WO2016143482A1 - Optical detection device - Google Patents

Optical detection device Download PDF

Info

Publication number
WO2016143482A1
WO2016143482A1 PCT/JP2016/054836 JP2016054836W WO2016143482A1 WO 2016143482 A1 WO2016143482 A1 WO 2016143482A1 JP 2016054836 W JP2016054836 W JP 2016054836W WO 2016143482 A1 WO2016143482 A1 WO 2016143482A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
irradiation region
detection device
optical detection
measurement
Prior art date
Application number
PCT/JP2016/054836
Other languages
French (fr)
Japanese (ja)
Inventor
染野 義博
山下 龍麿
孝文 青木
秀作 遊佐
尚大 関口
智浩 鈴木
岩本 正美
弘一 安藤
川人 祥二
Original Assignee
アルプス電気株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社, 国立大学法人東北大学 filed Critical アルプス電気株式会社
Publication of WO2016143482A1 publication Critical patent/WO2016143482A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the present invention relates to an optical detection device capable of detecting a phase difference of light reflected from an object and measuring a distance from the object.
  • Patent Document 1 describes a system having an illumination unit that converts detection light from a coherent light source into a random speckle pattern and irradiates the object, and an imaging device that receives light reflected from the object. ing.
  • a three-dimensional survey is performed by the illumination unit and the imaging device. Random speckle pattern deviation between the reflection pattern from the measurement object detected by the imaging device when the measurement object moves to the measurement area and the reference image obtained when the measurement object does not exist Is detected, and a three-dimensional map of the object to be measured is constructed.
  • Patent Document 2 describes a detection method in which light from a light source is intensity-modulated and irradiated onto an object.
  • the reflected light from the object is received by the photoelectric conversion unit, and the distance to the object existing in the space is obtained by calculating the phase difference between the light emitted from the light emitting source and the light received by the photoelectric conversion unit. Is required.
  • Patent Document 1 may be suitable for quantifying the shape of the object, but to obtain the three-dimensional information of the object from the detection value of the deviation of the random speckle pattern. Since a huge amount of calculation is required, it is not possible to expect an increase in processing speed.
  • the method described in Patent Document 2 can directly obtain distance information by measuring a phase difference between light emitted from a light emitting source and light acquired by a photoelectric conversion unit.
  • a laser light source is used to reduce the influence of disturbance light, it is easily affected by speckle noise, and noise is generated near the edge of the object. Measurement errors are likely to occur.
  • the photoelectric conversion unit obtains a phase difference with respect to reflected light from the entire irradiation field of light, in order to accurately detect the phase difference in each pixel, a considerably large emission energy is required. Become.
  • the present invention solves the above-described conventional problems, and can effectively detect the distance information of an object by effectively using light energy from a light source, and further relates to a planar shape of the object.
  • An object of the present invention is to provide an optical detection device that can also acquire information.
  • the present invention includes a light source, a light source driver that emits intensity-modulated measurement light from the light source, An optical conversion element that converts the measurement light into a predetermined projection pattern and projects the measurement light onto a target; a light-receiving element that receives the measurement light reflected from the target; and a control unit.
  • control unit can detect the contour of the object by monitoring the continuity of the light intensity change of the reflected light from the projection pattern.
  • the light irradiation region includes a high luminance portion having a high light luminance and a low luminance portion having a light luminance lower than that of the high luminance portion. It is preferable to calculate distance information in the Z direction from the phase difference.
  • control unit can detect the contour of the object by monitoring the continuity of the light intensity change of the reflected light from the low luminance part.
  • the present invention calculates distance information in the Z direction from the phase difference of the light in the light irradiation region and monitors the continuity of the light intensity change of the reflected light from the same light irradiation region. It is also possible to detect the contour.
  • the optical detection device of the present invention can calculate the three-dimensional shape of the object from distance information in the Z direction and the contour.
  • the projection pattern is a dot pattern.
  • the pattern shape of the light irradiation region may be anything.
  • the present invention uses an optical conversion element to collect measurement light emitted from a light source at a plurality of locations to form a plurality of light irradiation regions. Therefore, the projection pattern of the light irradiated to the object has a plurality of light irradiation regions and a light non-irradiation region that fills between the light irradiation regions.
  • the present invention detects the phase difference of the light from the light reception output from the light irradiation region formed by collecting the light and obtains distance information (depth information) in the Z direction of the object.
  • distance information depth information
  • the S / N ratio when obtaining the information in the Z direction can be increased by concentrating the light energy on the light and calculating the phase difference of the light from the reflected light from the light irradiation region. Measurement accuracy can be improved. Further, since the light can be concentrated on the light irradiation region, it is possible to obtain strong resistance against external light such as sunlight.
  • the reflection intensity of light differs between a measurement object such as a hand and an object present in the background of the object, the continuity of the intensity of the reflected light of the light projected in a predetermined projection pattern is monitored.
  • the boundary portion of the measurement object In particular, when the object is moving, it is easy to detect the boundary of the object.
  • the light irradiation region is divided into a high luminance portion and a low luminance portion, and a projection pattern is formed by the high luminance portion and the low luminance portion.
  • the phase difference of the light is detected from the light receiving output of the high luminance portion to obtain distance information in the Z direction, and the continuity of the light intensity is monitored from the light receiving output of the low luminance portion to detect the boundary portion of the object. It is preferable to detect.
  • the light irradiation area By dividing the light irradiation area into a high-luminance part and a low-luminance part, by providing a threshold value for the light reception output, it is a light reception output for calculating the distance in the Z direction by phase difference detection, or an intensity change It becomes easy to discriminate whether the received light output is for detecting the boundary portion of the object by monitoring continuity, and it becomes easier to calculate by dividing the depth detection and the XY information detection.
  • the distance information in the Z direction can be detected with high accuracy while being hardly affected by external light.
  • the projection pattern in particular, by making the projection pattern a dot pattern, it becomes easier to concentrate light energy on the high-luminance part, and it is possible to improve the detection accuracy of distance information in the Z direction.
  • this dot pattern By using this dot pattern, the shape of the boundary portion of the object can be detected with high accuracy.
  • the side view which shows the structure of the optical detection apparatus of the 1st Embodiment of this invention, A photograph showing an example of a projection pattern of measurement light according to the first embodiment; A plan view showing an example of a light receiving element, Time chart showing processing operation of received light output, (A) (B) is a diagram showing the effect of the embodiment of the present invention, Block diagram of optical detection device, Explanatory drawing which shows an example of the projection pattern of the measurement light of 2nd Embodiment,
  • FIG. 1 shows the structure of the optical detection device 1 according to the first embodiment of the present invention
  • FIG. 6 shows a circuit block diagram of the optical detection device 1.
  • the optical detection device 1 includes a projection device 10 and a light receiving device 20.
  • the projection device 10 includes a light source 11, one or more projection lenses 12 that convert measurement light emitted from the light source 11 into collimated light or divergent light, and an optical conversion element 13 that converts the measurement light into a predetermined projection pattern.
  • the light source 11 is a laser diode (LD) element that emits invisible light.
  • LD laser diode
  • an LD element that emits near infrared light or infrared light is used.
  • the optical conversion element 13 is a hologram element, which converts the measurement light emitted from the light source 11 into a predetermined projection pattern and irradiates the object.
  • the light irradiation pattern has a high luminance part d1 and a low luminance part d2 having a luminance lower than that of the high luminance part d1.
  • the hologram element can diffract light passing therethrough and concentrate light energy in a predetermined spatial region. A portion where light is concentrated at a higher density becomes the high luminance portion d1, and a portion where the light concentration rate is lower than that is the low luminance portion d2.
  • FIG. 2 shows a state in which the measurement light is irradiated on the object (hand H) by the projection pattern converted by the optical conversion element 13 in the first embodiment.
  • Both the high-luminance part d1 and the low-luminance part d2 defined as light irradiation areas are spot-like (dot-like).
  • a region that fills between the high luminance portion d1 and the low luminance portion d2 and that appears dark in FIG. 2 is a light non-irradiation region.
  • the light non-irradiation region does not mean a region where no light is applied, but the light concentration rate is extremely low compared to the high luminance portion d1 and the low luminance portion d2 where the light is concentrated, and the high luminance portion This is a region that is considered to be hardly exposed to light as compared with d1 and the low luminance portion d2.
  • any arrangement pattern may be used for the high luminance portion d1 and the low luminance portion d2, but in the example shown in FIG. 2, both the high luminance portion d1 and the low luminance portion d2 are regularly arranged in a fixed pattern. ing.
  • the spot (dot) which is the light irradiation area, is 8 ⁇ 8 as one unit
  • the high-luminance part d1 is located at four corners of the unit
  • the other 60 spots ( Dot) is the low luminance part d2.
  • the units are arranged in the XY direction with the regularity that the adjacent units share the column and the row in which the high luminance part d1 exists.
  • the high luminance part d1 and the low luminance part d2 may be arranged randomly, or the high luminance part d1 is formed in a linear shape so as to cross and extend in the XY direction,
  • the low luminance portion d2 may be formed in a linear shape between the high luminance portions d1, or may be formed in a spot shape (dot shape).
  • a light source driver 14 is connected to the light source 11.
  • the light source driver 14 applies intensity modulation to the measurement light emitted from the light source 11.
  • a pulse oscillation circuit 15 is connected to the light source driver 14, and measurement light is intermittently emitted from the light source 11 by the light source driver 14.
  • the light receiving device 20 includes a light receiving element 21, at least one light receiving lens 22 positioned in front of the light receiving element 21, and a filter 23 disposed in front of the light receiving lens 22.
  • the filter 23 is configured to transmit a light emission wavelength (infrared light in this embodiment) corresponding to the wavelength of the light source and to block other wavelengths such as visible light.
  • the light receiving element 21 acquires the reflected light from the high luminance part d1 and the low luminance part d2 irradiated on the entire object (the hand H in the example of FIG. 2) located near the surface of the projection reference plane (background) 2. Light can be received with a possible angle of view.
  • the light receiving element 21 has a plurality of pixels regularly arranged in the X direction and the Y direction. Each pixel has a lateral electric field control type charge modulation pixel structure (LEFM) schematically shown in FIG.
