WO2016142976A1 - Image pickup system - Google Patents

Image pickup system Download PDF

Info

Publication number
WO2016142976A1
WO2016142976A1 PCT/JP2015/006213 JP2015006213W WO2016142976A1 WO 2016142976 A1 WO2016142976 A1 WO 2016142976A1 JP 2015006213 W JP2015006213 W JP 2015006213W WO 2016142976 A1 WO2016142976 A1 WO 2016142976A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
trigger pulse
camera
light source
trigger
Prior art date
Application number
PCT/JP2015/006213
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 小田
孝行 須藤
卓夫 森本
大久保 修一
Original Assignee
日本電気株式会社
日本アビオニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 日本アビオニクス株式会社 filed Critical 日本電気株式会社
Priority to JP2017504304A priority Critical patent/JPWO2016142976A1/en
Publication of WO2016142976A1 publication Critical patent/WO2016142976A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components

Definitions

  • the present invention relates to an imaging system having an imaging band from the infrared region to the terahertz region, and more particularly to an imaging system including a light source device that emits light from the infrared region to the terahertz region and a camera that images the terahertz region from the infrared region. .
  • THz band an imaging band from an infrared region to a terahertz region
  • the THz band cannot be satisfactorily captured by current radio wave observation technology and visible light imaging technology.
  • sensing in the THz band has an advantage that information that does not exist in other frequency regions can be obtained.
  • an image that excludes the influence of electromagnetic waves other than the frequency band of the light source by repeatedly turning on and off the light source and acquiring a captured image with the camera in synchronization with the lighting period of the light source.
  • Image an image that excludes the influence of electromagnetic waves other than the frequency band of the light source by repeatedly turning on and off the light source and acquiring a captured image with the camera in synchronization with the lighting period of the light source.
  • This lock-in image using THz waves it is possible to obtain transmission images and reflection images of various objects (for example, paper and smoke).
  • the THz band imaging technique has many objects that do not transmit, and can be used for various applications depending on the difference between the transmitted object and the non-transmitted object.
  • the imaging systems described in Patent Documents 1 and 2 include a THz band light source, a camera that captures THz waves, and an image processing device, and image an imaging target in an optical path.
  • the imaging system supplies a light source pulse signal according to the timing obtained by multiplying the synchro signal output from the camera to 1 / n times to a driving circuit that drives the light source, and the light emission period of the light source And the imaging period of the camera (including the light emission period and the non-light emission period of the light source) are synchronized.
  • the imaging system captures a large number of images when the light source emits light during the light emission period synchronized with the imaging period and a large number of images when the light source does not emit light during the non-light emitting period, Image processing is performed to generate a desired image.
  • the image processing device subtracts the image information of the same number of images at the time of non-light source emission from the image information of a large number of images at the time of light source emission, and integrates the obtained difference images for sharpening.
  • the desired image is obtained.
  • the technique described in Patent Document 2 provides an imaging method in which the light emission period of a drive circuit that drives a light source can be independent without depending on a camera sync signal.
  • the imaging system collects a group of images captured by a camera over a plurality of frames, and collects pixels having the maximum image intensity for each pixel from the images of the individual frames to generate one image.
  • a clear image can be generated even if the cycle of the light emission period of the light source is different from the imaging frame cycle of the camera (internal circuit).
  • Non-Patent Document 1 is a user guide (manual) of Pyrocam IV. Pyrocam IV has a function capable of sensing with an exposure time (exposure timing) synchronized with an external trigger in response to an external trigger input.
  • JP 2012-205217 A Patent No. 5305482 JP 2014-160919 A
  • the inventors are making progress in imaging systems using the terahertz band (THz band) every day.
  • THz band terahertz band
  • the imaging systems described in Patent Document 1 and Patent Document 2 try to generate a clear image by combining a large number of captured images.
  • the imaging systems described in Patent Document 1 and Patent Document 2 require an imaging period (time) for obtaining a predetermined amount of image groups used for composition.
  • the imaging system can output the generated image only after a predetermined imaging period (time) has elapsed since the imaging was started. For this reason, the imaging method disclosed in Patent Literature 1 and Patent Literature 2 can be set with a problem of improving the real-time property.
  • the clarification of the acquired image includes an approach of synthesizing a clear image from a large number of captured images as in the above method, and an approach of clarifying each captured image itself.
  • the imaging system can display clear captured images without waiting for acquisition of a large number of images.
  • the approach of synthesizing a clear image from a large number of captured images can be favorably influenced.
  • the sharpness of each image varies greatly depending on the light source (pulsed light), camera (imaging sensor; array sensor), imaging condition (usage frequency band, etc.), and the like.
  • the performance of the camera is important.
  • the camera was able to improve the sensitivity of the camera by changing the structure of the array sensor to widen the interference length.
  • the sensitivity of the camera can be enhanced by a mechanism that takes a long exposure time.
  • an array sensor having a thermal time constant has a characteristic that the sensitivity of the output signal value decreases over time with the passage of time from the start of operation (the moment when the drive pulse is received). If the thermal time constant of the array sensor is small, the effect of this time-dependent decrease in sensitivity becomes greater. Therefore, in this type of array sensor, if the exposure possible section is long, the influence of the output signal value over time due to the difference in the actual exposure timing within the exposure possible section becomes large. In other words, the output signal value output from the array sensor varies greatly depending on whether the pulse light is received from the early stage of the exposure possible section or the pulse light is received from the late stage of the exposure possible section.
  • the distance between the light source and the array sensor (optical path length: propagation distance) is likely to change depending on the imaging conditions. For this reason, it is difficult to measure the sensing timing of the array sensor.
  • the present invention provides an imaging system, an imaging method, and a recording medium that include a terahertz region in an imaging band, pursuing real-time characteristics while clarifying an acquired image based on the above-mentioned many matters.
  • An imaging system includes a pulse light source that emits infrared rays or terahertz waves, a camera that drives an imaging sensor to capture an image, a first trigger pulse that determines the light emission timing of the pulse light source, and the imaging timing of the camera.
  • a pulse control unit that generates a second trigger pulse to be determined, and the pulse control unit outputs the first trigger pulse to the pulse light source, and precedes the first trigger pulse.
  • the second trigger pulse is output to the camera.
  • a pulse control device includes a first trigger pulse that determines a light emission timing of a pulse light source that emits infrared rays or terahertz waves, and a second trigger that determines an imaging timing of a camera that drives and images an image sensor.
  • a pulse generator for generating a trigger pulse, and an output unit for outputting the first trigger pulse to the pulse light source and outputting the second trigger pulse to the camera prior to the first trigger pulse. It is characterized by having.
  • a camera includes an imaging sensor that detects infrared rays or terahertz waves, and a pulse control unit that generates a trigger pulse that determines the light emission timing of a pulse light source that emits infrared rays or terahertz waves.
  • the pulse control unit outputs the trigger pulse to the pulse light source while determining an exposure timing of the imaging sensor that precedes a set value time from a timing of outputting the trigger pulse.
  • An imaging method is an imaging system including a pulse light source, a camera, and a pulse control unit, and emits infrared or terahertz waves from the pulse light source at a pulse interval received from the pulse control unit.
  • the image sensor is driven to obtain an image to be captured at a pulse interval received from the pulse control unit, and the pulse control unit determines a light emission timing of the pulse light source and the first trigger pulse and the infrared and terahertz camera. And outputting a second trigger pulse for determining the imaging timing.
  • the second trigger pulse is generated prior to the first trigger pulse at a set time, and the first trigger pulse is generated.
  • the trigger pulse is output to the pulse light source, and the second trigger pulse is output to the camera prior to the first trigger pulse. It is characterized in.
  • a control unit of an information processing device determines a first trigger pulse that determines a light emission timing of a pulse light source that emits infrared rays or terahertz waves and an imaging timing of an infrared / terahertz camera.
  • a pulse generation unit that generates the second trigger pulse before the first trigger pulse, and generates the second trigger pulse with a set time interval; the first trigger pulse and the second trigger pulse; It is characterized by operating as a pulse output section for outputting each trigger pulse.
  • an imaging system an imaging method, and a recording medium having an imaging band including a terahertz region that improves the real-time property while clarifying an acquired image.
  • FIG. 1 is a configuration diagram illustrating an imaging system 1 according to a first embodiment. It is a lineblock diagram showing the modification of imaging system 1 concerning a 1st embodiment. It is the timing chart which modeled the relationship between a light source pulse signal and an external trigger pulse signal. It is a timing chart explaining the mechanism which adjusts the range of the time difference of a light source pulse signal and an external trigger pulse signal. It is another timing chart explaining the mechanism which adjusts the range of the time difference of a light source pulse signal and an external trigger pulse signal. It is a block diagram which shows the imaging system 2 which concerns on 2nd Embodiment. It is a block diagram which shows the modification of the imaging system 2 which concerns on 2nd Embodiment.
  • FIG. 3 is a block diagram which shows the imaging system 3 which concerns on 3rd Embodiment. It is a block diagram which shows the imaging system 4 which concerns on 4th Embodiment. It is the timing chart which modeled the relationship of a light source pulse signal, an external trigger pulse signal, and the internal signal in a camera. It is the figure which modeled the beam pattern image
  • 3 is a block diagram illustrating a configuration example of a pulse control unit of the imaging system 2.
  • FIG. 1 is a configuration diagram illustrating an imaging system 1 according to the first embodiment.
  • FIG. 2 is a configuration diagram illustrating a modified example of the imaging system 1 according to the first embodiment.
  • the imaging system 1 shown in FIGS. 1 and 2 includes a light source device 10, a camera 11, and a pulse control unit 12.
  • the devices are connected with cables as necessary. Each device may be configured by wireless connection.
  • the system configuration shown in FIG. 1 is an arrangement used for developing a laser light source.
  • the system configuration shown in FIG. 2 is an arrangement used for observation of an object to be photographed in the reflection mode.
  • the light source device 10 emits infrared rays or terahertz waves at the pulse interval of the light source pulse signal received from the pulse control unit 12.
  • the frequency band to emit light may be appropriately determined according to the measurement object and various conditions.
  • a free electron laser device can be used as the light source device 10.
  • the structure of the light source device 10 is not particularly limited as long as the light source device 10 emits infrared rays or terahertz waves at received pulse intervals.
  • the camera 11 drives the imaging sensor 13 at the pulse interval of the external trigger pulse signal received from the pulse control unit 12.
  • the driven imaging sensor 13 senses infrared rays and terahertz waves emitted from the light source device 10.
  • the camera 11 operates the imaging sensor 13 according to the external trigger. This fine adjustment of the imaging operation will also be described later. Further, it is desirable that the camera 11 can set the drive stop timing of the image sensor 13.
  • the camera 11 outputs the captured image to a monitor or a computer.
  • the pulse control unit 12 generates a light source pulse signal that determines the light emission timing of the pulse light source and an external trigger pulse signal that determines the imaging timing for the camera as a first trigger pulse and a second trigger pulse, respectively, and the light source device 10 And output to the camera 11, respectively.
  • the pulse controller 12 generates a light source pulse signal sequence and an external trigger pulse signal sequence with a periodicity having an external trigger pulse signal in a period preceding the light source pulse signal.
  • the pulse control unit 12 may generate the single light source pulse signal and the external trigger pulse signal by opening the second trigger pulse for a predetermined time prior to the first trigger pulse. Further, the pulse control unit 12 may generate both pulse signal sequences for the interval between the light source pulse signal and the external trigger pulse signal according to the set value given by the user. This set value may be set automatically / semi-automatically as will be described later.
  • the pulse control unit 12 may have any configuration as long as each clock pulse signal is synchronized with each other and both pulse trains can be generated with a time difference between set values.
  • it may be configured by a clock generator device having a plurality of clock generator functions, a microcomputer board that can adjust a pulse signal sequence by a microcomputer, or an electronic circuit.
  • FIG. 3 is a timing chart schematically illustrating the relationship between the light source pulse signal and the external trigger pulse.
  • (B) in the figure is an enlarged view of (a).
  • T1 shown in the figure is a time interval according to a set value given by the user. This t1 indicates the preceding time of the external trigger pulse signal with respect to the light source pulse signal.
  • the sensor drive instruction cycle (t2) and the light emission instruction cycle (t2) in the figure are basically the same cycle. This period (t2) may be appropriately determined according to the light source to be used, the measurement target, and the like.
  • the side preceding the time (left direction) is taken as a positive value
  • the side lagging as time (right direction) is taken as a negative value.
  • the imaging system 1 may be configured to accept a set value of t1 as a negative value from the user. This negative region of t1 is easy to use effectively when the arrival delay amount of the terahertz wave is large.
  • the pulse controller 12 generates and outputs a light source pulse signal and an external trigger pulse signal periodically (see t2 in FIG. 3). At this time, the interval (t1) between the light source pulse signal and the external trigger pulse signal is generated with a periodicity having the external trigger pulse signal in the period preceding the light source pulse signal according to the set value.
  • the light source device 10 receives the generated light source pulse signal sequence and emits a terahertz wave having a predetermined pulse width at the pulse interval.
  • the camera 11 receives the generated external trigger pulse signal sequence and drives the image sensor 13 at the pulse interval.
  • the terahertz wave pulse width transmitted from the light source device 10 may be the same as or different from the width of the light source pulse signal. This pulse width may be appropriately determined according to the measurement object.
  • 3B and 4A described later are examples in which the pulse widths of the light source pulse signal and the terahertz wave coincide with each other.
  • 4B, 5A, and 5B are examples in which the light emitting device 10 emits a terahertz wave having a pulse width longer than that of the light source pulse signal.
  • a terahertz wave having a pulse width shorter than that of the light source pulse signal may be emitted.
  • Each device in the system performs the above operation, so that the incident timing of the pulsed light from the light source device 10 and the good imaging timing of the camera 11 can be stably aligned.
  • the timing and period when the camera 11 drives the image sensor 13 is preferably such that the light (pulse light) from the light source of the light source device 10 falls within one reading time (one frame) of the camera 11. Further, at this timing, it is desirable to drive the image sensor 13 before the light (pulse light) from the light source of the light source device 10 arrives. For this reason, it is desirable that the camera 11 includes a configuration in which the timing for driving and stopping the imaging sensor 13 is adjusted based on the external trigger pulse. Specifically, it is desirable that the camera 11 starts the timing for driving the image sensor 13 between the external trigger pulse signal and the light source pulse signal, that is, within the period t1 shown in FIG.
  • the camera 11 may appropriately drive the image sensor 13 according to the sensor type.
  • a bias voltage used for scanning of the array sensor may be applied after a predetermined time has elapsed after receiving the external trigger pulse signal.
  • the scanning position may be initialized at this timing.
  • the predetermined time is desirably a value at which application of the bias voltage is started within t1 time with reference to the external trigger pulse signal.
  • the infrared / terahertz camera preferably includes a mechanism for automatically stopping the application of the bias voltage after scanning by the array sensor. This stop timing may be determined by allowing the user to input a scanning period (time), or may have some values as setting values of the camera 11 in advance.
  • t1 and t2 may be input by the user to the camera 11, or the pulse control unit 12 may be notified via a wired or wireless connection.
