WO2016143920A1 - Separation membrane contactor module and membrane contact system and membrane contact method for purifying bio-gas using same - Google Patents

Separation membrane contactor module and membrane contact system and membrane contact method for purifying bio-gas using same Download PDF

Info

Publication number
WO2016143920A1
WO2016143920A1 PCT/KR2015/002329 KR2015002329W WO2016143920A1 WO 2016143920 A1 WO2016143920 A1 WO 2016143920A1 KR 2015002329 W KR2015002329 W KR 2015002329W WO 2016143920 A1 WO2016143920 A1 WO 2016143920A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
liquid
gas
module
tube
Prior art date
Application number
PCT/KR2015/002329
Other languages
French (fr)
Korean (ko)
Inventor
염충균
권건오
안효성
한진수
김계훈
Original Assignee
주식회사 세프라텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150033148A external-priority patent/KR101571479B1/en
Application filed by 주식회사 세프라텍 filed Critical 주식회사 세프라텍
Publication of WO2016143920A1 publication Critical patent/WO2016143920A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Definitions

  • the present invention allows the membrane module for the membrane contactor, which is the core of the membrane contactor, to exhibit the maximum separation efficiency, and to separate methane gas from the biogas generated in the anaerobic digestion process of organic matter using the membrane contactor module and using the same.
  • a membrane contact system for biogas purification and a membrane contact method is provided.
  • Membrane technology is one of the separation technology using the material selective permeability of the polymer material.
  • the use of separators in water treatment and sewage / wastewater treatment has increased dramatically since the beginning of the 1960s, and membranes are very useful for separating solids and liquids, liquids and liquids, gases and gases, and liquids and gases.
  • Membranes are widely used throughout the industry, including wastewater treatment, water treatment, including water production, concentration in the food and pharmaceutical sectors, separation of oxygen and nitrogen from the air and recovery of ammonia.
  • membranes can be classified into various types according to their shape and separation performance. First, they are classified into flat membranes, tubular membranes, and hollow fiber membranes according to their types. Can be. As described above, the use of the separation membrane to separate the mixture by selectively passing a specific component has been widely used in various forms. Among them, the hollow fiber membrane is in the form of a hollow tube, which has a large surface area than other types of membranes, and thus yields a large yield.
  • the separation of gas mixture technology in the separation membrane technology includes a gas separation membrane process and a membrane contactor process.
  • a general gas separation membrane process a non-porous selection layer is applied, and the gas mixture is separated by the difference in solubility and diffusion of each gas component among the gas separation polymer and gas mixture used in the selection layer. Therefore, in the general gas separation membrane process, the material transfer rate inside the membrane selection layer is the slowest, so that the material transfer speed in the membrane selection layer becomes the rate step of the entire process.
  • a hydrophobic porous membrane is used to form a gas / liquid interface, and the gas mixture is separated by the difference in solubility of the liquid in each gas component at the gas / liquid interface.
  • the gaseous component having a high solubility dissolves quickly in the liquid, so that the gas mixture is separated while passing through the membrane contactor. Since the membrane contactor uses a hydrophobic porous membrane, the mass transfer rate in the gas side and the inside of the separator are very fast, and the rate in the liquid side is the slowest. Membrane contactor process is a technology that can separate the gas mixture very quickly and economically when an effective membrane contactor module is applied because the material transfer rate is about 1,000 times faster than the conventional gas separation membrane process.
  • Membrane contactor technology may be used to separate gas mixtures due to differences in solubility in liquids, but may also be applied to a degassing process that produces a pure liquid by applying a vacuum to the gas side to remove gaseous components dissolved in the liquid to the gas side. have.
  • the hollow fiber interior space is called the tube side
  • the space between the hollow fiber and the hollow fiber and the space between the hollow fiber and the housing is called the shell side.
  • the contactor module as shown in FIG. 1 has a counter current or a co-current flow from the tube side inlet 5 to the tube side outlet 6 and from the shell side inlet 3 to the shell side outlet 4.
  • the fluid flowing in the tube side and the shell side flows in opposite directions.
  • a gas / liquid interface is formed on the shell side surface, which is the outer wall of the hollow fiber, and the mixed gas components dissolve through this interface to cause gas separation.
  • Biogas is composed of trace components such as 45 to 70% methane, 30 to 55% carbon dioxide, hundreds to thousands of ppm hydrogen sulfide, and hundreds to thousands of ppm ammonia, water and siloxane.
  • the methane contained in biogas is designated as the representative greenhouse gas with global warming index 21. Since its own energy amount is about 5,000 kcal / m3, the purification and recovery of methane from biogas prevents global warming, resource recycling, The goal of securing renewable energy can be achieved.
  • Biogas can be used as a source of city gas and automobile fuel through high-purity through direct combustion and combined heat and power (CHP), refining, and environmental and economical efficiency around biogas sources. Therefore, various applications are being developed.
  • CHP direct combustion and combined heat and power
  • the most economical and energy-efficient technology among biogas resource recycling methods uses biogas as a fuel by purifying and purifying the biogas, which is 2 to 3 times more economical than CHP. Accordingly, the globalization of biogas resources has shifted from CHP to high purity fuel production.
  • Highly purified methane gas (biomethane) can be mixed with existing city gas and used in gas ranges, gas boilers, etc., and can be used as fuel for CNG cars / LNG cars.
  • biogas purification methods include water scrubbing, chemical absorption, pressure swing adsorption (PSA), gas separation membrane, liquefied cryogenic, etc. There is this.
  • Patent Document 2 "a method for separating high-purity methane gas from landfill gas and a methane gas purification apparatus" (Korean Patent Publication No. 10-1086798, Patent Document 2) describes such a conventional purification method.
  • US Patent No. 2009/0156875 discloses a mixture of gas-liquid mixed state in a natural gas and landfill gas mainly composed of methane enters a primary gas-liquid separator to separate methane, and then, using a carbon dioxide absorbent, high purity methane of 98% or more.
  • a method of producing a gas is disclosed.
  • 0951367 discloses a method in which methane gas having a low density and specific gravity is collected at the top of a purification tower by using a purification tower composed of activated carbon, a compression, and a water film layer as a methane purification method.
  • Korean Patent No. 2009-0028696 relates to a method for purifying biomethane and discloses a purification method using a tower and a water supply / discharge tube, a gas supply / discharge tube, and an absorption tower.
  • Korean Patent No. 2009-0028696 relates to a method for purifying biomethane and discloses a purification method using a tower and a water supply / discharge tube, a gas supply / discharge tube, and an absorption tower.
  • 2010-0110229 discloses a technique related to a biomethane purification method for purifying biomethane from biogas generated by anaerobic digestion of organic waste such as sewage sludge, livestock waste, landfill waste, and food waste. .
  • the above-described biogas purification method has disadvantages for each technology.
  • large installations increase plant installation costs, incur high process operation costs, and chemical absorption can lead to environmental pollution due to the use of additional chemicals.
  • Pressure swing adsorption requires the pretreatment of hydrogen sulfide, ammonia, etc. contained in biogas, and if the pretreatment is insufficient, the efficiency decreases rapidly. As the plant operation period becomes longer, the fine powder is generated due to the wear of the adsorbent.
  • Patent Document 1 KR10-2010-0099530 (2010.09.13)
  • Patent Document 2 KR 10-1086798 (2011.11.18)
  • the membrane contactor module of the present invention and the membrane contact system and membrane contact method for purification of biogas using the same are to solve the problems occurring in the prior art, and by changing the internal structure of the hollow fiber membrane module for membrane contactors, The change in the flow of liquid in the shellside effectively improves the performance of the membrane contactor, thereby allowing high purity purification of methane.
  • the cross-flow which cannot occur at the shell side of the conventional hollow fiber membrane contactor module is generated at the membrane module shell side, thereby reducing the boundary layer thickness to maximize the mixing effect, thereby purifying methane of high purity. I want to be able to.
  • the membrane contactor module of the present invention for solving the above problems, the module housing 10 made of a hollow hollow shape;
  • the hollow fiber 20 having a shell side 11 formed inside the module housing and spaced apart from the inner wall surface of the module housing 10 along a longitudinal direction, and having a tube side 21 formed in the longitudinal direction therein.
  • the tube side inlet 31 is formed on one side
  • the tube side outlet 32 is formed on the other side
  • the inner space 33 is the tube side 21
  • Two caps 30 having a partition 34 formed therein so as to be in communication with the shell side 11
  • a middle part is installed to penetrate the two caps 30 and is located inside the module housing 10.
  • a shell side inlet 41 is formed at one end and a shell side outlet 42 at the other end.
  • the inside is formed in the form of a hollow tube
  • the partition 43 is installed inside the middle portion
  • the plurality of holes 44 are formed on both outer peripheral surfaces based on the partition 43
  • It is configured to include; flow path control tube 40 configured to move to 42.
  • a plurality of blocking walls 51 are formed inside the longitudinal direction to form a plurality of unit installation spaces 52 divided by the blocking walls 51 to form the module housing 10 and the hollow fiber.
  • the cap 30 and the flow path control tube 40 is inserted into the unit installation space 52 to form a unit 60, respectively, the wall connection to connect each unit installation space 52
  • a passage 53 is formed, and the connection passage 53 is configured to connect the inner space 33 of the cap 30 of the adjacent unit 60 to each other, and the flow path control tube 40 of the adjacent unit 60 is It is characterized in that the inner case 50 is further provided to communicate with each other inside.
  • the hole 44 is characterized in that the diameter is made of a size of 0.5 ⁇ 50mm.
  • the hole 44 is in a straight line with the axial direction of the flow path control tube 40, it characterized in that the single slot shape formed along the axial direction in a spiral.
  • the hole 44 is characterized in that a plurality of holes are formed in equally divided positions on the outer circumferential surface based on the cross section of the flow path control tube (40).
  • the hole 44 is characterized in that formed in a spiral along the outer peripheral surface of the flow path control tube (40).
  • a plurality of the holes 44 are formed at regular intervals along the length direction of the flow path control tube 40, but the holes 44 at the tip adjacent to the partition 43 are partition 43 from the partition 34. It is characterized by being located at 3/5 ⁇ 4/5 of the distance between.
  • the inner diameter / length of the module housing 10 is characterized in that 1/2 ⁇ 1/20.
  • the biogas refining membrane contact system of the present invention comprises: a gas compressor (100) for pressurizing a biogas including a gas having a property of dissolving in a liquid to a pressure greater than normal pressure;
  • a module housing 210 having an empty hollow shape and an inside of the module housing are installed to be spaced apart from the inner wall surface of the module housing 210 along a length direction to form a shell side 211 to the outside, and a length inside the module housing 210.
  • the hollow fiber membrane 220 and the tube housing 221 in which the tube side 221 is formed, respectively, are installed at both ends of the module housing 210, and the tube side inlet through which the biogas compressed by the gas compressor 100 flows on one side.
  • a tube side discharge port 232 through which the biogas in contact with the other side is discharged is formed, and the inner space 233 is in communication with the tube side 221 and the shell side 211
  • Shell side inlet 241 Liquid flows in Shell side inlet 241 is formed, the shell side discharge port 242 is formed inside the empty tube form is formed, the liquid flowing in the other end is discharged, the partition 243 is provided inside the middle portion In addition, a plurality of holes 244 are formed at both outer peripheral surfaces of the partition 243, so that the liquid moves from the hole 244 at the shellside inlet 241 to the shellside 211, and the shellside outlet 242.
  • Absorption membrane contactor module 200 composed of a flow path control tube 240 is configured to move to the shell side outlet 242 while the liquid on the side of the shell side 211 through the hole (244) side;
  • a degassing tank 300 for storing the liquid discharged from the shell side outlet 242 of the absorption separator contactor module 200 at atmospheric pressure or in a vacuum state;
  • One side is connected to the upper side of the degassing tank 300, the other side is connected to the gas compressor 100, a blower 410 is installed in the middle of the pipeline to the gas in the injured state of the gas compressor 100
  • Gas discharge pipe 400 for supplying with;
  • a module housing 510 having an empty hollow shape and a module housing 510 spaced apart from an inner wall surface of the module housing 510 in a longitudinal direction inside the module housing are formed to form a shell side 511 to the outside and have a length therein.
  • the barrier ribs 534 are formed to be blocked from each other, and the tube side discharge ports 531 connected to the vacuum pump 550 are formed on both sides thereof, and the air inside the tube side 521 is discharged to the outside by the vacuum pump 550.
  • two caps 530 configured to form a vacuum in the tube side 521, and an intermediate portion is installed inside the module housing 510 while penetrating the two caps 530.
  • a shell-side inlet 541 is formed to be connected to the liquid stored in the degassing tank 300, and a shell-side outlet 542 is formed in which the liquid introduced into the other end is discharged.
  • the partition 543 is provided inside the middle portion, and a plurality of holes 544 are formed on both outer peripheral surfaces of the partition 543 so that the liquid from the hole 44 at the side of the shellside inlet 541 is formed. Flows to the shell side 511 and moves to the shell side outlet 542 while the liquid on the side of the shell side 511 flows into the shell side through the hole 544 of the shell side outlet 542.
  • a degassing membrane contactor module 500 consisting of 540; One side is connected to the shell side outlet 542, the other side is connected to the shell side inlet 241 of the absorption separator contactor module 200, and a pressure pump 610 is installed at one side of the pipeline to provide a deaeration separator contactor. And a liquid circulation tube 600 configured to supply the liquid passing through the module 500 to the absorption separator contactor module 200 in a pressurized state.
  • the biogas refining membrane contact method of the present invention comprises the steps of: compressing a biogas containing a gas having a property of dissolving in a liquid by using the system to a pressure higher than normal pressure using the gas compressor (100);
  • the biogas pressurized by the gas compressor 100 is supplied to the tube side inlet 231 of the absorption separator contactor module 200 to make membrane contact with one side of the hollow fiber membrane 220, and the pressure pump 610 is used.
  • the pressure applied to the liquid through the pressure pump 610 is characterized in that it is maintained 0.3 bar-0.7 bar higher than the pressure applied to the biogas.
  • the ratio of the gas flow rate compressed through the gas compressor 100 to the absorption separator contactor module 200 and the flow rate of the liquid supplied to the absorption separator contactor module 200 through the pressure pump 610 is 0.01 to 10. It is characterized by maintaining as.
  • the biogas is a mixed gas generated during the anaerobic digestion of organic substances, characterized in that any one of methane, carbon dioxide, toil sulfide, ammonia is included.
  • the degassing tank 300 during the first degassing is characterized in that the internal temperature is maintained at 5 ⁇ 50 °C.
  • the separation efficiency can be further improved as compared with the conventional contactor module using the hollow fiber membrane of the same quantity and length.
  • cross flow does not occur in the shell side of a general contactor module, so it is difficult to expect a mixing effect, and the separation efficiency according to the boundary layer is formed, whereas the contactor module according to the present invention crosses the shell side. Induces a large flow, resulting in a large mixing effect, thereby reducing the thickness of the shell layer boundary layer to maximize the performance of the module.
  • the biogas is compressed to a pressure higher than the normal pressure to make the membrane contact with one side of the hollow fiber membrane, and at the same time, the bulk flow of the mixed gas flows into the water by the pressure.
  • a pressure with a differential pressure that can block is applied, the partial pressure acting on the water-soluble gas increases in proportion to the pressure acting on the biogas without generating bubbles due to biogas in the water.
  • the amount of dissolved gas is increased in proportion to the increase in pressure of the biogas.
  • methane can be separated from biogas at high efficiency and low energy cost compared to the processes using the conventional absorption method, pressure conversion adsorption method, and gas separation membrane method, thereby suppressing greenhouse gas emissions and using methane as fuel. The effect is great.
  • FIG. 1 is a schematic view showing an example of a hollow fiber membrane module for a conventional membrane contactor.
  • Figure 2 is a partially cut perspective view showing an embodiment of the membrane contactor module of the present invention.
  • Figure 3 is a partially cut perspective view showing an enlarged one end side in Figure 2;
  • Figure 4 is a partially cut perspective view showing the other end side in an enlarged view in FIG.
  • Figure 5 is a schematic cross-sectional view showing a form in which the outer casing is further configured in a multi-stage connected in the present invention.
  • Figure 6 is a plan view showing an embodiment of the flow path control tube in the present invention.
  • Figure 7 is a plan view showing another embodiment of the flow path control tube in the present invention.
  • FIG. 8 is a schematic view showing a membrane contact system for purifying biogas of the present invention.
  • the membrane contactor module of the present invention is largely composed of a module housing 10, a hollow fiber membrane 20, a cap 30, and a flow path control tube 40.
  • the module housing 10 has a hollow shape as shown in FIG. 2.
  • the material of the module housing 10 may be a plastic material such as PVC, CPVC, PC, acrylic, ABS, PET, PP, PE, and metal materials such as aluminum and stainless steel, but is not limited thereto.
  • both ends of the module housing 10 may be formed with a thread or a flange to be connected to the cap 30.
  • the module housing 10 preferably has an inner diameter / length of 1/2 to 1/220.
  • the hollow fiber membrane 20 is formed with a tube side 21 hollow in the longitudinal direction therein, and is installed along the longitudinal direction inside the module housing 10 described above.
  • the hollow fiber membrane 20 is installed to be spaced apart from the inner wall surface of the module housing 10 to form a shell side (11).
  • the plurality of hollow fiber membranes 20 are installed in the module housing 10 so as to be spaced apart from each other, thereby forming a shellside 11 which is a space.
  • Cap 30 is composed of two as shown in Figures 1 to 3 are respectively installed at both ends of the module housing (10).
  • One of these two caps 30 has a tube side inlet 31 through which gas is introduced, and a tube side outlet 32 through which gas is introduced is formed at the cap 30 on the other side. It is.
  • the partition 30 is formed between the cap 30 and the inner space of the module housing 10 to separate the space, but the hollow fiber membrane 20 is connected to the partition 34 so that the inner space of the cap 30 ( 33 is in communication with the tube side 21 which is an internal space of the hollow fiber membrane 20 and is blocked from the shell side 11.
  • the flow path control tube 40 is a main component in the present invention, and is installed such that an intermediate portion is located inside the module housing 10 while passing through the two caps 30.
  • a shellside inlet 41 through which liquid is introduced is formed at one end, and a shellside outlet 42 through which the introduced liquid is discharged is formed at the other end.
  • the flow control tube 40 is made of a hollow tube shape, the partition 43 is installed inside the middle portion.
  • a plurality of holes 44 are formed on both outer circumferential surfaces of the partition 43 on the basis of the partition 43, so that the liquid moves from the hole 44 at the shell side inlet 41 to the shell side 11, and the shell side outlet 42 The liquid on the side of the shell side 11 is moved to the shell side outlet 42 while flowing into the shell side 11 through the hole 44.
  • the size of the hole 44 is preferably made of 0.5 ⁇ 50mm in diameter.
  • the separator contactor separation efficiency may be reduced.
  • the holes 44 may be arranged in various ways. As shown in FIG. 6, the holes 44 may be aligned with the axial direction of the flow path control tube 40 or spirally along the axial direction of the flow path control tube 40. Can be formed.
  • the holes 44 may be formed to be spaced apart from each other along the axial direction of each of the flow path control tube 40 with the above-mentioned diameter, but may be formed in a single slot shape with the above-described diameter or width. .
  • a plurality of holes 44 are formed at equally divided positions on the outer circumferential surface of the flow control tube 40 based on the cross-section of the passage control tube 40 to be evenly distributed to maintain the separation efficiency.
  • the hole 44 is formed spirally along the outer circumferential surface of the flow path control tube 40 to be discharged or introduced through the hole 44 formed at different angles on the movement path of the liquid to increase the separation efficiency have.
  • a plurality of the holes 44 are formed at regular intervals along the length direction of the flow path control tube 40, but the holes 44 at the tip adjacent to the partition 43 are partitioned from the partition 34. It is good to be located 3/5 to 4/5 of the distance between them.
  • the separation efficiency may decrease, on the contrary, if too far from the partition 43 and the partition 43 and In the spaces of the adjacent portions, the separation is not performed smoothly and the boundary layer thickness is thickened, which may reduce the separation efficiency.
  • the separator contactor module of the present invention may further include an outer case 50.
  • the outer case 50 has a plurality of blocking walls 51 formed therein along the longitudinal direction, and a plurality of unit installation spaces 52 divided by the blocking walls 51 are formed.
  • the unit housing 10, the hollow fiber membrane 20, the cap 30 and the flow path control tube 40 is formed of one unit 60, each unit 60 in the unit installation space 52 It can be configured to be inserted.
  • connection passage 53 connecting each unit installation space 52 is formed on the wall surface of the outer case 50, and the connection passage 53 is an inner space 33 of the cap 30 of the adjacent unit 60. ) May be connected to each other.
  • the units 60 continuously installed in the outer case 50 are installed so that the flow path control tubes 40 of the adjacent unit 60 communicate with each other.
  • an insulation may be installed between the outer case 50 and each unit 60.
  • the movement of the liquid and the gas may be utilized to be opposite to each other, that is, the liquid moves to the tube side, and the gas moves to the shell side. It is good to move the liquid to the shellside.
  • a mixed gas of nitrogen / carbon dioxide (50 vol.% / 50 vol.%) Is supplied at 360 sccm (5.5 bar) to the tube side inlet 31, and 2.5 L / min (6.0 bar) of tap water is supplied to the shell side inlet 41. ) And the degree of dissolution of carbon dioxide in the mixed gas was measured.
  • a hole having a diameter of 2 mm is disposed in four parts of the outer circumferential surface of the flow path control tube 40, and spaced apart from each other along the longitudinal direction, but disposed parallel to the axis.
  • the flow path control tube 40 of FIG. 7 is also manufactured by dividing a hole having a diameter of 2 mm into four equal parts of the outer circumferential surface of the flow path control tube 40, spaced apart from each other along the longitudinal direction, and arranged spirally along the axis.
  • Comparative Example 1 the same mixed gas and tap water were supplied to the conventional module as shown in FIG.
  • the difference in the experimental value in the above experimental results is that the nitrogen concentration after passing through the existing module is 95.3%, the data of the high state is already increased to close to 100%, and purely flow control without means such as a separate chemical treatment Achieved through the installation of the tube 40 will be referred to as a high level of effect.
  • the membrane contactor module of the present invention combines the advantages of the water absorption method and the membrane technology, and does not require a separate pretreatment process to remove hydrogen sulfide, ammonia, etc., which are necessary in the pressure swing adsorption method and the gas separation membrane method.
  • the polymer membrane in a modular manner, the gas / liquid contact area per unit volume is increased by 2 to 3 times compared to the conventional absorption method using the filler in the absorption tower, so that the same amount of biogas can be purified with a small device size.
  • the membrane contact system and membrane contact method for biogas purification of the present invention are configured to purify biogas using the difference in solubility of each gas component in water of the membrane contactor module described above.
  • the solubility of water-soluble gases such as carbon dioxide, hydrogen sulfide, and ammonia in water is about 50 to 1000 times higher than that of methane.
  • the biogas containing the water-soluble gas carbon dioxide, hydrogen sulfide, ammonia, etc.
  • the biogas containing the water-soluble gas is contacted with water through the pores of the hydrophobic porous polymer membrane to separate the water-soluble gas.
  • Hydrophobic porous hollow fiber membranes such as hydrophobic porous polypropylene (PP) hollow fiber membranes
  • PP polypropylene
  • the biogas containing the water-soluble gas is compressed to a pressure higher than the normal pressure to make the membrane contact with one side of the hollow fiber membrane, and at the same time, the water is pressurized by a predetermined pressure higher than the pressure of the compressed gas mixture.
  • the membrane is brought into contact with the other side to increase the amount of water-soluble gas dissolved in water and to prevent bubbles from occurring at the same time.
  • the water in contact with the hollow fiber membrane is discharged to the degassing tank maintained at atmospheric pressure or reduced pressure to degas the water-soluble gas until the equilibrium of dissolution of water and water-soluble gas.
  • the water discharged to the degassing tank is passed through one side of the other hollow fiber membrane while maintaining the state below the atmospheric pressure on the other side of the other hollow fiber membrane to degas the water-soluble gas.
  • biogas is used as a generic term for a mixed gas mainly composed of methane and carbon dioxide generated during the anaerobic digestion of organic substances.
  • % means “volume percentage” unless otherwise defined.
  • the inner space of the hollow fiber membrane is called a tube side, and the space between the hollow fiber membrane and the hollow fiber membrane, which is an outer space of the hollow fiber membrane, and the space between the hollow fiber membrane and the housing are called shell sides.
  • the gas having a property of dissolving in the liquid may be made of various liquid soluble gases, but most preferably made of a water-soluble gas, and the liquid described in the present invention is preferably made of water.
  • Biogas purification membrane contact system of the present invention is largely a gas compressor 100, absorption separator contactor module 200, degassing tank 300, gas discharge pipe 400, deaeration membrane contactor module 500, liquid circulation tube ( 600).
  • the absorption separator contactor module 200 and the deaeration separator contactor module 500 each include a tube side and a shell side as main components in the present invention, and both components pass through the liquid to the shell side,
  • the biogas to be treated passes through the tube side of the absorption separator contactor module 200, and the tube side of the deaeration membrane contactor module 500 is filled with air, or decompressed or vacuumed by a vacuum pump. consist of.
  • the gas compressor 100 is configured to receive a biogas including a gas having a property of dissolving in a liquid from the outside and pressurize it to a pressure greater than normal pressure.
  • the absorption separator contactor module 200 receives the pressurized biogas from the gas compressor 100 and passes the tube side 221 inside the hollow fiber membrane 220 to perform membrane contact treatment.
  • the liquid passes through the shell side 211 outside the hollow fiber membrane 220 while circulating.
  • the degassing tank 300 receives the liquid that has passed through the shell side 211 of the absorption separator contactor module 200, and decompresses the liquid to atmospheric pressure or vacuum to store the liquid therein.
  • the degassing tank 300 is degassed until the liquid equilibrium is achieved between the liquid in contact with the hollow fiber membrane 220 and the gas dissolved in the liquid because the interior is made of atmospheric pressure to vacuum.
  • a spray nozzle is installed in the degassing tank 300 for smooth degassing so that the introduced liquid is sprayed and stored through the spray nozzle so that smooth degassing of the gas is achieved.
  • the degassing tank 300 is preferably a known temperature control device for maintaining the temperature inside.
  • the suitable temperature inside the degassing tank 300 through the temperature control unit is preferably about 5 ⁇ 50 °C.
  • Gas discharge pipe 400 is one side is connected to the upper degassing tank 300, the other side is connected to the gas compressor 100, a blower 410 is installed in the middle of the pipeline in the degassing tank 300
  • the degassed gas that is, the gas in a non-hazardous state, is supplied to the gas compressor 100 and then compressed again to be supplied to the absorption separator contactor module 200.
  • Degassing membrane contactor module 500 is made of the same structure as the absorber membrane contactor module 200 is made to pass the liquid to the shell side 511, the tube side 521 is connected to the external vacuum pump 550 to reduce the pressure This is to be done.
  • the water-soluble gas can be more completely degassed by maintaining the state below the normal pressure.
  • liquid circulation tube 600 is connected to the shell side outlet 542 of the deaeration membrane contactor module 500, and the other side is connected to the shell side inlet 241 of the absorption membrane contactor module 200.
  • a pressure pump 610 is installed at one side of the pipeline to supply the absorbent membrane contactor module 200 to pressurize the liquid passing through the deaeration membrane contactor module 500 so that continuous circulation is achieved.
  • the absorption separator contactor module 200 and the deaeration separator contactor module 500 have the same structure as the separator contactor module described above.
  • the absorption separator contactor module 200 includes a module housing 210, a hollow fiber membrane 220, a cap 230, and a flow path control tube 240.
  • the deaeration membrane contactor module 500 also includes a module housing 510.
  • Hollow fiber membrane 220, cap 530, flow control tube 540 is configured to include.
  • the module housings 210 and 510 have a hollow shape as shown in FIG. 2.
  • the material of the module housings 210 and 510 may be plastic materials such as PVC, CPVC, PC, acrylic, ABS, PET, PP, PE, and metal materials such as aluminum and stainless steel, but is not limited thereto.
  • both ends of the module housings 210 and 510 may be formed with threads or flanges to be connected to the caps 230 and 530.
  • the module housings 210 and 510 preferably have an inner diameter / length of 1/2 to 1/220.
  • the ratio of the inner diameter length is smaller than the above-described minimum ratio, it is not suitable for separation through the serial arrangement as shown in FIG. 5, and space utilization is not well achieved. A separate section is formed, where no smooth separation occurs.
  • the hollow fiber membranes 220 and 520 are formed in the tube housings 211 and 511 which are hollow in the longitudinal direction.
  • the hollow fiber membranes 220 and 520 are provided in the module housings 210 and 510 in the longitudinal direction. .
  • the hollow fiber membranes 220 and 520 of the present invention are preferably made of a hydrophobic porous hollow fiber membrane molded of a polymer such as polypropylene (PP).
  • PP polypropylene
  • the hollow fiber membrane (220, 520) is installed to be spaced apart from the inner wall surface of the module housing (210, 510) to form the shell side (211, 511).
  • the plurality of hollow fiber membranes 220 and 520 are installed in the module housings 210 and 510 to be spaced apart from each other, thereby forming the shellsides 211 and 511 which are spaces apart from each other.
  • Caps 230 and 530 are configured in two, as shown in Figures 2 to 4 are installed on both ends of the module housing (210, 510), respectively.
  • One of the two caps 230 of the absorption separator contactor module 200 is connected to the gas compressor 100 and is provided with a tube side inlet 231 through which the biogas compressed by the gas compressor 100 is introduced.
  • the other is provided with a tube side outlet 232 through which the gas separated by the membrane contact is discharged.
  • the two caps of the deaeration membrane contactor module 500 are provided with a tube side outlet 531 connected to the vacuum pump 550 such that a vacuum is formed on the tube side of the deaeration membrane contactor module 500 so that secondary degassing is performed. have.
  • the vacuum pump 550 may be connected to only one of the two tube side outlet 531.
  • Partition walls 234 and 534 are formed between the caps 230 and 530 and the internal spaces of the module housings 210 and 510 to separate the spaces between the caps 230 and 530 and the module housings 210 and 510. Since the hollow fiber membranes 220 and 520 are connected to the partition walls 234 and 534, the inner spaces 233 and 533 of the caps 230 and 530 are the inner spaces of the hollow fiber membranes 220 and 520. Is in communication with the shell side (211,511).
  • the flow path control tubes 240 and 540 are the main components in the present invention, and are installed such that an intermediate portion is located inside the module housings 210 and 510 while passing through the two caps 230 and 530.
  • shell side inlets 241 and 541 through which liquid such as water flows are formed, and on the other end, shell side outlets 242 and 542 through which inflowed liquid is discharged.
  • the flow control tubes 240 and 540 are formed in a hollow tube shape, and partitions 243 and 543 are installed inside the middle portion.
  • a plurality of holes 244 and 544 are formed at both outer peripheral surfaces of the partitions 243 and 543 so that the liquid is released from the side holes 244 and 544 of the shell side inlets 241 and 541.
  • the size of the holes (244, 544) is preferably made of 0.5 ⁇ 50mm in diameter.
  • the smooth movement of the liquid particles passing through the holes 244 and 544 may be difficult, and liquid movement through the holes 244 and 544 may be difficult. , 544) requires a lot of pressure to move through the membrane contactor separation efficiency can be reduced.
  • holes 244 and 544 may be arranged in various ways.
  • the holes 244 and 544 may be arranged in a line with the axial direction of the flow path control tubes 240 and 540 or may be spirally formed along the axial direction of the flow path control tubes 240 and 540. have.
  • the holes 244 and 544 may be formed to be spaced apart from each other along the axial direction of the flow path control tubes 240 and 540, respectively, with the above-mentioned diameter, but in a single slot shape with the above-described diameter or width. It may be formed.
  • a plurality of holes 244 and 544 are formed at equally divided positions on the outer circumferential surface based on the cross section of the flow path control tube 40 to be evenly distributed so that the separation efficiency is kept constant.
  • the holes 244 and 544 are spirally formed along the outer circumferential surfaces of the flow control tubes 240 and 540 to discharge or inflow through the holes 244 and 544 formed at different angles on the liquid path. It can increase.
  • a plurality of holes 244 and 544 are formed at regular intervals along the length direction of the flow path control tubes 240 and 540, and the holes 244 and 544 at the ends adjacent to the partitions 243 and 543 are partition walls. It is preferably located at 3/5 to 4/5 of the distance between the (234, 534) and the partitions (243, 543).
  • the separation efficiency may decrease when the liquid is introduced and discharged in the adjacent state from the partitions 243 and 543, and conversely, too far from the partitions 243 and 543. In this case, in the spaces adjacent to the partitions 243 and 543, the separation is not smooth and the thickness of the boundary layer becomes thick, which may reduce the separation efficiency.
  • the configuration of the modules is a cross flow at the shell side inside the module housings 210 and 510 by installing the flow path control tubes 240 and 540 having the partitions 243 and 543 and the holes 244 and 544. As is formed, the mixing effect is further increased and the gas separation effect is excellent.
  • the biogas including gas having a property of dissolving in a liquid is compressed to a pressure higher than normal pressure or a pressure exceeding an operating pressure by using the gas compressor 100.
  • the pressure of the compressed biogas is 5 to 15 bar, and the temperature of the cooled biogas is -20 to 50 ° C.
  • the pressure of the biogas is less than 5bar, there is a problem that the purity and recovery of methane according to the water-absorbing gas absorption process using the absorption separator contactor module 200 is lowered, the hollow fiber membrane 220 may be damaged at 15 bar or more There is a problem.
  • biogas temperature is less than -20 °C, there is a problem of inhibiting the dissolution of the water-soluble gas by freezing the water, which is the liquid supplied in the absorber membrane contactor module 200, above 50 °C the solubility of the water-soluble gas is reduced to the water-soluble gas There is a problem of inhibiting the dissolution.
  • the biogas pressurized by the gas compressor 100 is supplied to the tube side inlet 231 of the absorption separator contactor module 200 to make membrane contact with one side of the hollow fiber membrane 220, and the pressure pump 610 is used.
  • the liquid is supplied to the shellside inlet 241 at a pressure higher than that of the biogas pressurized by the tubeside inlet 231 of the absorption separator contactor module 200 to make membrane contact with the other side of the hollow fiber membrane 220.
  • the ratio of the gas flow rate compressed through the gas compressor 100 to the absorption separator contactor module 200 and the flow rate of the liquid supplied to the absorption separator contactor module 200 through the pressure pump 610 is G / L. It is called a (Gas / Liquid) ratio and it is preferable to keep G / L ratio to 0.01-10.
  • the liquid pressure is preferably supplied at a pressure of 0.3 bar to 0.7 bar higher than the biogas pressure.
  • pressure fluctuation with the biogas may not occur due to a change in pressure during the pressure control, or the pressure of the biogas may be temporarily increased, thereby causing bubbles in the water. Not only is the soft hydrophobic porous hollow fiber membrane damaged, but also unnecessary pressurized energy can be consumed.
  • water-soluble gases such as carbon dioxide, hydrogen sulfide and ammonia obey this law.
  • the partial pressure of the water-soluble gas also increases in proportion, so that the solubility of the water-soluble gas in water increases in proportion to the pressure of the biogas.
  • PP polypropylene
  • the biogas containing the water-soluble gas is compressed to a pressure higher than the normal pressure to come into contact with one side of the hollow fiber membrane, and at the same time, the water is pressurized by a predetermined pressure higher than the pressure of the compressed biogas to make the hollow fiber membrane
  • the membrane was brought into contact with the other side to increase the amount of water-soluble dissolved in water, and to prevent bubbles from occurring in the water.
  • the liquid discharged to the shellside outlet 242 after the membrane contact with the hollow fiber membrane 220 contains a water-soluble gas in a dissolved state, which is maintained at atmospheric pressure or vacuum and sprayed to disperse the liquid in the tank at the upper end thereof.
  • the nozzle is supplied to the degassing tank 300 to which the nozzle is installed, and the gas is first degassed until a liquid equilibrium is achieved between the liquid and the gas dissolved in the liquid.
  • the gas degassed in the degassing tank 300 to become insoluble state is supplied to the gas compressor 100 through the gas discharge pipe 400.
  • the gas degassed in the degassing tank 300 includes the remaining amount of methane in addition to the methane separated from the first absorption membrane contactor module 200, and supplies the gas compressor 100 to the gas compressor 100 through a pipe again to absorb the membrane contactor module ( 200) to increase the methane recovery of the system.
  • the first degassed liquid from the degassing tank 300 is supplied to the shell side inlet 541 of the degassing membrane contactor module 500 to make membrane contact with one side of the hollow fiber membrane 520, and degassed with the vacuum pump 550.
  • a vacuum is applied to the tube side 521 of the separator contactor module 500 to degas the secondary.
  • the vacuum pump 550 maintains the state below the normal pressure, the water-soluble gas contained in the liquid can be more completely degassed.
  • the liquid from which the water-soluble gas is degassed through the five steps is injected into the absorption separator contactor module 200 and reused to dissolve the water-soluble gas.
  • the liquid used to absorb and degas the water-soluble gas is a medium for absorbing and degassing and discharging the water-soluble gas while repeating the sequence of the absorption separator contactor module 200, the degassing tank 300, and the deaeration membrane contactor module 500. It will play a role.
  • a membrane contact system having the configuration as shown in FIG. 8 including the absorption separator contactor module 200 and the deaeration separator contactor module 500 having the structure as shown in FIG. 2 was prepared, and the liquid used was water and the absorption separator contactor module 200 ), Simulated gas mixtures containing 41% methane and 59% carbon dioxide were prepared and supplied.
  • the tube side inlet 231 of the absorption separator contactor module 200, the tube side outlet 232, one side of the gas discharge pipe 400 adjacent to the degassing tank 300, and the tube side outlet of the deaeration membrane contactor module 500 were measured and shown in Table 2, respectively.
  • the concentration of highly purified methane was 97.03%, and the methane recovery of the system was found to be very high at 97.4%.
  • Membrane contactor module of the present invention is widely applied throughout the industry, such as wastewater treatment, water treatment, including water production, concentration in the food and pharmaceutical sector, separation of oxygen and nitrogen in the air, recovery of ammonia, solid and liquid, liquid and It may be used to separate liquids, gases and gases, and liquids and gases.
  • the membrane contact system and membrane contact method of the present invention will be suitable for separating specific target gases, such as methane, from biogas generated during the anaerobic digestion of organics.

