WO2016145564A1 - Sealing system for a gearbox of a wind turbine - Google Patents

Sealing system for a gearbox of a wind turbine Download PDF

Info

Publication number
WO2016145564A1
WO2016145564A1 PCT/CN2015/074189 CN2015074189W WO2016145564A1 WO 2016145564 A1 WO2016145564 A1 WO 2016145564A1 CN 2015074189 W CN2015074189 W CN 2015074189W WO 2016145564 A1 WO2016145564 A1 WO 2016145564A1
Authority
WO
WIPO (PCT)
Prior art keywords
gearbox
shaft
sealing system
distribution pipe
assembly
Prior art date
Application number
PCT/CN2015/074189
Other languages
French (fr)
Inventor
Rong Li
Michael GARRY
Ting GU
Lawrence Keith TALIAFERRO
Junqing Xu
Original Assignee
General Electric Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Company filed Critical General Electric Company
Priority to PCT/CN2015/074189 priority Critical patent/WO2016145564A1/en
Publication of WO2016145564A1 publication Critical patent/WO2016145564A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/406Sealings between relatively-moving surfaces by means of fluid by at least one pump

Definitions

  • the present disclosure relates generally to wind turbines, and more particularly to a sealing system for a gearbox of a wind turbine.
  • Wind power is considered one of the cleanest, most environmentally friendly energy sources presently available, and wind turbines have gained increased attention in this regard.
  • a modern wind turbine typically includes a nacelle, a tower mounted atop the nacelle, a generator, a gearbox, and a rotor assembly having one or more rotor blades. More specifically, for many wind turbines, the rotor assembly is coupled to the generator through the gearbox. Further, the rotor assembly and the gearbox are typically mounted on a bedplate support frame located within the nacelle. For example, in many wind turbines, the gearbox is mounted to the bedplate via one or more torque supports or arms. The one or more rotor blades capture kinetic energy of wind using known airfoil principles.
  • the rotor blades transmit the kinetic energy in the form of rotational energy so as to turn a shaft coupling the rotor blades to a gearbox, or if a gearbox is not used, directly to the generator.
  • the generator then converts the mechanical energy to electrical energy that may be deployed to a utility grid.
  • the majority of commercially available wind turbines utilize multi-stage geared drivetrains to connect the turbine blades to electrical generators.
  • the wind turns the turbine blades, which spin a low speed shaft.
  • the low speed shaft is coupled to an input shaft of a gearbox, which has a higher speed output shaft connected to a generator.
  • the gearbox contains a housing that uses gears and/or gear trains to provide speed and torque conversions from the low speed shaft to the high speed shaft of the generator.
  • the geared drivetrain aims to increase the velocity of the mechanical motion.
  • the gearbox increases the rotational speeds from less than about 20 rotations per minute (rpm) to about 1, 000-1, 800 rpm, which is the rotational speed required by most generators to produce electricity.
  • debris and/or external objects may enter the gearbox housing at gaps located between rotating and stationary parts caused by required clearances between the parts to avoid the occurrence of interference and collision.
  • sand can enter the gearbox housing through the inlet opening of the low speed shaft or the outlet opening of the high speed shaft, thereby causing damage to various internal components of the gearbox.
  • operating fluids of the gearbox such as lubricating oil can produce oil fog in the case of a temperature increase after a certain time of gearbox operation.
  • Oil fog is driven by the pressure and may exit or leak from the gearbox housing to other components of the wind turbine. For example, oil may leak from the outlet opening of the high speed shaft to other components of the wind turbine and cause damage and/or customer complaints.
  • gearbox assembly that addresses the aforementioned issues would be advantageous. More specifically, a gearbox assembly having sealing capabilities at its inlet and outlet locations would be welcomed in the technology.
  • the present disclosure is directed to a gearbox assembly for a wind turbine.
  • the gearbox assembly includes a gearbox housing having at least one opening, a gear assembly configured within the gearbox housing, at least one shaft configured with the gear assembly, at least two bearings to support the shaft, a lubrication system to lubricate the gear assembly and bearings, and a sealing system located at or near the opening of the gearbox housing.
  • the gear assembly has one or more gears operatively coupled with the shaft.
  • the shaft extends from the opening of the gearbox housing.
  • the sealing system is configured to seal a gap between the rotating shaft and the non-rotating gearbox housing.
  • the sealing system is configured to prevent leaks caused by the lubrication system.
  • the opening (s) may correspond to either or both of an inlet opening or an outlet opening of the gearbox housing.
  • the shaft (s) may correspond to either or both of a main shaft or a gearbox output shaft. More specifically, in certain embodiments, the main shaft may be configured within the inlet opening and the gearbox output shaft may beconfigured within the outlet opening. Accordingly, the gears of the gear assembly may be configured to convert a low speed, high torque input of the main shaft to a high speed, low torque output of the gearbox output shaft to drive a generator of the wind turbine.
  • the sealing system may further include at least one air distribution pipe having at least one nozzle.
  • the sealing system may also include an air supplying device (e.g. an air compressor, an air pump, or other equivalent equipment) configured to provide compressed air via the nozzle (s) so as to seal the gap between the rotating shaft and the non-rotating gearbox housing.
  • an air supplying device e.g. an air compressor, an air pump, or other equivalent equipment
  • the air distribution pipe of the sealing system may include a plurality of nozzles.
  • the air distribution pipe may be configured circumferentially around the shaft such that the nozzles can be spaced circumferentially around the shaft so as to provide an air curtain between the shaft and the gearbox housing.
  • the plurality of nozzles may be evenly spaced in the air distribution pipe so as to provide substantially even air flow between the shaft and the gearbox housing.
  • the plurality of nozzles may be randomly spaced in the air distribution pipe.
  • the air distribution pipe of the sealing system may be configured above the shaft, below the shaft, on the left or right side of the shaft, or any combination thereof. As such, air flow from the air distribution pipe creates an air curtain that seals the gap between the shaft and the housing.
  • the air distribution pipe of the sealing system is mounted to the non-rotating gearbox housing.
  • the present disclosure is directed to a sealing system for a gearbox assembly of a wind turbine. More specifically, in one embodiment, the sealing system includes at least one air distribution pipe having at least one nozzle configured therein. Further, the air distribution pipe is located at or near an opening of a gearbox housing of the gearbox assembly.
