WO2016143276A1 - Acoustic device and correction method - Google Patents

Acoustic device and correction method Download PDF

Info

Publication number
WO2016143276A1
WO2016143276A1 PCT/JP2016/000917 JP2016000917W WO2016143276A1 WO 2016143276 A1 WO2016143276 A1 WO 2016143276A1 JP 2016000917 W JP2016000917 W JP 2016000917W WO 2016143276 A1 WO2016143276 A1 WO 2016143276A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
unit
sound output
acoustic device
test
Prior art date
Application number
PCT/JP2016/000917
Other languages
French (fr)
Japanese (ja)
Inventor
良二 鈴木
徹 臼倉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016143276A1 publication Critical patent/WO2016143276A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Definitions

  • This disclosure relates to an acoustic device capable of correcting the frequency characteristics of output sound.
  • Patent Document 1 discloses an automatic sound field correction apparatus.
  • the automatic sound field correction apparatus includes a speaker, a microphone (hereinafter also referred to as “microphone”), and a control unit that operates a graphic equalizer based on an audio signal from an acoustic source and an output from the microphone. With this configuration, the user can perform sound field correction.
  • the sound field that is, the frequency characteristic
  • white noise is generally output from the speaker as a test sound.
  • white noise may be uncomfortable, so the sound field correction device may give the user an unpleasant feeling during sound field correction (that is, during frequency characteristic correction).
  • This disclosure provides an audio device that can reduce discomfort given to a user when correcting frequency characteristics using a test sound.
  • the acoustic device includes an acoustic device and a control device.
  • the control device includes a sound collection unit and a control signal transmission unit.
  • the sound collection unit acquires sounds around the control device including the user's voice.
  • the control signal transmission unit transmits a control signal for controlling the acoustic device to the acoustic device based on the user's voice acquired by the sound collection unit.
  • the acoustic device includes a sound output unit and a signal processing unit.
  • the signal processing unit causes the sound output unit to output each of the 12 scale sounds constituting one octave as a test sound to be acquired by the sound collection unit in order to correct the frequency characteristics of the sound output from the sound output unit. .
  • the correction method in the present disclosure is a correction method that is executed by an audio device including an audio device having a sound output unit and a control device.
  • the control device transmits to the acoustic device a sound collection unit that acquires sounds around the control device including the user's voice, and a control signal for controlling the acoustic device based on the user's voice acquired by the sound collection unit.
  • a control signal transmission unit is a method for correcting the frequency characteristics of the sound output from the sound output section, and corrects the frequency characteristics of the sound output from the sound output section for each of the 12 scale sounds constituting one octave. And a step of outputting to the sound output unit as a test sound to be acquired by the sound collection unit.
  • the acoustic device according to the present disclosure can reduce discomfort given to the user when correcting the frequency characteristics using the test sound.
  • FIG. 1 is a diagram for explaining a problem when the acoustic device according to Embodiment 1 is installed indoors.
  • FIG. 2 is a diagram schematically showing an outline of the operation of the audio device in the first embodiment.
  • FIG. 3 is a block diagram schematically illustrating an example of a functional configuration of the acoustic device according to the first embodiment.
  • FIG. 4 is a flowchart illustrating an operation example of the frequency characteristic correction process executed by the acoustic device according to the first embodiment.
  • FIG. 5 is a diagram for explaining each chord of Cdim7, C # dim7, and Ddim7.
  • FIG. 6 is a diagram conceptually illustrating frequency characteristic correction executed by the acoustic device according to the first embodiment.
  • FIG. 1 is a diagram for explaining a problem when the acoustic device according to Embodiment 1 is installed indoors.
  • FIG. 2 is a diagram schematically showing an outline of the operation of the audio device in the first embodiment.
  • FIG. 7 is a diagram schematically illustrating frequency characteristics of an example (5 octaves) of a test sound generated by the acoustic device according to the third modification of the first embodiment.
  • FIG. 8 is a block diagram schematically illustrating an example of a functional configuration of the acoustic device according to the second embodiment.
  • FIG. 1 is a diagram for explaining a problem when the acoustic device 10 according to Embodiment 1 is installed indoors.
  • FIG. 2 is a diagram schematically showing an outline of the operation of the acoustic device 10 according to the first embodiment.
  • the acoustic device 10 is a television receiver (hereinafter abbreviated as “TV” or “TV”), but the acoustic device 10 may be another device having an acoustic function. .
  • the user 30 can output a sound output unit 106 of the acoustic device 10 (or a bass unit provided on the back of the acoustic device 10.
  • the direct sound 201 from the sound output unit 106a) is received.
  • the user 30 also reflects a primary reflected sound 202 (a sound reflected once by a wall surface or the like and heard by the user 30) and a secondary reflected sound 203 (a sound reflected twice by a wall surface or the like by the user). 30) and the like.
  • part of the sound from the sound output unit 106 is transmitted through the indoor space 200 to the outside as the transmitted sound 204.
  • part of the sound from the sound output unit 106 may be diffracted sound 205 (sound that is diffracted and received by the user 30). That is, the characteristic (frequency characteristic) of the sound that the user listens to varies depending on the environment in which the acoustic device 10 is installed, the installation position of the acoustic device 10, and the like.
  • a dedicated microphone for monitoring
  • the test is output from the acoustic device.
  • a technique for collecting and monitoring sound with a microphone is used.
  • the frequency characteristic of the sound output from the acoustic device is corrected based on the frequency characteristic of the test sound monitored by the microphone installed at the listening position of the user 30. It can be carried out. Therefore, the frequency characteristic of the sound that the user 30 listens at the listening position can be brought close to the desired frequency characteristic.
  • white noise or TSP (Time Stretched Pulse) sound (so-called TSP signal) or the like is generally output from a speaker as a test sound.
  • TSP signal Time Stretched Pulse
  • these sounds may be felt as annoying noise sounds.
  • the user 30 will listen to these test sounds when correcting the frequency characteristics of the sound, the user 30 may feel uncomfortable.
  • a dedicated microphone is required for correcting the frequency characteristics of the sound.
  • the inventors use the 12-scale sound (C, C #, D, D #, E, F, F #, G, G #) constituting one octave as the test sound.
  • A, A #, and B) are output from the acoustic device 10.
  • the acoustic device 10 can correct the frequency characteristic while reducing the discomfort given to the user 30.
  • the inventors have a configuration in which the sound collection unit 21 used for voice recognition included in the control device 20 (the remote controller in the first embodiment) that controls the acoustic device 10 is used to acquire the test sound. I found it. Thereby, the acoustic device 10 can correct the frequency characteristics without using a dedicated microphone.
  • acoustic device 100 including the acoustic device 10 and the control device 20 will be described.
  • FIG. 3 is a block diagram schematically illustrating an example of a functional configuration of the audio device 100 according to the first embodiment.
  • the acoustic device 10 is a television and the acoustic device 100 is a TV system.
  • the acoustic device 10 and the acoustic device 100 may be other devices having an acoustic function.
  • the audio device 100 (TV system) includes an audio device 10 (television) and a control device 20 (remote controller). First, the configuration of the audio device 10 will be described.
  • the acoustic device 10 is a device that outputs sound that the user 30 listens to.
  • the description regarding the general function as a television is abbreviate
  • the acoustic device 10 includes a sound output unit 106 and a signal processing unit 120. More specifically, the acoustic device 10 includes a signal generation unit 101, a signal acquisition unit 102, a switching unit 103, a filter unit 104, a speaker amplifier unit 105, a sound output unit 106, a control unit 107, and a reception unit. Unit 108, frequency analysis unit 109, selection unit 110, storage unit 111, and filter coefficient calculation unit 112.
  • the signal processing unit 120 includes a signal generation unit 101, a signal acquisition unit 102, a switching unit 103, a filter unit 104, a speaker amplifier unit 105, a control unit 107, a reception unit 108, a frequency analysis unit 109, a selection unit 110, a storage unit 111, And a filter coefficient calculation unit 112.
  • the signal generator 101 generates a test signal based on the control from the controller 107.
  • the test signal is a signal for outputting a test sound.
  • the test sound is a plurality of types of chords each consisting of a part of a 12-scale sound.
  • the test sound is, for example, three chords Cdim7, C # dim7, and Ddim7, but may be other chords.
  • the signal generation unit 101 generates a test signal for outputting such a test sound.
  • the signal generation unit 101 is realized by a circuit (signal generation circuit), for example, but may be realized by a processor.
  • the test sound is, for example, an electronic sound generated by a combination (superposition) of sine waves.
  • an actual musical instrument sound or a MIDI (Musical Instrument Digital Interface) sound source may be used as the test sound.
  • the signal generation unit 101 may generate a test sound that has been fade-in processed or faded-out.
  • the speaker amplifier unit 105 may perform a fade-in process or a fade-out process on the test signal generated by the signal generation unit 101.
  • the signal acquisition unit 102 acquires an acoustic signal.
  • the acoustic signal is a signal for outputting, for example, television sound.
  • the switching unit 103 selectively switches which of the test signal generated by the signal generation unit 101 and the acoustic signal obtained through the signal acquisition unit 102 is output to the filter unit 104 based on the control of the control unit 107.
  • the switching unit 103 is realized by a circuit (switching circuit), for example, but may be realized by a processor.
  • the filter unit 104 performs a filtering process using the filter coefficient calculated by the filter coefficient calculation unit 112 on the acoustic signal output from the switching unit 103. That is, the filter unit 104 corrects the frequency characteristic of the sound output from the sound output unit 106 by the filter coefficient by the filter coefficient calculation unit 112.
  • the filter unit 104 is realized by a circuit (filter circuit), for example, but may be realized by a processor.
  • the speaker amplifier unit 105 amplifies the test signal or the acoustic signal subjected to the filter process and outputs the amplified signal to the sound output unit 106.
  • the speaker amplifier unit 105 is realized by a circuit (speaker amplifier circuit), for example.
  • the sound output unit 106 outputs a test sound corresponding to the amplified test signal output from the speaker amplifier unit 105. Further, the sound output unit 106 outputs a sound corresponding to the amplified acoustic signal output from the speaker amplifier unit 105.
  • the sound output unit 106 is specifically a speaker.
  • the reception unit 108 receives a signal transmitted from the transmission unit 23 of the control device 20. Then, when receiving the test sound acquisition result (signal indicating the acquisition result) from the transmission unit 23 of the control device 20, the reception unit 108 outputs the received acquisition result to the frequency analysis unit 109. In addition, when receiving a control signal for controlling the audio device 10 from the transmission unit 23 of the control device 20, the reception unit 108 outputs the received control signal to the control unit 107.
  • the reception unit 108 receives a signal (the acquisition result and the control signal) transmitted from the transmission unit 23 of the control device 20 by wireless communication.
  • wireless communication for wireless communication in this case, for example, wireless communication standards such as Bluetooth (registered trademark), Wi-Fi (registered trademark), Zigbee (registered trademark) may be used, or infrared communication or the like may be used. Also good.
  • the receiving unit 108 may be realized by a wireless communication module (communication circuit), for example.
  • the control unit 107 corrects the frequency characteristic of the sound output from the sound output unit 106 based on the received acquisition result.
  • the control unit 107 controls the reception unit 108, the frequency analysis unit 109, the selection unit 110, the storage unit 111, the filter coefficient calculation unit 112, the signal generation unit 101, the switching unit 103, and the filter unit 104 to correct frequency characteristics. I do.
  • control unit 107 analyzes the received control signal and performs various processes (channel change, volume change, etc.) according to the analysis result.
  • the control signal may include a sound signal based on a sound uttered by the user 30 in order to perform a sound operation on the acoustic device 10. Therefore, an existing speech recognition technique may be used for the analysis performed by the control unit 107 at this time.
  • the control unit 107 is realized by a circuit (control circuit), for example, but may be realized by a processor.
  • the frequency analysis unit 109 Based on the control from the control unit 107, the frequency analysis unit 109 performs an FFT (Fast Fourier Transform) process on the test sound acquisition result received by the reception unit 108. As a result of the FFT processing, the test sound acquisition result is converted into a power value for each frequency.
  • the frequency analysis unit 109 is realized by a circuit (frequency analysis circuit), for example, but may be realized by a processor.
  • the selection unit 110 selects the main frequency included in the test sound output from the sound output unit 106 and the power value of the frequency from the acquisition results after the FFT processing, and selects the selected frequency and the power of the frequency.
  • the value is stored in the storage unit 111.
  • Cdim7 composed of single sounds of C (261.6 Hz), D # (311.1 Hz), F # (370.0 Hz), and A (440.0 Hz) is output from the sound output unit 106.
  • the selection unit 110 selects these frequencies and the power value of the frequency included in the acquisition result after the FFT process, and stores the selection result in the storage unit 111.
  • the selection unit 110 is realized by a circuit (selection circuit), for example, but may be realized by a processor.
  • the storage unit 111 is a storage device that stores the frequency selected by the selection unit 110 and the power value of the frequency.
  • the storage unit 111 also stores ideal frequency characteristics (predetermined frequency characteristics) in design.
  • the storage unit 111 is realized by, for example, a semiconductor memory.
  • the filter coefficient calculation unit 112 includes a power value stored in the storage unit 111 (power value of the main frequency of the test sound), a design frequency characteristic (ideal frequency characteristic) stored in the storage unit 111, Is read from the storage unit 111.
  • the filter coefficient calculation unit 112 compares the read acquisition result (power value) with the designed frequency characteristic (ideal frequency characteristic) and compares the test sound acquisition result (power value) with the designed frequency characteristic. Calculate filter coefficients to approximate (ideal frequency characteristics).
  • the filter coefficient includes a gain, a Q value, a center value (Fc) of a frequency at which gain is increased or decreased, and the like.
  • the calculation result (filter coefficient) in the filter coefficient calculation unit 112 is output from the filter coefficient calculation unit 112 to the filter unit 104.
  • the filter coefficient calculation unit 112 is realized by a circuit (filter coefficient calculation circuit), for example, but may be realized by a processor.
  • the control device 20 is a device that the user 30 operates to control the audio device 10.
  • the control device 20 is a television remote controller, for example, but may be another device such as a smartphone or a tablet terminal.
  • the control device 20 includes a sound collection unit 21, a microphone amplifier unit 22, and a transmission unit 23.
  • a description of a general function as a TV remote controller is omitted.
  • the remote controller is abbreviated as “remote controller”.
  • the sound collection unit 21 acquires sounds around the control device 20 including the voice of the user 30 and outputs a sound signal (raw sound data) corresponding to the acquired sounds.
  • the sound collection unit 21 acquires the test sound output from the sound output unit 106 and outputs an acquisition result (sound signal).
  • the sound collection unit 21 is a microphone.
  • the microphone amplifier unit 22 amplifies the sound signal output from the sound collection unit 21 and outputs the amplified sound signal to the transmission unit 23.
  • the microphone amplifier unit 22 is realized by a circuit (microphone amplifier circuit), for example.
  • the transmission unit 23 is an example of a control signal transmission unit.
  • the transmission unit 23 transmits a control signal for controlling the acoustic device 10 based on a user operation to the acoustic device 10.
  • the user operation includes a voice operation by voice generated by the user 30 to operate the acoustic device 10 by voice.
  • the control signal includes a signal based on the voice of the user 30 uttered by the user 30 for voice operation and acquired by the sound pickup unit 21. That is, the transmission unit 23 transmits the sound signal output from the sound collection unit 21 according to the voice of the user 30 and amplified by the microphone amplifier unit 22 to the reception unit 108 of the acoustic device 10 as a control signal. Send.
  • the transmission unit 23 is also an example of an acquisition result transmission unit.
  • the transmission unit 23 transmits a signal indicating the test sound acquisition result by the sound collection unit 21 to the acoustic device 10. More specifically, the transmission unit 23 is a sound signal output from the sound collection unit 21 according to the test sound (the test sound output from the sound output unit 106) and is amplified by the microphone amplifier unit 22. The signal is transmitted to the receiving unit 108 of the acoustic device 10 as a signal indicating the result of acquiring the test sound.
  • the transmission unit 23 transmits a test sound acquisition result and a control signal by the sound collection unit 21 by wireless communication.
  • wireless communication for wireless communication in this case, for example, wireless communication standards such as Bluetooth (registered trademark), Wi-Fi (registered trademark), Zigbee (registered trademark) may be used, or infrared communication or the like may be used. Also good.
  • the transmission part 23 may be implement
  • FIG. 4 is a flowchart showing an operation example of frequency characteristic correction processing executed by the acoustic device 100 according to the first embodiment.
  • the sound output unit 106 outputs a test sound (step S11).
  • control unit 107 causes the signal generation unit 101 to generate a test signal. Further, the control unit 107 switches the switching unit 103 so that the test signal from the signal generation unit 101 is input to the filter unit 104. As a result of this control, a test signal from the signal generation unit 101 is input to the speaker amplifier unit 105 through the filter unit 104.
  • the filter unit 104 may pass the test signal without correction.
  • the speaker amplifier unit 105 amplifies the test signal to a predetermined level, and outputs the amplified test signal to the sound output unit 106. As a result, a test sound is output from the sound output unit 106.
  • the predetermined level is a level (size) at which the sound collection unit 21 of the control device 20 arranged at the listening position of the user 30 can appropriately acquire the test sound.
  • the test sound is composed of three chords Cdim7, C # dim7, and Ddim7 (three kinds of reduced seven chords each having C, C #, and D as root sounds). ).
  • the sound output unit 106 outputs these three chords in an arbitrary order.
  • the three chords Cdim7, C # dim7, and Ddim7 are all chords composed of four single notes, and the four single notes have different pitches by one and a half tone.
  • FIG. 5 is a diagram for explaining each chord of Cdim7, C # dim7, and Ddim7.
  • Cdim7 is composed of four single sounds of C (261.6 Hz), D # (311.1 Hz), F # (370.0 Hz), and A (440.0 Hz). Consists of Also, as shown in FIG. 5B, C # dim7 is C # (277.2 Hz), E (329.6 Hz), G (392.0 Hz), and A # (466.2 Hz), It consists of four single notes. Further, as shown in FIG. 5C, Ddim7 has four values of D (293.7 Hz), F (349.2 Hz), G # (415.3 Hz), and B (493.9 Hz). Consists of single notes.
  • the sound output unit 106 when the sound output unit 106 is configured to output each chord of Cdim7, C # dim7, and Ddim7, the sound output unit 106 outputs all of the 12 scales within one octave by outputting the chord three times.
  • the sound can be output in a comprehensive manner. Therefore, the acoustic device 100 can reduce the uncomfortable feeling (or uncomfortable feeling) given to the user 30 as compared with the configuration in which the noise sound as in the related art is output as the test sound. Moreover, the acoustic device 100 can output the test sound efficiently in a relatively short time.
  • the sound of 12 scales is not limited to the sound which belongs to the above-mentioned range of 261.6 Hz or more and 493.9 Hz or less.
  • a sound of 12 scales belonging to a range of 523.3 Hz or more and 987.76 Hz or less one octave higher than this range may be output from the sound output unit 106, or 12 scales of an octave higher than this range may be output.
  • Sound may be output from the sound output unit 106.
  • the frequencies of the 12 scale sounds output from the sound output unit 106 may be appropriately selected according to the frequency range to be corrected.
  • the timing at which the three chords are output from the sound output unit 106 is not particularly limited. For example, after the first chord is output from the sound output unit 106 and the power value of the frequency of the first chord is stored in the storage unit 111, the second chord is output from the sound output unit 106, The order may be such that after the power value of the frequency of the second chord is stored in the storage unit 111, the third chord is output from the sound output unit 106. Whether or not the power value of the frequency of the first (or second) chord is stored in the storage unit 111 is, for example, whether or not the control unit 107 stores a predetermined amount of data in the storage unit 111. This may be determined by detecting (buffer full detection).
  • a silence period may be interposed between the first chord and the second chord (or between the second chord and the third chord).
  • the selection unit 110 can detect the silence period and start storing the power value (buffer fetch) in the storage unit 111.
  • the selection unit 110 may detect the level after completion of the fade-in and start storing the power value in the storage unit 111.
