WO2016144093A1 - Method for manufacturing membrane sensor - Google Patents

Method for manufacturing membrane sensor Download PDF

Info

Publication number
WO2016144093A1
WO2016144093A1 PCT/KR2016/002345 KR2016002345W WO2016144093A1 WO 2016144093 A1 WO2016144093 A1 WO 2016144093A1 KR 2016002345 W KR2016002345 W KR 2016002345W WO 2016144093 A1 WO2016144093 A1 WO 2016144093A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
plate
organic solvent
manufacturing
pattern
Prior art date
Application number
PCT/KR2016/002345
Other languages
French (fr)
Korean (ko)
Inventor
김민곤
송문범
정효암
Original Assignee
주식회사 인지바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인지바이오 filed Critical 주식회사 인지바이오
Priority to CN201680001869.5A priority Critical patent/CN106796220A/en
Publication of WO2016144093A1 publication Critical patent/WO2016144093A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • C08B5/02Cellulose nitrate, i.e. nitrocellulose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a method of manufacturing a membrane sensor, and more particularly, to a method of manufacturing a biosensor by forming a pattern on the membrane using an organic solvent.
  • a telemedicin system has been introduced as an effort to solve the above problems and difficulties.
  • a remote medical system can be diagnosed by a patient or a patient at a relatively low cost in a remote place without directly visiting a hospital, etc., but most of them are only diagnosed for external abnormalities. Inevitably very limited, many difficulties were involved in making an accurate diagnosis.
  • stamps made of plastic and rubber stamps should be newly produced if the stamps are broken or the patterns are deformed due to impacts during storage.
  • the pressing force is not constant during the paper-printing process, the polymer is not evenly distributed, and it is necessary to adjust the pressing force according to the viscosity or property of the polymer.
  • the phenomenon of spreading on the paper may appear depending on the viscosity or property of the polymer, which may affect channel formation, and thus it is difficult to improve detection reliability by uniform channel formation.
  • the polymer sheet is formed except a portion where the double-sided adhesive vinyl is attached to the reaction by contact with the solvent to swell while forming a microporous network, thereby forming a pattern.
  • Prior Art 2 discloses that when the double-sided adhesive vinyl is not properly adhered to the polymer sheet, the double-sided adhesive vinyl is formed in the polymer sheet in the process of dipping the polymer sheet in the solvent, and the reaction is performed by introducing a solvent into the gap. There is a problem that the desired pattern is not formed properly.
  • an adhesive sheet is attached to the other surfaces to prevent the reaction with the solvent.
  • the present invention is a membrane sensor manufacturing method
  • Multi biosensor using membranes to solve the problem of low detection reliability due to difficulty in uniform formation of channels or patterns, which is a common problem of prior art documents such as International Publication No. WO2008-049083 and US Publication No. US2012-0052250 Providing a method of manufacturing a membrane sensor that can improve the detection reliability by forming a plurality of patterns desired by the user on the membrane in a simple manner without being affected by temperature, pressure or fluid flow in manufacturing For the purpose of
  • Embodiments of the present invention provide a method of manufacturing a membrane sensor, comprising the steps of: producing a plate-shaped plate formed on paper using a kraft printer; Soaking the plate in an organic solvent; Attaching and stamping the plate to a membrane through which a water-soluble sample can flow; Removing the plate from the membrane; And drying the membrane for a predetermined time.
  • the organic solvent may be selected from any one of dimethyl sulfoxide (DMSO), dimethylformamide (DMF), and 1.4-Dioxan.
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • 1.4-Dioxan Preferably, the organic solvent may be DMSO having a concentration of 100%.
  • the step of attaching and stamping the plate to the membrane through which the water-soluble sample may flow may include: bonding a second fixing plate to one surface of the plate; The first and second fixing plates may be pressed to contact the membrane and the plate, and a predetermined pressure may be applied to the membrane and the plate.
  • the step of drying the membrane for a predetermined time characterized in that for drying for a predetermined time at a temperature of 37 °C after removing the plate making from the membrane.
  • An embodiment may include forming a biosensor without removing the organic film present in the portion dissolved by the organic solvent on the membrane, and may include forming the biosensor by removing the organic film. This makes it possible to manufacture membrane sensors with different applications.
  • Embodiments of the present invention use a simple method of stamping paper making with organic solvents onto the membrane, thereby forming a plurality of patterns of various designs on the membrane in a single process.
  • plate making can be made only through the printing and cutting process of the pattern, and plate making having various patterns according to the conditions of the pattern can be easily produced and tested in one step.
  • the solvent absorption amount forms a plate with a constant paper, only the desired portion can be contacted with the solvent, thereby preventing a phenomenon in which the solvent absorbed by the excessive solvent supply is diffused.
  • the thickness of the pattern can be controlled by controlling the solvent content using the material or thickness of the paper constituting the plate making, and the pattern formed on the membrane can be formed accurately and uniformly in the same shape as the pattern formed on the paper. Can be greatly improved.
  • Embodiments of the present invention can be used to distinguish the flow of the fluid according to the design of the pattern to be formed, it is possible to improve the reliability of the detection because the temperature and pressure and the flow of the fluid does not affect the membrane.
  • Embodiments of the present invention can be produced and used by fixing the antibody or antigen, it is possible to produce a multi-biosensor by a simple method.
  • FIG. 1 is a view showing a process for patterning the membrane in accordance with an embodiment of the present invention
  • FIG. 2 is a view showing a pattern formed by bonding a plurality of plates to the membrane at different intervals
  • 3 is a graph comparing the width of the actual plate making and the width of the pattern formed on the membrane for 13 patterns formed on the membrane
  • 5A illustrates an example of plate making for patterning various designs on a membrane in accordance with an embodiment.
  • 5B shows an actual membrane patterned according to an embodiment.
  • FIG. 7 shows a membrane with dual channels formed using 'Tear off' patterning.
  • FIG. 8 is a view illustrating a side flow analysis in a conventional membrane sensor, (a) is the case of CK-MB (b) is a view showing the case of myoglobin
  • FIG. 1 is a view showing a process for patterning the membrane in accordance with an embodiment of the present invention.
  • Membrane 10 may include any material in the form of a membrane capable of horizontal flow to confirm the desired chemical and biological reaction results while serving as a passage through which the biological sample is transferred. More preferably, a membrane of a material selected from nitrocellulose, nylon, polysulfone, polyethersulfone, and polyvinylidene fluoride (PVDF) may be used, and the present embodiment proposes a method for forming a pattern of a membrane composed of nitrocellulose.
  • PVDF polyvinylidene fluoride
  • FIG. 1 (a) shows a process of preparing a plate quenched with a membrane, a fixed plate and an organic solvent.
  • the fabrication of the plate 20, which is first placed on the membrane 10, may be preceded.
  • the plate 20 may be made of paper, but is not limited thereto.
  • a member of a material capable of containing a predetermined level of a solvent in a liquid state may be used.
  • a pattern of a design desired by a user may be formed through a printer.
  • the printer may be a craft printer, and when a user transmits data on a pattern to be formed on a membrane to the craft printer, the plate forming 20 having a desired pattern is formed by processing the paper with a pattern corresponding to the data. Can be prepared.
  • a process of peeling the paper from the kraft printer machine and quenching the organic solvent 30 may be performed.
  • any one of DMSO (dimethyl sulfoxide), 1.4-Dioxane, DMF may be used as the organic solvent 30.
  • DMSO was used as the organic solvent to form a desired pattern on the membrane.
  • DMSO with a concentration of 100% was used as an example.
  • the organic solvent has a property of dissolving the membrane
  • the DMSO an organic solvent used in the embodiment, has a property of selectively dissolving only a portion in contact with the membrane, and thus may be used to form a pattern on the membrane as in this embodiment.
  • the plate making 20 quenched in DMSO melts only the surface contacted with the membrane when attached to the membrane 10, so that a pattern may be formed on the membrane in the same shape as the shape designed in the Craft printer.
  • first and second fixing plates 11 and 12 are provided on upper and lower portions of the membrane 10 and the plate 20, and the membrane 10 is fixed while being attached to an upper surface of the first fixing plate 11.
  • the plate 20 with the solvent 30 may be adhered to the bottom surface of the second fixing plate 12.
  • the plate 20 is to be bonded to the lower surface of the second fixing plate 12 to correspond to the position of the membrane (10).
  • the step of taking out and fixing the organic solvent to the glass plate, and then stamping the glass plate in the upward direction of the NC membrane to contact the plate and the membrane can be performed.
  • FIG. 1 (b) shows a process of stamping a plate and a membrane quenched with the organic solvent DMSO and removing the plate on the membrane.
  • Bonding and stamping the plate to the membrane the step of adhering the first fixing plate 11 to one surface of the membrane, adhering the second fixing plate 12 to one surface of the plate 20, the membrane and And compressing the first and second fixing plates so that the plate makes contact with the plate and applying a predetermined pressure to the membrane and the plate.
  • the second fixing plate to which the plate 20 is bonded is pressed to contact the upper surface of the first fixing plate 11 to which the membrane 10 is bonded, and the membrane 10 provided between the first and second fixing plates 11 and 12. ), A predetermined pressure may be applied to the stamping process.
  • the step of removing the second fixing plate 12 and drying the membrane 20 for a predetermined time may be performed.
  • a step of removing the plate 20 adhered to the membrane 10 may be performed, and a melting part is formed on the membrane by an organic solvent buried in the plate, and a design desired by the user. Pattern is formed. If this is dried for a predetermined time at a temperature of 37 °C it can be used as a multi-bio sensor, and the sample can be injected to measure the analyte through an immune response.
  • the organic film 21 by the organic solvent is formed on the molten portion on the membrane from which the plate making 20 is removed in the step (b), the organic film 21 formed on the molten portion of the membrane as in step (c)
  • the removal using the tweezers may be carried out a process of drying at a temperature of 37 °C for a certain time.
  • a biosensor without or without the organic layer 21 may be manufactured, and a biosensor having a different utilization may be manufactured.
  • FIG. 2 is a view showing a pattern formed by bonding a plurality of plates to the membrane at different intervals.
  • each plate is formed to be spaced apart by the interval of (0.5, 0.7, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10) mm, a total of 13 designs It was formed to have.
  • the width of the desired pattern can be derived by comparing the width of the originally designed plate with the width of the membrane pattern formed by the method of the embodiment.
  • the widths of each of the membrane patterns designed with 13 different widths were identified by PSI-Stage MIC 10 mm / 0.1 mm DIV in units of 100 ⁇ m under a microscope (OLYMPUS uplan 10X 10.30). It was.
  • FIG 3 is a graph comparing the width of the actual plate making and the width of the pattern formed on the membrane for the 13 patterns formed on the membrane,
  • Figure 4 compares the width of the plate minus the width of the pattern according to the width of the plate One graph.
  • the width of the plate making to have a different value between 0.5 ⁇ 10mm always appears larger than the width of the formed NC pattern. This can be interpreted as dissolving the membrane by digging inward to some extent when the organic solvent buried in the plate makes contact with the NC pattern.
  • the trend of a value obtained by subtracting the width of the pattern from the width of the plate making according to the width of the plate making may be confirmed.
  • the difference between the width of the plate and the width of the NC pattern is relatively large, but when the plate is formed to be 2 mm or more, It can be seen that the difference in the width of the NC pattern is significantly reduced.
  • embodiments of the present invention are preferred for designing a pattern aimed at forming the width of the plate making at least 2 mm to form a pattern for the NC membrane when forming a desired pattern.
  • the present invention is not limited thereto, and the exemplary embodiment may form a pattern having a size of at least 0.5 mm or more on the membrane according to the design of the biosensor.
  • FIG. 5A shows an example of plate making for patterning various designs on a membrane in accordance with an embodiment
  • FIG. 5B shows an actual membrane patterned in accordance with an embodiment.
  • various patterns having a shape desired by a user may be easily formed on a membrane through the design of a plate making using a craft printer as in the embodiment.
  • the embodiment can easily set the size and separation distance of each pattern as shown, and can design the shape of the pattern according to the sample to be measured and a membrane sensor that can measure the various antigens and antibodies I can make it.
  • FIG. 6 is a graph showing the results of biosensing using the patterned membrane.
  • a membrane sensor is fabricated by patterning two channels to form a membrane, and biosensing is performed by adding different antigens to each channel.
  • FIG. 7 is a diagram illustrating a membrane in which dual channels are formed using 'Tear off' patterning.
  • dual-channels were formed using the patterning technique of the present invention, and a response to CK-MB was confirmed in myoglobin in the left channel and CK-MB in the right channel. As shown in the figure, when the channels are different from each other, it can be seen that the color development is not affected.
  • Myoglobin and CK-MB are indicators of cardiac abnormalities such as heart failure and myocardial infarction, and can be fabricated as membrane sensors for use in emergencies.
  • FIG. 8 is a view illustrating a side flow analysis in a conventional membrane sensor, (a) is the case of CK-MB (b) is a view showing the case of myoglobin.
  • Figure 10 is a strength of the Myoglobin in the membrane sensor of the dual channel structure formed by applying the embodiment One graph.
  • the embodiment of the present invention as described above, by using a simple method of stamping plate making moistened with an organic solvent on the membrane, a plurality of patterns of various designs can be formed on the membrane, depending on the design of the pattern
  • the flows can be used separately, and the reliability of detection can be improved since temperature, pressure, and fluid flow do not affect the membrane.
  • embodiments of the present invention can be produced and used by fixing the antibody or antigen, it is possible to produce a multi-biosensor by a simple method.
  • FIG. 11 is a photograph showing a membrane sensor.
  • the membrane used NC180 sec, nitro cellulose.
  • (A) was cut by the conventional LFA (Lateral flow assay) method was produced in 4mm width
  • (B) is carried out the pattern forming process of the present invention, but after drying the organic film formed by changing the properties by contact with the platen forceps It is a removed membrane sensor
  • (C) is a photograph which shows the membrane sensor which did not remove the organic film.
  • the flow time was measured using the solution of '1 X PBS'.
  • A, B, and C were all 101-103 seconds in time, and the flow state was A. , B, and C are not significantly different from each other. Even though the patterning of the present invention is performed, the fluid flow is hardly changed.

