024
    时,确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为波束成型BF模式;或者,所述第一确定单元,具体用于当所述
    Figure PCTCN2015074192-appb-100025
    Figure PCTCN2015074192-appb-100026
    时,确定所述第一AP和所述第二AP的工作模式均为IA模式;或者,
    所述第一确定单元,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则当
    Figure PCTCN2015074192-appb-100027
    Figure PCTCN2015074192-appb-100028
    时,确定所述第一AP和所述第二AP的工作模式均为BF模式;或者,所述第一确定单 元,具体用于当
    Figure PCTCN2015074192-appb-100029
    Figure PCTCN2015074192-appb-100030
    时,则确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为BF模式;或者,所述第一确定单元,具体用于当
    Figure PCTCN2015074192-appb-100031
    Figure PCTCN2015074192-appb-100032
    时,则确定所述第一AP的工作模式为BF模式,所述第二AP的工作模式为IA模式;或者,所述第一确定单元,具体用于当
    Figure PCTCN2015074192-appb-100033
    Figure PCTCN2015074192-appb-100034
    时,则确定所述第一AP和所述第二AP的工作模式均为IA模式。
  21. 根据权利要求18所述的设备,其特征在于,所述确定发送单元,还用于若所述
    Figure PCTCN2015074192-appb-100035
    Figure PCTCN2015074192-appb-100036
    或者,当所述
    Figure PCTCN2015074192-appb-100037
    Figure PCTCN2015074192-appb-100038
    时,确定向所述第一AP发送所述SYN-DENY帧;其中,所述SYN-DENY帧包括媒体接入控制报文头MAC Header信息、拒绝原因DENY_REASON信息和帧校验序列FCS;所述DENY_REASON信息,用于向所述第一AP指示所述第二AP拒绝与所述第一AP进行下行并行传输的原因。
  22. 根据权利要求14-21任一项所述的设备,其特征在于,所述调度模块,具体包括:
    第二确定单元,用于获取所述第二AP到所述第一AP调度的第一STA之间的信道矩阵,并根据所述信道矩阵确定所述第二AP工作在IA模式时预留给所述第一AP收发数据的所述第二预留方向;则所述确定发送模块,还用于广播所述第二预留方向;所述第二预留方向用于使所述第一AP调度的第一STA根据所述第二预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除;
    第三确定单元,用于根据所述第二预留方向或所述信道矩阵确定预编码矩阵;
    编码单元,用于根据所述预编码矩阵对所述第二AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第二预留方向正交;
    则所述确定发送模块,还用于根据所述SYN-CTS帧中的所述第二MODE 信息确定所述第二AP的工作模式,并根据所述第二DIR_NUM信息、所述第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送所述编码数据。
  23. 一种设备,其特征在于,所述设备为第一无线接入点AP,所述设备适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS覆盖区域和所述第二BSS覆盖区域部分重叠,所述第一AP位于所述第一BSS的覆盖区域内,第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA;所述设备包括:
    发送模块,用于向所述第二AP发送同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
    接收模块,用于接收所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量发送的同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
    调度模块,用于根据所述SYN-CTS帧所指示的内容调度所述第一STA,与所述第二AP并行进行下行数据传输。
  24. 根据权利要求23所述的设备,其特征在于,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
  25. 根据权利要求23或24所述的设备,其特征在于,所述SYN-CTS 帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
    所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
    所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
  26. 根据权利要求23至25任一项所述的设备,其特征在于,所述调度模块,包括:
    第一确定单元,用于获取所述第一AP到所述第二AP调度的第二STA之间的信道矩阵,并根据所述信道矩阵确定所述第一AP工作在IA模式时预留给所述第二AP收发数据的所述第一预留方向;则所述发送模块,还用于广播所述第一预留方向;所述第一预留方向用于使所述第二AP调度的第二STA根据所述第一预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除;
    第二确定单元,用于根据所述第一预留方向或所述信道矩阵确定预编码矩阵;
    编码单元,用于根据所述预编码矩阵对所述第一AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第一预留方向正交;
    则所述发送模块,还用于根据所述SYN-CTS帧中所述第一MODE信息确定所述第一AP的工作模式,并根据所述第一DIR_NUM信息、所述第一STA_NUM信息和所述第一STREAM_NUM信息,向所述第一STA发送所述编码数据。