Abstract

The present invention relates to a separation membrane contactor module and a membrane contact system and method for purifying bio-gas using the same, in which: the separation membrane contactor module having a flow path control tube (240, 540) installed therein is provided to activate a cross flow, thereby enhancing gas separation efficiency, the flow path control tube (240, 540) having a partition (243, 543) therein; an absorption separation-membrane contactor module (200) and a degassing separation-membrane contactor module (400) are connected to each other such that liquid continuously circulates through the shell sides of the respective modules that communicate with each other; the separation of gas is performed at the tube side of the absorption separation-membrane contactor module (200), and the reduction of pressure is performed at the tube side of the degassing separation-membrane contactor module (500); and a degassing tank (300) is provided on the liquid circulation line to allow degassing to be performed through a change in solubility according to a pressure change, thereby refining high-purity methane from bio-gas.

Description

분리막 접촉기 모듈 및 이를 이용한 바이오가스 정제용 막 접촉 시스템 및 막 접촉 방법Membrane Contactor Module and Membrane Contact System and Membrane Contact Method for Biogas Purification
본 발명은 분리막 접촉기의 핵심인 분리막 접촉기용 분리막 모듈이 최대의 분리효율을 나타낼 수 있도록 하고, 이를 이용하여 유기물의 혐기성 소화 과정에서 발생하는 바이오가스로부터 메탄가스를 분리하는, 분리막 접촉기 모듈 및 이를 이용한 바이오가스 정제용 막 접촉 시스템 및 막 접촉 방법에 관한 것이다.The present invention allows the membrane module for the membrane contactor, which is the core of the membrane contactor, to exhibit the maximum separation efficiency, and to separate methane gas from the biogas generated in the anaerobic digestion process of organic matter using the membrane contactor module and using the same. A membrane contact system for biogas purification and a membrane contact method.
분리막 기술은 고분자 재료의 물질 선택투과 성질을 이용한 분리기술의 하나이다. 정수 처리 및 하수/오폐수 처리에서의 분리막의 사용은 1960년대 시작된 이래 지금까지 그 사용이 비약적으로 증가하고 있으며, 분리막은 고체와 액체, 액체와 액체, 기체와 기체 및 액체와 기체를 분리하는데 매우 유용한 장치로, 특별한 경우를 제외하고는 상변화를 수반하지 않으므로 에너지를 절약할 수 있고, 공정이 간단하므로 장치가 차지하는 공간이 적은 장점이 있다. 분리막은 폐수 처리, 용수 제조를 포함한 수처리, 식품과 제약부문에서의 농축, 그리고 공기 중에서의 산소와 질소의 분리, 암모니아의 회수 등 산업 전반에 널리 사용되고 있다.Membrane technology is one of the separation technology using the material selective permeability of the polymer material. The use of separators in water treatment and sewage / wastewater treatment has increased dramatically since the beginning of the 1960s, and membranes are very useful for separating solids and liquids, liquids and liquids, gases and gases, and liquids and gases. As a device, except for a special case, it is possible to save energy because it does not involve a phase change, and because the process is simple, the device occupies little space. Membranes are widely used throughout the industry, including wastewater treatment, water treatment, including water production, concentration in the food and pharmaceutical sectors, separation of oxygen and nitrogen from the air and recovery of ammonia.
이러한 분리막은 형태와 분리성능에 따라 여러 가지로 분류될 수 있는데, 우선 형태에 따라 평 막, 관형 막, 중공사막으로 분류되고, 분리성능에 따라 정밀 여과 막, 한외 여과 막, 역삼투막 등으로 분류될 수 있다. 이와 같이 특정 성분을 선택적으로 통과시킴으로써 혼합물을 분리시키는 분리막의 용도는 매우 광범위하여 각종 형태로 제조되어 이용되고 있다. 이 중에서 중공사막은 중앙이 비어있는 실관 형태이므로 다른 형태의 막 보다 표면적이 커서 작은 용적으로도 많은 수율을 얻을 수 있어 매우 유용한 분리막으로 각광을 받고 있다.These membranes can be classified into various types according to their shape and separation performance. First, they are classified into flat membranes, tubular membranes, and hollow fiber membranes according to their types. Can be. As described above, the use of the separation membrane to separate the mixture by selectively passing a specific component has been widely used in various forms. Among them, the hollow fiber membrane is in the form of a hollow tube, which has a large surface area than other types of membranes, and thus yields a large yield.
한편, 분리막 기술 중 기체 혼합물을 분리하는 기술로는 기체분리막 공정과 분리막 접촉기 공정이 있다. 일반적인 기체분리막 공정에서는 비다공성의 선택층이 적용되며, 선택층에 사용된 기체분리막 고분자와 기체혼합물 중 각 기체성분의 용해도와 확산도 차이에 의해 기체혼합물이 분리된다. 따라서, 일반적인 기체분리막 공정에서는 분리막 선택층 내부의 물질전달속도가 가장 느려 분리막 선택층에서의 물질전달속도가 전체 공정의 율속단계가 된다. 막접촉기 공정에서는 소수성 다공성 분리막을 사용하여 기/액 계면을 형성시키며, 기/액 계면에서 각 기체성분의 액체에 대한 용해도 차이에 의해 기체혼합물을 분리한다. 즉, 용해도가 큰 기체성분이 액체에 빠르게 용해되기 때문에 막접촉기를 통과하면서 기체혼합물의 분리가 이루어진다. 분리막 접촉기에서는 소수성 다공성 분리막을 사용하기 때문에 기체측 물질전달 속도와 분리막 내부 물질전달 속도가 매우 빠르고, 액체측에서의 물질전달 속도가 가장 느려 액체측에서의 물질전달속도가 율속단계가 된다. 분리막 접촉기 공정은 일반적인 기체분리막 공정에 비해 물질전달 속도가 약 1,000배 이상 빠르게 때문에 효과적인 분리막 접촉기용 모듈이 적용되면, 매우 빠르고 경제적으로 기체혼합물을 분리할 수 있는 기술이다.On the other hand, the separation of gas mixture technology in the separation membrane technology includes a gas separation membrane process and a membrane contactor process. In a general gas separation membrane process, a non-porous selection layer is applied, and the gas mixture is separated by the difference in solubility and diffusion of each gas component among the gas separation polymer and gas mixture used in the selection layer. Therefore, in the general gas separation membrane process, the material transfer rate inside the membrane selection layer is the slowest, so that the material transfer speed in the membrane selection layer becomes the rate step of the entire process. In the membrane contactor process, a hydrophobic porous membrane is used to form a gas / liquid interface, and the gas mixture is separated by the difference in solubility of the liquid in each gas component at the gas / liquid interface. That is, the gaseous component having a high solubility dissolves quickly in the liquid, so that the gas mixture is separated while passing through the membrane contactor. Since the membrane contactor uses a hydrophobic porous membrane, the mass transfer rate in the gas side and the inside of the separator are very fast, and the rate in the liquid side is the slowest. Membrane contactor process is a technology that can separate the gas mixture very quickly and economically when an effective membrane contactor module is applied because the material transfer rate is about 1,000 times faster than the conventional gas separation membrane process.
분리막 접촉기 공정에서는 액체측의 물질전달 속도를 높이는 것이 막접촉기 공정의 효율을 결정하게 된다. 막접촉기 모듈 운전에서는 액체를 모듈의 shell side로 공급하는 방식과 중공사(막) 안쪽인 tube side로 공급하는 방식을 모두 사용할 수 있다. 액체측 물질전달 속도를 높이기 위해 액체측에서의 혼합효과가 큰 방식을 사용하여 혼합효과를 높여주면 기/액 계면에서 액체측의 기체 농도를 빠르게 낮추게 되어 기체측으로부터 액체측으로 전달되는 성분의 구동력을 증가시킬 수 있다. 분리막 접촉기 기술은 액체에 대한 용해도 차이에 의해 기체혼합물을 분리하는 용도로 사용될 수도 있지만, 기체 측에 진공을 가해 액체 중에 녹아 있는 기체 성분을 기체측으로 제거하여 순수한 액체를 제조하는 탈기 공정에도 응용될 수 있다.In the membrane contactor process, increasing the material transfer rate on the liquid side determines the efficiency of the membrane contactor process. In the operation of the membrane contactor module, both the liquid supply to the shell side of the module and the tube side inside the hollow fiber (membrane) can be used. Increasing the mixing effect by using the method of high mixing effect on the liquid side to increase the material transfer speed on the liquid side will quickly lower the gas concentration on the liquid side at the gas / liquid interface, increasing the driving force of the components transferred from the gas side to the liquid side. Can be. Membrane contactor technology may be used to separate gas mixtures due to differences in solubility in liquids, but may also be applied to a degassing process that produces a pure liquid by applying a vacuum to the gas side to remove gaseous components dissolved in the liquid to the gas side. have.
분리막 접촉기 모듈에 관한 종래 기술을 살펴보면, "고효율 기체/액체 막접기용 기체분리막 모듈"(한국 공개특허공보 제10-2010-0099530호, 특허문헌 1)에는 도 1에 도시되어 있는 바와 같이 중공사(2) 다발이 플라스틱 또는 금속 하우징(1) 내에 포팅되어 고정된 예가 도시되어 있다.Looking at the prior art regarding the membrane contactor module, "high efficiency gas / liquid membrane contact gas separation membrane module" (Korean Patent Publication No. 10-2010-0099530, Patent Document 1) as shown in Figure 1 hollow fiber (2) An example is shown in which the bundle is potted and fixed in a plastic or metal housing 1.
중공사 내부 공간은 튜브사이드(tube side)라고 부르며, 중공사와 중공사 사이 공간, 중공사와 하우징 사이 공간은 쉘사이드(shell side)라고 부른다.The hollow fiber interior space is called the tube side, and the space between the hollow fiber and the hollow fiber and the space between the hollow fiber and the housing is called the shell side.
도 1과 같은 접촉기 모듈은 튜브사이드 인렛(5)에서 튜브사이드 아웃렛(6)으로 향하는 흐름과, 쉘사이드 인렛(3)에서 쉘사이드 아웃렛(4)으로 향하는 흐름이 향류(counter current)가 되거나 병류로 운전될 수 있다. 예를 들어 향류로 운전되는 경우 튜브사이드와 쉘사이드로 흐르는 유체는 서로 반대 방향으로 흐르게 된다. 쉘사이드로 액체를 튜브사이드로 용해시키고자 하는 혼합기체를 흐르게 하는 경우 중공사의 외벽인 쉘사이드 표면에서는 기/액 계면이 형성되고 이 계면을 통해 혼합기체 구성 성분들이 용해되어 기체 분리가 일어나게 된다. 이때, 기/액 계면 중 쉘사이드의 액체측 계면에 경계층(boundary layer)이 형성되며, 이 경계층에서는 물질전달속도가 매우 느리기 때문에 액체측에서의 물질전달이 분리막 접촉기 모듈 물질전달의 율속단계가 되며, 형성되는 경계층의 두께가 두꺼울수록 물질전달속도는 느려져 분리막 접촉기 모듈의 효율이 저하되는 문제점이 있다. 이러한 문제를 해결하기 위해 쉘사이드로 흐르는 액체의 흐름속도를 증가시켜 줄 수도 있으나, 이러한 흐름 속도를 증가시키는 데에는 물리적인 한계가 발생하게 된다.The contactor module as shown in FIG. 1 has a counter current or a co-current flow from the tube side inlet 5 to the tube side outlet 6 and from the shell side inlet 3 to the shell side outlet 4. Can be driven. For example, when operated in countercurrent, the fluid flowing in the tube side and the shell side flows in opposite directions. When the mixed gas to dissolve the liquid to the tube side flows to the shell side, a gas / liquid interface is formed on the shell side surface, which is the outer wall of the hollow fiber, and the mixed gas components dissolve through this interface to cause gas separation. At this time, a boundary layer is formed at the liquid-side interface of the shell side of the gas / liquid interface, and since the material transfer rate is very slow at this boundary layer, the material transfer at the liquid side becomes a rate-limiting step of the material transfer of the membrane contactor module. The thicker the boundary layer is, the slower the material transfer rate is, which lowers the efficiency of the membrane contactor module. In order to solve this problem, it is possible to increase the flow rate of the liquid flowing to the shell side, but there is a physical limit in increasing this flow rate.
한편, 음식물 쓰레기, 하수슬러지, 가축분뇨 및 도축 폐기물 등의 유기성 물질을 산소가 차단된 상태에서 혐기성 소화과정을 거치면 혐기성 소화가스(Anaerobic Digestion Gas, ADG) 또는 바이오가스(Biogas)라 불리우는 가스가 발생한다. 바이오가스는 45∼70%의 메탄과 30∼55%의 이산화탄소, 수백∼수천 ppm의 황화수소, 수백∼수천 ppm으 암모니아, 수분, 실록산 등의 미량성분으로 조성되어 있다. 바이오가스 중에 포함되어 있는 메탄은 지구온난화지수 21로 대표적인 온실가스로 지정되어 있으며, 자체적인 에너지양이 약 5,000 kcal/㎥이므로 바이오가스 중 메탄을 정제, 회수하여 사용하면 지구온난화 방지, 자원재활용, 신재생에너지 확보라는 목적을 달성 할 수 있다.On the other hand, when anaerobic digestion of organic matters such as food waste, sewage sludge, livestock manure and slaughter waste is carried out with oxygen blocked, a gas called Anaerobic Digestion Gas (ADG) or Biogas is generated. do. Biogas is composed of trace components such as 45 to 70% methane, 30 to 55% carbon dioxide, hundreds to thousands of ppm hydrogen sulfide, and hundreds to thousands of ppm ammonia, water and siloxane. The methane contained in biogas is designated as the representative greenhouse gas with global warming index 21. Since its own energy amount is about 5,000 kcal / ㎥, the purification and recovery of methane from biogas prevents global warming, resource recycling, The goal of securing renewable energy can be achieved.
바이오가스를 자원화하는 방법으로는 직접연소에 의한 전력 및 열 생산(Combined Heat and Power, CHP), 정제를 거쳐 고순도화하여 도시가스 및 자동차연료로 사용할 수 있으며, 바이오가스 발생원 주변의 환경과 경제성에 따라 다양한 활용법이 개발되고 있다. 바이오가스의 자원화 방법 중 가장 경제성이 높고, 에너지 효율이 높은 기술은 바이오가스를 정제과정을 거쳐 고순도화(upgrading)하여 연료로 사용하는 것으로, CHP에 비해 2∼3배의 경제성을 가지고 있다. 이에 따라, 전세계적으로 바이오가스의 자원화 방법은 CHP에서 고순도화에 의한 연료 생산으로 전환되고 있다. 고순도화된 메탄가스(바이오메탄)은 기존 도시가스와 혼합하여 가스레인지, 가스보일러 등에 사용될 수 있으며, CNG 자동차/LNG 자동차의 연료로 사용될 수 있어 신재생에너지 중 가장 활용도가 높은 에너지원이다.Biogas can be used as a source of city gas and automobile fuel through high-purity through direct combustion and combined heat and power (CHP), refining, and environmental and economical efficiency around biogas sources. Therefore, various applications are being developed. The most economical and energy-efficient technology among biogas resource recycling methods uses biogas as a fuel by purifying and purifying the biogas, which is 2 to 3 times more economical than CHP. Accordingly, the globalization of biogas resources has shifted from CHP to high purity fuel production. Highly purified methane gas (biomethane) can be mixed with existing city gas and used in gas ranges, gas boilers, etc., and can be used as fuel for CNG cars / LNG cars.
종래의 바이오가스 정제방법은 물흡수법(Water scrubbing), 화학흡수법(Chemical absorption), 압력변동흡착법(Pressure Swing Adsorption, PSA), 기체분리막법(Gas separation membrane), 액화저온분리법(Cryogenic) 등이 있다.Conventional biogas purification methods include water scrubbing, chemical absorption, pressure swing adsorption (PSA), gas separation membrane, liquefied cryogenic, etc. There is this.
이와 관련하여 "매립지 가스로부터 고순도 메탄가스의 분리방법 및 메탄가스 정제장치"(한국 등록특허공보 제10-1086798호, 특허문헌 2)에는 이러한 종래의 정제방법에 대해 기재되어 있다. 구체적으로, 미국특허 제2009/0156875호에서는 메탄을 주성분으로 하는 천연가스 및 매립가스에서 기액 혼합상태의 혼합물이 1차 기액 분리기에 들어가 메탄을 분리하고, 이후 이산화탄소 흡수제를 사용하여 98 % 이상의 고순도 메탄가스를 생산하는 방법이 개시되어 있다. 또, 한국특허 제0951367호에서는 메탄가스 정제방법으로 활성탄과, 압축, 수막층으로 이루어진 정제탑을 사용하여 밀도와 비중이 작은 메탄가스가 정제탑의 최상부로 포집되는 방식이 개시되어 있다. 또한, 한국특허 제2009-0028696호는 바이오메탄 정제방법에 관한 것으로 타워 및 물 공급/배출관, 가스 공급/배출관 및 흡수탑을 사용하여 정제하는 방식이 개시되어 있다. 또한, 한국특허 제2010-0110229호에는 하수 슬러지, 축산분뇨, 매립쓰레기, 음식물 쓰레기 등 유기성 폐기물의 혐기성 소화에 의하여 발생하는 바이오 가스로부터 바이오 메탄을 정제하는 바이오 메탄 정제방법에 관한 기술이 공개되어 있다. 그러나, 상술한 바이오가스 정제방법은 각 기술 별 단점이 존재한다. 물흡수법의 경우, 대형장치로 인해 플랜트 설치 비용이 높아지고, 공정운영 비용이 많이 발생하며, 화학흡수법은 부가적인 화학물질의 사용에 따라 환경오염을 유발할 수 있다. 압력변동흡착법은 바이오가스 중에 포함되어 있는 황화수소, 암모니아 등에 대한 전처리가 반드시 필요하며, 전처리가 충분하지 않을 경우 효율이 급격히 저하되며, 플랜트 운전 기간이 길어짐에 따라 흡착제의 마모에 따른 미세분말 발생에 따라 운전압력이 증가하며, 흡착제의 피로도 증가에 따라 분리효율이 감소한다. 기체분리막법의 경우에도 분리막을 손상시킬 수 있는 황화수소, 암모니아 등에 대한 전처리가 반드시 필요하며, 메탄/이산화탄소에 대한 선택도가 다소 낮아 분리효율이 낮은 단점이 있으며, 이산화탄소에 의한 고분자 분리막 가소화 현상에 의해 시간이 지남에 따라 분리효율이 감소한다. 액화저온분리법은 액화에 필요한 저온을 얻기 위해 에너지가 많이 소모되어 특정한 조건을 갖추지 못하면 경제성이 좋지 않아 상용화의 걸림돌이 된다.In this regard, "a method for separating high-purity methane gas from landfill gas and a methane gas purification apparatus" (Korean Patent Publication No. 10-1086798, Patent Document 2) describes such a conventional purification method. Specifically, US Patent No. 2009/0156875 discloses a mixture of gas-liquid mixed state in a natural gas and landfill gas mainly composed of methane enters a primary gas-liquid separator to separate methane, and then, using a carbon dioxide absorbent, high purity methane of 98% or more. A method of producing a gas is disclosed. In addition, Korean Patent No. 0951367 discloses a method in which methane gas having a low density and specific gravity is collected at the top of a purification tower by using a purification tower composed of activated carbon, a compression, and a water film layer as a methane purification method. In addition, Korean Patent No. 2009-0028696 relates to a method for purifying biomethane and discloses a purification method using a tower and a water supply / discharge tube, a gas supply / discharge tube, and an absorption tower. In addition, Korean Patent No. 2010-0110229 discloses a technique related to a biomethane purification method for purifying biomethane from biogas generated by anaerobic digestion of organic waste such as sewage sludge, livestock waste, landfill waste, and food waste. . However, the above-described biogas purification method has disadvantages for each technology. In the case of water absorption, large installations increase plant installation costs, incur high process operation costs, and chemical absorption can lead to environmental pollution due to the use of additional chemicals. Pressure swing adsorption requires the pretreatment of hydrogen sulfide, ammonia, etc. contained in biogas, and if the pretreatment is insufficient, the efficiency decreases rapidly. As the plant operation period becomes longer, the fine powder is generated due to the wear of the adsorbent. The operating pressure increases and the separation efficiency decreases as the fatigue of the adsorbent increases. Even in the case of the gas separation membrane method, pretreatment for hydrogen sulfide and ammonia, which may damage the separator, is necessary, and the selectivity to methane / carbon dioxide is rather low, resulting in low separation efficiency. As a result, the separation efficiency decreases over time. The liquefied low temperature separation method consumes a lot of energy to obtain the low temperature required for liquefaction, and if it does not meet specific conditions, the economic efficiency is not good, and it becomes an obstacle to commercialization.
*선행기술문헌** Prior art literature *
(특허문헌 1) KR10-2010-0099530 (2010.09.13)(Patent Document 1) KR10-2010-0099530 (2010.09.13)
(특허문헌 2) KR 10-1086798 (2011.11.18)(Patent Document 2) KR 10-1086798 (2011.11.18)
본 발명의 분리막 접촉기 모듈 및 이를 이용한 바이오가스 정제용 막 접촉 시스템 및 막 접촉 방법은 상기와 같은 종래 기술에서 발생하는 문제점을 해소하기 위한 것으로, 분리막 접촉기용 중공사막 모듈의 내부 구조를 종래와 달리 함으로써 쉘사이드에서 액체의 흐름에 변화가 발생되도록 하여 분리막 접촉기의 성능을 효과적으로 향상시키고, 이를 통해 메탄을 고순도로 정제할 수 있게 하려는 것이다.The membrane contactor module of the present invention, and the membrane contact system and membrane contact method for purification of biogas using the same are to solve the problems occurring in the prior art, and by changing the internal structure of the hollow fiber membrane module for membrane contactors, The change in the flow of liquid in the shellside effectively improves the performance of the membrane contactor, thereby allowing high purity purification of methane.