  • LFM lateral electric field control type charge modulation pixel structure
  • FIG. 4 shows the operation timing of the LEFM.
  • LEFM light received by a pixel (PC) is acquired at a predetermined timing in each of a gate G1 (TX1), a gate G2 (TX2), and a gate G3 (TXD), and this is repeated in a predetermined accumulation period. .
  • the charge accumulated during the accumulation period is taken out during the readout period.
  • the emission period of the measurement light emitted from the light source 11 is T0, and the delay time Td of the reflected light (pulse light) detected by the pixel. If the distance L to the object is zero, there is no phase difference between the light emitting period T0 and the light receiving period Td, so that all charges when the reflected light is received are transferred from the gate G3. Conversely, the longer the distance L, the longer the light receiving period Td takes for the transfer time of the gate G2, and a part of the charge when receiving the reflected light is transferred from the gate G2.
  • the distance L from the light receiving element 21 to the object can be known based on the light receiving output.
  • the light receiving element 21 receives both the reflected light from the high luminance part d1 and the reflected light from the low luminance part d2 shown in FIG.
  • the light receiving output from the LEFM of the pixel that receives the reflected light from the high brightness portion d1 is high, and the light receiving output from the LEFM of the pixel that receives the reflected light from the low brightness portion d2 is low, and the reflection from the light non-irradiation region
  • the light reception output from the LEFM of the pixel that receives light is further lowered.
  • a predetermined threshold value is set in the pixel processing circuit 24 shown in FIG. 6, and a light receiving output larger than the threshold value among the light receiving outputs from the LEFM is given to the phase difference detecting circuit 31.
  • the calculation of Equation 1 is performed. That is, the distance L is calculated based only on the reflected light from the high luminance part d1.
  • the measurement light emitted from the light source 11 is concentrated on the spot-like (dot-like) high-intensity part d1 by the optical conversion element 13 constituted by a hologram element. Since the light energy collected in the high luminance part d1 is extracted by setting the threshold value and the phase difference is detected, it is possible to efficiently use the light energy from the light source 11 for distance measurement. Become. Therefore, even if the output of the light source 11 is limited, the irradiation range of the measurement light can be widened, and the distance can be measured in a wide irradiation range.
  • the reflected light from the spot-like (dot-like) high-luminance portion d1 has a high intensity, and the phase difference is measured using this high-intensity detection output, so that the S / N ratio can also be improved.
  • resistance to external light such as sunlight can be increased.
  • FIG. 5A shows a case where measurement light is projected with the projection pattern which is the dot pattern shown in FIG. 2 and a case where simple diffused light is given as measurement light to the object without using the optical conversion element 13.
  • FIG. 5B shows a case where measurement light is projected with the projection pattern which is the dot pattern shown in FIG. 2 and a case where simple diffused light is given as measurement light to the object without using the optical conversion element 13. It shows the dispersion of the measured value of the distance between and.
  • the horizontal axis indicates the reciprocal of the voltage applied to the light source driver 14 that causes the light source 11 to emit light, and the voltage decreases as it proceeds to the right. Therefore, the light emission intensity from the light source 11 Will decline.
  • the vertical axis represents the distance L measured by the above mathematical formula.
  • the number of pixels used for the measurement is 3 ⁇ 3 pixels including a region irradiated with one dot-like high luminance part d1.
  • the effective distance which is a measurable distance range based on the pulse width of the light source, was set to 500 mm. In the lower part of each measurement point in FIG. 5, the number of frames from which the effective distance measurement value was obtained is described.
  • the light intensity output from the light source is P
  • the energy efficiency of the diffraction grating for forming the dots in the high luminance portion is ⁇ .
  • the average light intensity per unit area in the light irradiation region is Pdiff
  • the average area of one spot (dot) in the dot pattern irradiation method is a, and the total number of spots (dots) is N
  • K ( ⁇ ⁇ S) / (N ⁇ a)
  • the condition that the dot pattern irradiation method can be more accurate than the diverging light irradiation method is ( ⁇ ⁇ S). ) / (N ⁇ a) >> 1.
  • the object to be measured is the hand H, and the hand H is moving on the projection reference plane 2.
  • the light reception output received by the LEFM of each pixel of the light receiving element 21 is given to the pixel processing circuit 24, and the output whose light reception output is larger than the threshold value is detected by the control unit 30.
  • An output smaller than the threshold value is given to the circuit 31 and given to the dot pattern detection circuit 33.
  • outputs are alternately supplied from the pixel processing circuit 24 to the phase difference detection circuit 31 and the dot pattern detection circuit 33 in a time division manner.
  • the control unit 30 includes a CPU, a memory, and the like, and processing operations corresponding to the block diagram shown in FIG. 6 are executed by preinstalled software.
  • the phase difference detection circuit 31 executed by the control unit 30 is provided with a detection output larger than the threshold value among the light reception outputs received by the LEFM of each pixel, and S1, S2 and S3 are detected from the detection output. Accumulated values of the respective outputs are obtained, and the Z distance calculation unit 32 performs the calculation shown in the above equation 1 so that the distance L from the measurement light irradiation point to the light receiving element 21 in a state where disturbance light components are removed. Is measured. This distance is acquired as distance information of each high-luminance part d1 distributed in a dot shape.
  • the detection output that is smaller than the threshold value among the detection outputs obtained by the pixel processing circuit 24 and mainly the detection output from the low luminance part d 2 is extracted.
  • the dot pattern detection circuit 33 monitors the continuity of the received light intensity (the amount of received light) of the reflected light from the low luminance part d2. Since the reflectance of light is different between the surface of the hand H, which is the object, and the projection reference plane (background) 2, when the hand H moves, the light from the low luminance part d2 located at the boundary of the hand H The intensity of the reflected light changes. Therefore, the position of the boundary part of the hand can be measured by monitoring the continuity of the intensity of the reflected light from the low luminance part d2.
  • the dot pattern detection circuit 33 monitors the continuity of the intensity of the reflected light from each low-brightness unit d 2, and the result is given to the XY position calculation unit 34 for XY position calculation.
  • the outer shape of the hand H is determined.
  • the Z distance information obtained from the reflected light of the high luminance part d1 and the XY coordinate information obtained from the reflected light of the low luminance part d2 are given to the main arithmetic circuit 35.
  • the main arithmetic circuit 35 can grasp the three-dimensional shape of the surface of the hand H, which is the object, from the distance information of each high brightness portion d1, and the hand H from the XY coordinate information obtained from each low brightness portion d2.
  • the shape (contour information) can be grasped, and by integrating these, the three-dimensional shape of the hand H that is the object can be grasped. Further, since the distance from the projection device 10 or the light receiving device 20 to the hand H can be grasped, it is possible to measure how much the hand H is lifted from the projection reference plane 2.
  • the hand H becomes X
  • the moving speed and acceleration information when moving in the -Y direction can be obtained.
  • the optical axis O1 of the projection device 10 and the optical axis O2 of the light receiving device 20 are separated from each other, and are not positioned on the same geometrical axis.
  • the distance between the optical axis O1 and the optical axis O2 is set sufficiently shorter than the distance L to the hand H that is the object. Therefore, even if the hand H moves and the dot portion of the high luminance portion d1 irradiated on the hand H moves in the Z direction, the reflected light from the high luminance portion d1 when the light is received by the light receiving element 21.
  • the amount of movement in the XY direction is very small and can be ignored in calculation. In such a state, it can be said that the optical axis O1 and the optical axis O2 are substantially coaxial, and the movement of the dots in the XY direction is the shortest. Accuracy can be improved.
  • the optical axis O1 and the optical axis O2 are not located substantially on the same axis, and the hand H is moved, for example, so that the high brightness portion d1 (and the low brightness portion) irradiated to the hand H is reduced.
  • the dot portion of the luminance portion d2) moves in the Z direction
  • the dot of reflected light received by the light receiving element 21 may be detected as moving on a so-called epipolar line in three-dimensional measurement. That is, the movement information in the Z direction can be detected using the phase change of the high luminance part d1, and the contour information can be detected based on the movement information of the high luminance part d1 and the low luminance part d2.
  • the processing is easy, and the movement information in the Z direction is targeted for the phase change of the high luminance part d1. Therefore, it is easy to detect.
  • the light irradiation area obtains the movement information in the Z direction at the high luminance part d1 and obtains the coordinate information in the XY direction at the low luminance part d2, but the high luminance part d1 and the low luminance part d1.
  • the coordinate information in the XY directions may be detected by using both of the parts d2, that is, the boundary part of the hand H and the movement of the hand may be detected.
  • FIG. 7 shows a state in which the measurement light is irradiated on the object (hand H) by the projection pattern converted by the optical conversion element 13 in the second embodiment.
  • the measurement light emitted from the light source 11 is converted by the optical conversion element 13 to form a projection pattern that forms a dot-shaped (spot-shaped) light irradiation region d.
  • the shape of each light irradiation region d is circular, and each light irradiation region d is arranged at the same pitch in two orthogonal directions. Alternatively, they are arranged at different pitches in two orthogonal directions. Further, all the light irradiation areas d have uniform luminance.
  • a region where the light irradiation region d is not formed, that is, a region filling the space between the light irradiation regions d is a light non-irradiation region.
  • the reflected light from all the light irradiation areas d is received by LEFM, the light reception output is given to the phase difference detection circuit 31, and the calculation of Equation 2 is performed.
  • the distance L is calculated every time.
  • any one of the plurality of light irradiation regions d shown in FIG. 7 may be selected, a phase difference may be obtained from the received light output from the selected light irradiation region d, and the distance L may be calculated.
  • the light irradiation regions d arranged every several in two orthogonal directions are selected, and the distance L is calculated.
  • the phase difference of the reflected light from the light irradiation region d is determined.
  • the distance L can be determined with a high S / N ratio. Therefore, it is possible to determine the outer shape of the hand H by monitoring the continuity of the distance L.
  • the high luminance part d1 and the low luminance part d2 of the first embodiment or the light irradiation region d of the second embodiment may be a linear pattern or a graphic pattern other than a circle.
  • the high luminance part d1 may be formed large and the low luminance part d2 may be formed small.
  • the high luminance part d1, the low luminance part d2, or the light irradiation region d may be arranged at random.
  • the diffraction structure of the optical conversion element 13 that converts the light from the same light source 11 is changed in a time-sharing manner, so that the projection pattern of only the high luminance part d1 and the projection pattern of only the low luminance part d2 are alternately given to the object. It is also possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