  • the sealing system also includes an air supplying device (e.g. an air compressor, an air pump, or other equivalent equipment) configured to provide compressed air through the at least one nozzle so as to seal a gap between a shaft of the gearbox assembly and the opening. It should be understood that the sealing system may be further configured with any of the additional features as described herein.
  • the present disclosure is directed to a method for protecting a gearbox assembly of a wind turbine.
  • the gearbox assembly has a gearbox housing containing a plurality of gears operatively coupled via a plurality of shafts.
  • the method may include locating at least one air distribution pipe at or near an opening of the gearbox housing, wherein the air distribution pipe has at least one nozzle configured therein.
  • the method may also include providing, via an air supplying device, compressed air through the at least one nozzle so as to seal a gap between one or more of the plurality of shafts of the gearbox assembly and the opening.
  • another step includes controlling the air supplying device based on gearbox operation.
  • FIG. 1 illustrates a perspective view of a wind turbine according to one embodiment of the present disclosure
  • FIG. 2 illustrates a perspective view of a simplified, internal view of one embodiment of a nacelle of a wind turbine according to the present disclosure
  • FIG. 3 illustrates a cross-sectional, top view of one embodiment of a gearbox assembly according to the present disclosure
  • FIG. 4 illustrates a detailed, cross-sectional view of a portion of the gearbox assembly of FIG. 3, particularly illustrating a sealing system according to the present disclosure
  • FIG. 5 illustrates a cross-sectional view of the sealing system of FIG. 4 along line 5-5;
  • FIG. 6 illustrates a cross-sectional view of another embodiment of the sealing system according to the present disclosure
  • FIG. 7 illustrates a detailed, cross-sectional view of another embodiment of the gearbox assembly according to the present disclosure
  • FIG. 8 illustrates a detailed, cross-sectional view of still another embodiment of the gearbox assembly according to the present disclosure.
  • FIG. 9 illustrates a flow diagram of one embodiment of a method for protecting a gearbox assembly of a wind turbine according to the present disclosure.
  • the present disclosure is directed to a sealing system for a gearbox assembly of a wind turbine. More specifically, in one embodiment, the sealing system includes an air distribution pipe having a plurality of nozzles configured therein and an air supplying device.
  • the air distribution pipe is located at or near an opening of a gearbox housing of the gearbox assembly.
  • the air pump provides compressed air through the nozzles so as to seal a gap between a shaft of the gearbox assembly and the opening of the gearbox housing.
  • the sealing system does not rely on a physical seal, thereby eliminating potential wear out caused by rotating parts. Further, the sealing system prohibits debris, such as sand, dust, dirt, rocks, foreign objects, liquids, and/or similar from entering the gearbox internal space, which can cause damage to gearbox. Moreover, the sealing system prevents oil or lubricant leaks from exiting gearbox gaps located between rotating parts (e.g. the main shaft) and stationary parts (e.g. the gearbox housing) . In addition, the sealing system increases gearbox reliability, particularly for sandy sites (e.g. wind turbine sites in desert locations) .
  • sandy sites e.g. wind turbine sites in desert locations
  • FIG. 1 illustrates a perspective view of one embodiment of a wind turbine 10 according to the present disclosure.
  • the wind turbine 10 generally includes a tower 12 extending from a support surface 14, a nacelle 16 mounted on the tower 12, and a rotor 18 coupled to the nacelle 16.
  • the rotor 18 includes a rotatable hub 20 and at least one rotor blade 22 coupled to and extending outwardly from the hub 20.
  • the rotor 18 includes three rotor blades 22.
  • the rotor 18 may include more or less than three rotor blades 22.
  • Each rotor blade 22 may be spaced about the hub 20 to facilitate rotating the rotor 18 to enable kinetic energy to be transferred from the wind into usable mechanical energy, and subsequently, electrical energy.
  • the hub 20 may be rotatably coupled to an electric generator 24 (FIG. 2) positioned within the nacelle 16 to permit electrical energy to be produced.
  • the wind turbine 10 may also include a wind turbine controller 26 centralized within the nacelle 16. However, in other embodiments, the controller 26 may be located within any other component of the wind turbine 10 or at a location outside the wind turbine 10. Further, the controller 26 may be communicatively coupled to any number of the components of the wind turbine 10 in order to control the components. As such, the controller 26 may include a computer or other suitable processing unit. Thus, in several embodiments, the controller 26 may include suitable computer-readable instructions that, when implemented, configure the controller 26 to perform various different functions, such as receiving, transmitting and/or executing wind turbine control signals.
  • the generator 24 may be coupled to the rotor 18 for producing electrical power from the rotational energy generated by the rotor 18.
  • the rotor 18 may include a main shaft 34 coupled to the hub 20 for rotation therewith.
  • the main shaft 34 may, in turn, be rotatably coupled to a gearbox output shaft 36 of the generator 24 through a gearbox assembly 30, which will be discussed in more detail in reference to FIGS. 3-7.
  • the gearbox assembly 30 includes a gearbox housing 38 that is connected to a bedplate support frame 48 by one or more torque arms 50.
  • the main shaft 34 provides a low speed, high torque input to the gearbox assembly 30 in response to rotation of the rotor blades 22 and the hub 20.
  • the gearbox assembly 30 then converts the low speed, high torque input to a high speed, low torque output to drive the gearbox output shaft 36 and, thus, the generator 24.
  • Each rotor blade 22 may also include a pitch adjustment mechanism 32 configured to rotate each rotor blade 22 about its pitch axis 28, depending on the wind speed and/or wind direction. As such, pitching the blades 22 directly affects the power output of the generator 24. More specifically, each pitch adjustment mechanism 32 may include a pitch drive motor 40 (e.g. , any suitable electric, hydraulic, or pneumatic motor) , a pitch drive gearbox 42, and a pitch drive pinion 44. In such embodiments, the pitch drive motor 40 may be coupled to the pitch drive gearbox 42 so that the pitch drive motor 40 imparts mechanical force to the pitch drive gearbox 42. Similarly, the pitch drive gearbox 42 may be coupled to the pitch drive pinion 44 for rotation therewith.
  • a pitch drive motor 40 e.g. , any suitable electric, hydraulic, or pneumatic motor
  • the pitch drive motor 40 may be coupled to the pitch drive gearbox 42 so that the pitch drive motor 40 imparts mechanical force to the pitch drive gearbox 42.
  • the pitch drive gearbox 42 may be coupled to the pitch drive
  • the pitch drive pinion 44 may, in turn, be in rotational engagement with a pitch bearing 46 coupled between the hub 20 and a corresponding rotor blade 22 such that rotation of the pitch drive pinion 44 causes rotation of the pitch bearing 46.
