WO2016145194A1 - Chargeur de batterie utilisable avec plusieurs alimentations électriques différentes, et connecteur usb utilisable avec ce dernier et d'une autre manière - Google Patents

Chargeur de batterie utilisable avec plusieurs alimentations électriques différentes, et connecteur usb utilisable avec ce dernier et d'une autre manière Download PDF

Info

Publication number
WO2016145194A1
WO2016145194A1 PCT/US2016/021767 US2016021767W WO2016145194A1 WO 2016145194 A1 WO2016145194 A1 WO 2016145194A1 US 2016021767 W US2016021767 W US 2016021767W WO 2016145194 A1 WO2016145194 A1 WO 2016145194A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical
battery
connector
usb connector
elongated
Prior art date
Application number
PCT/US2016/021767
Other languages
English (en)
Inventor
Peter J. Ziegenfuss
Jon C. ZEISLER
Raymond L. Sharrah
Thomas D. Boris
Original Assignee
Streamlight, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/053,539 external-priority patent/US9960621B2/en
Application filed by Streamlight, Inc. filed Critical Streamlight, Inc.
Publication of WO2016145194A1 publication Critical patent/WO2016145194A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R27/00Coupling parts adapted for co-operation with two or more dissimilar counterparts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21LLIGHTING DEVICES OR SYSTEMS THEREOF, BEING PORTABLE OR SPECIALLY ADAPTED FOR TRANSPORTATION
    • F21L4/00Electric lighting devices with self-contained electric batteries or cells
    • F21L4/08Electric lighting devices with self-contained electric batteries or cells characterised by means for in situ recharging of the batteries or cells
    • F21L4/085Pocket lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/64Means for preventing incorrect coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2103/00Two poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2107/00Four or more poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/60Contacts spaced along planar side wall transverse to longitudinal axis of engagement
    • H01R24/62Sliding engagements with one side only, e.g. modular jack coupling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/76Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure with sockets, clips or analogous contacts and secured to apparatus or structure, e.g. to a wall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a USB connector usable, e.g., with a battery charger and otherwise.
  • the present invention relates to a battery charger and, in particular, to a battery charger usable with plural different power supplies.
  • the invention relates to a method for charging one or more batteries.
  • the invention also relates to a method for operating a battery charger.
  • USB universal serial bus
  • VDC +5 Volt DC
  • the current available from the +5 Volt DC (herein VDC) USB connector power supply pin can vary greatly, e.g., from a standard level of one hundred milliamperes, e.g., from a device such as a laptop computer, but possibly to a greater current, e.g., up to about 1.8 or about 2.4 amperes from a power supply, it is usually able to provide a level of current that is sufficient for recharging a rechargeable battery, even if at a less than optimum or less than maximum charge rate. The longer charging time is often an acceptable penalty in exchange for the convenience of using an available USB port to recharge a device.
  • USB connectors such as those usable with battery charging, can be damaged relatively easily if not properly aligned and/or oriented when being connected, e.g., mated with a compatible connector, and also may be subject to being dislodged or de -mated unintentionally.
  • Applicant believes there may be a need for a battery charger that addresses some or all of the foregoing battery charger related aspects. In addition, Applicant also believes there may be a need for a connector that addresses some or all of the foregoing connector related aspects.
  • a battery charger may comprise: a housing having at least one cradle; a connector port for receiving at different times electrical plug connectors having different contact configurations; electrical receptacles in the connector port for receiving at different times electrical plug connectors associated with different electrical power supplies; a first electrical receptacle having a different contact configuration than a second electrical receptacle; the electrical receptacles being closely adjacent such that an electrical connector inserted into one of the electrical receptacles physically prevents an electrical connector from being inserted into the other electrical receptacle; and an electrical circuit coupling electrical power received at the electrical receptacles to the at least one cradle.
  • a connector may comprise: an elongated connector body with an electrical connector frame at one end thereof; the connector body having a longitudinal alignment feature, a guide feature defining an orientation, and a retaining feature.
  • An electrical connector may comprise: an electrical connector frame supported on a base; an alignment and retaining structure including first and second opposing guide members configured for an elongated connector body to be placed therebetween to mate with the electrical connector frame; the first guide member configured to align a complementary feature of the connector body and to receive a guide feature on the connector body that defines an orientation; and at least one of the first and second guide members having a retaining feature configured to engage the connector body for retaining the elongated connector body between the first and second guide members with the connector body mated with the electrical connector frame.
  • a method for charging a battery may comprise:
  • a battery charger and process for charging a rechargeable battery may comprise:
  • determining the current available from an external power supply including: i) measuring a voltage provided by the external power supply;
  • FIGURES 1A, IB and 1C are three different perspective views of an example embodiment of a battery charger having a rechargeable electronic device and a rechargeable battery in respective cradles thereof;
  • FIGURES 2A and 2B are front views of the example embodiment of a battery charger of FIGURE 1 with and without the rechargeable electronic device light and the rechargeable battery in the respective cradles thereof;
  • FIGURE 3 is a side cross-sectional view of the example embodiment of a battery charger of FIGURES 1 and 2 with a rechargeable electronic device in one cradle thereof and a rechargeable battery in another cradle thereof;
  • FIGURE 4 A is a view of the bottom end of example embodiment of the battery charger of FIGURES 1-3 and FIGURE 4B which is an enlargement of a portion of FIGURE 4A showing a connector port thereof;
  • FIGURES 5A and 5B are respective views of the connector port on the bottom end of the example embodiment of a battery charger with each of two different plug connectors inserted therein;
  • FIGURES 6A, 6B and 6C are a perspective view and two different side views, respectively, of the connector port on the bottom end of the example embodiment of a battery charger including an example embodiment of a connector alignment arrangement;
  • FIGURES 7A, 7B and 7C are respective perspective views of an example embodiment of an alternative connector, and of the alternative connector partially inserted and fully inserted in the connector port of the example embodiment of a battery charger including an example embodiment of an alignment and retaining arrangement, and FIGURE 7D is a cross- sectional view of the example connector in a mated configuration;
  • FIGURE 8 includes two perspective views and four orthogonal views of the example embodiment of alternative connector of FIGURE 7 including an example embodiment of an alignment and retaining arrangement;
  • FIGURE 9 is an electrical schematic diagram of an example embodiment of an electrical circuit suitable for use with the example embodiment of a battery charger of FIGURES 1-6C, and FIGURE 9A is an alternative example embodiment of the example electrical circuit of FIGURE 9;
  • FIGURES 10 and 10A are schematic flow diagrams illustrating an example of the operation of the example embodiment of a battery charger and electrical circuit of FIGURES 1-9A;
  • FIGURE 11 is a schematic flow diagram illustrating an alternative example of the operation of the example embodiment of a battery charger and electrical circuit of FIGURES 1-9A.
  • FIGURES 1A, IB and 1C are three different perspective views of an example embodiment of a battery charger 100 having a rechargeable electronic device 180 and a rechargeable battery 190 in respective cradles 110, 120 thereof; and FIGURES 2 A and 2B are front views of the example embodiment of a battery charger 100 of FIGURE 1 with and without the rechargeable electronic device 180, e.g., a flashlight 180, and the rechargeable battery 190 in the respective cradles 110, 120 thereof.
  • FIGURE 3 is a side cross-sectional view of the example embodiment of a battery charger 100 of FIGURES 1 and 2 with a rechargeable electronic device 180 in one cradle 110 thereof and a rechargeable battery 190 in another cradle 120 thereof.
  • the example embodiment 100 illustrated is a Streamlight STRION Piggyback
  • Battery Charger 100 that has two receptacles 110, 120 or cradles 110, 120 - one 110 for charging a battery or battery pack within a flashlight 180 that is placed into the receptacle 110 and a second 120 for charging a battery 190 or battery pack 190 apart from a flashlight 180, e.g., typically the battery packs 190 are of the same type with each being a replacement for the other.
  • Charger 100 receives electrical power from either of two different electrical power supplies via connector port 150:
  • a 12/18/24 volt DC power source that connects, e.g., to a DC vehicle system or to another source that connects to AC power mains, and
  • a USB power source sometimes connected to a power "cube” or “block” that provides, e.g., +5 volts DC, or to a device, e.g., a personal computer, that provides, e.g., +5 VDC, at a USB port.
  • a power "cube” or “block” that provides, e.g., +5 volts DC
  • a device e.g., a personal computer, that provides, e.g., +5 VDC, at a USB port.
  • Charger 100 has a generally rectangular base 130 or housing 130 from which a pair of spring-biased arms 112 extend to define a first cradle 110 having electrical contacts 116.
  • an electronic device e.g., flashlight 180
  • the spring-biased arms 112 When placed into the first cradle 110, an electronic device, e.g., flashlight 180, is retained therein by the spring-biased arms 112 and electrically connects to the circuitry 200 of the charger 100 to receive charging current via corresponding electrical contacts 116.
  • a second or auxiliary cradle 120 is defined, e.g., along one side of the rectangular housing 130 to receive a battery 190, e.g., a battery 190 or battery pack 190 apart from a flashlight, such as an auxiliary battery or a spare battery, which is retained therein to electrically connect to the circuitry 200 of the charger 100 to receive charging current via corresponding electrical contacts 116.
  • the charger electrical circuitry 200 is contained and supported within the charger base 130.
  • a charger connector port 150 e.g., an opening 150 in the charger base 130, e.g., on the bottom side thereof, for receiving connectors of electrical cables from two or more different electrical power supplies.
  • one opening or port 150 in the charger base 130 provides access to plural electrical connectors 162, 164, e.g., two electrical connectors 152, 154, and the one opening 150 is configured so that the external outlines of the plural, e.g., two, different electrical power supply connectors 162, 164 cannot be connected to the charger base 130 at the same time.
  • FIG. 1 An example of such connector opening or port 150 having first and second electrical receptacles 152, 154 for receiving at different times first and second electrical connectors 162, 164, e.g., an AC or DC power supply connector 162 and a USB connector 164, is described below in relation to FIGURES 4 and 5.
  • Power source 160 typically includes one of electrical connectors 162, 164 that connect via a respective electrical cable 166 to a respective power source 168, which in the FIGURE represent any one of several external power sources 168, including a USB power source 168.
  • Charger housing or base 130 includes a housing body 132 having an opening on the underside thereof that is covered by a housing base 134.
  • a pair of arm supports 136 extend from the face of charger housing body 132 and provide respective pivotable joints at which spring arms 112 are pivotably attached 137, e.g., by a pivot pin 137, to arm supports 136 of housing body 132.
  • Spring arms 112 are biased by respective springs to pivot towards each other and have respective opposing sloped surfaces at the ends thereof distal the pivot pins 137 to facilitate flashlight 180 being placed into cradle 110 with a snap-in motion.
  • an electrical device 180 may conveniently be quickly snapped into cradle 110 and snapped out of cradle 110.
  • flashlight 180 is guided to a predetermined position in cradle 110 whereat charging contacts of flashlight 180 make electrical connection to electrical charging contacts 116 within cradle 110.
  • Cradle 110 preferably has a triangular guide member 114, e.g., a triangular recess 114, that corresponds to a corresponding triangular guide member, e.g., a triangular raised feature, of flashlight 180.
  • the electrical charging contacts 189 of flashlight 180 are in electrical contact with electrical charging contacts 116 of charger 100, as illustrated in FIGURES 2B and 3.
  • An optional auxiliary or "piggyback" secondary housing 140 may be attached to charger housing 130 in which position it is electrically connected to the circuitry of charger 100 for charging a rechargeable battery 190 which maybe placed into cradle 120 of housing 140.
  • Connection end 142 of housing 140 includes electrical contacts for making electrical connection to electrical contacts of rechargeable battery 190.
  • An example of a suitable contact arrangement may be found in, e.g., U.S. Patent No. 6,652,1 15 entitled “BATTERY CHARGER STRUCTURE AND RECHARGEABLE FLASHLIGHT SYSTEM USING THE SAME" issued November 25, 2003, which is assigned to the assignee of the present Application, and which is hereby incorp orated herein by reference in its entirety.
  • An indicator light 138 e.g., a light emitting diode (LED) 138, on charger housing
  • an indicator light 148 e.g., a light emitting diode 148
  • secondary charger housing 140 provides a visual indication of the status of the charging being provided via cradle 120 when a rechargeable battery 190 is disposed therein.
  • indicators 138, 148 may be a light emitting diode or may include an optical light pipe coupled to light emitting diodes within charger base 130 and secondary housing 140, respectively.
  • Example electronic device 180 may be a flashlight 180 having a device housing
  • Light head 184 includes a light source , e.g., a light emitting diode 184L and a reflector 185R that forms the light from LED 184L into a desired beam shape which exits via lens 185.
  • a rechargeable battery 190 maybe disposed within barrel 186 and actuator 188 may actuate an electrical switch within flashlight housing 182 for controlling the operation of flashlight 180.
  • housing base 134 is retained to the underside of housing body 132 by one or more threaded or other fasteners and an electronic circuit board 200 is disposed in housing 130.
  • Charging contacts 116 are spring biased by respective springs, e.g., helical springs, surrounding the respective bases thereof so as to be urged outward toward the position in the first cradle 110 whereat the corresponding charging contacts 189 of flashlight 180 are positioned when flashlight 180 is seated in cradle 110.