According to the present invention, a pulse oscillation circuit (15) causes a measurement light emitted from a light source (11) to become a light having an intensity modulation and being emitted intermittently, and said measurement light is converted by a hologram element or the like into a projection pattern having a high-luminance portion and a low-luminance portion, and is applied to a target object. Using light, from among the light received by a light receiving element (21), that is reflected from the high-luminance portion, phase difference is detected by a phase difference detection circuit (31), and distance is calculated by a Z distance calculation unit (32). Furthermore, using light, from among the light received by the light receiving element (21), that is reflected from the low-luminance portion, information for X-Y coordinates of the target object is obtained by an X-Y position calculation unit (34). This makes it possible to obtain three-dimensional information for a measured target object with high accuracy by means of relatively low-power driving.

Description

光学式検知装置Optical detector
 本発明は、対象物から反射された光の位相差を検知して、対象物との距離を計測することができる光学式検知装置に関する。 The present invention relates to an optical detection device capable of detecting a phase difference of light reflected from an object and measuring a distance from the object.
 特許文献1には、コヒーレント光源からの検知光をランダムスペックルパターンに変換して対象物へ照射する照明ユニットと、対象物から反射された光を受光する画像化装置とを有するシステムが記載されている。このシステムでは、照明ユニットと画像化装置とで三次元測量が行われる。被測定物体が測定領域へ移動したときに画像化装置で検出される被測定物体からの反射パターンと、被測定物体が存在していないときに得られる参照画像とで、ランダムスペックルパターンのずれを検出して、被測定物体の三次元マップを構築するというものである。 Patent Document 1 describes a system having an illumination unit that converts detection light from a coherent light source into a random speckle pattern and irradiates the object, and an imaging device that receives light reflected from the object. ing. In this system, a three-dimensional survey is performed by the illumination unit and the imaging device. Random speckle pattern deviation between the reflection pattern from the measurement object detected by the imaging device when the measurement object moves to the measurement area and the reference image obtained when the measurement object does not exist Is detected, and a three-dimensional map of the object to be measured is constructed.
 特許文献2には、発光源からの光を強度変調して物体に照射する検出方法が記載されている。この方法は、物体からの反射光が光電変換部で受光され、発光源から発せられた光と光電変換部で受光された光との位相差を求めることで、空間に存在する物体までの距離が求められる。 Patent Document 2 describes a detection method in which light from a light source is intensity-modulated and irradiated onto an object. In this method, the reflected light from the object is received by the photoelectric conversion unit, and the distance to the object existing in the space is obtained by calculating the phase difference between the light emitted from the light emitting source and the light received by the photoelectric conversion unit. Is required.
特許第5001286号公報Japanese Patent No. 5001286 特表平10-508736号公報Japanese National Patent Publication No. 10-508736
 特許文献1に記載されたシステムは、対象物の形状を数値化するのには適しているかもしれないが、ランダムスペックルパターンのずれの検出値から、対象物の三次元情報を求めるには、膨大な計算量が必要となって、処理速度の高速化を期待することができない。 The system described in Patent Document 1 may be suitable for quantifying the shape of the object, but to obtain the three-dimensional information of the object from the detection value of the deviation of the random speckle pattern. Since a huge amount of calculation is required, it is not possible to expect an increase in processing speed.
 特許文献2に記載された方法は、発光源から発せられた光と光電変換部で取得された光との位相差を測定することで、距離情報を直接得ることができる。しかしながら、特許文献2に記載された方法では、外乱光の影響を低減させるためにレーザ光源が使用されているため、スペックルノイズの影響を受けやすく、対象物のエッジ部付近においてノイズが発生し測定誤差が生じやすくなる。また、光電変換部では、光の照射視野の全域からの反射光について位相差を求めることになるため、個々の画素において前記位相差を正確に検出するためには、かなり大きな発光エネルギーが必要となる。 The method described in Patent Document 2 can directly obtain distance information by measuring a phase difference between light emitted from a light emitting source and light acquired by a photoelectric conversion unit. However, in the method described in Patent Document 2, since a laser light source is used to reduce the influence of disturbance light, it is easily affected by speckle noise, and noise is generated near the edge of the object. Measurement errors are likely to occur. In addition, since the photoelectric conversion unit obtains a phase difference with respect to reflected light from the entire irradiation field of light, in order to accurately detect the phase difference in each pixel, a considerably large emission energy is required. Become.
 さらに、特許文献2に記載された方法で対象物の平面形状を求めようとすると、全ての画素からの輝度情報を用いて画像処理による分析を行うことが必要となるため、演算部の負担が大きくなる。 Furthermore, if it is attempted to obtain the planar shape of the object by the method described in Patent Document 2, it is necessary to perform analysis by image processing using luminance information from all pixels. growing.
 本発明は、上記従来の課題を解決するものであり、光源からの光エネルギーを効果的に使用して、対象物の距離情報を高精度に検知することができ、さらに対象物の平面形状に関する情報も取得することができる光学式検知装置を提供することを目的としている。 The present invention solves the above-described conventional problems, and can effectively detect the distance information of an object by effectively using light energy from a light source, and further relates to a planar shape of the object. An object of the present invention is to provide an optical detection device that can also acquire information.
 本発明は、光源と、前記光源から強度変調された測定光を発光させる光源ドライバと、
前記測定光を所定の投影パターンに変換して対象物に投影する光学変換素子と、前記対象物から反射された前記測定光を受光する受光素子と、制御部とを有し、前記投影パターンは、前記光源から発せられた光を複数箇所に集約して前記対象物に投影し形成された光照射領域と、前記光照射領域の間を埋める光非照射領域とを有し、前記制御部は、前記光照射領域の光を前記受光素子で受光した受光出力から光の位相差を求めて、前記受光素子から前記光照射領域までのZ方向の距離情報を演算することを特徴とするものである。
The present invention includes a light source, a light source driver that emits intensity-modulated measurement light from the light source,
An optical conversion element that converts the measurement light into a predetermined projection pattern and projects the measurement light onto a target; a light-receiving element that receives the measurement light reflected from the target; and a control unit. A light irradiation area formed by converging light emitted from the light source at a plurality of locations and projected onto the object, and a light non-irradiation area that fills the space between the light irradiation areas, , Calculating a distance information in the Z direction from the light receiving element to the light irradiation region by obtaining a phase difference of light from a light receiving output obtained by receiving the light of the light irradiation region by the light receiving element. is there.
 本発明は、前記制御部において、前記投影パターンからの反射光の光強度変化の連続性を監視することで前記対象物の輪郭を検出することが可能である。 In the present invention, the control unit can detect the contour of the object by monitoring the continuity of the light intensity change of the reflected light from the projection pattern.
 本発明の光学式検知装置では、前記光照射領域は、光の輝度が高い高輝度部と前記高輝度部よりも光の輝度が低い低輝度部とを有しており、高輝度部の光の位相差からZ方向の距離情報を演算することが好ましい。 In the optical detection device of the present invention, the light irradiation region includes a high luminance portion having a high light luminance and a low luminance portion having a light luminance lower than that of the high luminance portion. It is preferable to calculate distance information in the Z direction from the phase difference.
 この場合に、前記制御部は、前記低輝度部からの反射光の光強度変化の連続性を監視することで前記対象物の輪郭を検出することが可能である。 In this case, the control unit can detect the contour of the object by monitoring the continuity of the light intensity change of the reflected light from the low luminance part.
 また、本発明は、前記光照射領域の光の位相差からZ方向の距離情報を演算するとともに、同じ光照射領域からの反射光の光強度変化の連続性を監視することで前記対象物の輪郭を検出することも可能である。 In addition, the present invention calculates distance information in the Z direction from the phase difference of the light in the light irradiation region and monitors the continuity of the light intensity change of the reflected light from the same light irradiation region. It is also possible to detect the contour.
 本発明の光学式検知装置は、Z方向の距離情報と前記輪郭とから、前記対象物の立体形状を演算することが可能である。 The optical detection device of the present invention can calculate the three-dimensional shape of the object from distance information in the Z direction and the contour.
 本発明は、例えば、前記投影パターンはドットパターンである。ただし、光照射領域のパターン形状はどのようなものであってもよい。 In the present invention, for example, the projection pattern is a dot pattern. However, the pattern shape of the light irradiation region may be anything.
 本発明は、光学変換素子を使用して、光源から発せられる測定光を、複数箇所に集約して複数の光照射領域を形成している。そのため、対象物へ照射される光の投影パターンは、複数の光照射領域と、それぞれの光照射領域の間を埋める光非照射領域とを有するものとなる。 The present invention uses an optical conversion element to collect measurement light emitted from a light source at a plurality of locations to form a plurality of light irradiation regions. Therefore, the projection pattern of the light irradiated to the object has a plurality of light irradiation regions and a light non-irradiation region that fills between the light irradiation regions.
 本発明は、光が集約されて形成された光照射領域からの受光出力から光の位相差を検出して、対象物のZ方向の距離情報(奥行情報)を得ているが、光照射領域に光エネルギーを集中させ、この光照射領域からの反射光から光の位相差を算出することで、Z方向の情報を得るときのS/N比を高くでき、Z方向の情報を算出するときの計測精度を向上させることができる。また、光照射領域に光を集中させることができるため、太陽光などの外光に対しても強い耐性を得ることができる。 The present invention detects the phase difference of the light from the light reception output from the light irradiation region formed by collecting the light and obtains distance information (depth information) in the Z direction of the object. When calculating the information in the Z direction, the S / N ratio when obtaining the information in the Z direction can be increased by concentrating the light energy on the light and calculating the phase difference of the light from the reflected light from the light irradiation region. Measurement accuracy can be improved. Further, since the light can be concentrated on the light irradiation region, it is possible to obtain strong resistance against external light such as sunlight.
 また、手などの測定対象物と、対象物の背景に存在する物とでは、光の反射強度が相違するため、所定の投影パターンで投影された光の反射光の強度の連続性を監視することで、測定物の境界部を把握することが可能である。特に、対象物が移動しているときには、対象物の境界部を検出しやすい。 In addition, since the reflection intensity of light differs between a measurement object such as a hand and an object present in the background of the object, the continuity of the intensity of the reflected light of the light projected in a predetermined projection pattern is monitored. Thus, it is possible to grasp the boundary portion of the measurement object. In particular, when the object is moving, it is easy to detect the boundary of the object.