  • rotation of the pitch drive motor 40 drives the pitch drive gearbox 42 and the pitch drive pinion 44, thereby rotating the pitch bearing 46 and the rotor blade 22 about the pitch axis 28.
  • the wind turbine 10 may include one or more yaw drive mechanisms 66 communicatively coupled to the controller 26, with each yaw drive mechanism (s) 66 being configured to change the angle of the nacelle 16 relative to the wind (e.g., by engaging a yaw bearing 68 of the wind turbine 10) .
  • the gearbox assembly 30 includes a gearbox housing 38 that encloses a gear assembly.
  • the gearbox housing 38 includes an inlet opening 54 for the main shaft 34 and an outlet opening 56 for the gearbox output shaft 36.
  • the gear assembly may be any suitable gear assembly that uses one or more gears 52 and/or gear trains to provide speed and/or torque conversions from the main shaft 34 to the generator 24.
  • the gear assembly includes a gear system having one or more outer or planet gears revolving about a central or sun gear.
  • the planet gears may be mounted on a movable arm or carrier which itself may rotate relative to the sun gear.
  • the gear assembly may also include at least one ring gear configured to mesh the planet gears.
  • the rotating shaft 36 may include internal and external oil slingers 41, 43 that rotate between the non-rotating oil shield ring 45 and the internal and external cover plates 39, 47 of the gearbox housing 38.
  • the gaps 55 refer to the spaces between the rotating and non-rotating parts. Over time, debris and/or external objects (e.g. dust, sand, dirt, rocks, etc. ) may enter the gearbox housing 38 through these gaps 55, which can cause damage to the gearboxcomponents.
  • the gearbox assembly 30 of the present disclosure includes a sealing system 60 configured at either or both of the inlet or outlet openings 54, 56 so as to reduce or eliminate such objects or liquids from entering or exiting the gearbox housing 38 during operation.
  • FIGS. 4-8 various embodiments of the sealing system 60 according to the present disclosure are illustrated. Though the illustrated embodiments reference a sealing system configured at the outlet opening 56 of the gearbox output shaft 36, it should be understood that the figures are for illustration purposes only and the present disclosure encompasses a sealing system at any suitable location that can provide similar benefits, e.g. at the inlet opening 54. More specifically, FIG. 4 illustrates a detailed, cross-sectional view of a portion of the gearbox assembly 30 of FIG. 3 and FIG. 5 illustrates a cross-sectional view of the gearbox assembly 30 of FIG. 4 along line 5-5. More specifically, as shown in FIGS.
  • the sealing system 60 includes one or more air distribution pipes 62 and an air supplying device 70 (e.g. an air compressor, an air pump, or similar) .
  • the air supplying device 70 is configured to provide compressed air through one or more nozzles 64 configured in the air distribution pipe (s) 62 so as to seal the gap 55 between the shaft 36 and the gearbox housing 38.
  • the ejected air is intended to close the gap (s) 55 between the gearbox output shaft 36 and the gearbox housing 38 such that lubricants or similar (e.g. oil fog) used within the housing 38 remain trapped therein.
  • the ejected air is intended to close the gap (s) 55 between the main shaft 34 and the gearbox housing 38 such that debris (e.g. sand, dust, foreign objects, etc. ) cannot enter the gearbox housing 38.
  • the air distribution pipe 62 can have any suitable configuration suitable for sealing the gap between the shaft 36 and the housing 38.
  • the air distribution pipe 62 of the sealing system 60 may have a plurality of nozzles 64 and the air distribution pipe 62 may fit circumferentially around the shaft 36.
  • the nozzles 64 may be spaced circumferentially about the shaft 36 so as to close the entire annular gap 55 between the shaft 36 and the housing 38. More specifically, as shown in the embodiment of FIG. 5, the nozzles 64 may be evenly spaced in the air distribution pipe 62. Alternatively, as shown in FIG. 6, the nozzles 64 may be randomly spaced in the air distribution pipe 62.
  • the sealing system 60 may be configured outside of the gearbox housing 38. More specifically, as shown, the sealing system 60 may be mounted to the outside of the non-rotating gearbox housing 38, e.g. along with the external cover plate 39 of the gearbox housing 38. As such, the sealing system 60 is configured to provide air flow near one or more gaps 55 between the gearbox output shaft 36 and the gearbox housing 38 so as to create an air curtain therebetween. More specifically, the air curtain seals the gap 55 from inside the gearbox housing 38 such that solid particles, liquids, and/or gases cannot enter or exit the gearbox housing 38 during operation of the wind turbine 10.
  • some of the components of the sealing system 60 may be included inside of the gearbox housing 38 (e.g. the air distribution pipe 62 and/or nozzles 64) , whereas the air supplying device 70 can be located outside of the gearbox housing 38.
  • FIG. 8 a cross-sectional view of yet another embodiment of the gearbox assembly 30 according to the present disclosure is illustrated. More specifically, as shown, the gearbox assembly 30 includes at leasttwo air distribution pipes 62.
  • one of the air distribution pipes 62 may be configured inside of the gearbox housing 38, whereas another air distribution pipe 62 may be configured outside of the gearbox housing 38.
  • the illustrated embodiment includes the air distribution pipes 62 mounted to opposite sides of the external cover plate 39.
  • the plurality of air distribution pipes 62 are configured to provide air flow near the gap (s) 55 between the rotating parts (e.g. the gearbox output shaft 36) and the stationary parts (e.g. the gearbox housing 38) so as to create multiple air curtains therebetween. Accordingly, the air curtains seal the gaps 55 from inside and outside of the gearbox housing 38 such that solid particles, liquids, and/or gases cannot enter or exit the gearbox housing 38 during operation of the wind turbine 10.
  • the gearbox assembly includes a gearbox housing containing a plurality of gears operatively coupled via a plurality of shafts.
  • the method 100 includes locating at least one air distribution pipe at or near an opening of the gearbox housing. Further the at least one air distribution pipe has at least one nozzle configured therein.
  • the method 100 includes providing, via an air supplying device, compressed air through the at least one nozzle so as to seal a gap between one or more of the plurality of shafts of the gearbox assembly and the opening.
  • the method 100 includes controlling the air supplying device based on gearbox operation.
  • the sealing system of the present disclosure protects the internal components of the gearbox assembly and prevents operating fluids from escaping therefrom.
  • the controller 26 may operate the sealing system 70 at certain times, e.g. when the wind turbine 10 is in operation.
  • the sealing system 70 may be coupled to the controller 26 so as to receive commands therefrom.
  • the gearbox output shaft speed may be monitored in the controller 26 and the corresponding signal can be used to determine whether to provide air from the sealing system 70.
  • air may flow from the nozzles 64 at all times.