  • the acoustic device 10 notifies the control device 20 in advance using wireless communication (from the acoustic device 10 to the control device 20 that the test sound will be output from now on). Notification may be performed), and the gain of the microphone amplifier unit 22 may be changed to a gain (preset gain) for acquiring the test sound by performing the prior notification.
  • the sound collection unit 21 of the control device 20 acquires the test sound (step S12).
  • the sound collection unit 21 outputs the acquisition result (sound signal) to the microphone amplifier unit 22.
  • the acquisition result (sound signal) is amplified by the microphone amplifier unit 22.
  • the transmission unit 23 of the control device 20 transmits the amplified acquisition result to the reception unit 108 of the audio device 10 (step S13).
  • the acquisition result transmitted from the transmission unit 23 is received by the reception unit 108.
  • the signal processing unit 120 of the acoustic device 10 corrects the frequency characteristics of the sound output from the sound output unit 106 based on the acquisition result received by the reception unit 108 (step S14).
  • step S14 The correction performed in step S14 will be described with reference to FIG.
  • FIG. 6 is a diagram conceptually illustrating the correction of the frequency characteristic performed by the acoustic device 100 according to the first embodiment.
  • the horizontal axis represents the frequency
  • the vertical axis represents the volume of the sound (relative volume with the reference volume being 0 (dB)).
  • FIG. 6A is a diagram illustrating an example of frequency characteristics before correction at the listening position of the user 30.
  • FIG. 6B is a diagram illustrating an example of frequency characteristics based on filter coefficients calculated by the filter coefficient calculation unit 112.
  • FIG. 6C is a diagram illustrating an example of the corrected frequency characteristic at the listening position of the user 30.
  • the ideal frequency characteristic is a flat frequency characteristic (a state in which there is no variation in sound volume for each frequency), in FIG. It is desirable to correct the portions that are present.
  • the filter coefficient calculation unit 112 calculates a filter coefficient that gives a frequency characteristic as shown as an example in FIG. That is, the filter coefficient calculation unit 112 is configured so that the sound is reduced with respect to the frequency that protrudes upward from 0 (dB) in FIG. 6A (that is, the sound is relatively loud). ), The filter coefficient is calculated so that the sound becomes louder with respect to the frequency that protrudes downward from 0 (dB) (that is, the sound is relatively small).
  • the filter part 104 performs the filter process which gives the frequency characteristic shown to (b) of FIG. 6 to the audio
  • the frequency characteristic in the listening position of the user 30 is, for example, 6, the frequency characteristic before correction shown in FIG. 6A is corrected to the frequency characteristic shown in FIG. 6C, that is, a flatter frequency characteristic compared with the frequency characteristic before correction. .
  • the acoustic device 10 can bring the corrected frequency characteristic at the listening position of the user 30 closer to an ideal frequency characteristic (for example, a flat frequency characteristic).
  • an ideal frequency characteristic for example, a flat frequency characteristic
  • the ideal frequency characteristic may be stored in the storage unit 111 in advance. Further, the acoustic device 10 may be configured such that an ideal frequency characteristic can be arbitrarily set by the user 30 operating the control device 20 or the like.
  • the filter coefficient calculation unit 112 also sets a frequency characteristic set in advance as an ideal frequency characteristic, a frequency characteristic before correction at the listening position of the user 30, and a frequency characteristic correction start instruction from the user 30 (control device 20 The filter coefficient may be calculated according to the correction start instruction by the user 30 performed via
  • the acoustic device includes the acoustic device and the control device.
  • the control device includes a sound collection unit and a control signal transmission unit.
  • the sound collection unit acquires sounds around the control device including the user's voice.
  • the control signal transmission unit transmits a control signal for controlling the acoustic device to the acoustic device based on the user's voice acquired by the sound collection unit.
  • the acoustic device includes a sound output unit and a signal processing unit.
  • the signal processing unit causes the sound output unit to output each of the 12 scale sounds constituting one octave as a test sound to be acquired by the sound collection unit in order to correct the frequency characteristics of the sound output from the sound output unit. .
  • the correction method in the present embodiment is a correction method executed by an audio device including an audio device having a sound output unit and a control device.
  • the control device transmits to the acoustic device a sound collection unit that acquires sounds around the control device including the user's voice, and a control signal for controlling the acoustic device based on the user's voice acquired by the sound collection unit.
  • This correction method is a method for correcting the frequency characteristics of the sound output from the sound output section, and corrects the frequency characteristics of the sound output from the sound output section for each of the 12 scale sounds constituting one octave. And a step of outputting to the sound output unit as a test sound to be acquired by the sound collection unit.
  • the sound collection unit of the control device may acquire the test sound output from the sound output unit of the audio device.
  • the control device may further include an acquisition result transmission unit that transmits an acquisition result of the test sound by the sound collection unit to the acoustic device.
  • the signal processing unit of the audio device may receive the acquisition result transmitted by the acquisition result transmitting unit, and correct the frequency characteristics of the sound output from the sound output unit based on the received acquisition result.
  • the acoustic device 100 is an example of an acoustic device.
  • the audio device 10 is an example of an audio device.
  • the control device 20 is an example of a control device.
  • the sound collection unit 21 is an example of a sound collection unit.
  • the transmission unit 23 is an example of a control signal transmission unit, and is also an example of an acquisition result transmission unit.
  • the sound output unit 106 is an example of a sound output unit.
  • the signal processing unit 120 is an example of a signal processing unit.
  • the acoustic device 100 includes the acoustic device 10 and the control device 20.
  • the control device 20 includes a sound collection unit 21 and a transmission unit 23.
  • the sound collection unit 21 acquires sounds around the control device 20 including the voice of the user 30.
  • the transmission unit 23 transmits a control signal for controlling the acoustic device 10 to the acoustic device 10 based on the voice of the user 30 acquired by the sound collection unit 21.
  • the acoustic device 10 includes a sound output unit 106 and a signal processing unit 120.
  • the signal processing unit 120 uses the sound output unit as a test sound to be acquired by the sound collection unit 21 in order to correct the frequency characteristics of the sound output from the sound output unit 106 for each of the 12 scale sounds constituting one octave. 106 to output.
  • the sound collection unit 21 of the control device 20 acquires the test sound output from the sound output unit 106 of the audio device 10.
  • the transmission unit 23 of the control device 20 transmits the acquisition result of the test sound by the sound collection unit 21 to the acoustic device 10.
  • the signal processing unit 120 of the acoustic device 10 receives the acquisition result transmitted by the transmission unit 23 and corrects the frequency characteristics of the sound output from the sound output unit 106 based on the received acquisition result.
  • the 12-scale sound output as the test sound may be output in such a manner that the user 30 can distinguish and recognize the sound of each scale.
  • the test sound is not an exciting (unpleasant) sound compared to the white noise and the TSP sound.
  • the discomfort given to the user 30 can be reduced.
  • the acoustic device 100 can acquire information of at least 12 scales (12 spectra) (power value of the frequency of each sound of 12 scales), the frequency characteristic can be appropriately corrected. That is, the acoustic device 100 can correct the frequency characteristics while reducing discomfort given to the user 30.
  • the acoustic device 100 since a sound having a specific frequency (for 12 scales) is used as a test sound, the amount of information stored for calculating the filter coefficient (the power for each frequency stored in the storage unit 111) The number of values) is smaller than when white noise is used as the test sound. That is, the acoustic device 100 can reduce storage resources (storage capacity necessary for calculating the filter coefficient, for example, storage capacity of the storage unit 111).
  • information is equivalent to information (frequency of each sound of 12 scales). If the 12-scale sound is used as the test sound, the test sound volume is set to be lower than the case where white noise is used as the test sound. Can be small. In other words, when test sounds are output at the same volume, the S / N ratio is higher when a 12-scale sound is used as the test sound than when white noise is used as the test sound. Information (power value of the frequency of each sound of 12 scales) can be obtained.
  • the signal processing unit included in the acoustic device may sequentially output each of a plurality of types of chords each consisting of a part of a 12-scale sound to the sound output unit as a test sound.
  • Each of Cdim7, C # dim7, and Ddim7 is an example of a chord made up of a part of a 12-scale sound.
  • the signal processing unit included in the audio device may sequentially output each of Cdim7, C # dim7, and Ddim7 to the sound output unit as a test sound.
  • the signal processing unit 120 of the audio device 100 causes the sound output unit 106 to sequentially output Cdim7, C # dim7, and Ddim7 as test sounds.
  • the sound output unit 106 when the sound output unit 106 outputs three types of chords Cdim7, C # dim7, and Ddim7, the sound output unit 106 outputs 12 chords within one octave only by outputting the chord three times. It can output all sounds of.
  • the frequency characteristic is measured by sweeping the frequency (ie, gradually changing the frequency from low to high or from high to low)
  • the frequency characteristics can be measured efficiently in a shorter time.
  • a single note of the same scale may be output from the sound output unit 106 in duplicate.
  • the signal processing unit 120 the power value of the frequency of the overlapping single sound may be normalized and used.
  • a component for normalization (for example, a normalization circuit) may be provided between the selection unit 110 and the storage unit 111, for example.
  • the signal processing unit 120 is either an average power value, a maximum value, a minimum value, or a median value of the frequency of the overlapping single sound. May be used as the power value of the frequency of the single tone.
  • the signal generation unit 101 may adjust the phase of a single tone constituting the chord to lower the peak value of the sound waveform when viewed on the time axis. Thereby, the occurrence of overflow can be suppressed.
  • the signal processing unit 120 may cause the sound output unit 106 to output a melody composed of a single sound (or composed of a single sound and a chord) instead of a chord as a test sound. That is, the signal processing unit 120 may cause the sound output unit 106 to sequentially output each of the 12 scale sounds as test sounds. Alternatively, the signal processing unit 120 may cause the sound output unit 106 to output each of the 12 scale sounds as test sounds in the order in which a predetermined melody is played. Also in this case, when a single note of the same scale is output in duplicate, the signal processing unit 120 may perform the above normalization or the like. Further, in the acoustic device 100, when a melody consisting of a single sound is used as a test sound, the output of the test sound from the sound output unit 106 may be continued until each of the 12 scale sounds is output.
  • the frequency power values calculated by the frequency analysis unit 109 may be integrated (merged). For example, when the resolution per octave is reduced to 6, the signal processing unit 120 divides the power values of the frequencies of the 12 scales calculated by the frequency analysis unit 109 into 6 sets of 2 scales, The power values may be averaged for each set. And the signal processing part 120 may correct
  • the signal generation unit 101 may generate a test sound in which each of the 12 scale sounds is vibrato (with a wide frequency). In this case, the selection of the frequency by the selection unit 110 may be omitted.
  • the signal processing unit 120 may cause the sound output unit 106 to sequentially output Cdim7, C # dim7, and Ddim7 over a plurality of octaves as test sounds. For example, the signal processing unit 120 may cause the sound output unit 106 to sequentially output each of Cdim7, C # dim7, and Ddim7 over five octaves as a test sound.
  • FIG. 7 is a diagram schematically illustrating frequency characteristics of an example of test sound (5 octaves) generated by the acoustic device 100 according to the third modification of the first embodiment.
  • the horizontal axis represents frequency
  • the vertical axis represents sound volume.
  • FIG. 7 is a diagram showing the frequency characteristics of Cdim7 over 5 octaves.
  • FIG. 7B is a diagram illustrating the frequency characteristics of C # dim7 over 5 octaves.
  • (C) of FIG. 7 is a figure which shows the frequency characteristic of Ddim7 over 5 octaves.
  • the acoustic device 100 outputs a chord over a plurality of octaves (for example, 5 octaves) as a test signal, thereby significantly reducing the output time of the test sound (1 / octave number, for example, 1 / octave 5).
  • octaves for example, 5 octaves
  • the present disclosure is not limited to this configuration.
  • the control device 20 may calculate a filter coefficient and transmit the filter coefficient from the transmission unit 23 to the reception unit 108 of the audio device 10.
  • the control device 20 includes components (for example, frequency analysis) having functions similar to those of the frequency analysis unit 109, the selection unit 110, the storage unit 111, and the filter coefficient calculation unit 112 included in the audio device 10.
  • the control device 20 amplifies the sound signal output from the sound collection unit 21 by the microphone amplifier unit 22. Based on the amplified sound signal, the control device 20 calculates a filter coefficient using a frequency analysis unit, a selection unit, a storage unit, and a filter coefficient calculation unit included in the control device 20, and transmits the filter coefficient to the transmission unit 23. Output to.
  • the filter coefficient is transmitted from the transmission unit 23 of the control device 20 to the reception unit 108 of the signal processing unit 120 and received by the reception unit 108. Then, the signal processing unit 120 sets the filter coefficient received by the receiving unit 108 in the filter unit 104.
  • the amount of data transmitted from the control device 20 to the audio device 10 can be significantly reduced as compared with the configuration example shown in the first embodiment.
  • test signal is generated by the signal generation unit 101 of the acoustic device 100
  • the present disclosure is not limited to this configuration.
  • an acoustic signal (a signal for outputting TV sound or the like) obtained through the signal acquisition unit 102 may be used as the test signal.
  • television sound may be used as the test sound.
  • an acoustic device 100a configured to use an acoustic signal obtained through the signal acquisition unit 102 as a test signal will be described.
  • FIG. 8 is a block diagram schematically illustrating an example of a functional configuration of the acoustic device 100a according to the second embodiment.
  • acoustic device 100a shown in the second embodiment components that operate substantially the same as the components included in the acoustic device 100 shown in the first embodiment are given the same reference numerals as the components, Description is omitted.
  • description will be made centering on differences from the acoustic device 100 described in the first embodiment, and description of operations that are substantially the same as those of the acoustic device 100 described in the first embodiment may be omitted. .
  • the audio device 100a (for example, a TV system) includes an audio device 10a (for example, a television) and a control device 20 (for example, a remote controller).
  • the acoustic device 10a includes a sound output unit 106 and a signal processing unit 120a.
  • the acoustic device 100a has substantially the same configuration as the acoustic device 100 shown in the first embodiment, and performs substantially the same operation.
  • the acoustic device 10a included in the acoustic device 100a is different from the acoustic device 10 described in Embodiment 1 in that the acoustic device 10a does not include the signal generation unit 101 and the switching unit 103 but includes the frequency analysis unit 113 and the difference calculation unit 114. .
  • the signal processing unit 120a of the acoustic device 10a includes a signal acquisition unit 102, a filter unit 104, a speaker amplifier unit 105, a control unit 107, a reception unit 108, a frequency analysis unit 109, a selection unit 110, a storage unit 111, and filter coefficient calculation.
  • Unit 112, frequency analysis unit 113, and difference calculation unit 114 includes a signal acquisition unit 102, a filter unit 104, a speaker amplifier unit 105, a control unit 107, a reception unit 108, a frequency analysis unit 109, a selection unit 110, a storage unit 111, and filter coefficient calculation.
  • Unit 112 frequency analysis unit 113, and difference calculation unit 114.
  • the frequency analysis unit 113 performs an FFT process on the acoustic signal obtained through the signal acquisition unit 102 based on the control from the control unit 107. As a result, the acoustic signal after FFT processing (analysis result of the acoustic signal) is expressed by a power value for each frequency. Further, the frequency analysis unit 113 outputs the acoustic signal after the FFT processing (analysis result of the acoustic signal) to the selection unit 110.
  • the frequency analysis unit 113 is realized by a circuit (frequency analysis circuit), for example, but may be realized by a processor.
  • the selection unit 110 selects the frequency of each of the 12 scale sounds and the power value of the frequency from the analysis result of the acoustic signal, and stores the selected frequency and the power value of the frequency in the storage unit 111. To do.
  • the sound by the acoustic signal analyzed by the frequency analysis unit 113 is output from the sound output unit 106 as television sound, for example.
  • a sound for example, TV sound
  • a sound obtained from the sound signal obtained through the signal acquisition unit 102 is used as the test sound. Used.
  • Sound output from the sound output unit 106 (for example, television sound as a test sound) is acquired by the sound collection unit 21 of the control device 20. Then, the sound acquisition result by the sound collection unit 21 is transmitted from the transmission unit 23 of the control device 20 to the reception unit 108 of the acoustic device 10a and received by the reception unit 108 in the same manner as in the first embodiment.
  • the analysis unit 109 performs FFT processing.
  • the selection unit 110 selects each frequency of the 12th scale sound and the power value of the frequency from the acquisition results after the FFT processing, and stores the selected frequency and the power value of the frequency in the storage unit 111. To do.
  • the difference calculation unit 114 refers to the storage unit 111 and is included in the power value included in the acoustic signal analysis result (analysis result by the frequency analysis unit 113) and the acquisition result (analysis result by the frequency analysis unit 109). The difference between the power values is compared with the power value for each frequency to calculate the difference between the power values, and the calculation result is output to the filter coefficient calculation unit 112.
  • the difference calculation unit 114 is realized by a circuit (difference calculation circuit), for example, but may be realized by a processor.
  • the filter coefficient calculation unit 112 calculates a filter coefficient such that the difference value calculated by the difference calculation unit 114 is equal to or less than a predetermined value (for example, ⁇ 1 dB).
  • the filter unit 104 performs a filtering process using the filter coefficient calculated by the filter coefficient calculation unit 112 on the acoustic signal obtained through the signal acquisition unit 102.
  • the filter unit 104 corrects the frequency characteristic of the acoustic signal obtained through the signal acquisition unit 102 with the filter coefficient by the filter coefficient calculation unit 112.
  • the acoustic device 100a uses an acoustic signal (a signal for outputting television sound or the like) obtained through the signal acquisition unit 102 as a test signal. That is, the audio device 100a uses television sound as the test sound.
  • the acoustic device 100a can correct the frequency characteristic in a natural manner without giving the user 30 a sense of incongruity.
  • the frequency characteristic correction processing performed by the acoustic device 100a is continued until each sound of 12 scales is output from the sound output unit 106 by sound (for example, television sound) by an acoustic signal obtained through the signal acquisition unit 102. May be.
  • Embodiments 1 and 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, and the like are performed. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1, 2 and it can also be set as a new embodiment.
  • Embodiments 1 and 2 have described examples in which the technology of the present disclosure is applied to a TV system.
  • the technology in the present disclosure can be applied to, for example, an in-vehicle audio device or an in-vehicle navigation device having a hands-free (voice recognition) function.
  • the technology in the present disclosure can also be applied to, for example, an audio device (mini component, AV (Audio Visual) center amplifier, etc.).
  • the operation example in which the gain of the microphone amplifier unit 22 is adjusted when the sound output unit 106 outputs the test sound has been described.
  • the gain of the speaker amplifier unit 105 is adjusted Good.
  • each component may be configured by dedicated hardware, or realized by a software program configured to realize the function of each component being executed by a processor. May be. That is, each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the comprehensive or specific aspect of the technology in the present disclosure may be realized by a system, a method, an integrated circuit, a computer program, or a computer-readable recording medium (for example, an optical disc or a semiconductor memory). Good. Further, the technology in the present disclosure may be realized by a system, a method, an integrated circuit, a computer program, or any combination of recording media. For example, the technology in the present disclosure may be realized as a frequency characteristic correction method executed by the acoustic device.
  • the present disclosure is applicable to an audio device that corrects frequency characteristics. Specifically, the present disclosure is applicable to televisions, in-vehicle navigation devices, audio devices, and the like.