 本発明の好ましい例では、光照射領域を高輝度部と低輝度部に区分し、高輝度部と低輝度部とで投影パターンを形成している。この場合に、高輝度部の受光出力から光の位相差を検出してZ方向の距離情報を得て、低輝度部の受光出力から光強度の連続性を監視して対象物の境界部を検出することが好ましい。 In a preferred example of the present invention, the light irradiation region is divided into a high luminance portion and a low luminance portion, and a projection pattern is formed by the high luminance portion and the low luminance portion. In this case, the phase difference of the light is detected from the light receiving output of the high luminance portion to obtain distance information in the Z direction, and the continuity of the light intensity is monitored from the light receiving output of the low luminance portion to detect the boundary portion of the object. It is preferable to detect.
 光照射領域を高輝度部と低輝度部とに区分することにより、受光出力にしきい値を設けることで、位相差検出によりZ方向の距離を算出するための受光出力であるか、強度変化の連続性を監視して対象物の境界部を検出するための受光出力であるかを区分しやすくなり、奥行き検出とX-Y情報検出を区分して演算しやすくなる。 By dividing the light irradiation area into a high-luminance part and a low-luminance part, by providing a threshold value for the light reception output, it is a light reception output for calculating the distance in the Z direction by phase difference detection, or an intensity change It becomes easy to discriminate whether the received light output is for detecting the boundary portion of the object by monitoring continuity, and it becomes easier to calculate by dividing the depth detection and the XY information detection.
 また、Z方向の情報を得るための光エネルギーを大きくすることで、Z方向の距離情報を、外光の影響を受けにくい状態で高精度に検知できるようになる。 Also, by increasing the light energy for obtaining the information in the Z direction, the distance information in the Z direction can be detected with high accuracy while being hardly affected by external light.
 本発明では、特に投影パターンをドットパターンとすることで、高輝度部に光エネルギーを集中しやすくなって、Z方向の距離情報の検出精度を向上させることができ、低輝度部を一定のピッチのドットパターンとすることで、対象物の境界部の形状を精度よく検知できるようになる。 In the present invention, in particular, by making the projection pattern a dot pattern, it becomes easier to concentrate light energy on the high-luminance part, and it is possible to improve the detection accuracy of distance information in the Z direction. By using this dot pattern, the shape of the boundary portion of the object can be detected with high accuracy.
本発明の第1の実施の形態の光学式検知装置の構成を示す側面図、The side view which shows the structure of the optical detection apparatus of the 1st Embodiment of this invention, 第1の実施の形態の測定光の投影パターンの一例を示す写真、A photograph showing an example of a projection pattern of measurement light according to the first embodiment; 受光素子の一例を示す平面図、A plan view showing an example of a light receiving element, 受光出力の処理動作を示すタイムチャート、Time chart showing processing operation of received light output, (A)(B)は、本発明の実施の形態の効果を示す線図、(A) (B) is a diagram showing the effect of the embodiment of the present invention, 光学式検知装置のブロック図、Block diagram of optical detection device, 第2の実施の形態の測定光の投影パターンの一例を示す説明図、Explanatory drawing which shows an example of the projection pattern of the measurement light of 2nd Embodiment,
 図1には、本発明の第1の実施の形態の光学式検知装置1の構造が示され、図6に光学式検知装置1の回路ブロック図が示されている。
 図1に示すように、光学式検知装置1は、投影装置10と受光装置20を有している。
FIG. 1 shows the structure of the optical detection device 1 according to the first embodiment of the present invention, and FIG. 6 shows a circuit block diagram of the optical detection device 1.
As shown in FIG. 1, the optical detection device 1 includes a projection device 10 and a light receiving device 20.
 投影装置10は、光源11と、光源11から発せられる測定光をコリメート光または発散光に変換する1つ以上の投影レンズ12と、前記測定光を所定の投影パターンに変換する光学変換素子13を有している。光源11は非可視光を発するレーザダイオード(LD)素子であり、実施の形態では近赤外光または赤外光を発光するLD素子が使用されている。 The projection device 10 includes a light source 11, one or more projection lenses 12 that convert measurement light emitted from the light source 11 into collimated light or divergent light, and an optical conversion element 13 that converts the measurement light into a predetermined projection pattern. Have. The light source 11 is a laser diode (LD) element that emits invisible light. In the embodiment, an LD element that emits near infrared light or infrared light is used.
 光学変換素子13はホログラム素子であり、光源11から発せられた測定光を、所定の投影パターンに変換して対象物に向けて照射する。図2に示すように、光照射パターンは、高輝度部d1と、前記高輝度部d1よりも輝度が低い低輝度部d2とを有している。ホログラム素子は、通過する光を回折させ、所定の空間領域に光エネルギーを集中させることができる。光をより高い密度で集約させた箇所が高輝度部d1となり、それよりも光の集約率が低い箇所が低輝度部d2となる。 The optical conversion element 13 is a hologram element, which converts the measurement light emitted from the light source 11 into a predetermined projection pattern and irradiates the object. As shown in FIG. 2, the light irradiation pattern has a high luminance part d1 and a low luminance part d2 having a luminance lower than that of the high luminance part d1. The hologram element can diffract light passing therethrough and concentrate light energy in a predetermined spatial region. A portion where light is concentrated at a higher density becomes the high luminance portion d1, and a portion where the light concentration rate is lower than that is the low luminance portion d2.
 図2には、第1の実施の形態において、光学変換素子13で変換された投影パターンによって、測定光が対象物(手H)に照射されている状態が示されている。 FIG. 2 shows a state in which the measurement light is irradiated on the object (hand H) by the projection pattern converted by the optical conversion element 13 in the first embodiment.
 共に光照射領域として定義される高輝度部d1と低輝度部d2はスポット状(ドット状)である。高輝度部d1と低輝度部d2との間を埋める領域であって図2において暗く現れている領域が光非照射領域となっている。 Both the high-luminance part d1 and the low-luminance part d2 defined as light irradiation areas are spot-like (dot-like). A region that fills between the high luminance portion d1 and the low luminance portion d2 and that appears dark in FIG. 2 is a light non-irradiation region.
 光非照射領域は、光が全く当たらない領域を意味しているのではなく、光が集約されている高輝度部d1や低輝度部d2に比べて光の集約率がきわめて低く、高輝度部d1や低輝度部d2に比べるとほとんど光が当たっていないとみなされる領域である。 The light non-irradiation region does not mean a region where no light is applied, but the light concentration rate is extremely low compared to the high luminance portion d1 and the low luminance portion d2 where the light is concentrated, and the high luminance portion This is a region that is considered to be hardly exposed to light as compared with d1 and the low luminance portion d2.
 高輝度部d1と低輝度部d2の配置パターンはどのようなものであってもよいが、図2に示す例では、高輝度部d1と低輝度部d2が共に定型パターンによって規則的に配置されている。図2に示す定型パターンは、光照射領域であるスポット(ドット)が8×8を1ユニットとし、ユニットの4か所の角部に高輝度部d1が位置し、それ以外の60のスポット(ドット)が低輝度部d2となっている。このユニットは、高輝度部d1が存在している列と行を隣接するユニットが共有する規則性をもって、X-Y方向に並べられている。 Any arrangement pattern may be used for the high luminance portion d1 and the low luminance portion d2, but in the example shown in FIG. 2, both the high luminance portion d1 and the low luminance portion d2 are regularly arranged in a fixed pattern. ing. In the standard pattern shown in FIG. 2, the spot (dot), which is the light irradiation area, is 8 × 8 as one unit, the high-luminance part d1 is located at four corners of the unit, and the other 60 spots ( Dot) is the low luminance part d2. The units are arranged in the XY direction with the regularity that the adjacent units share the column and the row in which the high luminance part d1 exists.
 ただし、高輝度部d1と低輝度部d2はランダムに配置されているものであってもよいし、高輝度部d1がX-Y方向へ交差して延びるように線状に形成されており、高輝度部d1の間に低輝度部d2が線状に形成され、あるいはスポット状(ドット状)に形成されているものであってもよい。 However, the high luminance part d1 and the low luminance part d2 may be arranged randomly, or the high luminance part d1 is formed in a linear shape so as to cross and extend in the XY direction, The low luminance portion d2 may be formed in a linear shape between the high luminance portions d1, or may be formed in a spot shape (dot shape).
 図6に示すように、光源11には光源ドライバ14が接続されている。光源ドライバ14は、光源11から発せられる測定光に強度変調を与えるものである。この実施の形態では、光源ドライバ14にパルス発振回路15が接続されており、光源ドライバ14によって光源11から間欠的に測定光が発せられる。 As shown in FIG. 6, a light source driver 14 is connected to the light source 11. The light source driver 14 applies intensity modulation to the measurement light emitted from the light source 11. In this embodiment, a pulse oscillation circuit 15 is connected to the light source driver 14, and measurement light is intermittently emitted from the light source 11 by the light source driver 14.
 図1に示すように、受光装置20は、受光素子21と、その前方に位置する少なくとも1つの受光レンズ22と、その前方に配置されたフィルター23とを有している。フィルター23は、光源の波長に対応した発光波長(本実施例においては赤外光)を透過し、例えば可視光などのそれ以外の波長を遮ることができるように構成されている。 As shown in FIG. 1, the light receiving device 20 includes a light receiving element 21, at least one light receiving lens 22 positioned in front of the light receiving element 21, and a filter 23 disposed in front of the light receiving lens 22. The filter 23 is configured to transmit a light emission wavelength (infrared light in this embodiment) corresponding to the wavelength of the light source and to block other wavelengths such as visible light.
 受光素子21は、投影基準面(背景)2の表面付近に位置する対象物(図2の例では手H)の全体に照射された高輝度部d1と低輝度部d2からの反射光を取得できる画角で光を受光可能である。 The light receiving element 21 acquires the reflected light from the high luminance part d1 and the low luminance part d2 irradiated on the entire object (the hand H in the example of FIG. 2) located near the surface of the projection reference plane (background) 2. Light can be received with a possible angle of view.
 受光素子21はX方向とY方向に規則的に並ぶ複数の画素を有している。それぞれの画素は、図3に概略を示す横電界制御型電荷変調画素構造(LEFM)を有している。 The light receiving element 21 has a plurality of pixels regularly arranged in the X direction and the Y direction. Each pixel has a lateral electric field control type charge modulation pixel structure (LEFM) schematically shown in FIG.
 図4は、前記LEFMの動作タイミングを示している。LEFMは、画素(PC)で受光された光が、ゲートG1(TX1)、ゲートG2(TX2)、ゲートG3(TXD)のそれぞれで所定のタイミングで取得されて、これが所定の蓄積期間で繰り返される。蓄積期間に蓄積された電荷が、読出し期間において取り出される。 FIG. 4 shows the operation timing of the LEFM. In LEFM, light received by a pixel (PC) is acquired at a predetermined timing in each of a gate G1 (TX1), a gate G2 (TX2), and a gate G3 (TXD), and this is repeated in a predetermined accumulation period. . The charge accumulated during the accumulation period is taken out during the readout period.
 図4に示すように、光源11から発せられる測定光の発光期間をT0とし、画素で検知された反射光(パルス光)の遅れ時間Tdとする。仮に、対象物までの距離Lがゼロであれば、発光期間T0と受光期間Tdとの間に位相差が生じないため、反射光を受光したときの電荷は、全てゲートG3から転送される。逆に、前記距離Lが長くなるほど、受光期間TdがゲートG2の転送時間にかかるようになり、反射光を受光したときの電荷の一部が、ゲートG2から転送されるようになる。 As shown in FIG. 4, the emission period of the measurement light emitted from the light source 11 is T0, and the delay time Td of the reflected light (pulse light) detected by the pixel. If the distance L to the object is zero, there is no phase difference between the light emitting period T0 and the light receiving period Td, so that all charges when the reflected light is received are transferred from the gate G3. Conversely, the longer the distance L, the longer the light receiving period Td takes for the transfer time of the gate G2, and a part of the charge when receiving the reflected light is transferred from the gate G2.
 よって、ゲートG1のノードにおける出力をS1,ゲートG2のノードにおける出力をS2,ゲートG3のノードにおける出力をS3とすると、LEFMから光の照射点までの距離Lは、