구체적으로, 종래의 중공사막 분리막 접촉기 모듈의 쉘사이드에서 일어날 수 없는 크로스 플로우(Cross flow)가 분리막 모듈 쉘사이드에서 발생되도록 함으로써 경계층 두께를 감소시켜 혼합 효과가 최대로 발휘되게 함으로써 고순도의 메탄을 정제할 수 있게 하려는 것이다.Specifically, the cross-flow which cannot occur at the shell side of the conventional hollow fiber membrane contactor module is generated at the membrane module shell side, thereby reducing the boundary layer thickness to maximize the mixing effect, thereby purifying methane of high purity. I want to be able to.
상기와 같은 과제를 해결하기 위한 본 발명의 분리막 접촉기 모듈은, 내부가 빈 중공 형상으로 이루어진 모듈하우징(10)과; 상기 모듈하우징 내부에 길이 방향을 따라 모듈하우징(10) 내벽면과 이격된 채 설치되어 쉘사이드(11)를 형성하고, 내부에 길이방향으로 튜브사이드(21)가 형성되어 있는 중공사(20)와; 상기 모듈하우징(10) 양단에 각각 설치되어 있고, 일측에 튜브사이드유입구(31)가 형성되어 있으며, 타측에 튜브사이드배출구(32)가 형성되어 있고, 내부공간(33)이 상기 튜브사이드(21)와 연통되고 쉘사이드(11)와 차단되도록 격벽(34)이 형성되어 있는 두 개의 캡(30)과; 상기 두 캡(30)을 관통한 채 중간 부분이 상기 모듈하우징(10) 내부에 위치하도록 설치되어 있으며, 일측 단부에 쉘사이드유입구(41)가 형성되어 있고, 타측 단부에 쉘사이드배출구(42)가 형성되어 있는 내부가 빈 관 형태로 이루어져 있되, 중간 부분 내측에 칸막이(43)가 설치되어 있고, 칸막이(43)를 기준으로 양측 외주면에 다수 개의 홀(44)이 형성되어 있어 쉘사이드유입구(41) 측 홀(44)로부터 액체가 쉘사이드(11)로 이동하고, 쉘사이드배출구(42) 측 홀(44)을 통해 쉘사이드(11) 측의 액체가 내부로 유입된 채 쉘사이드배출구(42)로 이동하도록 이루어진 유로제어튜브(40);를 포함하여 구성된다.The membrane contactor module of the present invention for solving the above problems, the module housing 10 made of a hollow hollow shape; The hollow fiber 20 having a shell side 11 formed inside the module housing and spaced apart from the inner wall surface of the module housing 10 along a longitudinal direction, and having a tube side 21 formed in the longitudinal direction therein. Wow; It is provided at both ends of the module housing 10, the tube side inlet 31 is formed on one side, the tube side outlet 32 is formed on the other side, the inner space 33 is the tube side 21 Two caps 30 having a partition 34 formed therein so as to be in communication with the shell side 11; A middle part is installed to penetrate the two caps 30 and is located inside the module housing 10. A shell side inlet 41 is formed at one end and a shell side outlet 42 at the other end. The inside is formed in the form of a hollow tube, the partition 43 is installed inside the middle portion, and the plurality of holes 44 are formed on both outer peripheral surfaces based on the partition 43, the shell side inlet ( 41, the liquid moves from the side hole 44 to the shell side 11, and the liquid on the side of the shell side 11 flows into the shell side outlet port 44 through the shell side outlet 42 side hole 44. It is configured to include; flow path control tube 40 configured to move to 42.
이러한 구성에 있어서, 길이 방향을 따라 내부에 다수 개의 차단벽(51)이 형성되어 차단벽(51)에 의해 분할된 다수 개의 유닛설치공간(52)이 형성되어 상기 모듈하우징(10), 중공사(20), 캡(30) 및 유로제어튜브(40)가 하나의 유닛(60)을 이룬 채 상기 유닛설치공간(52)에 각각 삽입되고, 벽면에는 각 유닛설치공간(52)을 연결하는 연결통로(53)가 형성되어 있고, 연결통로(53)는 인접한 유닛(60)의 캡(30) 내부공간(33)을 서로 연결하도록 이루어져 있으며, 인접한 유닛(60)의 유로제어튜브(40)는 내부가 서로 연통되도록 설치되는 외부케이스(50)가 더 구비되어 있는 것을 특징으로 한다.In this configuration, a plurality of blocking walls 51 are formed inside the longitudinal direction to form a plurality of unit installation spaces 52 divided by the blocking walls 51 to form the module housing 10 and the hollow fiber. 20, the cap 30 and the flow path control tube 40 is inserted into the unit installation space 52 to form a unit 60, respectively, the wall connection to connect each unit installation space 52 A passage 53 is formed, and the connection passage 53 is configured to connect the inner space 33 of the cap 30 of the adjacent unit 60 to each other, and the flow path control tube 40 of the adjacent unit 60 is It is characterized in that the inner case 50 is further provided to communicate with each other inside.
상기 홀(44)은 직경이 0.5 ~ 50mm의 크기로 이루어진 것을 특징으로 한다.The hole 44 is characterized in that the diameter is made of a size of 0.5 ~ 50mm.
상기 홀(44)은 유로제어튜브(40)의 축방향과 일직선이 되거나, 나선형으로 축방향으로 따라 형성된 단일 슬롯 형상인 것을 특징으로 한다.The hole 44 is in a straight line with the axial direction of the flow path control tube 40, it characterized in that the single slot shape formed along the axial direction in a spiral.
상기 홀(44)은 유로제어튜브(40) 단면을 기준으로 외주면에 등분할된 위치에 복수 개 형성되어 있는 것을 특징으로 한다.The hole 44 is characterized in that a plurality of holes are formed in equally divided positions on the outer circumferential surface based on the cross section of the flow path control tube (40).
이때, 상기 홀(44)은 유로제어튜브(40) 외주면을 따라 나선형으로 형성되어 있는 것을 특징으로 한다.At this time, the hole 44 is characterized in that formed in a spiral along the outer peripheral surface of the flow path control tube (40).
또, 상기 홀(44)은 유로제어튜브(40)의 길이 방향을 따라 다수 개가 일정 간격으로 형성되어 있되, 칸막이(43)에 인접한 선단의 홀(44)은 격벽(34)으로부터 칸막이(43) 사이의 거리의 3/5 ~ 4/5 에 위치한 것을 특징으로 한다.In addition, a plurality of the holes 44 are formed at regular intervals along the length direction of the flow path control tube 40, but the holes 44 at the tip adjacent to the partition 43 are partition 43 from the partition 34. It is characterized by being located at 3/5 ~ 4/5 of the distance between.
아울러, 상기 모듈하우징(10)의 내경/길이는 1/2 ~1/20인 것을 특징으로 한다.In addition, the inner diameter / length of the module housing 10 is characterized in that 1/2 ~ 1/20.
본 발명의 바이오가스 정제용 막접촉 시스템은, 액체에 용해되는 성질을 갖는 기체를 포함한 바이오가스를 상압보다 큰 압력으로 가압하는 가스압축기(100)와; 내부가 빈 중공 형상으로 이루어진 모듈하우징(210)과, 상기 모듈하우징 내부에 길이 방향을 따라 모듈하우징(210) 내벽면과 이격된 채 설치되어 외측으로 쉘사이드(211)를 형성하고, 내부에 길이방향으로 튜브사이드(221)가 형성되어 있는 중공사막(220)과, 상기 모듈하우징(210) 양단에 각각 설치되어 있고, 일측에 상기 가스압축기(100)에서 압축된 바이오가스가 유입되는 튜브사이드유입구(231)가 형성되어 있으며, 타측에 막 접촉된 바이오가스가 배출되는 튜브사이드배출구(232)가 형성되어 있고, 내부공간(233)이 상기 튜브사이드(221)와 연통되고 쉘사이드(211)와 차단되도록 격벽(234)이 형성되어 있는 두 개의 캡(230)과, 상기 두 캡(230)을 관통한 채 중간 부분이 상기 모듈하우징(210) 내부에 위치하도록 설치되어 있으며, 일측 단부에 외부로부터 액체가 유입되는 쉘사이드유입구(241)가 형성되어 있고, 타측 단부에 유입된 액체가 배출되는 쉘사이드배출구(242)가 형성되어 있는 내부가 빈 관 형태로 이루어져 있되, 중간 부분 내측에 칸막이(243)가 설치되어 있고, 칸막이(243)를 기준으로 양측 외주면에 다수 개의 홀(244)이 형성되어 있어 쉘사이드유입구(241) 측 홀(244)로부터 액체가 쉘사이드(211)로 이동하고, 쉘사이드배출구(242) 측 홀(244)을 통해 쉘사이드(211) 측의 액체가 내부로 유입된 채 쉘사이드배출구(242)로 이동하도록 이루어진 유로제어튜브(240)로 구성된 흡수 분리막 접촉기 모듈(200)과; 상기 흡수 분리막 접촉기 모듈(200)의 쉘사이드배출구(242)에서 토출된 액체를 상압 또는 진공 상태에서 내부에 저장하는 탈기탱크(300)와; 일측은 상기 탈기탱크(300) 상부에 연결되어 있고, 타측은 상기 가스압축기(100)에 연결되어 있고, 관로 중간에 블로워(410)가 설치되어 상기 비용해 상태의 기체를 상기 가스압축기(100)로 공급하는 기체배출관(400)과; 내부가 빈 중공 형상으로 이루어진 모듈하우징(510)과, 상기 모듈하우징 내부에 길이 방향을 따라 모듈하우징(510) 내벽면과 이격된 채 설치되어 외측으로 쉘사이드(511)를 형성하고, 내부에 길이방향으로 튜브사이드(521)가 형성되어 있는 중공사막(520)과, 상기 모듈하우징(510) 양단에 각각 설치되어 있고, 내부공간(533)이 상기 튜브사이드(521)와 연통되고 쉘사이드(511)와 차단되도록 격벽(534)이 형성되어 있으며, 양측에 진공펌프(550)와 배관 연결된 튜브사이드배출구(531)가 형성되어 튜브사이드(521) 내부 공기가 진공펌프(550)에 의해 외부로 배출되어 튜브사이드(521)에 진공이 형성되도록 이루어져 있는 두 개의 캡(530)과, 상기 두 캡(530)을 관통한 채 중간 부분이 상기 모듈하우징(510) 내부에 위치하도록 설치되어 있으며, 일측 단부에 상기 탈기탱크(300)와 배관 연결되어 탈기탱크(300)에 저장된 액체가 유입되는 쉘사이드유입구(541)가 형성되어 있고, 타측 단부에 내부로 유입된 액체가 배출되는 쉘사이드배출구(542)가 형성되어 있는 내부가 빈 관 형태로 이루어져 있되, 중간 부분 내측에 칸막이(543)가 설치되어 있고, 칸막이(543)를 기준으로 양측 외주면에 다수 개의 홀(544)이 형성되어 있어 쉘사이드유입구(541) 측 홀(44)로부터 액체가 쉘사이드(511)로 이동하고, 쉘사이드배출구(542) 측 홀(544)을 통해 쉘사이드(511) 측의 액체가 내부로 유입된 채 쉘사이드배출구(542)로 이동하도록 이루어진 유로제어튜브(540)로 구성된 탈기 분리막 접촉기 모듈(500)과; 일측은 상기 쉘사이드배출구(542)와 연결되어 있고, 타측은 상기 흡수 분리막 접촉기 모듈(200)의 쉘사이드유입구(241)와 연결되어 있으며, 관로 일측에 가압펌프(610)가 설치되어 탈기 분리막 접촉기 모듈(500)을 통과한 액체를 가압시킨 상태로 상기 상기 흡수 분리막 접촉기 모듈(200)로 공급하도록 이루어진 액체순환관(600);을 포함하여 구성된다.The biogas refining membrane contact system of the present invention comprises: a gas compressor (100) for pressurizing a biogas including a gas having a property of dissolving in a liquid to a pressure greater than normal pressure; A module housing 210 having an empty hollow shape and an inside of the module housing are installed to be spaced apart from the inner wall surface of the module housing 210 along a length direction to form a shell side 211 to the outside, and a length inside the module housing 210. The hollow fiber membrane 220 and the tube housing 221 in which the tube side 221 is formed, respectively, are installed at both ends of the module housing 210, and the tube side inlet through which the biogas compressed by the gas compressor 100 flows on one side. 231 is formed, a tube side discharge port 232 through which the biogas in contact with the other side is discharged is formed, and the inner space 233 is in communication with the tube side 221 and the shell side 211 Two caps 230 having the partition wall 234 formed to be blocked, and the middle portion penetrates the two caps 230 and are installed to be positioned inside the module housing 210, and at one end thereof from the outside. Liquid flows in Shell side inlet 241 is formed, the shell side discharge port 242 is formed inside the empty tube form is formed, the liquid flowing in the other end is discharged, the partition 243 is provided inside the middle portion In addition, a plurality of holes 244 are formed at both outer peripheral surfaces of the partition 243, so that the liquid moves from the hole 244 at the shellside inlet 241 to the shellside 211, and the shellside outlet 242. Absorption membrane contactor module 200 composed of a flow path control tube 240 is configured to move to the shell side outlet 242 while the liquid on the side of the shell side 211 through the hole (244) side; A degassing tank 300 for storing the liquid discharged from the shell side outlet 242 of the absorption separator contactor module 200 at atmospheric pressure or in a vacuum state; One side is connected to the upper side of the degassing tank 300, the other side is connected to the gas compressor 100, a blower 410 is installed in the middle of the pipeline to the gas in the injured state of the gas compressor 100 Gas discharge pipe 400 for supplying with; A module housing 510 having an empty hollow shape and a module housing 510 spaced apart from an inner wall surface of the module housing 510 in a longitudinal direction inside the module housing are formed to form a shell side 511 to the outside and have a length therein. The hollow fiber membrane 520 in which the tube side 521 is formed, and the module housing 510 at both ends, respectively, and an inner space 533 communicates with the tube side 521 and the shell side 511. The barrier ribs 534 are formed to be blocked from each other, and the tube side discharge ports 531 connected to the vacuum pump 550 are formed on both sides thereof, and the air inside the tube side 521 is discharged to the outside by the vacuum pump 550. And two caps 530 configured to form a vacuum in the tube side 521, and an intermediate portion is installed inside the module housing 510 while penetrating the two caps 530. In the degassing tank 300 and piping A shell-side inlet 541 is formed to be connected to the liquid stored in the degassing tank 300, and a shell-side outlet 542 is formed in which the liquid introduced into the other end is discharged. The partition 543 is provided inside the middle portion, and a plurality of holes 544 are formed on both outer peripheral surfaces of the partition 543 so that the liquid from the hole 44 at the side of the shellside inlet 541 is formed. Flows to the shell side 511 and moves to the shell side outlet 542 while the liquid on the side of the shell side 511 flows into the shell side through the hole 544 of the shell side outlet 542. A degassing membrane contactor module 500 consisting of 540; One side is connected to the shell side outlet 542, the other side is connected to the shell side inlet 241 of the absorption separator contactor module 200, and a pressure pump 610 is installed at one side of the pipeline to provide a deaeration separator contactor. And a liquid circulation tube 600 configured to supply the liquid passing through the module 500 to the absorption separator contactor module 200 in a pressurized state.
본 발명의 바이오가스 정제용 막접촉 방법은, 상기 시스템을 이용하여 액체에 용해되는 성질을 갖는 기체를 포함하는 바이오가스를 상기 가스압축기(100)를 이용하여 상압보다 높은 압력으로 압축시키는 단계와; 상기 가스압축기(100)에서 가압된 바이오가스를 상기 흡수 분리막 접촉기 모듈(200)의 튜브사이드유입구(231)로 공급하여 중공사막(220) 일측에 막 접촉하게 하고, 상기 가압펌프(610)를 이용하여 흡수 분리막 접촉기 모듈(200)의 튜브사이드유입구(231)로 가압된 바이오가스보다 높은 압력으로 액체를 쉘사이드유입구(241)로 공급하여 중공사막(220) 타측에 막 접촉하게 하는 단계와; 상기 중공사막(220)과 막 접촉한 후 쉘사이드배출구(242)로 배출된 액체는 상압 또는 진공이 유지되는 상기 탈기탱크(300)로 공급하여 탈기탱크(300) 내부에서 액체와 상기 액체에 용해되는 성질의 기체가 용해 평형이 이루어질 때까지 상기 기체를 1차 탈기하는 단계와; 상기 탈기탱크(300)에서 탈기되어 비용해 상태가 된 기체를 상기 기체배출관(400)을 통해 가스압축기(100)로 공급하는 단계와; 상기 탈기탱크(300)에서 1차 탈기된 액체를 상기 탈기 분리막 접촉기 모듈(500)의 쉘사이드유입구(541)로 공급하여 중공사막(520) 일측에 막 접촉시키고, 상기 진공펌프(550)로 탈기 분리막 접촉기 모듈(500)의 튜브사이드(521)에 진공을 가하여 2차 탈기시키는 단계와; 상기 탈기 분리막 접촉기 모듈(500)의 쉘사이드배출구(542)로 배출된 액체를 상기 가압펌프(610)로 가압한 채 상기 액체순환관(600)을 통해 상기 흡수 분리막 접촉기 모듈(200)의 쉘사이드유입구(241)를 통해 흡수 분리막 접촉기 모듈(200)로 공급하는 단계;를 포함하여 구성된다.The biogas refining membrane contact method of the present invention comprises the steps of: compressing a biogas containing a gas having a property of dissolving in a liquid by using the system to a pressure higher than normal pressure using the gas compressor (100); The biogas pressurized by the gas compressor 100 is supplied to the tube side inlet 231 of the absorption separator contactor module 200 to make membrane contact with one side of the hollow fiber membrane 220, and the pressure pump 610 is used. Supplying the liquid to the shellside inlet 241 at a higher pressure than the biogas pressurized by the tubeside inlet 231 of the absorption separator contactor module 200 to make the membrane contact with the other side of the hollow fiber membrane 220; The liquid discharged to the shell side outlet 242 after the membrane contact with the hollow fiber membrane 220 is supplied to the degassing tank 300 maintained at atmospheric pressure or vacuum to be dissolved in the liquid and the liquid in the degassing tank 300. Firstly degassing the gas until dissolution equilibrium occurs; Supplying a gas degassed in the degassing tank (300) to the gas compressor (100) through the gas discharge pipe (400); The first degassed liquid from the degassing tank 300 is supplied to the shell side inlet 541 of the degassing membrane contactor module 500 to make membrane contact with one side of the hollow fiber membrane 520, and degassed with the vacuum pump 550. Applying a vacuum to the tube side 521 of the membrane contactor module 500 to perform secondary degassing; Shell side of the absorption separator contactor module 200 through the liquid circulation tube 600 while pressurizing the liquid discharged to the shell side outlet 542 of the degassing membrane contactor module 500 with the pressure pump 610. It is configured to include; supplying to the absorption separator contactor module 200 through the inlet 241.
이러한 구성에 있어서, 상기 가압펌프(610)를 통해 액체에 가해지는 압력은 바이오가스에 가해지는 압력보다 0.3 bar - 0.7 bar 높게 유지시키는 것을 특징으로 한다.In this configuration, the pressure applied to the liquid through the pressure pump 610 is characterized in that it is maintained 0.3 bar-0.7 bar higher than the pressure applied to the biogas.
또, 가스압축기(100)를 통해 압축되어 흡수 분리막 접촉기 모듈(200)로 공급되는 기체유량과 가압펌프(610)를 통해 흡수 분리막 접촉기 모듈(200)로 공급되는 액체의 유량의 비율을 0.01∼10으로 유지시키는 것을 특징으로 한다.In addition, the ratio of the gas flow rate compressed through the gas compressor 100 to the absorption separator contactor module 200 and the flow rate of the liquid supplied to the absorption separator contactor module 200 through the pressure pump 610 is 0.01 to 10. It is characterized by maintaining as.
또, 상기 바이오가스는 유기성 물질의 혐기성 소화과정에서 발생하는 혼합기체로 메탄, 이산화탄소, 황화수고, 암모니아 중 어느 하나가 포함된 것을 특징으로 한다.In addition, the biogas is a mixed gas generated during the anaerobic digestion of organic substances, characterized in that any one of methane, carbon dioxide, toil sulfide, ammonia is included.
더불어, 상기 1차 탈기시 탈기탱크(300)는 내부 온도를 5 ~ 50℃로 유지하는 것을 특징으로 한다.In addition, the degassing tank 300 during the first degassing is characterized in that the internal temperature is maintained at 5 ~ 50 ℃.
본 발명에 의해, 동일한 수량과 길이의 중공사막을 사용한 종래의 접촉기 모듈에 비해 분리효율을 보다 향상시킬 수 있게 된다.According to the present invention, the separation efficiency can be further improved as compared with the conventional contactor module using the hollow fiber membrane of the same quantity and length.
보다 구체적으로, 일반적인 접촉기 모듈의 쉘사이드에서는 십자흐름(cross flow)이 발생하지 않아 혼합효과를 기대하기 어려우며, 경계층 형성에 따라 분리효율에 한계를 나타낸 반면 본 발명에 의한 접촉기 모듈은 쉘사이드의 십자흐름을 크게 유발하여 큰 혼합효과를 나타내며, 이에 따라 쉘사이드의 경계층 두께를 감소시켜 모듈의 성능이 극대화 된다.More specifically, cross flow does not occur in the shell side of a general contactor module, so it is difficult to expect a mixing effect, and the separation efficiency according to the boundary layer is formed, whereas the contactor module according to the present invention crosses the shell side. Induces a large flow, resulting in a large mixing effect, thereby reducing the thickness of the shell layer boundary layer to maximize the performance of the module.
이를 통해, 압력변동흡착법, 기체분리막법 등에서 반드시 필요한 황화수소, 암모니아 등을 제거하는 별도의 전처리 과정이 필요하지 않으며, 상기한 접촉기 모듈을 통해 단위부피당 기/액 접촉면적이 충진제를 흡수탑에 사용하는 기존 흡수법에 비해 2∼3배 증가되어 작은 장치규모로도 동일한 양의 바이오가스를 정제할 수 있게 된다.This eliminates the need for a separate pretreatment process to remove hydrogen sulfide, ammonia, etc., which are necessary in the pressure swing adsorption and gas separation membrane processes. Compared with the existing absorption method, it is increased 2-3 times, so that the same amount of biogas can be purified even with a small device size.
또한 흡수액으로 물을 사용하기 때문에 환경 오염의 발생 우려가 적어진다.In addition, since water is used as the absorbent liquid, there is less concern about environmental pollution.
더불어, 바이오 가스를 상압보다 높은 압력으로 압축하여 중공사막의 일측에 막 접촉하게 하고, 이와 동시에 물에, 혼합 가스의 벌크 플로우(bulk flow:혼합 가스 전체가 압력에 의하여 물 내부에 흘러들어 오는 것)를 차단할 수 있는 정도의 차압을 갖는 압력을 가하면, 물에는 바이오가스에 의한 기포가 발생하지 않으면서, 수용성 기체에 작용하는 부분압력은 바이오가스에 작용하는 압력에 비례하여 커지므로, 물에 대한 수용성 기체의 용해량이 바이오가스의 압력 증가에 비례하여 늘어나게 된다. In addition, the biogas is compressed to a pressure higher than the normal pressure to make the membrane contact with one side of the hollow fiber membrane, and at the same time, the bulk flow of the mixed gas flows into the water by the pressure. When a pressure with a differential pressure that can block) is applied, the partial pressure acting on the water-soluble gas increases in proportion to the pressure acting on the biogas without generating bubbles due to biogas in the water. The amount of dissolved gas is increased in proportion to the increase in pressure of the biogas.