Abstract

Provided is an acoustic device capable of reducing discomfort inflicted on a user with respect to correcting frequency properties using test sounds. The acoustic device has an acoustic machine and a control machine. The control machine has a sound acquisition unit and a control signal transmission unit. The sound acquisition unit acquires sounds in the periphery of the control machine including the voice of the user. The control signal transmission unit transmits to the acoustic machine a control signal for controlling the acoustic machine on the basis of the voice of the user acquired by the sound acquisition unit. The acoustic machine has a sound outputting unit and a signal processing unit. The signal processing unit makes the sound outputting unit output each sound in a twelve-note scale constituting one octave as a test sound to be acquired by the sound acquisition unit in order to correct the frequency properties of sounds outputted from the sound outputting unit.

Description

音響装置および補正方法Acoustic device and correction method
 本開示は、出力される音の周波数特性の補正が可能な音響装置に関する。 This disclosure relates to an acoustic device capable of correcting the frequency characteristics of output sound.
 特許文献1は、自動音場補正装置を開示する。この自動音場補正装置は、スピーカと、マイクロホン(以下、「マイク」ともいう)と、音響源からの音声信号とマイクロホンからの出力とに基づいてグラフィックイコライザを動作させる制御手段と、を備える。この構成により、ユーザは音場補正を行うことができる。 Patent Document 1 discloses an automatic sound field correction apparatus. The automatic sound field correction apparatus includes a speaker, a microphone (hereinafter also referred to as “microphone”), and a control unit that operates a graphic equalizer based on an audio signal from an acoustic source and an output from the microphone. With this configuration, the user can perform sound field correction.
日本国特許第2562433号公報Japanese Patent No. 2562433
 従来技術により音場(すなわち、周波数特性)の補正が行われるときは、テスト音としてスピーカからホワイトノイズが出力されることが一般的である。しかし、ユーザによってはホワイトノイズが不快に感じられる場合もあるため、音場補正時(すなわち、周波数特性補正時)に音場補正装置がユーザに不快感を与える場合がある。 When the sound field (that is, the frequency characteristic) is corrected by the conventional technology, white noise is generally output from the speaker as a test sound. However, depending on the user, white noise may be uncomfortable, so the sound field correction device may give the user an unpleasant feeling during sound field correction (that is, during frequency characteristic correction).
 本開示は、テスト音を用いた周波数特性の補正時に、ユーザに与える不快感を低減することができる音響装置を提供する。 This disclosure provides an audio device that can reduce discomfort given to a user when correcting frequency characteristics using a test sound.
 本開示における音響装置は、音響機器と、制御機器と、を備える。制御機器は、収音部と、制御信号送信部と、を有する。収音部は、ユーザの音声を含む制御機器の周囲の音を取得する。制御信号送信部は、収音部が取得したユーザの音声に基づいて、音響機器を制御するための制御信号を音響機器に送信する。音響機器は、出音部と、信号処理部と、を有する。信号処理部は、1オクターブを構成する12音階の音のそれぞれを、出音部から出力される音の周波数特性を補正するために収音部に取得させるテスト音として、出音部に出力させる。 The acoustic device according to the present disclosure includes an acoustic device and a control device. The control device includes a sound collection unit and a control signal transmission unit. The sound collection unit acquires sounds around the control device including the user's voice. The control signal transmission unit transmits a control signal for controlling the acoustic device to the acoustic device based on the user's voice acquired by the sound collection unit. The acoustic device includes a sound output unit and a signal processing unit. The signal processing unit causes the sound output unit to output each of the 12 scale sounds constituting one octave as a test sound to be acquired by the sound collection unit in order to correct the frequency characteristics of the sound output from the sound output unit. .
 本開示における補正方法は、出音部を有する音響機器と、制御機器と、を備える音響装置で実行される補正方法である。制御機器は、ユーザの音声を含む制御機器の周囲の音を取得する収音部と、収音部が取得したユーザの音声に基づいて、音響機器を制御するための制御信号を音響機器に送信する制御信号送信部と、を有する。この補正方法は、出音部から出力される音の周波数特性の補正方法であり、1オクターブを構成する12音階の音のそれぞれを、出音部から出力される音の周波数特性を補正するために収音部に取得させるテスト音として、出音部に出力させるステップ、を含む。 The correction method in the present disclosure is a correction method that is executed by an audio device including an audio device having a sound output unit and a control device. The control device transmits to the acoustic device a sound collection unit that acquires sounds around the control device including the user's voice, and a control signal for controlling the acoustic device based on the user's voice acquired by the sound collection unit. A control signal transmission unit. This correction method is a method for correcting the frequency characteristics of the sound output from the sound output section, and corrects the frequency characteristics of the sound output from the sound output section for each of the 12 scale sounds constituting one octave. And a step of outputting to the sound output unit as a test sound to be acquired by the sound collection unit.
 本開示における音響装置は、テスト音を用いた周波数特性の補正時に、ユーザに与える不快感を低減することができる。 The acoustic device according to the present disclosure can reduce discomfort given to the user when correcting the frequency characteristics using the test sound.
図1は、実施の形態1における音響機器を室内に設置した場合の問題を説明するための図である。FIG. 1 is a diagram for explaining a problem when the acoustic device according to Embodiment 1 is installed indoors. 図2は、実施の形態1における音響機器の動作の概要を模式的に示す図である。FIG. 2 is a diagram schematically showing an outline of the operation of the audio device in the first embodiment. 図3は、実施の形態1における音響装置の機能構成の一例を模式的に示すブロック図である。FIG. 3 is a block diagram schematically illustrating an example of a functional configuration of the acoustic device according to the first embodiment. 図4は、実施の形態1における音響装置で実行される周波数特性の補正処理の一動作例を示すフローチャートである。FIG. 4 is a flowchart illustrating an operation example of the frequency characteristic correction process executed by the acoustic device according to the first embodiment. 図5は、Cdim7、C#dim7、およびDdim7の各和音を説明するための図である。FIG. 5 is a diagram for explaining each chord of Cdim7, C # dim7, and Ddim7. 図6は、実施の形態1における音響装置で実行される周波数特性の補正を概念的に示す図である。FIG. 6 is a diagram conceptually illustrating frequency characteristic correction executed by the acoustic device according to the first embodiment. 図7は、実施の形態1の変形例3における音響装置で発生されるテスト音の一例(5オクターブ)の周波数特性を模式的に示す図である。FIG. 7 is a diagram schematically illustrating frequency characteristics of an example (5 octaves) of a test sound generated by the acoustic device according to the third modification of the first embodiment. 図8は、実施の形態2における音響装置の機能構成の一例を模式的に示すブロック図である。FIG. 8 is a block diagram schematically illustrating an example of a functional configuration of the acoustic device according to the second embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、すでによく知られた事項の詳細説明、および実質的に同一の構成に対する重複説明等を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, a detailed description of already well-known matters and a redundant description of substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成要素に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same component, and the overlapping description may be abbreviate | omitted or simplified.
 (実施の形態1)
 [1-1.本開示の音響装置を得るに至った経緯]
 まず、本開示の音響装置を得るに至った経緯について説明する。
(Embodiment 1)
[1-1. Background of obtaining the acoustic device of the present disclosure]
First, how the acoustic device of the present disclosure was obtained will be described.
 図1は、実施の形態1における音響機器10を室内に設置した場合の問題を説明するための図である。 FIG. 1 is a diagram for explaining a problem when the acoustic device 10 according to Embodiment 1 is installed indoors.
 図2は、実施の形態1における音響機器10の動作の概要を模式的に示す図である。 FIG. 2 is a diagram schematically showing an outline of the operation of the acoustic device 10 according to the first embodiment.
 なお、実施の形態1において、音響機器10はテレビジョン受像機(以下、「テレビ」または「TV」と略記する)であるが、音響機器10は音響機能を有する他の機器であってもよい。 In the first embodiment, the acoustic device 10 is a television receiver (hereinafter abbreviated as “TV” or “TV”), but the acoustic device 10 may be another device having an acoustic function. .
 図1に示されるように、室内空間200内に音響機器10が設置されている場合、ユーザ30は、音響機器10の出音部106(あるいは、音響機器10の背面に設けられた低音用の出音部106a)からの直接音201を受聴する。また、ユーザ30は、直接音201の他に、一次反射音202(壁面等で1回反射してユーザ30に受聴される音)および二次反射音203(壁面等で2回反射してユーザ30に受聴される音)等も受聴する。また、出音部106からの音の一部は、透過音204となって室内空間200から外部に透過する。また、出音部106からの音の一部は、回折音205(回折してユーザ30に受聴される音)となる場合もある。つまり、ユーザが受聴する音の特性(周波数特性)は、音響機器10が設置された環境や音響機器10の設置位置等によって多様に変化する。 As shown in FIG. 1, when the acoustic device 10 is installed in the indoor space 200, the user 30 can output a sound output unit 106 of the acoustic device 10 (or a bass unit provided on the back of the acoustic device 10. The direct sound 201 from the sound output unit 106a) is received. In addition to the direct sound 201, the user 30 also reflects a primary reflected sound 202 (a sound reflected once by a wall surface or the like and heard by the user 30) and a secondary reflected sound 203 (a sound reflected twice by a wall surface or the like by the user). 30) and the like. In addition, part of the sound from the sound output unit 106 is transmitted through the indoor space 200 to the outside as the transmitted sound 204. In addition, part of the sound from the sound output unit 106 may be diffracted sound 205 (sound that is diffracted and received by the user 30). That is, the characteristic (frequency characteristic) of the sound that the user listens to varies depending on the environment in which the acoustic device 10 is installed, the installation position of the acoustic device 10, and the like.
 ユーザ30が受聴する音の質を向上させるための手法として、ユーザ30の受聴位置に、音の状態を監視するための専用の(モニタ用の)マイクを設置し、音響機器から出力されるテスト音をマイクにより収音してモニタする手法がある。この手法を実行できるように構成された音響装置においては、ユーザ30の受聴位置に設置されたマイクがモニタしたテスト音の周波数特性に基づいて、音響機器から出力される音の周波数特性の補正を行うことができる。そのため、受聴位置においてユーザ30が受聴する音の周波数特性を、所望の周波数特性に近づけることができる。 As a method for improving the quality of the sound that the user 30 listens to, a dedicated microphone (for monitoring) is installed at the listening position of the user 30 to monitor the sound state, and the test is output from the acoustic device. There is a technique for collecting and monitoring sound with a microphone. In the acoustic apparatus configured to be able to execute this method, the frequency characteristic of the sound output from the acoustic device is corrected based on the frequency characteristic of the test sound monitored by the microphone installed at the listening position of the user 30. It can be carried out. Therefore, the frequency characteristic of the sound that the user 30 listens at the listening position can be brought close to the desired frequency characteristic.
 しかしながら、上記手法には、以下のような問題がある。 However, the above method has the following problems.
 上記手法では、テスト音としてスピーカからホワイトノイズまたはTSP(Time Stretched Pulse)音(いわゆるTSP信号)等が出力されることが一般的である。これらの音は、ユーザ30によっては、耳障りなノイズ音と感じられる場合がある。そして、ユーザ30は、音の周波数特性を補正するときに、これらのテスト音を受聴することになるため、不快感を感じる場合がある。 In the above method, white noise or TSP (Time Stretched Pulse) sound (so-called TSP signal) or the like is generally output from a speaker as a test sound. Depending on the user 30, these sounds may be felt as annoying noise sounds. And since the user 30 will listen to these test sounds when correcting the frequency characteristics of the sound, the user 30 may feel uncomfortable.
 また、上記の手法においては、音の周波数特性の補正のために専用のマイクが必要である。しかし、一般家庭向けの機器にこのような専用のマイクを導入することは、コスト増や機器設置時の煩雑さを伴うため、難しい。 In the above method, a dedicated microphone is required for correcting the frequency characteristics of the sound. However, it is difficult to introduce such a dedicated microphone into a device for general households because it involves an increase in cost and complexity at the time of device installation.
 そこで、発明者らは、図2に示されるように、テスト音として、1オクターブを構成する12音階の音(C、C#、D、D#、E、F、F#、G、G#、A、A#、Bの単音)のそれぞれを音響機器10から出力させる構成を見出した。これにより、音響機器10は、ユーザ30に与える不快感を低減しつつ、周波数特性の補正を行うことができる。 Therefore, the inventors, as shown in FIG. 2, use the 12-scale sound (C, C #, D, D #, E, F, F #, G, G #) constituting one octave as the test sound. , A, A #, and B) are output from the acoustic device 10. Thereby, the acoustic device 10 can correct the frequency characteristic while reducing the discomfort given to the user 30.
 また、発明者らは、テスト音の取得に、音響機器10を制御する制御機器20(実施の形態1では、リモートコントローラ)が有する、音声認識に使用される収音部21を利用する構成を見出した。これにより、音響機器10は、専用のマイクを用いることなく、周波数特性の補正を行うことができる。 Further, the inventors have a configuration in which the sound collection unit 21 used for voice recognition included in the control device 20 (the remote controller in the first embodiment) that controls the acoustic device 10 is used to acquire the test sound. I found it. Thereby, the acoustic device 10 can correct the frequency characteristics without using a dedicated microphone.
 以下、このような音響機器10および制御機器20を備える音響装置100の詳細な構成について説明する。 Hereinafter, a detailed configuration of the acoustic device 100 including the acoustic device 10 and the control device 20 will be described.
 [1-2.構成]
 まず、実施の形態1における音響装置100の機能構成について説明する。
[1-2. Constitution]
First, the functional configuration of the acoustic device 100 according to Embodiment 1 will be described.
 図3は、実施の形態1における音響装置100の機能構成の一例を模式的に示すブロック図である。 FIG. 3 is a block diagram schematically illustrating an example of a functional configuration of the audio device 100 according to the first embodiment.
 なお、実施の形態1において、音響機器10はテレビであり、音響装置100はTVシステムであるが、音響機器10および音響装置100は、音響機能を有する他の装置であってもよい。 In Embodiment 1, the acoustic device 10 is a television and the acoustic device 100 is a TV system. However, the acoustic device 10 and the acoustic device 100 may be other devices having an acoustic function.
 図3に示されるように、音響装置100(TVシステム)は、音響機器10(テレビ)と、制御機器20(リモコン)と、を備える。まず、音響機器10の構成について説明する。 As shown in FIG. 3, the audio device 100 (TV system) includes an audio device 10 (television) and a control device 20 (remote controller). First, the configuration of the audio device 10 will be described.
 音響機器10は、ユーザ30が受聴する音を出力する機器である。なお、図3および以下の説明では、テレビとしての一般的な機能に関する説明は省略する。 The acoustic device 10 is a device that outputs sound that the user 30 listens to. In addition, in FIG. 3 and the following description, the description regarding the general function as a television is abbreviate | omitted.
 音響機器10は、出音部106と、信号処理部120と、を有する。より詳細には、音響機器10は、信号生成部101と、信号取得部102と、切替部103と、フィルタ部104と、スピーカアンプ部105と、出音部106と、制御部107と、受信部108と、周波数分析部109と、選択部110と、記憶部111と、フィルタ係数計算部112と、を有する。信号処理部120は、信号生成部101、信号取得部102、切替部103、フィルタ部104、スピーカアンプ部105、制御部107、受信部108、周波数分析部109、選択部110、記憶部111、およびフィルタ係数計算部112、を備えて構成される。 The acoustic device 10 includes a sound output unit 106 and a signal processing unit 120. More specifically, the acoustic device 10 includes a signal generation unit 101, a signal acquisition unit 102, a switching unit 103, a filter unit 104, a speaker amplifier unit 105, a sound output unit 106, a control unit 107, and a reception unit. Unit 108, frequency analysis unit 109, selection unit 110, storage unit 111, and filter coefficient calculation unit 112. The signal processing unit 120 includes a signal generation unit 101, a signal acquisition unit 102, a switching unit 103, a filter unit 104, a speaker amplifier unit 105, a control unit 107, a reception unit 108, a frequency analysis unit 109, a selection unit 110, a storage unit 111, And a filter coefficient calculation unit 112.
 信号生成部101は、制御部107からの制御に基づいてテスト信号を生成する。テスト信号とは、テスト音を出力するための信号のことである。実施の形態1では、テスト音は、各々が12音階の音の一部からなる複数種類の和音である。テスト音は、例えば、Cdim7、C#dim7、およびDdim7、の3つの和音であるが、他の和音であってもよい。信号生成部101は、このようなテスト音を出力するためのテスト信号を生成する。信号生成部101は、例えば回路(信号生成回路)によって実現されるが、プロセッサにより実現されてもよい。 The signal generator 101 generates a test signal based on the control from the controller 107. The test signal is a signal for outputting a test sound. In the first embodiment, the test sound is a plurality of types of chords each consisting of a part of a 12-scale sound. The test sound is, for example, three chords Cdim7, C # dim7, and Ddim7, but may be other chords. The signal generation unit 101 generates a test signal for outputting such a test sound. The signal generation unit 101 is realized by a circuit (signal generation circuit), for example, but may be realized by a processor.
 テスト音は、例えば、正弦波の組合せ(重ね合わせ)により生成される電子音である。しかし、テスト音として、実際の楽器の音、または、MIDI(Musical Instrument Digital Interface)音源が用いられてもよい。また、信号生成部101は、フェードイン処理またはフェードアウト処理されたテスト音を生成してもよい。また、スピーカアンプ部105において、信号生成部101が生成したテスト信号にフェードイン処理またはフェードアウト処理を行ってもよい。 The test sound is, for example, an electronic sound generated by a combination (superposition) of sine waves. However, an actual musical instrument sound or a MIDI (Musical Instrument Digital Interface) sound source may be used as the test sound. Further, the signal generation unit 101 may generate a test sound that has been fade-in processed or faded-out. Further, the speaker amplifier unit 105 may perform a fade-in process or a fade-out process on the test signal generated by the signal generation unit 101.
 信号取得部102は、音響信号を取得する。音響信号とは、例えばテレビ音声等を出力するための信号のことである。 The signal acquisition unit 102 acquires an acoustic signal. The acoustic signal is a signal for outputting, for example, television sound.
 切替部103は、信号生成部101が生成したテスト信号、および信号取得部102を通じて得られる音響信号のいずれをフィルタ部104に出力するかを、制御部107の制御に基づいて選択的に切り替える。切替部103は、例えば回路(切替回路)によって実現されるが、プロセッサにより実現されてもよい。 The switching unit 103 selectively switches which of the test signal generated by the signal generation unit 101 and the acoustic signal obtained through the signal acquisition unit 102 is output to the filter unit 104 based on the control of the control unit 107. The switching unit 103 is realized by a circuit (switching circuit), for example, but may be realized by a processor.
 フィルタ部104は、切替部103から出力される音響信号に対して、フィルタ係数計算部112によって計算されたフィルタ係数を用いたフィルタ処理を行う。すなわち、フィルタ部104は、出音部106から出力される音の周波数特性を、フィルタ係数計算部112によるフィルタ係数によって、補正する。フィルタ部104は、例えば回路(フィルタ回路)によって実現されるが、プロセッサにより実現されてもよい。 The filter unit 104 performs a filtering process using the filter coefficient calculated by the filter coefficient calculation unit 112 on the acoustic signal output from the switching unit 103. That is, the filter unit 104 corrects the frequency characteristic of the sound output from the sound output unit 106 by the filter coefficient by the filter coefficient calculation unit 112. The filter unit 104 is realized by a circuit (filter circuit), for example, but may be realized by a processor.
 スピーカアンプ部105は、フィルタ処理が施されたテスト信号または音響信号を増幅して出音部106に出力する。スピーカアンプ部105は、例えば回路(スピーカアンプ回路)によって実現される。 The speaker amplifier unit 105 amplifies the test signal or the acoustic signal subjected to the filter process and outputs the amplified signal to the sound output unit 106. The speaker amplifier unit 105 is realized by a circuit (speaker amplifier circuit), for example.
 出音部106は、スピーカアンプ部105から出力される増幅されたテスト信号に応じたテスト音を出力する。また、出音部106は、スピーカアンプ部105から出力される増幅された音響信号に応じた音を出力する。出音部106は、具体的には、スピーカである。 The sound output unit 106 outputs a test sound corresponding to the amplified test signal output from the speaker amplifier unit 105. Further, the sound output unit 106 outputs a sound corresponding to the amplified acoustic signal output from the speaker amplifier unit 105. The sound output unit 106 is specifically a speaker.