 L=(cT0/2)×{(S2-S1)/(S2+S3-2S1)}(数1)
 で表される。(S2+S3-2S1)は、発光期間T0以外の光、すなわち外光を相殺するための計算値である。同様に、(S2-S1)も外光の効果を取り除いている計算値である。
Therefore, when the output at the node of the gate G1 is S1, the output at the node of the gate G2 is S2, and the output at the node of the gate G3 is S3, the distance L from the LEFM to the light irradiation point is
L = (cT0 / 2) × {(S2-S1) / (S2 + S3-2S1)} (Equation 1)
It is represented by (S2 + S3-2S1) is a calculated value for canceling light other than the light emission period T0, that is, outside light. Similarly, (S2-S1) is also a calculated value that eliminates the effect of external light.
 S2-S1がゼロのときは、距離Lはゼロである。受光期間Tdが全てゲートG2の転送期間に入り込むと、距離Lは最大値の(cT0/2)となる。 When S2-S1 is zero, the distance L is zero. When the entire light receiving period Td enters the transfer period of the gate G2, the distance L becomes the maximum value (cT0 / 2).
 このように、光源11から発せられる光に強度変調を与え、画素をLEFMで構成することで、受光出力に基づいて、受光素子21から対象物までの距離Lを知ることができるようになる。 Thus, by applying intensity modulation to the light emitted from the light source 11 and configuring the pixels with LEFM, the distance L from the light receiving element 21 to the object can be known based on the light receiving output.
 なお、受光素子21には、図2に示す高輝度部d1からの反射光と低輝度部d2からの反射光の双方が受光されるため、受光素子21の画素によって受光強度が相違する。高輝度部d1からの反射光を受光する画素のLEFMからの受光出力は高く、低輝度部d2からの反射光を受光する画素のLEFMからの受光出力は低くなり、光非照射領域からの反射を受光する画素のLEFMからの受光出力はさらに低くなる。 The light receiving element 21 receives both the reflected light from the high luminance part d1 and the reflected light from the low luminance part d2 shown in FIG. The light receiving output from the LEFM of the pixel that receives the reflected light from the high brightness portion d1 is high, and the light receiving output from the LEFM of the pixel that receives the reflected light from the low brightness portion d2 is low, and the reflection from the light non-irradiation region The light reception output from the LEFM of the pixel that receives light is further lowered.
 図6に示す画素処理回路24には所定のしきい値が設定されており、LEFMからの受光出力のうちの前記しきい値よりも大きい受光出力が位相差検出回路31に与えられて、前記数1の演算が行われる。すなわち、高輝度部d1からの反射光にのみ基づいて、前記距離Lの計算が行われる。 A predetermined threshold value is set in the pixel processing circuit 24 shown in FIG. 6, and a light receiving output larger than the threshold value among the light receiving outputs from the LEFM is given to the phase difference detecting circuit 31. The calculation of Equation 1 is performed. That is, the distance L is calculated based only on the reflected light from the high luminance part d1.
 図2に示すように、光源11から発せられる測定光は、ホログラム素子で構成された光学変換素子13によって、スポット状(ドット状)の高輝度部d1に多くの光エネルギーが集中する。この高輝度部d1に集約された光エネルギーが前記しきい値の設定で抽出されて位相差が検出されるため、光源11からの光エネルギーを距離測定のために効率良く使用することが可能になる。したがって、光源11の出力が限られていても、測定光の照射範囲を広くでき、広い照射範囲において距離測定が可能になる。また、スポット状(ドット状)の高輝度部d1からの反射光は強度が高く、この強度の高い検知出力を使用して位相差を測定するため、S/N比も向上させることができる。また、太陽光などの外光に対する耐性も高くすることが可能である。 As shown in FIG. 2, the measurement light emitted from the light source 11 is concentrated on the spot-like (dot-like) high-intensity part d1 by the optical conversion element 13 constituted by a hologram element. Since the light energy collected in the high luminance part d1 is extracted by setting the threshold value and the phase difference is detected, it is possible to efficiently use the light energy from the light source 11 for distance measurement. Become. Therefore, even if the output of the light source 11 is limited, the irradiation range of the measurement light can be widened, and the distance can be measured in a wide irradiation range. In addition, the reflected light from the spot-like (dot-like) high-luminance portion d1 has a high intensity, and the phase difference is measured using this high-intensity detection output, so that the S / N ratio can also be improved. In addition, resistance to external light such as sunlight can be increased.
 図5(A)は、図2に示すドットパターンである投影パターンで測定光を投影したときと、光学変換素子13を使用せずに、対象物に対し測定光として単なる拡散光を与えたときとでの距離の測定結果を示している。図5(B)は、図2に示すドットパターンである投影パターンで測定光を投影したときと、光学変換素子13を使用せずに、対象物に対し測定光として単なる拡散光を与えたときとでの距離の測定値のばらつきを示している。 FIG. 5A shows a case where measurement light is projected with the projection pattern which is the dot pattern shown in FIG. 2 and a case where simple diffused light is given as measurement light to the object without using the optical conversion element 13. The distance measurement results at and are shown. FIG. 5B shows a case where measurement light is projected with the projection pattern which is the dot pattern shown in FIG. 2 and a case where simple diffused light is given as measurement light to the object without using the optical conversion element 13. It shows the dispersion of the measured value of the distance between and.
 図5(A)(B)において、横軸には光源11を発光させる光源ドライバ14に与えられた電圧の逆数を示しており、右へ進むにつれて電圧が低下し、よって光源11からの発光強度は低下する。縦軸は前記数式により測定された距離Lである。測定に使用した画素数は、1つのドット状の高輝度部d1が照射される領域を含む3×3ピクセルである。なお、光源のパルス幅に基づく計測可能な距離範囲である実効距離を500mmとした。図5の各測定ポイントの下部に、有効な距離の計測値が得られたフレーム数が記載されている。 5A and 5B, the horizontal axis indicates the reciprocal of the voltage applied to the light source driver 14 that causes the light source 11 to emit light, and the voltage decreases as it proceeds to the right. Therefore, the light emission intensity from the light source 11 Will decline. The vertical axis represents the distance L measured by the above mathematical formula. The number of pixels used for the measurement is 3 × 3 pixels including a region irradiated with one dot-like high luminance part d1. The effective distance, which is a measurable distance range based on the pulse width of the light source, was set to 500 mm. In the lower part of each measurement point in FIG. 5, the number of frames from which the effective distance measurement value was obtained is described.
 図5(A)(B)に示すように、ドットパターンである投影パターンを使用することにより、光源11からの発光強度を低下させても、有効な計測値を得ることができるフレーム数が多くなり、また、距離の検出値のばらつきが小さいことが解る。 As shown in FIGS. 5A and 5B, by using a projection pattern that is a dot pattern, even if the emission intensity from the light source 11 is lowered, the number of frames that can obtain an effective measurement value is large. In addition, it can be seen that the variation in the distance detection value is small.
 このとき、光源から出力される光強度をPとし、高輝度部のドットを形成するための回折格子のエネルギー効率をλとする。発散光源の場合の、光照射領域における単位面積当たりの平均光強度をPdiffとし、ドットパターン光の場合の、1つのスポット(ドット)における単位面積当たりの平均光強度をPdotとする。光源からの光強度Pが共通の場合に、K=Pdot/Pdiffが1よりも十分大きければ、ドットパターンを使用した照射方式の方が、発散光の照射方式に比べて背景光に対する信号光の割合が大きいことになり、より外乱光に対して強い耐性を持つようになる。 At this time, the light intensity output from the light source is P, and the energy efficiency of the diffraction grating for forming the dots in the high luminance portion is λ. In the case of a divergent light source, the average light intensity per unit area in the light irradiation region is Pdiff, and in the case of dot pattern light, the average light intensity per unit area in one spot (dot) is Pdot. If the light intensity P from the light source is common, and K = Pdot / Pdiff is sufficiently larger than 1, the irradiation method using the dot pattern is more suitable for the signal light with respect to the background light than the diverging light irradiation method. The ratio will be large, and it will be more resistant to ambient light.
 拡散光の照射面積をS、ドットパターン照射方式での1つのスポット(ドット)の面積の平均をa、スポット(ドット)の総数をNとすると、Pdiff=P/Sで、Pdot=(λ・P)/(N・a)であるから、K=(λ・S)/(N・a)となり、ドットパターン照射方式が発散光の照射方式よりも精度を高くできる条件は、(λ・S)/(N・a)≫1、である。 Assuming that the diffused light irradiation area is S, the average area of one spot (dot) in the dot pattern irradiation method is a, and the total number of spots (dots) is N, Pdiff = P / S and Pdot = (λ · Since P) / (N · a), K = (λ · S) / (N · a), and the condition that the dot pattern irradiation method can be more accurate than the diverging light irradiation method is (λ · S). ) / (N · a) >> 1.
 図1と図2に示す例では、測定される対象物は手Hであり、手Hが投影基準面2を移動している状態を示している。 In the example shown in FIGS. 1 and 2, the object to be measured is the hand H, and the hand H is moving on the projection reference plane 2.
 図6に示すように、受光素子21の各画素のLEFMで受光された受光出力は、前記画素処理回路24に与えられ、受光出力がしきい値よりも大きい出力が制御部30の位相差検出回路31に与えられ、しきい値よりも小さい出力がドットパターン検出回路33に与えられる。 As shown in FIG. 6, the light reception output received by the LEFM of each pixel of the light receiving element 21 is given to the pixel processing circuit 24, and the output whose light reception output is larger than the threshold value is detected by the control unit 30. An output smaller than the threshold value is given to the circuit 31 and given to the dot pattern detection circuit 33.
 好ましくは、画素処理回路24から位相差検出回路31とドットパターン検出回路33に時分割で交互に出力が与えられる。 Preferably, outputs are alternately supplied from the pixel processing circuit 24 to the phase difference detection circuit 31 and the dot pattern detection circuit 33 in a time division manner.
 制御部30は、CPUとメモリなどで構成されており、図6に示すブロック図に相当する処理動作が、予め組み込まれたソフトウエアによって実行される。 The control unit 30 includes a CPU, a memory, and the like, and processing operations corresponding to the block diagram shown in FIG. 6 are executed by preinstalled software.
 制御部30で実行される位相差検出回路31には、各画素のLEFMで受光された受光出力のうち前記しきい値よりも大きい検知出力が与えられ、その検知出力からS1、S2,S3のそれぞれの出力の蓄積値が求められ、Z距離演算部32において、前記数1で示した演算が行われて、外乱光成分を除いた状態で測定光の照射点から受光素子21までの距離Lが測定される。この距離は、ドット状に分布するそれぞれの高輝度部d1の距離情報として取得される。 The phase difference detection circuit 31 executed by the control unit 30 is provided with a detection output larger than the threshold value among the light reception outputs received by the LEFM of each pixel, and S1, S2 and S3 are detected from the detection output. Accumulated values of the respective outputs are obtained, and the Z distance calculation unit 32 performs the calculation shown in the above equation 1 so that the distance L from the measurement light irradiation point to the light receiving element 21 in a state where disturbance light components are removed. Is measured. This distance is acquired as distance information of each high-luminance part d1 distributed in a dot shape.
 制御部30のドットパターン検出回路33では、画素処理回路24で得られた検知出力のうちの前記しきい値よりも小さい出力であって主に低輝度部d2からの検知出力が抽出される。 In the dot pattern detection circuit 33 of the control unit 30, the detection output that is smaller than the threshold value among the detection outputs obtained by the pixel processing circuit 24 and mainly the detection output from the low luminance part d 2 is extracted.