Abstract

A sealing system for a gearbox assembly of a wind turbine includes an air distribution pipe (62) having a plurality of nozzles (64) configured therein and an air supplying device (70). The air distribution pipe (62) is located at or near an opening (54,56) of a gearbox housing (38) of the gearbox assembly (30). The air supplying device (70) provides compressed air through the nozzles (64) so as to seal a gap between a shaft (34, 36) of the gearbox assembly (30) and the opening (34, 36) of the gearbox housing (38).

Description

SEALING SYSTEM FOR A GEARBOX OF A WIND TURBINE FIELD OF THE INVENTION
The present disclosure relates generally to wind turbines, and more particularly to a sealing system for a gearbox of a wind turbine.
BACKGROUND OF THE INVENTION
Wind power is considered one of the cleanest, most environmentally friendly energy sources presently available, and wind turbines have gained increased attention in this regard. A modern wind turbine typically includes a nacelle, a tower mounted atop the nacelle, a generator, a gearbox, and a rotor assembly having one or more rotor blades. More specifically, for many wind turbines, the rotor assembly is coupled to the generator through the gearbox. Further, the rotor assembly and the gearbox are typically mounted on a bedplate support frame located within the nacelle. For example, in many wind turbines, the gearbox is mounted to the bedplate via one or more torque supports or arms. The one or more rotor blades capture kinetic energy of wind using known airfoil principles. The rotor blades transmit the kinetic energy in the form of rotational energy so as to turn a shaft coupling the rotor blades to a gearbox, or if a gearbox is not used, directly to the generator. The generator then converts the mechanical energy to electrical energy that may be deployed to a utility grid.
The majority of commercially available wind turbines utilize multi-stage geared drivetrains to connect the turbine blades to electrical generators. The wind turns the turbine blades, which spin a low speed shaft. The low speed shaft is coupled to an input shaft of a gearbox, which has a higher speed output shaft connected to a generator. More specifically, the gearbox contains a housing that uses gears and/or gear trains to provide speed and torque conversions from the low speed shaft to the high speed shaft of the generator. Thus, the geared drivetrain aims to increase the velocity of the mechanical motion. For example, in some wind turbines, the gearbox increases the rotational speeds from less than about 20 rotations per minute (rpm) to about 1, 000-1, 800 rpm, which is the rotational speed required by most generators to produce electricity.
Over time, debris and/or external objects (e.g. dust, sand, dirt, rocks, etc. ) may enter the gearbox housing at gaps located between rotating and stationary parts caused by required clearances between the parts to avoid the occurrence of interference and collision. For example, sand can enter the gearbox housing through the inlet opening of the low speed shaft or the outlet opening of the high speed shaft, thereby causing damage to various internal components of the gearbox.
In addition, operating fluids of the gearbox, such as lubricating oil can produce oil fog in the case of a temperature increase after a certain time of gearbox operation. Oil fog is driven by the pressure and may exit or leak from the gearbox housing to other components of the wind turbine. For example, oil may leak from the outlet opening of the high speed shaft to other components of the wind turbine and cause damage and/or customer complaints.
Thus, a gearbox assembly that addresses the aforementioned issues would be advantageous. More specifically, a gearbox assembly having sealing capabilities at its inlet and outlet locations would be welcomed in the technology.
BRIEF DESCRIPTION OF THE INVENTION
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect, the present disclosure is directed to a gearbox assembly for a wind turbine. For example, in one embodiment, the gearbox assembly includes a gearbox housing having at least one opening, a gear assembly configured within the gearbox housing, at least one shaft configured with the gear assembly, at least two bearings to support the shaft, a lubrication system to lubricate the gear assembly and bearings, and a sealing system located at or near the opening of the gearbox housing. The gear assembly has one or more gears operatively coupled with the shaft. The shaft extends from the opening of the gearbox housing. Further, the sealing system is configured to seal a gap between the rotating shaft and the non-rotating gearbox housing.
In one embodiment, the sealing system is configured to prevent leaks caused by the lubrication system. In another embodiment, the opening (s) may  correspond to either or both of an inlet opening or an outlet opening of the gearbox housing. As such, the shaft (s) may correspond to either or both of a main shaft or a gearbox output shaft. More specifically, in certain embodiments, the main shaft may be configured within the inlet opening and the gearbox output shaft may beconfigured within the outlet opening. Accordingly, the gears of the gear assembly may be configured to convert a low speed, high torque input of the main shaft to a high speed, low torque output of the gearbox output shaft to drive a generator of the wind turbine.
In another embodiment, the sealing system may further include at least one air distribution pipe having at least one nozzle. In addition, the sealing system may also include an air supplying device (e.g. an air compressor, an air pump, or other equivalent equipment) configured to provide compressed air via the nozzle (s) so as to seal the gap between the rotating shaft and the non-rotating gearbox housing.
In a further embodiment, the air distribution pipe of the sealing system may include a plurality of nozzles. As such, in a particular embodiment, the air distribution pipe may be configured circumferentially around the shaft such that the nozzles can be spaced circumferentially around the shaft so as to provide an air curtain between the shaft and the gearbox housing. In certain embodiments, the plurality of nozzles may be evenly spaced in the air distribution pipe so as to provide substantially even air flow between the shaft and the gearbox housing. Alternatively, the plurality of nozzles may be randomly spaced in the air distribution pipe.
In still additional embodiments, rather than being located circumferentially around the shaft, the air distribution pipe of the sealing system may be configured above the shaft, below the shaft, on the left or right side of the shaft, or any combination thereof. As such, air flow from the air distribution pipe creates an air curtain that seals the gap between the shaft and the housing. In certain embodiments, the air distribution pipe of the sealing system is mounted to the non-rotating gearbox housing.
In another aspect, the present disclosure is directed to a sealing system for a gearbox assembly of a wind turbine. More specifically, in one embodiment, the sealing system includes at least one air distribution pipe having at least one nozzle configured therein. Further, the air distribution pipe is located at or near an opening  of a gearbox housing of the gearbox assembly. The sealing system also includes an air supplying device (e.g. an air compressor, an air pump, or other equivalent equipment) configured to provide compressed air through the at least one nozzle so as to seal a gap between a shaft of the gearbox assembly and the opening. It should be understood that the sealing system may be further configured with any of the additional features as described herein.
In yet another aspect, the present disclosure is directed to a method for protecting a gearbox assembly of a wind turbine. The gearbox assembly has a gearbox housing containing a plurality of gears operatively coupled via a plurality of shafts. In one embodiment, the method may include locating at least one air distribution pipe at or near an opening of the gearbox housing, wherein the air distribution pipe has at least one nozzle configured therein. The method may also include providing, via an air supplying device, compressed air through the at least one nozzle so as to seal a gap between one or more of the plurality of shafts of the gearbox assembly and the opening. Thus, another step includes controlling the air supplying device based on gearbox operation.