  27. 一种设备,其特征在于,所述设备为第二无线接入点AP,所述设备适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS的覆盖区域和所述第二BSS的覆盖区域部分重叠,第一AP位于所述第一BSS的覆盖区域内,所述第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务第一站点STA,所述第二AP服务第二STA;所述设备包括:
    接收器,用于接收所述第一AP发送的同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
    处理器,用于根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量,确定向所述第一AP发送同步允许发送SYN-CTS帧,并通过发送器发送给所述第一AP,并根据根据所述SYN-CTS帧所指示的内容调度所述第二STA,与所述第一AP并行进行下行数据传输;其中,所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量。
  28. 根据权利要求27所述的设备,其特征在于,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述 第一AP将要调度的第一STA的天线数量。
  29. 根据权利要求27或28所述的设备,其特征在于,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
    所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
    所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
  30. 根据权利要求27至29任一项所述的设备,其特征在于,所述处理器,具体用于根据所述SYN-RTS帧中的IA_ONLY信息、所述第一AP的天线数量、所述第二AP的天线数量、所述第一AP将要调度的第一STA的天线数量、所述第二AP将要调度的第二STA的天线数量,确定所述第一AP和所述第二AP的工作模式,并根据所述第一AP的工作模式和所述第二AP的工作模式确定向所述第一AP发送所述SYN-CTS帧。
  31. 根据权利要求30所述的设备,其特征在于,若所述第一AP将要调度的第一STA的天线数量的最小值为N1,所述第一AP的天线数量为M1,所述第二AP将要调度的第二STA的天线数量的最小值为N2,所述第二AP的天线数量为M2,则所述处理器,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
    Figure PCTCN2015074192-appb-100039
    Figure PCTCN2015074192-appb-100040
    或者,当所述
    Figure PCTCN2015074192-appb-100041
    Figure PCTCN2015074192-appb-100042
    时,确定向所述第一AP发送所述SYN-CTS帧;
    或者,
    所述处理器,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则确定向所述第一AP发送所述SYN-CTS帧;其中,
    Figure PCTCN2015074192-appb-100043
    表示向下取整操作。
  32. 根据权利要求31所述的设备,其特征在于,所述处理器,具体用于根据所述第一AP的工作模式和所述第二AP的工作模式,分别确定所述第一AP的模式工作参数和所述第二AP的模式工作参数;其中,所述第一AP的模式工作参数包括所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量和所述第一预留方向的数量;所述第二AP的模式工作参数包括所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量、所述第二预留方向的数量;
    则所述发送器,具体用于将所述处理器确定的所述第一AP的工作模式、所述第二AP的工作模式、所述第一AP的模式工作参数和所述第二AP的模式工作参数携带在所述SYN-CTS帧中发送给所述第一AP。
  33. 根据权利要求30-32任一项所述的设备,其特征在于,所述处理器,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式仅为IA模式,则当所述
    Figure PCTCN2015074192-appb-100044
    Figure PCTCN2015074192-appb-100045
    时,确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为波束成型BF模式;或者,所述处理器,具体用于当所述
    Figure PCTCN2015074192-appb-100046
    Figure PCTCN2015074192-appb-100047
    时,确定所述第一AP和所述第二AP的工作模式均为IA模式;或者,
    所述处理器,具体用于若所述SYN-RTS帧中的IA_ONLY信息为所述第一AP工作模式不受限制,则当
    Figure PCTCN2015074192-appb-100048
    Figure PCTCN2015074192-appb-100049
    时,则确定所述第一AP和所述第二AP的工作模式均为BF模式;或者,所述处理器,具体用于当
    Figure PCTCN2015074192-appb-100050
    Figure PCTCN2015074192-appb-100051
    时,则确定所述第一AP的工作模式为IA模式,所述第二AP的工作模式为BF模式;或者,所述处理器,具体用于当
    Figure PCTCN2015074192-appb-100052
    Figure PCTCN2015074192-appb-100053
    时,则确定所述第一AP的工作模式为BF模式,所述第二AP的工作模式为IA模式;或者,所述处理器,具体用于当
    Figure PCTCN2015074192-appb-100054
    Figure PCTCN2015074192-appb-100055
    时,则确定所述第一AP和所述第二AP的工作模式均为IA模式。
  34. 根据权利要求33所述的设备,其特征在于,所述处理器,还用于若所述
    Figure PCTCN2015074192-appb-100056
    Figure PCTCN2015074192-appb-100057