Abstract

An embodiment of the present invention relates to a method for manufacturing a membrane sensor, wherein the method may comprise the steps of: using a craft printer to manufacture a paper plate in which a pattern is formed on paper; soaking the paper plate in an organic solvent; attaching the paper plate to a membrane through which a water-soluble sample can flow, thereby stamping the paper plate to the membrane; removing the paper plate from the membrane; and drying the membrane for a period of time. Therefore, a bio-sensor can be manufactured by forming a plurality of various design patterns on a membrane using a simple method of stamping, on a membrane, a paper plate soaked with an organic solvent.

Description

멤브레인 센서의 제조 방법Manufacturing method of membrane sensor
본 발명은 멤브레인 센서의 제조 방법에 관한 것으로, 보다 상세하게는 유기용매를 사용하여 멤브레인 상에 패턴을 형성하여 바이오 센서를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a membrane sensor, and more particularly, to a method of manufacturing a biosensor by forming a pattern on the membrane using an organic solvent.
최근 의학과 의용공학의 발전에 힘입어, 다양한 질병의 원인 및 치료방법들이 소개됨은 물론, 각종 질병에 대하여 보다 정확한 진단이 가능해지고 있으며, 보다 효과적이고 안전한 치료방법들이 개발되어, 질병의 치료율이 높아지고 있는 추세이다.With the recent development of medicine and medical engineering, various causes and treatments of diseases are introduced, as well as more accurate diagnosis of various diseases, more effective and safe treatment methods have been developed, and treatment rates of diseases are increasing. It is a trend.
그럼에도 불구하고, 이러한 질병의 진단 및 치료는 주로 병원 등에서 이루어지게 되는 바, 진단을 받고자 하는 진단대상자의 경우, 직접 병원 등을 방문하지 않고서는 질병의 진찰 및 진단 자체가 아예 불가능한 문제점이 있었으며, 이로 인하여, 진단대상자나 환자의 입장에서는 값비싼 검사비 및 치료비를 전적으로 부담해야 하는 어려움이 따랐다.Nevertheless, the diagnosis and treatment of such diseases are mainly made in hospitals, and thus, in the case of a diagnosis subject who wants to be diagnosed, there is a problem that it is impossible to diagnose and diagnose the disease at all without visiting a hospital. As a result, it was difficult for the diagnosis subject or the patient to bear the costly examination and treatment costs.
최근 들어, 전자산업 및 유무선통신망의 발전으로 인하여, 상기와 같은 문제점과 어려움을 해결하기 위한 노력의 일환으로 원격 의료(Telemedicin) 시스템이 소개되고 있다. 이러한 원격 의료 시스템은 직접 병원 등을 방문하지 않고서 원격지에서 비교적 저렴한 비용으로 진단대상자 또는 환자가 진단을 받을 수 있는 방식이지만, 아직까지는 대부분 외형적인 이상 등에 대한 진단만이 이루어지고 있으며, 그 진단 방법 또한 매우 제한적일 수 밖에 없어, 정확한 진단이 행해지기에는 많은 어려움이 따랐다.Recently, due to the development of the electronics industry and wired and wireless communication network, a telemedicin system has been introduced as an effort to solve the above problems and difficulties. Such a remote medical system can be diagnosed by a patient or a patient at a relatively low cost in a remote place without directly visiting a hospital, etc., but most of them are only diagnosed for external abnormalities. Inevitably very limited, many difficulties were involved in making an accurate diagnosis.
특히, 생명에 위협이 될 정도로 문제가 될 수 있는 질병(예: 각종 암, AIDS 등)은 대게 병원균 등의 항원에 의해 감염 및 발병하게 되는데, 이러한 질병의 경우 신속한 진단의 선행이 요구되는 바, 각종 항원을 비롯한 바이오 물질을 진단할 수 있는 장치의 개발이 시급한 실정이다. 이에, 전문지식이나 복잡한 과정이 요구되지 않고 사용이 간편하며 수행시간이 짧은 면역분석 장치로서, 멤브레인을 사용한 바이오 센서가 사용되고 있다. 이러한 바이오 센서를 이용한 분석 장치는 일반적으로 세공성 멤브레인을 감응단백질의 고정화모체로 사용하는 면역 크로마토그래픽 방법을 적용할 수 있다. 분석물질이 포함된 시료를 멤브레인 스트립 하단으로부터 흡수시키면 세공을 통한 모세관현상에 의해 분석물질은 고정화된 감응단백질 층으로 운반되어 고체표면에서 항원과 항체간의 부착반응이 야기되고 비결합된 성분들은 유체 흐름에 의해 분리된다. 이와 같은 원리에 기초한 멤브레인 스트립 면역 크로마토그래피 기술은 유체의 측면흐름(lateral flow)을 이용하여 반응성분들의 물질전달을 가속시킴으로써 분석물질의 측정 신속성과 단지 시료 첨가만으로 진단수행이 완료될 수 있다. In particular, diseases that can be life-threatening (eg, various cancers, AIDS, etc.) are usually infected and developed by antigens such as pathogens. There is an urgent need to develop a device capable of diagnosing biomaterials including various antigens. Accordingly, biosensors using membranes have been used as immunoassay devices that do not require specialized knowledge or complicated processes and are simple to use and have a short execution time. In the analysis apparatus using such a biosensor, an immunochromatographic method using a pore membrane as an immobilized parent of a sensitive protein is generally applicable. Absorption of the sample containing the analyte from the bottom of the membrane strip causes the analyte to be transported to the immobilized sensitized protein layer through pores of capillary action, causing adhesion between the antigen and the antibody on the solid surface and unbound components Separated by. Membrane strip immunochromatography techniques based on this principle accelerate the mass transfer of reactive components using the lateral flow of the fluid, so that diagnostics can be completed with rapid measurement of the analyte and only sample addition.
최근 이러한 바이오 센서는 멤브레인 위에 왁스, 파라핀 등으로 채널 등을 프린팅하여 제작하는 연구가 진행되고 있으나, 이는 멤브레인 상에 다중 패턴을 형성할시 온도와 압력에 영향 및 유체의 흐름에 의해 영향을 받아 검출 신뢰도가 떨어지는 문제가 있다.Recently, such biosensors have been researched to produce channels by printing wax, paraffin, etc. on the membrane. However, this biosensor is detected by the influence of temperature and pressure and flow of fluid when forming multiple patterns on the membrane. There is a problem of low reliability.
국제공개번호 WO2008-049083호(2008.04.24.공개; 이하 '선행문헌1'이라 함)의 ‘LATERAL FLOW AND FLOW-THROUGH BIOASSAY BASED ON PATTERNED POROUS MEDIA, METHODS OF MAKING SAME, AND METHODS OF USING SAME’에서는, 패터닝을 위해 제작된 스탬프에 폴리머(예, PDMS)를 묻혀 종이에 찍은 후 폴리머를 경화시켜 소수성의 장벽을 형성하도록 하는 패터닝기술을 제시하였다. 그러나, 상기 선행문헌1은 패터닝을 위한 스탬프 제작이 선행되어야 하는데, 이는 패턴에 따른 여러 개의 스탬프 제작을 필요로 함으로, 초기 패턴 확립시 스탬프를 제작하는 시간과 비용이 과다하게 소모된다. 또한, 플라스틱과 고무로 된 스탬프의 경우, 보관시 충격에 의한 스탬프의 망가짐 또는 패턴의 변형이 생기면 스탬프를 새로 제작하여야 한다. 또한, 종이에 찍는 과정 중에 누르는 힘이 일정하지 않으면 폴리머가 골고루 묻지 않고, 폴리머의 점도나 성질에 따라 누르는 힘의 조절이 필요하다. 또한, 폴리머의 점도나 성질에 따라 종이에 퍼지는 현상이 나타나 채널 형성에 영향을 줄 수 있어 균일한 채널형성에 의한 검출 신뢰성 향상이 어렵다. In LATERAL FLOW AND FLOW-THROUGH BIOASSAY BASED ON PATTERNED POROUS MEDIA, METHODS OF MAKING SAME, AND METHODS OF USING SAME In addition, a patterning technique is described in which a polymer (eg, PDMS) is imbedded in a stamp made for patterning, taken on paper, and the polymer is cured to form a hydrophobic barrier. However, the prior document 1 has to be preceded by a stamp production for patterning, which requires a number of stamp production according to the pattern, excessive time and cost for producing a stamp when the initial pattern is established. In the case of stamps made of plastic and rubber, stamps should be newly produced if the stamps are broken or the patterns are deformed due to impacts during storage. In addition, if the pressing force is not constant during the paper-printing process, the polymer is not evenly distributed, and it is necessary to adjust the pressing force according to the viscosity or property of the polymer. In addition, the phenomenon of spreading on the paper may appear depending on the viscosity or property of the polymer, which may affect channel formation, and thus it is difficult to improve detection reliability by uniform channel formation.
