WO2016144025A1 - Electrode for electro-absorption type desalination device, and method for manufacturing same - Google Patents

Electrode for electro-absorption type desalination device, and method for manufacturing same Download PDF

Info

Publication number
WO2016144025A1
WO2016144025A1 PCT/KR2016/001916 KR2016001916W WO2016144025A1 WO 2016144025 A1 WO2016144025 A1 WO 2016144025A1 KR 2016001916 W KR2016001916 W KR 2016001916W WO 2016144025 A1 WO2016144025 A1 WO 2016144025A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
oxide
electrode
reinforced
airgel
Prior art date
Application number
PCT/KR2016/001916
Other languages
French (fr)
Korean (ko)
Inventor
김영범
한태희
배지웅
박헌
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2016144025A1 publication Critical patent/WO2016144025A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes

Definitions

  • the present invention relates to an electrode for an electroadsorption desalination device having a high capacitance while simultaneously implementing high durability and surface area using a graphene airgel in which metal oxides are deposited in atomic layer units, and a method of manufacturing the same.
  • Electrode adsorption desalination apparatus for desalination has to be durable because raw water continuously passes between the electrodes, causing friction and resistance, and high capacitance and high surface area for fast desalination and high desalination efficiency.
  • conventional electrode materials such as activated carbon and carbon nanotubes have low durability and require continuous maintenance, and have low capacitance and low freshwater efficiency.
  • the existing electrode material has low electrical conductivity, and requires an electrode for current collection.
  • the present invention solves the problems of the prior art, and excellent in durability, surface area and electrostatic capacity, enabling desalination of seawater and brackish water for a long time, while reducing maintenance costs, desalination because of high capacitance It is intended to provide an electrode for an electrosorption desalination device and a method of manufacturing the same, which do not require a separate current collecting electrode because of high speed and efficiency and high electrical conductivity.
  • the present invention provides a reinforced graphene airgel electrode in which metal oxide particles are deposited in an atomic film.
  • the metal oxide is an oxide of a metal selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se and Cu; Oxides of two or more alloys selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se, and Cu; It may be one or more selected from.
  • the present invention provides an electrosorption desalination apparatus including the reinforced graphene airgel electrode.
  • the present invention provides a method for producing a reinforced graphene airgel electrode comprising the following steps.
  • the method may further include depositing a metal oxide particle on the reduced graphene oxide as an atomic film.
  • the deposition may be performed by atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • the metal oxide is an oxide of a metal selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se and Cu; Oxides of two or more alloys selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se, and Cu; It may be one or more selected from.
  • the porosity of the prepared graphene airgel electrode by controlling the degree of drying in the step of drying the deposited graphene oxide.
  • the freeze drying may be performed by vacuum drying at -50 °C.
  • the reducing step may be performed by flowing a reducing gas or by supplying thermal energy.
  • a reinforced graphene airgel electrode in which metal oxides are deposited in atomic film units has excellent durability, surface area, and capacitance.
  • due to the high durability it is possible to desalination for a long time can significantly reduce the maintenance cost.
  • the high surface area graphene aerogels and the high capacitance metal oxide atomic membrane further improve the desalination rate and efficiency.
  • the graphene airgel according to the present invention has a high electrical conductivity, so no separate current collecting electrode is required. Therefore, the electrode according to the present invention can be usefully used as the electrode of the electrode and the capacitor of the electrosorption desalination apparatus requiring high durability, surface area and capacitance.