  • Contacts 116 are connected to the circuitry of circuit board 200 by respective electrical wires 202 for conducting charging current to electronic device 180, e.g., flashlight 180, via contacts 116 and for sensing the voltage of the battery 190 therein, as described below.
  • Piggyback or secondary charger housing 140 may attach to charger housing 130 by its base serving in place of the base 134 of housing 140 and being fastened thereto by one or more fasteners, e.g., self-tapping screws.
  • Secondary charger housing 140 may connect electrically by plural electrical conductors, e.g., wires, connected between an electronic circuit board mounted in secondary housing 140 and the electronic circuit board 200 mounted in housing 130.
  • Device 180 is seen to have two coaxial helical springs extending rearward from the forward or light head 184 end thereof for making electrical connection to a central contact and to a surrounding annular contact at the forward end of battery 190.
  • Actuator 188 is seen to have a central region that actuates a switch 188S via a spring and plunger that are contained within the tail cap 186T that is on the end of barrel 186 of housing 182 of flashlight 180.
  • Switch 188S may be connected by barrel 186 providing one electrical conductor and by battery 190 providing a second electrical conductor via a spring of switch 188S and an electrical contact at the rearward end of battery 190.
  • FIGURE 4A is a view of the bottom end of example embodiment of a battery charger 100 of FIGURES 1-3 and FIGURE 4B is an enlargement of a portion of FIGURE 4A showing a connector port 150 thereof; and FIGURES 5 A and 5B are respective views of the connector port 150 on the bottom end of the example embodiment of a battery charger 100 with each of two different plug connectors 162, 164 inserted therein.
  • Connector 152 is, e.g., a connector having two receptacle contacts 152C for receiving a two prong plug 162 associated with a DC power source, e.g., such as ones available from Streamlight, Inc., located in Eagleville, Pennsylvania, that provide a DC voltage in the range of about 10 to 24 VDC.
  • a DC power source e.g., such as ones available from Streamlight, Inc., located in Eagleville, Pennsylvania
  • These connectors 152, 162 are keyed by a rectangular recess on connector 152 that corresponds with a rectangular projection of connector 162 so that the two connectors 152, 162 can mate in only one orientation so as to provide proper polarity DC voltage to charger 100, e.g., to circuit board 200 thereof.
  • a shroud or frame surrounds the contacts of connectors 152, 154 so as to reduce the likelihood of their inadvertently coming in to electrical contact with other than the recessed receptacle contacts 152C of
  • Connector 154 is, e.g., a USB connector, having four contacts 154C for receiving a USB plug 164 associated with a USB DC power source, e.g., such as ones available from Streamlight, Inc., of Eagleville, Pennsylvania, as well as from many other sources.
  • USB power sources provide a DC voltage of about 5.0 VDC on two of the connections and can provide signals and/or data on the remaining connections.
  • These connectors 154, 164 are keyed by a shaped rectangular frame on connector 154 that corresponds with a shaped rectangular frame of connector 164 so that the connectors 154, 164 can mate in only one orientation so as to provide proper polarity DC voltage to charger 100, e.g., to circuit board 200 thereof.
  • connectors 154, 164 surround the contacts of connectors 154, 164 so as to reduce the likelihood of their inadvertently coming in to electrical contact other than with the mating contacts of another USB connector 154, 164.
  • connector 154 is a female USB connector and connector 164 is a male USB connector.
  • Connector port 150 is shaped so that the respective shells of connectors 162, 164 physically block the other connector 164, 162 from being connected to connector port when one of connectors 162, 164 is connected thereto.
  • Connector 162 has a shell whose outline 163 is indicated by a dashed rectangle surrounding connector 152 and connector 164 has a shell whose outline 165 is indicated by a dashed rectangle surrounding connector 154 to illustrate that the respective shells 163, 165 physically interfere to prevent both being connected to charger 100 at the same time.
  • the shell 163 of connector 162 blocks the shell 165 of connector 164 and so prevents connector 164 from being mated with connector 154, and the shell 165 of connector 164 blocks the shell 163 of connector 162 and so prevents connector 162 from being mated with connector 152.
  • FIGURES 6A, 6B and 6C are a perspective view and two different side views, respectively, of the connector port 150 on the bottom end of the example embodiment of a battery charger 100 including an example embodiment of a connector alignment arrangement 156.
  • USB connector 164 is illustrated as being plugged in to USB connector 154 of connector port 150. Many USB connectors can easily be attempted to be connected with the USB plug 164 when misaligned from the USB receptacle 154 which can damage either or both connectors.
  • Alignment arrangement 156 includes a plurality of guides 156 that extend outwardly from housing 130 around USB connector 154 to define a guide path to decrease any misalignment of USB plug 164 before it comes into mating position with USB connector 154, thereby to reduce the risk of damage.
  • the plurality of guides 156 provided extend outwardly from housing 130, e.g., substantially perpendicularly to the surface of housing 130 around USB connector 154 so as to be adjacent to USB plug 164 when USB plug 164 is plugged into USB connector 154 or is being plugged into connector 154.
  • Guides 156 preferably are spaced apart a distance that is slightly greater than the transverse dimensions of connector 164 so that the body of connector 164 is constrained by the spacing between guides 156 to be substantially aligned with connector 154 as the two are moved closer together for mating.
  • each guide 156 is provided, one guide 156 adjacent a narrow side of connectors 152, 164 and two opposing guides 156 adjacent the two wider sides of connector 154, 164.
  • the latter two guides may be, and preferably are, U-shaped when viewed on end, e.g., for increasing their resistance to breakage.
  • the function of a guide 156 at the other narrow side of connector 152, 164 in this example embodiment is provided by the body of connector 152 which extends outwardly form housing 130, however, it could be provided by another guide 156.
  • FIGURES 7A, 7B and 7C are respective perspective views of an example embodiment of an alternative connector 164, 300 and of the alternative connector 164, 300 partially inserted and fully inserted in the connector port 150, 156 of the example embodiment of a battery charger 100 including an example embodiment of an alignment and retaining arrangement 156
  • FIGURE 7D is a cross-sectional view of the example connector 300 in a mated configuration
  • FIGURE 8 includes two perspective views and four orthogonal views of the example embodiment of an alternative connector 164, 300 of FIGURE 7 including an example embodiment of an alignment and retaining arrangement 156.
  • Connector 164, 300 includes a connector body 310 that is, e.g., molded over the electrical elements of a connector, e.g., a USB connector frame 164P, to which is connected an electrical cable 166 over which body 310 is preferably also over-molded.
  • the rear end of body 310 i.e. the end distal connector frame 164P, tapers narrower and has a plurality of recesses 312 for reducing the strain between cable 166 and body 310 where cable 166 enters body 310. Strain relief 312 reduces the strain and thus renders the exterior surface of cable 166 less likely to separate from the molded material of body 310.
  • Connector body 310 preferably also has one or more gripping features 314, 316, e.g., ridges, bumps and/or recesses 314, 316, on opposing faces thereof to facilitate insertion and removal of connector 300 from its mating connector.
  • connector body 310 i.e. the end proximal connector frame
  • 164P preferably has one or more features 320, 330, 340 for facilitating the alignment of connector 300 for insertion into its mating connector, e.g., a connector 154.
  • features 320, 330, 340 cooperate with guides 156, 400 and corresponding features thereof to require the substantial alignment of connector 300 for insertion into its mating connector, e.g., a connector 154, of base 130B to prevent connector frame 164P from entering its mating connector, e.g., a connector 154, if in reversed orientation, and to retain connector 300 in position with connector frame 164P mated with its mating connector, e.g., a connector 154.
  • connector 300 preferably has at least one alignment feature 320, e.g., an alignment rib 320, and guides 156, 400 preferably have at least one corresponding alignment feature 420, e.g., an alignment groove 420, for substantially aligning the respective longitudinal axes of connector 300 and its mating connector, e.g., a connector 154, at least in one axis, for proper mating.
  • alignment feature 320 e.g., an alignment rib 320
  • guides 156, 400 preferably have at least one corresponding alignment feature 420, e.g., an alignment groove 420, for substantially aligning the respective longitudinal axes of connector 300 and its mating connector, e.g., a connector 154, at least in one axis, for proper mating.
  • Connector 300 preferably includes at least one raised guide 330 for allowing connector 300 to enter guides 400, which includes opposing guides 156 which extend from base 130B and are spaced apart by a distance that is slightly greater than the dimension of connector body 310, but less than the combined dimension of connector body 310 and raised guide 330 thereon, only if in the proper orientation wherein raised guide 330 becomes disposed in alignment groove 420 upon mating and so cannot be inserted in an inverted orientation.
  • Connector 300 preferably also includes one or more retaining features 340, e.g., transverse retaining ribs 340, complementary to one or more corresponding retaining features, e.g., transverse retaining grooves 440, of guides 156, 400 so that retaining ribs 340 become disposed in retaining grooves 440 when connector 300 is fully mated with its mating connector, for retaining connector 300 in mating connection with its mating connector, e.g., a connector 154.
  • One or more retaining features 340 may be provided on one or more surfaces of connector body 310, and alternatively, the ribs 340 could be provided on guides 400 and the grooves 440 could be provided on connector 300.
  • Guides or guide members 156, 400 of this example embodiment are preferably
  • Guides 156, 400 provide two opposing broad inward facing surfaces that are adjacent to and guide the two opposing broad outer surfaces of connector body 310 and are of sufficient thickness to provide strength and to provide groove 420 and recesses 440 on at least one of the inward facing surfaces thereof.
  • the remote ends of the C- shaped guides 156, 400 bend around and are adjacent to the two opposing narrow sides of connector body 310 and guide the two opposing narrow sides of connector body 310 during mating and de-mating of connector 164, 300 and, e.g., its mating connector 154.
  • the over-molded plug housing In one example embodiment of a connector 300, the over-molded plug housing
  • 310 including raised guide 330 and alignment rib 320 is a slip-fit into guide 400 with the engagement of retaining rib 340 and retaining groove 440 being more of an interference or snap-fit with guide 400.
  • the slip-fit tolerance is selected to be close enough to guide the connector 300 and prevent accidental damage thereto while allowing proper insertion depth for the proper mating of connectors 164, 154.
  • the position of the retaining rib or ribs 340 relative to retaining grooves 440 determines the insertion depth for a given connector types, and will be different for different connector types, and so the dimensions and tolerances selected must relate to or comply with the particular connector and/or connector standard chosen for the application.
  • connector body 310 and guide 400 will be configured and sized to be compatible with the published Micro-USB cable and connector standards.
  • connector 300 is a Micro-B USB connector and an optional raised letter "B" representative thereof maybe provided on connector body 310, e.g., in recess 314 thereof where it provides further indication of the orientation of connector body 310.
  • FIGURE 9 is an electrical schematic diagram of an example embodiment of an electrical circuit 200 suitable for use with the example embodiment of a battery charger 100 of FIGURES 1-8, and FIGURE 9A is an alternative example embodiment of the example electrical circuit of FIGURE 9.
  • charger input connectors 152, 154 for receiving electrical power from either of the two power supplies 168 are shown at the upper left and the two pairs of output charging contacts, identified as C+ and C- to indicate DC polarity, for providing electrical charging power to the two receptacles or cradles 110, 120 are shown at the far right.
  • a DC converter 210 including regulator integrated circuit Ul and its associated components shown in the left half of the schematic diagram provide, e.g., a buck PWM (pulse width modulated) voltage regulator that converts the input voltage at connector 152 from the 12/18/24 VDC voltage of power supply 168 (identified as VDD) down to about 5.1 VDC (nominally 5.12 VDC) at the cathode of D3, also designated as VDD, which powers the battery charging via output charging contacts C+ and C- when the 12/18/24 VDC power supply 168 is connected via connectors 152, 162 and is electrically powered.
  • VDD 12/18/24 VDC voltage of power supply 168
  • the +5 VDC provided via the USB connection 154 is directly connected as VDD to power the battery charging via output charging contacts C+ and C- when the charging power from power supply 168 is provided via the USB connectors 154, 164. Because mechanical interference between connectors 162 and 164 prevents both of connectors 162 and 164 from being mated to charger port 150 at the same time, thereby to prevent electrical power from being applied via both power supply input connectors 152, 154 at the same time, no diode or other isolation thereof is needed to prevent a connection being made between two external power supplies 168 through the circuitry of charger 100.
  • Microprocessor or microcontroller 220, U2 controls operation of the charging circuitry 200 of charger 100.
  • the type of power supply 168 that is connected 152, 154 is detected by microprocessor U2 and predetermined maximum current levels that can be drawn from that type of power supply 168 are then set accordingly.
  • signals on pins D- and D+ may be utilized to indicate the type of USB power supply, e.g., a USB "cube,” and the maximum current that will be drawn therefrom may be set accordingly to a predetermined level.
  • the maximum current that will be drawn by charger 100 maybe and preferably is reduced by microprocessor 220, U2 in increments of current until the number of increments of reduced current is sufficient to reduce the maximum current drawn to a sufficiently lower current so that the voltage supplied by the USB-power source 168 increases to a level greater than the predetermined minimum voltage, e.g., greater than about 4.52 volts, but not to reduce the current below what is needed to provide some charging for a flashlight 180 and/or battery 190, e.g., about 50 milliamperes.