또한, 본 발명에 따르면, 기존의 흡수법, 압력변환 흡착법, 기체분리막법을 이용하는 공정에 비하여 고효율, 저에너지 비용으로 바이오가스로부터 메탄을 분리할 수 있어 온실가스 배출을 억제하고 메탄을 연료로 사용할 수 있는 효과가 크다.In addition, according to the present invention, methane can be separated from biogas at high efficiency and low energy cost compared to the processes using the conventional absorption method, pressure conversion adsorption method, and gas separation membrane method, thereby suppressing greenhouse gas emissions and using methane as fuel. The effect is great.
도 1은 종래의 분리막 접촉기용 중공사막 모듈의 일 예를 나타낸 개략도.1 is a schematic view showing an example of a hollow fiber membrane module for a conventional membrane contactor.
도 2는 본 발명의 분리막 접촉기 모듈의 일 실시예를 나타낸 부분절단 사시도.Figure 2 is a partially cut perspective view showing an embodiment of the membrane contactor module of the present invention.
도 3은 도 2에서 일측 단부측을 확대하여 나타낸 부분절단 사시도.Figure 3 is a partially cut perspective view showing an enlarged one end side in Figure 2;
도 4는 도 2에서 타측 단부측을 확대하여 나타낸 부분절단 사시도.Figure 4 is a partially cut perspective view showing the other end side in an enlarged view in FIG.
도 5는 본 발명에서 외부케이스가 추가로 구성되어 다단 연결된 형태를 나타낸 단면 개략도.Figure 5 is a schematic cross-sectional view showing a form in which the outer casing is further configured in a multi-stage connected in the present invention.
도 6은 본 발명에서 유로제어튜브의 일 실시예를 나타낸 평면도.Figure 6 is a plan view showing an embodiment of the flow path control tube in the present invention.
도 7은 본 발명에서 유로제어튜브의 또다른 실시예를 나타낸 평면도.Figure 7 is a plan view showing another embodiment of the flow path control tube in the present invention.
도 8은 본 발명의 바이오가스 정제용 막 접촉 시스템을 나타낸 구성도.8 is a schematic view showing a membrane contact system for purifying biogas of the present invention.
*도면의 주요부호에 대한 상세한 설명** Detailed description of the major symbols in the drawings *
10, 210, 510 : 모듈하우징 10, 210, 510: module housing
11, 211, 511 : 쉘사이드11, 211, 511: shellside
20, 220, 520 : 중공사막 20, 220, 520: hollow fiber membrane
21, 221, 521 : 튜브사이드21, 221, 521 tube side
30, 230, 530 : 캡 30, 230, 530: cap
31, 231 : 튜브사이드유입구31, 231: tube side inlet
32, 232, 531 : 튜브사이드배출구 32, 232, 531: tube side outlet
33, 233, 533 : 내부공간33, 233, 533: interior space
34, 234, 534 : 격벽 34, 234, 534: bulkhead
40, 240, 540 : 유로제어튜브40, 240, 540: Euro control tube
41, 241, 541 : 쉘사이드유입구 41, 241, 541: shell side inlet
42, 242, 542 : 쉘사이드배출구42, 242, 542: shell side outlet
43, 243, 543 : 칸막이 43, 243, 543: dividers
44, 244, 544 : 홀44, 244, 544: hall
50 : 외부케이스 50: outer case
51 : 차단벽51: blocking wall
52 : 유닛설치공간 52: unit installation space
53 : 연결통로53: connecting passage
60 : 유닛 60: unit
100 : 가스압축기100: gas compressor
200 : 흡수 분리막 접촉기 모듈 200: Absorption membrane contactor module
300 : 탈기탱크300: degassing tank
400 : 기체배출관 400: gas discharge pipe
410 : 블로워410 blower
500 : 탈기 분리막 접촉기 모듈 500: deaeration membrane contactor module
550 : 진공펌프550: vacuum pump
600 : 액체순환관 600: liquid circulation tube
610 : 가압펌프610: pressure pump
이하, 첨부된 도면을 통해 본 발명의 분리막 접촉기 모듈에 대해 상세히 설명하기로 한다.Hereinafter, the separator contactor module of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 분리막 접촉기 모듈은 크게 모듈하우징(10), 중공사막(20), 캡(30) 및 유로제어튜브(40)로 구성되어 있다.The membrane contactor module of the present invention is largely composed of a module housing 10, a hollow fiber membrane 20, a cap 30, and a flow path control tube 40.
모듈하우징(10)은 도 2에 도시되어 있는 바와 같이 내부가 빈 중공 형상을 이룬다.The module housing 10 has a hollow shape as shown in FIG. 2.
모듈하우징(10)의 재질은 PVC, CPVC, PC, 아크릴, ABS, PET, PP, PE 등의 플라스틱 재질과 알루미늄, 스테인레스 스틸 등의 금속재질이 사용될 수 있지만, 반드시 이에 제한되는 것은 아니다.The material of the module housing 10 may be a plastic material such as PVC, CPVC, PC, acrylic, ABS, PET, PP, PE, and metal materials such as aluminum and stainless steel, but is not limited thereto.
더불어, 모듈하우징(10)의 양측 단부는 캡(30)과 연결되기 위해 나사산이나 플랜지부 등이 형성될 수 있다 할 것이다.In addition, both ends of the module housing 10 may be formed with a thread or a flange to be connected to the cap 30.
이러한 모듈하우징(10)은 내경/길이가 1/2 ~1/20인 것이 바람직하다.The module housing 10 preferably has an inner diameter / length of 1/2 to 1/220.
내경 길이의 비가 상기한 최소 비율보다 작을 경우 도 5와 같은 직렬 배치를 통한 분리에 부적합하고, 공간 활용이 잘 이루어지지 않게 되며, 반대로 최대 비율보다 클 경우에는 유로제어튜브(40)보다 멀리 떨어진 부분이 형성되고 이 부분에서는 원할한 분리가 이루어지지 않게 된다.When the ratio of the inner diameter length is smaller than the minimum ratio described above, it is unsuitable for separation through the serial arrangement as shown in FIG. 5, and the space utilization is not well achieved. This is formed and smooth separation is not achieved in this part.
중공사막(20)은 익히 알려진 바와 같이 내부에 길이 방향으로 중공인 튜브사이드(21)가 형성되어 있는 것으로, 상기한 모듈하우징(10) 내부에 길이 방향을 따라 설치되어 있다.As is well known, the hollow fiber membrane 20 is formed with a tube side 21 hollow in the longitudinal direction therein, and is installed along the longitudinal direction inside the module housing 10 described above.
이때, 중공사막(20)은 모듈하우징(10) 내벽면과 이격된 채 설치되어 쉘사이드(11)를 형성하게 된다.At this time, the hollow fiber membrane 20 is installed to be spaced apart from the inner wall surface of the module housing 10 to form a shell side (11).
또, 모듈하우징(10) 내부에 다수의 중공사막(20)이 서로 이격된 채 설치됨으로써 이격된 공간인 쉘사이드(11)를 형성하게 된다.In addition, the plurality of hollow fiber membranes 20 are installed in the module housing 10 so as to be spaced apart from each other, thereby forming a shellside 11 which is a space.
캡(30)은 도 1 내지 3에 도시되어 있는 바와 같이 두 개로 구성되어 상기 모듈하우징(10) 양단에 각각 설치되어 있다. Cap 30 is composed of two as shown in Figures 1 to 3 are respectively installed at both ends of the module housing (10).
이러한 두 캡(30) 중 일측의 캡(30)에는 가스가 유입되는 튜브사이드유입구(31)가 형성되어 있으며, 타측의 캡(30)에는 유입된 가스가 배출되는 튜브사이드배출구(32)가 형성되어 있다.One of these two caps 30 has a tube side inlet 31 through which gas is introduced, and a tube side outlet 32 through which gas is introduced is formed at the cap 30 on the other side. It is.
더불어, 캡(30)과 모듈하우징(10) 내부 공간 사이에는 격벽(34)이 형성되어 공간을 분리시키되, 상기한 중공사막(20)이 격벽(34)에 연결됨으로써 캡(30) 내부공간(33)은 중공사막(20) 내부공간인 상기 튜브사이드(21)와 연통되고 쉘사이드(11)와는 차단되게 된다.In addition, the partition 30 is formed between the cap 30 and the inner space of the module housing 10 to separate the space, but the hollow fiber membrane 20 is connected to the partition 34 so that the inner space of the cap 30 ( 33 is in communication with the tube side 21 which is an internal space of the hollow fiber membrane 20 and is blocked from the shell side 11.
유로제어튜브(40)는 본 발명에서 주요한 구성요소로, 상기 두 캡(30)을 관통한 채 중간 부분이 상기 모듈하우징(10) 내부에 위치하도록 설치되어 있다.The flow path control tube 40 is a main component in the present invention, and is installed such that an intermediate portion is located inside the module housing 10 while passing through the two caps 30.
아울러, 일측 단부에는 액체가 유입되는 쉘사이드유입구(41)가 형성되어 있고, 타측 단부에는 유입된 액체가 배출되는 쉘사이드배출구(42)가 형성되어 있다.In addition, a shellside inlet 41 through which liquid is introduced is formed at one end, and a shellside outlet 42 through which the introduced liquid is discharged is formed at the other end.
이러한 유로제어튜브(40)는 내부가 빈 관 형태로 이루어져 있되, 중간 부분 내측에 칸막이(43)가 설치되어 있다.The flow control tube 40 is made of a hollow tube shape, the partition 43 is installed inside the middle portion.
이로 인해 쉘사이드유입구(41)로 유입된 액체가 다이랙트로 쉘사이드배출구(42)로 배출되지 못하게 된다.This prevents the liquid introduced into the shellside inlet 41 from being discharged to the shellside outlet 42 by direct action.
아울러, 칸막이(43)를 기준으로 양측 외주면에는 다수 개의 홀(44)이 형성되어 있어 쉘사이드유입구(41) 측 홀(44)로부터 액체가 쉘사이드(11)로 이동하고, 쉘사이드배출구(42) 측 홀(44)을 통해 쉘사이드(11) 측의 액체가 내부로 유입된 채 쉘사이드배출구(42)로 이동하도록 이루어져 있다.In addition, a plurality of holes 44 are formed on both outer circumferential surfaces of the partition 43 on the basis of the partition 43, so that the liquid moves from the hole 44 at the shell side inlet 41 to the shell side 11, and the shell side outlet 42 The liquid on the side of the shell side 11 is moved to the shell side outlet 42 while flowing into the shell side 11 through the hole 44.
이때, 홀(44)의 크기는 직경이 0.5 ~ 50mm로 이루어짐이 바람직하다.At this time, the size of the hole 44 is preferably made of 0.5 ~ 50mm in diameter.
직경이 0.5mm 미만일 경우 홀(44)을 통과하는 액체 입자의 원할한 이동이 어려워 홀(44)을 통한 액체 이동이 어려울 수 있으며, 50mm를 초과하는 경우에는 액체가 고르게 홀(44)을 통해 이동하기에 많은 압력을 필요로 하게 되어 분리막 접촉기 분리 효율이 저하될 수 있다.If the diameter is less than 0.5mm, the smooth movement of the liquid particles passing through the hole 44 may be difficult to move the liquid through the hole 44, if it exceeds 50mm, the liquid evenly moves through the hole 44 Since a lot of pressure is required below, the separator contactor separation efficiency may be reduced.
더불어, 홀(44)은 다양하게 배치될 수 있는데, 도 6에 도시되어 있는 바와 같이 유로제어튜브(40)의 축방향과 일직선을 이루도록 하거나, 유로제어튜브(40)의 축방향을 따라 나선형으로 형성될 수 있다.In addition, the holes 44 may be arranged in various ways. As shown in FIG. 6, the holes 44 may be aligned with the axial direction of the flow path control tube 40 or spirally along the axial direction of the flow path control tube 40. Can be formed.
또, 홀(44)은 상술한 직경을 가진 채 각각 유로제어튜브(40)의 축방향을 따라 서로 이격된 채 형성될 수도 있으나, 상기한 직경 또는 너비를 가진 채 단일 슬롯 형상으로 형성될 수도 있다.In addition, the holes 44 may be formed to be spaced apart from each other along the axial direction of each of the flow path control tube 40 with the above-mentioned diameter, but may be formed in a single slot shape with the above-described diameter or width. .
아울러, 홀(44)은 도 7에 도시되어 있는 바와 같이 유로제어튜브(40) 단면을 기준으로 외주면에 등분할된 위치에 복수 개 형성되어 고르게 분산되어 분리 효율이 일정하게 유지되도록 할 수 있다.In addition, as shown in FIG. 7, a plurality of holes 44 are formed at equally divided positions on the outer circumferential surface of the flow control tube 40 based on the cross-section of the passage control tube 40 to be evenly distributed to maintain the separation efficiency.
특히, 도 7에 상기 홀(44)은 유로제어튜브(40) 외주면을 따라 나선형으로 형성되어 액체의 이동 경로상에서 각기 다른 각도에 형성된 홀(44)을 통해 배출 또는 유입되도록 함으로써 분리 효율을 높일 수 있다.In particular, in Figure 7, the hole 44 is formed spirally along the outer circumferential surface of the flow path control tube 40 to be discharged or introduced through the hole 44 formed at different angles on the movement path of the liquid to increase the separation efficiency have.
아울러, 상기 홀(44)은 유로제어튜브(40)의 길이 방향을 따라 다수 개가 일정 간격으로 형성되어 있되, 칸막이(43)에 인접한 선단의 홀(44)은 격벽(34)으로부터 칸막이(43) 사이의 거리의 3/5 ~ 4/5 에 위치하는 것이 좋다.In addition, a plurality of the holes 44 are formed at regular intervals along the length direction of the flow path control tube 40, but the holes 44 at the tip adjacent to the partition 43 are partitioned from the partition 34. It is good to be located 3/5 to 4/5 of the distance between them.
상기 범위를 벗어나 칸막이(43)에 너무 인접할 경우 칸막이(43)에서 인접한 상태에서 액체가 유입 및 배출될 경우 분리 효율이 저하될 수 있으며, 반대로 칸막이(43)에서 너무 멀 경우 칸막이(43)와 인접한 부분의 공간에서는 원할한 분리가 이루어지지 않고 경계층 두께가 두꺼워져 분리 효율이 저하될 수 있다.If it is too close to the partition 43 outside the above range when the liquid is introduced and discharged in the adjacent state in the partition 43, the separation efficiency may decrease, on the contrary, if too far from the partition 43 and the partition 43 and In the spaces of the adjacent portions, the separation is not performed smoothly and the boundary layer thickness is thickened, which may reduce the separation efficiency.
상기와 같은 구성에서 도 5에 도시되어 있는 바와 같이 본 발명의 분리막 접촉기 모듈은 외부케이스(50)가 더 구비될 수 있다.As shown in FIG. 5 in the above configuration, the separator contactor module of the present invention may further include an outer case 50.
구체적으로, 외부케이스(50)는 길이 방향을 따라 내부에 다수 개의 차단벽(51)이 형성되어 차단벽(51)에 의해 분할된 다수 개의 유닛설치공간(52)이 형성되어 있다.In detail, the outer case 50 has a plurality of blocking walls 51 formed therein along the longitudinal direction, and a plurality of unit installation spaces 52 divided by the blocking walls 51 are formed.
더불어, 상기 모듈하우징(10), 중공사막(20), 캡(30) 및 유로제어튜브(40)가 하나의 유닛(60)을 이룬 채 상기 유닛설치공간(52)에 각 유닛(60)이 삽입되도록 구성될 수 있다.In addition, the unit housing 10, the hollow fiber membrane 20, the cap 30 and the flow path control tube 40 is formed of one unit 60, each unit 60 in the unit installation space 52 It can be configured to be inserted.
이때, 외부케이스(50)의 벽면에는 각 유닛설치공간(52)을 연결하는 연결통로(53)가 형성되어 있고, 연결통로(53)는 인접한 유닛(60)의 캡(30) 내부공간(33)을 서로 연결하도록 이루어질 수 있다.In this case, a connection passage 53 connecting each unit installation space 52 is formed on the wall surface of the outer case 50, and the connection passage 53 is an inner space 33 of the cap 30 of the adjacent unit 60. ) May be connected to each other.
이때, 외부케이스(50) 내부에 연속으로 설치되는 유닛(60)들은 인접한 유닛(60)의 유로제어튜브(40)들이 내부가 서로 연통되도록 설치된다.At this time, the units 60 continuously installed in the outer case 50 are installed so that the flow path control tubes 40 of the adjacent unit 60 communicate with each other.
아울러, 외부케이스(50)와 각 유닛(60) 사이에는 인슐레이션이 설치될 수 있다 할 것이다.In addition, an insulation may be installed between the outer case 50 and each unit 60.
상기와 같은 구성에서 액체와 기체의 이동은 서로 반대 즉, 튜브사이드로 액체가 이동하고, 쉘사이드로 가스가 이동되도록 활용될 수도 있다 할 것이나, 바람직하기로는 전술한 바와 같이 튜브사이드로 가스가, 쉘사이드로 액체가 이동하는 것이 좋다.In such a configuration, the movement of the liquid and the gas may be utilized to be opposite to each other, that is, the liquid moves to the tube side, and the gas moves to the shell side. It is good to move the liquid to the shellside.
<실험예 1> 질소농도 측정Experimental Example 1 Measurement of Nitrogen Concentration
도 2와 같은 구조를 가지면서 유로제어튜브(40)의 형상은 각각 도 6, 7과 같은 형태를 갖는 실시예 1 및 실시예 2의 분리막 접촉기 모듈을 제조한 후, After the manufacture of the membrane contactor module of the first embodiment and the second embodiment having the same structure as shown in Figure 2 and the shape of Figure 6, 7, the shape of Figure 6, 7,
튜브사이드유입구(31)로 질소/이산화탄소(50 vol.%/50 vol.%)의 혼합기체를 360sccm(5.5bar)으로 공급하고, 쉘사이드유입구(41)로 수돗물을 2.5L/min(6.0bar)으로 공급하여 혼합가스 중의 이산화탄소의 용해 정도를 측정하였다.A mixed gas of nitrogen / carbon dioxide (50 vol.% / 50 vol.%) Is supplied at 360 sccm (5.5 bar) to the tube side inlet 31, and 2.5 L / min (6.0 bar) of tap water is supplied to the shell side inlet 41. ) And the degree of dissolution of carbon dioxide in the mixed gas was measured.
도 6의 유로제어튜브(40)는 직경 2mm의 홀을 유로제어튜브(40) 외주면을 사등분하여 배치하고, 길이 방향을 따라 서로 이격되되 축심과 평행하게 배치하였다.In the flow path control tube 40 of FIG. 6, a hole having a diameter of 2 mm is disposed in four parts of the outer circumferential surface of the flow path control tube 40, and spaced apart from each other along the longitudinal direction, but disposed parallel to the axis.
도 7의 유로제어튜브(40) 역시 직경 2mm의 홀을 유로제어튜브(40) 외주면을 사등분하여 배치하고, 길이 방향을 따라 서로 이격되되, 축심을 따라 나선형으로 배치하여 제조하였다.The flow path control tube 40 of FIG. 7 is also manufactured by dividing a hole having a diameter of 2 mm into four equal parts of the outer circumferential surface of the flow path control tube 40, spaced apart from each other along the longitudinal direction, and arranged spirally along the axis.
이산화탄소의 용해도가 질소에 비해 약 100배 크기 때문에 모듈 내부에서 이산화탄소가 더 많이 용해되어 모듈을 통과하면 질소가 농축되어 높은 농도의 질소를 얻을 수 있는 점을 이용하여 쉘사이드배출구(42)로 배출되는 질소의 농도를 측정하여 비교하였다.Since the solubility of carbon dioxide is about 100 times larger than that of nitrogen, more carbon dioxide is dissolved inside the module, and when passed through the module, nitrogen is concentrated and discharged to the shellside outlet 42 by using nitrogen to obtain a high concentration of nitrogen. The concentration of nitrogen was measured and compared.
더불어, 비교예1로 도 1과 같은 종래의 모듈에 동일한 혼합기체 및 수돗물을 공급하여 질소 농도를 측정하여 표 1에 나타냈다.In addition, in Comparative Example 1, the same mixed gas and tap water were supplied to the conventional module as shown in FIG.
표 1
모듈형태 비교예1 실시예1 실시예2
유로제어튜브 없음 도 6 형상 도 7 형상
쉘사이드배출구 질소농도(%) 95.3% 98.0% 98.6%
Table 1
Module type Comparative Example 1 Example 1 Example 2
Euro control tube none Figure 6 Shape Fig. 7 Shape
Shell Side Outlet Nitrogen Concentration (%) 95.3% 98.0% 98.6%
상기 표 1에 나타난 바와 같이 동일한 크기 및 중공사막 수를 갖는 모듈을 기준으로 할 때 실시예 1, 2의 경우 칸막이(43) 및 홀(44)이 형성된 유로제어튜브(40)가 설치됨으로써 모듈하우징(10) 내부의 쉘사이드에서 크로스 플로우(cross flow)가 형성됨에 따라 혼합 효과가 더욱 증대되어 최종 질소 농도가 비교예 1보다 우수한 것을 알 수 있다.As shown in Table 1, when the module having the same size and the number of hollow fiber membranes is used as a reference, in the case of Examples 1 and 2, the module housing is installed by installing the flow path control tube 40 in which the partition 43 and the hole 44 are formed. (10) As the cross flow is formed in the shell side inside, the mixing effect is further increased, and it can be seen that the final nitrogen concentration is superior to that of Comparative Example 1.
아울러, 상기 실험 결과에서 실험 값의 차이는 기존의 모듈을 통과한 후의 질소농도가 95.3%로 이미 높은 상태의 데이터를, 100%에 근접되도록 높인 것으로 별도의 화학적 처리와 같은 수단 없이 순수하게 유로제어튜브(40)의 설치를 통해 달성한 것으로 높은 수준의 효과라 할 것이다.In addition, the difference in the experimental value in the above experimental results is that the nitrogen concentration after passing through the existing module is 95.3%, the data of the high state is already increased to close to 100%, and purely flow control without means such as a separate chemical treatment Achieved through the installation of the tube 40 will be referred to as a high level of effect.
상술한 본 발명의 분리막 접촉기 모듈은 물흡수법과 분리막기술의 장점을 결합한 형태의 기술로써, 압력변동흡착법, 기체분리막법에서 반드시 필요한 황화수소, 암모니아 등을 제거하는 별도의 전처리 과정이 필요하지 않으며, 다공성 고분자 분리막을 모듈화하여 사용함으로써 단위부피당 기/액 접촉면적이 충진제를 흡수탑에 사용하는 기존 흡수법에 비해 2∼3배 증가되어 작은 장치규모로도 동일한 양의 바이오가스를 정제할 수 있다. 또한, 흡수액으로 물 또는 미량의 물리흡수제(Physical absorbent)를 사용하기 때문에 환경오염이 발생하지 않는 장점이 있다.The membrane contactor module of the present invention described above combines the advantages of the water absorption method and the membrane technology, and does not require a separate pretreatment process to remove hydrogen sulfide, ammonia, etc., which are necessary in the pressure swing adsorption method and the gas separation membrane method. By using the polymer membrane in a modular manner, the gas / liquid contact area per unit volume is increased by 2 to 3 times compared to the conventional absorption method using the filler in the absorption tower, so that the same amount of biogas can be purified with a small device size. In addition, there is an advantage that environmental pollution does not occur because water or a small amount of physical absorbent (physical absorbent) is used as the absorbent liquid.