  • the imaging system 1 can improve the real-time property while clarifying the acquired image.
  • the pulse control unit 12 may have a mechanism for adjusting a set value input range that determines a time difference between the pulse signal sequences (the above-described t1) based on the driving time of the camera 11.
  • the driving time of the camera 11 may be set in another way even if a value from the time when the camera 11 receives a trigger to the start of scanning or a value of an apparatus limit (the shortest time from driving instruction by trigger to driving the image sensor) is used. You may use the value determined from.
  • the pulse control unit 12 adopts only a value larger than the driving time of the camera 11 (t3 in FIG. 4) as the value of t1.
  • the range of the time difference between the pulse signals (set value input range) is within the range of t1 ′ in the figure by operating this mechanism.
  • the specific configuration may be, for example, limiting the range of t1 values received from the user by calculating from the value of t3 within the pulse control unit 12, or returning an error to the user.
  • the pulse control unit 12 may be provided with an automatic adjustment function (adjustment function) so that the setting whose user set value is within t3 is automatically updated to the lower limit of t1 '(position adjacent to t3).
  • the pulse controller 12 receives an input of a terahertz wave pulse width value (one pulse emission time), and a light source pulse signal according to the terahertz wave pulse width (t4, terahertz wave emission period in FIG. 4) emitted from the pulse light source.
  • the user set value may be automatically updated to the value within.
  • the terahertz wave width value may be configured to receive an input from the user, or may be configured to acquire the value from the light source device 10.
  • the imaging system may be configured such that the camera 11 has a mechanism for actually measuring the terahertz wave width, and the pulse control unit 12 acquires the actually measured value (the terahertz wave emission period) via a wire or wirelessly.
  • the camera 11 (sensor) before the arrival of one pulse of light from the light source and after the disappearance of the previous one pulse. ) Can be secured and the convenience of the entire system is increased.
  • the pulse control unit 12 receives the input of the terahertz wave arrival delay time (value), and according to the arrival delay time of the terahertz wave irradiated from the pulse light source (t6 in FIG. 5), the light source pulse signal and the external trigger pulse signal There may be a mechanism for limiting the set value for determining the interval (t1) to a value within one period (t7) excluding the delay time (t6) with reference to the light source pulse signal. Moreover, even if it is a case where negative t1 is received from a user, what is necessary is just to share an allowance area between the periods before and behind.
  • the pulse control unit 12 sets the interval (t1) between the light source pulse signal and the external trigger pulse signal to the total time of the terahertz wave width (t4) and the delay time (t6). It may be set to a value within one cycle (t8) excluding.
  • the arrival delay time of terahertz waves is affected by the optical path length.
  • the arrival delay time is affected by the time from when the light source device 10 receives the light source pulse signal until when the terahertz wave is actually emitted. Although this arrival delay time is unknown or may be negligible, it essentially exists. For this arrival delay time, it is desirable to prepare in advance several values as selectable values in addition to the input of the assumed value by the user. Further, a system configuration may be adopted in which the light emission delay time and the propagation delay time of the light source device 10 are separately received as set values.
  • the specific configuration is, for example, as an automatic adjustment function (adjustment function), when the relationship between the values of t1, t2, t4, and t6 becomes inconsistent, an error is returned to the user, or the value is within the allowable range.
  • the set value may be automatically updated.
  • the value of t6 may be configured to accept an input from the user as one value, or may accept individual values divided into a plurality of values such as a light emission delay time and a propagation delay time. Further, the configuration may be such that the propagation path type, the optical path distance and the distance to the object to be imaged are received from the user, such as in a gas or an arbitrary medium, and the corresponding selectable value is automatically selected.
  • the camera 11 may be provided with a mechanism for observing the terahertz wave pulse width, and the system may be configured so that the pulse controller 12 acquires the value.
  • Adjustment mechanism 4. The adjustment mechanism 1. , 2. , 3.
  • the mechanisms can be combined.
  • FIG. 5B is a timing chart when the mechanisms are combined.
  • the adjustment mechanism 1. , 2. , 3. the pulse control unit 12 obtains a mechanism for limiting the interval (t1) between the light source pulse signal and the external trigger pulse signal within the set input range in t8 ′ in the figure. .
  • the user set value may be automatically updated to the lower limit of t8 ′ (position adjacent to t3) using the automatic adjustment function of the pulse control unit 12.
  • the lower limit of t8 ′ shown in FIG. 5B corresponds to a position where the t1 set value takes a negative value.
  • FIGSecond Embodiment 6 and 7 are configuration diagrams showing the imaging system 2 according to the second embodiment.
  • the imaging system 2 shown in FIGS. 6 and 7 includes a light source device 10, a camera 11, and a computer 14 that operates as pulse control means.
  • the devices are connected with input / output interfaces and cables as necessary. Each device may be configured by wireless connection.
  • the system configuration shown in FIG. 6 is an arrangement used for laser light source development. In addition, in this system configuration, if a subject to be photographed is arranged in the optical path, photographing in the transmission mode is possible.
  • the system configuration shown in FIG. 7 is an arrangement used for observation of an object to be photographed in the reflection mode. Since the description of the light source device 10 and the camera 11 has been described in the first embodiment, the description is simplified.
  • the computer 14 (processor) is responsible for the pulse control unit 12 of the first embodiment.
  • the computer 14 also operates as a monitor that displays a sensing image received from the camera 11 via the input interface.
  • the computer 14 may also operate as a database by storing images in an internal storage device. Further, the computer 14 may operate to send an image to a server or an external storage device via a communication interface.
  • the computer 14 may perform image processing for obtaining a clarified image from a plurality of images.
  • the computer 14 generates a light source pulse signal that determines the light emission timing of the pulse light source and an external trigger pulse signal that determines the imaging timing for the infrared and terahertz band cameras, and outputs the output interfaces to the light source device 10 and the camera 11 respectively. Respectively.
  • the pulse control unit of the computer 14 generates a light source pulse signal and an external trigger pulse signal with periodicity having an external trigger pulse signal in a period preceding the light source pulse signal based on the set value.
  • the computer 14 may generate both pulse signal sequences for the interval between the light source pulse signal and the external trigger pulse signal according to the set value given by the user.
  • the computer 14 may accept the setting value from the user via a keyboard or a graphical user interface (input interface).
  • the computer 14 may include the adjustment mechanism described above, and the set value may be set automatically / semi-automatically.
  • the computer 14 may have any configuration as long as the processor can be operated to synchronize the clock pulse signals with each other and generate both pulse trains with a set time difference.
  • an application program may be created by combining pulse control programs that operate on a basic OS (Operating System).
  • the computer 14 may develop this application program in a memory to form a pulse control unit.
  • a desired image may be acquired by driving the processor of the computer 14 based on this program.
  • the imaging system 2 can improve real-time characteristics while clarifying an acquired image. Also, input of each set value, storage / display of acquired images, image clarification processing (various image filters, clarification by multiple images, color change, etc.), camera and light source adjustment, etc. are integrated on a graphical user interface It is also easy to do.
  • FIG. 8 is a configuration diagram illustrating the imaging system 3 according to the third embodiment.
  • the imaging system 3 shown in FIG. 8 includes a light source device 10, a camera 11, and a computer 14 that operates as pulse control means, as in the second embodiment.
  • the imaging system 3 of the present embodiment irradiates one pulse of terahertz wave from the light source device 10 and observes the one pulse of terahertz wave with the camera 11.
  • the system configuration shown in FIG. 8 is an arrangement used for observation of an object to be photographed in the reflection mode. Of course, you may arrange
  • the computer 14 generates a light source pulse signal that determines the light emission timing of the pulse light source and an external trigger pulse signal that determines the imaging timing for the infrared and terahertz band cameras, and outputs them to the light source device 10 and the camera 11, respectively.
  • the pulse control unit of the computer 14 generates a light source pulse signal and an external trigger pulse signal one pulse at a time before setting the external trigger pulse signal before the light source pulse signal.
  • the computer 14 may generate both the light source pulse signal and the external trigger pulse signal according to the timing given by the user.
  • the system configuration may be such that a user other than the user, for example, receives a pulse generation instruction (imaging instruction) from another computer or the like.
  • the imaging system 3 can improve the clarity of the acquired image by one pulse wave.
  • FIG. 9 is a configuration diagram illustrating an imaging system 4 according to the fourth embodiment.
  • the imaging system 4 shown in FIG. 9 has a configuration in which a pulse control unit is provided in the camera 15.
  • the imaging system 4 of the present embodiment generates a trigger pulse (light source pulse signal) that determines the light emission timing of the light source device 10 in the camera 15 (pulse control unit). Further, the camera 15 irradiates the imaging target with one pulse of terahertz wave from the light source device 10 and observes the one pulse of terahertz wave.
  • the system arrangement may be in reflection mode or transmission mode. Note that the description of the components already described in the previous embodiment is omitted or simplified.
  • the camera 15 includes an imaging sensor 13 that detects infrared rays or terahertz waves, and a pulse control unit. Further, an image processing unit (for image clarification), an output unit (output interface), and a monitor unit may be provided in the camera 15 as necessary.
  • the pulse control unit of the camera 15 sets the trigger pulse to be output to the light source device 10 and the exposure timing of the image sensor 13 that precedes the set time from the timing at which this trigger pulse is output in a synchronized state.
  • the camera 15 may generate the light source pulse signal according to the timing given by the user, or may generate it in accordance with a desired imaging timing (for example, imaging frame rate).
  • the imaging system 4 can enhance the clarity of the acquired image for each pulse wave or each pulse wave.
  • the system configuration of this embodiment is the same as that shown in FIG.
  • the camera 11 of the present embodiment uses a high-sensitivity bolometer type infrared / terahertz camera provided with an interface for receiving an external trigger pulse signal.
  • This high-sensitivity bolometer type infrared and terahertz camera is equipped with a terahertz array sensor (two-dimensional bolometer array), and the noise equivalent power of each pixel is as high as about 30 pW.
  • the light source device 10 a quantum cascade laser that emits light according to an input pulse signal sequence is used.
  • the pulse control unit 12 outputs a light source pulse signal and an external trigger pulse signal in a state where the light source device 10 and the camera 11 are connected to each other by a wired cable via an interface.
  • Camera 11 drives the array sensor using a horizontal synchronization clock and a vertical synchronization clock as internal signals for scanning.
  • the camera 11 is configured so that the horizontal synchronization clock is continuously sent until this synchronization signal is received, and the vertical synchronization clock is not sent until the external trigger pulse signal is received. Note that the relationship between the vertical synchronization clock and the horizontal synchronization clock may be reversed.
  • the timing for applying the pulse bias to the array sensor is adjusted by not sending this vertical synchronization clock to the array sensor until the predetermined scan timing.
  • the camera 11 When scanning according to the external trigger pulse signal, the camera 11 sends a short vertical synchronization clock after a predetermined time so that each pixel signal can be read, and then sends a vertical clock having a length of one frame to send each pixel signal. Is read. Thereafter, the camera 11 stops the vertical synchronization clock at the end of reading out the pixel signal, and stops reading out the pixel signal (pulse bias) until the next scan timing.
  • the camera 11 has a step of resetting the scan position of the array sensor to the start address of the scan immediately after receiving the external trigger signal.
  • the camera 11 reads the output signal value group of each pixel of the array sensor and forms one image when the predetermined scan timing is reached.
  • thermal time constant of this type of array sensor is generally in the range of 5 ms to 20 ms.
  • infrared rays or terahertz waves incident on each pixel are absorbed by the light receiving unit.
  • the temperature of the bolometer material arranged in the light receiving portion changes and its resistance value changes. This resistance change is read out by applying a bias voltage.
  • the pulse control unit 12 generates a light source pulse signal and an external trigger pulse signal according to the input set value, and outputs them to the light source device 10 and the camera 11.
  • the light source device 10 emits light according to the light source pulse signal.
  • the light emission delay time is ignored in this embodiment.
  • a reset pulse is generated by the controller at the rising edge of the external trigger pulse signal in synchronization with the clock signal, and the scan setting of the camera is reset (the scanning position of the bolometer array is set to the head address of the pixel). To return).
  • the camera 11 generates a vertical synchronization protection release pulse in the vertical synchronization signal (V IN ) by the controller so that the array sensor can be read out, and then scans after a predetermined clock elapses. During this scan, a light source pulse is emitted from the light source device 10 and reaches the camera 11.
  • pulsed electromagnetic waves can be stably detected by the camera 11 equipped with a high-sensitivity bolometer type array sensor.
  • the imaging system can acquire the terahertz wave emitted from the terahertz wave source as a clear and almost real-time image.
  • FIG. 11 is a schematic diagram of a beam pattern photographed by the mechanism of the present invention.
  • This figure shows an image that captures the beam pattern of a free electron laser. This image imitates one image when each image is acquired by setting the scan frame rate of the camera 11 to 30 Hz.
  • a in FIG. 10 time from the generation of the external trigger pulse signal to the start of sensing
  • B the light source is emitted after the generation of the external trigger pulse signal.
  • Time was set to 1 msec
  • C sensing time synchronized with the external trigger pulse signal
  • the thermal time constant of the pixels of the bolometer array used to acquire the image is “about 19 msec”. Therefore, if the light source pulse has reached the vicinity of the center of the array sensor, even if the head address of the scanning point of the image is in the upper left pixel of the screen, it is good until the scanning address advances to the vicinity of the center of the screen. Sensitivity can be maintained. That is, by performing initialization with the reset signal, the temporal decrease in the output signal value of the array sensor due to the thermal time constant can be maintained stably and slightly.
  • the noise is increased by realizing a mechanism in which the external trigger pulse signal precedes the light source generation pulse signal in time and the pulse light source reaches the readout time of each frame of the camera 11.
  • the electromagnetic wave from the pulse light source can be captured clearly and stably.
  • each part of the computer 14 that operates as a pulse control unit has the program according to the present invention developed in a memory, and operates each piece of hardware as a CPU (Central Processing Unit) based on the program. Realize. Further, this program may be recorded non-temporarily on a recording medium and distributed. The program recorded on the recording medium is read into a memory via a wired, wireless, or recording medium itself, and operates a control unit or the like. Examples of the recording medium include an optical disk, a magnetic disk, a semiconductor memory device, and a hard disk.
  • FIG. 12 is a configuration diagram illustrating an example of a pulse control unit.
  • the algorithm of the adjustment mechanism may be incorporated in the pulse output unit or may be incorporated in the pulse signal generation unit.
  • a pulsed light source that emits infrared or terahertz waves;
  • a camera for imaging by driving an imaging sensor;
  • a pulse control unit for generating a first trigger pulse for determining the light emission timing of the pulse light source and a second trigger pulse for determining the imaging timing of the camera;
  • the pulse control unit periodically generates the first trigger pulse and the second trigger pulse, and synchronizes the cycle of the first trigger pulse and the cycle of the second trigger pulse, respectively,
  • the imaging system according to the above supplementary note, wherein the imaging system outputs to a pulse light source and the camera.
  • the pulse control unit sets an interval between the first trigger pulse and the second trigger pulse to a set value when outputting the first trigger pulse or the second trigger pulse.
  • the pulse control unit is a set value that determines an interval between the first trigger pulse and the second trigger pulse based on a period from when the camera receives the second trigger pulse to when scanning is started.