  • Figure 1a is a photograph of an airgel according to the prior art
  • Figure 1b is a photograph of a reinforced graphene airgel according to the present invention.
  • Figure 2 controls the pore structure of the reinforced graphene airgel by adjusting the concentration of the aqueous solution of GO and the amount of evaporated water in the manufacturing process of the airgel according to the present invention, through which the high surface area characteristics and doped metal oxide particles
  • the diagram schematically shows that the capacitance can be improved.
  • 3 is a photograph schematically showing that the number of quantum dots generated in the metal oxide varies according to a deposition cycle.
  • a reinforced graphene airgel electrode prepared by strengthening the exposed portion of raw water to increase the durability and surface area, in addition to the reinforced graphene airgel electrode deposited with an atomic layer of metal oxide to increase the capacitance, and It provides a manufacturing method.
  • Aqueous GO solution (8 mg / ml) was loaded onto a disk membrane (pore size ⁇ 10 ⁇ m) placed on porous glass and dried at below 45 ° C.
  • the aqueous solution of GO changes from sol to gel as the water evaporates.
  • the GO gel was placed in liquid nitrogen, frozen, and stored at -15 ° C or lower for 30 minutes.
  • the frozen GO gel was lyophilized (below -30 °C, 50 mTorr) to prepare a GO airgel.
  • the GO airgel was reduced using a reducing agent (Hydrazine, HI) through a vapor phase reduction method or a thermal reduction method of 200 ° C. or more to prepare a reinforced graphene airgel according to the present invention.
  • the reinforced graphene airgel according to the present invention prepared according to the present invention not only has excellent mechanical and electrical properties compared to the conventionally known, but also the pore structure of the graphene airgel manufactured by adjusting the concentration of the GO aqueous solution in the manufacturing process. It can control the, it is possible to control the pore (pore) structure of the graphene airgel produced by adjusting the amount of evaporated water.
  • FIG. 1A is a conventional graphene airgel, which has a sponge-like structure, so when bent, fragmentation is broken and mechanical stiffness and durability such as bending characteristics are very poor, whereas reinforced graphene according to the present invention is poor. Since airgel has a corrugated structure, it has high mechanical strength and electrical conductivity.
  • the temperature of the precursor canister of the metal oxide TiO 2 was kept below the decomposition temperature of the precursor, and the substrate temperature in the chamber of the atomic film deposition apparatus was maintained at 120-200 ° C.
  • the reinforced GO airgel prepared in Preparation Example was placed in a chamber of an atomic layer deposition machine, waited until the reinforced GO airgel was in equilibrium with the temperature of the substrate, and then the ALD process was started.
  • One cycle involves the injection of a precursor such as TiCl 4 for 3 seconds and the reaction of H 2 O for 3 seconds.
  • ALD deposition was performed at 200 cycles or less.
  • the metal oxide quantum dots are evenly coated on the surface of the reinforced GO airgel by controlling the number of ALD cycles.
  • Metal oxide quantum dots have a larger reaction area than conventional films and further improve capacitance due to the properties of the material itself. Since the metal oxide quantum dots are thinly coated, the reaction area of the GO airgel can be maintained.
  • FIG. 3 As shown in FIG. 3, (a) of FIG. 3 does not have a quantum dot of a metal oxide film deposited in more than 1600 cycles, but (b) of FIG. 3 has a quantum dot of a metal oxide film deposited within 200 cycles. (The above image is TiO 2 metal oxide ALD deposition)
  • GO aerogels + TiO 2 ALD film can be seen that has a much larger capacitance than conventional graphene, carbon nanotubes, reduced graphene oxide.
  • the electrode according to the present invention can be usefully used as an electrode of a capacitor and an electrode of an electrosorption desalination apparatus requiring high durability, surface area and capacitance.