이에 본 발명의 바이오가스 정제용 막 접촉 시스템 및 막 접촉 방법은 상술한 분리막 접촉기 모듈의 물에 대한 각 기체성분의 용해도 차이를 이용하여 바이오가스를 정제하도록 이루어져 있다.Thus, the membrane contact system and membrane contact method for biogas purification of the present invention are configured to purify biogas using the difference in solubility of each gas component in water of the membrane contactor module described above.
이산화탄소, 황화수소, 암모니아 등의 수용성 기체의 물에 대한 용해도는 메탄에 비하여, 50배 내지 1000배 정도 좋다. 이러한 성질을 이용하여, 수용성 기체(이산화탄소, 황화수소, 암모니아 등)가 포함된 바이오가스를 소수성 다공성 고분자 분리막(membrane)의 세공을 매개로 물과 접촉시켜 수용성 기체를 분리한다.The solubility of water-soluble gases such as carbon dioxide, hydrogen sulfide, and ammonia in water is about 50 to 1000 times higher than that of methane. Using this property, the biogas containing the water-soluble gas (carbon dioxide, hydrogen sulfide, ammonia, etc.) is contacted with water through the pores of the hydrophobic porous polymer membrane to separate the water-soluble gas.
소수성 다공성 폴리프로필렌(PP) 중공사막 등과 같이 소수성 다공성 중공사막은, 막의 일측을 물과 접촉시키고 타측을 수용성 기체가 포함된 바이오가스와 접촉시킬 경우, 기공을 통한 물의 출입은 차단되지만, 기공을 통한 수용성 기체의 출입은 허용되어, 기공을 통과한 수용성 기체가 물에 녹는다. 이러한 원리를 이용하면 다공질 소수성 중공사막에 의하여 수용성 기체를 포함한 혼합 기체로부터 수용성 기체를 분리하여 메탄을 고순도화 할 수 있다.Hydrophobic porous hollow fiber membranes, such as hydrophobic porous polypropylene (PP) hollow fiber membranes, when one side of the membrane is in contact with water and the other side is in contact with a biogas containing water-soluble gas, the access of water through the pores is blocked, but through the pores Water soluble gas is allowed in and out, so that the water soluble gas passing through the pores is dissolved in water. Using this principle, a high purity of methane can be obtained by separating a water-soluble gas from a mixed gas containing a water-soluble gas by a porous hydrophobic hollow fiber membrane.
더불어 본 발명에서는 수용성 기체를 포함하는 바이오가스를 상압보다 높은 압력으로 압축하여 중공사막의 일측에 막 접촉하게 하고, 이와 동시에 물을 압축된 상기 혼합 가스의 압력보다 일정 압력만큼 높게 가압하여 중공사막의 타측에 막 접촉하게 하여, 물에 대한 수용성 기체의 용해량을 늘리고 동시에 물에 버블이 발생하는 것을 방지하도록 되어 있다.In addition, in the present invention, the biogas containing the water-soluble gas is compressed to a pressure higher than the normal pressure to make the membrane contact with one side of the hollow fiber membrane, and at the same time, the water is pressurized by a predetermined pressure higher than the pressure of the compressed gas mixture. The membrane is brought into contact with the other side to increase the amount of water-soluble gas dissolved in water and to prevent bubbles from occurring at the same time.
또, 상기 중공사막과 접촉한 물은 상압 또는 감압이 유지되는 탈기탱크에 배출하여 물과 수용성 기체의 용해 평형이 이루어질 때까지 수용성 기체를 탈기하도록 되어 있다.In addition, the water in contact with the hollow fiber membrane is discharged to the degassing tank maintained at atmospheric pressure or reduced pressure to degas the water-soluble gas until the equilibrium of dissolution of water and water-soluble gas.
더불어, 탈기탱크에 배출된 물은 다른 중공사막의 일측에 통과시키면서 다른 중공사막의 타측에는 상압 미만의 상태를 유지하여 수용성 기체를 탈기하도록 되어 있다.In addition, the water discharged to the degassing tank is passed through one side of the other hollow fiber membrane while maintaining the state below the atmospheric pressure on the other side of the other hollow fiber membrane to degas the water-soluble gas.
이하, 첨부된 도면을 통해 본 발명의 바이오가스 정제용 막 접촉 시스템 및 막 접촉 방법에 대해 상세히 설명하기로 한다.Hereinafter, the membrane contact system and membrane contact method for purifying biogas of the present invention will be described in detail with reference to the accompanying drawings.
본 발명에서 “바이오가스”는 유기성 물질의 혐기성 소화과정에서 발생하는 메탄과 이산화탄소를 주성분으로 하는 혼합기스를 통칭하는 의미로 사용되었다. 또한, “%”는 “회수율”을 제외하고, 달리 정의되지 않는 한 “부피%”를 의미한다.In the present invention, "biogas" is used as a generic term for a mixed gas mainly composed of methane and carbon dioxide generated during the anaerobic digestion of organic substances. In addition, “%” means “volume percentage” unless otherwise defined.
중공사막 내부 공간은 튜브사이드(tube side)라고 부르며, 중공사막 외부 공간인 중공사막과 중공사막 사이 공간 및 중공사막과 하우징 사이 공간은 쉘사이드(shell side)라고 부른다.The inner space of the hollow fiber membrane is called a tube side, and the space between the hollow fiber membrane and the hollow fiber membrane, which is an outer space of the hollow fiber membrane, and the space between the hollow fiber membrane and the housing are called shell sides.
본 발명에서 액체에 용해되는 성질을 갖는 기체는 다양한 액체 용해성 가스로 이루어질 수 있으나, 그 중 수용성 가스로 이루어지는 것이 가장 바람직하며, 본 발명에 기재된 액체는 물로 이루어짐이 바람직하다.In the present invention, the gas having a property of dissolving in the liquid may be made of various liquid soluble gases, but most preferably made of a water-soluble gas, and the liquid described in the present invention is preferably made of water.
본 발명의 바이오가스 정제용 막 접촉 시스템은 크게 가스압축기(100), 흡수 분리막 접촉기 모듈(200), 탈기탱크(300), 기체배출관(400), 탈기 분리막 접촉기 모듈(500), 액체순환관(600)으로 구성되어 있다.Biogas purification membrane contact system of the present invention is largely a gas compressor 100, absorption separator contactor module 200, degassing tank 300, gas discharge pipe 400, deaeration membrane contactor module 500, liquid circulation tube ( 600).
상기한 구성에서 흡수 분리막 접촉기 모듈(200) 및 탈기 분리막 접촉기 모듈(500)은 본 발명에서 주요한 구성요소로 튜브사이드 및 쉘사이드를 각각 구비하고, 두 구성요소 모두 쉘사이드로는 액체가 통과하며, 흡수 분리막 접촉기 모듈(200)의 튜브사이드로는 처리 대상이 되는 바이오가스가 통과하고, 탈기 분리막 접촉기 모듈(500)의 튜브사이드에는 공기가 채워져 있거나, 진공펌프에 의해 감압되어 감압 또는 진공 상태가 되도록 이루어져 있다.In the above configuration, the absorption separator contactor module 200 and the deaeration separator contactor module 500 each include a tube side and a shell side as main components in the present invention, and both components pass through the liquid to the shell side, The biogas to be treated passes through the tube side of the absorption separator contactor module 200, and the tube side of the deaeration membrane contactor module 500 is filled with air, or decompressed or vacuumed by a vacuum pump. consist of.
본 발명의 바이오가스 정제용 막 접촉 시스템의 전체적인 구성에 대해 설명하면 다음과 같다.Referring to the overall configuration of the membrane contact system for biogas purification of the present invention will be described.
가스압축기(100)는 외부로부터 액체에 용해되는 성질을 갖는 기체를 포함한 바이오가스를 공급받아 이를 상압보다 큰 압력으로 가압하도록 이루어져 있다.The gas compressor 100 is configured to receive a biogas including a gas having a property of dissolving in a liquid from the outside and pressurize it to a pressure greater than normal pressure.
흡수 분리막 접촉기 모듈(200)는 상기한 가스압축기(100)로부터 가압 처리된 바이오가스를 공급받아 중공사막(220) 내부인 튜브사이드(221)를 통과시켜 막 접촉 처리하도록 이루어져 있다.The absorption separator contactor module 200 receives the pressurized biogas from the gas compressor 100 and passes the tube side 221 inside the hollow fiber membrane 220 to perform membrane contact treatment.
이때, 중공사막(220) 외부인 쉘사이드(211)로는 액체가 순환하면서 통과하게 된다.At this time, the liquid passes through the shell side 211 outside the hollow fiber membrane 220 while circulating.
탈기탱크(300)는 상기 흡수 분리막 접촉기 모듈(200)의 쉘사이드(211)를 통과한 액체를 공급받아 이 액체를 상압 또는 진공 상태로 감압시켜 내부에 저장하게 되어 있다.The degassing tank 300 receives the liquid that has passed through the shell side 211 of the absorption separator contactor module 200, and decompresses the liquid to atmospheric pressure or vacuum to store the liquid therein.
즉, 탈기탱크(300)는 내부가 상압 내지 진공 상태로 이루어져 있기 때문에 중공사막(220)과 접촉한 액체와, 해당 액체에 용해되는 성질의 기체가 용해 평형이 이루어질 때까지 탈기 처리된다.That is, the degassing tank 300 is degassed until the liquid equilibrium is achieved between the liquid in contact with the hollow fiber membrane 220 and the gas dissolved in the liquid because the interior is made of atmospheric pressure to vacuum.
탈기탱크(300)에서 바이오 가스와 액체에 가해진 압력이 낮아지면 이 기체의 액체에 대한 용해도가 낮아지게 되고 그 차이만큼 액체에 용해되어 있던 기체가 이탈하게 된다.When the pressure applied to the biogas and the liquid in the degassing tank 300 is lowered, the solubility of the gas in the liquid is lowered, and the gas dissolved in the liquid is separated by the difference.
이때, 원할한 탈기를 위해 탈기탱크(300)에는 스프레이 노즐이 상부에 설치되어 유입된 액체가 스프레이 노즐을 통해 분사되어 저장되도록 함으로써 기체의 원할한 탈기가 이루어지도록 할 수 있다.At this time, a spray nozzle is installed in the degassing tank 300 for smooth degassing so that the introduced liquid is sprayed and stored through the spray nozzle so that smooth degassing of the gas is achieved.
또한, 탈기탱크(300)는 내부의 온도를 유지하는 공지의 온도조절장치가 설치됨이 바람직하다.In addition, the degassing tank 300 is preferably a known temperature control device for maintaining the temperature inside.
이는 탈기탱크(300) 내부 온도가 너무 낮을 경우 액체가 얼게 되는 문제를 발생시킬 수 있으며, 너무 높을 경우 기체 용해도가 높아져 원할한 탈기가 이루어지지 않기 때문이다.This may cause a problem that the liquid freezes when the internal temperature of the degassing tank 300 is too low, and if it is too high, the gas solubility is increased so that smooth degassing is not performed.
온도조절장치를 통한 적절한 탈기탱크(300) 내부 온도는 5 ~ 50℃ 정도가 바람직하다.The suitable temperature inside the degassing tank 300 through the temperature control unit is preferably about 5 ~ 50 ℃.
기체배출관(400)은 일측이 상기 탈기탱크(300) 상부에 연결되어 있고, 타측은 상기 가스압축기(100)에 연결되어 있고, 관로 중간에 블로워(410)가 설치되어 상기 탈기탱크(300)에서 탈기된 기체 즉, 비용해 상태의 기체를 상기 가스압축기(100)로 공급하여 다시 압축시켜 흡수 분리막 접촉기 모듈(200)로 공급하게 된다. Gas discharge pipe 400 is one side is connected to the upper degassing tank 300, the other side is connected to the gas compressor 100, a blower 410 is installed in the middle of the pipeline in the degassing tank 300 The degassed gas, that is, the gas in a non-hazardous state, is supplied to the gas compressor 100 and then compressed again to be supplied to the absorption separator contactor module 200.
탈기 분리막 접촉기 모듈(500)은 흡수 분리막 접촉기 모듈(200)과 동일한 구조로 이루어져 쉘사이드(511)로 액체가 통과하도록 이루어져 있으며, 튜브사이드(521)는 외부의 진공펌프(550)와 연결되어 감압이 이루어지게 되어 있다.Degassing membrane contactor module 500 is made of the same structure as the absorber membrane contactor module 200 is made to pass the liquid to the shell side 511, the tube side 521 is connected to the external vacuum pump 550 to reduce the pressure This is to be done.
이러한 감압이 이루어지게 되면 상압 미만의 상태를 유지하여 수용성 기체를 더 완전하게 탈기할 수 있다.When such a reduced pressure is achieved, the water-soluble gas can be more completely degassed by maintaining the state below the normal pressure.
아울러, 액체순환관(600)은 상기 탈기 분리막 접촉기 모듈(500)의 쉘사이드배출구(542)와 연결되어 있고, 타측은 상기 흡수 분리막 접촉기 모듈(200)의 쉘사이드유입구(241)와 연결되어 있으며, 관로 일측에 가압펌프(610)가 설치되어 탈기 분리막 접촉기 모듈(500)을 통과한 액체를 가압시킨 상태로 상기 흡수 분리막 접촉기 모듈(200)로 공급하도록 이루어져 연속 순환이 이루어지도록 되어 있다.In addition, the liquid circulation tube 600 is connected to the shell side outlet 542 of the deaeration membrane contactor module 500, and the other side is connected to the shell side inlet 241 of the absorption membrane contactor module 200. A pressure pump 610 is installed at one side of the pipeline to supply the absorbent membrane contactor module 200 to pressurize the liquid passing through the deaeration membrane contactor module 500 so that continuous circulation is achieved.
흡수 분리막 접촉기 모듈(200) 및 탈기 분리막 접촉기 모듈(500)은 전술한 분리막 접촉기 모듈과 동일한 구조를 취한다.The absorption separator contactor module 200 and the deaeration separator contactor module 500 have the same structure as the separator contactor module described above.
두 접촉기 모듈(200, 500)의 구조에 대해 보다 상세히 설명하면 다음과 같다.The structure of the two contactor modules 200 and 500 will be described in more detail as follows.
흡수 분리막 접촉기 모듈(200)은 모듈하우징(210), 중공사막(220), 캡(230), 유로제어튜브(240)을 포함하여 구성되며, 탈기 분리막 접촉기 모듈(500) 역시 모듈하우징(510), 중공사막(220), 캡(530), 유로제어튜브(540)를 포함하여 구성되어 있다.The absorption separator contactor module 200 includes a module housing 210, a hollow fiber membrane 220, a cap 230, and a flow path control tube 240. The deaeration membrane contactor module 500 also includes a module housing 510. , Hollow fiber membrane 220, cap 530, flow control tube 540 is configured to include.
모듈하우징(210, 510)은 도 2에 도시되어 있는 바와 같이 내부가 빈 중공 형상을 이룬다.The module housings 210 and 510 have a hollow shape as shown in FIG. 2.
모듈하우징(210, 510)의 재질은 PVC, CPVC, PC, 아크릴, ABS, PET, PP, PE 등의 플라스틱 재질과 알루미늄, 스테인레스 스틸 등의 금속재질이 사용될 수 있지만, 반드시 이에 제한되는 것은 아니다.The material of the module housings 210 and 510 may be plastic materials such as PVC, CPVC, PC, acrylic, ABS, PET, PP, PE, and metal materials such as aluminum and stainless steel, but is not limited thereto.
더불어, 모듈하우징(210, 510)의 양측 단부는 캡(230, 530)과 연결되기 위해 나사산이나 플랜지부 등이 형성될 수 있다 할 것이다.In addition, both ends of the module housings 210 and 510 may be formed with threads or flanges to be connected to the caps 230 and 530.
이러한 모듈하우징(210, 510)은 내경/길이가 1/2 ~1/20인 것이 바람직하다.The module housings 210 and 510 preferably have an inner diameter / length of 1/2 to 1/220.
내경 길이의 비가 상기한 최소 비율보다 작을 경우 도 5와 같은 직렬 배치를 통한 분리에 부적합하고, 공간 활용이 잘 이루어지지 않게 되며, 반대로 최대 비율보다 클 경우에는 유로제어튜브(240, 540)보다 멀리 떨어진 부분이 형성되고 이 부분에서는 원할한 분리가 이루어지지 않게 된다.If the ratio of the inner diameter length is smaller than the above-described minimum ratio, it is not suitable for separation through the serial arrangement as shown in FIG. 5, and space utilization is not well achieved. A separate section is formed, where no smooth separation occurs.
중공사막(220, 520)은 익히 알려진 바와 같이 내부에 길이 방향으로 중공인 튜브사이드(211, 511)가 형성되어 있는 것으로, 상기한 모듈하우징(210, 510) 내부에 길이 방향을 따라 설치되어 있다.As is well known, the hollow fiber membranes 220 and 520 are formed in the tube housings 211 and 511 which are hollow in the longitudinal direction. The hollow fiber membranes 220 and 520 are provided in the module housings 210 and 510 in the longitudinal direction. .
특히, 본 발명의 중공사막(220, 520)은 폴리프로필렌(PP) 등의 고분자로 성형된 소수성 다공성 중공사막(hydrophobic porous hollow fiber membrane)로 이루어짐이 바람직하다.In particular, the hollow fiber membranes 220 and 520 of the present invention are preferably made of a hydrophobic porous hollow fiber membrane molded of a polymer such as polypropylene (PP).
이때, 중공사막(220, 520)은 모듈하우징(210, 510) 내벽면과 이격된 채 설치되어 쉘사이드(211, 511)를 형성하게 된다.At this time, the hollow fiber membrane (220, 520) is installed to be spaced apart from the inner wall surface of the module housing (210, 510) to form the shell side (211, 511).
또, 모듈하우징(210, 510) 내부에 다수의 중공사막(220, 520)이 서로 이격된 채 설치됨으로써 이격된 공간인 쉘사이드(211, 511)를 형성하게 된다.In addition, the plurality of hollow fiber membranes 220 and 520 are installed in the module housings 210 and 510 to be spaced apart from each other, thereby forming the shellsides 211 and 511 which are spaces apart from each other.
캡(230, 530)은 도 2 내지 4에 도시되어 있는 바와 같이 두 개로 구성되어 상기 모듈하우징(210, 510) 양단에 각각 설치되어 있다. Caps 230 and 530 are configured in two, as shown in Figures 2 to 4 are installed on both ends of the module housing (210, 510), respectively.
흡수 분리막 접촉기 모듈(200)의 두 캡(230) 중 하나는 가스압축기(100)와 배관 연결되어 상기 가스압축기(100)에서 압축된 바이오가스가 유입되는 튜브사이드유입구(231)가 구비되어 있으며, 다른 하나는 막 접촉에 의해 분리된 기체가 배출되는 튜브사이드배출구(232)가 구비되어 있다.One of the two caps 230 of the absorption separator contactor module 200 is connected to the gas compressor 100 and is provided with a tube side inlet 231 through which the biogas compressed by the gas compressor 100 is introduced. The other is provided with a tube side outlet 232 through which the gas separated by the membrane contact is discharged.
탈기 분리막 접촉기 모듈(500)의 두 캡은 진공펌프(550)와 연결된 튜브사이드배출구(531)가 구비되어 탈기 분리막 접촉기 모듈(500)의 튜브사이드에 진공이 형성되도록 하여 2차 탈기가 이루어지도록 되어 있다.The two caps of the deaeration membrane contactor module 500 are provided with a tube side outlet 531 connected to the vacuum pump 550 such that a vacuum is formed on the tube side of the deaeration membrane contactor module 500 so that secondary degassing is performed. have.
이때, 진공펌프(550)는 두 튜브사이드배출구(531) 중 어느 하나에만 연결될 수도 있다.At this time, the vacuum pump 550 may be connected to only one of the two tube side outlet 531.
이러한 캡(230, 530)과 모듈하우징(210, 510) 내부 공간 사이에는 격벽(234, 534)이 형성되어 캡(230, 530)과 모듈하우징(210, 510) 사이의 공간을 분리시키되, 상기한 중공사막(220, 520)이 격벽(234, 534)에 연결됨으로써 캡(230, 530) 내부공간(233, 533)은 중공사막(220, 520) 내부공간인 상기 튜브사이드(211, 511)와 연통되고 쉘사이드(211, 511)와는 차단되게 된다.Partition walls 234 and 534 are formed between the caps 230 and 530 and the internal spaces of the module housings 210 and 510 to separate the spaces between the caps 230 and 530 and the module housings 210 and 510. Since the hollow fiber membranes 220 and 520 are connected to the partition walls 234 and 534, the inner spaces 233 and 533 of the caps 230 and 530 are the inner spaces of the hollow fiber membranes 220 and 520. Is in communication with the shell side (211,511).
유로제어튜브(240, 540)는 본 발명에서 주요한 구성요소로, 상기 두 캡(230, 530)을 관통한 채 중간 부분이 상기 모듈하우징(210, 510) 내부에 위치하도록 설치되어 있다.The flow path control tubes 240 and 540 are the main components in the present invention, and are installed such that an intermediate portion is located inside the module housings 210 and 510 while passing through the two caps 230 and 530.
아울러, 일측 단부에는 물과 같은 액체가 유입되는 쉘사이드유입구(241, 541)가 형성되어 있고, 타측 단부에는 유입된 액체가 배출되는 쉘사이드배출구(242, 542)가 형성되어 있다.In addition, at one end, shell side inlets 241 and 541 through which liquid such as water flows are formed, and on the other end, shell side outlets 242 and 542 through which inflowed liquid is discharged.
이러한 유로제어튜브(240, 540)는 내부가 빈 관 형태로 이루어져 있되, 중간 부분 내측에 칸막이(243, 543)가 설치되어 있다.The flow control tubes 240 and 540 are formed in a hollow tube shape, and partitions 243 and 543 are installed inside the middle portion.
이로 인해 쉘사이드유입구(241, 541)로 유입된 액체가 다이랙트로 쉘사이드배출구(242, 542)로 배출되지 못하게 된다.As a result, the liquid introduced into the shellside inlets 241 and 541 cannot be discharged to the shellside outlets 242 and 542 by the direct.