 ドットパターン検出回路33では、低輝度部d2からの反射光の受光強度(受光光量)の連続性を監視する。対象物である手Hの表面と、投影基準面(背景)2とでは光の反射率が相違しているため、手Hが動くと、手Hの境界部に位置する低輝度部d2からの反射光の強度が変化する。よって、低輝度部d2からの反射光の強度の連続性を監視することにより、手の境界部の位置を測定できる。制御部30では、ドットパターン検出回路33で、それぞれの低輝度部d2からの反射光の強度の連続性が監視され、その結果がX-Y位置演算部34に与えられ、X-Y位置演算部34において、手Hの外形が割り出される。 The dot pattern detection circuit 33 monitors the continuity of the received light intensity (the amount of received light) of the reflected light from the low luminance part d2. Since the reflectance of light is different between the surface of the hand H, which is the object, and the projection reference plane (background) 2, when the hand H moves, the light from the low luminance part d2 located at the boundary of the hand H The intensity of the reflected light changes. Therefore, the position of the boundary part of the hand can be measured by monitoring the continuity of the intensity of the reflected light from the low luminance part d2. In the control unit 30, the dot pattern detection circuit 33 monitors the continuity of the intensity of the reflected light from each low-brightness unit d 2, and the result is given to the XY position calculation unit 34 for XY position calculation. In the part 34, the outer shape of the hand H is determined.
 高輝度部d1の反射光から得られたZ距離情報と、低輝度部d2の反射光から得られたX-Y座標情報は、主演算回路35に与えられる。主演算回路35では、それぞれの高輝度部d1の距離情報から、対象物である手Hの表面の立体形状を把握でき、それぞれの低輝度部d2から得られたX-Y座標情報から手Hの形状(輪郭情報)を把握でき、これらを統合することにより、対象物である手Hの立体形状を把握することができる。また、投影装置10や受光装置20から手Hまでの距離を把握できるので、手Hが投影基準面2からどの位浮き上がっているのかも測定することができる。 The Z distance information obtained from the reflected light of the high luminance part d1 and the XY coordinate information obtained from the reflected light of the low luminance part d2 are given to the main arithmetic circuit 35. The main arithmetic circuit 35 can grasp the three-dimensional shape of the surface of the hand H, which is the object, from the distance information of each high brightness portion d1, and the hand H from the XY coordinate information obtained from each low brightness portion d2. The shape (contour information) can be grasped, and by integrating these, the three-dimensional shape of the hand H that is the object can be grasped. Further, since the distance from the projection device 10 or the light receiving device 20 to the hand H can be grasped, it is possible to measure how much the hand H is lifted from the projection reference plane 2.
 さらに、手Hの表面においてX-Y座標上に分布している低輝度部d2からの反射光の消滅およびそれぞれの高輝度部d1からの反射光の消滅を把握することで、手HがX-Y方向へ移動したときのその移動速度、加速度情報を得ることができる。 Further, by grasping the disappearance of the reflected light from the low brightness portion d2 and the disappearance of the reflected light from the respective high brightness portions d1 distributed on the XY coordinates on the surface of the hand H, the hand H becomes X The moving speed and acceleration information when moving in the -Y direction can be obtained.
 なお、高輝度部d1の反射光から得られたZ距離情報の連続性を監視することによっても、手Hの外形を割り出すことが可能である。 Note that it is also possible to determine the outer shape of the hand H by monitoring the continuity of the Z distance information obtained from the reflected light of the high luminance part d1.
 図1に示す光学検知装置1では、投影装置10の光軸O1と受光装置20の光軸O2とが離れた位置にあり幾何学上の同軸に位置していない。しかし、光軸O1と光軸O2との距離は、対象物である手Hまでの距離Lに比較して十分に短く設定されている。そのため、手Hが動くなどして、手Hに照射されている高輝度部d1のドット部がZ方向へ移動したとしても、受光素子21で受光したときの高輝度部d1からの反射光のX-Y方向への移動量はわずかであり、演算上無視することが可能である。このような状態は、光軸O1と光軸O2とが実質的に同軸上に位置するということができ、X-Y方向へのドットの移動が最短となるため、Z軸方向の距離測定の精度を向上させることができる。 In the optical detection device 1 shown in FIG. 1, the optical axis O1 of the projection device 10 and the optical axis O2 of the light receiving device 20 are separated from each other, and are not positioned on the same geometrical axis. However, the distance between the optical axis O1 and the optical axis O2 is set sufficiently shorter than the distance L to the hand H that is the object. Therefore, even if the hand H moves and the dot portion of the high luminance portion d1 irradiated on the hand H moves in the Z direction, the reflected light from the high luminance portion d1 when the light is received by the light receiving element 21. The amount of movement in the XY direction is very small and can be ignored in calculation. In such a state, it can be said that the optical axis O1 and the optical axis O2 are substantially coaxial, and the movement of the dots in the XY direction is the shortest. Accuracy can be improved.
 ただし、本発明では、前記光軸O1と光軸O2とが実質的な同軸上に位置しておらず、手Hが動くなどして、手Hに照射されている高輝度部d1(および低輝度部d2)のドット部がZ方向へ移動したときに、受光素子21において受光された反射光のドットが、三次元測定におけるいわゆるエピポーラ線上を移動するものとして検知されてもよい。つまり、Z方向の移動情報については高輝度部d1の位相の変化を用いて検知を行い、輪郭情報については高輝度部d1、低輝度部d2の移動情報に基づいて検知を行うことができる。この場合、輪郭情報についてはドットパターンの移動情報を読み取るだけで検知が可能であることから、処理が容易であると共に、Z方向の移動情報については高輝度部d1の位相変化を対象としていることから、検知を行いやすい。 However, in the present invention, the optical axis O1 and the optical axis O2 are not located substantially on the same axis, and the hand H is moved, for example, so that the high brightness portion d1 (and the low brightness portion) irradiated to the hand H is reduced. When the dot portion of the luminance portion d2) moves in the Z direction, the dot of reflected light received by the light receiving element 21 may be detected as moving on a so-called epipolar line in three-dimensional measurement. That is, the movement information in the Z direction can be detected using the phase change of the high luminance part d1, and the contour information can be detected based on the movement information of the high luminance part d1 and the low luminance part d2. In this case, since it is possible to detect the outline information simply by reading the movement information of the dot pattern, the processing is easy, and the movement information in the Z direction is targeted for the phase change of the high luminance part d1. Therefore, it is easy to detect.
 なお、前記実施の形態では、光照射領域が高輝度部d1でZ方向の移動情報を得て低輝度部d2でX-Y方向の座標情報を得ているが、高輝度部d1と低輝度部d2の双方を使用してX-Y方向の座標情報の検出し、すなわち手Hの境界部の検出や手の移動検出を行ってもよい。 In the above embodiment, the light irradiation area obtains the movement information in the Z direction at the high luminance part d1 and obtains the coordinate information in the XY direction at the low luminance part d2, but the high luminance part d1 and the low luminance part d1. The coordinate information in the XY directions may be detected by using both of the parts d2, that is, the boundary part of the hand H and the movement of the hand may be detected.
 図7には、第2の実施の形態において、光学変換素子13で変換された投影パターンによって、測定光が対象物(手H)に照射されている状態が示されている。 FIG. 7 shows a state in which the measurement light is irradiated on the object (hand H) by the projection pattern converted by the optical conversion element 13 in the second embodiment.
 第2の実施の形態では、光源11から発せられた測定光が光学変換素子13で変換されて、ドット状(スポット状)の光照射領域dを形成する投影パターンが形成されている。個々の光照射領域dの形状は円形であり、それぞれの光照射領域dは、直交する2方向へ同一のピッチで配置されている。あるいは、直交する2方向へ異なるピッチで配置されている。また、全ての光照射領域dは輝度が均一である。光照射領域dが形成されていない領域、すなわち、光照射領域dの間を埋めている領域が光非照射領域である。 In the second embodiment, the measurement light emitted from the light source 11 is converted by the optical conversion element 13 to form a projection pattern that forms a dot-shaped (spot-shaped) light irradiation region d. The shape of each light irradiation region d is circular, and each light irradiation region d is arranged at the same pitch in two orthogonal directions. Alternatively, they are arranged at different pitches in two orthogonal directions. Further, all the light irradiation areas d have uniform luminance. A region where the light irradiation region d is not formed, that is, a region filling the space between the light irradiation regions d is a light non-irradiation region.
 この投影パターンでは、全ての光照射領域dからの反射光がLEFMで受光され、その受光出力が位相差検出回路31に与えられて、前記数2の演算が行われ、それぞれの光照射領域dごとに前記距離Lの計算が行われる。ただし、図7に示す複数の光照射領域dのうちのいずれかを選択し、選択された光照射領域dからの受光出力から位相差が求められ、前記距離Lが演算されてもよい。例えば、直交する2方向において数個ごとに配列している光照射領域dが選択されて、距離Lの演算が行われる。 In this projection pattern, the reflected light from all the light irradiation areas d is received by LEFM, the light reception output is given to the phase difference detection circuit 31, and the calculation of Equation 2 is performed. The distance L is calculated every time. However, any one of the plurality of light irradiation regions d shown in FIG. 7 may be selected, a phase difference may be obtained from the received light output from the selected light irradiation region d, and the distance L may be calculated. For example, the light irradiation regions d arranged every several in two orthogonal directions are selected, and the distance L is calculated.
 また、それぞれの光照射領域dからの反射光の光強度の連続性を監視することによって、対象物である手Hの境界部を検出することも可能である。 It is also possible to detect the boundary portion of the hand H that is the object by monitoring the continuity of the light intensity of the reflected light from each light irradiation region d.
 第2の実施の形態においても、光源11からの測定光が、光学変換素子13によって集約させられて光照射領域dが形成されているため、この光照射領域dからの反射光の位相差を求めることにより、距離Lを高いS/N比で求めることができる。したがって、この距離Lの連続性を監視することで、手Hの外形を割り出すことも可能である。 Also in the second embodiment, since the measurement light from the light source 11 is aggregated by the optical conversion element 13 to form the light irradiation region d, the phase difference of the reflected light from the light irradiation region d is determined. By determining, the distance L can be determined with a high S / N ratio. Therefore, it is possible to determine the outer shape of the hand H by monitoring the continuity of the distance L.
 なお、第1の実施の形態の高輝度部d1や低輝度部d2または第2の実施の形態の光照射領域dは、線状パターンや丸以外の図形パターンであってもよい。あるいは、高輝度部d1を大きく低輝度部d2を小さく形成してもよい。また、高輝度部d1や低輝度部d2または光照射領域dを、ランダムに配列するものであってもよい。 Note that the high luminance part d1 and the low luminance part d2 of the first embodiment or the light irradiation region d of the second embodiment may be a linear pattern or a graphic pattern other than a circle. Alternatively, the high luminance part d1 may be formed large and the low luminance part d2 may be formed small. Further, the high luminance part d1, the low luminance part d2, or the light irradiation region d may be arranged at random.
 さらに、同じ光源11からの光を変換する光学変換素子13の回折構造を時分割で変化させて、高輝度部d1のみの投影パターンと低輝度部d2のみの投影パターンを交互に対象物に与えることも可能である。 Further, the diffraction structure of the optical conversion element 13 that converts the light from the same light source 11 is changed in a time-sharing manner, so that the projection pattern of only the high luminance part d1 and the projection pattern of only the low luminance part d2 are alternately given to the object. It is also possible.
1 光学式検知装置
10 投影装置
11 光源
13 光学変換素子
14 光源ドライバ
20 受光装置
21 受光素子
22 受光レンズ
24 画素処理回路
30 制御部
d1 高輝度部
d2 低輝度部
d 光照射領域
DESCRIPTION OF SYMBOLS 1 Optical detection apparatus 10 Projection apparatus 11 Light source 13 Optical conversion element 14 Light source driver 20 Light receiving device 21 Light receiving element 22 Light receiving lens 24 Pixel processing circuit 30 Control part d1 High brightness part d2 Low brightness part d Light irradiation area