  • the pulse control unit sets a set value for determining an interval between the first trigger pulse and the second trigger pulse as one preceding cycle excluding a light emission period of the pulsed light source based on the first trigger pulse.
  • the imaging system according to the above supplementary note, wherein the imaging system is set within a range.
  • the pulse control unit is configured to change an interval between the first trigger pulse and the second trigger pulse from one cycle of the first trigger pulse based on a light emission period of the pulse light source measured by the camera.
  • the imaging system according to the above supplementary note, wherein the imaging system is set within a time excluding the light emission period.
  • the pulse control unit sets a setting value for determining an interval between the first trigger pulse and the second trigger pulse according to an arrival delay time until the infrared or terahertz wave from the pulse light source reaches the camera.
  • the imaging system according to the above supplementary note, wherein the imaging system is set within a period excluding the arrival delay time with reference to the first trigger pulse.
  • a pulse generator that generates a first trigger pulse that determines the light emission timing of a pulse light source that emits infrared rays or terahertz waves, and a second trigger pulse that determines the imaging timing of a camera that drives and images the imaging sensor;
  • the pulse control device further comprising: an output unit that outputs the first trigger pulse to the pulse light source and outputs the second trigger pulse to the camera prior to the first trigger pulse.
  • the first trigger pulse and the second trigger pulse are periodically generated, and the period of the first trigger pulse and the period of the second trigger pulse are synchronized to each of the pulse light source and the camera.
  • the pulse control device as described in the above supplementary note, which outputs the pulse control device.
  • a setting value for setting an interval between the first trigger pulse and the second trigger pulse is set based on a period from when the camera receives the second trigger pulse to when scanning is started.
  • a set value that determines an interval between the first trigger pulse and the second trigger pulse in accordance with an arrival delay time until an infrared ray or terahertz wave from the pulse light source reaches the camera is set as the first trigger pulse. Is set within a period excluding the arrival delay time with reference to
  • An imaging sensor for detecting infrared or terahertz waves A pulse controller that generates a trigger pulse that determines the light emission timing of a pulse light source that emits infrared or terahertz waves; Including The said pulse control part outputs the said trigger pulse to the said pulse light source, determining the exposure timing of the said image sensor which preceded the time of setting value from the timing which outputs the said trigger pulse.
  • the pulse control unit sets a set value for determining an interval between the trigger pulse and the exposure timing within one preceding cycle excluding a light emission period of the pulse light source with reference to the trigger pulse.
  • the pulse control unit sets a set value that determines an interval between the trigger pulse and the exposure timing according to an arrival delay time until an infrared ray or a terahertz wave from the pulse light source reaches the camera, based on the trigger pulse.
  • the camera according to the above supplementary note, which is set within a period excluding the arrival delay time.
  • An imaging system that includes a pulse light source, a camera, and a pulse controller. Emitting infrared or terahertz waves from the pulse light source at a pulse interval received from the pulse controller, An image captured by driving the image sensor with the camera is acquired at a pulse interval received from the pulse controller, A first trigger pulse for determining the emission timing of the pulsed light source and a second trigger pulse for determining the imaging timing of the infrared and terahertz camera in the pulse control unit, respectively. At this time, Prior to the first trigger pulse, the second trigger pulse is generated with a set time interval, the first trigger pulse is output to the pulse light source, and the first trigger pulse is preceded. And outputting the second trigger pulse to the camera.
  • the pulse control unit periodically generates the first trigger pulse and the second trigger pulse, and synchronizes the cycle of the first trigger pulse and the cycle of the second trigger pulse, respectively,
  • the terahertz wave imaging method according to the above-described supplementary note, wherein the image is output to a pulse light source and the camera.
  • the pulse control unit sets an interval between the first trigger pulse and the second trigger pulse to a set value when outputting the first trigger pulse or the second trigger pulse.
  • a terahertz wave imaging method as set forth in the above supplementary note, which is characterized by the above.
  • the pulse control unit is a set value that determines an interval between the first trigger pulse and the second trigger pulse based on a period from when the camera receives the second trigger pulse to when scanning is started.
  • the terahertz wave imaging method according to the above supplementary note, characterized in that:
  • the pulse control unit sets a set value for determining an interval between the first trigger pulse and the second trigger pulse as one preceding cycle excluding a light emission period of the pulsed light source based on the first trigger pulse.
  • the terahertz wave imaging method according to the above supplementary note, wherein the terahertz wave is set within a range.
  • the pulse control unit is configured to change an interval between the first trigger pulse and the second trigger pulse from one cycle of the first trigger pulse based on a light emission period of the pulse light source measured by the camera.
  • the terahertz wave imaging method according to the above supplementary note, wherein the imaging method is set within a time period excluding the light emission period.
  • the pulse control unit sets a setting value for determining an interval between the first trigger pulse and the second trigger pulse according to an arrival delay time until the infrared or terahertz wave from the pulse light source reaches the camera.
  • the terahertz wave imaging method according to the above supplementary note, wherein the terahertz wave imaging method is set within a period excluding the arrival delay time with reference to the first trigger pulse.
  • the control unit of the information processing device A first trigger pulse that determines the light emission timing of a pulse light source that emits infrared or terahertz waves and a second trigger pulse that determines the imaging timing of the infrared and terahertz camera are preceded by the first trigger pulse.
  • the control unit as the pulse control unit periodically generates the first trigger pulse and the second trigger pulse, and synchronizes the cycle of the first trigger pulse and the cycle of the second trigger pulse.
  • the control unit is the pulse control unit, and the first trigger pulse and the second trigger pulse are calculated based on a period from when the camera receives the second trigger pulse to when scanning is started.
  • the program according to the above supplementary note, wherein the program is operated so as to set a setting value that determines the interval.
  • the control unit is the pulse control unit, and the interval between the first trigger pulse and the second trigger pulse is determined based on the light emission period of the pulse light source measured by the camera.
  • the control unit is the pulse control unit, and the interval between the first trigger pulse and the second trigger pulse is set according to the arrival delay time until the infrared or terahertz wave from the pulse light source reaches the camera.
  • the program causes the processor to operate as follows: Setting indicating a time interval between a first trigger pulse that determines the emission timing of a pulse light source that emits infrared or terahertz waves and a second trigger pulse that determines the imaging timing of the infrared and terahertz camera from the first input interface.
  • the first trigger pulse and the second trigger pulse are sequentially generated as a first trigger pulse train and a second trigger pulse train by the processor with a time interval according to the set value,
  • the first trigger pulse train is sequentially output from the first output interface to the pulse light source by the processor, and the second trigger pulse train is directed to the infrared / terahertz camera.
  • a sensing image is received from the infrared / terahertz camera via the second input interface, and the sensing image is output to at least one of the third output interface / internal storage device / monitor, Further, an adjustment mechanism for limiting the input range of the set value is operated by the processor as needed, The adjustment mechanism restricts a set value input range to the set value satisfying at least one of the following conditions: i) a value larger than the driving time of the infrared and terahertz camera ii) a terahertz wave width based on the light source pulse signal Iii) A value within one cycle excluding the arrival delay time of the terahertz wave based on the light source pulse signal.
  • the present invention acquires a beam profile of a pulsed electromagnetic wave emitted from a pulsed light source, thereby facilitating the development, manufacturing and inspection of various pulsed light sources, and imaging by expanding the beam from a high-intensity pulsed light source. It can be used for non-destructive inspection.
  • Imaging system 10 Light source device (pulse light source) 11 Camera (Terahertz camera) 12 Pulse control unit (pulse control means) 13 Imaging Sensor 14 Computer (Pulse Control Unit)

Abstract

This image pickup system that picks up images of terahertz waves is configured by including: a pulsed light source that emits infrared to terahertz waves; a camera that picks up images by driving an image pickup sensor; a pulse control unit that generates a first trigger pulse that determines light emitting timing of the pulsed light source, and a second trigger pulse that determines image pickup timing of the camera. The pulse control unit is operated such that the first trigger pulse is outputted to the pulsed light source, and the second trigger pulse is outputted to the camera earlier than the first trigger pulse.

Description

撮像システムImaging system
 本発明は、赤外領域からテラヘルツ領域を撮像帯域とした撮像システムに関し、詳しくは赤外領域からテラヘルツ領域の光を発光する光源装置と赤外領域からテラヘルツ領域を撮像するカメラを含む撮像システムに関する。 The present invention relates to an imaging system having an imaging band from the infrared region to the terahertz region, and more particularly to an imaging system including a light source device that emits light from the infrared region to the terahertz region and a camera that images the terahertz region from the infrared region. .
 今日、赤外領域からテラヘルツ領域(以下、THz帯又はテラヘルツ帯と記載)を撮像帯域とした撮像システムの開発が進められている。THz帯は、現行の電波観測技術や可視光撮像技術で良好に捉えることができない。一方、THz帯によるセンシングは、他の周波数領域にない情報を得られうる利点がある。 Today, development of an imaging system using an imaging band from an infrared region to a terahertz region (hereinafter referred to as a THz band or a terahertz band) is in progress. The THz band cannot be satisfactorily captured by current radio wave observation technology and visible light imaging technology. On the other hand, sensing in the THz band has an advantage that information that does not exist in other frequency regions can be obtained.
 例えば、THz帯の撮像では、光源の点灯消灯を繰り返し 且つ 光源の点灯期間に同期させてカメラで撮像画像を取得することで、光源の周波数帯域以外の電磁波の影響を除外した画像(いわゆるロックイン画像)を取得できる。このTHz波によるロックイン画像では、様々な物体(例えば紙や煙)の透過画像や反射画像を得る事ができる。THz帯の撮像技術は、透過しない物体も多々あり、透過物体と非透過物体の違いによって、様々な用途に利用できる。 For example, in imaging in the THz band, an image (so-called lock-in) that excludes the influence of electromagnetic waves other than the frequency band of the light source by repeatedly turning on and off the light source and acquiring a captured image with the camera in synchronization with the lighting period of the light source. Image). With this lock-in image using THz waves, it is possible to obtain transmission images and reflection images of various objects (for example, paper and smoke). The THz band imaging technique has many objects that do not transmit, and can be used for various applications depending on the difference between the transmitted object and the non-transmitted object.
 関連する技術は、特許文献1及び2が挙げられる。 Related techniques include Patent Documents 1 and 2.
 特許文献1及び2に記載した撮像システムは、THz帯の光源と、THz波を撮像するカメラと、画像処理装置を含み、光路中の撮像対象を画像化する。 The imaging systems described in Patent Documents 1 and 2 include a THz band light source, a camera that captures THz waves, and an image processing device, and image an imaging target in an optical path.
 この特許文献1に記載した技術では、撮像システムは、カメラから出力されたシンクロ信号を1/n倍に逓倍したタイミングに従った光源パルス信号を 光源を駆動させる駆動回路に与え、光源の発光期間とカメラの撮像期間(光源の発光期間と未発光期間を含む)を同期させる。加えて、撮像システムは、撮像期間に同期した発光期間で撮像された光源発光時の多数の画像と 未発光期間で光源未発光時の多数の画像とをカメラで撮像した後に、画像処理装置で画像処理して所望画像を生成する。この画像処理では、画像処理装置は、光源発光時の多数の画像の画像情報から、未光源発光時の同数の画像の画像情報を画素レベルで差し引き、得られた差画像を積分して鮮明化した所望画像を得る。 In the technique described in Patent Document 1, the imaging system supplies a light source pulse signal according to the timing obtained by multiplying the synchro signal output from the camera to 1 / n times to a driving circuit that drives the light source, and the light emission period of the light source And the imaging period of the camera (including the light emission period and the non-light emission period of the light source) are synchronized. In addition, the imaging system captures a large number of images when the light source emits light during the light emission period synchronized with the imaging period and a large number of images when the light source does not emit light during the non-light emitting period, Image processing is performed to generate a desired image. In this image processing, the image processing device subtracts the image information of the same number of images at the time of non-light source emission from the image information of a large number of images at the time of light source emission, and integrates the obtained difference images for sharpening. The desired image is obtained.
 また、特許文献2に記載した技術では、光源を駆動させる駆動回路の発光周期を、カメラのシンクロ信号に依存せずに独立可能な撮像方法を提供している。この手法では、撮像システムは、カメラで撮像された複数フレームにわたる画像群を収集し、個々のフレームの画像から画素毎に最大画像強度の画素を収取して一つの画像を生成する。この手法によって、光源の発光期間の周期とカメラ(内部回路)の撮像フレーム周期がずれていても、明瞭な画像が生成できる。 Also, the technique described in Patent Document 2 provides an imaging method in which the light emission period of a drive circuit that drives a light source can be independent without depending on a camera sync signal. In this method, the imaging system collects a group of images captured by a camera over a plurality of frames, and collects pixels having the maximum image intensity for each pixel from the images of the individual frames to generate one image. By this method, a clear image can be generated even if the cycle of the light emission period of the light source is different from the imaging frame cycle of the camera (internal circuit).
 なお、THz帯を撮像可能なカメラは、出願人が開発したテラヘルツカメラ(製品型番:IRV-T0831)や、オフィール社のPyrocam(TM)シリーズなどがある。両カメラは、非冷却赤外・テラヘルツカメラである。また、出願人が開発したテラヘルツカメラのアレイセンサはボロメータ型であり、良好な感度特性を有する。非特許文献1は、Pyrocam IVのユーザガイド(マニュアル)である。Pyrocam IVは、外部トリガの入力を受けて、外部トリガに同期した露光時間(露光タイミング)でセンシング可能な機能を有している。 Cameras capable of imaging the THz band include a terahertz camera (product model number: IRV-T0831) developed by the applicant, and the Pyrocam ( TM ) series of Offiel. Both cameras are uncooled infrared and terahertz cameras. Further, the array sensor of the terahertz camera developed by the applicant is a bolometer type and has good sensitivity characteristics. Non-Patent Document 1 is a user guide (manual) of Pyrocam IV. Pyrocam IV has a function capable of sensing with an exposure time (exposure timing) synchronized with an external trigger in response to an external trigger input.
特開2012-205217号公報(特許第5305482号)JP 2012-205217 A (Patent No. 5305482) 特開2014-160919号公報JP 2014-160919 A
 発明者らは、テラヘルツ帯(THz帯)を用いた撮像システムを、日々進歩させている。一方で、更なる技術的改善点として、取得画像の明瞭化とリアルタイム性の追求を図る。 The inventors are making progress in imaging systems using the terahertz band (THz band) every day. On the other hand, as further technical improvements, we will seek to clarify the acquired images and pursue real-time performance.
 上記改善点を追及するにあたり、技術的な課題として、カメラ内の撮像センサのスキャン開始タイミング、光源の発光タイミングの最適化を見据える。また、スキャン時間(露光時間)やセンサ感度等の撮像センサの特性も意識する。 In pursuing the above improvements, we will focus on optimizing the scan start timing of the image sensor in the camera and the light emission timing of the light source as technical issues. It is also conscious of the characteristics of the image sensor such as scan time (exposure time) and sensor sensitivity.