아울러, 칸막이(243, 543)를 기준으로 양측 외주면에는 다수 개의 홀(244, 544)이 형성되어 있어 쉘사이드유입구(241, 541) 측 홀(244, 544)로부터 액체가 쉘사이드(211, 511)로 이동하고, 쉘사이드배출구(242, 542) 측 홀(244, 544)을 통해 쉘사이드(211, 511) 측의 액체가 내부로 유입된 채 쉘사이드배출구(242, 542)로 이동하도록 이루어져 있다.In addition, a plurality of holes 244 and 544 are formed at both outer peripheral surfaces of the partitions 243 and 543 so that the liquid is released from the side holes 244 and 544 of the shell side inlets 241 and 541. To the shellside outlets 242 and 542 and through the holes 244 and 544 at the shellside outlets 242 and 542 to move to the shellside outlets 242 and 542 while the liquid at the side of the shellsides 211 and 511 flows into the inside. have.
이때, 홀(244, 544)의 크기는 직경이 0.5 ~ 50mm로 이루어짐이 바람직하다.At this time, the size of the holes (244, 544) is preferably made of 0.5 ~ 50mm in diameter.
직경이 0.5mm 미만일 경우 홀(244, 544)을 통과하는 액체 입자의 원할한 이동이 어려워 홀(244, 544)을 통한 액체 이동이 어려울 수 있으며, 50mm를 초과하는 경우에는 액체가 고르게 홀(244, 544)을 통해 이동하기에 많은 압력을 필요로 하게 되어 분리막 접촉기 분리 효율이 저하될 수 있다.If the diameter is less than 0.5mm, the smooth movement of the liquid particles passing through the holes 244 and 544 may be difficult, and liquid movement through the holes 244 and 544 may be difficult. , 544) requires a lot of pressure to move through the membrane contactor separation efficiency can be reduced.
더불어, 홀(244, 544)은 다양하게 배치될 수 있는데 유로제어튜브(240, 540)의 축방향과 일직선을 이루도록 하거나, 유로제어튜브(240, 540)의 축방향을 따라 나선형으로 형성될 수 있다.In addition, the holes 244 and 544 may be arranged in various ways. The holes 244 and 544 may be arranged in a line with the axial direction of the flow path control tubes 240 and 540 or may be spirally formed along the axial direction of the flow path control tubes 240 and 540. have.
또, 홀(244, 544)은 상술한 직경을 가진 채 각각 유로제어튜브(240, 540)의 축방향을 따라 서로 이격된 채 형성될 수도 있으나, 상기한 직경 또는 너비를 가진 채 단일 슬롯 형상으로 형성될 수도 있다.In addition, the holes 244 and 544 may be formed to be spaced apart from each other along the axial direction of the flow path control tubes 240 and 540, respectively, with the above-mentioned diameter, but in a single slot shape with the above-described diameter or width. It may be formed.
아울러, 홀(244, 544)은 유로제어튜브(40) 단면을 기준으로 외주면에 등분할된 위치에 복수 개 형성되어 고르게 분산되어 분리 효율이 일정하게 유지되도록 할 수 있다.In addition, a plurality of holes 244 and 544 are formed at equally divided positions on the outer circumferential surface based on the cross section of the flow path control tube 40 to be evenly distributed so that the separation efficiency is kept constant.
특히, 홀(244, 544)은 유로제어튜브(240, 540) 외주면을 따라 나선형으로 형성되어 액체의 이동 경로상에서 각기 다른 각도에 형성된 홀(244, 544)을 통해 배출 또는 유입되도록 함으로써 분리 효율을 높일 수 있다.In particular, the holes 244 and 544 are spirally formed along the outer circumferential surfaces of the flow control tubes 240 and 540 to discharge or inflow through the holes 244 and 544 formed at different angles on the liquid path. It can increase.
아울러, 상기 홀(244, 544)은 유로제어튜브(240, 540)의 길이 방향을 따라 다수 개가 일정 간격으로 형성되어 있되, 칸막이(243, 543)에 인접한 선단의 홀(244, 544)은 격벽(234, 534)으로부터 칸막이(243, 543) 사이의 거리의 3/5 ~ 4/5 에 위치하는 것이 좋다.In addition, a plurality of holes 244 and 544 are formed at regular intervals along the length direction of the flow path control tubes 240 and 540, and the holes 244 and 544 at the ends adjacent to the partitions 243 and 543 are partition walls. It is preferably located at 3/5 to 4/5 of the distance between the (234, 534) and the partitions (243, 543).
상기 범위를 벗어나 칸막이(243, 543)에 너무 인접할 경우 칸막이(243, 543)에서 인접한 상태에서 액체가 유입 및 배출될 경우 분리 효율이 저하될 수 있으며, 반대로 칸막이(243, 543)에서 너무 멀 경우 칸막이(243, 543)와 인접한 부분의 공간에서는 원할한 분리가 이루어지지 않고 경계층 두께가 두꺼워져 분리 효율이 저하될 수 있다.If it is too close to the partitions 243 and 543 outside the above range, the separation efficiency may decrease when the liquid is introduced and discharged in the adjacent state from the partitions 243 and 543, and conversely, too far from the partitions 243 and 543. In this case, in the spaces adjacent to the partitions 243 and 543, the separation is not smooth and the thickness of the boundary layer becomes thick, which may reduce the separation efficiency.
상기한 모듈들의 구성은 칸막이(243, 543) 및 홀(244, 544)이 형성된 유로제어튜브(240, 540)가 설치됨으로써 모듈하우징(210, 510) 내부의 쉘사이드에서 크로스 플로우(cross flow)가 형성됨에 따라 혼합 효과가 더욱 증대되어 가스 분리 효과가 우수하게 된다.The configuration of the modules is a cross flow at the shell side inside the module housings 210 and 510 by installing the flow path control tubes 240 and 540 having the partitions 243 and 543 and the holes 244 and 544. As is formed, the mixing effect is further increased and the gas separation effect is excellent.
이하에서는 본 발명의 바이오가스 정제용 막 접촉 방법에 대해 상세히 설명하기로 한다.Hereinafter, the biogas purification membrane contact method of the present invention will be described in detail.
1. 1 단계1. Step 1
상술한 막 접촉 시스템을 이용하여 액체에 용해되는 성질을 갖는 기체를 포함하는 바이오가스를 상기 가스압축기(100)를 이용하여 상압보다 높은 압력 또는 운전압력을 초과하는 압력으로 압축시킨다.By using the above-described membrane contact system, the biogas including gas having a property of dissolving in a liquid is compressed to a pressure higher than normal pressure or a pressure exceeding an operating pressure by using the gas compressor 100.
이때, 압축된 바이오가스의 압력은 5 ∼ 15 bar인 것이 바람직하고, 냉각된 바이오가스의 온도는 -20∼50℃인 것이 바람직하다. At this time, it is preferable that the pressure of the compressed biogas is 5 to 15 bar, and the temperature of the cooled biogas is -20 to 50 ° C.
바이오가스의 압력이 5bar 미만인 경우, 흡수 분리막 접촉기 모듈(200)을 이용한 수용성 기체 흡수과정에 따른 메탄의 순도 및 회수율이 낮아지는 문제점이 있고, 15bar 이상에서는 사용된 중공사막(220)이 파손될 수 있는 문제점이 있다. If the pressure of the biogas is less than 5bar, there is a problem that the purity and recovery of methane according to the water-absorbing gas absorption process using the absorption separator contactor module 200 is lowered, the hollow fiber membrane 220 may be damaged at 15 bar or more There is a problem.
바이오가스 온도가 -20℃ 미만인 경우 흡수 분리막 접촉기 모듈(200) 내에서 공급되는 액체인 물을 얼게 하여 수용성 기체의 용해를 저해하는 문제점이 있고, 50℃ 이상에서는 수용성 기체의 용해도가 감소하여 수용성 기체의 용해를 저해하는 문제점이 있다.If the biogas temperature is less than -20 ℃, there is a problem of inhibiting the dissolution of the water-soluble gas by freezing the water, which is the liquid supplied in the absorber membrane contactor module 200, above 50 ℃ the solubility of the water-soluble gas is reduced to the water-soluble gas There is a problem of inhibiting the dissolution.
2. 2단계2. Step 2
상기 가스압축기(100)에서 가압된 바이오가스를 상기 흡수 분리막 접촉기 모듈(200)의 튜브사이드유입구(231)로 공급하여 중공사막(220) 일측에 막 접촉하게 하고, 상기 가압펌프(610)를 이용하여 흡수 분리막 접촉기 모듈(200)의 튜브사이드유입구(231)로 가압된 바이오가스보다 높은 압력으로 액체를 쉘사이드유입구(241)로 공급하여 중공사막(220) 타측에 막 접촉시킨다.The biogas pressurized by the gas compressor 100 is supplied to the tube side inlet 231 of the absorption separator contactor module 200 to make membrane contact with one side of the hollow fiber membrane 220, and the pressure pump 610 is used. The liquid is supplied to the shellside inlet 241 at a pressure higher than that of the biogas pressurized by the tubeside inlet 231 of the absorption separator contactor module 200 to make membrane contact with the other side of the hollow fiber membrane 220.
더불어, 가스압축기(100)를 통해 압축되어 흡수 분리막 접촉기 모듈(200)로 공급되는 기체유량과 가압펌프(610)를 통해 흡수 분리막 접촉기 모듈(200)로 공급되는 액체의 유량의 비율을 G/L (Gas/Liquid)비라 하며, G/L비를 0.01∼10으로 유지시키는 것이 바람직하다.In addition, the ratio of the gas flow rate compressed through the gas compressor 100 to the absorption separator contactor module 200 and the flow rate of the liquid supplied to the absorption separator contactor module 200 through the pressure pump 610 is G / L. It is called a (Gas / Liquid) ratio and it is preferable to keep G / L ratio to 0.01-10.
이때 액체 압력은 바이오가스 압력보다 0.3 bar ∼ 0.7 bar 높은 압력으로 공급됨이 바람직하다.At this time, the liquid pressure is preferably supplied at a pressure of 0.3 bar to 0.7 bar higher than the biogas pressure.
상기 압력보다 액체에 낮은 압력을 가할 경우 압력 컨트롤 중에 압력의 변동으로 바이오가스와의 압력 편차가 발생하지 않거나 바이오가스의 압력이 일시적으로 커져 물에 기포가 발생할 가능성이 있으며, 이보다 높게 가압할 경우, 연질의 소수성 다공성 중공사막이 손상될 가능성이 있을 뿐만 아니라, 불필요한 가압 에너지가 소모될 수 있다.If a pressure lower than the pressure is applied to the liquid, pressure fluctuation with the biogas may not occur due to a change in pressure during the pressure control, or the pressure of the biogas may be temporarily increased, thereby causing bubbles in the water. Not only is the soft hydrophobic porous hollow fiber membrane damaged, but also unnecessary pressurized energy can be consumed.
상기와 같은 과정을 통해 바이오가스 중에 혼합되어 있는 대표적인 수용성 기체인 이산화탄소, 황화수소, 암모니아 등은 물에 용해되어 쉘사이드배출구(242)로 이동하게 되고, 물에 잘 용해되지 않는 메탄은 튜브사이드배출구(232)를 통해 빠져나가 메탄 순도를 높여주게 된다.Carbon dioxide, hydrogen sulfide, ammonia, etc., which are representative water-soluble gases mixed in biogas through the above process, are dissolved in water and moved to the shellside outlet 242, and methane which is not easily dissolved in water is a tubeside outlet ( 232) to increase the methane purity.
기체성분의 물에 대한 용해도는 헨리의 법칙에 따라 가해지는 압력에 비례한다. The solubility of gas in water is proportional to the pressure exerted on Henry's law.
특히, 이산화탄소, 황화수소, 암모니아 등 수용성 기체는 이러한 법칙을 잘 따른다. In particular, water-soluble gases such as carbon dioxide, hydrogen sulfide and ammonia obey this law.
수용성 기체를 포함한 바이오가스의 압력이 커지면, 수용성 기체의 부분압력도 비례하여 커지기 때문에 바이오가스의 압력이 커지면 그 압력에 비례하여 수용성 기체의 물에 대한 용해도도 커진다. As the pressure of the biogas containing the water-soluble gas increases, the partial pressure of the water-soluble gas also increases in proportion, so that the solubility of the water-soluble gas in water increases in proportion to the pressure of the biogas.
따라서, 바이오가스의 압력이 상압(1atm)에서 10atm으로 커지면, 물에 용해되는 수용성 기체의 양도 10배 커진다.Therefore, when the pressure of the biogas increases from normal pressure (1 atm) to 10 atm, the amount of water-soluble gas dissolved in water also increases by 10 times.
폴리프로필렌(PP) 등의 고분자로 성형된 연질의 소수성 다공성 중공사막(hydrophobic porous hollow fiber membrane)의 내부인 튜브사이드로 바이오가스를, 외부인 쉘사이드에 물을 통과시켜 막 접촉시킬 경우, 바이오가스 압력이 물의 압력보다 커지면 바이오가스가 기공을 통해 물 쪽으로 대규모로 유입(bulk flow)되어 물에 기포(bubble)를 생성한다. Biogas pressure when the membrane is contacted by passing water through a shellside that is the inside of a hydrophobic porous hollow fiber membrane formed of a polymer such as polypropylene (PP). When the pressure is greater than this pressure, biogas flows through the pores on a large scale toward the water, creating bubbles in the water.
그 결과, 바이오가스 내에 포함된 수용성 기체만의 막 접촉에 의한 효과적인 선택적 용해가 불가능해지는 문제점이 발생한다.As a result, a problem arises in that effective selective dissolution by membrane contact of only the water-soluble gas contained in the biogas is impossible.
그러나, 본 발명에서는 수용성 기체를 포함하는 바이오가스를 상압보다 높은 압력으로 압축하여 중공사막의 일측에 막 접촉하게 하고, 이와 동시에 물을 압축된 상기 바이오가스의 압력보다 일정 압력만큼 높게 가압하여 중공사막의 타측에 막 접촉하게 함으로써 수용성 기체의 물에 대한 용해량을 증가시킴과 더불어, 물에 기포(bubble)가 발생하는 것을 방지하도록 하였다.However, in the present invention, the biogas containing the water-soluble gas is compressed to a pressure higher than the normal pressure to come into contact with one side of the hollow fiber membrane, and at the same time, the water is pressurized by a predetermined pressure higher than the pressure of the compressed biogas to make the hollow fiber membrane The membrane was brought into contact with the other side to increase the amount of water-soluble dissolved in water, and to prevent bubbles from occurring in the water.
3. 3단계3. Step 3
상기 중공사막(220)과 막 접촉한 후 쉘사이드배출구(242)로 배출된 액체 중에는 용해 상태의 수용성 기체가 포함되어 있는데, 이를 상압 또는 진공이 유지되며 상단부에 액체를 탱크 내부에서 분산시키기 위한 스프레이 노즐이 설치되어 있는 상기 탈기탱크(300)로 공급하여 탈기탱크(300) 내부에서 액체와 상기 액체에 용해되는 성질의 기체가 용해 평형이 이루어질 때까지 상기 기체를 1차 탈기한다.The liquid discharged to the shellside outlet 242 after the membrane contact with the hollow fiber membrane 220 contains a water-soluble gas in a dissolved state, which is maintained at atmospheric pressure or vacuum and sprayed to disperse the liquid in the tank at the upper end thereof. The nozzle is supplied to the degassing tank 300 to which the nozzle is installed, and the gas is first degassed until a liquid equilibrium is achieved between the liquid and the gas dissolved in the liquid.
즉, 흡수 분리막 접촉기 모듈(200)에서 바이오가스와 액체에 가해진 압력이 탈기탱크(300)에서 상압 또는 진공으로 낮아지면, 수용성 기체의 물에 대한 용해도는 낮아지고, 그 차이만큼 물에 용해된 수용성 기체가 이탈하게 된다.That is, when the pressure applied to the biogas and the liquid in the absorption separator contactor module 200 is lowered to atmospheric pressure or vacuum in the degassing tank 300, the solubility of water in water is lowered, and the water solubility dissolved in water by the difference is reduced. The gas will leave.
4. 4단계4. Step 4
상기 탈기탱크(300)에서 탈기되어 비용해 상태가 된 기체를 상기 기체배출관(400)을 통해 가스압축기(100)로 공급한다.The gas degassed in the degassing tank 300 to become insoluble state is supplied to the gas compressor 100 through the gas discharge pipe 400.
상기 탈기탱크(300)에서 탈기된 기체에는 최초 흡수 분리막 접촉기 모듈(200)에서 분리된 메탄 외에도 잔량의 메탄이 포함되어 있는 바, 배관을 통해 가스압축기(100)로 공급하여 다시 흡수 분리막 접촉기 모듈(200)로 공급하여 시스템의 메탄 회수율을 증대시킨다.The gas degassed in the degassing tank 300 includes the remaining amount of methane in addition to the methane separated from the first absorption membrane contactor module 200, and supplies the gas compressor 100 to the gas compressor 100 through a pipe again to absorb the membrane contactor module ( 200) to increase the methane recovery of the system.
5. 5단계5. Step 5
상기 탈기탱크(300)에서 1차 탈기된 액체를 상기 탈기 분리막 접촉기 모듈(500)의 쉘사이드유입구(541)로 공급하여 중공사막(520) 일측에 막 접촉시키고, 상기 진공펌프(550)로 탈기 분리막 접촉기 모듈(500)의 튜브사이드(521)에 진공을 가하여 2차 탈기시킨다.The first degassed liquid from the degassing tank 300 is supplied to the shell side inlet 541 of the degassing membrane contactor module 500 to make membrane contact with one side of the hollow fiber membrane 520, and degassed with the vacuum pump 550. A vacuum is applied to the tube side 521 of the separator contactor module 500 to degas the secondary.
진공 펌프(550)에 의하여 상압 미만의 상태를 유지하게 하면 액체 중에 포함되어 있는 수용성 기체를 더 완전하게 탈기 할 수 있다.When the vacuum pump 550 maintains the state below the normal pressure, the water-soluble gas contained in the liquid can be more completely degassed.
6. 6단계6. Step 6
상기 탈기 분리막 접촉기 모듈(500)의 쉘사이드배출구(542)로 배출된 액체를 상기 가압펌프(610)로 가압한 채 상기 액체순환관(600)을 통해 상기 흡수 분리막 접촉기 모듈(200)의 쉘사이드유입구(241)를 통해 흡수 분리막 접촉기 모듈(200)로 공급한다.Shell side of the absorption separator contactor module 200 through the liquid circulation tube 600 while pressurizing the liquid discharged to the shell side outlet 542 of the degassing membrane contactor module 500 with the pressure pump 610. It is supplied to the absorption separator contactor module 200 through the inlet 241.
5단계를 거쳐 수용성 기체가 탈기된 액체는 다시 흡수 분리막 접촉기 모듈(200)로 주입하여 수용성 기체의 용해에 재이용한다. The liquid from which the water-soluble gas is degassed through the five steps is injected into the absorption separator contactor module 200 and reused to dissolve the water-soluble gas.
즉, 수용성 기체를 흡수, 탈기하는 데 사용되는 액체는 흡수 분리막 접촉기 모듈(200), 탈기탱크(300), 탈기 분리막 접촉기 모듈(500)의 순서를 반복하면서 수용성 기체를 흡수하고 탈기하여 배출하는 매체 역할을 수행하게 된다.That is, the liquid used to absorb and degas the water-soluble gas is a medium for absorbing and degassing and discharging the water-soluble gas while repeating the sequence of the absorption separator contactor module 200, the degassing tank 300, and the deaeration membrane contactor module 500. It will play a role.
<실험예 2> 정제 메탄 농도 및 메탄 회수율 측정Experimental Example 2 Measurement of Purified Methane Concentration and Methane Recovery
도 2와 같은 구조를 갖는 흡수 분리막 접촉기 모듈(200), 탈기 분리막 접촉기 모듈(500)을 포함한 도 8와 같은 구성의 막 접촉 시스템을 준비하였으며, 액체는 물을 사용하고, 흡수 분리막 접촉기 모듈(200)로 실제 바이오가스와 유사한 조성인 메탄 41%, 이산화탄소 59%인 모사 혼합기체를 준비하여 공급하였다.A membrane contact system having the configuration as shown in FIG. 8 including the absorption separator contactor module 200 and the deaeration separator contactor module 500 having the structure as shown in FIG. 2 was prepared, and the liquid used was water and the absorption separator contactor module 200 ), Simulated gas mixtures containing 41% methane and 59% carbon dioxide were prepared and supplied.
더불어, 흡수 분리막 접촉기 모듈(200)의 튜브사이드유입구(231), 튜브사이드배출구(232), 탈기탱크(300)와 인접한 기체배출관(400) 일측, 탈기 분리막 접촉기 모듈(500)의 튜브사이드배출구(531)에서의 압력과 유량, 메탄 농도를 각각 측정하여 표 2에 나타냈다.In addition, the tube side inlet 231 of the absorption separator contactor module 200, the tube side outlet 232, one side of the gas discharge pipe 400 adjacent to the degassing tank 300, and the tube side outlet of the deaeration membrane contactor module 500 ( The pressure, flow rate and methane concentration in 531) were measured and shown in Table 2, respectively.
표 2
항목 압력(bar) 유량(sccm) 메탄 농도(%)
흡수 분리막 접촉기 모듈(200)의 튜브사이드유입구(231) 5.5 1,198.8 41.00
흡수 분리막 접촉기 모듈(200)의 튜브사이드배출구(232) 5.5 413.3 97.03
탈기탱크(300)와 인접한 기체배출관(400) 일측 0.01 126.3 61.48
탈기 분리막 접촉기 모듈(500)의 튜브사이드배출구(531) -0.95 659.2 1.94
TABLE 2
Item Pressure (bar) Flow rate (sccm) Methane concentration (%)
Tube side inlet 231 of absorption separator contactor module 200 5.5 1,198.8 41.00
Tube side outlet 232 of the absorption separator contactor module 200 5.5 413.3 97.03
One side of the gas discharge pipe 400 adjacent to the degassing tank 300 0.01 126.3 61.48
Tube side outlet 531 of the deaeration membrane contactor module 500 -0.95 659.2 1.94
상기 표 2에 나타난 바와 같이 고순도화된 메탄의 농도는 97.03%였으며, 시스템의 메탄 회수율은 97.4%로 매우 높게 나타난 것을 알 수 있다.As shown in Table 2, the concentration of highly purified methane was 97.03%, and the methane recovery of the system was found to be very high at 97.4%.
본 발명의 분리막 접촉기 모듈은 폐수 처리, 용수 제조를 포함한 수처리, 식품과 제약부문에서의 농축, 그리고 공기 중에서의 산소와 질소의 분리, 암모니아의 회수 등 산업 전반에 널리 적용되어 고체와 액체, 액체와 액체, 기체와 기체 및 액체와 기체를 분리하는데 사용될 수 있다 할 것이다.Membrane contactor module of the present invention is widely applied throughout the industry, such as wastewater treatment, water treatment, including water production, concentration in the food and pharmaceutical sector, separation of oxygen and nitrogen in the air, recovery of ammonia, solid and liquid, liquid and It may be used to separate liquids, gases and gases, and liquids and gases.
특히, 본 발명의 막 접촉 시스템 및 막 접촉 방법은 유기물의 혐기성 소화 과정에서 발생하는 바이오가스로부터 메탄과 같은 표적이 되는 특정 기체를 분리하는 데 적합하다 할 것이다.In particular, the membrane contact system and membrane contact method of the present invention will be suitable for separating specific target gases, such as methane, from biogas generated during the anaerobic digestion of organics.