It should be understood that the method may further include any additional steps and/or features as described herein.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
FIG. 1 illustrates a perspective view of a wind turbine according to one embodiment of the present disclosure;
FIG. 2 illustrates a perspective view of a simplified, internal view of one embodiment of a nacelle of a wind turbine according to the present disclosure;
FIG. 3 illustrates a cross-sectional, top view of one embodiment of a gearbox assembly according to the present disclosure;
FIG. 4 illustrates a detailed, cross-sectional view of a portion of the gearbox assembly of FIG. 3, particularly illustrating a sealing system according to the present disclosure;
FIG. 5 illustrates a cross-sectional view of the sealing system of FIG. 4 along line 5-5;
FIG. 6 illustrates a cross-sectional view of another embodiment of the sealing system according to the present disclosure;
FIG. 7 illustrates a detailed, cross-sectional view of another embodiment of the gearbox assembly according to the present disclosure;
FIG. 8 illustrates a detailed, cross-sectional view of still another embodiment of the gearbox assembly according to the present disclosure; and,
FIG. 9 illustrates a flow diagram of one embodiment of a method for protecting a gearbox assembly of a wind turbine according to the present disclosure.
DETAILED DESCRIPTION OF THE INVENTION
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Generally, the present disclosure is directed to a sealing system for a gearbox assembly of a wind turbine. More specifically, in one embodiment, the sealing system includes an air distribution pipe having a plurality of nozzles configured therein and an air supplying device. The air distribution pipe is located at or near an opening of a gearbox housing of the gearbox assembly. As such, the air  pump provides compressed air through the nozzles so as to seal a gap between a shaft of the gearbox assembly and the opening of the gearbox housing.
The present disclosure provides many advantages not present in the prior art. For example, the sealing system does not rely on a physical seal, thereby eliminating potential wear out caused by rotating parts. Further, the sealing system prohibits debris, such as sand, dust, dirt, rocks, foreign objects, liquids, and/or similar from entering the gearbox internal space, which can cause damage to gearbox. Moreover, the sealing system prevents oil or lubricant leaks from exiting gearbox gaps located between rotating parts (e.g. the main shaft) and stationary parts (e.g. the gearbox housing) . In addition, the sealing system increases gearbox reliability, particularly for sandy sites (e.g. wind turbine sites in desert locations) .
Referring now to the drawings, FIG. 1 illustrates a perspective view of one embodiment of a wind turbine 10 according to the present disclosure. As shown, the wind turbine 10 generally includes a tower 12 extending from a support surface 14, a nacelle 16 mounted on the tower 12, and a rotor 18 coupled to the nacelle 16. The rotor 18 includes a rotatable hub 20 and at least one rotor blade 22 coupled to and extending outwardly from the hub 20. For example, in the illustrated embodiment, the rotor 18 includes three rotor blades 22. However, in an alternative embodiment, the rotor 18 may include more or less than three rotor blades 22. Each rotor blade 22 may be spaced about the hub 20 to facilitate rotating the rotor 18 to enable kinetic energy to be transferred from the wind into usable mechanical energy, and subsequently, electrical energy. For instance, the hub 20 may be rotatably coupled to an electric generator 24 (FIG. 2) positioned within the nacelle 16 to permit electrical energy to be produced.
The wind turbine 10 may also include a wind turbine controller 26 centralized within the nacelle 16. However, in other embodiments, the controller 26 may be located within any other component of the wind turbine 10 or at a location outside the wind turbine 10. Further, the controller 26 may be communicatively coupled to any number of the components of the wind turbine 10 in order to control the components. As such, the controller 26 may include a computer or other suitable processing unit. Thus, in several embodiments, the controller 26 may include suitable computer-readable instructions that, when implemented, configure the controller 26 to  perform various different functions, such as receiving, transmitting and/or executing wind turbine control signals.
Referring now to FIG. 2, a simplified, internal view of one embodiment of the nacelle 16 of the wind turbine 10 shown in FIG. 1 is illustrated. As shown, the generator 24 may be coupled to the rotor 18 for producing electrical power from the rotational energy generated by the rotor 18. For example, as shown in the illustrated embodiment, the rotor 18 may include a main shaft 34 coupled to the hub 20 for rotation therewith. The main shaft 34 may, in turn, be rotatably coupled to a gearbox output shaft 36 of the generator 24 through a gearbox assembly 30, which will be discussed in more detail in reference to FIGS. 3-7. Further, the gearbox assembly 30 includes a gearbox housing 38 that is connected to a bedplate support frame 48 by one or more torque arms 50. As is generally understood, the main shaft 34 provides a low speed, high torque input to the gearbox assembly 30 in response to rotation of the rotor blades 22 and the hub 20. The gearbox assembly 30 then converts the low speed, high torque input to a high speed, low torque output to drive the gearbox output shaft 36 and, thus, the generator 24.
Each rotor blade 22 may also include a pitch adjustment mechanism 32 configured to rotate each rotor blade 22 about its pitch axis 28, depending on the wind speed and/or wind direction. As such, pitching the blades 22 directly affects the power output of the generator 24. More specifically, each pitch adjustment mechanism 32 may include a pitch drive motor 40 (e.g. , any suitable electric, hydraulic, or pneumatic motor) , a pitch drive gearbox 42, and a pitch drive pinion 44. In such embodiments, the pitch drive motor 40 may be coupled to the pitch drive gearbox 42 so that the pitch drive motor 40 imparts mechanical force to the pitch drive gearbox 42. Similarly, the pitch drive gearbox 42 may be coupled to the pitch drive pinion 44 for rotation therewith. The pitch drive pinion 44 may, in turn, be in rotational engagement with a pitch bearing 46 coupled between the hub 20 and a corresponding rotor blade 22 such that rotation of the pitch drive pinion 44 causes rotation of the pitch bearing 46. Thus, in such embodiments, rotation of the pitch drive motor 40 drives the pitch drive gearbox 42 and the pitch drive pinion 44, thereby rotating the pitch bearing 46 and the rotor blade 22 about the pitch axis 28. Similarly, the wind turbine 10 may include one or more yaw drive mechanisms 66  communicatively coupled to the controller 26, with each yaw drive mechanism (s) 66 being configured to change the angle of the nacelle 16 relative to the wind (e.g., by engaging a yaw bearing 68 of the wind turbine 10) .
Referring now to FIG. 3, a cross-sectional, top view of one embodiment of the gearbox assembly 30 according to the present invention is illustrated. As shown, the gearbox assembly 30 includes a gearbox housing 38 that encloses a gear assembly. The gearbox housing 38 includes an inlet opening 54 for the main shaft 34 and an outlet opening 56 for the gearbox output shaft 36. The gear assembly may be any suitable gear assembly that uses one or more gears 52 and/or gear trains to provide speed and/or torque conversions from the main shaft 34 to the generator 24. For example, in certain embodiments, the gear assembly includes a gear system having one or more outer or planet gears revolving about a central or sun gear. In addition, the planet gears may be mounted on a movable arm or carrier which itself may rotate relative to the sun gear. The gear assembly may also include at least one ring gear configured to mesh the planet gears. As the main shaft 34 rotates, the gears 52 of the gear assembly convert the low speed, high torque input of the main shaft 34 to a high speed, low torque output to drive the gearbox output shaft 36 and, thus, the generator 24.