  • this feature operates based only on the measured voltage received from a USB power source 168 independently of the power rating and power dissipation of the USB power supply 168 which is need not be measured nor calculated, and preferably is not measured nor calculated.
  • Two independent linear charge current regulators 230, 240 are provided respectively by FET transistors Q2 and Q4 under control of microprocessor 220, U2 for providing respective predetermined constant charging currents to a flashlight 180 in the first receptacle 110 and/or to a battery 190 in the second receptacle 120, i.e. at their respective charging contacts C+ and C-.
  • Charging current maybe supplied to both sets of output charging contacts C+ and C- simultaneously or to one set of output charging contacts C+ and C- when only a flashlight 180 or a battery 190 is present in its respective receptacle 110, 120 or when the charging current to one set of charging contacts is reduced, e.g., to zero, when the battery 190 (in flashlight 180 in cradle 110 or a battery 190 in cradle 120) connected thereto is fully charged.
  • the magnitude of the charging currents provided at the respective output charging contacts C+ and C- is determined and controlled by operation of microprocessor or microcontroller U2, 220 and its associated components shown in the right half of circuit 200 in the schematic diagram.
  • FET Q6 may prevent discharge of a flashlight battery 190 in the first cradle 110 and of a separate battery 190 in the second cradle 120 from discharging into the charger circuitry 200 when input power from a power supply 168 is not present, e.g., when the power supply 168 is disconnected.
  • FETs Q2 and Q4 serve to prevent overcharge of the battery in the corresponding cradle 110, 120 due to conduction by the inherent body diode of a FET.
  • a primary charge control circuit 230 for the primary cradle 110 includes resistor
  • Rl 1 for sensing the charging current flowing via Q2 and (upper) charging contacts C+ and C- (e.g., contacts 116, all at the upper right of the diagram) into a battery 190 in a flashlight 180 connected between those charging contacts C+ and C-, 116, wherein feedback from current sensing resistor Rl 1 is applied to the non-inverting (+) input of an operational amplifier (e.g., upper triangular symbol) of microprocessor U2, 220, thereby to linearly control transistor Q2.
  • an operational amplifier e.g., upper triangular symbol
  • the predetermined value of substantially constant charging current is controlled by controlling the "reference" level which is applied to the inverting (-) input of the upper operational amplifier via a low pass filter network including resistors R14, R15 and R16 and capacitor C6.
  • the output from microprocessor U2, 220 to the lowpass filter may be an analog signal or a digital signal, e.g., a PWM signal, and the output of the low-pass filter provides a filtered analog reference signal to the inverting (-) input of the upper operational amplifier of microprocessor U2, 220 to control the magnitude of the battery charging current provided to primary cradle 110.
  • a secondary charge control circuit 240 for the secondary cradle 120 includes resistor R21 for sensing the charging current flowing via Q4 and (lower) charging contacts C+ and C- (all at the lower right of the diagram) into a battery 190 connected between those charging contacts C+ and C-, wherein feedback from current sensing resistor R21 is applied to the non- inverting (+) input of an operational amplifier (e.g., lower triangular symbol) of microprocessor U2, 220 thereby to linearly control transistor Q4.
  • an operational amplifier e.g., lower triangular symbol
  • the secondary or "piggyback" charger 120 and its circuitry 240 are an optional feature of charger 100, and are configured to be added to and removed from housing 130 of charger 100.
  • C+ and C- is measured by microprocessor U2, 220 via resistor divider R19 and R20, when transistor Q5 is turned on.
  • the predetermined value of charging current is controlled by controlling the
  • the output from microprocessor U2, 220 to the lowpass filter maybe an analog signal or a digital signal, e.g., a PWM signal, and the output of the low -pass filter provides a filtered analog reference signal to the inverting (-) input of the lower operational amplifier of microprocessor U2, 220 to control the magnitude of the battery charging current provided to cradle 120.
  • Each of the primary and secondary charging circuits 230, 240 operates in the same manner, however, each provides a level of charging current to a battery in cradle 110 and 120, respectively, that is determined independently of the other based upon the terminal voltage, e.g., an open-circuit terminal voltage, of the particular battery 190 it is charging.
  • the charging current may be reduced from those levels if the current available from the external power supply 168 is insufficient to charge both batteries 190 in both cradles 110, 120 at their respective
  • Each charging circuit 230, 240 operates on a predetermined repeating cycle wherein charging current is provided for a very large portion of the cycle, and is interrupted for a much shorter time during which the open circuit voltage of battery 190 is measured and a predetermined level of charging current, e.g., a substantially constant charging current, is set for the next period of charging based upon the measured open circuit battery voltage.
  • a predetermined level of charging current e.g., a substantially constant charging current
  • the cycling of the respective charging circuit cycles of circuits 230, 240 for electronic device cradle 110 and battery cradle 120 could be concurrent, i.e. in unison, or their respective repeating cycles could be offset from each other in time, e.g., by about half the cycle time, e.g., by about 1.05 seconds in the example cycle.
  • Lithium battery charging is cut off; other battery types may be trickle charged.
  • a thermistor e.g., thermistor TRl
  • thermistor TRl may be provided in the case or housing 132 of the charger base 130 to sense the ambient temperature thereof; the thermistor TRl is not attached to a power transistor or to a power supply or to a heat sink for measuring the temperature or power dissipation thereof.
  • Thermistor TRl and resistor R18 form a voltage divider that supplies a temperature dependent voltage signal to microprocessor U2, 220 from which microprocessor U2, 220 preferably determines the ambient temperature of charger 100, e.g., for the purpose of controlling the charging current applied to a battery being charged in cradle 110 and/or 120 responsive to ambient temperature.
  • Thermistor TRl is preferably used to prevent a battery 190 from (a) being charged if the battery is too “hot” (e.g., above 122 ) or being charged at a high charge current if the battery is "cold” (e.g., below 20 ), as approximated by the likelihood that the ambient temperature of the charger base 130 is indicative of the temperature of the battery 190 or would be after a period of time. It is noted that the temperatures referred to as “hot” and “cold” may differ for different embodiments and different sizes and types of batteries.
  • Charger 100 preferably applies charging current only at predetermined fixed levels to charge a battery and need not control, and preferably does not control, the voltage applied to the battery or apply a fixed or predetermined voltage thereto, i.e. it does not provide, and preferably does not provide, a constant voltage to the battery.
  • data stored e.g., in microprocessor 220, U2 or in a memory associated therewith, defines predetermined substantially constant current levels for charging current to be applied to charge battery 190 as a function of open circuit battery voltage
  • charger 100 preferably does not need and does not have a table of values that relate a voltage to be applied to the battery 190 to the battery open circuit voltage and/or to an "optimum" battery voltage, and so does not need to and preferably does not measure the voltage applied to battery 190 while battery 190 is receiving charging current.
  • Charger 100 need not and preferably does not measure or calculate the power dissipation of any power supply 168 and need not and preferably does not measure or calculate the power dissipation of any power transistor.
  • transient voltage suppression devices TVS are included with TVS1 connected across resistor R4, TVS2 connected across capacitor C4, TVS3 connected across resistor R6, TVS4 connected across indicator LED2, TVS5 connected across indicator LED1 which is reconfigured relative to its drive from processor 220, TVS6 is connected between the C+ and C- terminals 116 of cradle 110, and TVS7 is connected between the C+ and C- terminals of cradle 120.
  • capacitor C9 is connected across the gate-source terminals of FET Q2 and capacitor CIO is connected across the gate-source terminals of FET Q4. Resistor R28 also assists in suppressing transients.
  • Each charging circuit 230, 240 of circuit 200 and of circuit 200' preferably operates on a predetermined repeating cycle wherein charging current is provided for a very large portion of the cycle, and is interrupted for a much shorter time during which the open circuit voltage of battery 190 is measured and a predetermined level of charging current, e.g., a substantially constant charging current, is set for the next period of charging based upon the measured open circuit battery voltage.
  • a predetermined level of charging current e.g., a substantially constant charging current
  • each cycle of charging is about 2.10 seconds in duration and charging is interrupted for about 25 milliseconds, e.g., about 1% of the cycle, during which the open circuit voltage Voc of the battery is measured followed by an about 2.07 second charging time, e.g., about 99% of the cycle, at the constant current determined by processor 220 based upon the open circuit voltage Voc measured immediately prior thereto.
  • Lithium battery charging is cut off; other battery types may be trickle charged.
  • “relaxation" time TD may be provided before charging is resumed, e.g., before topping off the charge.
  • the time TD may be a predetermined time, e.g., about 4 minutes or longer, and in a typical example about 4.25 minutes, or maybe a function of a predetermined parameter, e.g., of a temperature or a current at which charging was done, which may be measured within charger 100, or may be related to the temperature of the battery being charged.
  • a predetermined parameter e.g., of a temperature or a current at which charging was done
  • charger 100 detects which of the possible external charging sources 168 is connected to and supplying charging current to charger 100.
  • External charging power source 168 may be a 12-18 volt or a 12-24 volt source such as may be provided from typical AC power mains or from a vehicle power system, such as battery charger power sources supplied by Streamlight, Inc. of Eagleville, Pennsylvania, for various wall and vehicle mountable chargers, or external charging power source 168 may be a USB compatible power source. With such power sources, charging currents of about 750 milliamperes may provided to one battery and/or about 1000 milliamperes (about one ampere) total may be provided to both batteries (both cradles 110, 120).
  • a battery only in cradle 110 or a battery only in cradle 120, but not in both will be charged using the full available current, e.g., about 500 milliamperes, available from the USB external source 168; however, if a battery is also in cradle 120, e.g., there are batteries in both of cradles 1 10 and 120, then the maximum charging current to the battery in cradle 110 is reduced, e.g., to about 400 milliamperes, and the remainder, e.g., about 100 milliamperes, will be utilized to charge the battery in cradle 120, although other apportionments of the available charging current may be utilized.
  • the full available current e.g., about 500 milliamperes
  • the maximum charging current to the battery in cradle 110 is reduced, e.g., to about 400 milliamperes, and the remainder, e.g., about 100 milliamperes, will be utilized
  • the external USB power source 168 is a Streamlight AC/5V USB power cube adapter that will be made available with the charger 100 described herein, the maximum available current that can be drawn is about 1 ampere (about 1000 milliamperes).
  • the Streamlight AC/5 V USB power cube adapter has the data+ and data- terminals of its USB connector connected together by a very low resistance, e.g., zero ohms, thereby making its presence easily detectable by processor 220 of circuit 200, 200' of charger 100.
  • the battery in cradle 110 is being charged at a constant current of about 750 milliamperes, the remaining about 250 milliamperes of available current may be utilized to charge a battery in cradle 120, assuming that temperature and battery open circuit voltage Voc are within the limits permitting such high current charging, thereby giving priority to the battery in cradle 110 as is preferred in the present example.
  • LED 1 and LED2 relating to cradles 110 and 120, respectively may be, and preferably are, each energized in different manners so as to convey information about the charging of the battery in each respective cradle 110, 120.
  • the LED indicator may be pulsed, e.g., at once per second, to indicate that the battery being charged is substantially at or near full charge and is in the predetermined time period TD, and the LED indicator may be blinked on and off at a fast rate, e.g., easily observable as being faster than once per second, to indicate an error, e.g., when charging has ceased due to too high or too low a temperature.
  • charge current preferably is limited, e.g., to about 200 milliamperes, and when temperature is less than about 50T or higher than about 101T, charge current preferably may be limited, e.g., to about 490 milliamperes; no charging will be done at temperatures that are too high or too low, e.g., below about 20T and above about 122T.
  • the charging termination voltage is reduced, e.g., from about 4.2 VDC to about 4.1 VDC.
  • FIGURES 10 and 10A are schematic flow diagrams illustrating an example of the operation 1100 of the example embodiment of a battery charger 100 and electrical circuit 200 of FIGURES 1-9A.
  • FIGURE 10 is an overall flow diagram presented to describe the major functions 1100 of battery charger 100 in a general manner with the following FIGURE 10A providing further details and/or alternatives for the major functions 1 100 of FIGURE 10. It is noted that the functions may be performed in a sequence different from the example sequence illustrated unless specifically stated that a particular order or sequence must be followed. It is further noted that some functions described may be removed and/or other functions may be added, as may be expeditious in any particular instance.
  • Operation or process 1100 is first initialized 1110 upon application of electrical power to the charger 100 so that its operation commences from a known predetermined condition, and then checks 1300 to see if a battery is present, e.g., to detect 1300 if a battery 190 (e.g., in a flashlight 180) is connected in cradle 110 (battery #1), or if a battery 190 is connected in cradle 120 (battery #2), or both cradles 110 and 120.
  • a battery 190 e.g., in a flashlight 180
  • process 1200 commences to detect and identify 1200 the type of power supply 168 that is connected to charger 100 and supplying electrical power thereto. Based upon the type of power supply detected, e.g., upon the level of current that is know to be available from such type of power supply, a maximum current level Imax is established (set) 1250. Process 1200 may be performed at any one of several times, e.g., after a battery is detected 1300 or after charging current is initialized 1400, wherein the latter is currently thought to be preferred.