Abstract

The present invention relates to an electrode for an electro-absorption type desalination device, which has high durability and capacitance and a large surface area by use of a graphene aerogel in which a metal oxide is deposited on an atomic layer basis, and a method for manufacturing the same.

Description

전기흡착식 담수화 장치용 전극 및 그 제조방법Electrodes for desorption device for electrosorption and manufacturing method thereof
본 발명은 금속 산화물이 원자막 단위로 증착된 그래핀 에어로젤을 사용하여, 높은 내구성과 표면적의 구현이 가능하면서 동시에 높은 정전 용량을 갖는 전기흡착식 담수화 장치용 전극 및 그 제조 방법에 관한 것이다.The present invention relates to an electrode for an electroadsorption desalination device having a high capacitance while simultaneously implementing high durability and surface area using a graphene airgel in which metal oxides are deposited in atomic layer units, and a method of manufacturing the same.
담수화를 위한 전기흡착식 담수화 장치의 전극은 원수가 전극 사이를 지속적으로 지나가며 마찰과 저항을 유발하므로 내구성이 확보되어야 하며 빠른 담수화 및 높은 담수 효율을 위해 전극의 정전 용량이 높아야 하고 표면적 또한 커야한다.Electrode adsorption desalination apparatus for desalination has to be durable because raw water continuously passes between the electrodes, causing friction and resistance, and high capacitance and high surface area for fast desalination and high desalination efficiency.
하지만, 기존의 활성 탄소, 탄소 나노튜브 등의 전극 물질은 내구성이 낮아 지속적인 유지 보수를 해주어야 하고 정전 용량이 낮아 담수 효율이 낮다. 또한 기존의 전극 물질은 전기 전도도가 낮아 집전을 위한 전극이 별도로 필요하다.However, conventional electrode materials such as activated carbon and carbon nanotubes have low durability and require continuous maintenance, and have low capacitance and low freshwater efficiency. In addition, the existing electrode material has low electrical conductivity, and requires an electrode for current collection.
따라서, 본 발명은 상기 종래기술의 문제점을 해결하여, 내구성, 표면적 및 정전 용량이 우수하여, 장시간 동안 해수, 기수 담수화를 가능하게 하며, 유지 보수 비용을 줄일 수 있으면서도, 높은 정전 용량을 갖기 때문에 담수화 속도 및 효율이 높고, 높은 전기 전도도를 보유하기 때문에 별도의 집전 전극이 필요하지 않은 전기흡착식 담수화 장치용 전극 및 그 제조방법을 제공하고자 한다.Accordingly, the present invention solves the problems of the prior art, and excellent in durability, surface area and electrostatic capacity, enabling desalination of seawater and brackish water for a long time, while reducing maintenance costs, desalination because of high capacitance It is intended to provide an electrode for an electrosorption desalination device and a method of manufacturing the same, which do not require a separate current collecting electrode because of high speed and efficiency and high electrical conductivity.
본 발명은 상기 과제를 해결하기 위해서, 금속 산화물 입자가 원자막으로 증착된 강화 그래핀 에어로젤 전극을 제공한다.In order to solve the above problems, the present invention provides a reinforced graphene airgel electrode in which metal oxide particles are deposited in an atomic film.
바람직하게는, 상기 금속 산화물은, Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se 및 Cu 중에서 선택되는 금속의 산화물; Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se 및 Cu 중에서 선택되는 2종 이상의 합금의 산화물; 중에서 선택되는 1종 이상일 수 있다.Preferably, the metal oxide is an oxide of a metal selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se and Cu; Oxides of two or more alloys selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se, and Cu; It may be one or more selected from.
또한, 본 발명은 상기 강화 그래핀 에어로젤 전극을 포함하는 전기 흡착식 담수화 장치를 제공한다.In addition, the present invention provides an electrosorption desalination apparatus including the reinforced graphene airgel electrode.
한편, 본 발명은 하기 단계를 포함하는 강화 그래핀 에어로젤 전극의 제조방법을 제공한다.On the other hand, the present invention provides a method for producing a reinforced graphene airgel electrode comprising the following steps.