Referring to FIGS. 3, 4, and 7, at the inlet and  outlet openings  54, 56 of the gearbox housing 38, one or more gaps 55 are created between the  rotating shafts  34, 36 and the stationary housing 38 due to required clearances of the parts. More specifically, as shown in FIGS. 7 and 8, the rotating shaft 36 may include internal and  external oil slingers  41, 43 that rotate between the non-rotating oil shield ring 45 and the internal and  external cover plates  39, 47 of the gearbox housing 38. The gaps 55 refer to the spaces between the rotating and non-rotating parts. Over time, debris and/or external objects (e.g. dust, sand, dirt, rocks, etc. ) may enter the gearbox housing 38 through these gaps 55, which can cause damage to the gearboxcomponents. In addition, operating fluids of the gearbox, e.g. oil or lubricants, may exit or leak from the outlet (s) 56. As such, the gearbox assembly 30 of the present disclosure includes a sealing system 60 configured at either or both of the inlet or  outlet openings  54, 56 so as to reduce or eliminate such objects or liquids from entering or exiting the gearbox housing 38 during operation.
For example, as shown in FIGS. 4-8, various embodiments of the sealing system 60 according to the present disclosure are illustrated. Though the illustrated embodiments reference a sealing system configured at the outlet opening 56 of the gearbox output shaft 36, it should be understood that the figures are for illustration purposes only and the present disclosure encompasses a sealing system at any suitable location that can provide similar benefits, e.g. at the inlet opening 54. More specifically, FIG. 4 illustrates a detailed, cross-sectional view of a portion of the gearbox assembly 30 of FIG. 3 and FIG. 5 illustrates a cross-sectional view of the gearbox assembly 30 of FIG. 4 along line 5-5. More specifically, as shown in FIGS. 5-6, the sealing system 60 includes one or more air distribution pipes 62 and an air supplying device 70 (e.g. an air compressor, an air pump, or similar) . The air supplying device 70 is configured to provide compressed air through one or more nozzles 64 configured in the air distribution pipe (s) 62 so as to seal the gap 55 between the shaft 36 and the gearbox housing 38. Accordingly, the ejected air is intended to close the gap (s) 55 between the gearbox output shaft 36 and the gearbox housing 38 such that lubricants or similar (e.g. oil fog) used within the housing 38 remain trapped therein. Similarly, the ejected air is intended to close the gap (s) 55 between the main shaft 34 and the gearbox housing 38 such that debris (e.g. sand, dust, foreign objects, etc. ) cannot enter the gearbox housing 38.
It should be understood that the air distribution pipe 62 can have any suitable configuration suitable for sealing the gap between the shaft 36 and the housing 38. For example, as shown in FIGS. 5 and 6, the air distribution pipe 62 of the sealing system 60 may have a plurality of nozzles 64 and the air distribution pipe 62 may fit circumferentially around the shaft 36. As such, the nozzles 64 may be spaced circumferentially about the shaft 36 so as to close the entire annular gap 55 between the shaft 36 and the housing 38. More specifically, as shown in the embodiment of FIG. 5, the nozzles 64 may be evenly spaced in the air distribution pipe 62. Alternatively, as shown in FIG. 6, the nozzles 64 may be randomly spaced in the air distribution pipe 62.
Referring to FIGS. 4 and 7-8, various cross-sectional views of the gearbox assembly 30 according to the present disclosure are illustrated. For example, as shown, the sealing system 60 may be configured outside of the gearbox housing 38.  More specifically, as shown, the sealing system 60 may be mounted to the outside of the non-rotating gearbox housing 38, e.g. along with the external cover plate 39 of the gearbox housing 38. As such, the sealing system 60 is configured to provide air flow near one or more gaps 55 between the gearbox output shaft 36 and the gearbox housing 38 so as to create an air curtain therebetween. More specifically, the air curtain seals the gap 55 from inside the gearbox housing 38 such that solid particles, liquids, and/or gases cannot enter or exit the gearbox housing 38 during operation of the wind turbine 10.
In additional embodiments, some of the components of the sealing system 60 may be included inside of the gearbox housing 38 (e.g. the air distribution pipe 62 and/or nozzles 64) , whereas the air supplying device 70 can be located outside of the gearbox housing 38. For example, as shown in FIG. 8, a cross-sectional view of yet another embodiment of the gearbox assembly 30 according to the present disclosure is illustrated. More specifically, as shown, the gearbox assembly 30 includes at leasttwo air distribution pipes 62. For example, one of the air distribution pipes 62 may be configured inside of the gearbox housing 38, whereas another air distribution pipe 62 may be configured outside of the gearbox housing 38. Particularly, the illustrated embodiment includes the air distribution pipes 62 mounted to opposite sides of the external cover plate 39. As such, the plurality of air distribution pipes 62 are configured to provide air flow near the gap (s) 55 between the rotating parts (e.g. the gearbox output shaft 36) and the stationary parts (e.g. the gearbox housing 38) so as to create multiple air curtains therebetween. Accordingly, the air curtains seal the gaps 55 from inside and outside of the gearbox housing 38 such that solid particles, liquids, and/or gases cannot enter or exit the gearbox housing 38 during operation of the wind turbine 10.
Referring to FIG. 9, a flow diagram of one embodiment of a method 100 for protecting a gearbox assembly of a wind turbine is illustrated. As mentioned, the gearbox assembly includes a gearbox housing containing a plurality of gears operatively coupled via a plurality of shafts. As shown at 102, the method 100 includes locating at least one air distribution pipe at or near an opening of the gearbox housing. Further the at least one air distribution pipe has at least one nozzle configured therein. At 104, the method 100 includes providing, via an air supplying  device, compressed air through the at least one nozzle so as to seal a gap between one or more of the plurality of shafts of the gearbox assembly and the opening. Thus, at 106, the method 100 includes controlling the air supplying device based on gearbox operation. Accordingly, the sealing system of the present disclosure protects the internal components of the gearbox assembly and prevents operating fluids from escaping therefrom. More specifically, in certain embodiments, the controller 26 may operate the sealing system 70 at certain times, e.g. when the wind turbine 10 is in operation. For example, the sealing system 70 may be coupled to the controller 26 so as to receive commands therefrom. The gearbox output shaft speed may be monitored in the controller 26 and the corresponding signal can be used to determine whether to provide air from the sealing system 70. In additional embodiments, air may flow from the nozzles 64 at all times.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments. Similarly, the various method steps and features described, as well as other known equivalents for each such methods and feature, can be mixed and matched by one of ordinary skill in this art to construct additional systems and techniques in accordance with principles of this disclosure. Of course, it is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the  claims.
COMPONENT LIST
Reference Character Component
10 Wind Turbine
12 Tower
14 Foundation/Support Surface
16 Nacelle
18 Rotor
20 Rotatable Hub
22 Rotor Blades
24 Generator
26 Controller
28 Pitch Axis
30 Gearbox Assembly
32 Pitch Adjustment Mechanism
34 Main Shaft
35 Main Bearing
36 Gearbox Output Shaft
38 Gearbox Housing
39 External Cover Plate
40 Pitch Drive Motor
41 External Oil Slinger
42 Pitch Drive Gearbox
43 Internal Oil Slinger
44 Pitch Drive Pinion
45 Oil Shield Ring
46 Pitch Bearing
47 Internal Cover Plate
48 Bedplate Support Frame
50 Torque Arm
52 Gears
54 Inlet Opening
55 Gap
56 Outlet Opening
60 Sealing System
62 Air Distribution Pipe (s)
64 Nozzle (s)
66 Yaw Drive Mechanisms
68 Yaw Bearing
70 Air Supplying Device
   