미국공개특허 US2012-0052250호(2012.03.01. 공개; 이하 '선행문헌2'이라 함)의 ‘Flexible Microfluidic Device with Interconnected Porous Network’에서는, 미세다공성 네트워크를 형성할 수 있는 중합체 시트(polymeric sheet) 및 용매를 이용한 패터닝 기술을 제시하였다. 상기 선행문헌2는, 패터닝을 위한 제판으로 양면접착성 비닐을 사용하고, 양면접착성 비닐을 미세다공성 네트워크를 형성하는 중합체 시트(예, 폴리스틸렌)에 붙인 후 용매에 담그는 방식이 적용된다. 이때 상기 중합체시트는 양면접착성 비닐이 붙어 있는 부위를 제외한 부분이 용매와 접촉에 의한 반응이 이루어져 미세다공성 네트워크를 형성하면서 부풀어 오르게 되어 패턴이 형성된다. 그러나 선행문헌2는, 양면접착성 비닐이 중합체 시트와 접착이 제대로 이루어지지 않으면 중합체 시트를 용매에 담그는 과정에서 양면접착성 비닐이 중합체 시트에서 벌어지게 되고, 벌어진 틈으로 용매가 유입되어 반응이 이루어짐으로 원하는 패턴이 제대로 형성되지 않는 문제가 있다. 또한, 패터닝 시 패턴이 필요한 면에서만 미세다공성 네트워크가 형성되도록 하기 위해서는 다른면들에 접착성 시트를 붙여 용매와 반응하지 못하도록 처리하는 과정이 필요하다. 또한, 미세다공 네트워크를 형성한 경우에는 표면이 소수성을 띠고 있기 때문에 친수성 시료를 이용하기 위해서는 표면을 친수성으로 바꾸어주는 단계가 필요하는 등 패턴을 형성하는 과정이 복잡하고 균일한 패턴 형성이 어렵기 때문에 검출 신뢰성을 향상시키기 어려운 문제점이 있다.In the 'Flexible Microfluidic Device with Interconnected Porous Network' of U.S. Patent Application Publication No. US2012-0052250 (published on Jan. 1, 2012; hereafter referred to as 'Previous Document 2'), a polymeric sheet capable of forming a microporous network and A patterning technique using a solvent is presented. In the prior document 2, a method of using double-sided adhesive vinyl as a plate for patterning, attaching the double-sided adhesive vinyl to a polymer sheet (eg, polystyrene) forming a microporous network, and then immersing it in a solvent. At this time, the polymer sheet is formed except a portion where the double-sided adhesive vinyl is attached to the reaction by contact with the solvent to swell while forming a microporous network, thereby forming a pattern. However, Prior Art 2 discloses that when the double-sided adhesive vinyl is not properly adhered to the polymer sheet, the double-sided adhesive vinyl is formed in the polymer sheet in the process of dipping the polymer sheet in the solvent, and the reaction is performed by introducing a solvent into the gap. There is a problem that the desired pattern is not formed properly. In addition, in order to form the microporous network only on the surface where the pattern is required during patterning, an adhesive sheet is attached to the other surfaces to prevent the reaction with the solvent. In addition, in the case of forming a microporous network, since the surface is hydrophobic, a process of forming a pattern is complicated and difficult to form a uniform pattern, such as a step of converting the surface to hydrophilicity in order to use a hydrophilic sample. There is a problem that it is difficult to improve the detection reliability.
본 발명은 멤브레인센서 제조방법은, The present invention is a membrane sensor manufacturing method,
국제공개번호 WO2008-049083호와 미국공개특허 US2012-0052250호 등 선행문헌들이 갖는 공통적인 문제점인 채널 또는 패턴의 균일한 형성이 어려워 검출신뢰성이 낮아지는 것을 해소하기 위한 것으로, 멤브레인을 사용한 멀티 바이오 센서를 제작함에 있어서 온도와 압력 또는 유체의 흐름에 영향을 받지 않으면서 간편한 방법으로 멤브레인 상에 사용자가 원하는 다수의 패턴을 정확하고 균일하게 형성해 검출신뢰성을 향상시킬 수 있는 멤브레인 센서의 제조 방법을 제공하는 것을 목적으로 한다.Multi biosensor using membranes to solve the problem of low detection reliability due to difficulty in uniform formation of channels or patterns, which is a common problem of prior art documents such as International Publication No. WO2008-049083 and US Publication No. US2012-0052250 Providing a method of manufacturing a membrane sensor that can improve the detection reliability by forming a plurality of patterns desired by the user on the membrane in a simple manner without being affected by temperature, pressure or fluid flow in manufacturing For the purpose of
본 발명의 실시예는 멤브레인 센서의 제조 방법으로서, 크래프트 프린터를 사용하여 종이에 패턴이 형성된 제판을 제작하는 단계; 상기 제판을 유기용매에 적시는 단계; 수용성 시료가 흐를 수 있는 멤브레인에 제판을 접착시켜 스탬핑(Stamping)하는 단계; 상기 멤브레인으로부터 상기 제판을 제거하는 단계; 및 상기 멤브레인을 소정의 시간동안 건조시키는 단계;를 포함할 수 있다.Embodiments of the present invention provide a method of manufacturing a membrane sensor, comprising the steps of: producing a plate-shaped plate formed on paper using a kraft printer; Soaking the plate in an organic solvent; Attaching and stamping the plate to a membrane through which a water-soluble sample can flow; Removing the plate from the membrane; And drying the membrane for a predetermined time.
상기 유기용매는 DMSO(Dimethyl sulfoxide), DMF(Dimethylformamide), 1.4-Dioxan 중 어느 하나로 선택될 수 있으며, 바람직하게 상기 유기용매는 농도가 100%인 DMSO가 사용될 수 있다.The organic solvent may be selected from any one of dimethyl sulfoxide (DMSO), dimethylformamide (DMF), and 1.4-Dioxan. Preferably, the organic solvent may be DMSO having a concentration of 100%.
그리고, 수용성 시료가 흐를 수 있는 멤브레인에 제판을 접착시켜 스탬핑(Stamping)하는 단계는, 상기 제판의 일면에 제2 고정판을 접착하는 단계; 상기 멤브레인과 제판이 접촉하도록 상기 1 및 제2 고정판을 압착하여, 상기 멤브레인과 제판에 소정의 압력을 가하는 단계를 포함할 수 있다.In addition, the step of attaching and stamping the plate to the membrane through which the water-soluble sample may flow may include: bonding a second fixing plate to one surface of the plate; The first and second fixing plates may be pressed to contact the membrane and the plate, and a predetermined pressure may be applied to the membrane and the plate.
또한, 실시예에서 상기 멤브레인을 소정의 시간동안 건조시키는 단계는, 상기 멤브레인으로부터 상기 제판을 제거한 후에 37℃의 온도에서 소정의 시간동안 건조시키는 것을 특징으로 한다.Further, in the embodiment, the step of drying the membrane for a predetermined time, characterized in that for drying for a predetermined time at a temperature of 37 ℃ after removing the plate making from the membrane.
실시예는 상기 멤브레인 상에서 상기 유기용매에 의해 녹은 부분에 존재하는 유기막을 제거하지 않고 바이오 센서를 형성하는 단계를 포함할 수 있고, 상기 유기막을 제거하여 바이오 센서를 형성하는 단계를 포함할 수 있으며, 이에 활용도가 다른 멤브레인 센서를 제작할 수 있다.An embodiment may include forming a biosensor without removing the organic film present in the portion dissolved by the organic solvent on the membrane, and may include forming the biosensor by removing the organic film. This makes it possible to manufacture membrane sensors with different applications.
본 발명의 실시예는 멤브레인 상에 유기 용매를 적신 종이 제판을 이용하여 스탬핑하는 간단한 방법을 이용함으로써, 한번의 과정을 통해 다수개의 다양한 디자인의 패턴을 멤브레인 상에 형성할 수 있다. Embodiments of the present invention use a simple method of stamping paper making with organic solvents onto the membrane, thereby forming a plurality of patterns of various designs on the membrane in a single process.
즉, 패터닝을 위한 제판으로 종이를 이용함으로써 패턴의 프린트 및 절단 과정만을 통해 제판 제작이 가능하고, 패턴의 조건에 따른 여러 가지 패턴을 가진 제판을 한 번의 과정으로 쉽게 제작하여 테스트할 수 있다. 또한, 용매 흡수량이 일정한 종이로 제판을 형성함으로 원하는 부위만 용매를 접촉시킬 수 있어 과다한 용매공급으로 흡수된 용매가 확산반응이 이루어지는 현상을 방지할 수 있다. 또한, 제판을 구성하는 종이의 재질이나 두께를 이용하여 용매함유량을 조절함으로써 패턴의 두께 조절이 가능하고, 멤브레인에 형성된 패턴을 종이에 형성된 패턴과 같은 모양으로 정확하고 균일하게 형성할 수 있어 검출신뢰성을 대폭적으로 향상시킬 수 있게 되었다. That is, by using paper as a plate for patterning, plate making can be made only through the printing and cutting process of the pattern, and plate making having various patterns according to the conditions of the pattern can be easily produced and tested in one step. In addition, since the solvent absorption amount forms a plate with a constant paper, only the desired portion can be contacted with the solvent, thereby preventing a phenomenon in which the solvent absorbed by the excessive solvent supply is diffused. In addition, the thickness of the pattern can be controlled by controlling the solvent content using the material or thickness of the paper constituting the plate making, and the pattern formed on the membrane can be formed accurately and uniformly in the same shape as the pattern formed on the paper. Can be greatly improved.
본 발명의 실시예는 형성되는 패턴의 디자인에 따라서 유체의 흐름을 구분하여 사용할 수 있고, 멤브레인에 온도와 압력 및 유체의 흐름이 영향을 미치지 않으므로 검출의 신뢰성을 향상시킬 수 있다. Embodiments of the present invention can be used to distinguish the flow of the fluid according to the design of the pattern to be formed, it is possible to improve the reliability of the detection because the temperature and pressure and the flow of the fluid does not affect the membrane.
본 발명의 실시예는 항체나 항원을 고정하여 제작 및 사용할 수 있고, 간단한 방법으로 멀티 바이오 센서를 제작할 수 있다.Embodiments of the present invention can be produced and used by fixing the antibody or antigen, it is possible to produce a multi-biosensor by a simple method.