(a) 그래핀 옥사이드를 물에 분산시키는 단계,(a) dispersing graphene oxide in water,
(b) 상기 분산된 그래핀 옥사이드를 기판 위에 증착시키는 단계,(b) depositing the dispersed graphene oxide on a substrate,
(c) 상기 증착된 그래핀 옥사이드를 건조시키는 단계,(c) drying the deposited graphene oxide,
(d) 상기 건조된 그래핀 옥사이드를 액체 질소에 넣어 급속 냉결시키는 단계,(d) rapidly cooling the dried graphene oxide in liquid nitrogen;
(e) 상기 급속 냉결된 그래핀 옥사이드를 동결 건조를 통해 내부 수분을 제거하는 단계,(e) removing the internal moisture by freeze drying the rapidly chilled graphene oxide,
(f) 상기 내부 수분이 제거된 그래핀 옥사이드를 환원시키는 단계.(f) reducing the graphene oxide from which the internal moisture is removed.
이때, 상기 환원된 그래핀 옥사이드 상에 금속 산화물 입자를 원자막으로 증착시키는 단계;를 더 포함할 수 있다.In this case, the method may further include depositing a metal oxide particle on the reduced graphene oxide as an atomic film.
바람직하게는, 상기 증착은 원자막 증착법(Atomic layer deposition, ALD)에 의해서 수행될 수 있다.Preferably, the deposition may be performed by atomic layer deposition (ALD).
바람직하게는, 상기 금속 산화물은, Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se 및 Cu 중에서 선택되는 금속의 산화물; Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se 및 Cu 중에서 선택되는 2종 이상의 합금의 산화물; 중에서 선택되는 1종 이상일 수 있다.Preferably, the metal oxide is an oxide of a metal selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se and Cu; Oxides of two or more alloys selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se, and Cu; It may be one or more selected from.
바람직하게는, 상기 증착된 그래핀 옥사이드를 건조시키는 단계에서 건조의 정도를 조절함으로써 제조된 강화 그래핀 에어로젤 전극의 다공성을 조절할 수 있다.Preferably, it is possible to control the porosity of the prepared graphene airgel electrode by controlling the degree of drying in the step of drying the deposited graphene oxide.
바람직하게는, 상기 동결 건조는 -50 ℃에서 진공 건조시킴으로써 수행될 수 있다.Preferably, the freeze drying may be performed by vacuum drying at -50 ℃.
바람직하게는, 상기 환원 단계는 환원 기체를 흘려주어 수행되거나 또는 열에너지를 공급함으로써 수행될 수 있다.Preferably, the reducing step may be performed by flowing a reducing gas or by supplying thermal energy.
본 발명에 따라 금속 산화물이 원자막 단위로 증착된 강화 그래핀 에어로젤 전극은 내구성, 표면적, 정전 용량이 우수하다. 특히, 높은 내구성으로 인하여 장시간 동안의 담수화 공정이 가능하여 유지 보수 비용을 획기적으로 줄일 수 있다. 또한, 높은 표면적의 그래핀 에어로젤과 높은 정전 용량의 금속 산화물 원자막으로 인하여 담수화 속도 및 효율이 더욱 우수하다. 나아가서 본 발명에 따른 그래핀 에어로젤은 높은 전기 전도도를 가지므로 별도의 집전 전극이 필요하지 않다. 따라서, 본 발명에 따른 전극은 높은 내구성, 표면적 및 정전 용량을 필요로 하는 전기흡착식 담수화 장치의 전극 및 커패시터의 전극으로서 유용하게 활용될 수 있다.According to the present invention, a reinforced graphene airgel electrode in which metal oxides are deposited in atomic film units has excellent durability, surface area, and capacitance. In particular, due to the high durability it is possible to desalination for a long time can significantly reduce the maintenance cost. In addition, the high surface area graphene aerogels and the high capacitance metal oxide atomic membrane further improve the desalination rate and efficiency. Furthermore, the graphene airgel according to the present invention has a high electrical conductivity, so no separate current collecting electrode is required. Therefore, the electrode according to the present invention can be usefully used as the electrode of the electrode and the capacitor of the electrosorption desalination apparatus requiring high durability, surface area and capacitance.
도 1a는 종래기술에 따른 에어로젤에 대한 사진이며, 도 1b는 본 발명에 따른 강화 그래핀 에어로젤에 대한 사진이다.Figure 1a is a photograph of an airgel according to the prior art, Figure 1b is a photograph of a reinforced graphene airgel according to the present invention.