Claims (7)

  1.  光源と、前記光源から強度変調された測定光を発光させる光源ドライバと、前記測定光を所定の投影パターンに変換して対象物に投影する光学変換素子と、前記対象物から反射された前記測定光を受光する受光素子と、制御部とを有し、
     前記投影パターンは、前記光源から発せられた光を複数箇所に集約し前記対象物に投影して形成された光照射領域と、前記光照射領域の間を埋める光非照射領域とを有し、
     前記制御部は、前記光照射領域の光を前記受光素子で受光した受光出力から光の位相差を求めて、前記受光素子から前記光照射領域までのZ方向の距離情報を演算することを特徴とする光学式検知装置。
    A light source, a light source driver that emits intensity-modulated measurement light from the light source, an optical conversion element that converts the measurement light into a predetermined projection pattern and projects it onto an object, and the measurement reflected from the object A light receiving element for receiving light and a control unit;
    The projection pattern includes a light irradiation region formed by projecting the light emitted from the light source at a plurality of locations and projecting the target, and a light non-irradiation region that fills the space between the light irradiation regions,
    The control unit calculates a phase difference of light from a light reception output received by the light receiving element of light in the light irradiation region, and calculates distance information in the Z direction from the light receiving element to the light irradiation region. An optical detection device.
  2.  前記制御部は、前記投影パターンからの反射光の光強度変化の連続性を監視することで前記対象物の輪郭を検出する請求項1記載の光学式検知装置。 The optical detection device according to claim 1, wherein the control unit detects the contour of the object by monitoring the continuity of the light intensity change of the reflected light from the projection pattern.
  3.  前記光照射領域は、光の輝度が高い高輝度部と前記高輝度部よりも光の輝度が低い低輝度部とを有しており、前記高輝度部の光の位相差からZ方向の距離情報を演算する請求項1記載の光学式検知装置。 The light irradiation region has a high luminance part having a high light luminance and a low luminance part having a light luminance lower than that of the high luminance part, and the distance in the Z direction from the phase difference of the light of the high luminance part. The optical detection device according to claim 1, which calculates information.
  4.  前記制御部は、前記低輝度部からの反射光の光強度変化の連続性を監視することで前記対象物の輪郭を検出する請求項3記載の光学式検知装置。 The optical detection device according to claim 3, wherein the control unit detects the contour of the object by monitoring the continuity of the light intensity change of the reflected light from the low-luminance unit.
  5.  前記光照射領域の光の位相差からZ方向の距離情報を演算するとともに、同じ光照射領域からの反射光の光強度変化の連続性を監視することで前記対象物の輪郭を検出する請求項2記載の光学式検知装置。 The contour of the object is detected by calculating distance information in the Z direction from the phase difference of light in the light irradiation region and monitoring the continuity of the light intensity change of reflected light from the same light irradiation region. 2. The optical detection device according to 2.
  6.  Z方向の距離情報と前記輪郭とから、前記対象物の立体形状が演算される請求項2、4、5のいずれかに記載の光学式検知装置。 6. The optical detection device according to claim 2, wherein a three-dimensional shape of the object is calculated from distance information in the Z direction and the contour.
  7.  前記投影パターンはドットパターンである請求項1ないし6のいずれかに記載の光学式検知装置。 The optical detection device according to any one of claims 1 to 6, wherein the projection pattern is a dot pattern.
PCT/JP2016/054836 2015-03-10 2016-02-19 Optical detection device WO2016143482A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015047195A JP6531326B2 (en) 2015-03-10 2015-03-10 Optical detector
JP2015-047195 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016143482A1 true WO2016143482A1 (en) 2016-09-15