도 1은 본 발명의 실시예에 따라 멤브레인에 패터닝을 하는 과정을 나타낸 도면 1 is a view showing a process for patterning the membrane in accordance with an embodiment of the present invention
도 2는 멤브레인에 복수개의 제판을 상이한 간격으로 접착시켜 패턴을 형성한 것을 나타낸 도면2 is a view showing a pattern formed by bonding a plurality of plates to the membrane at different intervals;
도 3은 멤브레인에 형성된 13개의 패턴에 대해 실제 제판의 폭과 멤브레인 상에 형성된 패턴의 폭을 비교한 그래프3 is a graph comparing the width of the actual plate making and the width of the pattern formed on the membrane for 13 patterns formed on the membrane
도 4는 종이의 폭에 따라 제판의 폭에서 패턴의 폭을 차감한 값을 비교한 그래프4 is a graph comparing the value obtained by subtracting the width of the pattern from the width of the plate making according to the width of the paper.
도 5a는 실시예에 따라 멤브레인 상에 여러가지 디자인의 패터닝을 실시하기 위한 제판의 예시를 나타낸 도면5A illustrates an example of plate making for patterning various designs on a membrane in accordance with an embodiment.
도 5b는 실시예에 따라 패터닝된 실제 멤브레인을 나타낸 도면5B shows an actual membrane patterned according to an embodiment.
도 6은 패터닝된 멤브레인을 이용하여 바이오 센싱한 결과를 나타낸 그래프6 is a graph showing the results of biosensing using the patterned membrane
도 7은 'Tear off' 패터닝을 이용하여 이중 채널을 형성한 멤브레인을 나타낸 도면7 shows a membrane with dual channels formed using 'Tear off' patterning.
도 8은 종래 멤브레인 센서에서 측면 흐름을 분석한 도면이며, (a)는 CK-MB인 경우 (b)는 myoglobin 인 경우를 나타낸 도면8 is a view illustrating a side flow analysis in a conventional membrane sensor, (a) is the case of CK-MB (b) is a view showing the case of myoglobin
도 9는 실시예를 적용하여 형성된 이중 채널 구조의 멤브레인 센서에서 CK-MB에 대한 강도를 측정한 그래프9 is a graph measuring the strength for CK-MB in the membrane sensor of the dual channel structure formed by applying the embodiment
도 10은 실시예를 적용하여 형성된 이중 채널 구조의 멤브레인 센서에서 Myoglobin에 대한 강도를 측정한 그래프10 is a graph measuring the strength of Myoglobin in the membrane sensor of the dual channel structure formed by applying the embodiment
도 11은 멤브레인 센서를 나타낸 사진11 is a photograph showing a membrane sensor
도 12 내지 14는 도 11의 각 멤브레인 센서를 이용하여 유체흐름을 테스트한 사진 및 결과그래프12 to 14 are photographs and result graphs of fluid flow tests using the membrane sensors of FIG. 11.
이하 첨부된 도면들을 참조하여 본 발명의 실시예들을 상세하게 설명하지만, 본 발명의 실시예에 의해 제한되거나 한정되는 것은 아니다. 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명료하게 하기 위해 생략될 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, but are not limited or limited by the embodiments of the present invention. In describing the present invention, a detailed description of known functions or configurations may be omitted to clarify the gist of the present invention.
도 1은 본 발명의 실시예에 따라 멤브레인에 패터닝을 하는 과정을 나타낸 도면이다. 1 is a view showing a process for patterning the membrane in accordance with an embodiment of the present invention.
멤브레인(10)은 생체시료가 이송되는 통로 역할을 수행함과 동시에 원하는 화학, 생물학적 반응 결과를 확인할 수 있는 수평흐름이 가능한 멤브레인 형태의 모든 재질을 포함할 수 있다. 보다 바람직하게는 니트로셀룰로오스, 나일론, 폴리술폰, 폴리에테르술폰 및 PVDF(Polyvinylidene fluoride) 중에서 선택된 재질의 멤브레인을 사용될 수 있으며 본 실시예에서는 니트로셀룰로오스로 구성된 멤브레인의 패턴 형성 방법에 대해서 제안한다. Membrane 10 may include any material in the form of a membrane capable of horizontal flow to confirm the desired chemical and biological reaction results while serving as a passage through which the biological sample is transferred. More preferably, a membrane of a material selected from nitrocellulose, nylon, polysulfone, polyethersulfone, and polyvinylidene fluoride (PVDF) may be used, and the present embodiment proposes a method for forming a pattern of a membrane composed of nitrocellulose.
실시예에 따른 멤브레인 센서의 제조 방법은, 크래프트(craft) 프린터를 사용하여 종이에 패턴이 형성된 제판을 제작하는 단계, 상기 제판을 유기용매에 적시는 단계, 수용성 시료가 흐를 수 있는 멤브레인에 제판을 접착시켜 스탬핑(Stamping)하는 단계, 상기 멤브레인으로부터 상기 제판을 제거하는 단계 및 상기 멤브레인을 소정의 시간동안 건조시키는 단계를 포함할 수 있으며 하기에서 각 단계의 구체적인 방법에 대해 설명한다. In the method of manufacturing a membrane sensor according to the embodiment, using a craft (craft) printer to form a plate-shaped plate, the step of soaking the plate in an organic solvent, the plate to the membrane through which the water-soluble sample flows Bonding and stamping, removing the plate making from the membrane, and drying the membrane for a predetermined time, will be described below in the specific method of each step.
도 1의 (a)에서는 멤브레인과 고정판 및 유기용매가 담금질된 제판을 준비하는 과정을 나타내고 있다. 1 (a) shows a process of preparing a plate quenched with a membrane, a fixed plate and an organic solvent.
실시예에서는 우선 멤브레인(10) 상에 놓여지는 제판(20)의 제작이 선행될 수 있다. 상기 제판(20)은 종이가 사용될 수 있으나 이에 한정되지 않으며, 액체 상태의 용매를 일정수준 머금을 수 있는 재질의 부재가 사용될 수 있다.In an embodiment, the fabrication of the plate 20, which is first placed on the membrane 10, may be preceded. The plate 20 may be made of paper, but is not limited thereto. A member of a material capable of containing a predetermined level of a solvent in a liquid state may be used.
상기 종이는 소정의 규격을 갖도록 잘라진 후에, 프린터를 통해 사용자가 원하는 디자인의 패턴이 형성될 수 있다. 상기 프린터는 Craft 프린터일 수 있으며, 사용자는 멤브레인 상에 형성하고자 하는 패턴에 대한 데이터를 상기 Craft 프린터로 전송하면, 상기 데이터에 해당하는 패턴이 상기 종이를 가공함으로써 원하는 패턴이 형성된 제판(20)이 마련될 수 있다. After the paper is cut to have a predetermined standard, a pattern of a design desired by a user may be formed through a printer. The printer may be a craft printer, and when a user transmits data on a pattern to be formed on a membrane to the craft printer, the plate forming 20 having a desired pattern is formed by processing the paper with a pattern corresponding to the data. Can be prepared.
실시예에서는 상기와 같이 디자인된 제판(20)이 형성되면, 종이를 크래프트 프린터기로부터 뜯어내어 유기용매(30)에 담금질하는 과정이 수행될 수 있다. 이 때, 상기 유기용매(30)로서는 DMSO(Dimethyl sulfoxide), 1.4-Dioxane, DMF 중에서 어느 하나가 사용될 수 있으며, 실시예에서는 멤브레인 상에 원하는 패턴을 형성하기 위해 유기용매로서 DMSO를 사용하였으며, 바람직한 예시로서 100%의 농도를 갖는 DMSO를 사용하였다. In the embodiment, when the plate making 20 designed as described above is formed, a process of peeling the paper from the kraft printer machine and quenching the organic solvent 30 may be performed. At this time, any one of DMSO (dimethyl sulfoxide), 1.4-Dioxane, DMF may be used as the organic solvent 30. In the embodiment, DMSO was used as the organic solvent to form a desired pattern on the membrane. DMSO with a concentration of 100% was used as an example.
유기용매는 상기 멤브레인을 녹이는 성질을 가지며, 실시예에서 사용된 유기용매인 DMSO는 멤브레인과 접촉된 부분만을 선택적으로 녹이는 성질을 가져 본 실시예에서와 같이 멤브레인 상에 패턴을 형성하는데 사용될 수 있다. DMSO에 담금질된 제판(20)은 멤브레인(10)과 부착시에 멤브레인과 접촉된 면만을 녹이게 됨으로써, Craft 프린터에서 디자인된 형상과 동일하게 멤브레인 상에 패턴이 형성될 수 있다. The organic solvent has a property of dissolving the membrane, and the DMSO, an organic solvent used in the embodiment, has a property of selectively dissolving only a portion in contact with the membrane, and thus may be used to form a pattern on the membrane as in this embodiment. The plate making 20 quenched in DMSO melts only the surface contacted with the membrane when attached to the membrane 10, so that a pattern may be formed on the membrane in the same shape as the shape designed in the Craft printer.
이어서, 상기 멤브레인(10)과 제판(20)의 상하부에는 제1 및 제2 고정판(11, 12)이 마련되며, 멤브레인(10)은 제1 고정판(11) 상면에 부착된 채로 고정되며, 유기용매(30)를 머금은 제판(20)은 제2 고정판(12)의 하면에 접착될 수 있다. 이 때, 상기 제판(20)은 상기 멤브레인(10)의 위치와 대응되도록 상기 제2 고정판(12) 하면에 접착되어야 한다.Subsequently, first and second fixing plates 11 and 12 are provided on upper and lower portions of the membrane 10 and the plate 20, and the membrane 10 is fixed while being attached to an upper surface of the first fixing plate 11. The plate 20 with the solvent 30 may be adhered to the bottom surface of the second fixing plate 12. At this time, the plate 20 is to be bonded to the lower surface of the second fixing plate 12 to correspond to the position of the membrane (10).