도 2는 본 발명에 따른 에어로젤의 제조 과정에서 GO 수용액의 농도 및 증발되는 물의 양을 조절하여 강화 그래핀 에어로젤의 기공 (pore) 구조를 제어하고, 이를 통해서 높은 표면적 특성 구현 및 도핑되는 금속 산화물 입자의 정전용량을 향상시킬 수 있음을 개략적으로 보여주는 도면이다.Figure 2 controls the pore structure of the reinforced graphene airgel by adjusting the concentration of the aqueous solution of GO and the amount of evaporated water in the manufacturing process of the airgel according to the present invention, through which the high surface area characteristics and doped metal oxide particles The diagram schematically shows that the capacitance can be improved.
도 3은 증착 사이클에 따라서 금속 산화물에 생성되는 양자점의 개수가 달라짐을 개략적으로 보여주는 사진이다.3 is a photograph schematically showing that the number of quantum dots generated in the metal oxide varies according to a deposition cycle.
도 4는 본 발명에 따른 에어로젤이 우수한 정전용량 특성을 가짐을 보여주는 그래프이다.4 is a graph showing that the airgel according to the present invention has excellent capacitance characteristics.
본 발명에서는 내구성 및 표면적을 증가시키기 위해서 원수에 노출된 부분이 강화된 강화 그래핀 에어로젤을 제조하고, 여기에 더해서 정전 용량 증가를 위해서 금속 산화물을 원자막 단위로 증착시킨 강화 그래핀 에어로젤 전극 및 그 제조방법을 제공한다.In the present invention, a reinforced graphene airgel electrode prepared by strengthening the exposed portion of raw water to increase the durability and surface area, in addition to the reinforced graphene airgel electrode deposited with an atomic layer of metal oxide to increase the capacitance, and It provides a manufacturing method.
이하, 본 발명을 실시예를 들어 설명하기로 하되, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described with reference to Examples, but the following Examples are only for better understanding of the present invention, and do not limit the scope of the present invention.
제조예Production Example 1. 강화  1. Strengthen 그래핀Graphene 에어로젤의 제조 Preparation of Airgel
GO 수용액(8 ㎎/㎖)을 다공성 유리 위에 위치한 disk membrane(pore size < 10 ㎛)에 로딩한 후에 45 ℃ 미만에서 건조하였다. 이 과정에서 GO 수용액은 물이 증발함에 따라 sol에서 gel로 변화된다. GO gel을 액체 질소에 넣고 동결한 후에 -15 ℃ 이하에서 30분 동안 보관하였다. 동결된 GO gel을 동결건조(-30 ℃ 이하, 50 mTorr 이하)하여 GO 에어로젤 제조하였다. GO 에어로젤을 환원제(Hydrazine, HI)를 이용하여 증기상 환원법 또는 200 ℃ 이상의 열 환원법을 통하여 환원시켜 본 발명에 따른 강화 그래핀 에어로젤을 제조하였다.Aqueous GO solution (8 mg / ml) was loaded onto a disk membrane (pore size <10 μm) placed on porous glass and dried at below 45 ° C. In this process, the aqueous solution of GO changes from sol to gel as the water evaporates. The GO gel was placed in liquid nitrogen, frozen, and stored at -15 ° C or lower for 30 minutes. The frozen GO gel was lyophilized (below -30 ℃, 50 mTorr) to prepare a GO airgel. The GO airgel was reduced using a reducing agent (Hydrazine, HI) through a vapor phase reduction method or a thermal reduction method of 200 ° C. or more to prepare a reinforced graphene airgel according to the present invention.
이에 따라 제조된 본 발명에 따른 강화 그래핀 에어로젤은 종래 알려진 것에 비하여 기계적, 전기적 물성이 매우 우수할 뿐만 아니라, 상기 제조 과정에서 GO 수용액의 농도를 조절하여 제조된 그래핀 에어로젤의 기공(pore) 구조를 제어할 수 있으며, 증발되는 물의 양을 조절하여 제조된 그래핀 에어로젤의 기공(pore) 구조를 제어할 수 있다.The reinforced graphene airgel according to the present invention prepared according to the present invention not only has excellent mechanical and electrical properties compared to the conventionally known, but also the pore structure of the graphene airgel manufactured by adjusting the concentration of the GO aqueous solution in the manufacturing process. It can control the, it is possible to control the pore (pore) structure of the graphene airgel produced by adjusting the amount of evaporated water.
하기 도 1에서 보는 바와 같이, 도 1a는 종래의 그래핀 에어로젤로서 스폰지와 같은 구조를 갖기 때문에 굽힐 경우 조각조작 갈라져서 굽힙 특성 등의 기계적 강성 및 내구성이 매우 열악한 반면에, 본 발명에 따른 강화 그래핀 에어로젤은 골판지 형태의 구조를 갖기 때문에 높은 기계적 강도와 전기전도도를 갖는다.As shown in FIG. 1, FIG. 1A is a conventional graphene airgel, which has a sponge-like structure, so when bent, fragmentation is broken and mechanical stiffness and durability such as bending characteristics are very poor, whereas reinforced graphene according to the present invention is poor. Since airgel has a corrugated structure, it has high mechanical strength and electrical conductivity.