  • the identified power supply 168 is a 12/18/24 VDC power supply 168 connected via connector 152, then the known level of current that can be drawn therefrom maybe relatively high, e.g., 1.8 - 2.5 amperes, however, if the identified power supply 168 is a USB power supply 168 connected via connector 154, then the current that can be drawn may vary over a wide range, e.g., 100 milliamperes to 2.4 amperes, depending upon the nature of the source.
  • Power drawn from the USB port of an electronic device e.g., a portable computer, maybe limited to a low value, e.g., 100 milliamperes, while up to 2.4 amperes maybe drawn for a USB wall cube that plugs into a 110-240 VAC wall outlet.
  • process 1100 proceeds to initialize 1400 the charging current that is applied to battery #1 and/or battery #2, as may been detected 1300.
  • Charge current initialization 1400 is illustrated as separate functions 1400-1 and 1400-2 because the current level must be set for each of the current controlled constant current charging circuits 230, 240, however, the value to which the charging currents are initially set 1400 may be established by the initialization 1110 of process 100.
  • the initial charging current is initially set 1400 to a relatively low value at which it is safe to charge a battery irrespective of temperature and the battery's state of charge, which might be thought of as a safe charging mode.
  • the charging of flashlight 180 is given preference because it is thought that if both a flashlight 180 and a spare battery 190 are present 1300 in battery charger 100, then it is probably more likely that a user will first remove flashlight 180 for use (desiring that it be substantially if not fully charged) before removing a spare battery 190 for use.. In any event, it is preferred that if a flashlight 180 is present 1300, but not a battery 190, or if a battery 190 is present 1300, but not a flashlight 180, then whichever one is present is given charging priority, at least for as long as it is the only one present in charger 100.
  • the one of flashlight 180 and battery 190 that is closest to being fully charged could be given priority in charging, or an extra battery 190 could be given priority over a flashlight 180, or both could be given the same priority.
  • charging both simultaneously at a reduced charge current level or charging both contemporaneously at a relatively higher current level on alternating repetitions of the relatively short about 2 second charging time of the repeating cycles described herein typically might lengthen the time necessary for either or both to reach full charge.
  • each battery is charged under the same charging process 1500 although the particular levels of current applied at any time will be separately determined based upon the parameters of each particular battery, e.g., as determined by its open circuit voltage.
  • Each process 1500 (1500-1, 1500-2) begins by counting time to determine 1515 whether the predetermined charging time has been reached. If not 1515N, it continues counting time 1515.
  • the predetermined cycle time e.g., 2 seconds
  • charging is interrupted 1520 for a short interval sufficient to measure 1525 the open circuit voltage Voc of the battery which is then receiving no charging current.
  • measuring 1525 Voc also includes determining 1530 whether a battery is still present and if not 1530N, returning to battery detection process 1300. If a battery is present 1530Y, then the charging 1535-1580 of that battery commences and/or continues.
  • Charging 1500 includes repetitively measuring the open circuit battery voltage
  • Voc in each repeating cycle and setting a level of charge current for the next cycle that is determined 1535-1580 based upon the measured open circuit battery voltage Voc of the battery immediately preceding that cycle. Recall that the charging current was initially set to a relatively low level that is deemed to be safe. If Voc is determined 1535 to not be greater than a voltage Vsafe which is a minimum battery voltage at which charging at a relatively high current is safe, then 1535N returns to process 1400 where the battery is charged at the safe relatively low current.
  • Vsafe a voltage at which charging at a relatively high current is safe
  • [ 095] begins a series of determinations 1540, 1560, 1570, ... 1580 wherein the last measured 1525 battery voltage Voc is compared to a set of different predetermined voltages to determine 1540, 1560, 1570, ... 1580 the level of charging current that is to be applied 1550 to charge the battery for the immediately following charging interval.
  • a predetermined level of charge current is selected (set) 1545, 1565, 1575, ... 1585 and is applied 1550 to charge the battery for the immediately following charging interval.
  • the determinations 1540, 1560, 1570, ... 1580 occur by following the Y paths from each until a negative determination 1540, 1560, 1570, ... 1580 is made and the N path from that comparison 1540, 1560, 1570, ... 1580 is followed to set 1545, 1565, 1575, ... 1585 the charge current level.
  • an ellipses ("") is used to indicate that a greater or lesser number of steps, e.g., comparisons 1540, 1560, 1570, ... 1580 and current settings 1545, 1565, 1575, ... 1585, could be employed.
  • N paths is followed, and battery charging continues 1550 at the last set 1545, 1565, 1575, ... 1585 level of charging current. If the battery open circuit voltage Voc is determined 1580 to be equal to or greater than a predetermined voltage Vfc that is indicative that the battery is fully charged, then 1580Y is followed and the charging is terminated 1590, i.e. the charging current is set 1590 to zero current.
  • the charging cycling 1500 continues to repeat at the predetermined repetitive cycle time, e.g., at the about 2.1 seconds. If the flashlight 180 and/or battery 180, as the case may be, continues to present an open circuit voltage Voc that equals or exceeds the full charge voltage Vfc, charging current remains set 1585 at zero, and should the open circuit voltage Voc decrease to below the full charge voltage Vfc, charging current will be set 1545, 1565, 1575, ... 1585 in accordance with the then presented open circuit voltage Voc.
  • FIGURE 11 is a schematic flow diagram illustrating an example of an alternative operation 2000 of the example embodiment of a battery charger 100 and electrical circuit 200 of FIGURES 1-9A. It is noted that the functions of operation 2000 or process 2000 maybe performed in a sequence different from the example sequence illustrated unless specifically stated that a particular order or sequence must be followed. It is further noted that some functions described may be removed and/or other functions may be added, as may be expeditious in any particular instance.
  • Process 2000 begins with the initialization 2005 of the charger electronic circuitry 200 so that process 2000 commences from a known state, e.g., upon initially being powered on and after a power interruption or outage.
  • process 2000 repeats periodically so that the status of charger 100, the charging of battery #1 in cradle 110, the charging of battery #2 in cradle 120, the parameters thereof established for safe charging and or other safety and other reasons, are all repetitively monitored and adjusted so the batteries #1 and #2 may be rapidly and efficiently charged under whatever conditions are detected.
  • process 2000 is repeated many times during each cycle of battery charging and voltage Voc measuring, e.g., 32 times per each cycle of 1.1 or 2.1 seconds in the examples herein.
  • the presence of a rail voltage is checked 2010, 2015 to begin verifying that input power is being received 2010 from an external source 168 of charging power and whether the rail voltage is within a predetermined acceptable range of voltages 2015, e.g., either by testing 2015 whether it is outside of that range (as illustrated) or whether it is within that range. If the rail voltage Vrail is outside the predetermined range, then 2015-Y ("Y" indicates “yes” and “N” indicates “no") is followed and a Verror count is incremented 2020 or a Verror flag is set 2020 thereby to indicate an out of range condition. If the rail voltage Vrail is within the predetermined range, then 2015-N is followed and the Verror flag or count is cleared 2025 thereby to indicate an in-range value of the Vrail input voltage.
  • the Vrail error flag or count is tested 2030 and if the error flag or count is set, then 2030-Y is followed directly to step 2060. If the Verror flag or count is not set, then 2030-N is followed and the temperature is checked 2040 to determine, e.g., whether it is safe to charge the battery and if so, at what constant current level. Temperature is checked 2040, 2045 to begin verifying whether the temperature is within a predetermined acceptable range of temperature 2045, e.g., either by testing 2045 whether it is outside of that range (as illustrated) or whether it is within that range.
  • Verror or Terror flag is set 2060, then battery charging should not be commenced or continued and 2060-Y is followed to stop charging 2065 and to blink an indicator light 2065, e.g., if a battery is detected as being present in a cradle 110, 120, and to return to step 2010. If a Verror or Terror flag is not set 2060, then battery charging should be commenced or continued and 2060-N is followed to determine 2070 the maximum level of constant current charging allowable and the charge completion voltage Voc based upon the last determined temperature 2040.
  • a battery #1 flag is set 2075, e.g., a battery has been detected as being present in cradle 110, 2075-Y is followed to go to step 2150.
  • Detection of the presence of a battery may employ any one of several tests, e.g., signaling the charge current circuit 230 or 240 to apply a short duration pulse of charging current while monitoring the charging current feedback, e.g., via resistor Rl 1 or R21 , to determine whether such current actually flows because current will only flow if a battery is connected to terminals 116 of cradle 110 or to those of cradle 120.
  • a battery #1 flag is not set 2075, e.g., a battery was not detected as being present in cradle 110, 2075-N is followed to indicate 2080 that the battery is not charging and to check 2080 the battery voltage Voc. If the battery voltage Voc indicates 2085 that charging is complete, then 2085-Y is followed and the battery detected and charge complete counts are incremented 2090 and process 2000 proceeds to 2110. If the battery voltage Voc indicates 2085 that charging is not complete, e.g., the battery is not fully charged, then 2085-N is followed and the charge complete count is cleared 2095, a pulse of charging current is applied 2095 and the battery detected count is incremented 2095.
  • the charging current is regulating to a constant current 2100, then a battery is present and being charged and 2100-Y is followed to 2110. If the charging current is not regulating 2100, then 2100-N is followed to clear 2105 the battery detected count. If the detected count is not at or above a predetermined count 21 10, e.g., the detect count is not great enough 2110, then 2110-N is followed to step 2150. If the detected count is at or above a predetermined count 2110, e.g., the detect count is great enough 2110, then 2110-Y is followed to determine 2115 if the complete count is enough.
  • a predetermined count 21 10 e.g., the detect count is great enough 2110
  • step 2115-Y If the complete count is enough 2115, then 2115-Y is followed, the charge complete flag is set 2120, and process 2000 proceeds to step 2125. If the complete count is not enough 2115, then the battery should continue charging and so 2115-N is followed, the detect flag is set 2125, the charging indicator light is energized to indicate 2125 that the battery is charging, and process 2000 proceeds to step 2150.
  • the initial setting up of the charging of a battery in cradle 110 for which charging priority is desired to be given is established.
  • Step 2150 determines whether charger 100 is in a "piggyback" configuration, e.g., whether or not an auxiliary cradle 120 is present in addition to the primary cradle 1 10 included in housing 110. If an auxiliary cradle 120 is not present, then 2150-N is followed to proceed to step 2210. If auxiliary cradle 120 is present, then 2150-Y is followed to determine 2155 whether a battery is present in cradle 120, e.g., as indicated by a battery #2 detected flag being set 2155. If yes, then 2155-Y is followed to proceed to step 2210. If a battery is not detected 2155 in cradle 120, then 2155-N is followed to step 2160.
  • Steps 2155 through 2205 relating to battery #2, e.g., the battery in cradle 120, are exactly parallel to and substantially the same as steps 2075 through 2125, and so will not be separately described herein. Steps 2155 through 2205 are described by the description of steps 2075 through 2125 if 80 is added to the item numbers set forth in the description of steps 2075 through 2125, respectively.
  • step 2210 If neither battery flag is set 2210, then no battery is present and 2210-N is followed to step 2215 to set an input source flag to "0" to force a redetermination of the charging current level at step 2300. Step 2215 proceeds to step 2010. If either battery flag is set, then 2210-Y proceeds to step 2220 to control the charging of battery #1, e.g., the battery in cradle 110.
  • Control of the charging of battery #1 proceeds as follows: First, completeness of charging is determined 2220, e.g., by testing the battery voltage Voc against a predetermined charging termination voltage, e.g., 4.2 VDC. Steps 2220-2235 can check whether the battery is currently being "topped off," because after charging is complete, the battery could be in the relaxation time, in topping off, or has completed topping off after which the battery voltage is monitored to determine whether the battery voltage Voc has dropped below a predetermined threshold voltage, e.g., 4.05 VDC, indicating that charging should be resumed or the battery has been removed. If the charging of battery #1 is not complete 2220, then 2220-N is followed to step 2245 for beginning a parallel and substantially the same charging control process for battery #2.
  • a predetermined charging termination voltage e.g., 4.2 VDC.
  • step 2220 for energizing the charging indicator light to indicate that charging of battery #1 in cradle 1 10 is complete, e.g., flashing at a once per second rate.
  • the battery voltage Voc is monitored 2230 to determine if "topping off the charge 2230 is being performed. Topping off is done after a period of time commencing at the indication of completion of charging and ending at a later time, e.g., either based upon a predetermined time, by a temperature, or by a combination thereof. Topping off may comprise charging at a lower constant current, e.g., at about 100 milliamperes.
  • topping off 2230 is yes, then 2230-Y is followed to step 2245. If topping off 2230 is no, then 2230-N is followed to determine 2235 whether the battery voltage Voc is less than the voltage indicating that restarting charging should occur, e.g., the charge restart voltage of about 4.05 VDC. If it is not, then 2235-N is followed to step 2245. If it is, then 2235-Y is followed to increment 2240 the undetected count and set 2240 an undetected flag, and proceed to step 2245.
  • Steps 2245 through 2265 relating to battery #2, e.g., the battery in cradle 120, are exactly parallel to and substantially the same as steps 2220 through 2240 and so will not be separately described herein. Steps 2245 through 2265 are described by the description of steps 2220 through 2240 if 25 is added to the item numbers set forth in the description of steps 2220 through 2240, respectively. The completion of steps 2245-2265 and of steps 2220-2240 both lead the process 2000 to step 2300. Steps 2245-N, 2255-Y, 2260-N, and 2265 lead the process 2000 to step 2300.