제판(20)에 유기용매가 완전히 젖어들면, 이를 꺼내에 유리판에 흡착시켜 고정시킨 후에, 제판과 멤브레인이 접촉되도록 NC 멤브레인의 상방향으로 유리판을 압착시킴으로써 스탬핑하는 단계가 수행될 수 있다. If the organic solvent is completely wetted to the plate making 20, the step of taking out and fixing the organic solvent to the glass plate, and then stamping the glass plate in the upward direction of the NC membrane to contact the plate and the membrane can be performed.
도 1의 (b)에서는 상기와 같이 유기용매인 DMSO가 담금질된 제판과 멤브레인을 스탬핑(Stamping)하는 과정 및 멤브레인 상에서 제판을 제거하는 과정을 나타내고 있다. FIG. 1 (b) shows a process of stamping a plate and a membrane quenched with the organic solvent DMSO and removing the plate on the membrane.
멤브레인에 제판을 접착시켜 스탬핑하는 단계는, 상기 멤브레인의 일면에 제1 고정판(11)을 접착시키는 단계, 상기 제판(20)의 일면에 제2 고정판(12))을 접착시키는 단계, 상기 멤브레인과 제판이 접촉하도록 상기 제1 및 제2 고정판을 압착하여 상기 멤브레인과 제판에 소정의 압력을 가하는 단계를 포함할 수 있다. Bonding and stamping the plate to the membrane, the step of adhering the first fixing plate 11 to one surface of the membrane, adhering the second fixing plate 12 to one surface of the plate 20, the membrane and And compressing the first and second fixing plates so that the plate makes contact with the plate and applying a predetermined pressure to the membrane and the plate.
제판(20)이 접착된 제2 고정판은 멤브레인(10)이 접착된 제1 고정판(11)의 상면과 접촉하도록 압착되며, 상기 제1 및 제2 고정판(11, 12) 사이에 마련된 멤브레인(10)에 소정의 압력이 가해짐으로써 스탬핑(Stamping) 과정이 수행될 수 있다.The second fixing plate to which the plate 20 is bonded is pressed to contact the upper surface of the first fixing plate 11 to which the membrane 10 is bonded, and the membrane 10 provided between the first and second fixing plates 11 and 12. ), A predetermined pressure may be applied to the stamping process.
상기와 같은 스탬핑 단계가 수행되면, 제2 고정판(12)을 제거하고 멤브레인(20)을 소정의 시간동안 건조(Drying)시키는 단계가 수행될 수 있다. When the stamping step as described above is performed, the step of removing the second fixing plate 12 and drying the membrane 20 for a predetermined time may be performed.
소정의 시간이 지난 후에, 상기 멤브레인(10)상에 접착된 제판(20)을 제거하는 단계가 수행될 수 있으며, 멤브레인 상에는 제판에 묻어진 유기용매에 의해 녹는 부분이 형성되고, 사용자가 원하는 디자인의 패턴이 형성된다. 이를, 37℃의 온도에서 일정 시간동안 건조시키면 이를 멀티 바이오 센서로 사용할 수 있으며, 시료를 주입하여 면역 반응 등을 통하여 분석대상물질을 측정할 수 있다.After a predetermined time, a step of removing the plate 20 adhered to the membrane 10 may be performed, and a melting part is formed on the membrane by an organic solvent buried in the plate, and a design desired by the user. Pattern is formed. If this is dried for a predetermined time at a temperature of 37 ℃ it can be used as a multi-bio sensor, and the sample can be injected to measure the analyte through an immune response.
한편, (b)의 단계에서 제판(20)을 제거한 멤브레인 상의 녹은 부분에는 유기용매에 의한 유기막(21)이 형성되는데, (c)의 단계와 같이 멤브레인의 녹은 부분에 형성된 유기막(21)을 핀셋을 이용하여 제거한 후에 37℃의 온도에서 일정 시간동안 건조시키는 과정을 수행할 수 있다. 실시예는 상기 유기막(21)을 제거하거나 제거하지 않은 바이오 센서를 제작할 수 있고, 이에 활용도가 다른 바이오 센서를 제작하는 것이 가능하다. On the other hand, the organic film 21 by the organic solvent is formed on the molten portion on the membrane from which the plate making 20 is removed in the step (b), the organic film 21 formed on the molten portion of the membrane as in step (c) After the removal using the tweezers may be carried out a process of drying at a temperature of 37 ℃ for a certain time. According to the embodiment, a biosensor without or without the organic layer 21 may be manufactured, and a biosensor having a different utilization may be manufactured.
도 2는 멤브레인에 복수개의 제판을 상이한 간격으로 접착시켜 패턴을 형성한 것을 나타낸 도면이다. 2 is a view showing a pattern formed by bonding a plurality of plates to the membrane at different intervals.
도 2를 참조하면, 각각의 제판은 (0.5, 0.7, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10)㎜의 간격만큼 이격되도록 형성하였으며, 총 13개의 디자인을 갖도록 형성되었다. 상기와 같이 서로 다른 폭으로 형성된 제판을 멤브레인과 접촉시켜 멤브레인 패턴을 형성하였을 때, 원래 디자인된 제판의 폭과 실시예의 방법으로 형성된 멤브레인 패턴의 폭을 비교함으로써 바람직한 패턴의 폭을 도출할 수 있다. Referring to Figure 2, each plate is formed to be spaced apart by the interval of (0.5, 0.7, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10) mm, a total of 13 designs It was formed to have. When the platelets formed with different widths as described above are contacted with the membrane to form a membrane pattern, the width of the desired pattern can be derived by comparing the width of the originally designed plate with the width of the membrane pattern formed by the method of the embodiment.
구체적으로 도 2의 아래의 그림과 같이 같이 13개의 서로 다른 폭으로 디자인된 멤브레인 패턴에 대해서 현미경(OLYMPUS uplan 10X 10.30)으로 100㎛ 단위의 PSI-Stage MIC 10mm/0.1mm DIV로 각각의 폭을 확인하였다. Specifically, as shown in the following figure of FIG. 2, the widths of each of the membrane patterns designed with 13 different widths were identified by PSI-Stage MIC 10 mm / 0.1 mm DIV in units of 100 μm under a microscope (OLYMPUS uplan 10X 10.30). It was.
도 3은 멤브레인에 형성된 13개의 패턴에 대해 실제 제판의 폭과 멤브레인 상에 형성된 패턴의 폭을 비교한 그래프이며, 도 4는 제판의 폭에 따라 제판의 폭에서 패턴의 폭을 차감한 값을 비교한 그래프이다. 3 is a graph comparing the width of the actual plate making and the width of the pattern formed on the membrane for the 13 patterns formed on the membrane, Figure 4 compares the width of the plate minus the width of the pattern according to the width of the plate One graph.
도 3을 참조하면, 0.5~10mm의 사이에서 상이한 값을 갖도록 제작된 제판의 폭은 형성된 NC 패턴의 폭보다 항상 크게 나타남을 확인할 수 있다. 이는 제판에 묻혀진 유기용매가 NC 패턴과 접촉할 시에 어느정도 안쪽으로 파고들면서 멤브레인을 녹인다는 것으로 해석할 수 있다. Referring to Figure 3, it can be seen that the width of the plate making to have a different value between 0.5 ~ 10mm always appears larger than the width of the formed NC pattern. This can be interpreted as dissolving the membrane by digging inward to some extent when the organic solvent buried in the plate makes contact with the NC pattern.
도 4를 참조하면, 제판의 폭에 따라 제판의 폭에서 패턴의 폭을 차감한 값의 경향을 확인할 수 있다. 즉, 1~4번 샘플인 0.5~1.3mm의 범위로 제판을 형성하였을 경우에는 상대적으로 제판의 폭과 NC 패턴의 폭의 차이가 크지만, 2mm 이상으로 제판을 형성한 경우에는 제판의 폭과 NC 패턴의 폭의 차이가 현저히 감소함을 알 수 있다. Referring to FIG. 4, the trend of a value obtained by subtracting the width of the pattern from the width of the plate making according to the width of the plate making may be confirmed. In other words, when the plate is formed in the range of 0.5 to 1.3 mm, samples 1 to 4, the difference between the width of the plate and the width of the NC pattern is relatively large, but when the plate is formed to be 2 mm or more, It can be seen that the difference in the width of the NC pattern is significantly reduced.
따라서, 본 발명의 실시예는 원하는 패턴을 형성할 시에 제판의 폭을 적어도 2mm 정도로 형성하여, NC 멤브레인에 대한 패턴을 형성하는 것이 목표로 하는 패턴을 디자인하는데 있어서 바람직하다. 하지만 이에 한정되지는 않으며, 실시예는 바이오 센서의 디자인에 따라서 최소 0.5mm 이상의 크기를 갖는 패턴을 멤브레인 상에 형성할 수 있다. Accordingly, embodiments of the present invention are preferred for designing a pattern aimed at forming the width of the plate making at least 2 mm to form a pattern for the NC membrane when forming a desired pattern. However, the present invention is not limited thereto, and the exemplary embodiment may form a pattern having a size of at least 0.5 mm or more on the membrane according to the design of the biosensor.
도 5a는 실시예에 따라 멤브레인 상에 여러가지 디자인의 패터닝을 실시하기 위한 제판의 예시를 나타낸 도면이며, 도 5b는 실시예에 따라 패터닝된 실제 멤브레인을 나타낸 도면이다. 5A shows an example of plate making for patterning various designs on a membrane in accordance with an embodiment, and FIG. 5B shows an actual membrane patterned in accordance with an embodiment.