 上記特許文献1や特許文献2で挙げた撮像システムは、多数の撮像画像を組み合わせて、明瞭な画像の生成を試みている。 
 他方で、上記特許文献1や特許文献2で挙げた撮像システムは、合成に用いる所定量の画像群を得るための撮像期間(時間)が必要になる。換言すれば、撮像システムは、撮像を開始して所定撮像期間(時間)を経過した後でなければ生成画像を出力できない。このため、特許文献1や特許文献2で開示した撮像方法には、リアルタイム性をより向上させる課題を設定できる。
The imaging systems described in Patent Document 1 and Patent Document 2 try to generate a clear image by combining a large number of captured images.
On the other hand, the imaging systems described in Patent Document 1 and Patent Document 2 require an imaging period (time) for obtaining a predetermined amount of image groups used for composition. In other words, the imaging system can output the generated image only after a predetermined imaging period (time) has elapsed since the imaging was started. For this reason, the imaging method disclosed in Patent Literature 1 and Patent Literature 2 can be set with a problem of improving the real-time property.
 取得画像の明瞭化は、上記手法のように多数の撮像画像から明瞭な画像を画像合成するアプローチや、個々の撮像画像そのものを明瞭化するアプローチがある。 The clarification of the acquired image includes an approach of synthesizing a clear image from a large number of captured images as in the above method, and an approach of clarifying each captured image itself.
 個々の撮像画像そのものを明瞭化すれば、撮像システムは、明瞭な撮像画像を、多数の画像の取得を待たずに表示することが可能になる。また、多数の撮像画像から明瞭な画像を画像合成するアプローチにも良好に影響を与えられる。 If the individual captured images themselves are clarified, the imaging system can display clear captured images without waiting for acquisition of a large number of images. In addition, the approach of synthesizing a clear image from a large number of captured images can be favorably influenced.
 個々の画像の鮮明度は、光源(パルス光)やカメラ(撮像センサ;アレイセンサ)、撮像条件(使用周波数帯等)などによって大きく変わってしまう。 
 この中で、カメラの性能は重要である。カメラは、干渉長を広げるようにアレイセンサの構造を変更することによって、カメラの感度を向上させることができた。また、カメラは、露光時間を長く採る仕組みで感度を高められる。他方で、パルス光に合わせて露光時間を長く採れる仕組みは不明である。
The sharpness of each image varies greatly depending on the light source (pulsed light), camera (imaging sensor; array sensor), imaging condition (usage frequency band, etc.), and the like.
Among these, the performance of the camera is important. The camera was able to improve the sensitivity of the camera by changing the structure of the array sensor to widen the interference length. In addition, the sensitivity of the camera can be enhanced by a mechanism that takes a long exposure time. On the other hand, it is not clear how the exposure time can be increased according to the pulsed light.
 また、熱時定数を有するアレイセンサは、出力信号値が稼働開始時(駆動パルスを受けた瞬間)から時間経過と共に継時的に感度が減少する特性を有する。アレイセンサの熱時定数が小さいと、この感度の継時的減少の影響がより大きくなる。 
 このため、この種のアレイセンサは、露光可能区間が長いと、露光可能区間内の実露光タイミングの差による出力信号値の継時的変化の影響が大きくなる。
 換言すれば、露光可能区間の早い時期からパルス光を受けた場合と露光可能区間の遅い時期からパルス光を受けた場合とで、アレイセンサから出力される出力信号値が大きく変動する。
In addition, an array sensor having a thermal time constant has a characteristic that the sensitivity of the output signal value decreases over time with the passage of time from the start of operation (the moment when the drive pulse is received). If the thermal time constant of the array sensor is small, the effect of this time-dependent decrease in sensitivity becomes greater.
Therefore, in this type of array sensor, if the exposure possible section is long, the influence of the output signal value over time due to the difference in the actual exposure timing within the exposure possible section becomes large.
In other words, the output signal value output from the array sensor varies greatly depending on whether the pulse light is received from the early stage of the exposure possible section or the pulse light is received from the late stage of the exposure possible section.
 また、光源とアレイセンサとの距離(光路長:伝搬距離)は撮像条件によって変化しやすい。このため、アレイセンサのセンシングタイミングを計ることが難しい。 Also, the distance between the light source and the array sensor (optical path length: propagation distance) is likely to change depending on the imaging conditions. For this reason, it is difficult to measure the sensing timing of the array sensor.
 上記多くの複合的な事柄から生ずる問題を端的に指摘すれば、光源からのパルス光の入射タイミングとカメラの良好な撮像タイミングを安定して揃えることが困難であると云える。このため、既存技術の画像取得では、個々の取得画像にばらつきが生じ得る。結果的に、カメラの良好な感度の特性を最大限発揮できていなかった。 If we point out the problems arising from many complex matters, it can be said that it is difficult to stably align the incident timing of the pulsed light from the light source and the good imaging timing of the camera. For this reason, in the image acquisition of the existing technology, variations may occur in individual acquired images. As a result, the satisfactory sensitivity characteristics of the camera could not be exhibited.
 本発明は、上記多くの事柄を踏まえて、取得画像の明瞭化を図りつつリアルタイム性を追求した、テラヘルツ領域を撮像帯域に含む撮像システム、撮像方法および記録媒体を提供する。 The present invention provides an imaging system, an imaging method, and a recording medium that include a terahertz region in an imaging band, pursuing real-time characteristics while clarifying an acquired image based on the above-mentioned many matters.
 本発明に係る撮像システムは、赤外線ないしテラヘルツ波を発光するパルス光源と、撮像センサを駆動して撮像するカメラと、前記パルス光源の発光タイミングを定める第1のトリガパルスと前記カメラの撮像タイミングを定める第2のトリガパルスとをそれぞれ生成するパルス制御部と、を有し、前記パルス制御部は、前記第1のトリガパルスを前記パルス光源に出力し、前記第1のトリガパルスに先行して前記第2のトリガパルスを前記カメラに出力することを特徴とする。 An imaging system according to the present invention includes a pulse light source that emits infrared rays or terahertz waves, a camera that drives an imaging sensor to capture an image, a first trigger pulse that determines the light emission timing of the pulse light source, and the imaging timing of the camera. A pulse control unit that generates a second trigger pulse to be determined, and the pulse control unit outputs the first trigger pulse to the pulse light source, and precedes the first trigger pulse. The second trigger pulse is output to the camera.
 本発明の一実施形態に係るパルス制御装置は、赤外線ないしテラヘルツ波を発光するパルス光源の発光タイミングを定める第1のトリガパルスと撮像センサを駆動して撮像するカメラの撮像タイミングを定める第2のトリガパルスとをそれぞれ生成するパルス生成部と、前記第1のトリガパルスを前記パルス光源に出力し、前記第1のトリガパルスに先行して前記第2のトリガパルスを前記カメラに出力する出力部とを有することを特徴とする。 A pulse control device according to an embodiment of the present invention includes a first trigger pulse that determines a light emission timing of a pulse light source that emits infrared rays or terahertz waves, and a second trigger that determines an imaging timing of a camera that drives and images an image sensor. A pulse generator for generating a trigger pulse, and an output unit for outputting the first trigger pulse to the pulse light source and outputting the second trigger pulse to the camera prior to the first trigger pulse. It is characterized by having.
 本発明の一実施形態に係るカメラは、赤外線ないしテラヘルツ波を検出する撮像センサと、赤外線ないしテラヘルツ波を発光するパルス光源の発光タイミングを定めるトリガパルスを生成するパルス制御部と、を含み、前記パルス制御部は、前記トリガパルスを出力するタイミングから設定値の時間を先行した前記撮像センサの露光タイミングを定めつつ、前記トリガパルスを前記パルス光源に出力することを特徴とする。 A camera according to an embodiment of the present invention includes an imaging sensor that detects infrared rays or terahertz waves, and a pulse control unit that generates a trigger pulse that determines the light emission timing of a pulse light source that emits infrared rays or terahertz waves. The pulse control unit outputs the trigger pulse to the pulse light source while determining an exposure timing of the imaging sensor that precedes a set value time from a timing of outputting the trigger pulse.
 本発明の一実施形態に係る撮像方法は、パルス光源とカメラとパルス制御部を含む撮像システムで、前記パルス光源から赤外線ないしテラヘルツ波を前記パルス制御部から受け付けたパルス間隔で発光し、前記カメラで撮像センサを駆動して撮像する画像を前記パルス制御部から受け付けたパルス間隔で取得し、前記パルス制御部で前記パルス光源の発光タイミングを定める第1のトリガパルスと前記赤外・テラヘルツカメラの撮像タイミングを定める第2のトリガパルスとをそれぞれ出力する、この際に、前記第1のトリガパルスに先行して前記第2のトリガパルスを設定値の時間を開けて生成して、前記第1のトリガパルスを前記パルス光源に出力し、前記第1のトリガパルスに先行して前記第2のトリガパルスを前記カメラに出力することを特徴とする。 An imaging method according to an embodiment of the present invention is an imaging system including a pulse light source, a camera, and a pulse control unit, and emits infrared or terahertz waves from the pulse light source at a pulse interval received from the pulse control unit. The image sensor is driven to obtain an image to be captured at a pulse interval received from the pulse control unit, and the pulse control unit determines a light emission timing of the pulse light source and the first trigger pulse and the infrared and terahertz camera. And outputting a second trigger pulse for determining the imaging timing. At this time, the second trigger pulse is generated prior to the first trigger pulse at a set time, and the first trigger pulse is generated. The trigger pulse is output to the pulse light source, and the second trigger pulse is output to the camera prior to the first trigger pulse. It is characterized in.
 本発明の一実施形態に係る記録媒体は、情報処理装置の制御部を、赤外線ないしテラヘルツ波を発光するパルス光源の発光タイミングを定める第1のトリガパルスと赤外・テラヘルツカメラの撮像タイミングを定める第2のトリガパルスとを、前記第1のトリガパルスに先行して前記第2のトリガパルスを設定値の時間を開けて生成するパルス生成部と、前記第1のトリガパルスと前記第2のトリガパルスとを各々出力するパルス出力部として動作させることを特徴とする。 In a recording medium according to an embodiment of the present invention, a control unit of an information processing device determines a first trigger pulse that determines a light emission timing of a pulse light source that emits infrared rays or terahertz waves and an imaging timing of an infrared / terahertz camera. A pulse generation unit that generates the second trigger pulse before the first trigger pulse, and generates the second trigger pulse with a set time interval; the first trigger pulse and the second trigger pulse; It is characterized by operating as a pulse output section for outputting each trigger pulse.
 本発明によれば、取得画像の明瞭化を図りつつリアルタイム性を高めた、テラヘルツ領域を含む撮像帯域を有する撮像システム、撮像方法および記録媒体を提供できる。 According to the present invention, it is possible to provide an imaging system, an imaging method, and a recording medium having an imaging band including a terahertz region that improves the real-time property while clarifying an acquired image.
第1の実施形態に係る撮像システム1を示す構成図である。1 is a configuration diagram illustrating an imaging system 1 according to a first embodiment. 第1の実施形態に係る撮像システム1の変形例を示す構成図である。It is a lineblock diagram showing the modification of imaging system 1 concerning a 1st embodiment. 光源パルス信号と外部トリガパルス信号との関係を模式化したタイミングチャートである。It is the timing chart which modeled the relationship between a light source pulse signal and an external trigger pulse signal. 光源パルス信号と外部トリガパルス信号との時間差の範囲を調整する仕組みを説明するタイミングチャートである。It is a timing chart explaining the mechanism which adjusts the range of the time difference of a light source pulse signal and an external trigger pulse signal. 光源パルス信号と外部トリガパルス信号との時間差の範囲を調整する仕組みを説明する別のタイミングチャートである。It is another timing chart explaining the mechanism which adjusts the range of the time difference of a light source pulse signal and an external trigger pulse signal. 第2の実施形態に係る撮像システム2を示す構成図である。It is a block diagram which shows the imaging system 2 which concerns on 2nd Embodiment. 第2の実施形態に係る撮像システム2の変形例を示す構成図である。It is a block diagram which shows the modification of the imaging system 2 which concerns on 2nd Embodiment. 第3の実施形態に係る撮像システム3を示す構成図である。It is a block diagram which shows the imaging system 3 which concerns on 3rd Embodiment. 第4の実施形態に係る撮像システム4を示す構成図である。It is a block diagram which shows the imaging system 4 which concerns on 4th Embodiment. 光源パルス信号と外部トリガパルス信号とカメラ内の内部信号の関係を模式化したタイミングチャートである。It is the timing chart which modeled the relationship of a light source pulse signal, an external trigger pulse signal, and the internal signal in a camera. 撮像システムで撮影したビームパターンを模式化した図である。It is the figure which modeled the beam pattern image | photographed with the imaging system. 撮像システム2のパルス制御部の一構成例を示すブロック図である。3 is a block diagram illustrating a configuration example of a pulse control unit of the imaging system 2. FIG.
 本発明の実施形態を図面を用いて説明する。 Embodiments of the present invention will be described with reference to the drawings.
[第1の実施形態] 
 図1は、第1の実施形態に係る撮像システム1を示す構成図である。図2は、第1の実施形態に係る撮像システム1の変形例を示す構成図である。
[First Embodiment]
FIG. 1 is a configuration diagram illustrating an imaging system 1 according to the first embodiment. FIG. 2 is a configuration diagram illustrating a modified example of the imaging system 1 according to the first embodiment.
 図1及び図2に示す撮像システム1は、光源装置10とカメラ11とパルス制御部12を含んでいる。各装置間は、必要に応じたケーブルで接続されている。なお、各装置間は、無線接続で構成してもよい。図1に示すシステム構成は、レーザー光源の開発に用いる配置である。また、本システム構成は、光路中に撮影対象物を配置すれば、透過モードによる撮影が可能である。図2に示すシステム構成は、反射モードによる撮影対象物の観察に用いる配置である。 The imaging system 1 shown in FIGS. 1 and 2 includes a light source device 10, a camera 11, and a pulse control unit 12. The devices are connected with cables as necessary. Each device may be configured by wireless connection. The system configuration shown in FIG. 1 is an arrangement used for developing a laser light source. In addition, in this system configuration, if a subject to be photographed is arranged in the optical path, photographing in the transmission mode is possible. The system configuration shown in FIG. 2 is an arrangement used for observation of an object to be photographed in the reflection mode.
 光源装置10は、パルス制御部12から受け付けた光源パルス信号のパルス間隔で赤外線ないしテラヘルツ波を発光する。発光する周波数帯は、測定対象や諸条件に合わせて適宜さだめればよい。光源装置10は、例えばフリーエレクトロンレーザー装置が利用できる。光源装置10は、受け付けたパルス間隔で赤外線ないしテラヘルツ波を発光する装置であれば特に構造は限定しない。 The light source device 10 emits infrared rays or terahertz waves at the pulse interval of the light source pulse signal received from the pulse control unit 12. The frequency band to emit light may be appropriately determined according to the measurement object and various conditions. As the light source device 10, for example, a free electron laser device can be used. The structure of the light source device 10 is not particularly limited as long as the light source device 10 emits infrared rays or terahertz waves at received pulse intervals.