또한, 하기 도 2에서 보는 바와 같이, 상기 제조 과정에서 GO 수용액의 농도 및 증발되는 물의 양을 조절하여 강화 그래핀 에어로젤의 기공(pore) 구조를 제어할 수 있어 높은 표면적 특성을 구현할 수 있고, 이에 따라 도핑되는 금속 산화물 입자의 정전용량을 더욱 향상시킬 수 있게 된다.In addition, as shown in Figure 2, by controlling the concentration of the GO aqueous solution and the amount of evaporated water in the manufacturing process can control the pore (pore) structure of the reinforced graphene airgel can realize a high surface area characteristics, Accordingly, the capacitance of the metal oxide particles doped may be further improved.
제조예Production Example 2. 금속 산화물의  2. of metal oxide 원자막Atomic film 증착 deposition
금속 산화물 TiO2의 프리커서 캐니스터의 온도를 프리커서의 decomposition 온도 이하로 유지하였으며, 원자막 증착 기기의 챔버 내 기판 온도를 120-200 ℃로 유지하였다.The temperature of the precursor canister of the metal oxide TiO 2 was kept below the decomposition temperature of the precursor, and the substrate temperature in the chamber of the atomic film deposition apparatus was maintained at 120-200 ° C.
상기 제조예에서 제조된 강화 GO 에어로젤을 원자막 증착 기기(Atomic Layer Deposition machine)의 챔버 안에 넣고, 강화 GO 에어로젤이 기판의 온도와 평형이 될 때까지 기다린 후, ALD 공정을 시작하였다. 1 cycle은 TiCl4 등의 프리커서가 3초간 주입되고 H2O 등의 반응물이 3초간 주입되는 것을 포함한다. 금속 산화물 양자점 또는 얇은 막을 증착시키기 위하여 200 cycle 이하로 ALD 증착을 실시하였다.The reinforced GO airgel prepared in Preparation Example was placed in a chamber of an atomic layer deposition machine, waited until the reinforced GO airgel was in equilibrium with the temperature of the substrate, and then the ALD process was started. One cycle involves the injection of a precursor such as TiCl 4 for 3 seconds and the reaction of H 2 O for 3 seconds. In order to deposit metal oxide quantum dots or thin films, ALD deposition was performed at 200 cycles or less.
본 발명에서는 상기 ALD Cycle 수를 조절하여 금속 산화물 양자점들을 강화 GO 에어로젤 표면 위에 고르게 코팅하였다. 금속 산화물 양자점은 반응면적이 일반 막일 때보다 크며 물질 자체의 특성으로 인해 정전용량(Capacitance)을 더욱 향상시킨다. 금속 산화물 양자점이 얇게 코팅되기에 GO 에어로젤의 반응면적을 유지할 수 있다.In the present invention, the metal oxide quantum dots are evenly coated on the surface of the reinforced GO airgel by controlling the number of ALD cycles. Metal oxide quantum dots have a larger reaction area than conventional films and further improve capacitance due to the properties of the material itself. Since the metal oxide quantum dots are thinly coated, the reaction area of the GO airgel can be maintained.
하기 도 3에서 보는 바와 같이, 도 3의 (a)는 1600 cycle 이상으로 증착된 금속 산화물 막은 양자점을 갖고 있지 않지만, 도 3의 (b)는 200 cycle 이내로 증착된 금속 산화물 막은 양자점을 갖고 있다.(상기 이미지는 TiO2 금속 산화물 ALD 증착)As shown in FIG. 3, (a) of FIG. 3 does not have a quantum dot of a metal oxide film deposited in more than 1600 cycles, but (b) of FIG. 3 has a quantum dot of a metal oxide film deposited within 200 cycles. (The above image is TiO 2 metal oxide ALD deposition)
또한, 하기 도 4에서 보는 바와 같이, GO 에어로젤 + TiO2 ALD 막은 기존의 그래핀, 카본나노튜브, 환원된 그래핀 옥사이드보다 훨씬 큰 정전 용량을 갖고 있음을 알 수 있다.In addition, as shown in Figure 4, GO aerogels + TiO 2 ALD film can be seen that has a much larger capacitance than conventional graphene, carbon nanotubes, reduced graphene oxide.
본 발명에 따른 전극은 높은 내구성, 표면적 및 정전 용량을 필요로 하는 전기흡착식 담수화 장치의 전극 및 커패시터의 전극으로서 유용하게 활용될 수 있다.The electrode according to the present invention can be usefully used as an electrode of a capacitor and an electrode of an electrosorption desalination apparatus requiring high durability, surface area and capacitance.