    或者,当所述
    Figure PCTCN2015074192-appb-100058
    Figure PCTCN2015074192-appb-100059
    时,确定向所述第一AP发送所述SYN-DENY帧;其中,所述SYN-DENY帧包括媒体接入控制报文头MAC Header信息、拒绝原因DENY_REASON信息和帧校验序列FCS;所述DENY_REASON信息,用于向所述第一AP指示所述第二AP拒绝与所述第一AP进行下行并行传输的原因。
  35. 根据权利要求27-34任一项所述的设备,其特征在于,所述处理器,具体用于获取所述第二AP到所述第一AP调度的第一STA之间的信道矩阵,并根据所述信道矩阵确定所述第二AP工作在IA模式时预留给所述第一AP收发数据的所述第二预留方向,并根据所述第二预留方向或所述信道矩阵确定预编码矩阵,并根据所述预编码矩阵对所述第二AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第二预留方向正交;
    所述发送器,具体用于广播所述第二预留方向,并根据所述处理器根据所述SYN-CTS帧中的所述第二MODE信息确定的所述第二AP的工作模式、所述第二DIR_NUM信息、所述第二STA_NUM信息和第二STREAM_NUM信息,向所述第二STA发送所述处理器获得的所述编码数据;其中,所述第二预留方向用于使所述第一AP调度的第一STA根据所述第二预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第一AP调度的第一STA对接收到的所述第二AP下发的数据进行干扰消除。
  36. 一种设备,其特征在于,所述设备为第一无线接入点AP,所述设备适用于无线保真WIFI下行多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包括第一基础服务集合BSS和第二BSS,所述第一BSS覆盖区域和所述第二BSS覆盖区域部分重叠,所述第一AP位于所述第一BSS的覆盖区域内,第二AP位于所述第二BSS的覆盖区域内,所述第一AP服务 第一站点STA,所述第二AP服务第二STA;所述设备包括:
    发送器,用于向所述第二AP发送同步请求发送SYN-RTS帧;所述SYN-RTS帧用于向所述第二AP指示所述第一AP的工作模式受限情况以及所述第一AP将要调度的第一STA的天线数量;
    接收器,用于接收所述第二AP根据所述SYN-RTS帧、所述第一AP的天线数量、所述第二AP的天线数量和所述第二AP将要调度的第二STA的天线数量发送的同步允许发送SYN-CTS帧;所述SYN-CTS帧用于向所述第一AP指示所述第一AP的工作模式、所述第一AP所能调度的第一STA的最大数量、所述第一AP所能调度的下行数据流的最大数量、所述第一AP工作在干扰对齐IA模式时预留给所述第二AP收发数据的第一预留方向的数量、所述第二AP的工作模式、所述第二AP所能调度的第二STA的最大数量、所述第二AP所能调度的下行数据流的最大数量和所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量;
    处理器,用于根据所述SYN-CTS帧所指示的内容调度所述第一STA,与所述第二AP并行进行下行数据传输。
  37. 根据权利要求36所述的设备,其特征在于,所述SYN-RTS帧包括媒体接入控制报文头MAC Header信息、仅限干扰对齐IA_ONLY信息、基础服务集调度的站点的天线数量BSS_STA_ATN_NUM信息和帧校验序列FCS,其中,所述IA_ONLY信息用于向所述第二AP指示所述第一AP的工作模式受限情况,所述BSS_STA_ATN_NUM用于向所述第二AP指示所述第一AP将要调度的第一STA的天线数量。
  38. 根据权利要求36或37所述的设备,其特征在于,所述SYN-CTS帧包括媒体接入控制报文头MAC Header信息、第一部分、第二部分和帧校验序列FCS;
    所述第一部分包括第一工作模式MODE信息、第一预留方向数量DIR_NUM信息、第一站点数量STA_NUM信息、第一数据流数量STREAM_NUM信息;其中,所述第一MODE信息用于向所述第一AP指示所述第一AP的工作模式,所述第一DIR_NUM信息用于向所述第一AP指示所述第一预留方向的数量,所述第一STA_NUM信息用于向所述第一AP指示所述第一AP所能调度的第一STA的最大数量,所述第一STREAM_NUM 用于向所述第一AP指示所述第一AP所能调度的下行数据流的最大数量;
    所述第二部分包括第二MODE信息、第二DIR_NUM信息、第二STA_NUM信息、第二STREAM_NUM信息;其中,所述第二MODE信息用于向所述第一AP指示所述第二AP的工作模式,所述第二DIR_NUM信息用于向所述第一AP指示所述第二AP工作在IA模式时预留给所述第一AP收发数据的第二预留方向的数量,所述第二STA_NUM信息用于向所述第一AP指示所述第二AP所能调度的第二STA的最大数量,所述第二STREAM_NUM用于向所述第一AP指示所述第二AP所能调度的下行数据流的最大数量。
  39. 根据权利要求36-38任一项所述的设备,其特征在于,所述处理器,具体用于获取所述第一AP到所述第二AP调度的第二STA之间的信道矩阵,并根据所述信道矩阵确定所述第一AP工作在IA模式时预留给所述第二AP收发数据的所述第一预留方向,并根据所述第一预留方向或所述信道矩阵确定预编码矩阵,并根据所述预编码矩阵对所述第一AP的待发送数据进行编码,获得编码数据;所述编码数据与所述第一预留方向正交;
    所述发送器,具体用于广播所述第一预留方向,并根据所述处理器根据所述SYN-CTS帧中所述第一MODE信息确定的所述第一AP的工作模式、所述第一DIR_NUM信息、所述第一STA_NUM信息和所述第一STREAM_NUM信息,向所述第一STA发送所述编码数据;其中,所述第一预留方向用于使所述第二AP调度的第二STA根据所述第一预留方向和所述信道矩阵确定接收均衡矩阵;所述接收均衡矩阵用于使所述第二AP调度的第二STA对接收到的所述第一AP下发的数据进行干扰消除。
PCT/CN2015/074192 2015-03-13 2015-03-13 数据并行传输的方法和设备 WO2016145566A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074192 WO2016145566A1 (zh) 2015-03-13 2015-03-13 数据并行传输的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074192 WO2016145566A1 (zh) 2015-03-13 2015-03-13 数据并行传输的方法和设备