 カメラ11は、パルス制御部12から受け付けた外部トリガパルス信号のパルス間隔で撮像センサ13を駆動する。駆動された撮像センサ13は、光源装置10から放射された赤外線やテラヘルツ波をセンシングする。このように、カメラ11は、撮像センサ13を外部トリガに従って動作させる。この撮像動作の微調整についても後述する。また、カメラ11は、撮像センサ13の駆動停止タイミングを設定できることが望ましい。カメラ11は、撮像された像をモニターやコンピュータなどに出力する。 The camera 11 drives the imaging sensor 13 at the pulse interval of the external trigger pulse signal received from the pulse control unit 12. The driven imaging sensor 13 senses infrared rays and terahertz waves emitted from the light source device 10. Thus, the camera 11 operates the imaging sensor 13 according to the external trigger. This fine adjustment of the imaging operation will also be described later. Further, it is desirable that the camera 11 can set the drive stop timing of the image sensor 13. The camera 11 outputs the captured image to a monitor or a computer.
 パルス制御部12は、パルス光源の発光タイミングを定める光源パルス信号とカメラ用の撮像タイミングを定める外部トリガパルス信号とを第1のトリガパルス及び第2のトリガパルスとしてそれぞれ生成して、光源装置10とカメラ11にそれぞれ出力するように構成されている。この際、パルス制御部12は、光源パルス信号に先行した周期区間に外部トリガパルス信号を有する周期性で、光源パルス信号列と外部トリガパルス信号列とを生成する。なお、パルス制御部12は、単発の光源パルス信号と外部トリガパルス信号を、第1のトリガパルスに先行して第2のトリガパルスを所定時間開けて生成する形態でもよい。また、パルス制御部12は、光源パルス信号と外部トリガパルス信号との間隔を、ユーザから与えられた設定値に従って両パルス信号列を生成すればよい。この設定値は、後述するように、自動的/半自動的に設定可能にしてもよい。 The pulse control unit 12 generates a light source pulse signal that determines the light emission timing of the pulse light source and an external trigger pulse signal that determines the imaging timing for the camera as a first trigger pulse and a second trigger pulse, respectively, and the light source device 10 And output to the camera 11, respectively. At this time, the pulse controller 12 generates a light source pulse signal sequence and an external trigger pulse signal sequence with a periodicity having an external trigger pulse signal in a period preceding the light source pulse signal. The pulse control unit 12 may generate the single light source pulse signal and the external trigger pulse signal by opening the second trigger pulse for a predetermined time prior to the first trigger pulse. Further, the pulse control unit 12 may generate both pulse signal sequences for the interval between the light source pulse signal and the external trigger pulse signal according to the set value given by the user. This set value may be set automatically / semi-automatically as will be described later.
 パルス制御部12は、各々のクロックパルス信号を相互に同期させ、且つ設定した値の時間差で両パルス列を生成可能な構成であればどのような構成でもよい。例えば、複数のクロックジェネレータ機能を内在するクロックジェネレータ装置や、マイコンでパルス信号列を調整可能に生成するマイコンボード、電子回路で構成してもよい。 The pulse control unit 12 may have any configuration as long as each clock pulse signal is synchronized with each other and both pulse trains can be generated with a time difference between set values. For example, it may be configured by a clock generator device having a plurality of clock generator functions, a microcomputer board that can adjust a pulse signal sequence by a microcomputer, or an electronic circuit.
 次に、撮像システム1の動作を説明する。 Next, the operation of the imaging system 1 will be described.
 図3は、光源パルス信号と外部トリガパルスとの関係を模式化したタイミングチャートである。図中の(b)は、(a)の拡大図である。 
 図中に示すt1は、ユーザから与えられた設定値に従った時間間隔である。 
 このt1は、光源パルス信号に対する外部トリガパルス信号の先行時間を示している。図中のセンサ駆動指示周期(t2)と発光指示周期(t2)は、基本的に同じ周期になる。この周期(t2)は、用いる光源や測定対象などに合わせて適宜定めればよい。説明上、時間として先行する側(左方向)を正の値と採り、時間として遅れる側(右方向)を負の値とする。撮像システム1は、ユーザから負の値でt1の設定値を受け付け得るように構成されてもよい。このt1の負の領域は、テラヘルツ波の到達遅延量が大きい場合に有効に利用しやすい。
FIG. 3 is a timing chart schematically illustrating the relationship between the light source pulse signal and the external trigger pulse. (B) in the figure is an enlarged view of (a).
T1 shown in the figure is a time interval according to a set value given by the user.
This t1 indicates the preceding time of the external trigger pulse signal with respect to the light source pulse signal. The sensor drive instruction cycle (t2) and the light emission instruction cycle (t2) in the figure are basically the same cycle. This period (t2) may be appropriately determined according to the light source to be used, the measurement target, and the like. For the sake of explanation, the side preceding the time (left direction) is taken as a positive value, and the side lagging as time (right direction) is taken as a negative value. The imaging system 1 may be configured to accept a set value of t1 as a negative value from the user. This negative region of t1 is easy to use effectively when the arrival delay amount of the terahertz wave is large.
 パルス制御部12は、光源パルス信号と外部トリガパルス信号とをそれぞれ周期的(図3のt2参照)に生成して出力する。この際に、光源パルス信号と外部トリガパルス信号との間隔(t1)を、設定値に従った光源パルス信号に先行した周期区間に外部トリガパルス信号を有する周期性で各々のパルスを生成する。 
 光源装置10は、生成された光源パルス信号列を受けて、そのパルス間隔で所定のパルス幅のテラヘルツ波を発光する。また、カメラ11は、生成された外部トリガパルス信号列を受けて、そのパルス間隔で撮像センサ13を駆動する。光源装置10から送出されるテラヘルツ波パルス幅は、光源パルス信号の幅と一致させてもよいし、異なっていてもよい。このパルス幅は、測定対象物などに合わせて適宜定めればよい。後述する図3(b),図4(a)は、光源パルス信号とテラヘルツ波のパルス幅が一致している事例である。また、図4(b),図5(a),(b)は、光源パルス信号の幅よりもパルス幅が長いテラヘルツ波を発光装置10が発光する事例である。また、光源パルス信号の幅よりもパルス幅が短いテラヘルツ波を発光することであっても構わない。
The pulse controller 12 generates and outputs a light source pulse signal and an external trigger pulse signal periodically (see t2 in FIG. 3). At this time, the interval (t1) between the light source pulse signal and the external trigger pulse signal is generated with a periodicity having the external trigger pulse signal in the period preceding the light source pulse signal according to the set value.
The light source device 10 receives the generated light source pulse signal sequence and emits a terahertz wave having a predetermined pulse width at the pulse interval. The camera 11 receives the generated external trigger pulse signal sequence and drives the image sensor 13 at the pulse interval. The terahertz wave pulse width transmitted from the light source device 10 may be the same as or different from the width of the light source pulse signal. This pulse width may be appropriately determined according to the measurement object. FIGS. 3B and 4A described later are examples in which the pulse widths of the light source pulse signal and the terahertz wave coincide with each other. 4B, 5A, and 5B are examples in which the light emitting device 10 emits a terahertz wave having a pulse width longer than that of the light source pulse signal. Alternatively, a terahertz wave having a pulse width shorter than that of the light source pulse signal may be emitted.
 システム内の各装置が各々上記動作を行うことで、光源装置10からのパルス光の入射タイミングとカメラ11の良好な撮像タイミングを安定して揃えられる。 Each device in the system performs the above operation, so that the incident timing of the pulsed light from the light source device 10 and the good imaging timing of the camera 11 can be stably aligned.
 このカメラ11が撮像センサ13を駆動するタイミング及び期間は、光源装置10の光源からの光(パルス光)がカメラ11の1読出時間(1フレーム)内に収まることが望ましい。また、このタイミングは、光源装置10の光源からの光(パルス光)が到達する前に、撮像センサ13を駆動させておくことが望ましい。 
 このため、カメラ11は、撮像センサ13を駆動するタイミング及び停止するタイミングを、外部トリガパルスを基準に調整する構成を含むことが望ましい。具体的には、カメラ11は、撮像センサ13を駆動するタイミングを、外部トリガパルス信号と光源パルス信号との間、すなわち図3に示したt1の期間内に開始することが望ましい。
The timing and period when the camera 11 drives the image sensor 13 is preferably such that the light (pulse light) from the light source of the light source device 10 falls within one reading time (one frame) of the camera 11. Further, at this timing, it is desirable to drive the image sensor 13 before the light (pulse light) from the light source of the light source device 10 arrives.
For this reason, it is desirable that the camera 11 includes a configuration in which the timing for driving and stopping the imaging sensor 13 is adjusted based on the external trigger pulse. Specifically, it is desirable that the camera 11 starts the timing for driving the image sensor 13 between the external trigger pulse signal and the light source pulse signal, that is, within the period t1 shown in FIG.
 カメラ11は、撮像センサ13の駆動をそのセンサ種別に応じて適宜行えばよい。例えば、ボロメータ型の非冷却赤外・テラヘルツカメラであれば、外部トリガパルス信号を受けてから所定時間経過後に、アレイセンサの走査時に用いるバイアス電圧を印加するように構成すればよい。また赤外・テラヘルツカメラは、走査(スキャン)位置の初期化もこのタイミングで行えばよい。この所定時間は、外部トリガパルス信号を基準に、t1時間内でバイアス電圧の印加を開始する値を採ることが望ましい。また、赤外・テラヘルツカメラは、アレイセンサによる走査(スキャン)後に、バイアス電圧の印加を自動的に停止する仕組みも具備することが望ましい。この停止タイミングは、ユーザに走査期間(時間)を入力させて定めてもよいし、カメラ11の設定値として幾つかの値を予め有していてもよい。 The camera 11 may appropriately drive the image sensor 13 according to the sensor type. For example, in the case of a bolometer-type uncooled infrared / terahertz camera, a bias voltage used for scanning of the array sensor may be applied after a predetermined time has elapsed after receiving the external trigger pulse signal. In the infrared / terahertz camera, the scanning position may be initialized at this timing. The predetermined time is desirably a value at which application of the bias voltage is started within t1 time with reference to the external trigger pulse signal. In addition, the infrared / terahertz camera preferably includes a mechanism for automatically stopping the application of the bias voltage after scanning by the array sensor. This stop timing may be determined by allowing the user to input a scanning period (time), or may have some values as setting values of the camera 11 in advance.
 なお、t1やt2の値は、カメラ11にユーザが入力してもよいし、パルス制御部12が有線若しくは無線を介して通知する構成としてもよい。 It should be noted that the values of t1 and t2 may be input by the user to the camera 11, or the pulse control unit 12 may be notified via a wired or wireless connection.
 この構成及び動作によって、撮像システム1は、取得画像の明瞭化を図りつつリアルタイム性を高められる。 With this configuration and operation, the imaging system 1 can improve the real-time property while clarifying the acquired image.
 ここで、パルス制御部12の光源パルス信号と外部トリガパルス信号とを生成する調整メカニズムについて、幾つか説明する。以下で説明する仕組みは、全て有する必要はないものの、多くの仕組みを有している方がシステムの利便性が高まる。 Here, some adjustment mechanisms for generating the light source pulse signal and the external trigger pulse signal of the pulse controller 12 will be described. Although it is not necessary to have all the mechanisms described below, the convenience of the system is enhanced by having many mechanisms.
[調整メカニズム1.] 
 パルス制御部12は、カメラ11の駆動時間を踏まえて、パルス信号列間の時間差(前述のt1)を定める設定値入力範囲を調整するメカニズムを有してもよい。カメラ11の駆動時間は、カメラ11がトリガを受けてからスキャンを開始するまでの値や装置限界の値(トリガによる駆動指示から撮像センサを駆動させるまでの最短時間)を用いても他の設定から定めた値を用いてもかまわない。このメカニズムでは、パルス制御部12は、カメラ11の駆動時間(図4中のt3)よりも大きい値のみをt1の値として採用する。換言すれば、パルス信号間の時間差の範囲(設定値の入力範囲)は、このメカニズムを働かせることで、図中のt1’の範囲内となる。
[Adjustment mechanism 1. ]
The pulse control unit 12 may have a mechanism for adjusting a set value input range that determines a time difference between the pulse signal sequences (the above-described t1) based on the driving time of the camera 11. The driving time of the camera 11 may be set in another way even if a value from the time when the camera 11 receives a trigger to the start of scanning or a value of an apparatus limit (the shortest time from driving instruction by trigger to driving the image sensor) is used. You may use the value determined from. In this mechanism, the pulse control unit 12 adopts only a value larger than the driving time of the camera 11 (t3 in FIG. 4) as the value of t1. In other words, the range of the time difference between the pulse signals (set value input range) is within the range of t1 ′ in the figure by operating this mechanism.
 具体的な構成は、例えば、パルス制御部12内で、ユーザから受け付けるt1の値の範囲をt3の値から計算して制限したり、ユーザにエラーを返したりするようにしてもよい。また、パルス制御部12に自動調整機能(アジャスト機能)を設けて、ユーザ設定値がt3内であった設定をt1’の下限(t3に隣接する位置)に自動更新するようにしてもよい。 The specific configuration may be, for example, limiting the range of t1 values received from the user by calculating from the value of t3 within the pulse control unit 12, or returning an error to the user. Further, the pulse control unit 12 may be provided with an automatic adjustment function (adjustment function) so that the setting whose user set value is within t3 is automatically updated to the lower limit of t1 '(position adjacent to t3).
 このメカニズムを設けることで、光源からの光の到達前にカメラ11(センサ)を駆動させることが担保でき、システム全体の利便性が増す。 By providing this mechanism, it is possible to ensure that the camera 11 (sensor) is driven before the light from the light source reaches, and the convenience of the entire system increases.
[調整メカニズム2.] 
 パルス制御部12は、テラヘルツ波パルス幅値(1パルス発光時間)の入力を受け付けて、パルス光源から照射されるテラヘルツ波パルス幅(図4中のt4,テラヘルツ波発光期間)に従って、光源パルス信号と外部トリガパルス信号との間隔(t1)を定める設定値を、光源パルス信号を基準にテラヘルツ波幅を除いた1周期以内(t5)の値に制限するメカニズムを有してもよい。
[Adjustment mechanism 2. ]
The pulse controller 12 receives an input of a terahertz wave pulse width value (one pulse emission time), and a light source pulse signal according to the terahertz wave pulse width (t4, terahertz wave emission period in FIG. 4) emitted from the pulse light source. There may be a mechanism for limiting the set value that defines the interval (t1) between the external trigger pulse signal and the external trigger pulse signal to a value within one cycle (t5) excluding the terahertz wave width based on the light source pulse signal.