도 5a와 도 5b를 참조하면, 실시예와 같이 Craft 프린터를 사용한 제판의 디자인을 통해 멤브레인 상에 사용자가 원하는 모양의 다양한 패턴을 용이하게 형성할 수 있다. 실시예는 도시된 바와 같이 각 패턴의 크기 및 이격거리를 용이하게 설정할 수 있으며, 측정하고자 하는 시료에 따라 패턴의 모양을 디자인할 수 있고 여러가지 항원 및 항체에 대한 측정을 수행할 수 있는 멤브레인 센서를제작할 수 있다. 5A and 5B, various patterns having a shape desired by a user may be easily formed on a membrane through the design of a plate making using a craft printer as in the embodiment. The embodiment can easily set the size and separation distance of each pattern as shown, and can design the shape of the pattern according to the sample to be measured and a membrane sensor that can measure the various antigens and antibodies I can make it.
도 6은 패터닝된 멤브레인을 이용하여 바이오 센싱한 결과를 나타낸 그래프이다. 도 6을 참조하면, 멤브레인에 두개의 채널이 형성되도록 패터닝하여 멤브레인 센서를 제작하고, 각각의 채널에는 서로 다른 항원을 첨가하여 바이오 센싱을 수행한 결과를 나타낸다.6 is a graph showing the results of biosensing using the patterned membrane. Referring to FIG. 6, a membrane sensor is fabricated by patterning two channels to form a membrane, and biosensing is performed by adding different antigens to each channel.
도 7은 'Tear off' 패터닝을 이용하여 이중 채널을 형성한 멤브레인을 나타낸 도이다. 도 7을 참조하면, 본 발명의 패터닝 기술을 이용하여 이중 채널(Dual-channel)을 형성하였으며, 좌측의 채널에는 미오글로빈(Myoglobin), 우측의 채널에는 CK-MB에 대한 반응을 확인하였다. 도시된 바와 같이 서로 채널이 다를 경우에는 발색에 영향을 주지 않는 것을 확인할 수 있다. FIG. 7 is a diagram illustrating a membrane in which dual channels are formed using 'Tear off' patterning. Referring to FIG. 7, dual-channels were formed using the patterning technique of the present invention, and a response to CK-MB was confirmed in myoglobin in the left channel and CK-MB in the right channel. As shown in the figure, when the channels are different from each other, it can be seen that the color development is not affected.
미오글로빈(Myoglobin)과 CK-MB는 심부전증, 심근경색과 같은 심장의 이상현상을 나타내는 지표이며, 응급상황에서 사용될 수 있도록 멤브레인 센서로 제작될 수 있다.Myoglobin and CK-MB are indicators of cardiac abnormalities such as heart failure and myocardial infarction, and can be fabricated as membrane sensors for use in emergencies.
도 8은 종래 멤브레인 센서에서 측면 흐름을 분석한 도면이며, (a)는 CK-MB인 경우 (b)는 myoglobin 인 경우를 나타낸 도면이다.8 is a view illustrating a side flow analysis in a conventional membrane sensor, (a) is the case of CK-MB (b) is a view showing the case of myoglobin.
도 9는 실시예를 적용하여 형성된 이중 채널 구조의 멤브레인 센서에서 CK-MB에 대한 강도를 측정한 그래프이며, 도 10은 실시예를 적용하여 형성된 이중 채널 구조의 멤브레인 센서에서 Myoglobin에 대한 강도를 측정한 그래프이다.9 is a graph measuring the strength for CK-MB in the membrane sensor of the dual channel structure formed by applying the embodiment, Figure 10 is a strength of the Myoglobin in the membrane sensor of the dual channel structure formed by applying the embodiment One graph.
도 9 및 도 10에 도시된 바와 같이 실시예에 따른 멤브레인의 패터닝 방법을 이용하여 이중 채널 구조의 멤브레인 센서를 제작하면, 도 8에 개시된 종래의 멤브레인 센서의 측면 흐름과 비교하였을 때 이중 채널에서의 강도(intensity)가 증가함을 확인할 수 있었다. 9 and 10, when the membrane sensor of the dual channel structure is manufactured by using the patterning method of the membrane according to the embodiment, it is compared with the lateral flow of the conventional membrane sensor of FIG. 8. It was confirmed that the intensity was increased.
이는 이중 채널에서는 유체의 흐름이 상대적으로 천천히 진행하기 때문에 반응의 활성도가 높게 나타나는 것으로 해석할 수 있다. This can be interpreted that the activity of the reaction is high because the flow of the fluid proceeds relatively slowly in the dual channel.
즉, 상기와 같이 본 발명의 실시예는 멤브레인 상에 유기 용매를 적신 제판을 스탬핑하는 간단한 방법을 이용함으로써, 다수개의 다양한 디자인의 패턴을 멤브레인 상에 형성할 수 있으며, 패턴의 디자인에 따라서 유체의 흐름을 구분하여 사용할 수 있고, 멤브레인에 온도와 압력 및 유체의 흐름이 영향을 미치지 않으므로 검출의 신뢰성을 향상시킬 수 있다. That is, the embodiment of the present invention as described above, by using a simple method of stamping plate making moistened with an organic solvent on the membrane, a plurality of patterns of various designs can be formed on the membrane, depending on the design of the pattern The flows can be used separately, and the reliability of detection can be improved since temperature, pressure, and fluid flow do not affect the membrane.
또한, 본 발명의 실시예는 항체나 항원을 고정하여 제작 및 사용할 수 있고, 간단한 방법으로 멀티 바이오 센서를 제작할 수 있다.In addition, embodiments of the present invention can be produced and used by fixing the antibody or antigen, it is possible to produce a multi-biosensor by a simple method.
<실험예>Experimental Example
본 발명의 패턴형성과정을 수행한 멤브레인 센서가 기존 멤브레인 센서와 대비하여 유체흐름 및 시간에 변화가 있는지 여부를 측정하였다. It was measured whether the membrane sensor subjected to the pattern forming process of the present invention has a change in fluid flow and time compared to the conventional membrane sensor.
도 11은 멤브레인 센서를 나타낸 사진이다. 멤브레인은 니트로 셀룰로스인 NC180sec을 사용하였다. (A)는 기존 LFA(Lateral flow assay) 방식으로 절단하여 4mm폭으로 제작하였고, (B)는 본 발명의 패턴형성과정을 수행하되 건조 후 제판과 접촉에 의해 성질변화가 이루어져 형성된 유기막을 포셉으로 제거한 멤브레인 센서이고, (C)는 유기막을 제거하지 않은 멤브레인 센서를 나타낸 사진이다.11 is a photograph showing a membrane sensor. The membrane used NC180 sec, nitro cellulose. (A) was cut by the conventional LFA (Lateral flow assay) method was produced in 4mm width, (B) is carried out the pattern forming process of the present invention, but after drying the organic film formed by changing the properties by contact with the platen forceps It is a removed membrane sensor, (C) is a photograph which shows the membrane sensor which did not remove the organic film.
흐름 상태 및 시간을 확인하기 위해 1%(v/v) 계면활성제(제품명 : fitzgerald 사의 surfactant 10G)가 포함된 1 X PBS(phosphate buffered saline)와 사람 혈청(Human serum; 제품명: Sigma H4522)을 사용하였고, 이를 도 12 내지 도 14에 나타내었다. 이때 상기 ‘1 X PBS’에서 유체흐름정도를 쉽게 파악할 수 있도록 식용색소를 전체 중량대비 0.1~0.5중량% 추가로 첨가하였다.Use 1 X PBS (phosphate buffered saline) containing human 1% (v / v) surfactant (product name: surfactant 10G from fitzgerald) and human serum (product name: Sigma H4522) to confirm flow status and time. This is shown in Figures 12-14. At this time, the food coloring was added in an amount of 0.1 to 0.5% by weight based on the total weight to easily determine the fluid flow degree in the '1 X PBS'.
도 12와 도 14를 참조한 바와 같이 상기 ‘1 X PBS’의 용액을 사용하여 흐름의 시간을 측정한 바, A, B, C 모두 101~103초 대로 시간에 차이가 없고, 흐름의 상태 또한 A, B, C 모두 크게 다르지 않은 것으로 나타난 바 본 발명의 패턴형성을 수행하여도 유체흐름은 변화가 거의 없음을 알 수 있다.12 and 14, the flow time was measured using the solution of '1 X PBS'. As a result, A, B, and C were all 101-103 seconds in time, and the flow state was A. , B, and C are not significantly different from each other. Even though the patterning of the present invention is performed, the fluid flow is hardly changed.
아울러 도 13과 도 14를 참조한 바와 같이 상기 ‘Human serum’의 용액을 사용하여 흐름의 시간을 측정한 바, A, B, C 모두 180~185초 대로 나타난 바 본 발명의 패턴형성을 수행하여도 유체흐름은 변화가 거의 없음을 알 수 있어 분석성능이 저하되지 않음을 알 수 있었다. 또한, 유기막을 제거 유무도 유체흐름에 영향을 미치지 않음을 알 수 있었다. 13 and 14, when the flow time was measured using the solution of the 'Human serum', A, B, and C were all present in the range of 180 to 185 seconds. It can be seen that the fluid flow shows little change, so that the analytical performance is not degraded. In addition, it can be seen that the removal of the organic film does not affect the fluid flow.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The present invention has been described above with reference to the preferred embodiments, which are merely examples and are not intended to limit the present invention, and those skilled in the art to which the present invention pertains do not depart from the essential characteristics of the present invention. It will be appreciated that various modifications and applications are not possible that are not illustrated above. For example, each component specifically shown in the embodiment of the present invention can be modified. And differences relating to such modifications and applications will have to be construed as being included in the scope of the invention defined in the appended claims.