 受信部108は、制御機器20の送信部23から送信される信号を受信する。そして、受信部108は、制御機器20の送信部23からテスト音の取得結果(取得結果を示す信号)を受信したときは、受信した取得結果を周波数分析部109に出力する。また、受信部108は、制御機器20の送信部23から音響機器10を制御するための制御信号を受信したときは、受信した制御信号を制御部107に出力する。受信部108は、無線通信によって制御機器20の送信部23から送信された信号(上記取得結果および制御信号)を受信する。この場合の無線通信には、例えば、Bluetooth(登録商標)、Wi-Fi(登録商標)、Zigbee(登録商標)等の無線通信規格が用いられてもよく、あるいは、赤外線通信等が用いられてもよい。また、受信部108は、例えば無線通信モジュール(通信回路)によって実現されてもよい。 The reception unit 108 receives a signal transmitted from the transmission unit 23 of the control device 20. Then, when receiving the test sound acquisition result (signal indicating the acquisition result) from the transmission unit 23 of the control device 20, the reception unit 108 outputs the received acquisition result to the frequency analysis unit 109. In addition, when receiving a control signal for controlling the audio device 10 from the transmission unit 23 of the control device 20, the reception unit 108 outputs the received control signal to the control unit 107. The reception unit 108 receives a signal (the acquisition result and the control signal) transmitted from the transmission unit 23 of the control device 20 by wireless communication. For wireless communication in this case, for example, wireless communication standards such as Bluetooth (registered trademark), Wi-Fi (registered trademark), Zigbee (registered trademark) may be used, or infrared communication or the like may be used. Also good. The receiving unit 108 may be realized by a wireless communication module (communication circuit), for example.
 制御部107は、受信部108がテスト音の取得結果を受信した場合には、受信した取得結果に基づいて、出音部106から出力される音の周波数特性を補正する。制御部107は、受信部108、周波数分析部109、選択部110、記憶部111、フィルタ係数計算部112、信号生成部101、切替部103、およびフィルタ部104、を制御して周波数特性の補正を行う。 When the receiving unit 108 receives the test sound acquisition result, the control unit 107 corrects the frequency characteristic of the sound output from the sound output unit 106 based on the received acquisition result. The control unit 107 controls the reception unit 108, the frequency analysis unit 109, the selection unit 110, the storage unit 111, the filter coefficient calculation unit 112, the signal generation unit 101, the switching unit 103, and the filter unit 104 to correct frequency characteristics. I do.
 また、制御部107は、受信部108が制御信号を受信した場合には、受信した制御信号を解析し、その解析結果に応じて各種処理(チャンネルの変更、ボリュームの変更、等)を行う。その制御信号には、音響機器10を音声操作するためにユーザ30が発した音声に基づく音信号が含まれてもよい。したがって、このとき制御部107が行う解析には、既存の音声認識技術が用いられてもよい。制御部107は、例えば回路(制御回路)によって実現されるが、プロセッサにより実現されてもよい。 In addition, when the receiving unit 108 receives a control signal, the control unit 107 analyzes the received control signal and performs various processes (channel change, volume change, etc.) according to the analysis result. The control signal may include a sound signal based on a sound uttered by the user 30 in order to perform a sound operation on the acoustic device 10. Therefore, an existing speech recognition technique may be used for the analysis performed by the control unit 107 at this time. The control unit 107 is realized by a circuit (control circuit), for example, but may be realized by a processor.
 周波数分析部109は、制御部107からの制御に基づいて、受信部108が受信したテスト音の取得結果にFFT(Fast Fourier Transform)処理を行う。このFFT処理の結果、テスト音の取得結果は、周波数毎のパワー値に変換される。周波数分析部109は、例えば回路(周波数分析回路)によって実現されるが、プロセッサにより実現されてもよい。 Based on the control from the control unit 107, the frequency analysis unit 109 performs an FFT (Fast Fourier Transform) process on the test sound acquisition result received by the reception unit 108. As a result of the FFT processing, the test sound acquisition result is converted into a power value for each frequency. The frequency analysis unit 109 is realized by a circuit (frequency analysis circuit), for example, but may be realized by a processor.
 選択部110は、FFT処理後の取得結果の中から、出音部106から出力されたテスト音に含まれる主な周波数、および当該周波数のパワー値を選択し、選択した周波数と当該周波数のパワー値とを記憶部111に記憶する。例えば、テスト音として、C(261.6Hz)、D#(311.1Hz)、F#(370.0Hz)、およびA(440.0Hz)の各単音から構成されるCdim7が出音部106から出力された場合、選択部110は、これらの周波数と、FFT処理後の取得結果に含まれる当該周波数のパワー値とを選択し、その選択の結果を記憶部111に記憶する。選択部110は、例えば回路(選択回路)によって実現されるが、プロセッサにより実現されてもよい。 The selection unit 110 selects the main frequency included in the test sound output from the sound output unit 106 and the power value of the frequency from the acquisition results after the FFT processing, and selects the selected frequency and the power of the frequency. The value is stored in the storage unit 111. For example, as a test sound, Cdim7 composed of single sounds of C (261.6 Hz), D # (311.1 Hz), F # (370.0 Hz), and A (440.0 Hz) is output from the sound output unit 106. When output, the selection unit 110 selects these frequencies and the power value of the frequency included in the acquisition result after the FFT process, and stores the selection result in the storage unit 111. The selection unit 110 is realized by a circuit (selection circuit), for example, but may be realized by a processor.
 記憶部111は、選択部110によって選択された周波数と、当該周波数のパワー値と、が記憶される記憶装置である。また、記憶部111には、設計上の理想的な周波数特性(所定の周波数特性)も記憶される。記憶部111は、例えば、半導体メモリ等により実現される。 The storage unit 111 is a storage device that stores the frequency selected by the selection unit 110 and the power value of the frequency. The storage unit 111 also stores ideal frequency characteristics (predetermined frequency characteristics) in design. The storage unit 111 is realized by, for example, a semiconductor memory.
 フィルタ係数計算部112は、記憶部111に記憶されたパワー値(テスト音の主な周波数のパワー値)と、記憶部111に記憶された設計上の周波数特性(理想的な周波数特性)と、を記憶部111から読み出す。フィルタ係数計算部112は、読み出した取得結果(パワー値)と設計上の周波数特性(理想的な周波数特性)とを互いに比較し、テスト音の取得結果(パワー値)を、設計上の周波数特性(理想的な周波数特性)に近づけるためのフィルタ係数を計算する。フィルタ係数には、ゲイン、Q値、および、ゲインアップまたはゲインダウンする周波数の中心値(Fc)、等が含まれる。フィルタ係数計算部112における計算結果(フィルタ係数)は、フィルタ係数計算部112からフィルタ部104に出力される。フィルタ係数計算部112は、例えば回路(フィルタ係数計算回路)によって実現されるが、プロセッサにより実現されてもよい。 The filter coefficient calculation unit 112 includes a power value stored in the storage unit 111 (power value of the main frequency of the test sound), a design frequency characteristic (ideal frequency characteristic) stored in the storage unit 111, Is read from the storage unit 111. The filter coefficient calculation unit 112 compares the read acquisition result (power value) with the designed frequency characteristic (ideal frequency characteristic) and compares the test sound acquisition result (power value) with the designed frequency characteristic. Calculate filter coefficients to approximate (ideal frequency characteristics). The filter coefficient includes a gain, a Q value, a center value (Fc) of a frequency at which gain is increased or decreased, and the like. The calculation result (filter coefficient) in the filter coefficient calculation unit 112 is output from the filter coefficient calculation unit 112 to the filter unit 104. The filter coefficient calculation unit 112 is realized by a circuit (filter coefficient calculation circuit), for example, but may be realized by a processor.
 次に、制御機器20の構成について説明する。制御機器20は、ユーザ30が音響機器10を制御するために操作する機器である。制御機器20は、例えばテレビのリモートコントローラであるが、スマートフォンまたはタブレット端末等、その他の装置であってもよい。 Next, the configuration of the control device 20 will be described. The control device 20 is a device that the user 30 operates to control the audio device 10. The control device 20 is a television remote controller, for example, but may be another device such as a smartphone or a tablet terminal.
 制御機器20は、収音部21と、マイクアンプ部22と、送信部23と、を備える。なお、図3および以下の説明では、テレビのリモートコントローラとしての一般的な機能に関する説明は省略する。また、図3では、リモートコントローラを「リモコン」と略記する。 The control device 20 includes a sound collection unit 21, a microphone amplifier unit 22, and a transmission unit 23. In FIG. 3 and the following description, a description of a general function as a TV remote controller is omitted. In FIG. 3, the remote controller is abbreviated as “remote controller”.
 収音部21は、ユーザ30の音声を含む制御機器20の周囲の音を取得し、取得した音に応じた音信号(音の生データ)を出力する。収音部21は、例えば、出音部106から出力されるテスト音を取得し、取得結果(音信号)を出力する。収音部21は、具体的には、マイクである。 The sound collection unit 21 acquires sounds around the control device 20 including the voice of the user 30 and outputs a sound signal (raw sound data) corresponding to the acquired sounds. For example, the sound collection unit 21 acquires the test sound output from the sound output unit 106 and outputs an acquisition result (sound signal). Specifically, the sound collection unit 21 is a microphone.
 マイクアンプ部22は、収音部21から出力される音信号を増幅して送信部23に出力する。マイクアンプ部22は、例えば回路(マイクアンプ回路)によって実現される。 The microphone amplifier unit 22 amplifies the sound signal output from the sound collection unit 21 and outputs the amplified sound signal to the transmission unit 23. The microphone amplifier unit 22 is realized by a circuit (microphone amplifier circuit), for example.
 送信部23は、制御信号送信部の一例である。送信部23は、ユーザ操作に基づく音響機器10を制御するための制御信号を音響機器10に送信する。ユーザ操作には、音響機器10を音声で操作するためにユーザ30が発した音声による音声操作が含まれる。また、この制御信号には、音声操作のためにユーザ30が発声し収音部21で取得されたユーザ30の音声に基づく信号が含まれる。すなわち、送信部23は、ユーザ30の音声に応じて収音部21から出力された音信号であってマイクアンプ部22によって増幅された音信号を、制御信号として音響機器10の受信部108に送信する。 The transmission unit 23 is an example of a control signal transmission unit. The transmission unit 23 transmits a control signal for controlling the acoustic device 10 based on a user operation to the acoustic device 10. The user operation includes a voice operation by voice generated by the user 30 to operate the acoustic device 10 by voice. The control signal includes a signal based on the voice of the user 30 uttered by the user 30 for voice operation and acquired by the sound pickup unit 21. That is, the transmission unit 23 transmits the sound signal output from the sound collection unit 21 according to the voice of the user 30 and amplified by the microphone amplifier unit 22 to the reception unit 108 of the acoustic device 10 as a control signal. Send.
 また、送信部23は、取得結果送信部の一例でもある。送信部23は、収音部21によるテスト音の取得結果を示す信号を音響機器10に送信する。送信部23は、より具体的には、テスト音(出音部106から出力されたテスト音)に応じて収音部21から出力された音信号であってマイクアンプ部22によって増幅された音信号を、テスト音の取得結果を示す信号として音響機器10の受信部108に送信する。 The transmission unit 23 is also an example of an acquisition result transmission unit. The transmission unit 23 transmits a signal indicating the test sound acquisition result by the sound collection unit 21 to the acoustic device 10. More specifically, the transmission unit 23 is a sound signal output from the sound collection unit 21 according to the test sound (the test sound output from the sound output unit 106) and is amplified by the microphone amplifier unit 22. The signal is transmitted to the receiving unit 108 of the acoustic device 10 as a signal indicating the result of acquiring the test sound.
 送信部23は、無線通信によって、収音部21によるテスト音の取得結果および制御信号を送信する。この場合の無線通信には、例えば、Bluetooth(登録商標)、Wi-Fi(登録商標)、Zigbee(登録商標)等の無線通信規格が用いられてもよく、あるいは、赤外線通信等が用いられてもよい。また、送信部23は、例えば無線通信モジュール(通信回路)によって実現されてもよい。 The transmission unit 23 transmits a test sound acquisition result and a control signal by the sound collection unit 21 by wireless communication. For wireless communication in this case, for example, wireless communication standards such as Bluetooth (registered trademark), Wi-Fi (registered trademark), Zigbee (registered trademark) may be used, or infrared communication or the like may be used. Also good. Moreover, the transmission part 23 may be implement | achieved by the wireless communication module (communication circuit), for example.
 [1-3.周波数特性の補正処理]
 次に、音響装置100が実行する補正処理、すなわち、出音部106から出力される音に基づく周波数特性の補正処理(補正方法)、について説明する。
[1-3. Frequency characteristic correction processing]
Next, a correction process executed by the acoustic device 100, that is, a frequency characteristic correction process (correction method) based on the sound output from the sound output unit 106 will be described.
 図4は、実施の形態1における音響装置100で実行される周波数特性の補正処理の一動作例を示すフローチャートである。 FIG. 4 is a flowchart showing an operation example of frequency characteristic correction processing executed by the acoustic device 100 according to the first embodiment.
 まず、出音部106は、テスト音を出力する(ステップS11)。 First, the sound output unit 106 outputs a test sound (step S11).
 具体的には、制御部107は、信号生成部101にテスト信号を生成させる。また、制御部107は、信号生成部101によるテスト信号がフィルタ部104に入力されるように、切替部103を切り替える。この制御の結果、信号生成部101によるテスト信号がフィルタ部104を通じてスピーカアンプ部105に入力される。 Specifically, the control unit 107 causes the signal generation unit 101 to generate a test signal. Further, the control unit 107 switches the switching unit 103 so that the test signal from the signal generation unit 101 is input to the filter unit 104. As a result of this control, a test signal from the signal generation unit 101 is input to the speaker amplifier unit 105 through the filter unit 104.
 このとき、フィルタ部104は、テスト信号を無補正で通してもよい。 At this time, the filter unit 104 may pass the test signal without correction.
 スピーカアンプ部105は、テスト信号を所定のレベルに増幅し、増幅したテスト信号を出音部106に出力する。これにより、出音部106からテスト音が出力される。なお、所定のレベルとは、ユーザ30の受聴位置に配置された制御機器20の収音部21が、テスト音を適正に取得できるレベル(大きさ)のことである。 The speaker amplifier unit 105 amplifies the test signal to a predetermined level, and outputs the amplified test signal to the sound output unit 106. As a result, a test sound is output from the sound output unit 106. The predetermined level is a level (size) at which the sound collection unit 21 of the control device 20 arranged at the listening position of the user 30 can appropriately acquire the test sound.
 上述したように、テスト音は、実施の形態1では、Cdim7、C#dim7、およびDdim7、の3つの和音(それぞれがC、C#、Dを根音とする、3種類の減七の和音)である。そして、出音部106は、これら3つの和音を任意の順番で出力する。なお、Cdim7、C#dim7、およびDdim7の3つの和音は、いずれも4つの単音から構成される和音であり、それら4つの単音は、1音半ずつ音程が異なる。 As described above, in the first embodiment, the test sound is composed of three chords Cdim7, C # dim7, and Ddim7 (three kinds of reduced seven chords each having C, C #, and D as root sounds). ). The sound output unit 106 outputs these three chords in an arbitrary order. The three chords Cdim7, C # dim7, and Ddim7 are all chords composed of four single notes, and the four single notes have different pitches by one and a half tone.
 図5は、Cdim7、C#dim7、およびDdim7の各和音を説明するための図である。 FIG. 5 is a diagram for explaining each chord of Cdim7, C # dim7, and Ddim7.
 図5の(a)に示されるように、Cdim7は、C(261.6Hz)、D#(311.1Hz)、F#(370.0Hz)、およびA(440.0Hz)、の4つの単音から構成される。また、図5の(b)に示されるように、C#dim7は、C#(277.2Hz)、E(329.6Hz)、G(392.0Hz)、およびA#(466.2Hz)、の4つの単音から構成される。また、図5の(c)に示されるように、Ddim7は、D(293.7Hz)、F(349.2Hz)、G#(415.3Hz)、およびB(493.9Hz)、の4つの単音から構成される。 As shown in FIG. 5A, Cdim7 is composed of four single sounds of C (261.6 Hz), D # (311.1 Hz), F # (370.0 Hz), and A (440.0 Hz). Consists of Also, as shown in FIG. 5B, C # dim7 is C # (277.2 Hz), E (329.6 Hz), G (392.0 Hz), and A # (466.2 Hz), It consists of four single notes. Further, as shown in FIG. 5C, Ddim7 has four values of D (293.7 Hz), F (349.2 Hz), G # (415.3 Hz), and B (493.9 Hz). Consists of single notes.
 このように、出音部106がCdim7、C#dim7、およびDdim7の各和音を出力する構成の場合、出音部106は、和音を3回出力するだけで、1オクターブ内の12音階の全ての音を網羅して出音できる。したがって、音響装置100は、従来技術のようなノイズ音をテスト音として出力する構成と比較して、ユーザ30に与える違和感(または不快感)を低減できる。また、音響装置100は、相対的に短時間で効率的にテスト音を出力することができる。 Thus, when the sound output unit 106 is configured to output each chord of Cdim7, C # dim7, and Ddim7, the sound output unit 106 outputs all of the 12 scales within one octave by outputting the chord three times. The sound can be output in a comprehensive manner. Therefore, the acoustic device 100 can reduce the uncomfortable feeling (or uncomfortable feeling) given to the user 30 as compared with the configuration in which the noise sound as in the related art is output as the test sound. Moreover, the acoustic device 100 can output the test sound efficiently in a relatively short time.
 なお、12音階の音は、上記した261.6Hz以上493.9Hz以下の範囲に属する音に限定されない。例えば、この範囲よりも1オクターブ上の523.3Hz以上987.76Hz以下の範囲に属する12音階の音が出音部106から出力されてもよいし、これよりもさらに上のオクターブの12音階の音が出音部106から出力されてもよい。このように、出音部106から出力される12音階の音の周波数は、補正対象の周波数範囲に合わせて適宜選択されてもよい。 In addition, the sound of 12 scales is not limited to the sound which belongs to the above-mentioned range of 261.6 Hz or more and 493.9 Hz or less. For example, a sound of 12 scales belonging to a range of 523.3 Hz or more and 987.76 Hz or less one octave higher than this range may be output from the sound output unit 106, or 12 scales of an octave higher than this range may be output. Sound may be output from the sound output unit 106. As described above, the frequencies of the 12 scale sounds output from the sound output unit 106 may be appropriately selected according to the frequency range to be corrected.
 なお、出音部106から3つの和音が出力されるタイミングは、特に限定されない。例えば、1つ目の和音が出音部106から出力され、1つ目の和音の周波数のパワー値が記憶部111に記憶された後に、2つ目の和音が出音部106から出力され、2つ目の和音の周波数のパワー値が記憶部111に記憶された後に、3つ目の和音が出音部106から出力される、といった順番であってもよい。記憶部111に1つ目(または2つ目)の和音の周波数のパワー値が記憶されたか否かは、例えば、制御部107が、記憶部111に所定のデータ量のデータが記憶されたか否かを検出(バッファフル検出)することにより判断してもよい。 The timing at which the three chords are output from the sound output unit 106 is not particularly limited. For example, after the first chord is output from the sound output unit 106 and the power value of the frequency of the first chord is stored in the storage unit 111, the second chord is output from the sound output unit 106, The order may be such that after the power value of the frequency of the second chord is stored in the storage unit 111, the third chord is output from the sound output unit 106. Whether or not the power value of the frequency of the first (or second) chord is stored in the storage unit 111 is, for example, whether or not the control unit 107 stores a predetermined amount of data in the storage unit 111. This may be determined by detecting (buffer full detection).
 また、1つ目の和音と2つ目の和音との間(または、2つ目の和音と3つ目の和音との間)に、無音期間がはさまれてもよい。これにより、選択部110は、無音期間を検出して記憶部111へのパワー値の記憶(バッファ取り込み)を開始することができる。なお、テスト音がフェードインされる場合には、選択部110は、フェードイン完了後のレベルを検出して記憶部111へのパワー値の記憶を開始してもよい。 Also, a silence period may be interposed between the first chord and the second chord (or between the second chord and the third chord). Thereby, the selection unit 110 can detect the silence period and start storing the power value (buffer fetch) in the storage unit 111. When the test sound is faded in, the selection unit 110 may detect the level after completion of the fade-in and start storing the power value in the storage unit 111.
 なお、出音部106がテスト音を出力するときに、スピーカアンプ部105およびマイクアンプ部22のゲインが変更されてもよい。また、出音部106からテスト音が出力される前に、音響機器10が制御機器20に対して無線通信を用いた事前通知(これからテスト音が出力されることを音響機器10から制御機器20に知らせる通知)を行ってもよく、この事前通知を行うことにより、マイクアンプ部22のゲインがテスト音を取得するためのゲイン(あらかじめ設定されたゲイン)に変更されてもよい。 Note that when the sound output unit 106 outputs a test sound, the gains of the speaker amplifier unit 105 and the microphone amplifier unit 22 may be changed. In addition, before the test sound is output from the sound output unit 106, the acoustic device 10 notifies the control device 20 in advance using wireless communication (from the acoustic device 10 to the control device 20 that the test sound will be output from now on). Notification may be performed), and the gain of the microphone amplifier unit 22 may be changed to a gain (preset gain) for acquiring the test sound by performing the prior notification.
 出音部106からテスト音が出力されると、制御機器20の収音部21は、そのテスト音を取得する(ステップS12)。収音部21は、取得結果(音信号)を、マイクアンプ部22に出力する。その取得結果(音信号)はマイクアンプ部22によって増幅される。 When the test sound is output from the sound output unit 106, the sound collection unit 21 of the control device 20 acquires the test sound (step S12). The sound collection unit 21 outputs the acquisition result (sound signal) to the microphone amplifier unit 22. The acquisition result (sound signal) is amplified by the microphone amplifier unit 22.
 制御機器20の送信部23は、増幅された取得結果を、音響機器10の受信部108に送信する(ステップS13)。送信部23から送信された取得結果は、受信部108で受信される。 The transmission unit 23 of the control device 20 transmits the amplified acquisition result to the reception unit 108 of the audio device 10 (step S13). The acquisition result transmitted from the transmission unit 23 is received by the reception unit 108.