 具体的な構成は、例えば、自動調整機能(アジャスト機能)として、t1,t2の値とテラヘルツ波幅値(時間)t4との関係が不整合になる際に、ユーザにエラーを返したり、許容範囲内の値にユーザ設定値を自動更新したりするようにしてもよい。テラヘルツ波幅値は、ユーザから入力を受け付ける構成でもよいし、光源装置10からその値を取得する構成にしてもよい。また、カメラ11にテラヘルツ波幅を実測するメカニズムを具備して、その実測値(テラヘルツ波発光期間)をパルス制御部12が有線若しくは無線を介して取得するように撮像システムを構成してもよい。 For example, as an automatic adjustment function (adjustment function), when the relationship between the values of t1 and t2 and the terahertz wave width value (time) t4 becomes inconsistent, an error is returned to the user or the allowable range The user set value may be automatically updated to the value within. The terahertz wave width value may be configured to receive an input from the user, or may be configured to acquire the value from the light source device 10. Further, the imaging system may be configured such that the camera 11 has a mechanism for actually measuring the terahertz wave width, and the pulse control unit 12 acquires the actually measured value (the terahertz wave emission period) via a wire or wirelessly.
 このメカニズムを設けることで、光源装置10の光源から照射されるテラヘルツ波幅が各時間間隔に対して長い場合でも、光源からの1パルス光の到達前で且つ前1パルスの消滅後にカメラ11(センサ)が駆動させることが担保でき、システム全体の利便性が増す。 By providing this mechanism, even when the terahertz wave width irradiated from the light source of the light source device 10 is long with respect to each time interval, the camera 11 (sensor) before the arrival of one pulse of light from the light source and after the disappearance of the previous one pulse. ) Can be secured and the convenience of the entire system is increased.
[調整メカニズム3.] 
 パルス制御部12は、テラヘルツ波到達遅延時間(値)の入力を受け付けて、パルス光源から照射されるテラヘルツ波の到達遅延時間(図5中のt6)に従って、光源パルス信号と外部トリガパルス信号との間隔(t1)を定める設定値を、光源パルス信号を基準に遅延時間(t6)を除いた1周期以内(t7)の値に制限するメカニズムを有してもよい。また、ユーザから負のt1を受け付けている場合であっても、前後の周期間で許容区間を共有すればよい。また、パルス制御部12は、テラヘルツ波幅(t4)が入力されていれば、光源パルス信号と外部トリガパルス信号との間隔(t1)を、テラヘルツ波幅(t4)と遅延時間(t6)の合計時間を除いた1周期以内(t8)の値に設定するとよい。
[Adjustment mechanism 3. ]
The pulse control unit 12 receives the input of the terahertz wave arrival delay time (value), and according to the arrival delay time of the terahertz wave irradiated from the pulse light source (t6 in FIG. 5), the light source pulse signal and the external trigger pulse signal There may be a mechanism for limiting the set value for determining the interval (t1) to a value within one period (t7) excluding the delay time (t6) with reference to the light source pulse signal. Moreover, even if it is a case where negative t1 is received from a user, what is necessary is just to share an allowance area between the periods before and behind. Further, if the terahertz wave width (t4) is input, the pulse control unit 12 sets the interval (t1) between the light source pulse signal and the external trigger pulse signal to the total time of the terahertz wave width (t4) and the delay time (t6). It may be set to a value within one cycle (t8) excluding.
 テラヘルツ波の到達遅延時間は、光路長に影響を受ける。また、到達遅延時間は、光源装置10が光源パルス信号を受けてから実際にテラヘルツ波を放出するまでの時間に影響を受ける。この到達遅延時間は、不明であることや無視できる場合があるものの本質的には必ず存在する。この到達遅延時間に対して、ユーザによる想定値の入力以外にも幾つかの値を選択可能値として予め準備しておくことが望ましい。また、光源装置10の発光遅延時間と伝搬遅延時間とを分けて設定値として受け付けるシステム構成としてもよい。 The arrival delay time of terahertz waves is affected by the optical path length. The arrival delay time is affected by the time from when the light source device 10 receives the light source pulse signal until when the terahertz wave is actually emitted. Although this arrival delay time is unknown or may be negligible, it essentially exists. For this arrival delay time, it is desirable to prepare in advance several values as selectable values in addition to the input of the assumed value by the user. Further, a system configuration may be adopted in which the light emission delay time and the propagation delay time of the light source device 10 are separately received as set values.
 具体的な構成は、例えば、自動調整機能(アジャスト機能)として、t1,t2,t4,t6の値の関係が不整合になる際に、ユーザにエラーを返したり、許容範囲内の値にユーザ設定値を自動更新したりするようにしてもよい。t6の値は、ユーザから一つの値として入力を受け付ける構成でもよいし、発光遅延時間と伝搬遅延時間のように複数に分割された個々の値を受け付けてもよい。また、気体中や任意媒体中など伝搬路種別や光路距離や撮影対象物までの距離をユーザから受け付けて、該当する選択可能値を自動選定する構成にしてもよい。また、カメラ11にテラヘルツ波パルス幅を観測するメカニズムを具備して、その値をパルス制御部12が取得するようにシステムを構成してもよい。 The specific configuration is, for example, as an automatic adjustment function (adjustment function), when the relationship between the values of t1, t2, t4, and t6 becomes inconsistent, an error is returned to the user, or the value is within the allowable range. The set value may be automatically updated. The value of t6 may be configured to accept an input from the user as one value, or may accept individual values divided into a plurality of values such as a light emission delay time and a propagation delay time. Further, the configuration may be such that the propagation path type, the optical path distance and the distance to the object to be imaged are received from the user, such as in a gas or an arbitrary medium, and the corresponding selectable value is automatically selected. Further, the camera 11 may be provided with a mechanism for observing the terahertz wave pulse width, and the system may be configured so that the pulse controller 12 acquires the value.
 このメカニズムを設けることで、光源から照射されるテラヘルツ波がカメラ11に到達するまでの遅延時間が長い場合でも、光源からの1パルス光の到達前で且つ前1パルスの消滅後にカメラ11(センサ)が駆動させることが担保でき、システム全体の利便性が増す。 By providing this mechanism, even when the delay time until the terahertz wave irradiated from the light source reaches the camera 11 is long, the camera 11 (sensor) before the arrival of one pulse of light from the light source and after the disappearance of the previous one pulse. ) Can be secured and the convenience of the entire system is increased.
[調整メカニズム4.] 
 上記調整メカニズム1.,2.,3.の仕組みは、組み合わせることができる。図5(b)は、各仕組みを組み合わせた際のタイミングチャートである。また、例えば、上記1.と2.の組み合わせや、上記1.,3.,上記2.と3.の組み合わせのように適宜自由に組み合わせればよい。上記調整メカニズム1.,2.,3.を組み合わせて使用することで結果的に、パルス制御部12は、光源パルス信号と外部トリガパルス信号との間隔(t1)を、図中t8’内の設定入力範囲内に限定するメカニズムが得られる。また、パルス制御部12の自動調整機能を用いて、ユーザ設定値をt8’の下限(t3に隣接する位置)に自動更新するようにしてもよい。なお、図5(b)に示したt8’の下限は、t1設定値が負の値を採る位置にあたる。
[Adjustment mechanism 4. ]
The adjustment mechanism 1. , 2. , 3. The mechanisms can be combined. FIG. 5B is a timing chart when the mechanisms are combined. In addition, for example, the above 1. And 2. Or a combination of the above 1. , 3. , 2. And 3. As long as it is a combination, it may be combined freely as appropriate. The adjustment mechanism 1. , 2. , 3. As a result, the pulse control unit 12 obtains a mechanism for limiting the interval (t1) between the light source pulse signal and the external trigger pulse signal within the set input range in t8 ′ in the figure. . Alternatively, the user set value may be automatically updated to the lower limit of t8 ′ (position adjacent to t3) using the automatic adjustment function of the pulse control unit 12. The lower limit of t8 ′ shown in FIG. 5B corresponds to a position where the t1 set value takes a negative value.
 上記調整メカニズムを設けることで、パルス光源がカメラ11の読出時間内に到達することを担保しつつ、カメラ11(センサ)の感度を最大限に引き出し得るタイミングで継続的に安定して撮像を開始することが可能になる。 By providing the above adjustment mechanism, it is ensured that the pulsed light source arrives within the readout time of the camera 11, and imaging is started stably and stably at the timing at which the sensitivity of the camera 11 (sensor) can be maximized. It becomes possible to do.
[第2の実施形態] 
 図6及び図7は、第2の実施形態に係る撮像システム2を示す構成図である。
[Second Embodiment]
6 and 7 are configuration diagrams showing the imaging system 2 according to the second embodiment.
 図6及び図7に示す撮像システム2は、光源装置10とカメラ11とパルス制御手段として動作するコンピュータ14を含んでいる。各装置間は、必要に応じた入出力インタフェース及びケーブルで接続されている。なお、各装置間は、無線接続で構成してもよい。図6に示すシステム構成は、レーザー光源開発に用いる配置である。また、本システム構成は、光路中に撮影対象物を配置すれば、透過モードによる撮影が可能である。図7に示すシステム構成は、反射モードによる撮影対象物の観察に用いる配置である。光源装置10とカメラ11の説明は、第1の実施形態で説明済みであるため、説明を簡略化する。 The imaging system 2 shown in FIGS. 6 and 7 includes a light source device 10, a camera 11, and a computer 14 that operates as pulse control means. The devices are connected with input / output interfaces and cables as necessary. Each device may be configured by wireless connection. The system configuration shown in FIG. 6 is an arrangement used for laser light source development. In addition, in this system configuration, if a subject to be photographed is arranged in the optical path, photographing in the transmission mode is possible. The system configuration shown in FIG. 7 is an arrangement used for observation of an object to be photographed in the reflection mode. Since the description of the light source device 10 and the camera 11 has been described in the first embodiment, the description is simplified.
 コンピュータ14(プロセッサ)は、第1の実施形態のパルス制御部12の役割を受け持つ。また、コンピュータ14は、カメラ11から入力インタフェースを介して受け付けたセンシング画像を表示するモニターとしても動作する。また、コンピュータ14は、内部記憶装置に画像を記憶してデータベースとしても動作してもよい。また、コンピュータ14は、通信インタフェースを介してサーバや外部記憶装置に画像を送るように動作してもよい。また、コンピュータ14は、複数画像から明瞭化した画像を得る画像処理を実施してもよい。 The computer 14 (processor) is responsible for the pulse control unit 12 of the first embodiment. The computer 14 also operates as a monitor that displays a sensing image received from the camera 11 via the input interface. The computer 14 may also operate as a database by storing images in an internal storage device. Further, the computer 14 may operate to send an image to a server or an external storage device via a communication interface. The computer 14 may perform image processing for obtaining a clarified image from a plurality of images.
 コンピュータ14は、パルス光源の発光タイミングを定める光源パルス信号と赤外・テラヘルツ帯のカメラ用の撮像タイミングを定める外部トリガパルス信号とをそれぞれ生成して、光源装置10とカメラ11にそれぞれの出力インタフェースを介してそれぞれ出力する。この際、コンピュータ14のパルス制御部は、設定値に基づいて、光源パルス信号に先行した周期区間に外部トリガパルス信号を有する周期性で、光源パルス信号と外部トリガパルス信号とをそれぞれ生成する。 The computer 14 generates a light source pulse signal that determines the light emission timing of the pulse light source and an external trigger pulse signal that determines the imaging timing for the infrared and terahertz band cameras, and outputs the output interfaces to the light source device 10 and the camera 11 respectively. Respectively. At this time, the pulse control unit of the computer 14 generates a light source pulse signal and an external trigger pulse signal with periodicity having an external trigger pulse signal in a period preceding the light source pulse signal based on the set value.
 また、コンピュータ14は、光源パルス信号と外部トリガパルス信号との間隔を、ユーザから与えられた設定値に従って両パルス信号列を生成すればよい。コンピュータ14は、設定値をキーボードやグラフィカルユーザインタフェース(入力インタフェース)を介してユーザから受け付ければよい。この設定値について、コンピュータ14は、上述した調整メカニズムを含み、自動的/半自動的に設定値を設定可能にしてもよい。 Further, the computer 14 may generate both pulse signal sequences for the interval between the light source pulse signal and the external trigger pulse signal according to the set value given by the user. The computer 14 may accept the setting value from the user via a keyboard or a graphical user interface (input interface). For this set value, the computer 14 may include the adjustment mechanism described above, and the set value may be set automatically / semi-automatically.
 コンピュータ14は、そのプロセッサを、各々のクロックパルス信号相互を同期させ且つ設定した値の時間差で両パルス列を生成可能に、動作させられればどのような構成でもよい。一例では、基本OS(Operating System)上で動作するパルス制御プログラムを組み合わせてアプリケーションプログラムを作成すればよい。コンピュータ14は、このアプリケーションプログラムをメモリに展開してパルス制御部を形成すればよい。 The computer 14 may have any configuration as long as the processor can be operated to synchronize the clock pulse signals with each other and generate both pulse trains with a set time difference. In one example, an application program may be created by combining pulse control programs that operate on a basic OS (Operating System). The computer 14 may develop this application program in a memory to form a pulse control unit.
 また、カメラ11から受け付ける画像群を分析するプログラム(例えば特許文献1や2の開示技術)と組み合わせてもよい。このプログラムに基づいてコンピュータ14のプロセッサを駆動して、所望の画像を取得すればよい。 Further, it may be combined with a program for analyzing an image group received from the camera 11 (for example, disclosed techniques of Patent Documents 1 and 2). A desired image may be acquired by driving the processor of the computer 14 based on this program.
 この構成及び動作によって、撮像システム2は、取得画像の明瞭化を図りつつリアルタイム性を高められる。 
 また、各設定値の入力と、取得画像の保存/表示、画像明瞭化処理(各種画像フィルタや、複数画像による明瞭化、色彩変更など)、カメラや光源の調整などをグラフィカルユーザインタフェース上で統合することも容易になる。
With this configuration and operation, the imaging system 2 can improve real-time characteristics while clarifying an acquired image.
Also, input of each set value, storage / display of acquired images, image clarification processing (various image filters, clarification by multiple images, color change, etc.), camera and light source adjustment, etc. are integrated on a graphical user interface It is also easy to do.
[第3の実施形態] 
 図8は、第3の実施形態に係る撮像システム3を示す構成図である。
[Third Embodiment]
FIG. 8 is a configuration diagram illustrating the imaging system 3 according to the third embodiment.
 図8に示す撮像システム3は、第2の実施形態と同様に、光源装置10とカメラ11とパルス制御手段として動作するコンピュータ14を含んでいる。本実施形態の撮像システム3は、光源装置10から1パルスのテラヘルツ波を照射して、その1パルスのテラヘルツ波をカメラ11で観測する。図8に示すシステム構成は、反射モードによる撮影対象物の観察に用いる配置である。無論、透過モードによる撮影を行うように配置してもよい。なお、先の実施形態で説明済みの構成要素は、説明を省略または簡略化する。 The imaging system 3 shown in FIG. 8 includes a light source device 10, a camera 11, and a computer 14 that operates as pulse control means, as in the second embodiment. The imaging system 3 of the present embodiment irradiates one pulse of terahertz wave from the light source device 10 and observes the one pulse of terahertz wave with the camera 11. The system configuration shown in FIG. 8 is an arrangement used for observation of an object to be photographed in the reflection mode. Of course, you may arrange | position so that imaging | photography by transmission mode may be performed. Note that the description of the components already described in the previous embodiment is omitted or simplified.