Claims (10)

  1. 산화물 입자가 원자막으로 증착된 강화 그래핀 에어로젤 전극.Reinforced graphene airgel electrode in which oxide particles are deposited into an atomic film.
  2. 제1항에 있어서,The method of claim 1,
    상기 금속 산화물은, Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se 및 Cu 중에서 선택되는 금속의 산화물;The metal oxide may be an oxide of a metal selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se, and Cu;
    Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se 및 Cu 중에서 선택되는 2종 이상의 합금의 산화물; 중에서 선택되는 1종 이상인 것을 특징으로 하는 강화 그래핀 에어로젤 전극.Oxides of two or more alloys selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se, and Cu; Reinforced graphene airgel electrode, characterized in that at least one selected from.
  3. 제1항에 따른 강화 그래핀 에어로젤 전극을 포함하는 전기 흡착식 담수화 장치.Electrosorption desalination apparatus comprising a reinforced graphene airgel electrode according to claim 1.
  4. (a) 그래핀 옥사이드를 물에 분산시키는 단계;(a) dispersing graphene oxide in water;
    (b) 상기 분산된 그래핀 옥사이드를 기판 위에 증착시키는 단계;(b) depositing the dispersed graphene oxide on a substrate;
    (c) 상기 증착된 그래핀 옥사이드를 건조시키는 단계;(c) drying the deposited graphene oxide;
    (d) 상기 건조된 그래핀 옥사이드를 액체 질소에 넣어 급속 냉결시키는 단계;(d) rapidly cooling the dried graphene oxide in liquid nitrogen;
    (e) 상기 급속 냉결된 그래핀 옥사이드를 동결 건조를 통해 내부 수분을 제거하는 단계; 및(e) removing internal moisture by freeze drying the rapidly chilled graphene oxide; And
    (f) 상기 내부 수분이 제거된 그래핀 옥사이드를 환원시키는 단계를 포함하는 강화 그래핀 에어로젤 전극의 제조방법.(F) a method for producing a reinforced graphene airgel electrode comprising the step of reducing the graphene oxide from which the internal moisture is removed.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 환원된 그래핀 옥사이드 상에 금속 산화물 입자를 원자막으로 증착시키는 단계;를 더 포함하는 강화 그래핀 에어로젤 전극의 제조방법.And depositing metal oxide particles on the reduced graphene oxide as an atomic film.
  6. 제5항에 있어서,The method of claim 5,
    상기 증착은 원자막 증착법(Atomic layer deposition, ALD)에 의해서 수행되는 것을 특징으로 하는 강화 그래핀 에어로젤 전극의 제조방법.The deposition is a method of manufacturing a reinforced graphene airgel electrode, characterized in that performed by atomic layer deposition (Atomic layer deposition, ALD).
  7. 제5항에 있어서,The method of claim 5,
    상기 금속 산화물은, Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se 및 Cu 중에서 선택되는 금속의 산화물;The metal oxide may be an oxide of a metal selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se, and Cu;
    Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se 및 Cu 중에서 선택되는 2종 이상의 합금의 산화물; 중에서 선택되는 1종 이상인 것을 특징으로 하는 강화 그래핀 에어로젤 전극의 제조방법.Oxides of two or more alloys selected from Ti, Fe, Co, Pt, Mn, Ni, V, Cr, Pd, Ru, Se, and Cu; Method for producing a reinforced graphene airgel electrode, characterized in that at least one selected from.
  8. 제4항에 있어서,The method of claim 4, wherein
    상기 증착된 그래핀 옥사이드를 건조시키는 단계에서 건조의 정도를 조절함으로써 제조된 강화 그래핀 에어로젤 전극의 다공성을 조절하는 것을 특징으로 하는 강화 그래핀 에어로젤 전극의 제조방법.Method for producing a reinforced graphene airgel electrode, characterized in that for controlling the porosity of the prepared graphene airgel electrode by controlling the degree of drying in the step of drying the deposited graphene oxide.
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 동결 건조는 -50 ℃ 에서 진공 건조시킴으로써 수행되는 것을 특징으로 하는 강화 그래핀 에어로젤 전극의 제조방법.The freeze drying is a method for producing a reinforced graphene airgel electrode, characterized in that carried out by vacuum drying at -50 ℃.
  10. 제4항에 있어서,The method of claim 4, wherein
    상기 환원 단계는 환원 기체를 흘려주어 수행되거나 또는 열에너지를 공급함으로써 수행되는 것을 특징으로 하는 강화 그래핀 에어로젤 전극의 제조방법.The reduction step is performed by flowing a reducing gas or a method of manufacturing a reinforced graphene airgel electrode, characterized in that performed by supplying thermal energy.
PCT/KR2016/001916 2015-03-06 2016-02-26 Electrode for electro-absorption type desalination device, and method for manufacturing same WO2016144025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150031357A KR101910228B1 (en) 2015-03-06 2015-03-06 An electrode for electro-adsoptive desalination device and method for preparing the same
KR10-2015-0031357 2015-03-06