  • Step 2300 determines 2300 whether the input source flag is determined yet, e.g., what type of source is present. If zero, then the type of source is not determined and 2300-Y is followed to determine the source 2305 that is present, e.g., the type of external source of charging power 168 that is connected, e.g., a Streamlight USB source being indicated by a very low or zero resistance between its data+ and data- terminals, and to set 2305 the maximum current that will be drawn from that source. Once the type of source 168 is determined, the value of the input source flag is set to a value corresponding to the current level that is available from the determined type of source. If the input source 168 is already determined, then 2300-N is followed to step 2310 as also follows step 2305.
  • the input source flag is determined yet, e.g., what type of source is present. If zero, then the type of source is not determined and 2300-Y is followed to determine the source 2305 that is present, e.g., the type of external
  • step 2315 includes interrupting 2315 the charging current to battery #1 and measuring the open circuit voltage Voc at the charger terminals 116, checking (verifying) 2315 that battery #1 is still present in cradle 110, reducing 2315 the maximum allowable battery charging current setting if the voltage Voc of battery #1 is below a predetermined threshold considered to indicate that battery is substantially discharged, e.g., "dead,” and resuming 2315 constant current charging of battery #1 if the charging thereof is not complete, e.g., as indicated by its open circuit voltage Voc being below the charge termination voltage. If test 2310 is negative, then 2310-N is followed to step 2320. At the completion of step 2315 which follows from step 2310-Y, the process 2000 proceeds to step 2350.
  • Steps 2320 and 2325 are parallel to and substantially the same as steps 2310 and 2315 for battery #1 and will not be separately described, except to state that steps 2320-2325 pertain to battery #2, e.g., a battery in cradle 120.
  • Step 2325 also leads to step 2350, as do steps 2310-2315, and step 2320-N goes to step 2330.
  • Step 2320-N goes to step 2330.
  • the process 2000 proceeds to step 2350.
  • charging of battery #1 is resumed 2330-2335. If battery #1 is detected 2330 and its charging is not complete, then 2330-Y is followed to resume charging 2335 of battery #1.
  • Resuming charging 2335 includes measuring 2335 the constant current charging current, checking 2335 that battery #1 is still present, setting 2335 a target value for the constant current charging of battery #1 based upon, e.g., temperature, its state of charge, e.g., as indicated by its voltage Voc, and the type of input source present, e.g., the type of external charging current power source 168, and reducing 2335 the charging current if it is above the newly set target value. If test 2330 is negative, then 2330-N is followed to step 2340 and at the completion of step 2335 the process 2000 also proceeds to step 2340.
  • Steps 2340 and 2345 are parallel to and substantially the same as steps 2330 and 2335 for battery #1 and will not be separately described, except to state that steps 2340-2345 pertain to battery #2, e.g., a battery in cradle 120. Both lead to step 2350, and preferably after the constant charging currents for batteries #1 and #2 have been set and applied.
  • the external power source 168 provided by Streamlight, Inc. with the portable light described herein, as well as with previous lights, can typically provide electrical power that is more than sufficient to charge the light described herein.
  • USB power sources 168 e.g., USB power cubes (other than the Streamlight
  • AC/5 V USB adapter typically have a much more limited capacity to provide charging power at +5 VDC to charger 100, e.g., many provide only about 500 milliamperes at +5 VDC, and so when current beyond that capacity is drawn, the voltage at connector 154 tends to decrease, or experience "droop," to a lower voltage. If the detected 2350 voltage "droops" below a predetermined voltage, e.g., about 4.52 volts, then 2350-Y is followed and the battery charging currents are reduced 2355.
  • a predetermined voltage e.g., about 4.52 volts
  • the maximum charging current to battery #1 will be reduced 2355, e.g., in increments from as much as about 750 milliamperes, to a lower level so that the total charging current to batteries #1 and #2 is similarly reduced, thereby reducing the current drawn from external power source 168.
  • the charging current to battery #2 is reduced, thereby to reduce the current drawn from external power source 168, before the charging current to battery #1 is reduced.
  • An advantage of the foregoing arrangement is that the current draw is automatically reduced to a level that does not draw excessive current from the external power source 168 without having to know a priori or determine the actual current supplying capacity of source 168, which is seen to increase flexibility to operate charger 100 with a wide variety of different capacity USB power sources.
  • any charging current being provided to a battery in auxiliary cradle 120 will be reduced before the charging current to the battery in cradle 110 will be reduced. If the charging current to cradle 120 has already been reduced to a predetermined minimum charging current, e.g., about 75 milliamperes, and voltage droop is still detected, then the charging current to cradle 110 will be reduced in increments towards a minimum nominal value, e.g., about 100 milliamperes.
  • the 400 milliampere charging current example above for cradle 110 with a 100 milliampere charging current for cradle 120 is just an example, e.g., at the end of or in a sequence of incremental reductions controlled by process 2000.
  • This preferred arrangement may be varied, e.g., as different priority for charging maybe desired as between the batteries in cradles 110 and 120.
  • housings 130 and 140, and parts thereof such as spring arms 112 may be of any suitable metal, e.g., a cast, machined or stamped aluminum, or a suitable plastic material, e.g., preferably a molded plastic such as a nylon, engineered nylon, ABS plastic, polycarbonate, polyethylene, or other resin, with or without a reinforcing material such as a fiberglass, carbon fiber, or the like, or any other suitable plastic or other moldable material.
  • a suitable plastic material e.g., preferably a molded plastic such as a nylon, engineered nylon, ABS plastic, polycarbonate, polyethylene, or other resin, with or without a reinforcing material such as a fiberglass, carbon fiber, or the like, or any other suitable plastic or other moldable material.
  • Reinforcing materials may provide improved strength, impact resistance, dimensional stability and/or consistency, high temperature stability, and the like.
  • a battery charger 100 may comprise: a housing 110 having at least one cradle 110,
  • the connector port 150 may define an opening that includes a substantial part of an outline of a first electrical plug connector 162, 164 and a substantial part of an outline of a second electrical plug connector 164, 162, wherein parts of the outlines of the first and second electrical plug connectors 162, 164 overlap within the opening of the connector port 150.
  • One of the first and second electrical receptacles 152, 154 may include a USB connector.
  • the at least one cradle 110, 120 of the housing 130 may include: a pair of spring biased arms 112 for retaining an electronic device 180 including the rechargeable battery 190 therein, and optionally may include a second cradle 120 for receiving a second rechargeable battery 190 therein.
  • the at least one cradle 110, 120 of the housing 130 may include: a guide member 114 for locating an electronic device 180 including a rechargeable battery 190 therein and a pair of spring biased arms 112 for retaining the electronic device 180 therein.
  • the rechargeable battery 190 may be included in an electronic device 180 that is configured to be retained in the at least one cradle 110, 120 of the housing 130.
  • the at least one cradle 110, 120 of the housing 130 may include first and second cradles 110, 120, the first cradle 1 10 being configured to receive an electronic device 180 including a rechargeable battery 190 therein and the second cradle 120 being configured to receive a rechargeable battery 190 therein.
  • the electrical circuit 20 may include a DC converter 210 having an input coupled to one of the first and second receptacles 152, 154 and an output coupled to the electrical contacts of the at least one cradle 110, 120.
  • the DC converter 210 may be coupled to the electrical contacts of the at least one cradle 1 10, 120 by a circuit 220, 230, 240 providing a constant current to charge a battery 180, 190 connected to the electrical contacts of the at least one cradle 110, 120.
  • the constant current provided to a rechargeable battery 180, 190 connected to the electrical contacts of the at least one cradle 110, 120 may have a magnitude determined as a function of the open circuit voltage of the rechargeable battery 180, 190.
  • One or more guides 156, 400 may extend from the housing 130 adjacent at least one of the first and second electrical receptacles 152, 154 for aligning a mating connector 162, 164, 300 with respect to the at least one of the first and second electrical receptacles 152, 154.
  • the one or more guides 156, 400 extending from the housing 130 may have a groove 420: for aligning a rib 320 of a mating connector 300 with respect to the at least one of the first and second electrical receptacles 152, 154, or for receiving a raised guide 330 of a mating connector 300 for defining a single physical orientation for mating the mating connector 300, or for aligning a rib 320 of a mating connector 300 with respect to the at least one of the first and second electrical receptacles 152, 154 and for receiving a raised guide 330 of a mating connector 300 for defining a single physical orientation for mating the mating connector 300.
  • the battery charger 100 maybe in combination with an electronic device 180 including a rechargeable battery 190 therein that is rechargeable in the at least one cradle 110, 120 of the battery charger 100.
  • the at least one cradle 110, 120 of the housing 130 may include: one or more electrical contacts configured for making electrical connection to a rechargeable battery 190; or one or more electrical contacts configured for making electrical connection to an electronic device 180 including a rechargeable battery 190; or one or more electrical contacts configured for making electrical connection to a rechargeable battery 190 and one or more electrical contacts configured for making electrical connection to an electronic device 180 including a rechargeable battery 190.
  • a first of the at least two electrical plug connectors 162, 164, 300 may be of a male or female gender; or a second of the at least two electrical plug connectors 162, 164, 300 may be of a male or female gender; or the first electrical receptacle 152, 162 may be of a male or female gender; or the second electrical receptacle 152, 162 may be of a male or female gender; or any compatible mate-able combination thereof.
  • the battery charger 100 may be in combination with a power supply 168 having an electrical plug connector 162, 164, 300 that is insertable into one of the first and second electrical receptacles of the battery charger 100.
  • the housing may include a sensor responsive to the temperature thereof and coupled to the electrical circuit.
  • the electrical circuit 200 may be configured to charge a rechargeable battery 180, 190 disposed in the at least one cradle 110, 120 by: a) setting 1400, 2070 an initial charge current level that is substantially lower than a charge current that the battery 180, 190 can accept; b) repetitively interrupting 1520, 2310, 2320 charging 1500, 1520, 2315, 2325 of the battery 180, 190 at a predetermined timing to define a periodic cycle, and for each periodic cycle: measuring 1525, 2315, 2325 an open circuit voltage of the battery 180, 190 when charging of the battery 180, 190 is interrupted, determining 1540-1580, 2335, 2345 from the measured open circuit voltage of the battery 180, 190 a corresponding predetermined level of charging current to be applied to the battery 180, 190; applying charging current 1550, 2315, 2325, 2335, 2345 to the battery 180, 190 at the predetermined level of charging current; and c) repeating 1550-1515, 2355-2010, 2360-2010 the periodic cycle at
  • One of the first and second electrical receptacles 152, 154 may include a connector guide 400, 156 and wherein an electrical connector 164, 300 configured to mate therewith may comprise: an elongated connector body 310 defining a longitudinal direction and having an electrical cable 166 extending from the connector body 310; an electrical connector frame 164P at one end of the elongated connector body 310; a longitudinal alignment feature 320 on the elongated connector body 310 configured for aligning the elongated connector body 310 with the connector guide 400, 156; a guide feature 330 on the elongated connector body 310 defining a unique orientation of the elongated connector body 310; and a retaining feature 340 on the elongated connector body 310 configured for retaining the elongated connector body 310 in the connector guide 400, 156, whereby the elongated connector body 310 when inserted into the connector guide 400, 156 is aligned with the connector guide 400, 156 by the longitudinal alignment feature 320, is
  • a connector 164, 300 may comprise: an elongated connector body 310 defining a longitudinal direction and having an electrical cable 166 extending from the connector body 310; an electrical connector frame 164P at one end of the elongated connector body 310; a
  • longitudinal alignment feature 320 on the elongated connector body 310 configured for aligning the elongated connector body 310 with a connector guide 156, 400; a guide feature 330 on the elongated connector body 310 defining a unique orientation of the elongated connector body 310; and a retaining feature 340 on the elongated connector body 310 configured for retaining the elongated connector body 310 in the connector guide 165, 400, whereby the elongated connector body 310 when inserted into the connector guide 156, 400 may be aligned with the connector guide 156, 400 by the longitudinal alignment feature 320, maybe in the unique orientation defined by the guide feature 330 and may be retained in the connector guide by the retaining feature 340.
  • the longitudinal alignment feature 320 may include a raised longitudinal rib 320; or the guide feature 330 may include a raised guide member 330; or the longitudinal alignment feature 320 may include a raised longitudinal rib 320 and the guide feature 330 may include a raised guide member 330; or the retaining feature 340 may include at least one raised transverse rib 340; or the longitudinal alignment feature 320 may include a raised longitudinal rib 320 and the retaining feature 340 may include at least one raised transverse rib 340; or the guide feature 330 may include a raised guide member 330 and the retaining feature 340may include at least one raised transverse rib 340; or the longitudinal alignment feature 320 may include a raised longitudinal rib 320 and the guide feature 330 may include a raised guide member 330 and the retaining feature 340 may include at least one raised transverse rib 340.
  • the connector 164, 300 may be in combination with a connector guide 156, 400, the connector guide 400 may comprise: one or more guide members 400, 156 extending outwardly from a base 130, 130B adjacent a mating connector 152, 154 for the electrical connector frame 164P; the one or more guide members 400, 156 configured to be adjacent to the elongated connector body 310 to align the elongated connector body 310 and the mating connector 152, 154 when the electrical connector frame 164P mates with the mating connector 152, 154.