 コンピュータ14は、パルス光源の発光タイミングを定める光源パルス信号と赤外・テラヘルツ帯のカメラ用の撮像タイミングを定める外部トリガパルス信号とをそれぞれ生成して、光源装置10とカメラ11にそれぞれ出力する。この際、コンピュータ14のパルス制御部は、光源パルス信号に先行して外部トリガパルス信号を設定値の時間を開けて、光源パルス信号と外部トリガパルス信号とを1パルスずつ生成する。 The computer 14 generates a light source pulse signal that determines the light emission timing of the pulse light source and an external trigger pulse signal that determines the imaging timing for the infrared and terahertz band cameras, and outputs them to the light source device 10 and the camera 11, respectively. At this time, the pulse control unit of the computer 14 generates a light source pulse signal and an external trigger pulse signal one pulse at a time before setting the external trigger pulse signal before the light source pulse signal.
 また、コンピュータ14は、光源パルス信号と外部トリガパルス信号を、ユーザから与えられたタイミングに従って両パルス信号を生成すればよい。また、ユーザ以外でもよく、例えば別のコンピュータなどからパルス生成指示(撮影指示)を受け付けるシステム構成にしてもよい。 Also, the computer 14 may generate both the light source pulse signal and the external trigger pulse signal according to the timing given by the user. Further, the system configuration may be such that a user other than the user, for example, receives a pulse generation instruction (imaging instruction) from another computer or the like.
 この構成及び動作によって、撮像システム3は、1パルス波による取得画像の明瞭性を高められる。 With this configuration and operation, the imaging system 3 can improve the clarity of the acquired image by one pulse wave.
[第4の実施形態] 
 図9は、第4の実施形態に係る撮像システム4を示す構成図である。
[Fourth Embodiment]
FIG. 9 is a configuration diagram illustrating an imaging system 4 according to the fourth embodiment.
 図9に示す撮像システム4は、カメラ15内にパルス制御部を具備した構成を有する。本実施形態の撮像システム4は、カメラ15(パルス制御部)内で光源装置10の発光タイミングを定めるトリガパルス(光源パルス信号)を生成する。また、カメラ15は、光源装置10から1パルスのテラヘルツ波を撮像対象物に照射させて、その1パルスのテラヘルツ波を観測する。システム配置は、反射モードでも透過モードでもかまわない。なお、先の実施形態で説明済みの構成要素は、説明を省略または簡略化する。 The imaging system 4 shown in FIG. 9 has a configuration in which a pulse control unit is provided in the camera 15. The imaging system 4 of the present embodiment generates a trigger pulse (light source pulse signal) that determines the light emission timing of the light source device 10 in the camera 15 (pulse control unit). Further, the camera 15 irradiates the imaging target with one pulse of terahertz wave from the light source device 10 and observes the one pulse of terahertz wave. The system arrangement may be in reflection mode or transmission mode. Note that the description of the components already described in the previous embodiment is omitted or simplified.
 カメラ15は、赤外線ないしテラヘルツ波を検出する撮像センサ13と、パルス制御部を具備する。また、必要に応じて、画像処理部(画像明瞭化用)や出力部(出力インタフェース)、モニター部をカメラ15内に設けてもよい。 The camera 15 includes an imaging sensor 13 that detects infrared rays or terahertz waves, and a pulse control unit. Further, an image processing unit (for image clarification), an output unit (output interface), and a monitor unit may be provided in the camera 15 as necessary.
 カメラ15のパルス制御部は、光源装置10に出力するトリガパルスとこのトリガパルスを出力するタイミングから設定値の時間を先行した撮像センサ13の露光タイミングとを同期状態で設定する。 The pulse control unit of the camera 15 sets the trigger pulse to be output to the light source device 10 and the exposure timing of the image sensor 13 that precedes the set time from the timing at which this trigger pulse is output in a synchronized state.
 また、カメラ15は、光源パルス信号を、ユーザから与えられたタイミングに従って生成してもよいし、所望撮像タイミング(例えば撮像フレームレート)に合わせて生成してもよい。 Further, the camera 15 may generate the light source pulse signal according to the timing given by the user, or may generate it in accordance with a desired imaging timing (for example, imaging frame rate).
 この構成及び動作によって、撮像システム4は、1パルス波又は1パルス波毎の取得画像の明瞭性を高められる。 With this configuration and operation, the imaging system 4 can enhance the clarity of the acquired image for each pulse wave or each pulse wave.
[実施例] 
 次に、一実施例を示し、本発明を説明する。
[Example]
Next, an embodiment will be shown to explain the present invention.
 本実施例のシステム構成は、図1と同じシステム構成とする。 
 本実施例のカメラ11は、外部トリガパルス信号を受け付けるインタフェースを設けた高感度ボロメータ型赤外・テラヘルツカメラを用いる。この高感度ボロメータ型赤外・テラヘルツカメラは、テラヘルツアレイセンサ(2次元ボロメータアレイ)を搭載して、各画素の雑音等価電力が約30pWと高感度である。また、光源装置10として、入力パルス信号列に従って発光する量子カスケードレーザを用いる。 
 パルス制御部12は、インタフェースを介して光源装置10とカメラ11とにそれぞれ有線ケーブルで接続した状態で、光源パルス信号と外部トリガパルス信号とを各々出力する。
The system configuration of this embodiment is the same as that shown in FIG.
The camera 11 of the present embodiment uses a high-sensitivity bolometer type infrared / terahertz camera provided with an interface for receiving an external trigger pulse signal. This high-sensitivity bolometer type infrared and terahertz camera is equipped with a terahertz array sensor (two-dimensional bolometer array), and the noise equivalent power of each pixel is as high as about 30 pW. As the light source device 10, a quantum cascade laser that emits light according to an input pulse signal sequence is used.
The pulse control unit 12 outputs a light source pulse signal and an external trigger pulse signal in a state where the light source device 10 and the camera 11 are connected to each other by a wired cable via an interface.
 カメラ11(カメラ内コントローラ)は、スキャン用の内部信号として水平同期クロックと垂直同期クロックを用いてアレイセンサを駆動する。この同期信号を、外部トリガパルス信号を受け取るまでは水平同期クロックを送り続ける一方で、垂直同期クロックを送らない仕様にカメラ11を構成する。なお、垂直同期クロックと水平同期クロックとの関係を逆にして構成してもよい。 Camera 11 (in-camera controller) drives the array sensor using a horizontal synchronization clock and a vertical synchronization clock as internal signals for scanning. The camera 11 is configured so that the horizontal synchronization clock is continuously sent until this synchronization signal is received, and the vertical synchronization clock is not sent until the external trigger pulse signal is received. Note that the relationship between the vertical synchronization clock and the horizontal synchronization clock may be reversed.
 この垂直同期クロックを所定スキャンタイミングまでアレイセンサに送らないことにより、パルスバイアスをアレイセンサに印加するタイミングを調整する。 The timing for applying the pulse bias to the array sensor is adjusted by not sending this vertical synchronization clock to the array sensor until the predetermined scan timing.
 カメラ11は、外部トリガパルス信号に従ったスキャン時に、所定時間後に短い垂直同期クロックを送って各画素の信号を読出し可能にし、その後1フレーム分の長さを有する垂直クロックを送って各画素信号を読み出す。その後、カメラ11は、画素信号の読出し終了と共に垂直同期クロックを停止して、次のスキャンタイミングになるまで画素信号の読み出し(パルスバイアス)を停止する。 When scanning according to the external trigger pulse signal, the camera 11 sends a short vertical synchronization clock after a predetermined time so that each pixel signal can be read, and then sends a vertical clock having a length of one frame to send each pixel signal. Is read. Thereafter, the camera 11 stops the vertical synchronization clock at the end of reading out the pixel signal, and stops reading out the pixel signal (pulse bias) until the next scan timing.
 また、カメラ11は、外部トリガ信号を受け取った直後にアレイセンサの走査位置をスキャンの先頭番地にリセットする工程を有する。 Also, the camera 11 has a step of resetting the scan position of the array sensor to the start address of the scan immediately after receiving the external trigger signal.
 このようにして、カメラ11は、所定スキャンタイミングに成った際に、アレイセンサの各画素の出力信号値群を読み出して、1つの画像を形成する。 In this way, the camera 11 reads the output signal value group of each pixel of the array sensor and forms one image when the predetermined scan timing is reached.
 高感度ボロメータ型赤外・テラヘルツカメラのように、熱時定数が比較的大きいアレイセンサを搭載したカメラは、多くの場合、赤外アレイセンサやテラヘルツアレイセンサの各画素に熱分離構造を有している。また、この種のアレイセンサの熱時定数は概ね5ms~20msの範囲にある。 Cameras equipped with array sensors with relatively large thermal time constants, such as high-sensitivity bolometer-type infrared and terahertz cameras, often have a thermal separation structure in each pixel of infrared and terahertz array sensors. ing. The thermal time constant of this type of array sensor is generally in the range of 5 ms to 20 ms.
 アレイセンサでは、各画素に入射した赤外線またはテラヘルツ波を受光部で吸収する。結果、受光部に配置されたボロメータ材料の温度が変化しその抵抗値が変化する。この抵抗変化をバイアス電圧の印加により読み出す。 In the array sensor, infrared rays or terahertz waves incident on each pixel are absorbed by the light receiving unit. As a result, the temperature of the bolometer material arranged in the light receiving portion changes and its resistance value changes. This resistance change is read out by applying a bias voltage.
 この抵抗変化をバイアス電圧の印加により読み出す際、直流バイアスを印加すると素子がジュール熱により破壊されことがある。非冷却撮像素子では、破壊を避けるためにパルスバイアスを加えることが多い。 When reading out this resistance change by applying a bias voltage, if a DC bias is applied, the element may be destroyed by Joule heat. In an uncooled image sensor, a pulse bias is often applied to avoid destruction.
 このように時定数が比較的大きいカメラを用いてパルス状のテラヘルツ波とスキャンを同期させて検出するタイミングについて、図10に示すタイミングチャートを用いて説明する。 The timing at which the pulsed terahertz wave and the scan are detected in synchronization using such a camera having a relatively large time constant will be described with reference to the timing chart shown in FIG.
 パルス制御部12は、入力された設定値に従って、光源パルス信号と外部トリガパルス信号とを各々生成して光源装置10およびカメラ11に出力する。 The pulse control unit 12 generates a light source pulse signal and an external trigger pulse signal according to the input set value, and outputs them to the light source device 10 and the camera 11.
 光源装置10は、光源パルス信号に従って発光する。なお、発光の遅延時間は本実施例では無視する。 The light source device 10 emits light according to the light source pulse signal. The light emission delay time is ignored in this embodiment.
 またこのとき、カメラ11内では、クロック信号に同期して、外部トリガパルス信号の立ち上がりでリセットパルスがコントローラによって作られ、同カメラのスキャン設定をリセット(ボロメータアレイの走査位置を画素の先頭番地に戻す)する。その後、カメラ11は、コントローラによって垂直同期信号(VIN)における垂直同期の保護解除パルスを生成してアレイセンサを読み出せる状態にした後に、所定クロック経過後にスキャンを実施する。このスキャン中に光源装置10から光源パルスが放射されてカメラ11に到達する。 At this time, in the camera 11, a reset pulse is generated by the controller at the rising edge of the external trigger pulse signal in synchronization with the clock signal, and the scan setting of the camera is reset (the scanning position of the bolometer array is set to the head address of the pixel). To return). After that, the camera 11 generates a vertical synchronization protection release pulse in the vertical synchronization signal (V IN ) by the controller so that the array sensor can be read out, and then scans after a predetermined clock elapses. During this scan, a light source pulse is emitted from the light source device 10 and reaches the camera 11.
 このように動作することで、高感度ボロメータ型アレイセンサを搭載したカメラ11でパルス状の電磁波が安定して検知可能になる。結果、撮像システムはテラヘルツ波源から放射されたテラヘルツ波を明瞭でほぼリアルタイムに画像として取得できる。 By operating in this way, pulsed electromagnetic waves can be stably detected by the camera 11 equipped with a high-sensitivity bolometer type array sensor. As a result, the imaging system can acquire the terahertz wave emitted from the terahertz wave source as a clear and almost real-time image.
 図11は、本発明の仕組みで撮影したビームパターンを模式化した図である。 FIG. 11 is a schematic diagram of a beam pattern photographed by the mechanism of the present invention.
 この図では、フリーエレクトロンレーザーのビームパターンを捉えた画像を示している。この画像は、カメラ11のスキャンフレームレートを30Hzに設定して個々の画像を取得した際の一画像を模している。 This figure shows an image that captures the beam pattern of a free electron laser. This image imitates one image when each image is acquired by setting the scan frame rate of the camera 11 to 30 Hz.
 また、図10中の“A”(外部トリガパルス信号を生成してからセンシングを開始するまでの時間)は、0.15msecに、“B”(外部トリガパルス信号を生成してから光源が発光するまでの時間)は1msecに、“C”(外部トリガパルス信号に同期したセンシング時間)は33msecに設定した。 Further, “A” in FIG. 10 (time from the generation of the external trigger pulse signal to the start of sensing) is 0.15 msec, and “B” (the light source is emitted after the generation of the external trigger pulse signal). Time) was set to 1 msec, and “C” (sensing time synchronized with the external trigger pulse signal) was set to 33 msec.
 また、画像の取得に使用したボロメータアレイの画素の熱時定数は「約19msec」である。このため、光源パルスがアレイセンサの中央付近に到達していれば、画像の走査点の先頭番地が例え画面の左上の画素にあったとしても、走査番地が画面の中央付近に進むまで良好な感度を維持できる。すなわち、リセット信号による初期化を行うことで、熱時定数によるアレイセンサの出力信号値の継時的減少は、安定的かつ軽微に維持できる。 Also, the thermal time constant of the pixels of the bolometer array used to acquire the image is “about 19 msec”. Therefore, if the light source pulse has reached the vicinity of the center of the array sensor, even if the head address of the scanning point of the image is in the upper left pixel of the screen, it is good until the scanning address advances to the vicinity of the center of the screen. Sensitivity can be maintained. That is, by performing initialization with the reset signal, the temporal decrease in the output signal value of the array sensor due to the thermal time constant can be maintained stably and slightly.
 このようにして、外部トリガパルス信号が光源発生パルス信号より時間的に先行して且つパルス光源がカメラ11の個々のフレームの読出時間内に到達する仕組みを実現することで、ノイズを増大させることなくパルス光源からの電磁波を明瞭且つ安定的に捉えられる。 In this way, the noise is increased by realizing a mechanism in which the external trigger pulse signal precedes the light source generation pulse signal in time and the pulse light source reaches the readout time of each frame of the camera 11. The electromagnetic wave from the pulse light source can be captured clearly and stably.
 尚、パルス制御部として動作するコンピュータ14の各部は、メモリに本発明にかかるプログラムが展開され、プログラムに基づいてCPU(Central Processing Unit)等のハードウェアを動作させることによって、各部を各種手段として実現する。また、このプログラムは、記録媒体に非一時的に記録されて頒布されてもよい。当該記録媒体に記録されたプログラムは、有線、無線、又は記録媒体そのものを介して、メモリに読込まれ、制御部等を動作させる。尚、記録媒体を例示すれば、オプティカルディスクや磁気ディスク、半導体メモリ装置、ハードディスクなどが挙げられる。 Note that each part of the computer 14 that operates as a pulse control unit has the program according to the present invention developed in a memory, and operates each piece of hardware as a CPU (Central Processing Unit) based on the program. Realize. Further, this program may be recorded non-temporarily on a recording medium and distributed. The program recorded on the recording medium is read into a memory via a wired, wireless, or recording medium itself, and operates a control unit or the like. Examples of the recording medium include an optical disk, a magnetic disk, a semiconductor memory device, and a hard disk.