100 Method
102 Method Step
104 Method Step

Claims (20)

  1. A gearbox assembly for a wind turbine, the assembly comprising:
    a gearbox housing comprising at least one opening;
    a gear assembly configured within the gearbox housing, the gear assembly comprising one or more gears;
    at least one shaft configured with the gear assembly and extending from the opening of the gearbox housing; and,
    a sealing system located at or near the opening of the gearbox housing, the sealing system configured to seal a gap between the shaft and the gearbox housing.
  2. The gearbox assembly of claim 1, wherein the sealing system is configured to prevent leaks caused by a lubrication system of the gearbox assembly.
  3. The gearbox housing of claim 1, wherein the at least one opening further comprises at least one of an inlet opening or an outlet opening of the gearbox housing.
  4. The gearbox assembly of claim 3, wherein the at least one shaft comprises at least one of a main shaft or a gearbox output shaft.
  5. The gearbox assembly of claim 4, wherein the main shaft is configured within the inlet opening and the gearbox output shaft is configured within the outlet opening.
  6. The gearbox assembly of claim 1, wherein the sealing system further comprises at least one air distribution pipe, the air distribution pipe comprising at least one nozzle.
  7. The gearbox assembly of claim 6, wherein the sealing system further comprises an air supplying device configured to provide compressed air via the at least one nozzle so as to seal the gap between the shaft and the gearbox housing.
  8. The gearbox assembly of claim 6, wherein the at least one air distribution pipe comprises a plurality of nozzles, and wherein the air distribution pipe is configured circumferentially around the shaft such that the nozzles are spaced circumferentially around the shaft.
  9. The gearbox assembly of claim 8, wherein the plurality of nozzles are evenly spaced in the air distribution pipe.
  10. The gearbox assembly of claim 8, wherein the plurality of nozzles are randomly spaced in the air distribution pipe.
  11. The gearbox assembly of claim 1, wherein the sealing system is configured above the shaft, below the shaft, on the left side of the shaft, on the right side of the shaft, or any combination thereof.
  12. The gearbox assembly of claim 11, wherein the air distribution pipe of the sealing system is mounted to the gearbox housing.
  13. A sealing system for a gearbox assembly of a wind turbine, the sealing system comprising:
    at least one air distribution pipe having at least one nozzle configured therein, the air distribution pipe being located at or near an opening of a gearbox housing of the gearbox assembly; and,
    an air supplying device configured to provide compressed air through the at least one nozzle so as to seal a gap between a shaft of the gearbox assembly and the opening.
  14. The sealing system of claim 13, wherein the shaft comprises at least one of a main shaft or a gearbox output shaft, wherein the opening comprises at least one of an inlet opening and or an outlet opening of the gearbox housing, and wherein the main shaft is configured within the inlet opening and the gearbox output shaft is configured within the outlet opening.
  15. The sealing system of claim 13, wherein the at least one air distribution pipe comprises a plurality of nozzles, and wherein the air distribution pipe is configured to fit circumferentially around the shaft such that the nozzles are spaced circumferentially around the shaft.
  16. The sealing system of claim 15, wherein the plurality of nozzles are evenly spaced in the air distribution pipe.
  17. The sealing system of claim 15, wherein the plurality of nozzles are randomly spaced in the air distribution pipe.
  18. The sealing system of claim 17, wherein the air distribution pipe of the sealing system is mounted to the gearbox housing.
  19. The sealing system of claim 13, wherein the sealing system is configured above the shaft, below the shaft, on the left side of the shaft, on the right side of the shaft, or any combination thereof.
  20. A method for protecting a gearbox assembly of a wind turbine, the gearbox assembly having a gearbox housing containing a plurality of gears operatively coupled via a plurality of shafts, the method comprising:
    locating at least one air distribution pipe at or near an opening of the gearbox housing, the at least one air distribution pipe having at least one nozzle configured therein;
    providing, via an air supplying device, compressed air through the at least one nozzle so as to seal a gap between one or more of the plurality of shafts of the gearbox assembly and the opening; and,
    controlling the air supplying device based on gearbox operation.
PCT/CN2015/074189 2015-03-13 2015-03-13 Sealing system for a gearbox of a wind turbine WO2016145564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074189 WO2016145564A1 (en) 2015-03-13 2015-03-13 Sealing system for a gearbox of a wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074189 WO2016145564A1 (en) 2015-03-13 2015-03-13 Sealing system for a gearbox of a wind turbine