  • the one or more guide members 400, 156 may have: a longitudinal alignment guide 420 complementary to the longitudinal alignment feature 320 of the elongated connector body 310; the longitudinal alignment guide 420 being configured to receive the guide feature 320 on the elongated connector body 310 when the elongated connector body 310 is in the defined unique orientation; a complementary retaining feature 440 configured to receive the retaining feature 340 on the elongated connector body 310 for retaining the elongated connector body 310 in the connector guide 156, 400 and mated to the mating connector 152, 154.
  • the longitudinal alignment feature 320 on the elongated connector body 310 may include a raised alignment rib 320 configured for aligning with a groove 420 on an inward facing surface of the one or more guide members 156 of the connector guide 156, 400; the guide feature 330 on the elongated connector body 310 may include a raised guide 330 defining a unique orientation of the elongated connector body 310 and engages the groove 320 on an inward facing surface of the one or more guide members 156, 400; and the retaining feature 340 on the elongated connector body 310 may be a raised rib 340 or a recess 340 that engages a
  • the connector body 310 may be a slip fit with the connector guide 156, 400 and the retaining feature 340 maybe an interference fit or a snap fit with the connector guide 156, 400.
  • the connector body 310 may be a slip fit with the connector guide 400, 156 and the retaining feature 340 maybe an interference fit or a snap fit with the connector guide 400, 156.
  • the connector frame 164P may include a USB connector frame 164P.
  • the electrical connector 300, 400 may be configured to connect an external electrical power supply 168 to a charger housing 100, and the charger housing 100, 130 may include an electronic circuit 200 for determining the level of current available from the external power supply 168 via the electrical connector 300, 400, 152, 154 including: measuring 1200, 2350 a voltage provided by the external power supply 168; determining 1200, 2350 whether the voltage provided by the external power supply 168 is less than a predetermined voltage and, if so: decreasing 1250, 2355 the current drawn from the external power supply 168 by a predetermined amount; repeating the foregoing steps of measuring 1200, 2350, determining 1200, 2350 and decreasing 1250, 2355 until the voltage provided by the external power supply 168 is not less than the predetermined voltage.
  • the electrical connector 300, 400 maybe configured to connect a first external power supply 168 to a first electrical connector 152, 154 of a charger housing 130: the charger housing 130 including a second electrical connector 154, 152 configured for receiving electrical power from a second external electrical power supply 168, wherein the first electrical connector 152 and the second electrical connector 154 are closely adjacent each other such that an external electrical connector 162, 164, 300, 400 mated with the first electrical connector 152 or with the second electrical connector 154 physically interferes with and prevents an external electrical connector from being mated with the other of the first electrical connector 152 and the second electrical connector 154.
  • An electrical connector 154, 400 may comprise: an electrical connector frame 154 supported on a base 130, 130B and defining a longitudinal direction extending from the base 130, 130B; an alignment and retaining structure 400 including first and second opposing guide members 156 extending from the base 130, 130B in the longitudinal direction, the first and second opposing guide members 156 each having an inward facing surface that faces the other guide member 156, wherein the first and second guide members 156 are located spaced apart by a distance configured for an elongated connector body 310 to be placed therebetween with an electrical connector frame 164P of the elongated connector body 310 positioned to mate with the electrical connector frame 154 supported on the base 130, 130B; the first guide member 156 having on the inward facing surface thereof a longitudinal alignment feature 420 configured to align a complementary longitudinal alignment feature 320 of the connector body 310 with the electrical connector frame 154 supported on the base 130, 130B, wherein the longitudinal alignment feature 420 of the first guide member 156 is configured to receive a guide feature
  • the longitudinal alignment feature 420 of the first guide member 156 may include a longitudinal groove 420; or the retaining feature 440 of the at least one of the first and second guide members 156 may include a transverse rib or groove 440; or the longitudinal alignment feature 420 of the first guide member 156 may include a longitudinal groove 420 and the retaining feature 440 of the at least one of the first and second guide members 156 may include a transverse rib or groove 440.
  • the electrical connector 154, 400 in combination with a mating electrical connector 164, 300 which may comprise: an elongated connector body 310 in the longitudinal direction and having an electrical cable 166 extending from the connector body 310; an electrical connector frame 164P at one end of the elongated connector body 310; a longitudinal alignment feature 420 on the elongated connector body 310 configured for aligning the elongated connector body 310 with the alignment feature 420 of the first guide member 156; a guide feature 330 on the elongated connector body 310 defining a unique orientation of the elongated connector body 310; and a retaining feature 340 on the elongated connector body 310 configured for engaging the at least one of the first and second guide members 156 for retaining the elongated connector body 310 in the first and second guide members 156, whereby the elongated connector body 310 when inserted between the first and second guide members 156 so that when the respective electrical connector frames 154, 164P thereof are mated the connector body 310
  • the longitudinal alignment feature 420 of the first guide member 156 may be configured to receive the guide feature 330 on the elongated connector body 310 when the elongated connector body 310 is in the defined unique orientation.
  • the longitudinal alignment feature 320 on the elongated connector body 310 may include a raised alignment rib 320 configured for aligning with a groove 420 on the inward facing surface of the first and second guide members 156;
  • the guide feature 330 on the elongated connector body 310 may include a raised guide 330 on the alignment rib 320 defining a unique orientation of the elongated connector body 310 and may engage the groove 420 on the inward facing surface of the first and second guide members 156;
  • the retaining feature 340 on the elongated connector body 310 may be a raised rib 340 or a recess 340 that engages a complementary recess 440 or raised rib 440 on the inward facing surface of the first and second guide members 156.
  • the elongated connector body 310 may be a slip fit with the first and second guide members 156 and the retaining feature 340 thereof may be an interference fit or a snap fit with the retaining feature 440 of the at least one of the first and second guide members 156.
  • the electrical connector frame 154, 164P may include a USB connector frame.
  • the base 130, 130B may include a charger housing 130 and the electrical connector frame 154 of the electrical connector 154 may be configured for receiving electrical power from an external electrical power supply 168, the charger housing 130 may include an electronic circuit 200 for determining the level of current available from the external power supply 168 via the electrical connector 154, 164, 300 including: measuring 1200, 2350 a voltage provided by the external power supply 168;
  • the base 130, 130B may include a charger housing 130 and the electrical connector frame 154 of the electrical connector 154 maybe configured for receiving electrical power from a first external electrical power supply 168, the charger housing 130 may include a second electrical connector 152 configured for receiving electrical power from a second external electrical power supply 168, wherein the electrical connector 154 and the second electrical connector 152 are closely adjacent each other such that an external electrical connector 164, 162 mated with the electrical connector 154 or with the second electrical connector 152 physically interferes with and prevents an external electrical connector 162, 164 from being mated with the other of the electrical connector 154 and the second electrical connector 152.
  • An electrical connector 164, 300 may comprise: a substantially rectangular elongated connector body 310 defining a longitudinal direction and having an electrical cable 166 extending from the elongated connector body 310; a USB connector frame 164P at one end of the elongated connector body 310; a longitudinal raised rib 320 on the elongated connector body 310 configured for aligning the elongated connector body 310 with a connector guide 400, 156 for a mating USB connector 154; a raised guide feature 330 on the raised rib 320 of the elongated connector body 310 defining a unique orientation of the elongated connector body 310; and at least one transverse rib 340 or transverse groove 340 on the elongated connector body 310 configured to engage the connector guide 400, 156 for retaining the elongated connector body 310 in the connector guide 400, 156, whereby the elongated connector body 310 when inserted into the connector guide 400, 156 for the mating USB connector 154 is aligne
  • a pair of mating electrical connectors 154, 400, 164, 300 may comprise: a first electrical connector 164, 300 including: a substantially rectangular elongated connector body 310 defining a first longitudinal direction and having an electrical cable 166 extending from the elongated connector body 310; a first USB connector frame 164P at one end of the elongated connector body 310; a longitudinal raised rib 320 on the elongated connector body 310 configured for aligning the elongated connector body 310 with a connector guide 400, 156 for a mating USB connector 154; a raised guide feature 330 on the raised rib 320 of the elongated connector body 310 defining a unique orientation of the elongated connector body 310; and at least one transverse rib 340 or transverse groove 340 on the elongated connector body 310 configured to engage the connector guide 400, 156 for retaining the elongated connector body 310 in the connector guide 400, 156; and a second electrical connector 154, 400
  • rechargeable battery 180, 190 connected thereto may comprise: a) determining 1300, 2075, 2155 whether a battery 180, 190 is present; b) setting 1400, 2070 an initial charge current level that is substantially lower than a charge current that the battery 180, 190 can accept; c) repetitively interrupting 1500, 1520, 2315, 2325 charging of the battery 180, 190 at a predetermined timing to define a periodic cycle, and for each periodic cycle: measuring 1525, 2315, 2325 an open circuit voltage of the battery 180, 190 when charging of the battery 180, 190 is interrupted 1500, 1520, 2315, 2325, determining 1540-1590, 2335, 2345 from the measured open circuit voltage of the battery 180, 190 a corresponding predetermined level of charging current to be applied to the battery 180, 190; applying charging current 1550, 2315-2345 to the battery 180, 190 at the predetermined level of charging current; and d) repeating the periodic cycle 1500, 2000 at least until the open circuit voltage of the battery 180,
  • a battery charger 100 and process 1100, 2000 may further comprise determining 1200, 2350-2355 the level of current available from an external power supply 168 including: e) measuring 1200, 2350 a voltage provided by the external power supply; f) determining 1200, 2350 whether the voltage provided by the external power supply 168 is less than a predetermined voltage and, if so: g) decreasing 1250, 2355 the current drawn from the external power supply 168 by a predetermined amount; h) repeating 1200, 2000 the foregoing steps of e) measuring 1200, 2350, f) determining 1200, 2350 and g) decreasing 1250, 2355 until the voltage provided by the external power supply 168 is not less than the predetermined voltage.
  • a battery charger 100 and process 1100, 2000 may further comprise setting 1250, 1545, 2360 a maximum charge current for the battery 180, 190 that is equal to or less than the level of current drawn from the external power supply 168 when the voltage provided by the external power supply 168 is not less than the predetermined voltage.
  • the initial charge current level may be at a level of current that is safe for applying to a battery 180, 190 irrespective of its temperature, or irrespective of its state of charge, or irrespective of its temperature and its state of charge.
  • the predetermined level of charging current to be applied to the battery 180, 190 may be substantially zero 1580, 1590, 2230, 2255 when the measured 1525 open circuit voltage of the battery 180, 190 is greater than or equal to a voltage indicative of full charge for the battery 180, 190.
  • the battery charger 100 and process 1100, 2000 may further comprise: reducing 1590, 2230, 2255 the charging current applied to the battery 180, 190 substantially to zero for a period of time after the open circuit voltage of the battery 180, 190 is at a predetermined voltage indicative of the battery 180, 190 being fully charged; or reducing 1590, 2230, 2255 the charging current applied to the battery substantially to zero for a predetermined period of time after the open circuit voltage of the battery 180, 190 is at a predetermined voltage indicative of the battery 180, 190 being fully charged.
  • the battery charger 100 and process 1100, 2000 may further comprise: applying 2230, 2255 a charging current to the battery 180, 190 after the period of time or after the predetermined period of time at least until the open circuit voltage of the battery 180, 190 is at a predetermined voltage indicative of the battery being fully charged, thereby to top off the battery charge.
  • the battery charger 100 and process 1100, 2000 in combination with an external source of electrical power 168 may further comprise: receiving electrical power from the external source of electrical power 168 via a first electrical connector 152, 154.
  • the battery charger 100 and process 1100, 2000 may further comprise: providing a second electrical connector 152, 154 for receiving electrical power from a second external source of electrical power 168, wherein the first and second electrical connectors 152, 154 are closely adjacent each other such that an external electrical connector 162, 164, 300 inserted into one of the first and second electrical connectors 152, 154 physically interferes with and prevents an external electrical connector 162, 164, 300 from being plugged into the other of the first and second electrical connectors 152, 154.
  • the first electrical connector 154 may include a connector guide 400, 156 and an electrical connector 164, 300 configured to mate therewith may comprise: an elongated connector body 310 defining a longitudinal direction and having an electrical cable 166 extending from the connector body 310; an electrical connector frame 164P at one end of the elongated connector body 310; a longitudinal alignment feature 320 on the elongated connector body 310 configured for aligning the elongated connector body 310 with the connector guide 400, 156; a guide feature 330 on the elongated connector body 310 defining a unique orientation of the elongated connector body 310; and a retaining feature 340 on the elongated connector body 310 configured for retaining the elongated connector body 310 in the connector guide 400, 156, whereby the elongated connector body 310 when inserted into the connector guide 400, 156 is aligned with the connector guide 400, 156 by the longitudinal alignment feature 320, is in the unique orientation defined by the guide feature 330 and is retained