Claims (9)

  1. 크래프트(craft) 프린터를 사용하여 종이에 패턴이 형성된 제판을 제작하는 단계;Manufacturing a plate-formed plate-making on paper using a craft printer;
    상기 제판을 유기용매에 적시는 단계;Soaking the plate in an organic solvent;
    수용성 시료가 흐를 수 있는 멤브레인에 제판을 접착시켜 스탬핑(Stamping)하는 단계;Attaching and stamping the plate to a membrane through which a water-soluble sample can flow;
    상기 멤브레인에서 상기 제판을 제거하는 단계; 및Removing the engraving from the membrane; And
    상기 멤브레인을 소정의 시간동안 건조시키는 단계; Drying the membrane for a predetermined time;
    를 포함하는 멤브레인 센서의 제조 방법.Method of manufacturing a membrane sensor comprising a.
  2. 제 1항에 있어서, The method of claim 1,
    상기 멤브레인은 니트로셀룰로오스(Nitrocellulose)로 이루어지는 멤브레인 센서의 제조 방법.The membrane is a method of manufacturing a membrane sensor made of nitrocellulose (Nitrocellulose).
  3. 제 1항에 있어서,The method of claim 1,
    상기 유기용매는 DMSO(Dimethyl sulfoxide), DMF(Dimethylformamide), 1.4-Dioxanw 중 어느 하나로 선택되는 멤브레인 센서의 제조 방법.The organic solvent is a method of manufacturing a membrane sensor is selected from any one of dimethyl sulfoxide (DMSO), dimethylformamide (DMF), 1.4-Dioxanw.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 유기용매는 농도가 100%인 DMSO가 사용되는 멤브레인 센서의 제조 방법.The organic solvent is a method of manufacturing a membrane sensor that the concentration of 100% DMSO is used.
  5. 제 1항에 있어서,The method of claim 1,
    수용성 시료가 흐를 수 있는 멤브레인에 제판을 접착시켜 스탬핑(Stamping)하는 단계는,Bonding and stamping the plate to a membrane through which the water-soluble sample can flow,
    상기 멤브레인의 일면에 제1 고정판을 접착하는 단계;Adhering a first fixing plate to one surface of the membrane;
    상기 제판의 일면에 제2 고정판을 접착하는 단계;Adhering a second fixing plate to one surface of the plate;
    상기 멤브레인과 제판이 접촉하도록 상기 1 및 제2 고정판을 압착하여, 상기 멤브레인과 제판에 소정의 압력을 가하는 단계;Pressing the first and second fixing plates to contact the membrane and the plate making, and applying a predetermined pressure to the membrane and the plate making;
    를 포함하는 멤브레인 센서의 제조 방법.Method of manufacturing a membrane sensor comprising a.
  6. 제 1항에 있어서,The method of claim 1,
    상기 멤브레인을 소정의 시간동안 건조시키는 단계는,Drying the membrane for a predetermined time,
    상기 멤브레인에서 상기 제판을 제거한 후에 37℃의 온도에서 소정의 시간동안 건조시키는 것을 특징으로 하는 멤브레인 센서의 제조 방법.Removing the plate from the membrane and drying the membrane at a temperature of 37 ° C. for a predetermined time.
  7. 제 1항에 있어서,The method of claim 1,
    상기 멤브레인을 소정의 시간동안 건조시키는 단계 이후에, After the membrane is dried for a predetermined time,
    상기 멤브레인 상에서 상기 유기용매에 의해 녹은 부분에 존재하는 유기막을 제거하지 않고 바이오 센서를 형성하는 단계를 더 포함하는 멤브레인 센서의 제조 방법.And forming a biosensor without removing the organic film present in the portion melted by the organic solvent on the membrane.
  8. 제 1항에 있어서,The method of claim 1,
    상기 멤브레인을 소정의 시간동안 건조시키는 단계 이후에, After the membrane is dried for a predetermined time,
    상기 멤브레인 상에서 상기 유기용매에 의해 녹은 부분에 존재하는 유기막을 제거한 후에 바이오 센서를 형성하는 단계를 더 포함하는 멤브레인 센서의 제조 방법.And removing the organic film present in the portion dissolved by the organic solvent on the membrane to form a biosensor.
  9. 제 1항에 있어서,The method of claim 1,
    상기 크래프트(craft) 프린터의 입력부에는 사용자가 설정한 패턴에 대한 데이터가 전송되어 상기 종이 또는 천을 패터닝하는 것을 특징으로 하는 멤브레인 센서의 제조 방법.The method of manufacturing a membrane sensor, characterized in that for transmitting the data for the pattern set by the user to the input unit of the craft (craft) printer patterning the paper or cloth.
PCT/KR2016/002345 2015-03-11 2016-03-09 Method for manufacturing membrane sensor WO2016144093A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680001869.5A CN106796220A (en) 2015-03-11 2016-03-09 The manufacture method of film sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0033811 2015-03-11
KR20150033811 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016144093A1 true WO2016144093A1 (en) 2016-09-15