 音響機器10の信号処理部120は、受信部108で受信された取得結果に基づいて、出音部106から出力される音の周波数特性を補正する(ステップS14)。 The signal processing unit 120 of the acoustic device 10 corrects the frequency characteristics of the sound output from the sound output unit 106 based on the acquisition result received by the reception unit 108 (step S14).
 ステップS14で行われる補正について、図6を用いて説明する。 The correction performed in step S14 will be described with reference to FIG.
 図6は、実施の形態1における音響装置100で実行される周波数特性の補正を概念的に示す図である。図6において横軸は周波数を表し、縦軸は音の大きさ(基準となる音量を0(dB)とする相対的な大きさ)を表す。 FIG. 6 is a diagram conceptually illustrating the correction of the frequency characteristic performed by the acoustic device 100 according to the first embodiment. In FIG. 6, the horizontal axis represents the frequency, and the vertical axis represents the volume of the sound (relative volume with the reference volume being 0 (dB)).
 図6の(a)は、ユーザ30の受聴位置における補正前の周波数特性の一例を示す図である。図6の(b)は、フィルタ係数計算部112が算出したフィルタ係数による周波数特性の一例を示す図である。図6の(c)は、ユーザ30の受聴位置における補正後の周波数特性の一例を示す図である。 6A is a diagram illustrating an example of frequency characteristics before correction at the listening position of the user 30. FIG. FIG. 6B is a diagram illustrating an example of frequency characteristics based on filter coefficients calculated by the filter coefficient calculation unit 112. FIG. 6C is a diagram illustrating an example of the corrected frequency characteristic at the listening position of the user 30.
 例えば、理想的な周波数特性がフラットな周波数特性(音の大きさに周波数毎のばらつきがない状態)であるとすると、図6の(a)において、0(dB)を基準として上下に大きく突出している部分は、補正されることが望ましい。 For example, if the ideal frequency characteristic is a flat frequency characteristic (a state in which there is no variation in sound volume for each frequency), in FIG. It is desirable to correct the portions that are present.
 そこで、フィルタ係数計算部112は、図6の(b)に一例として示されるような周波数特性を与えるフィルタ係数を計算する。すなわち、フィルタ係数計算部112は、図6の(a)において0(dB)から上に突出している(すなわち相対的に音が大きい)周波数に関しては音が小さくなるように、図6の(a)において0(dB)から下に突出している(すなわち相対的に音が小さい)周波数に関しては音が大きくなるように、フィルタ係数を計算する。 Therefore, the filter coefficient calculation unit 112 calculates a filter coefficient that gives a frequency characteristic as shown as an example in FIG. That is, the filter coefficient calculation unit 112 is configured so that the sound is reduced with respect to the frequency that protrudes upward from 0 (dB) in FIG. 6A (that is, the sound is relatively loud). ), The filter coefficient is calculated so that the sound becomes louder with respect to the frequency that protrudes downward from 0 (dB) (that is, the sound is relatively small).
 そして、フィルタ部104が、スピーカアンプ部105に入力される音声信号に、図6の(b)に示される周波数特性を与えるフィルタ処理を行うことにより、ユーザ30の受聴位置における周波数特性は、例えば、図6の(a)に示される補正前の周波数特性から、図6の(c)に示される周波数特性、すなわち、補正前の周波数特性と比較してよりフラットな周波数特性、に補正される。 And the filter part 104 performs the filter process which gives the frequency characteristic shown to (b) of FIG. 6 to the audio | voice signal input into the speaker amplifier part 105, The frequency characteristic in the listening position of the user 30 is, for example, 6, the frequency characteristic before correction shown in FIG. 6A is corrected to the frequency characteristic shown in FIG. 6C, that is, a flatter frequency characteristic compared with the frequency characteristic before correction. .
 このようにして、音響機器10は、ユーザ30の受聴位置における補正後の周波数特性を、理想的な周波数特性(例えば、フラットな周波数特性)に近づけることができる。 In this way, the acoustic device 10 can bring the corrected frequency characteristic at the listening position of the user 30 closer to an ideal frequency characteristic (for example, a flat frequency characteristic).
 なお、理想的な周波数特性は、記憶部111にあらかじめ記憶されていてもよい。また、音響機器10は、理想的な周波数特性を、ユーザ30が制御機器20を操作する等して任意に設定できるように構成されてもよい。また、フィルタ係数計算部112は、理想的な周波数特性としてあらかじめ設定された周波数特性と、ユーザ30の受聴位置における補正前の周波数特性と、ユーザ30からの周波数特性補正開始指示(制御機器20を介して行われるユーザ30による補正開始指示)と、に応じてフィルタ係数を計算してもよい。 Note that the ideal frequency characteristic may be stored in the storage unit 111 in advance. Further, the acoustic device 10 may be configured such that an ideal frequency characteristic can be arbitrarily set by the user 30 operating the control device 20 or the like. The filter coefficient calculation unit 112 also sets a frequency characteristic set in advance as an ideal frequency characteristic, a frequency characteristic before correction at the listening position of the user 30, and a frequency characteristic correction start instruction from the user 30 (control device 20 The filter coefficient may be calculated according to the correction start instruction by the user 30 performed via
 [1-4.効果等]
 以上のように、本実施の形態において、音響装置は、音響機器と、制御機器と、を備える。制御機器は、収音部と、制御信号送信部と、を有する。収音部は、ユーザの音声を含む制御機器の周囲の音を取得する。制御信号送信部は、収音部が取得したユーザの音声に基づいて、音響機器を制御するための制御信号を音響機器に送信する。音響機器は、出音部と、信号処理部と、を有する。信号処理部は、1オクターブを構成する12音階の音のそれぞれを、出音部から出力される音の周波数特性を補正するために収音部に取得させるテスト音として、出音部に出力させる。
[1-4. Effect]
As described above, in the present embodiment, the acoustic device includes the acoustic device and the control device. The control device includes a sound collection unit and a control signal transmission unit. The sound collection unit acquires sounds around the control device including the user's voice. The control signal transmission unit transmits a control signal for controlling the acoustic device to the acoustic device based on the user's voice acquired by the sound collection unit. The acoustic device includes a sound output unit and a signal processing unit. The signal processing unit causes the sound output unit to output each of the 12 scale sounds constituting one octave as a test sound to be acquired by the sound collection unit in order to correct the frequency characteristics of the sound output from the sound output unit. .
 また、本実施の形態における補正方法は、出音部を有する音響機器と、制御機器と、を備える音響装置で実行される補正方法である。制御機器は、ユーザの音声を含む制御機器の周囲の音を取得する収音部と、収音部が取得したユーザの音声に基づいて、音響機器を制御するための制御信号を音響機器に送信する制御信号送信部と、を有する。この補正方法は、出音部から出力される音の周波数特性の補正方法であり、1オクターブを構成する12音階の音のそれぞれを、出音部から出力される音の周波数特性を補正するために収音部に取得させるテスト音として、出音部に出力させるステップ、を含む。 Further, the correction method in the present embodiment is a correction method executed by an audio device including an audio device having a sound output unit and a control device. The control device transmits to the acoustic device a sound collection unit that acquires sounds around the control device including the user's voice, and a control signal for controlling the acoustic device based on the user's voice acquired by the sound collection unit. A control signal transmission unit. This correction method is a method for correcting the frequency characteristics of the sound output from the sound output section, and corrects the frequency characteristics of the sound output from the sound output section for each of the 12 scale sounds constituting one octave. And a step of outputting to the sound output unit as a test sound to be acquired by the sound collection unit.
 また、本実施の形態の音響装置において、制御機器の収音部は、音響機器の出音部から出力されるテスト音を取得してもよい。制御機器は、さらに、収音部によるテスト音の取得結果を音響機器に送信する取得結果送信部を有してもよい。音響機器の信号処理部は、取得結果送信部が送信した取得結果を受信し、受信した取得結果に基づいて、出音部から出力される音の周波数特性を補正してもよい。 Moreover, in the audio apparatus according to the present embodiment, the sound collection unit of the control device may acquire the test sound output from the sound output unit of the audio device. The control device may further include an acquisition result transmission unit that transmits an acquisition result of the test sound by the sound collection unit to the acoustic device. The signal processing unit of the audio device may receive the acquisition result transmitted by the acquisition result transmitting unit, and correct the frequency characteristics of the sound output from the sound output unit based on the received acquisition result.
 なお、音響装置100は音響装置の一例である。音響機器10は音響機器の一例である。制御機器20は制御機器の一例である。収音部21は収音部の一例である。送信部23は、制御信号送信部の一例であり、取得結果送信部の一例でもある。出音部106は出音部の一例である。信号処理部120は信号処理部の一例である。 The acoustic device 100 is an example of an acoustic device. The audio device 10 is an example of an audio device. The control device 20 is an example of a control device. The sound collection unit 21 is an example of a sound collection unit. The transmission unit 23 is an example of a control signal transmission unit, and is also an example of an acquisition result transmission unit. The sound output unit 106 is an example of a sound output unit. The signal processing unit 120 is an example of a signal processing unit.
 例えば、実施の形態1に示した構成例では、音響装置100は、音響機器10と、制御機器20と、を備える。制御機器20は、収音部21と、送信部23と、を有する。収音部21は、ユーザ30の音声を含む制御機器20の周囲の音を取得する。送信部23は、収音部21が取得したユーザ30の音声に基づいて、音響機器10を制御するための制御信号を音響機器10に送信する。音響機器10は、出音部106と、信号処理部120と、を有する。信号処理部120は、1オクターブを構成する12音階の音のそれぞれを、出音部106から出力される音の周波数特性を補正するために収音部21に取得させるテスト音として、出音部106に出力させる。 For example, in the configuration example shown in the first embodiment, the acoustic device 100 includes the acoustic device 10 and the control device 20. The control device 20 includes a sound collection unit 21 and a transmission unit 23. The sound collection unit 21 acquires sounds around the control device 20 including the voice of the user 30. The transmission unit 23 transmits a control signal for controlling the acoustic device 10 to the acoustic device 10 based on the voice of the user 30 acquired by the sound collection unit 21. The acoustic device 10 includes a sound output unit 106 and a signal processing unit 120. The signal processing unit 120 uses the sound output unit as a test sound to be acquired by the sound collection unit 21 in order to correct the frequency characteristics of the sound output from the sound output unit 106 for each of the 12 scale sounds constituting one octave. 106 to output.
 また、実施の形態1に示した構成例では、音響装置100において、制御機器20の収音部21は、音響機器10の出音部106から出力されるテスト音を取得する。制御機器20の送信部23は、収音部21によるテスト音の取得結果を音響機器10に送信する。音響機器10の信号処理部120は、送信部23が送信した取得結果を受信し、受信した取得結果に基づいて、出音部106から出力される音の周波数特性を補正する。 In the configuration example shown in the first embodiment, in the audio apparatus 100, the sound collection unit 21 of the control device 20 acquires the test sound output from the sound output unit 106 of the audio device 10. The transmission unit 23 of the control device 20 transmits the acquisition result of the test sound by the sound collection unit 21 to the acoustic device 10. The signal processing unit 120 of the acoustic device 10 receives the acquisition result transmitted by the transmission unit 23 and corrects the frequency characteristics of the sound output from the sound output unit 106 based on the received acquisition result.
 なお、テスト音として出力される12音階の音は、各音階の音をユーザ30が区別して認識可能な態様で出力されてもよい。 It should be noted that the 12-scale sound output as the test sound may be output in such a manner that the user 30 can distinguish and recognize the sound of each scale.
 音響装置100のように、テスト音として1オクターブを構成する12音階の音のそれぞれが出力される場合、このテスト音は、ホワイトノイズおよびTSP音に比べて刺激的(不快)な音でなく、ユーザ30に与える不快感を低減できる。また、音響装置100は、少なくとも12音階分(12スペクトル分)の情報(12音階の各音の周波数のパワー値)を取得できるため、周波数特性の適切な補正が可能である。つまり、音響装置100は、ユーザ30に与える不快感を低減しつつ、周波数特性の補正を行うことができる。 When each of the 12 scale sounds constituting one octave is output as a test sound like the sound device 100, the test sound is not an exciting (unpleasant) sound compared to the white noise and the TSP sound. The discomfort given to the user 30 can be reduced. In addition, since the acoustic device 100 can acquire information of at least 12 scales (12 spectra) (power value of the frequency of each sound of 12 scales), the frequency characteristic can be appropriately corrected. That is, the acoustic device 100 can correct the frequency characteristics while reducing discomfort given to the user 30.
 また、音響装置100では、特定の(12音階分の)周波数の音がテスト音として用いられるため、フィルタ係数を算出するために記憶される情報量(記憶部111に記憶される周波数毎のパワー値の数)が、テスト音としてホワイトノイズが使用される場合と比較して、少ない。つまり、音響装置100では、記憶リソース(フィルタ係数を算出するために必要な記憶容量。例えば、記憶部111の記憶容量)を削減できる。 Moreover, in the acoustic device 100, since a sound having a specific frequency (for 12 scales) is used as a test sound, the amount of information stored for calculating the filter coefficient (the power for each frequency stored in the storage unit 111) The number of values) is smaller than when white noise is used as the test sound. That is, the acoustic device 100 can reduce storage resources (storage capacity necessary for calculating the filter coefficient, for example, storage capacity of the storage unit 111).
 また、テスト音として12音階の音が使用される場合とホワイトノイズが使用される場合とを比較すると、互いに同等のS/N比(Signal to Noise Ratio)で情報(12音階の各音の周波数のパワー値)が取得されるように設定がなされた場合、テスト音として12音階の音が使用される場合の方が、テスト音としてホワイトノイズが使用される場合よりも、テスト音の音量を小さくすることができる。言い換えれば、互いに同じ音量でテスト音が出力される場合、テスト音として12音階の音が使用される場合の方が、テスト音としてホワイトノイズが使用される場合よりも、S/N比が高い情報(12音階の各音の周波数のパワー値)を得ることができる。 In addition, comparing the case where a 12-scale sound is used as a test sound and the case where white noise is used, information (signal to noise ratio) is equivalent to information (frequency of each sound of 12 scales). If the 12-scale sound is used as the test sound, the test sound volume is set to be lower than the case where white noise is used as the test sound. Can be small. In other words, when test sounds are output at the same volume, the S / N ratio is higher when a 12-scale sound is used as the test sound than when white noise is used as the test sound. Information (power value of the frequency of each sound of 12 scales) can be obtained.
 音響装置が備える信号処理部は、各々が12音階の音の一部からなる複数種類の和音のそれぞれを、テスト音として出音部に順次出力させてもよい。 The signal processing unit included in the acoustic device may sequentially output each of a plurality of types of chords each consisting of a part of a 12-scale sound to the sound output unit as a test sound.
 なお、Cdim7、C#dim7、およびDdim7のそれぞれは、12音階の音の一部からなる和音の一例である。 Each of Cdim7, C # dim7, and Ddim7 is an example of a chord made up of a part of a 12-scale sound.
 すなわち、音響装置が備える信号処理部は、Cdim7、C#dim7、およびDdim7のそれぞれを、テスト音として出音部に順次出力させてもよい。 That is, the signal processing unit included in the audio device may sequentially output each of Cdim7, C # dim7, and Ddim7 to the sound output unit as a test sound.
 例えば、実施の形態1に示した構成例では、音響装置100の信号処理部120は、Cdim7、C#dim7、およびDdim7のそれぞれを、テスト音として出音部106に順次出力させる。 For example, in the configuration example shown in the first embodiment, the signal processing unit 120 of the audio device 100 causes the sound output unit 106 to sequentially output Cdim7, C # dim7, and Ddim7 as test sounds.
 このように、出音部106がCdim7、C#dim7、およびDdim7の3種類の和音を出力する構成の場合、出音部106は、和音を3回出力するだけで、1オクターブ内の12音階の全ての音を網羅して出力できる。 In this way, when the sound output unit 106 outputs three types of chords Cdim7, C # dim7, and Ddim7, the sound output unit 106 outputs 12 chords within one octave only by outputting the chord three times. It can output all sounds of.
 例えば、周波数をスイープさせて(すなわち、低域から高域に、または高域から低域に、徐々に周波数を変化させながら)テスト音を出力して周波数特性を測定する場合と比較して、上記のようにテスト音として和音を3回出力する構成では、より短時間で効率的に周波数特性を測定することができる。 For example, as compared with the case where the frequency characteristic is measured by sweeping the frequency (ie, gradually changing the frequency from low to high or from high to low) In the configuration in which a chord is output three times as a test sound as described above, the frequency characteristics can be measured efficiently in a shorter time.
 [1-5.変形例1]
 実施の形態1では、テスト音としてCdim7、C#dim7、およびDdim7の3種類の和音が出音部106から出力される構成例を説明した。しかし、本開示において、出音部106から出力されるテスト音はこれら3種類の和音に限定されない。信号処理部120は、各々が12音階の音の一部からなる複数種類の和音のそれぞれを、テスト音として出音部106に順次出力させればよい。
[1-5. Modification 1]
In the first embodiment, the configuration example in which three kinds of chords Cdim7, C # dim7, and Ddim7 are output from the sound output unit 106 as the test sound has been described. However, in the present disclosure, the test sound output from the sound output unit 106 is not limited to these three types of chords. The signal processing unit 120 may sequentially output each of a plurality of types of chords, each of which is part of a 12-scale sound, to the sound output unit 106 as a test sound.
 しかし、和音の組合せによっては、出音部106から同じ音階の単音が重複して出力される場合がある。このような場合、信号処理部120では、重複した単音の周波数のパワー値が正規化されて使用されてもよい。なお、この場合、正規化を行うための構成要素(例えば、正規化回路)は、例えば、選択部110と記憶部111との間に設けられてもよい。 However, depending on the combination of chords, a single note of the same scale may be output from the sound output unit 106 in duplicate. In such a case, in the signal processing unit 120, the power value of the frequency of the overlapping single sound may be normalized and used. In this case, a component for normalization (for example, a normalization circuit) may be provided between the selection unit 110 and the storage unit 111, for example.
 また、出音部106から同じ音階の単音が重複して出力される場合、信号処理部120では、重複した単音の周波数のパワー値の平均値、最大値、最小値、または中央値のいずれかが、当該単音の周波数のパワー値として使用されてもよい。 When a single tone of the same scale is output from the sound output unit 106 in duplicate, the signal processing unit 120 is either an average power value, a maximum value, a minimum value, or a median value of the frequency of the overlapping single sound. May be used as the power value of the frequency of the single tone.
 なお、出音部106からテスト音として和音が出力される場合、信号処理部120内でオーバーフロー(信号処理部120での演算処理に伴う有限語長のレジスタやメモリにおいて桁があふれること)が生じる可能性がある。これを避けるため、信号生成部101は、和音を構成する単音の位相を調整して、時間軸で見たときの音の波形のピーク値を下げてもよい。これにより、オーバーフローの発生を抑制することができる。 When a chord is output as a test sound from the sound output unit 106, an overflow occurs in the signal processing unit 120 (a digit overflows in a finite word length register or memory associated with the arithmetic processing in the signal processing unit 120). there is a possibility. In order to avoid this, the signal generation unit 101 may adjust the phase of a single tone constituting the chord to lower the peak value of the sound waveform when viewed on the time axis. Thereby, the occurrence of overflow can be suppressed.
 また、信号処理部120は、和音ではなく、単音からなる(または、単音および和音からなる)メロディをテスト音として出音部106に出力させてもよい。つまり、信号処理部120は、12音階の音のそれぞれを、テスト音として出音部106に順次出力させてもよい。あるいは、信号処理部120は、12音階の音のそれぞれを、テスト音として、あらかじめ定められたメロディを奏でる順番で、出音部106に出力させてもよい。この場合も、同じ音階の単音が重複して出力されるときには、信号処理部120において、上記の正規化等が行われてもよい。また、音響装置100において、単音からなるメロディがテスト音として使用される場合、12音階の音のそれぞれが出力されるまで、出音部106からテスト音の出力が継続されてもよい。 Further, the signal processing unit 120 may cause the sound output unit 106 to output a melody composed of a single sound (or composed of a single sound and a chord) instead of a chord as a test sound. That is, the signal processing unit 120 may cause the sound output unit 106 to sequentially output each of the 12 scale sounds as test sounds. Alternatively, the signal processing unit 120 may cause the sound output unit 106 to output each of the 12 scale sounds as test sounds in the order in which a predetermined melody is played. Also in this case, when a single note of the same scale is output in duplicate, the signal processing unit 120 may perform the above normalization or the like. Further, in the acoustic device 100, when a melody consisting of a single sound is used as a test sound, the output of the test sound from the sound output unit 106 may be continued until each of the 12 scale sounds is output.
 [1-6.変形例2]
 実施の形態1では、音響装置100において周波数特性の補正が実行される際に、テスト音として1オクターブを構成する12音階の音のそれぞれが出力される動作例を説明した。このとき、1オクターブあたりの分解能は12である。
[1-6. Modification 2]
In the first embodiment, when the frequency characteristic is corrected in the acoustic device 100, the operation example in which each of the 12 scale sounds constituting one octave is output as the test sound has been described. At this time, the resolution per octave is 12.