Publications (1)

Publication Number Publication Date
WO2016144025A1 true WO2016144025A1 (en) 2016-09-15

Family

ID=56879479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001916 WO2016144025A1 (en) 2015-03-06 2016-02-26 Electrode for electro-absorption type desalination device, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101910228B1 (en)
WO (1) WO2016144025A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108465459A (en) * 2018-05-09 2018-08-31 福建省农业科学院农业生物资源研究所 A kind of mixing aeroge and the preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200052125A (en) 2018-11-06 2020-05-14 삼성전자주식회사 method for forming graphene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110016289A (en) * 2009-08-11 2011-02-17 고양미 Producing method of carbon-nanosheets composits
KR20120078639A (en) * 2010-12-31 2012-07-10 성균관대학교산학협력단 Flexible stretchable semiconductor device containing graphene electrode, method of reducing resistance between graphene electrode and semiconductor layer, and graphene interconnecor
KR20130105149A (en) * 2012-03-16 2013-09-25 삼성전자주식회사 Method for preparing reduced graphene oxide
KR20140061232A (en) * 2012-11-12 2014-05-21 국립대학법인 울산과학기술대학교 산학협력단 Method for preparing mesoporous poly(styrene-co-methacrylic acid) spherical granule, and spherical granule, graphene and supercapacitor produced therefrom
JP2015502033A (en) * 2011-11-10 2015-01-19 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate Supercapacitor device having a composite electrode formed by depositing a metal oxide pseudocapacitor material on a carbon substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110016289A (en) * 2009-08-11 2011-02-17 고양미 Producing method of carbon-nanosheets composits
KR20120078639A (en) * 2010-12-31 2012-07-10 성균관대학교산학협력단 Flexible stretchable semiconductor device containing graphene electrode, method of reducing resistance between graphene electrode and semiconductor layer, and graphene interconnecor
JP2015502033A (en) * 2011-11-10 2015-01-19 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate Supercapacitor device having a composite electrode formed by depositing a metal oxide pseudocapacitor material on a carbon substrate
KR20130105149A (en) * 2012-03-16 2013-09-25 삼성전자주식회사 Method for preparing reduced graphene oxide
KR20140061232A (en) * 2012-11-12 2014-05-21 국립대학법인 울산과학기술대학교 산학협력단 Method for preparing mesoporous poly(styrene-co-methacrylic acid) spherical granule, and spherical granule, graphene and supercapacitor produced therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108465459A (en) * 2018-05-09 2018-08-31 福建省农业科学院农业生物资源研究所 A kind of mixing aeroge and the preparation method and application thereof

Also Published As

Publication number Publication date
KR20160107871A (en) 2016-09-19
KR101910228B1 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
Qin et al. Free‐Standing 3D Nanoporous Duct‐Like and Hierarchical Nanoporous Graphene Films for Micron‐Level Flexible Solid‐State Asymmetric Supercapacitors
Han et al. Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth
Yang et al. Waterproof, ultrahigh areal‐capacitance, wearable supercapacitor fabrics
Zhang et al. Capillarity composited recycled paper/graphene scaffold for lithium–sulfur batteries with enhanced capacity and extended lifespan
JP2022063287A (en) Electrochemical process for gas separation
WO2017190677A1 (en) Method for preparing boron-doped porous carbon sphere
US9887046B2 (en) Graphene composites and methods of making and using the same
US7820292B2 (en) Nanostructured coating for a carrying base
Tong et al. Microfluidic‐spinning‐directed conductive fibers toward flexible micro‐supercapacitors
CN105543796A (en) Method for preparing nano porous copper thin film material by magnetron sputtering
JP2008522410A (en) High power density supercapacitor using carbon nanotube electrode
Yao et al. Electrophoretic deposition of carbon nanofibers/silicon film with honeycomb structure as integrated anode electrode for lithium-ion batteries
Wouters et al. Influence of metal oxide coatings, carbon materials and potentials on ion removal in capacitive deionization
CN104192836A (en) Thermal preparation method of solution of self-supported porous graphene-based membrane
WO2016144025A1 (en) Electrode for electro-absorption type desalination device, and method for manufacturing same
CN112513338A (en) Metal-CNT composite material, production method and material thereof
JP2019531587A (en) Metal nonwoven fabric electrode surface-polymerized with dopamine monomer and surface modification method therefor
US20210032109A1 (en) Highly metallic, hydrophilic, polymer-free carbon nanotube (cnt) thin sheet and uses thereof
TW201536879A (en) Printed energy storage device, membrane for energy storage device and ink for printed film
CN108461299A (en) The preparation method of flexible carbon foam@nickel Al bimetal layered oxide@graphene combination electrode materials
EP3426818A1 (en) Chemical vapor deposition process to build 3d foam-like structures
JP2013127956A (en) Binder for lithium-ion secondary battery
Jung et al. Phase Separation–Controlled Assembly of Hierarchically Porous Aramid Nanofiber Films for High‐speed Lithium‐Metal Batteries
Schott et al. Relationship between the properties and cycle life of Si/C composites as performance-enhancing additives to graphite electrodes for Li-ion batteries
KR101750770B1 (en) Graphene oxide loaded polyelectrolyte complex membrane for separation of alcohol-water mixture and the preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761912

Country of ref document: EP

Kind code of ref document: A1