Family

ID=56879290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002345 WO2016144093A1 (en) 2015-03-11 2016-03-09 Method for manufacturing membrane sensor

Country Status (2)

Country Link
CN (1) CN106796220A (en)
WO (1) WO2016144093A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066739A (en) * 2017-12-06 2019-06-14 전자부품연구원 Manufacturing method of membrane sensor using printing process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010106902A (en) * 2000-05-24 2001-12-07 서정구 Electrochemical membrane strip biosensor
US20060267005A1 (en) * 2004-02-09 2006-11-30 Seiko Epson Corporation Transistor, circuit board, display and electronic equipment
KR101394221B1 (en) * 2011-10-06 2014-05-14 주식회사 인지바이오 A method of producing membrane sensor for changing the condition of reaction sequentially with one injection of sample
KR101471932B1 (en) * 2011-10-06 2014-12-11 주식회사 인지바이오 A method of producing membrane sensor for multiple diagnosis using screen printing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010106902A (en) * 2000-05-24 2001-12-07 서정구 Electrochemical membrane strip biosensor
US20060267005A1 (en) * 2004-02-09 2006-11-30 Seiko Epson Corporation Transistor, circuit board, display and electronic equipment
KR101394221B1 (en) * 2011-10-06 2014-05-14 주식회사 인지바이오 A method of producing membrane sensor for changing the condition of reaction sequentially with one injection of sample
KR101471932B1 (en) * 2011-10-06 2014-12-11 주식회사 인지바이오 A method of producing membrane sensor for multiple diagnosis using screen printing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRACHER, PAUL J. ET AL.: "Patterned Paper as a Template for the Delivery of Reactants in the Fabrication of Planar Materials", SOFT MATTER, vol. 6, no. 18, 2010, pages 4303 - 4309, XP055310766 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066739A (en) * 2017-12-06 2019-06-14 전자부품연구원 Manufacturing method of membrane sensor using printing process
KR102010668B1 (en) 2017-12-06 2019-08-13 전자부품연구원 Manufacturing method of membrane sensor using printing process

Also Published As

Publication number Publication date
CN106796220A (en) 2017-05-31

Similar Documents

Publication Publication Date Title
Ballerini et al. Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics
DE19826957C2 (en) Device for determining an analyte in a body fluid
RU2423073C2 (en) Nicrofluidic devices and methods of their preparation and application
Lim et al. Microfluidic paper-based analytical devices for potential use in quantitative and direct detection of disease biomarkers in clinical analysis
JP5684757B2 (en) Lateral flow and flow-through bioassay devices based on patterned porous media, methods of manufacturing the devices, and methods of using the devices
Park et al. Three-dimensional paper-based microfluidic analytical devices integrated with a plasma separation membrane for the detection of biomarkers in whole blood
Rozand based analytical devices for point-of-care infectious disease testing
Liu et al. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices
KR101275447B1 (en) Microfluidic assay devices
Ma et al. Paper microfluidics for cell analysis
KR100968524B1 (en) Micoro-nano fluidic biochip for assaying biomass
JP2020522693A (en) Thin flexible skin-worn microfluidic network for detection and analysis of focused targets in sweat
EP1240945A2 (en) Device and method for analyzing a sample
JPWO2002084291A1 (en) Sample analysis tools
WO2014053237A1 (en) Multilayer microfluidic device and assay method
CA2519402A1 (en) Adhered membranes retaining porosity and biological activity in assay device for measuring serum cholesterol associated with high-density lipoproteins
WO2016144093A1 (en) Method for manufacturing membrane sensor
EP3341128B1 (en) Device and method for analysing liquid samples
WO2019054844A1 (en) Diagnostic strip using lateral flow
WO2001024931A1 (en) Capillary device for separating undesired components from a liquid sample and related method
JP2008298600A (en) Micro-fluid element in which a plurality of recognition material are immobilized, its manufacturing method, and analytical method using the same
EP3610037A2 (en) Paper-based analytical microfluidic chip and device, having embossed&amp;debossed processing channel, for nucleic acid diagnosis
US20190086404A1 (en) Analysis membranes for microfluidic devices, said membranes being made of a fiberglass material
WO2019135526A1 (en) Strip for measuring biomaterial
EP2413141A1 (en) Fluid test chip and method to make it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761980

Country of ref document: EP

Kind code of ref document: A1