 しかし、音響装置100では、1オクターブあたりの分解能を12未満に下げるために、周波数分析部109で算出される周波数のパワー値が統合(マージ)されてもよい。例えば、1オクターブあたりの分解能を6に下げる場合、信号処理部120は、周波数分析部109で算出される12音階分の周波数のパワー値を、2音階分ずつの6つの組に分けて、それらの組毎にパワー値の平均化を行ってもよい。そして、信号処理部120は、それによって得られる6つの周波数のパワー値を用いて周波数特性の補正を行ってもよい。また、信号処理部120は、周波数分析部109で算出される12音階分の周波数のパワー値の中から6つ(例えば、1音階を間にはさんで6つ)の周波数のパワー値を選択し、選択したパワー値と、選択したパワー値の周波数に隣接する2つの周波数のパワー値との3つのパワー値を、重み付け加算してもよい。そして、信号処理部120は、それによって得られる6つの周波数のパワー値を用いて周波数特性の補正を行ってもよい。 However, in the acoustic device 100, in order to reduce the resolution per octave to less than 12, the frequency power values calculated by the frequency analysis unit 109 may be integrated (merged). For example, when the resolution per octave is reduced to 6, the signal processing unit 120 divides the power values of the frequencies of the 12 scales calculated by the frequency analysis unit 109 into 6 sets of 2 scales, The power values may be averaged for each set. And the signal processing part 120 may correct | amend a frequency characteristic using the power value of six frequencies obtained by it. Further, the signal processing unit 120 selects six power values (for example, six with one scale in between) from the power values of the frequencies of the twelve scales calculated by the frequency analysis unit 109. The three power values of the selected power value and the power values of two frequencies adjacent to the frequency of the selected power value may be weighted and added. And the signal processing part 120 may correct | amend a frequency characteristic using the power value of six frequencies obtained by it.
 また、1オクターブあたりの分解能を13以上に上げるために、信号生成部101は、12音階の音のそれぞれをビブラートさせた(周波数に幅を持たせた)テスト音を生成してもよい。この場合、選択部110による周波数の選択は、省略されてもよい。 Also, in order to increase the resolution per octave to 13 or more, the signal generation unit 101 may generate a test sound in which each of the 12 scale sounds is vibrato (with a wide frequency). In this case, the selection of the frequency by the selection unit 110 may be omitted.
 [1-7.変形例3]
 信号処理部120は、複数オクターブにわたる、Cdim7、C#dim7、およびDdim7のそれぞれを、テスト音として出音部106に順次出力させてもよい。例えば、信号処理部120は、5オクターブにわたる、Cdim7、C#dim7、およびDdim7のそれぞれを、テスト音として出音部106に順次出力させてもよい。
[1-7. Modification 3]
The signal processing unit 120 may cause the sound output unit 106 to sequentially output Cdim7, C # dim7, and Ddim7 over a plurality of octaves as test sounds. For example, the signal processing unit 120 may cause the sound output unit 106 to sequentially output each of Cdim7, C # dim7, and Ddim7 over five octaves as a test sound.
 図7は、実施の形態1の変形例3における音響装置100で発生されるテスト音の一例(5オクターブ)の周波数特性を模式的に示す図である。図7において横軸は周波数を表し、縦軸は音の大きさを表す。 FIG. 7 is a diagram schematically illustrating frequency characteristics of an example of test sound (5 octaves) generated by the acoustic device 100 according to the third modification of the first embodiment. In FIG. 7, the horizontal axis represents frequency, and the vertical axis represents sound volume.
 図7の(a)は、5オクターブにわたるCdim7の周波数特性を示す図である。図7の(b)は、5オクターブにわたるC#dim7の周波数特性を示す図である。図7の(c)は、5オクターブにわたるDdim7の周波数特性を示す図である。 (A) of FIG. 7 is a diagram showing the frequency characteristics of Cdim7 over 5 octaves. FIG. 7B is a diagram illustrating the frequency characteristics of C # dim7 over 5 octaves. (C) of FIG. 7 is a figure which shows the frequency characteristic of Ddim7 over 5 octaves.
 例えば、音響装置100は、図7に示すように複数オクターブ(例えば、5オクターブ)にわたる和音をテスト信号として出力することで、テスト音の出力時間を大幅に短縮(1/オクターブ数、例えば1/5、に短縮)することができる。 For example, as shown in FIG. 7, the acoustic device 100 outputs a chord over a plurality of octaves (for example, 5 octaves) as a test signal, thereby significantly reducing the output time of the test sound (1 / octave number, for example, 1 / octave 5).
 [1-8.変形例4]
 実施の形態1では、音響装置100において、音響機器10が備えるフィルタ係数計算部112が、フィルタ係数を計算し、そのフィルタ係数をフィルタ部104へ出力する構成例を説明した。しかし、本開示は何らこの構成に限定されない。例えば、制御機器20がフィルタ係数を計算し、そのフィルタ係数を送信部23から音響機器10の受信部108に送信してもよい。
[1-8. Modification 4]
In the first embodiment, in the audio device 100, the configuration example in which the filter coefficient calculation unit 112 included in the audio device 10 calculates the filter coefficient and outputs the filter coefficient to the filter unit 104 has been described. However, the present disclosure is not limited to this configuration. For example, the control device 20 may calculate a filter coefficient and transmit the filter coefficient from the transmission unit 23 to the reception unit 108 of the audio device 10.
 この場合、制御機器20は、音響機器10が備える周波数分析部109、選択部110、記憶部111、およびフィルタ係数計算部112、の各構成要素と同様の機能を有する構成要素(例えば、周波数分析部、選択部、記憶部、およびフィルタ係数計算部)を備える。制御機器20は、収音部21から出力される音信号をマイクアンプ部22で増幅する。そして、制御機器20は、増幅した音信号に基づき、制御機器20が備える周波数分析部、選択部、記憶部、およびフィルタ係数計算部を用いてフィルタ係数を計算し、そのフィルタ係数を送信部23へ出力する。そのフィルタ係数は、制御機器20の送信部23から信号処理部120の受信部108に送信され、受信部108で受信される。そして、信号処理部120は、受信部108で受信したフィルタ係数をフィルタ部104に設定する。 In this case, the control device 20 includes components (for example, frequency analysis) having functions similar to those of the frequency analysis unit 109, the selection unit 110, the storage unit 111, and the filter coefficient calculation unit 112 included in the audio device 10. A selection unit, a storage unit, and a filter coefficient calculation unit. The control device 20 amplifies the sound signal output from the sound collection unit 21 by the microphone amplifier unit 22. Based on the amplified sound signal, the control device 20 calculates a filter coefficient using a frequency analysis unit, a selection unit, a storage unit, and a filter coefficient calculation unit included in the control device 20, and transmits the filter coefficient to the transmission unit 23. Output to. The filter coefficient is transmitted from the transmission unit 23 of the control device 20 to the reception unit 108 of the signal processing unit 120 and received by the reception unit 108. Then, the signal processing unit 120 sets the filter coefficient received by the receiving unit 108 in the filter unit 104.
 この構成では、制御機器20から音響機器10に送信されるデータ量を、実施の形態1に示した構成例と比較して、格段に減少させることができる。 In this configuration, the amount of data transmitted from the control device 20 to the audio device 10 can be significantly reduced as compared with the configuration example shown in the first embodiment.
 (実施の形態2)
 [2-1.構成]
 実施の形態1では、音響装置100の信号生成部101によってテスト信号が生成される構成例を説明した。しかし、本開示は何らこの構成に限定されない。例えば、信号取得部102を通じて得られる音響信号(テレビ音声等を出力するための信号)がテスト信号として利用されてもよい。言い換えると、テスト音として、例えばテレビ音声が用いられてもよい。
(Embodiment 2)
[2-1. Constitution]
In the first embodiment, the configuration example in which the test signal is generated by the signal generation unit 101 of the acoustic device 100 has been described. However, the present disclosure is not limited to this configuration. For example, an acoustic signal (a signal for outputting TV sound or the like) obtained through the signal acquisition unit 102 may be used as the test signal. In other words, for example, television sound may be used as the test sound.
 実施の形態2では、信号取得部102を通じて得られる音響信号がテスト信号として利用されるように構成された音響装置100aについて説明する。 In Embodiment 2, an acoustic device 100a configured to use an acoustic signal obtained through the signal acquisition unit 102 as a test signal will be described.
 図8は、実施の形態2における音響装置100aの機能構成の一例を模式的に示すブロック図である。 FIG. 8 is a block diagram schematically illustrating an example of a functional configuration of the acoustic device 100a according to the second embodiment.
 なお、実施の形態2に示す音響装置100aでは、実施の形態1に示した音響装置100が備える構成要素と実質的に同じ動作をする構成要素に関しては、その構成要素と同じ符号を付与し、説明を省略する。以下、実施の形態1に示した音響装置100と異なる点を中心に説明を行い、実施の形態1に示した音響装置100と実質的に同一となる動作についての説明は省略される場合がある。 In addition, in the acoustic device 100a shown in the second embodiment, components that operate substantially the same as the components included in the acoustic device 100 shown in the first embodiment are given the same reference numerals as the components, Description is omitted. Hereinafter, description will be made centering on differences from the acoustic device 100 described in the first embodiment, and description of operations that are substantially the same as those of the acoustic device 100 described in the first embodiment may be omitted. .
 図8に示されるように、音響装置100a(例えば、TVシステム)は、音響機器10a(例えば、テレビ)と、制御機器20(例えば、リモコン)と、を備える。音響機器10aは、出音部106と、信号処理部120aと、を有する。 As shown in FIG. 8, the audio device 100a (for example, a TV system) includes an audio device 10a (for example, a television) and a control device 20 (for example, a remote controller). The acoustic device 10a includes a sound output unit 106 and a signal processing unit 120a.
 音響装置100aは、実施の形態1に示した音響装置100と実質的に同じ構成であり、実質的に同じ動作をする。ただし、音響装置100aが備える音響機器10aは、信号生成部101および切替部103を備えず、周波数分析部113および差分演算部114を備える点が、実施の形態1に示した音響機器10と異なる。なお、音響機器10aの信号処理部120aは、信号取得部102、フィルタ部104、スピーカアンプ部105、制御部107、受信部108、周波数分析部109、選択部110、記憶部111、フィルタ係数計算部112、周波数分析部113、および差分演算部114、を備えて構成される。 The acoustic device 100a has substantially the same configuration as the acoustic device 100 shown in the first embodiment, and performs substantially the same operation. However, the acoustic device 10a included in the acoustic device 100a is different from the acoustic device 10 described in Embodiment 1 in that the acoustic device 10a does not include the signal generation unit 101 and the switching unit 103 but includes the frequency analysis unit 113 and the difference calculation unit 114. . The signal processing unit 120a of the acoustic device 10a includes a signal acquisition unit 102, a filter unit 104, a speaker amplifier unit 105, a control unit 107, a reception unit 108, a frequency analysis unit 109, a selection unit 110, a storage unit 111, and filter coefficient calculation. Unit 112, frequency analysis unit 113, and difference calculation unit 114.
 周波数分析部113は、制御部107からの制御に基づいて、信号取得部102を通じて得られる音響信号にFFT処理を行う。この結果、FFT処理後の音響信号(音響信号の分析結果)は、周波数毎のパワー値で表現される。また、周波数分析部113は、FFT処理後の音響信号(音響信号の分析結果)を選択部110に出力する。周波数分析部113は、例えば回路(周波数分析回路)によって実現されるが、プロセッサにより実現されてもよい。 The frequency analysis unit 113 performs an FFT process on the acoustic signal obtained through the signal acquisition unit 102 based on the control from the control unit 107. As a result, the acoustic signal after FFT processing (analysis result of the acoustic signal) is expressed by a power value for each frequency. Further, the frequency analysis unit 113 outputs the acoustic signal after the FFT processing (analysis result of the acoustic signal) to the selection unit 110. The frequency analysis unit 113 is realized by a circuit (frequency analysis circuit), for example, but may be realized by a processor.
 選択部110は、この音響信号の分析結果の中から、12音階の音のそれぞれの周波数、および当該周波数のパワー値を選択し、選択した周波数と当該周波数のパワー値とを記憶部111に記憶する。 The selection unit 110 selects the frequency of each of the 12 scale sounds and the power value of the frequency from the analysis result of the acoustic signal, and stores the selected frequency and the power value of the frequency in the storage unit 111. To do.
 周波数分析部113で分析の対象となった音響信号による音は、例えばテレビ音声として出音部106から出力される。すなわち、実施の形態2における音響装置100aでは、実施の形態1でテスト音として生成された和音に代えて、信号取得部102を通じて得られる音響信号による音(例えば、テレビ音声)が、テスト音として利用される。 The sound by the acoustic signal analyzed by the frequency analysis unit 113 is output from the sound output unit 106 as television sound, for example. In other words, in the audio device 100a according to the second embodiment, instead of the chord generated as the test sound in the first embodiment, a sound (for example, TV sound) obtained from the sound signal obtained through the signal acquisition unit 102 is used as the test sound. Used.
 出音部106から出力される音(例えば、テスト音としてのテレビ音声)は、制御機器20の収音部21によって取得される。そして、収音部21による音の取得結果は、実施の形態1と同様に、制御機器20の送信部23から音響機器10aの受信部108に送信され、受信部108で受信された後、周波数分析部109によってFFT処理される。 Sound output from the sound output unit 106 (for example, television sound as a test sound) is acquired by the sound collection unit 21 of the control device 20. Then, the sound acquisition result by the sound collection unit 21 is transmitted from the transmission unit 23 of the control device 20 to the reception unit 108 of the acoustic device 10a and received by the reception unit 108 in the same manner as in the first embodiment. The analysis unit 109 performs FFT processing.
 選択部110は、FFT処理後の取得結果の中から、12音階の音のそれぞれの周波数、および当該周波数のパワー値を選択し、選択した周波数と当該周波数のパワー値とを記憶部111に記憶する。 The selection unit 110 selects each frequency of the 12th scale sound and the power value of the frequency from the acquisition results after the FFT processing, and stores the selected frequency and the power value of the frequency in the storage unit 111. To do.
 差分演算部114は、記憶部111を参照し、音響信号の分析結果(周波数分析部113による分析結果)に含まれていたパワー値と、取得結果(周波数分析部109による分析結果)に含まれていたパワー値とを、周波数毎に比較してパワー値の差分を算出し、その算出結果をフィルタ係数計算部112に出力する。差分演算部114は、例えば回路(差分演算回路)によって実現されるが、プロセッサにより実現されてもよい。 The difference calculation unit 114 refers to the storage unit 111 and is included in the power value included in the acoustic signal analysis result (analysis result by the frequency analysis unit 113) and the acquisition result (analysis result by the frequency analysis unit 109). The difference between the power values is compared with the power value for each frequency to calculate the difference between the power values, and the calculation result is output to the filter coefficient calculation unit 112. The difference calculation unit 114 is realized by a circuit (difference calculation circuit), for example, but may be realized by a processor.
 フィルタ係数計算部112は、差分演算部114で算出された差分値が所定値(例えば、±1dB)以下になるようなフィルタ係数を計算する。 The filter coefficient calculation unit 112 calculates a filter coefficient such that the difference value calculated by the difference calculation unit 114 is equal to or less than a predetermined value (for example, ± 1 dB).
 そして、フィルタ部104は、信号取得部102を通じて得られる音響信号に対して、フィルタ係数計算部112によって計算されたフィルタ係数を用いたフィルタ処理を行う。こうして、フィルタ部104は、信号取得部102を通じて得られる音響信号の周波数特性を、フィルタ係数計算部112によるフィルタ係数によって補正する。 The filter unit 104 performs a filtering process using the filter coefficient calculated by the filter coefficient calculation unit 112 on the acoustic signal obtained through the signal acquisition unit 102. Thus, the filter unit 104 corrects the frequency characteristic of the acoustic signal obtained through the signal acquisition unit 102 with the filter coefficient by the filter coefficient calculation unit 112.
 [2-2.効果等]
 以上説明したように、実施の形態2に係る音響装置100aは、信号取得部102を通じて得られる音響信号(テレビ音声などを出力するための信号)をテスト信号として利用する。つまり、音響装置100aは、テスト音としてテレビ音声を使用する。
[2-2. Effect]
As described above, the acoustic device 100a according to the second embodiment uses an acoustic signal (a signal for outputting television sound or the like) obtained through the signal acquisition unit 102 as a test signal. That is, the audio device 100a uses television sound as the test sound.
 これにより、音響装置100aは、ユーザ30に違和感を与えることなく自然な形で周波数特性の補正を行うことができる。 Thereby, the acoustic device 100a can correct the frequency characteristic in a natural manner without giving the user 30 a sense of incongruity.
 なお、音響装置100aが行う周波数特性の補正処理は、信号取得部102を通じて得られる音響信号による音(例えば、テレビ音声)によって12音階の音のそれぞれが出音部106から出力されるまで継続されてもよい。 Note that the frequency characteristic correction processing performed by the acoustic device 100a is continued until each sound of 12 scales is output from the sound output unit 106 by sound (for example, television sound) by an acoustic signal obtained through the signal acquisition unit 102. May be.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1、2を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略等を行った実施の形態にも適用できる。また、上記実施の形態1、2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, Embodiments 1 and 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, and the like are performed. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1, 2 and it can also be set as a new embodiment.
 そこで、以下、他の実施の形態を例示する。 Therefore, other embodiments will be exemplified below.
 実施の形態1、2では、本開示における技術をTVシステムに適用する例を説明した。しかしながら、本開示における技術は、例えば、ハンズフリー(音声認識)機能を有する、車載オーディオ装置や車載ナビゲーション装置等にも適用可能である。また、本開示における技術は、例えば、オーディオ装置(ミニコンポーネント、AV(Audio Visual)センターアンプ、等)にも適用可能である。 Embodiments 1 and 2 have described examples in which the technology of the present disclosure is applied to a TV system. However, the technology in the present disclosure can be applied to, for example, an in-vehicle audio device or an in-vehicle navigation device having a hands-free (voice recognition) function. The technology in the present disclosure can also be applied to, for example, an audio device (mini component, AV (Audio Visual) center amplifier, etc.).
 実施の形態1、2では、出音部106がテスト音を出力するときに、マイクアンプ部22のゲインが調整される動作例を説明したが、例えばスピーカアンプ部105のゲインが調整されてもよい。 In the first and second embodiments, the operation example in which the gain of the microphone amplifier unit 22 is adjusted when the sound output unit 106 outputs the test sound has been described. However, for example, even if the gain of the speaker amplifier unit 105 is adjusted Good.
 上記の各実施の形態において、各構成要素は、専用のハードウェアで構成されてもよく、あるいは、各構成要素の機能を実現するように構成されたソフトウェアプログラムがプロセッサで実行されることによって実現されてもよい。すなわち、各構成要素は、CPU(Central Processing Unit)またはプロセッサ等のプログラム実行部が、ハードディスクまたは半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 In each of the embodiments described above, each component may be configured by dedicated hardware, or realized by a software program configured to realize the function of each component being executed by a processor. May be. That is, each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 なお、本開示における技術の包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、またはコンピュータで読み取り可能な記録媒体(例えば、光ディスクや半導体メモリ、等)、で実現されてもよい。また、本開示における技術は、システム、方法、集積回路、コンピュータプログラム、または記録媒体の任意な組み合わせ、で実現されてもよい。例えば、本開示における技術は、音響装置が実行する周波数特性の補正方法、として実現されてもよい。 The comprehensive or specific aspect of the technology in the present disclosure may be realized by a system, a method, an integrated circuit, a computer program, or a computer-readable recording medium (for example, an optical disc or a semiconductor memory). Good. Further, the technology in the present disclosure may be realized by a system, a method, an integrated circuit, a computer program, or any combination of recording media. For example, the technology in the present disclosure may be realized as a frequency characteristic correction method executed by the acoustic device.
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiments are for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
 本開示は、周波数特性の補正を行う音響装置に適用可能である。具体的には、テレビ、車載ナビゲーション装置、およびオーディオ装置、等に、本開示は適用可能である。 The present disclosure is applicable to an audio device that corrects frequency characteristics. Specifically, the present disclosure is applicable to televisions, in-vehicle navigation devices, audio devices, and the like.
10,10a  音響機器
11  記憶部
20  制御機器
21  収音部
22  マイクアンプ部
23  送信部
30  ユーザ
100,100a  音響装置
101  信号生成部
102  信号取得部
103  切替部
104  フィルタ部
105  スピーカアンプ部
106,106a  出音部
107  制御部
108  受信部
109  周波数分析部
110  選択部
111  記憶部
112  フィルタ係数計算部
113  周波数分析部
114  差分演算部
120,120a  信号処理部
200  室内空間
201  直接音
202  一次反射音
203  二次反射音
204  透過音
205  回折音
10, 10a Acoustic device 11 Storage unit 20 Control device 21 Sound collection unit 22 Microphone amplifier unit 23 Transmission unit 30 User 100, 100a Acoustic device 101 Signal generation unit 102 Signal acquisition unit 103 Switching unit 104 Filter unit 105 Speaker amplifier unit 106, 106a Sound output unit 107 Control unit 108 Reception unit 109 Frequency analysis unit 110 Selection unit 111 Storage unit 112 Filter coefficient calculation unit 113 Frequency analysis unit 114 Difference calculation unit 120, 120a Signal processing unit 200 Indoor space 201 Direct sound 202 Primary reflected sound 203 Second Next reflected sound 204 Transmitted sound 205 Diffracted sound