Family

ID=56880453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054836 WO2016143482A1 (en) 2015-03-10 2016-02-19 Optical detection device

Country Status (2)

Country Link
JP (1) JP6531326B2 (en)
WO (1) WO2016143482A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113530A (en) * 2017-12-22 2019-07-11 株式会社デンソー Distance measuring device, recognition device, and distance measuring method
CN110546530A (en) * 2017-04-23 2019-12-06 齐诺马蒂赛股份有限公司 Pixel structure
JP2022105771A (en) * 2017-12-22 2022-07-14 株式会社デンソー Distance measuring device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301480A1 (en) * 2016-10-03 2018-04-04 Xenomatix NV System and method for determining a distance to an object
EP3301477A1 (en) * 2016-10-03 2018-04-04 Xenomatix NV System for determining a distance to an object
EP3343246A1 (en) 2016-12-30 2018-07-04 Xenomatix NV System for characterizing surroundings of a vehicle
US10768630B2 (en) * 2017-02-09 2020-09-08 International Business Machines Corporation Human imperceptible signals
US10768301B2 (en) * 2017-12-15 2020-09-08 Xenomatix Nv System and method for determining a distance to an object
GB2574058B (en) * 2018-05-25 2021-01-13 Envisics Ltd Holographic light detection and ranging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178633A (en) * 1994-12-22 1996-07-12 Mitsubishi Heavy Ind Ltd Three dimensional shape measuring device and measuring method
JP2008249673A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Distance measuring device, distance measurement method, and distance measurement system
US20140049766A1 (en) * 2012-08-14 2014-02-20 Microsoft Corporation Illumination light shaping for a depth camera
JP2014035920A (en) * 2012-08-09 2014-02-24 Asahi Glass Co Ltd Illumination optical system, measuring device and diffractive optical element used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178633A (en) * 1994-12-22 1996-07-12 Mitsubishi Heavy Ind Ltd Three dimensional shape measuring device and measuring method
JP2008249673A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Distance measuring device, distance measurement method, and distance measurement system
JP2014035920A (en) * 2012-08-09 2014-02-24 Asahi Glass Co Ltd Illumination optical system, measuring device and diffractive optical element used therefor
US20140049766A1 (en) * 2012-08-14 2014-02-20 Microsoft Corporation Illumination light shaping for a depth camera

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKUTO SATO ET AL.: "Laser Kaisetsuko ni Motozuku Kanben na 3 Jigen Keisoku System to sono Oyo ni Kansuru Kento", ITE TECHNICAL REPORT, vol. 37, no. 36, 12 August 2013 (2013-08-12), pages 31 - 34 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110546530A (en) * 2017-04-23 2019-12-06 齐诺马蒂赛股份有限公司 Pixel structure
JP2019113530A (en) * 2017-12-22 2019-07-11 株式会社デンソー Distance measuring device, recognition device, and distance measuring method
JP2022105771A (en) * 2017-12-22 2022-07-14 株式会社デンソー Distance measuring device
JP7238343B2 (en) 2017-12-22 2023-03-14 株式会社デンソー Distance measuring device and distance measuring method
JP7347585B2 (en) 2017-12-22 2023-09-20 株式会社デンソー distance measuring device

Also Published As

Publication number Publication date
JP2016166814A (en) 2016-09-15
JP6531326B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2016143482A1 (en) Optical detection device
KR101891907B1 (en) Distance measuring device and parallax calculation system
US9921312B2 (en) Three-dimensional measuring device and three-dimensional measuring method
CN107430187B (en) Depth sensor module and depth sensing method
EP3262439B1 (en) Using intensity variations in a light pattern for depth mapping of objects in a volume
KR101241000B1 (en) Method of measuring relative movement in two dimensions of an object and an optical input device using a single self-mixing laser
WO2016189808A1 (en) Distance measurement imaging device, distance measurement method using same, and solid-state imaging device
US6483536B2 (en) Distance measuring apparatus and method employing two image taking devices having different measurement accuracy
JP4992059B2 (en) Optical device for measuring the moving speed of an object relative to a surface.
US20220146250A1 (en) Detector with a projector for illuminating at least one object
US20160265906A1 (en) Object detection device
JP2009192499A (en) Apparatus for generating distance image
US10955555B2 (en) Depth sensor combining line triangulation and time of flight
KR102240817B1 (en) Method for generating depth map in TOF camera
JP2002131016A (en) Apparatus and method of distance measurement
JP2002139304A (en) Distance measuring device and distance measuring method
US20210247500A1 (en) Single frame distance disambiguation
US20220026574A1 (en) Patterned illumination for three dimensional imaging
JP2009092535A (en) Optical displacement gauge
JP2017026611A (en) Optical detector and light detection method
JP7135081B2 (en) Apparatus and method
CN112740065A (en) Enhanced depth mapping using visual inertial ranging
US11906629B2 (en) Method and device for distance measurement
JP4728609B2 (en) Optical displacement meter
JP7332417B2 (en) Measuring device and measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761454

Country of ref document: EP

Kind code of ref document: A1