Claims (14)

  1. 분리막 접촉기 모듈에 있어서,In the membrane contactor module,
    내부가 빈 중공 형상으로 이루어진 모듈하우징(10)과;A module housing 10 formed of a hollow hollow shape;
    상기 모듈하우징 내부에 길이 방향을 따라 모듈하우징(10) 내벽면과 이격된 채 설치되어 쉘사이드(11)를 형성하고, 내부에 길이방향으로 튜브사이드(21)가 형성되어 있는 중공사막(20)과;The hollow fiber membrane 20 having the shell housing 11 formed in the module housing spaced apart from the inner wall surface of the module housing 10 along the longitudinal direction and having the tube side 21 formed in the longitudinal direction therein. and;
    상기 모듈하우징(10) 양단에 각각 설치되어 있고, 일측에 튜브사이드유입구(31)가 형성되어 있으며, 타측에 튜브사이드배출구(32)가 형성되어 있고, 내부공간(33)이 상기 튜브사이드(21)와 연통되고 쉘사이드(11)와 차단되도록 격벽(34)이 형성되어 있는 두 개의 캡(30)과;It is provided at both ends of the module housing 10, the tube side inlet 31 is formed on one side, the tube side outlet 32 is formed on the other side, the inner space 33 is the tube side 21 Two caps 30 having a partition 34 formed therein so as to be in communication with the shell side 11;
    상기 두 캡(30)을 관통한 채 중간 부분이 상기 모듈하우징(10) 내부에 위치하도록 설치되어 있으며, 일측 단부에 쉘사이드유입구(41)가 형성되어 있고, 타측 단부에 쉘사이드배출구(42)가 형성되어 있는 내부가 빈 관 형태로 이루어져 있되, 중간 부분 내측에 칸막이(43)가 설치되어 있고, 칸막이(43)를 기준으로 양측 외주면에 다수 개의 홀(44)이 형성되어 있어 쉘사이드유입구(41) 측 홀(44)로부터 액체가 쉘사이드(11)로 이동하고, 쉘사이드배출구(42) 측 홀(44)을 통해 쉘사이드(11) 측의 액체가 내부로 유입된 채 쉘사이드배출구(42)로 이동하도록 이루어진 유로제어튜브(40);를 포함하여 구성된,A middle part is installed to penetrate the two caps 30 and is located inside the module housing 10. A shell side inlet 41 is formed at one end and a shell side outlet 42 at the other end. The inside is formed in the form of a hollow tube, the partition 43 is installed inside the middle portion, and the plurality of holes 44 are formed on both outer peripheral surfaces based on the partition 43, the shell side inlet ( 41, the liquid moves from the side hole 44 to the shell side 11, and the liquid on the side of the shell side 11 flows into the shell side outlet port 44 through the shell side outlet 42 side hole 44. Configured to include; flow control tube 40 configured to move to 42
    분리막 접촉기 모듈.Membrane Contactor Module.
  2. 제 1항에 있어서,The method of claim 1,
    길이 방향을 따라 내부에 다수 개의 차단벽(51)이 형성되어 차단벽(51)에 의해 분할된 다수 개의 유닛설치공간(52)이 형성되어 상기 모듈하우징(10), 중공사막(20), 캡(30) 및 유로제어튜브(40)가 하나의 유닛(60)을 이룬 채 상기 유닛설치공간(52)에 각각 삽입되고, 벽면에는 각 유닛설치공간(52)을 연결하는 연결통로(53)가 형성되어 있고, 연결통로(53)는 인접한 유닛(60)의 캡(30) 내부공간(33)을 서로 연결하도록 이루어져 있으며, 인접한 유닛(60)의 유로제어튜브(40)는 내부가 서로 연통되도록 설치되는 외부케이스(50)가 더 구비되어 있는 것을 특징으로 하는,A plurality of blocking walls 51 are formed inside the longitudinal direction to form a plurality of unit installation spaces 52 divided by the blocking walls 51 to form the module housing 10, the hollow fiber membrane 20, and the cap. 30 and the flow path control tube 40 are respectively inserted into the unit installation space 52 to form a unit 60, the wall has a connecting passage 53 for connecting each unit installation space 52 Is formed, the connecting passage 53 is formed to connect the internal space 33 of the cap 30 of the adjacent unit 60, the flow path control tube 40 of the adjacent unit 60 so that the interior is in communication with each other Characterized in that the outer case 50 is further provided,
    분리막 접촉기 모듈.Membrane Contactor Module.
  3. 제 1항 내지 제 2항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 2,
    상기 홀(44)은 직경이 0.5 ~ 50mm의 크기로 이루어진 것을 특징으로 하는,The hole 44 is characterized in that the diameter is made of a size of 0.5 ~ 50mm,
    분리막 접촉기 모듈.Membrane Contactor Module.
  4. 제 1항 내지 제 2항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 2,
    상기 홀(44)은 유로제어튜브(40)의 축방향과 일직선이 되거나, 나선형으로 축방향으로 따라 형성된 단일 슬롯 형상인 것을 특징으로 하는,The hole 44 is in line with the axial direction of the flow path control tube 40, or characterized in that the single slot shape formed along the axial direction in a spiral,
    분리막 접촉기 모듈.Membrane Contactor Module.
  5. 제 1항 내지 제 2항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 2,
    상기 홀(44)은 유로제어튜브(40) 단면을 기준으로 외주면에 등분할된 위치에 복수 개 형성되어 있는 것을 특징으로 하는,The hole 44 is characterized in that a plurality of holes are formed in equally divided positions on the outer peripheral surface based on the cross section of the flow path control tube 40,
    분리막 접촉기 모듈.Membrane Contactor Module.
  6. 제 5항에 있어서,The method of claim 5,
    상기 홀(44)은 유로제어튜브(40) 외주면을 따라 나선형으로 형성되어 있는 것을 특징으로 하는,The hole 44 is characterized in that the spiral formed along the outer peripheral surface of the flow control tube 40,
    분리막 접촉기 모듈.Membrane Contactor Module.
  7. 제 1항 내지 제 2항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 2,
    상기 홀(44)은 유로제어튜브(40)의 길이 방향을 따라 다수 개가 일정 간격으로 형성되어 있되, 칸막이(43)에 인접한 선단의 홀(44)은 격벽(34)으로부터 칸막이(43) 사이의 거리의 3/5 ~ 4/5 에 위치한 것을 특징으로 하는,A plurality of holes 44 are formed at regular intervals along the length direction of the flow path control tube 40, and the holes 44 at the front end adjacent to the partition 43 are formed between the partitions 34 and the partition 43. Characterized in 3/5 to 4/5 of the street,
    분리막 접촉기 모듈.Membrane Contactor Module.
  8. 제 1항 내지 제 2항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 2,
    상기 모듈하우징(10)의 내경/길이는 1/2 ~1/20인 것을 특징으로 하는,Inner diameter / length of the module housing 10, characterized in that 1/2 ~ 1/20,
    분리막 접촉기 모듈.Membrane Contactor Module.
  9. 바이오가스 정제용 막접촉 시스템에 있어서,In the membrane contact system for biogas purification,
    액체에 용해되는 성질을 갖는 기체를 포함한 바이오가스를 상압보다 큰 압력으로 가압하는 가스압축기(100)와;A gas compressor (100) for pressurizing a biogas including a gas having a property of dissolving in a liquid to a pressure greater than normal pressure;
    내부가 빈 중공 형상으로 이루어진 모듈하우징(210)과, 상기 모듈하우징 내부에 길이 방향을 따라 모듈하우징(210) 내벽면과 이격된 채 설치되어 외측으로 쉘사이드(211)를 형성하고, 내부에 길이방향으로 튜브사이드(221)가 형성되어 있는 중공사막(220)과, 상기 모듈하우징(210) 양단에 각각 설치되어 있고, 일측에 상기 가스압축기(100)에서 압축된 바이오가스가 유입되는 튜브사이드유입구(231)가 형성되어 있으며, 타측에 막 접촉된 바이오가스가 배출되는 튜브사이드배출구(232)가 형성되어 있고, 내부공간(233)이 상기 튜브사이드(221)와 연통되고 쉘사이드(211)와 차단되도록 격벽(234)이 형성되어 있는 두 개의 캡(230)과, 상기 두 캡(230)을 관통한 채 중간 부분이 상기 모듈하우징(210) 내부에 위치하도록 설치되어 있으며, 일측 단부에 외부로부터 액체가 유입되는 쉘사이드유입구(241)가 형성되어 있고, 타측 단부에 유입된 액체가 배출되는 쉘사이드배출구(242)가 형성되어 있는 내부가 빈 관 형태로 이루어져 있되, 중간 부분 내측에 칸막이(243)가 설치되어 있고, 칸막이(243)를 기준으로 양측 외주면에 다수 개의 홀(244)이 형성되어 있어 쉘사이드유입구(241) 측 홀(244)로부터 액체가 쉘사이드(211)로 이동하고, 쉘사이드배출구(242) 측 홀(244)을 통해 쉘사이드(211) 측의 액체가 내부로 유입된 채 쉘사이드배출구(242)로 이동하도록 이루어진 유로제어튜브(240)로 구성된 흡수 분리막 접촉기 모듈(200)과;A module housing 210 having an empty hollow shape and an inside of the module housing are installed to be spaced apart from the inner wall surface of the module housing 210 along a length direction to form a shell side 211 to the outside, and a length inside the module housing 210. The hollow fiber membrane 220 and the tube housing 221 in which the tube side 221 is formed, respectively, are installed at both ends of the module housing 210, and the tube side inlet through which the biogas compressed by the gas compressor 100 flows on one side. 231 is formed, a tube side discharge port 232 through which the biogas in contact with the other side is discharged is formed, and the inner space 233 is in communication with the tube side 221 and the shell side 211 Two caps 230 having the partition wall 234 formed to be blocked, and the middle portion penetrates the two caps 230 and are installed to be positioned inside the module housing 210, and at one end thereof from the outside. Liquid flows in Shell side inlet 241 is formed, the shell side discharge port 242 is formed inside the empty tube form is formed, the liquid flowing in the other end is discharged, the partition 243 is provided inside the middle portion In addition, a plurality of holes 244 are formed at both outer peripheral surfaces of the partition 243, so that the liquid moves from the hole 244 at the shellside inlet 241 to the shellside 211, and the shellside outlet 242. Absorption membrane contactor module 200 composed of a flow path control tube 240 is configured to move to the shell side outlet 242 while the liquid on the side of the shell side 211 through the hole (244) side;
    상기 흡수 분리막 접촉기 모듈(200)의 쉘사이드배출구(242)에서 토출된 액체를 상압 또는 진공 상태에서 내부에 저장하는 탈기탱크(300)와;A degassing tank 300 for storing the liquid discharged from the shell side outlet 242 of the absorption separator contactor module 200 at atmospheric pressure or in a vacuum state;
    일측은 상기 탈기탱크(300) 상부에 연결되어 있고, 타측은 상기 가스압축기(100)에 연결되어 있고, 관로 중간에 블로워(410)가 설치되어 상기 비용해 상태의 기체를 상기 가스압축기(100)로 공급하는 기체배출관(400)과;One side is connected to the upper side of the degassing tank 300, the other side is connected to the gas compressor 100, a blower 410 is installed in the middle of the pipeline to the gas in the injured state of the gas compressor 100 Gas discharge pipe 400 for supplying with;
    내부가 빈 중공 형상으로 이루어진 모듈하우징(510)과, 상기 모듈하우징 내부에 길이 방향을 따라 모듈하우징(510) 내벽면과 이격된 채 설치되어 외측으로 쉘사이드(511)를 형성하고, 내부에 길이방향으로 튜브사이드(521)가 형성되어 있는 중공사막(520)과, 상기 모듈하우징(510) 양단에 각각 설치되어 있고, 내부공간(533)이 상기 튜브사이드(521)와 연통되고 쉘사이드(511)와 차단되도록 격벽(534)이 형성되어 있으며, 양측에 진공펌프(550)와 배관 연결된 튜브사이드배출구(531)가 형성되어 튜브사이드(521) 내부 공기가 진공펌프(550)에 의해 외부로 배출되어 튜브사이드(521)에 진공이 형성되도록 이루어져 있는 두 개의 캡(530)과, 상기 두 캡(530)을 관통한 채 중간 부분이 상기 모듈하우징(510) 내부에 위치하도록 설치되어 있으며, 일측 단부에 상기 탈기탱크(300)와 배관 연결되어 탈기탱크(300)에 저장된 액체가 유입되는 쉘사이드유입구(541)가 형성되어 있고, 타측 단부에 내부로 유입된 액체가 배출되는 쉘사이드배출구(542)가 형성되어 있는 내부가 빈 관 형태로 이루어져 있되, 중간 부분 내측에 칸막이(543)가 설치되어 있고, 칸막이(543)를 기준으로 양측 외주면에 다수 개의 홀(544)이 형성되어 있어 쉘사이드유입구(541) 측 홀(44)로부터 액체가 쉘사이드(511)로 이동하고, 쉘사이드배출구(542) 측 홀(544)을 통해 쉘사이드(511) 측의 액체가 내부로 유입된 채 쉘사이드배출구(542)로 이동하도록 이루어진 유로제어튜브(540)로 구성된 탈기 분리막 접촉기 모듈(500)과;A module housing 510 having an empty hollow shape and a module housing 510 spaced apart from an inner wall surface of the module housing 510 in a longitudinal direction inside the module housing are formed to form a shell side 511 to the outside and have a length therein. The hollow fiber membrane 520 in which the tube side 521 is formed, and the module housing 510 at both ends, respectively, and an inner space 533 communicates with the tube side 521 and the shell side 511. The barrier ribs 534 are formed to be blocked from each other, and the tube side discharge ports 531 connected to the vacuum pump 550 are formed on both sides thereof, and the air inside the tube side 521 is discharged to the outside by the vacuum pump 550. And two caps 530 configured to form a vacuum in the tube side 521, and an intermediate portion is installed inside the module housing 510 while penetrating the two caps 530. In the degassing tank 300 and piping A shell-side inlet 541 is formed to be connected to the liquid stored in the degassing tank 300, and a shell-side outlet 542 is formed in which the liquid introduced into the other end is discharged. The partition 543 is provided inside the middle portion, and a plurality of holes 544 are formed on both outer peripheral surfaces of the partition 543 so that the liquid from the hole 44 at the side of the shellside inlet 541 is formed. Flows to the shell side 511 and moves to the shell side outlet 542 while the liquid on the side of the shell side 511 flows into the shell side through the hole 544 of the shell side outlet 542. A degassing membrane contactor module 500 consisting of 540;
    일측은 상기 쉘사이드배출구(542)와 연결되어 있고, 타측은 상기 흡수 분리막 접촉기 모듈(200)의 쉘사이드유입구(241)와 연결되어 있으며, 관로 일측에 가압펌프(610)가 설치되어 탈기 분리막 접촉기 모듈(500)을 통과한 액체를 가압시킨 상태로 상기 상기 흡수 분리막 접촉기 모듈(200)로 공급하도록 이루어진 액체순환관(600);을 포함하여 구성된,One side is connected to the shell side outlet 542, the other side is connected to the shell side inlet 241 of the absorption separator contactor module 200, and a pressure pump 610 is installed at one side of the pipeline to provide a deaeration separator contactor. And a liquid circulation tube (600) configured to supply the absorbent membrane contactor module (200) while pressurizing the liquid passing through the module (500).
    바이오가스 정제용 막 접촉 시스템.Membrane contact system for biogas purification.
  10. 바이오가스 정제용 막접촉 방법에 있어서,In the membrane contact method for biogas purification,
    제 9항의 바이오가스 정제용 막 접촉 시스템을 이용하여 액체에 용해되는 성질을 갖는 기체를 포함하는 바이오가스를 상기 가스압축기(100)를 이용하여 상압보다 높은 압력으로 압축시키는 단계와;Compressing a biogas including a gas having a property of dissolving in a liquid using the biogas purification membrane contact system of claim 9 to a pressure higher than normal pressure using the gas compressor (100);
    상기 가스압축기(100)에서 가압된 바이오가스를 상기 흡수 분리막 접촉기 모듈(200)의 튜브사이드유입구(231)로 공급하여 중공사막(220) 일측에 막 접촉하게 하고, 상기 가압펌프(610)를 이용하여 흡수 분리막 접촉기 모듈(200)의 튜브사이드유입구(231)로 가압된 바이오가스보다 높은 압력으로 액체를 쉘사이드유입구(241)로 공급하여 중공사막(220) 타측에 막 접촉하게 하는 단계와;The biogas pressurized by the gas compressor 100 is supplied to the tube side inlet 231 of the absorption separator contactor module 200 to make membrane contact with one side of the hollow fiber membrane 220, and the pressure pump 610 is used. Supplying the liquid to the shellside inlet 241 at a higher pressure than the biogas pressurized by the tubeside inlet 231 of the absorption separator contactor module 200 to make the membrane contact with the other side of the hollow fiber membrane 220;
    상기 중공사막(220)과 막 접촉한 후 쉘사이드배출구(242)로 배출된 액체는 상압 또는 진공이 유지되는 상기 탈기탱크(300)로 공급하여 탈기탱크(300) 내부에서 액체와 상기 액체에 용해되는 성질의 기체가 용해 평형이 이루어질 때까지 상기 기체를 1차 탈기하는 단계와;The liquid discharged to the shell side outlet 242 after the membrane contact with the hollow fiber membrane 220 is supplied to the degassing tank 300 maintained at atmospheric pressure or vacuum to be dissolved in the liquid and the liquid in the degassing tank 300. Firstly degassing the gas until dissolution equilibrium occurs;
    상기 탈기탱크(300)에서 탈기되어 비용해 상태가 된 기체를 상기 기체배출관(400)을 통해 가스압축기(100)로 공급하는 단계와;Supplying a gas degassed in the degassing tank (300) to the gas compressor (100) through the gas discharge pipe (400);
    상기 탈기탱크(300)에서 1차 탈기된 액체를 상기 탈기 분리막 접촉기 모듈(500)의 쉘사이드유입구(541)로 공급하여 중공사막(520) 일측에 막 접촉시키고, 상기 진공펌프(550)로 탈기 분리막 접촉기 모듈(500)의 튜브사이드(521)에 진공을 가하여 2차 탈기시키는 단계와;The first degassed liquid from the degassing tank 300 is supplied to the shell side inlet 541 of the degassing membrane contactor module 500 to make membrane contact with one side of the hollow fiber membrane 520, and degassed with the vacuum pump 550. Applying a vacuum to the tube side 521 of the membrane contactor module 500 to perform secondary degassing;
    상기 탈기 분리막 접촉기 모듈(500)의 쉘사이드배출구(542)로 배출된 액체를 상기 가압펌프(610)로 가압한 채 상기 액체순환관(600)을 통해 상기 흡수 분리막 접촉기 모듈(200)의 쉘사이드유입구(241)를 통해 흡수 분리막 접촉기 모듈(200)로 공급하는 단계;를 포함하여 구성된,Shell side of the absorption separator contactor module 200 through the liquid circulation tube 600 while pressurizing the liquid discharged to the shell side outlet 542 of the degassing membrane contactor module 500 with the pressure pump 610. It comprises; supplying to the absorption separator contactor module 200 through the inlet 241,
    바이오가스 정제용 막 접촉 방법.Membrane contact method for biogas purification.
  11. 제 10항에 있어서,The method of claim 10,
    상기 가압펌프(610)를 통해 액체에 가해지는 압력은 바이오가스에 가해지는 압력보다 0.3 bar - 0.7 bar 높게 유지시키는 것을 특징으로 하는,The pressure applied to the liquid through the pressure pump 610 is characterized in that to maintain a 0.3 bar-0.7 bar higher than the pressure applied to the biogas,
    바이오가스 정제용 막 접촉 방법.Membrane contact method for biogas purification.
  12. 제 10항에 있어서,The method of claim 10,
    가스압축기(100)를 통해 압축되어 흡수 분리막 접촉기 모듈(200)로 공급되는 기체유량과 가압펌프(610)를 통해 흡수 분리막 접촉기 모듈(200)로 공급되는 액체의 유량의 비율을 0.01∼10으로 유지시키는 것을 특징으로 하는,The ratio of the gas flow rate compressed through the gas compressor 100 and supplied to the absorption separator contactor module 200 and the flow rate of the liquid supplied to the absorption separator contactor module 200 through the pressure pump 610 is maintained at 0.01 to 10. Characterized in that
    바이오가스 정제용 막 접촉 방법.Membrane contact method for biogas purification.
  13. 제 10항에 있어서,The method of claim 10,
    상기 바이오가스는 유기성 물질의 혐기성 소화과정에서 발생하는 혼합기체로 메탄, 이산화탄소, 황화수고, 암모니아 중 어느 하나가 포함된 것을 특징으로 하는,The biogas is a mixed gas generated during the anaerobic digestion of organic substances, characterized in that any one of methane, carbon dioxide, toil sulfide, ammonia,
    바이오가스 정제용 막 접촉 방법.Membrane contact method for biogas purification.
  14. 제 10항에 있어서,The method of claim 10,
    상기 1차 탈기시 탈기탱크(300)는 내부 온도를 5 ~ 50℃로 유지하는 것을 특징으로 하는,Degassing tank 300 during the first degassing, characterized in that for maintaining the internal temperature at 5 ~ 50 ℃,
    바이오가스 정제용 막 접촉 방법.Membrane contact method for biogas purification.
PCT/KR2015/002329 2015-03-09 2015-03-11 Separation membrane contactor module and membrane contact system and membrane contact method for purifying bio-gas using same WO2016143920A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0032215 2015-03-09
KR20150032215 2015-03-09
KR10-2015-0033148 2015-03-10
KR1020150033148A KR101571479B1 (en) 2015-03-10 2015-03-10 Membrane contactor system and contacting method for upgrading biogas