Claims (8)

  1. 音響機器と、制御機器と、を備え、
    前記制御機器は、
    ユーザの音声を含む前記制御機器の周囲の音を取得する収音部と、
    前記収音部が取得した前記ユーザの音声に基づいて、前記音響機器を制御するための制御信号を前記音響機器に送信する制御信号送信部と、を有し、
    前記音響機器は、
    出音部と、
    1オクターブを構成する12音階の音のそれぞれを、前記出音部から出力される音の周波数特性を補正するために前記収音部に取得させるテスト音として、前記出音部に出力させる信号処理部と、を有する、
    音響装置。
    An audio device and a control device,
    The control device is
    A sound collection unit for obtaining sounds around the control device including user's voice;
    A control signal transmission unit that transmits a control signal for controlling the acoustic device to the acoustic device based on the voice of the user acquired by the sound collection unit;
    The audio equipment is
    The sound output section,
    Signal processing for outputting each sound of 12 scales constituting one octave to the sound output section as a test sound to be acquired by the sound collection section in order to correct the frequency characteristics of the sound output from the sound output section And having a part,
    Acoustic device.
  2. 前記信号処理部は、各々が前記12音階の音の一部からなる複数種類の和音のそれぞれを、前記テスト音として前記出音部に順次出力させる、
    請求項1に記載の音響装置。
    The signal processing unit causes each of a plurality of types of chords, each of which is part of the sound of the 12 scales, to be sequentially output to the sound output unit as the test sound,
    The acoustic device according to claim 1.
  3. 前記信号処理部は、Cdim7、C#dim7、およびDdim7のそれぞれを、前記テスト音として前記出音部に順次出力させる、
    請求項2に記載の音響装置。
    The signal processing unit sequentially outputs each of Cdim7, C # dim7, and Ddim7 to the sound output unit as the test sound.
    The acoustic device according to claim 2.
  4. 前記信号処理部は、複数オクターブにわたる、Cdim7、C#dim7、およびDdim7のそれぞれを、前記テスト音として前記出音部に順次出力させる
    請求項3に記載の音響装置。
    The acoustic apparatus according to claim 3, wherein the signal processing unit sequentially outputs each of Cdim7, C # dim7, and Ddim7 over a plurality of octaves to the sound output unit as the test sound.
  5. 前記信号処理部は、5オクターブにわたる、Cdim7、C#dim7、およびDdim7のそれぞれを、前記テスト音として前記出音部に順次出力させる、
    請求項4に記載の音響装置。
    The signal processing unit sequentially outputs each of Cdim7, C # dim7, and Ddim7 over 5 octaves to the sound output unit as the test sound.
    The acoustic device according to claim 4.
  6. 前記信号処理部は、前記12音階の音のそれぞれを、前記テスト音として前記出音部に順次出力させる
    請求項1に記載の音響装置。
    The acoustic device according to claim 1, wherein the signal processing unit sequentially outputs the sounds of the 12 scales to the sound output unit as the test sounds.
  7. 前記収音部は、前記出音部から出力される前記テスト音を取得し、
    前記制御機器は、さらに、前記収音部による前記テスト音の取得結果を前記音響機器に送信する取得結果送信部を有し、
    前記信号処理部は、前記取得結果送信部が送信した前記取得結果を受信し、受信した前記取得結果に基づいて、前記出音部から出力される音の周波数特性を補正する、
    請求項1に記載の音響装置。
    The sound collection unit acquires the test sound output from the sound output unit,
    The control device further includes an acquisition result transmission unit that transmits an acquisition result of the test sound by the sound collection unit to the acoustic device,
    The signal processing unit receives the acquisition result transmitted by the acquisition result transmission unit, and corrects frequency characteristics of sound output from the sound output unit based on the received acquisition result.
    The acoustic device according to claim 1.
  8. 出音部を有する音響機器と、制御機器と、を備える音響装置で実行される補正方法であって、
    前記制御機器は、
    ユーザの音声を含む前記制御機器の周囲の音を取得する収音部と、
    前記収音部が取得した前記ユーザの音声に基づいて、前記音響機器を制御するための制御信号を前記音響機器に送信する制御信号送信部と、を有し、
    前記補正方法は、
    前記出音部から出力される音の周波数特性の補正方法であり、
    1オクターブを構成する12音階の音のそれぞれを、前記出音部から出力される音の周波数特性を補正するために前記収音部に取得させるテスト音として、前記出音部に出力させるステップ、を含む、
    補正方法。
    A correction method executed by an audio device including an audio device having a sound output unit and a control device,
    The control device is
    A sound collection unit for obtaining sounds around the control device including user's voice;
    A control signal transmission unit that transmits a control signal for controlling the acoustic device to the acoustic device based on the voice of the user acquired by the sound collection unit;
    The correction method is:
    A method for correcting frequency characteristics of sound output from the sound output unit,
    Outputting each sound of 12 scales constituting one octave to the sound output section as a test sound to be acquired by the sound collection section in order to correct the frequency characteristics of the sound output from the sound output section; including,
    Correction method.
PCT/JP2016/000917 2015-03-12 2016-02-22 Acoustic device and correction method WO2016143276A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-050075 2015-03-12
JP2015050075A JP2018072359A (en) 2015-03-12 2015-03-12 Acoustic device and correction method