Publications (1)

Publication Number Publication Date
WO2016145564A1 true WO2016145564A1 (en) 2016-09-22

Family

ID=56918232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074189 WO2016145564A1 (en) 2015-03-13 2015-03-13 Sealing system for a gearbox of a wind turbine

Country Status (1)

Country Link
WO (1) WO2016145564A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107542936A (en) * 2016-06-26 2018-01-05 哈尔滨盛迪电力设备有限公司 The double air ring sealing devices of magnetic suspension positioning
WO2020134516A1 (en) * 2018-12-25 2020-07-02 珠海格力电器股份有限公司 Shaft seal component, compressor and refrigerant circulation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331337A (en) * 1979-11-23 1982-05-25 Cross Michael E Air film-expanded gas seals
CN2223788Y (en) * 1992-05-14 1996-04-03 尹兴伊 Shaft air flow sealing device for electric fan
JP2002061750A (en) * 2000-08-24 2002-02-28 Mitsutoyo Corp Noncontact sealing device
CN201016395Y (en) * 2007-03-22 2008-02-06 姚亮 Rotary movable sealing apparatus
CN201330850Y (en) * 2008-11-13 2009-10-21 刘红革 Follow-up air-lock type sealing device
CN201851668U (en) * 2010-11-11 2011-06-01 江苏牧羊集团有限公司 Shaft end sealing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331337A (en) * 1979-11-23 1982-05-25 Cross Michael E Air film-expanded gas seals
CN2223788Y (en) * 1992-05-14 1996-04-03 尹兴伊 Shaft air flow sealing device for electric fan
JP2002061750A (en) * 2000-08-24 2002-02-28 Mitsutoyo Corp Noncontact sealing device
CN201016395Y (en) * 2007-03-22 2008-02-06 姚亮 Rotary movable sealing apparatus
CN201330850Y (en) * 2008-11-13 2009-10-21 刘红革 Follow-up air-lock type sealing device
CN201851668U (en) * 2010-11-11 2011-06-01 江苏牧羊集团有限公司 Shaft end sealing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107542936A (en) * 2016-06-26 2018-01-05 哈尔滨盛迪电力设备有限公司 The double air ring sealing devices of magnetic suspension positioning
CN107542936B (en) * 2016-06-26 2024-02-09 哈尔滨盛迪电力设备有限公司 Magnetic suspension positioning double-airflow ring sealing device
WO2020134516A1 (en) * 2018-12-25 2020-07-02 珠海格力电器股份有限公司 Shaft seal component, compressor and refrigerant circulation system

Similar Documents

Publication Publication Date Title
US20120141270A1 (en) Drivetrain and method for lubricating bearing in wind turbine
CN105889476B (en) Gearbox lubricating system
CN106255813B (en) Aircraft turbine engine with the output of improved machine power
EP3530939B1 (en) Replacement methods for radial seals of wind turbine main bearings
US10145363B2 (en) Method for performing up-tower maintenance on a gearbox bearing of a wind turbine
JP5614605B1 (en) Wind power generator and construction method thereof
US9856966B2 (en) Drivetrain assembly for a wind turbine
US10502193B2 (en) Repair method for a gearbox assembly of a wind turbine
EP3428449B1 (en) Drivetrain for a wind turbine and method for positioning a main bearing of said drivetrain
WO2016145564A1 (en) Sealing system for a gearbox of a wind turbine
CN109416026A (en) Wind wheel generator with generator shaft bearing assembly
US11085421B2 (en) Planet carrier of a wind turbine gearbox with improved lubricant path
CN101839221B (en) Novel vertical-axis megawatt wind power generation driving system
WO2012111532A1 (en) Wind power generation apparatus
US10935003B2 (en) Lubrication system for a main bearing of a wind turbine
US20180313336A1 (en) Clamping apparatus for securing a main bearing of a wind turbine during an installation and/or repair procedure
CN210890100U (en) External radial multi-lip bidirectional Z-shaped sealing device
CN209743498U (en) Single-inlet double-outlet speed reducer
CN108361356B (en) System and method for repairing bearing bore of wind turbine gearbox
AU2013207632B2 (en) Wind turbine yaw or pitch bearing utilizing a threaded bearing surface
CN209621526U (en) A kind of wind-driven generator and its transmission system
US20230228254A1 (en) Lubrication system for a pitch bearing of a wind turbine
JP6358805B2 (en) Wind power generator and maintenance method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884948

Country of ref document: EP

Kind code of ref document: A1