Publications (1)

Publication Number Publication Date
WO2016143920A1 true WO2016143920A1 (en) 2016-09-15

Family

ID=56880373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002329 WO2016143920A1 (en) 2015-03-09 2015-03-11 Separation membrane contactor module and membrane contact system and membrane contact method for purifying bio-gas using same

Country Status (1)

Country Link
WO (1) WO2016143920A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106433831A (en) * 2016-09-26 2017-02-22 常州工程职业技术学院 Method and device for purifying biomass gas and recycling methane
EP3520884A1 (en) * 2018-02-06 2019-08-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device for separating membranes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262870A (en) * 1999-03-08 2000-09-26 Celgard Inc Shellless hollow fiber membrane fluid contact device
JP2009269023A (en) * 2008-04-30 2009-11-19 Celgard Llc Liquid membrane holding contactor and method of manufacturing the same
KR20130064324A (en) * 2011-12-08 2013-06-18 (주)세프라텍 Membrane contact method for seperating carbon dioxide and system therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262870A (en) * 1999-03-08 2000-09-26 Celgard Inc Shellless hollow fiber membrane fluid contact device
JP2009269023A (en) * 2008-04-30 2009-11-19 Celgard Llc Liquid membrane holding contactor and method of manufacturing the same
KR20130064324A (en) * 2011-12-08 2013-06-18 (주)세프라텍 Membrane contact method for seperating carbon dioxide and system therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106433831A (en) * 2016-09-26 2017-02-22 常州工程职业技术学院 Method and device for purifying biomass gas and recycling methane
CN106433831B (en) * 2016-09-26 2023-05-23 常州工程职业技术学院 Method and apparatus for purifying biomass gas and recovering methane
EP3520884A1 (en) * 2018-02-06 2019-08-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device for separating membranes
FR3077508A1 (en) * 2018-02-06 2019-08-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude MEMBRANE SEPARATION DEVICE

Similar Documents

Publication Publication Date Title
CN107106969B (en) Separating impurities from a fluid stream using multiple co-current contactors
CN1331562C (en) Central carbon dioxide purifier
US6645446B1 (en) Split-flow process and apparatus
SU1309902A3 (en) Absorbent for selective separation of hydrogen sulphide
US10717039B2 (en) Inner surface features for co-current contractors
AU620852B2 (en) Membrane process for hydrocarbon liquid recovery
WO2016143920A1 (en) Separation membrane contactor module and membrane contact system and membrane contact method for purifying bio-gas using same
EA009563B1 (en) Removing contaminants from natural gas
KR101819278B1 (en) Distillation device
WO2018021840A1 (en) Compact advanced water treatment apparatus using sponge filter media
KR101862769B1 (en) High purity methane gas purification apparatus and method from the biogas
WO2020189999A1 (en) Method for concentrating aqueous solution with low energy by using reverse osmosis and forward osmosis in state in which multiple-no osmotic pressure difference is induced
AU2013301899A1 (en) Method for selective desulphurisation of a synthetic raw gas
US9028682B2 (en) System and method for H2S removal integrated with stinson process CO2 removal
KR101571479B1 (en) Membrane contactor system and contacting method for upgrading biogas
WO2005005035A1 (en) Purification and recovery of fluids
KR100650379B1 (en) Isolation of SF6 from insulating gases in gas insulated lines
KR20150080990A (en) Purification System of biogas and control method thereof
KR101548883B1 (en) Liquefying and collecting apparatus of high purity carbon dioxide from bio gas
RU118564U1 (en) INSTALLATION FOR PREPARATION OF ASSOCIATED OIL GAS FOR TRANSPORTATION BY PIPELINE TRANSPORT
EP3362165B1 (en) Regenerating sieve material used for processing natural gas
WO2020141867A1 (en) Exhaust gas treatment apparatus, and ship comprising same
US20220355246A1 (en) Landfill Gas Processing Systems and Methods
WO2017018764A1 (en) Method for concentrating solute-containing aqueous solution at high concentration by reverse osmosis method in non-osmotic pressure difference state
KR20180076380A (en) High purity methane gas purification system from bio gas and method of bio gas purification using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884721

Country of ref document: EP

Kind code of ref document: A1