Publications (1)

Publication Number Publication Date
WO2016143276A1 true WO2016143276A1 (en) 2016-09-15

Family

ID=56879452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000917 WO2016143276A1 (en) 2015-03-12 2016-02-22 Acoustic device and correction method

Country Status (2)

Country Link
JP (1) JP2018072359A (en)
WO (1) WO2016143276A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475498U (en) * 1990-11-14 1992-07-01
JP2003195859A (en) * 2001-12-27 2003-07-09 Yamaha Corp Electronic musical sound generating device and signal processing characteristic adjusting method
JP2005012784A (en) * 2003-05-26 2005-01-13 Matsushita Electric Ind Co Ltd Instrument for measuring sound field
JP2005303967A (en) * 2004-03-17 2005-10-27 Sony Corp Measuring apparatus, measuring method, and program
JP2007306275A (en) * 2006-05-11 2007-11-22 Sharp Corp Sound output device and television receiver
JP2010010823A (en) * 2008-06-24 2010-01-14 Toshiba Corp Acoustic characteristic correction method and apparatus
JP2011123376A (en) * 2009-12-11 2011-06-23 Canon Inc Acoustic processing device and method
JP2012141449A (en) * 2010-12-28 2012-07-26 Toshiba Corp Voice processing device, voice processing system and voice processing method
JP2013140349A (en) * 2011-12-30 2013-07-18 Samsung Electronics Co Ltd Electronic apparatus and method of controlling the same
JP2014115446A (en) * 2012-12-10 2014-06-26 Nippon Seiki Co Ltd Voice recognition remote control

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475498U (en) * 1990-11-14 1992-07-01
JP2003195859A (en) * 2001-12-27 2003-07-09 Yamaha Corp Electronic musical sound generating device and signal processing characteristic adjusting method
JP2005012784A (en) * 2003-05-26 2005-01-13 Matsushita Electric Ind Co Ltd Instrument for measuring sound field
JP2005303967A (en) * 2004-03-17 2005-10-27 Sony Corp Measuring apparatus, measuring method, and program
JP2007306275A (en) * 2006-05-11 2007-11-22 Sharp Corp Sound output device and television receiver
JP2010010823A (en) * 2008-06-24 2010-01-14 Toshiba Corp Acoustic characteristic correction method and apparatus
JP2011123376A (en) * 2009-12-11 2011-06-23 Canon Inc Acoustic processing device and method
JP2012141449A (en) * 2010-12-28 2012-07-26 Toshiba Corp Voice processing device, voice processing system and voice processing method
JP2013140349A (en) * 2011-12-30 2013-07-18 Samsung Electronics Co Ltd Electronic apparatus and method of controlling the same
JP2014115446A (en) * 2012-12-10 2014-06-26 Nippon Seiki Co Ltd Voice recognition remote control

Also Published As

Publication number Publication date
JP2018072359A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US8355908B2 (en) Audio signal processing device for noise reduction and audio enhancement, and method for the same
JP2011123376A (en) Acoustic processing device and method
JP2017506464A (en) Apparatus and method for tuning a frequency dependent attenuation stage
JP2015177290A (en) Level adjusting method and level adjusting device
JP2008507934A (en) Speech enhancement
WO2007007695A1 (en) Audio system
JP2023071787A (en) Method and apparatus for extracting pitch-independent timbre attribute from medium signal
WO2020125325A1 (en) Method for eliminating echo and device
TWI662544B (en) Method for detecting ambient noise to change the playing voice frequency and sound playing device thereof
JP2009296297A (en) Sound signal processing device and method
JP2008072600A (en) Acoustic signal processing apparatus, acoustic signal processing program, and acoustic signal processing method
WO2016143276A1 (en) Acoustic device and correction method
US20190074805A1 (en) Transient Detection for Speaker Distortion Reduction
WO2017135350A1 (en) Recording medium, acoustic processing device, and acoustic processing method
CN113348508A (en) Electronic device, method, and computer program
JP4275055B2 (en) SOUND QUALITY ADJUSTMENT DEVICE, BROADCAST RECEIVER, PROGRAM, AND RECORDING MEDIUM
US11950064B2 (en) Method for audio rendering by an apparatus
US20230396924A1 (en) Analysis and optimization of an audio signal
JP4275054B2 (en) Audio signal discrimination device, sound quality adjustment device, broadcast receiver, program, and recording medium
CN110648686B (en) Method for adjusting voice frequency and sound playing device thereof
JP7427531B2 (en) Acoustic signal processing device and acoustic signal processing program
JP4737758B2 (en) Audio signal processing method and playback apparatus
JP2012095254A (en) Volume adjustment device, volume adjustment method, volume adjustment program and acoustic equipment
JP4305313B2 (en) Audio adjustment parameter determination method and audio apparatus
WO2023235371A1 (en) Analysis and optimization of an audio signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16761255

Country of ref document: EP

Kind code of ref document: A1