  • rechargeable battery 180, 190 connected thereto by performing steps may comprise: a) determining 1200, 2075, 2155 whether a battery is present; b) setting 1400, 2070 an initial charge current level that is substantially lower than a charge current that the battery 180, 190 can accept; c) determining 1200, 2305, 2355 the level of current available from an external power supply 168 including: i) measuring 1200, 2350 a voltage provided by the external power supply 168; ii) determining 1200, 2350 whether the voltage provided by the external power supply 168 is less than a predetermined voltage and, if so: iii) decreasing 1250, 2355 the current drawn from the external power supply 168 by a predetermined amount; d) repeating 1200, 2000 the foregoing steps of i) measuring 1200, 2350, ii) determining 1200, 2350 and iii) decreasing 1250, 2355 until the voltage provided by the external power supply 168 is not less than the
  • the battery charger 100 and process 1100, 2000 may further comprise setting 1250, 1545, 2360 a maximum charge current for the battery 180, 190 that is equal to or less than the level of current drawn from the external power supply 168 when the voltage provided by the external power supply 168 is not less than the predetermined voltage.
  • the initial charge current level may be at a level of current that is safe for applying to a battery 180, 190 irrespective of its temperature, or irrespective of its state of charge, or irrespective of its temperature and its state of charge.
  • the battery charger 100 and process 1100, 2000 may further comprise: e) repetitively interrupting 1500, 1520, 2315, 2325 charging of the battery 180, 190 at a predetermined timing to define a periodic cycle, and for each periodic cycle: measuring 1525, 2315, 2325 an open circuit voltage of the battery 180, 190 when charging of the battery 180, 190 is interrupted 1520, 2315, 2325, determining 1540-1590, 2335, 2345 from the measured open circuit voltage of the battery 180, 190 a corresponding predetermined level of charging current to be applied to the battery 180, 190; applying charging current 1550, 2315-2345 to the battery 180, 190 at the predetermined level of charging current; and f) repeating the periodic cycle 1500, 2000 at least until the open circuit voltage of the battery 180, 190 is at a predetermined voltage indicative of the battery 180, 190 being fully charged or until the battery 180, 190 is disconnected from the charger 100.
  • the predetermined level of charging current to be applied to the battery 180, 190 may be substantially zero when the measured open circuit voltage of the battery 180, 190 is greater than or equal to a voltage indicative of full charge for the battery 180, 190.
  • the battery charger 100 and process 100, 2000 may further comprise: reducing 1590, 2230, 2255 the charging current applied to the battery 180, 190 substantially to zero for a period of time after the open circuit voltage of the battery 180, 190 is at a predetermined voltage indicative of the battery 180, 190 being fully charged; or reducing 1590, 2230, 2255 the charging current applied to the battery 180, 190 substantially to zero for a predetermined period of time after the open circuit voltage of the battery 180, 190 is at a predetermined voltage indicative of the battery 180, 190 being fully charged.
  • the battery charger and process of claim 6 further comprising: applying 2230, 2255 a charging current to the battery 180, 190 after the period of time or after the predetermined period of time at least until the open circuit voltage of the battery 180, 190 is at a predetermined voltage indicative of the battery 180, 190 being fully charged, thereby to top off the battery charge.
  • the battery charger 100 and process 1100, 2000 in combination with an external source of electrical power 168 may further comprise: receiving electrical power from the external source of electrical power 168 via a first electrical connector 152, 154.
  • the battery charger 100 and process 100, 2000 may further comprise: providing a second electrical connector 152, 154 for receiving electrical power from a second external source of electrical power 168, wherein the first and second electrical connectors 152, 154 are closely adjacent each other such that an external electrical connector 162, 164, 300 inserted into one of the first and second electrical connectors 152, 154 physically interferes with and prevents an external electrical connector 162, 164, 300 from being plugged into the other of the first and second electrical connectors 152, 154.
  • the first electrical connector may include a connector guide 400, 16 and an electrical connector 162, 164, 300 configured to mate therewith may comprise: an elongated connector body 310 defining a longitudinal direction and having an electrical cable 166 extending from the connector body 310; an electrical connector frame 164P at one end of the elongated connector body 310; a longitudinal alignment feature 320 on the elongated connector body 310 configured for aligning the elongated connector body 310 with the connector guide 400, 156; a guide feature 330 on the elongated connector body 310 defining a unique orientation of the elongated connector body 310; and a retaining feature 340 on the elongated connector body 310 configured for retaining the elongated connector body 310 in the connector guide 400, 156, whereby the elongated connector body 310 when inserted into the connector guide 400, 156 is aligned with the connector guide 400, 156 by the longitudinal alignment feature 320, is in the unique orientation defined by the guide feature 320 and is retained in
  • the term "about” means that dimensions, sizes, formulations, parameters, shapes and other quantities and characteristics are not and need not be exact, but may be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art.
  • a dimension, size, formulation, parameter, shape or other quantity or characteristic is “about” or “approximate”whether or not expressly stated to be such. It is noted that
  • the terms “electrical receptacle connector” and “electrical receptacle” and “receptacle” refers to an electrical connector and/or contacts, whether of the male or female type or of mixed types, that is associated with charger base or housing, e.g., typically disposed in a connector port thereof for receiving an electrical plug; and the terms “electrical plug connector” and “electrical plug” and “plug” refers to an electrical connector, whether of the male or female type or of mixed types, that is associated with an electrical power supply, e.g., with a housing thereof and/or a cable thereof.
  • the term battery is used herein to refer to an electro-chemical device comprising one or more electro-chemical cells and/or fuel cells, and so a battery may include a single cell or plural cells, whether as individual units or as a packaged unit.
  • a battery is one example of a type of an electrical power source suitable for a portable or other device. Such devices could include power sources including, but not limited to, fuel cells, super capacitors, solar cells, and the like. Any of the foregoing may be intended for a single use or for being rechargeable or for both.
  • the term battery 190 may be used to describe a battery 190 that is disposed in a flashlight 180 (as may be placed into a flashlight cradle, e.g., cradle 110), or a battery 190 not in a flashlight (as may be placed into a secondary cradle, e.g., cradle 120).
  • a battery may have one or more battery cells, e.g., one, two, three, four, or five or more battery cells, as may be deemed suitable for any particular device.
  • a battery may employ various types and kinds of battery chemistry types, e.g., a carbon- zinc, alkaline, lead acid, nickel-cadmium (Ni-Cd), nickel-metal-hydride (NiMH) or lithium-ion (Li-Ion) battery type, of a suitable number of cells and cell capacity for providing a desired operating time and/or lifetime for a particular device, and may be intended for a single use or for being rechargeable or for both.
  • battery chemistry types e.g., a carbon- zinc, alkaline, lead acid, nickel-cadmium (Ni-Cd), nickel-metal-hydride (NiMH) or lithium-ion (Li-Ion) battery type, of a suitable number of cells and cell capacity for providing a desired operating time and/or lifetime for a particular device, and
  • Examples may include a two cell lead acid battery typically producing about 4 volts, a three cell Ni-Cd battery typically producing about 3.6 volts, a four cell NiMH battery typically producing about 4.8 volts, a Lithium-Ion battery typically producing about 2.5 to 4.2 volts, it being noted that the voltages produced thereby will be higher when approaching full charge and will be lower when not fully charged and in discharge, particularly when providing higher current and when reaching a low level of remaining charge, e.g., becoming discharged.
  • the term DC converter is used herein to refer to any electronic circuit that receives at an input electrical power at one voltage and current level and provides at an output DC electrical power at a different voltage and/or current level. Examples may include a DC-DC converter, an AC-DC converter, a boost converter, a buck converter, a buck-boost converter, a single-ended primary-inductor converter (SEPIC), a series regulating element, a current level regulator, and the like.
  • SEPIC single-ended primary-inductor converter
  • the input and output thereof may be DC coupled and/or AC coupled, e.g., as by a transformer and/or capacitor.
  • a DC converter may or may not include circuitry for regulating a voltage and/or a current level, e.g., at an output thereof, and may have one or more outputs providing electrical power at different voltage and/or current levels and/or in different forms, e.g., AC or DC.
  • charger 100 is shown as having a cradle 1 10 configured to receive an electronic device, e.g., a flashlight, including a rechargeable battery and a cradle 120 (which can be optional) configured to receive a rechargeable battery
  • an electronic device e.g., a flashlight
  • a cradle 120 which can be optional
  • either cradle 110 or cradle 120 or both of cradles 110 and 120 can be configured to receive an electronic device, or to receive a rechargeable battery.
  • either cradle 110 or cradle 120 or both of cradles 110 and 120 can be configured to receive an electronic device and a rechargeable battery one at a time, e.g., with suitable electrical contacts and/or positioning guides provided for cradle 110 and/or cradle 120.
  • an electronic device can be placed into cradle 110 for recharging the battery therein or a battery apart from an electronic device can be placed into cradle 110 for recharging, cradle 110 being configured to have electrical contacts for making electrical connection to the electronic device and for making electrical contacts to the battery.
  • cradle 120 if provided, may be similarly configured with electrical contacts for making electrical connection to an electronic device and to a battery..
  • connector port 150 while two different generally rectangular receptacles for receiving power supply plugs are illustrated, the different receptacles could be rectangular, square, trapezoidal, circular, oval, triangular, or any other shape.
  • the mating plugs and receptacles may have complementary male pins, female pins, or a combination thereof, and may be of similar shape or of dissimilar shape.
  • USB connector is considered to encompass both plugs and receptacles, type A and B USB connectors, versions 1.x, 2.x and 3.x, and all other varieties thereof.
  • the relative positions of male and female connectors, e.g., receptacles and plugs, can be interchanged unless specifically stated otherwise, and further, a plug may be of either the male gender or the female gender and a receptacle may be of either the male gender or the female gender.
  • the example electronic device 180 has an electrical switch 188S in the tail cap 186T thereof, the electrical switch could be located internally forward of battery 190 and actuator 188 could move battery 190 forward so that the forward end thereof actuates an electrical switch associated, e.g., with circuit board thereof, or a switch and/or actuator could be provided on another location on light 180.
  • Raised and recess features intended to engage maybe interchanged, e.g., a raised feature maybe provided where a recess feature is shown herein and a corresponding recess feature may be provided where a corresponding raised feature is shown.
  • raised and recessed features may both be utilized, e.g., as for retaining features 340 of connector 300 and the complementary retaining features 440 of guides 156, 400.
  • While certain features maybe described as a raised feature, e.g., a ridge, boss, flange, projection or other raised feature, such feature maybe positively formed or may be what remains after a recessed feature, e.g., a groove, slot, hole, indentation, recess or other recessed feature, is made.
  • a recessed feature e.g., a groove, slot, hole, indentation, recess or other recessed feature
  • such feature maybe positively formed or may be what remains after a raised feature, e.g., a ridge, boss, flange, projection or other raised feature, is made.
  • connector body 310 is substantially rectangular as illustrated, with various features 312, 320, 330, 340 added thereto, other shapes could also be employed, e.g.,
  • Patents, identified herein is hereby incorporated herein by reference in its entirety, for any purpose and for all purposes irrespective of how it may be referred to or described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un connecteur (164, 300) qui peut comprendre : un corps de connecteur allongé (310) définissant une direction longitudinale avec un cadre de connecteur électrique USB (164P) à une extrémité de ce dernier ; le corps de connecteur (310) ayant un élément d'alignement longitudinal (320) configuré pour aligner le corps de connecteur (310), un élément de guidage (330) définissant une orientation unique dudit corps de connecteur, et un élément de retenue (340) configuré pour retenir le corps de connecteur (310) dans le guide de connecteur (156, 400). Un chargeur de batterie (100) peut comprendre : un boîtier (130) ayant au moins un socle (110, 120) ; un port de connecteur (150) comprenant plusieurs réceptacles électriques (152, 154) pour recevoir, à différents moments, des connecteurs enfichables électriques (162, 164) ayant différentes configurations de contact, les réceptacles électriques (152, 154) étant étroitement adjacents de telle sorte qu'un connecteur électrique (162, 164) inséré dans l'un des réceptacles électriques (152, 154) empêche physiquement un connecteur électrique (164, 162) d'être inséré dans l'autre réceptacle électrique (154, 152).
PCT/US2016/021767 2015-03-12 2016-03-10 Chargeur de batterie utilisable avec plusieurs alimentations électriques différentes, et connecteur usb utilisable avec ce dernier et d'une autre manière WO2016145194A1 (fr)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201562132037P 2015-03-12 2015-03-12
US62/132,037 2015-03-12
US201562249606P 2015-11-02 2015-11-02
US62/249,606 2015-11-02
US15/053,539 2016-02-25
US15/053,539 US9960621B2 (en) 2015-03-12 2016-02-25 USB connector usable with a battery charger and otherwise
US15/053,606 2016-02-25
US15/053,606 US9960622B2 (en) 2015-03-12 2016-02-25 Battery charger usable with plural different power supplies