Publications (1)

Publication Number Publication Date
WO2016145566A1 true WO2016145566A1 (zh) 2016-09-22

Family

ID=56918181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074192 WO2016145566A1 (zh) 2015-03-13 2015-03-13 数据并行传输的方法和设备

Country Status (1)

Country Link
WO (1) WO2016145566A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022252687A1 (zh) * 2021-05-29 2022-12-08 华为技术有限公司 一种并行数据发送方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110317630A1 (en) * 2010-06-23 2011-12-29 Chunhui Zhu Method and system for contention avoidance in multi-user multiple-input-multiple-output wireless networks
WO2014029368A1 (en) * 2012-08-24 2014-02-27 Huawei Technologies Co., Ltd. Systems and methods for interference alignment in wi-fi
US20140341128A1 (en) * 2013-05-16 2014-11-20 Broadcom Corporation Method and Apparatus for Scaling Coverage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110317630A1 (en) * 2010-06-23 2011-12-29 Chunhui Zhu Method and system for contention avoidance in multi-user multiple-input-multiple-output wireless networks
WO2014029368A1 (en) * 2012-08-24 2014-02-27 Huawei Technologies Co., Ltd. Systems and methods for interference alignment in wi-fi
US20140341128A1 (en) * 2013-05-16 2014-11-20 Broadcom Corporation Method and Apparatus for Scaling Coverage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022252687A1 (zh) * 2021-05-29 2022-12-08 华为技术有限公司 一种并行数据发送方法、装置及设备

Similar Documents

Publication Publication Date Title
US10615938B2 (en) System and method for using semi-orthogonal multiple access in wireless local area networks
CN102696182B (zh) 在无线局域网中基于链路自适应来报告信道信息的方法以及用于该方法的装置
US10299280B2 (en) Systems and methods for interference alignment in Wi-Fi
US9906281B2 (en) MU-MIMO transmission method in wireless LAN system
EP2706774B1 (en) Method and system for feeding back channel measurement information
US20150146812A1 (en) Uplink multi-user multiple input multiple output beamforming
WO2012047067A2 (en) Method of link adaptation in wireless local area network and apparatus for the same
US20150023308A1 (en) Link adaptation method and apparatus in wireless lan system
WO2021249515A1 (zh) 信道信息反馈方法、通信装置及存储介质
WO2014019445A1 (zh) 信道状态信息反馈的配置方法及装置,测量、反馈方法及装置
KR20130003030A (ko) 다중-사용자 송신들을 위한 순차적 ack
WO2020144188A1 (en) Technique for sidelink radio communication
US11122594B2 (en) Distributed overlapping basic service set scheduling techniques for increased spectral efficiency
WO2012068905A1 (zh) Comp模式下信道信息反馈的方法和系统
US20140211642A1 (en) Method And System For Boosting Transmission Settings Based On Signal To Interference And Noise Ratio
US20180069323A1 (en) Communication apparatus
CN103828280A (zh) 上行控制信息上报方法及终端、基站
WO2016145566A1 (zh) 数据并行传输的方法和设备
TW201424290A (zh) 用於兩社區間的合作多點下行傳輸的方法和裝置
US20230085190A1 (en) Link adaptation for extremely high throughput systems
US10849080B1 (en) Trigger MPDU for client-selectable transmit power
WO2016145563A1 (zh) 并行传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884950

Country of ref document: EP

Kind code of ref document: A1