Publications (1)

Publication Number Publication Date
WO2016145194A1 true WO2016145194A1 (fr) 2016-09-15

Family

ID=56879050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/021767 WO2016145194A1 (fr) 2015-03-12 2016-03-10 Chargeur de batterie utilisable avec plusieurs alimentations électriques différentes, et connecteur usb utilisable avec ce dernier et d'une autre manière

Country Status (1)

Country Link
WO (1) WO2016145194A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110015068A (zh) * 2017-12-12 2019-07-16 戴姆勒股份公司 用于电动车辆的充电系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056578A (en) * 1998-01-13 2000-05-02 Advanced-Connectek, Inc. Universal serial bus connector
US20020158605A1 (en) * 2001-04-26 2002-10-31 Sharrah Raymond L. Rechargeable flashlight and battery charger
US20030157836A1 (en) * 2002-02-21 2003-08-21 Yazaki Corporation USB connector
US6626706B2 (en) * 2002-02-08 2003-09-30 Microsoft Corporation Eight-pin electrical connector and USB connector
US20080111521A1 (en) * 2006-11-14 2008-05-15 Advanced Analogic Technologies, Inc. Battery Charger Apparatus With A Digital Charge Reduction Loop
US20080150480A1 (en) * 2006-10-13 2008-06-26 Amir Navid Video game controller charging system
US20080174266A1 (en) * 2007-01-19 2008-07-24 Semiconductor Energy Laboratory Co., Ltd. Charging device
US20080248671A1 (en) * 2007-04-04 2008-10-09 John Mezzalingua Associates, Inc. Locking high defination multimedia interface plug
US20080299824A1 (en) * 2007-06-04 2008-12-04 Legg Ronald W Connector retainers and methods of securing a connector in a receptacle
US20080311791A1 (en) * 2007-06-12 2008-12-18 Neale Frank T Universal serial bus standard interface connections
US20140191707A1 (en) * 2013-01-07 2014-07-10 Superior Communications, Inc. Universal charging dock with a wall mount

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056578A (en) * 1998-01-13 2000-05-02 Advanced-Connectek, Inc. Universal serial bus connector
US20020158605A1 (en) * 2001-04-26 2002-10-31 Sharrah Raymond L. Rechargeable flashlight and battery charger
US6626706B2 (en) * 2002-02-08 2003-09-30 Microsoft Corporation Eight-pin electrical connector and USB connector
US20030157836A1 (en) * 2002-02-21 2003-08-21 Yazaki Corporation USB connector
US20080150480A1 (en) * 2006-10-13 2008-06-26 Amir Navid Video game controller charging system
US20080111521A1 (en) * 2006-11-14 2008-05-15 Advanced Analogic Technologies, Inc. Battery Charger Apparatus With A Digital Charge Reduction Loop
US20080174266A1 (en) * 2007-01-19 2008-07-24 Semiconductor Energy Laboratory Co., Ltd. Charging device
US20080248671A1 (en) * 2007-04-04 2008-10-09 John Mezzalingua Associates, Inc. Locking high defination multimedia interface plug
US20080299824A1 (en) * 2007-06-04 2008-12-04 Legg Ronald W Connector retainers and methods of securing a connector in a receptacle
US20080311791A1 (en) * 2007-06-12 2008-12-18 Neale Frank T Universal serial bus standard interface connections
US20140191707A1 (en) * 2013-01-07 2014-07-10 Superior Communications, Inc. Universal charging dock with a wall mount

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110015068A (zh) * 2017-12-12 2019-07-16 戴姆勒股份公司 用于电动车辆的充电系统

Similar Documents

Publication Publication Date Title
US10326292B2 (en) Battery charger operating method and method usable with plural different power supplies
US11355940B2 (en) Multi-functional portable power charger
US11787297B2 (en) Battery charging device for charging a deeply discharged battery, and battery charging system and method
CN101154820B (zh) 适配器、电池组与适配器的组合、及具该组合的电动工具
US9224994B2 (en) Electric power tool powered by battery pack and adapter therefor
US6753671B1 (en) Recharger for use with a portable electronic device and which includes a proximally located light emitting device
JP5890878B2 (ja) 電池充電器
US20080238357A1 (en) Ultra fast battery charger with battery sensing
US7365514B2 (en) Battery charger
US20100295503A1 (en) Multi-Use Fast Rate Charging Stand
CN101816110A (zh) 具有多个电池的电路布置
EP2651006A1 (fr) Chargeur de batterie, adaptateur et système de charge
EP2183835A2 (fr) Chargeur de batterie ultra rapide à détection de batterie
US20090045774A1 (en) Multiple interfaces for a rechargeable battery pack
EP3202012B1 (fr) Chargeur de batterie avec interface utilisateur
US12074434B2 (en) Portable vehicle battery jump starter with air pump
WO2003073581A1 (fr) Module d'alimentation
US20110260694A1 (en) Built-in charger
JP7451693B2 (ja) 深放電したバッテリを充電するバッテリ充電装置、バッテリ充電システム及び方法
WO2016145194A1 (fr) Chargeur de batterie utilisable avec plusieurs alimentations électriques différentes, et connecteur usb utilisable avec ce dernier et d'une autre manière
US20230010475A1 (en) Multi-functional portable power charger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16762511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16762511

Country of ref document: EP

Kind code of ref document: A1