 上記実施の形態を別の表現で説明すれば、パルス制御部として動作させるコンピュータシステムを、メモリに展開された本発明のプログラムに基づき、2つのトリガパルスを各々出力するパルス信号生成部と、そのトリガパルスを各々出力するパルス出力部として、プロセッサを動作させることで実現することも可能である。図12は、パルス制御部の一例を示す構成図である。上記調整メカニズムのアルゴリズムは、パルス出力部に組み込んでも良いし、パルス信号生成部に組み込むこととしてもよい。 If the above embodiment is described in another expression, a computer system that operates as a pulse control unit, based on the program of the present invention developed in a memory, a pulse signal generation unit that outputs each of two trigger pulses, and its It can also be realized by operating a processor as a pulse output unit for outputting each trigger pulse. FIG. 12 is a configuration diagram illustrating an example of a pulse control unit. The algorithm of the adjustment mechanism may be incorporated in the pulse output unit or may be incorporated in the pulse signal generation unit.
 以上実施形態及び実施例を図示して説明したが、そのブロック構成の分離併合、手順の入れ替えなどの変更は本発明の趣旨および説明される機能を満たせば自由であり、上記説明が本発明を限定するものではない。 Although the embodiments and examples have been illustrated and described above, changes such as separation / merging of block configurations and replacement of procedures are free as long as the gist of the present invention and the functions to be described are satisfied. It is not limited.
 また、本発明の具体的な構成は前述の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の変更があってもこの発明に含まれる。 In addition, the specific configuration of the present invention is not limited to the above-described embodiment, and changes within a range not departing from the gist of the present invention are included in the present invention.
 また、上記の実施形態の一部又は全部は、以下のようにも記載されうる。尚、以下の付記は本発明をなんら限定するものではない。 
[付記1]
 赤外線ないしテラヘルツ波を発光するパルス光源と、
 撮像センサを駆動して撮像するカメラと、
 前記パルス光源の発光タイミングを定める第1のトリガパルスと前記カメラの撮像タイミングを定める第2のトリガパルスとをそれぞれ生成するパルス制御部と、
を有し、
 前記パルス制御部は、前記第1のトリガパルスを前記パルス光源に出力し、前記第1のトリガパルスに先行して前記第2のトリガパルスを前記カメラに出力する
ことを特徴とする撮像システム。
In addition, a part or all of the above-described embodiments can be described as follows. Note that the following supplementary notes do not limit the present invention.
[Appendix 1]
A pulsed light source that emits infrared or terahertz waves;
A camera for imaging by driving an imaging sensor;
A pulse control unit for generating a first trigger pulse for determining the light emission timing of the pulse light source and a second trigger pulse for determining the imaging timing of the camera;
Have
The imaging system, wherein the pulse control unit outputs the first trigger pulse to the pulse light source, and outputs the second trigger pulse to the camera prior to the first trigger pulse.
[付記2]
 前記パルス制御部は、前記第1のトリガパルス及び前記第2のトリガパルスを周期的に生成し、前記第1のトリガパルスの周期及び前記第2のトリガパルスの周期を同期して、各々前記パルス光源と前記カメラに出力することを特徴とする上記付記記載の撮像システム。
[Appendix 2]
The pulse control unit periodically generates the first trigger pulse and the second trigger pulse, and synchronizes the cycle of the first trigger pulse and the cycle of the second trigger pulse, respectively, The imaging system according to the above supplementary note, wherein the imaging system outputs to a pulse light source and the camera.
[付記3]
 前記パルス制御部は、前記第1のトリガパルスまたは前記第2のトリガパルスを出力する場合に、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を、設定値に設定することを特徴とする上記付記記載の撮像システム。
[Appendix 3]
The pulse control unit sets an interval between the first trigger pulse and the second trigger pulse to a set value when outputting the first trigger pulse or the second trigger pulse. The imaging system according to the above supplementary note, which is characterized.
[付記4]
 前記パルス制御部は、前記カメラが前記第2のトリガパルスを受けてからスキャンを開始するまでの期間に基づいて、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を設定することを特徴とする上記付記記載の撮像システム。
[Appendix 4]
The pulse control unit is a set value that determines an interval between the first trigger pulse and the second trigger pulse based on a period from when the camera receives the second trigger pulse to when scanning is started. The imaging system according to the above supplementary note, wherein:
[付記5]
 前記パルス制御部は、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を、前記第1のトリガパルスを基準に前記パルス光源の発光期間を除いた先行した1周期以内に設定することを特徴とする上記付記記載の撮像システム。
[Appendix 5]
The pulse control unit sets a set value for determining an interval between the first trigger pulse and the second trigger pulse as one preceding cycle excluding a light emission period of the pulsed light source based on the first trigger pulse. The imaging system according to the above supplementary note, wherein the imaging system is set within a range.
[付記6]
 前記パルス制御部は、前記カメラで測定された前記パルス光源の発光期間に基づいて、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を、前記第1のトリガパルスの1周期から前記発光期間を除いた時間以内に設定することを特徴とする上記付記記載の撮像システム。
[Appendix 6]
The pulse control unit is configured to change an interval between the first trigger pulse and the second trigger pulse from one cycle of the first trigger pulse based on a light emission period of the pulse light source measured by the camera. The imaging system according to the above supplementary note, wherein the imaging system is set within a time excluding the light emission period.
[付記7]
 前記パルス制御部は、前記パルス光源からの赤外線ないしテラヘルツ波が前記カメラに到達するまでの到達遅延時間に従って、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を、前記第1のトリガパルスを基準に前記到達遅延時間を除いた周期以内に設定することを特徴とする上記付記記載の撮像システム。
[Appendix 7]
The pulse control unit sets a setting value for determining an interval between the first trigger pulse and the second trigger pulse according to an arrival delay time until the infrared or terahertz wave from the pulse light source reaches the camera. The imaging system according to the above supplementary note, wherein the imaging system is set within a period excluding the arrival delay time with reference to the first trigger pulse.
[付記8]
 前記カメラは、前記第2のトリガパルスを受け付けて、前記第2のトリガパルスから所定期間の経過後に、前記撮像センサの走査に用いるバイアス電圧を所定期間、印加することを特徴とする上記付記記載の撮像システム。
[Appendix 8]
The above-described remarks, wherein the camera receives the second trigger pulse, and applies a bias voltage used for scanning of the imaging sensor for a predetermined period after a predetermined period has elapsed from the second trigger pulse. Imaging system.
[付記9]
 前記カメラは、前記第2のトリガパルスを受け付けて、前記第2のトリガパルスに従うタイミングで前記撮像センサの走査位置を初期位置にセットすることを特徴とする上記付記記載の撮像システム。
[Appendix 9]
The imaging system according to the above supplementary note, wherein the camera receives the second trigger pulse and sets the scanning position of the imaging sensor to an initial position at a timing according to the second trigger pulse.
[付記10]
 前記カメラは、前記第2のトリガパルスの送出から前記第1のトリガパルス送出までの期間に前記撮像センサの走査を開始することを特徴とする上記付記記載の撮像システム。
[Appendix 10]
The imaging system according to the above supplementary note, wherein the camera starts scanning of the imaging sensor during a period from the transmission of the second trigger pulse to the transmission of the first trigger pulse.
[付記11]
 赤外線ないしテラヘルツ波を発光するパルス光源の発光タイミングを定める第1のトリガパルスと撮像センサを駆動して撮像するカメラの撮像タイミングを定める第2のトリガパルスとをそれぞれ生成するパルス生成部と、
 前記第1のトリガパルスを前記パルス光源に出力し、前記第1のトリガパルスに先行して前記第2のトリガパルスを前記カメラに出力する出力部とを有することを特徴とするパルス制御装置。
[Appendix 11]
A pulse generator that generates a first trigger pulse that determines the light emission timing of a pulse light source that emits infrared rays or terahertz waves, and a second trigger pulse that determines the imaging timing of a camera that drives and images the imaging sensor;
The pulse control device further comprising: an output unit that outputs the first trigger pulse to the pulse light source and outputs the second trigger pulse to the camera prior to the first trigger pulse.
[付記12]
 前記第1のトリガパルス及び前記第2のトリガパルスを周期的に生成し、前記第1のトリガパルスの周期及び前記第2のトリガパルスの周期を同期して、各々前記パルス光源と前記カメラに出力することを特徴とする上記付記記載のパルス制御装置。
[Appendix 12]
The first trigger pulse and the second trigger pulse are periodically generated, and the period of the first trigger pulse and the period of the second trigger pulse are synchronized to each of the pulse light source and the camera. The pulse control device as described in the above supplementary note, which outputs the pulse control device.
[付記13]
 前記第1のトリガパルスまたは前記第2のトリガパルスを出力する場合に、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を、設定値に設定することを特徴とする上記付記記載のパルス制御装置。
[Appendix 13]
When the first trigger pulse or the second trigger pulse is output, an interval between the first trigger pulse and the second trigger pulse is set to a set value. Pulse control device.
[付記14]
 前記カメラが前記第2のトリガパルスを受けてからスキャンを開始するまでの期間に基づいて、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を設定することを特徴とする上記付記記載のパルス制御装置。
[Appendix 14]
A setting value for setting an interval between the first trigger pulse and the second trigger pulse is set based on a period from when the camera receives the second trigger pulse to when scanning is started. The pulse control device according to the above supplementary note.
[付記15]
 前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を、前記第1のトリガパルスを基準に前記パルス光源の発光期間を除いた先行した1周期以内に設定することを特徴とする上記付記記載のパルス制御装置。
[Appendix 15]
Setting a set value for determining an interval between the first trigger pulse and the second trigger pulse within one preceding cycle excluding a light emission period of the pulse light source with reference to the first trigger pulse. The pulse control device according to the above supplementary note, which is characterized by the above.
[付記16]
 前記カメラで測定された前記パルス光源の発光期間に基づいて、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を、前記第1のトリガパルスの1周期から前記発光期間を除いた時間以内に設定することを特徴とする上記付記記載のパルス制御装置。
[Appendix 16]
Based on the light emission period of the pulsed light source measured by the camera, the interval between the first trigger pulse and the second trigger pulse is excluded from one period of the first trigger pulse. The pulse control device according to the above supplementary note, which is set within the time.
[付記17]
 前記パルス光源からの赤外線ないしテラヘルツ波が前記カメラに到達するまでの到達遅延時間に従って、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を、前記第1のトリガパルスを基準に前記到達遅延時間を除いた周期以内に設定することを特徴とする上記付記記載のパルス制御装置。
[Appendix 17]
A set value that determines an interval between the first trigger pulse and the second trigger pulse in accordance with an arrival delay time until an infrared ray or terahertz wave from the pulse light source reaches the camera is set as the first trigger pulse. Is set within a period excluding the arrival delay time with reference to
[付記18]
 赤外線ないしテラヘルツ波を検出する撮像センサと、
 赤外線ないしテラヘルツ波を発光するパルス光源の発光タイミングを定めるトリガパルスを生成するパルス制御部と、
を含み、
 前記パルス制御部は、前記トリガパルスを出力するタイミングから設定値の時間を先行した前記撮像センサの露光タイミングを定めつつ、前記トリガパルスを前記パルス光源に出力する
ことを特徴とするカメラ。
[Appendix 18]
An imaging sensor for detecting infrared or terahertz waves;
A pulse controller that generates a trigger pulse that determines the light emission timing of a pulse light source that emits infrared or terahertz waves;
Including
The said pulse control part outputs the said trigger pulse to the said pulse light source, determining the exposure timing of the said image sensor which preceded the time of setting value from the timing which outputs the said trigger pulse.
[付記19]
 前記パルス制御部は、前記トリガパルスと前記露光タイミングとの間隔を定める設定値を、前記トリガパルスを基準に前記パルス光源の発光期間を除いた先行した1周期以内に設定することを特徴とする上記付記記載のカメラ。
[Appendix 19]
The pulse control unit sets a set value for determining an interval between the trigger pulse and the exposure timing within one preceding cycle excluding a light emission period of the pulse light source with reference to the trigger pulse. The camera described in the above supplementary note.
[付記20]
 前記パルス制御部は、前記パルス光源からの赤外線ないしテラヘルツ波が前記カメラに到達するまでの到達遅延時間に従って、前記トリガパルスと前記露光タイミングとの間隔を定める設定値を、前記トリガパルスを基準に前記到達遅延時間を除いた周期以内に設定することを特徴とする上記付記記載のカメラ。
[Appendix 20]
The pulse control unit sets a set value that determines an interval between the trigger pulse and the exposure timing according to an arrival delay time until an infrared ray or a terahertz wave from the pulse light source reaches the camera, based on the trigger pulse. The camera according to the above supplementary note, which is set within a period excluding the arrival delay time.
[付記21]
 前記パルス制御部が定めた前記露光タイミングから所定期間の経過後に、前記撮像センサの走査に用いるバイアス電圧を所定期間、印加することを特徴とする上記付記記載のカメラ。
[Appendix 21]
The camera according to the above supplementary note, wherein a bias voltage used for scanning of the imaging sensor is applied for a predetermined period after the elapse of a predetermined period from the exposure timing determined by the pulse control unit.
[付記22]
 前記パルス制御部が定めた前記露光タイミングに従い前記撮像センサの走査位置を初期位置にセットすることを特徴とする上記付記記載のカメラ。
[Appendix 22]
The camera according to the above supplementary note, wherein the scanning position of the imaging sensor is set to an initial position in accordance with the exposure timing determined by the pulse control unit.
[付記23]
 パルス光源とカメラとパルス制御部を含む撮像システムで、
 前記パルス光源から赤外線ないしテラヘルツ波を前記パルス制御部から受け付けたパルス間隔で発光し、
 前記カメラで撮像センサを駆動して撮像する画像を前記パルス制御部から受け付けたパルス間隔で取得し、
 前記パルス制御部で前記パルス光源の発光タイミングを定める第1のトリガパルスと前記赤外・テラヘルツカメラの撮像タイミングを定める第2のトリガパルスとをそれぞれ出力する、
 この際に、
 前記第1のトリガパルスに先行して前記第2のトリガパルスを設定値の時間を開けて生成して、前記第1のトリガパルスを前記パルス光源に出力し、前記第1のトリガパルスに先行して前記第2のトリガパルスを前記カメラに出力する
ことを特徴とするテラヘルツ波の撮像方法。
[Appendix 23]
An imaging system that includes a pulse light source, a camera, and a pulse controller.
Emitting infrared or terahertz waves from the pulse light source at a pulse interval received from the pulse controller,
An image captured by driving the image sensor with the camera is acquired at a pulse interval received from the pulse controller,
A first trigger pulse for determining the emission timing of the pulsed light source and a second trigger pulse for determining the imaging timing of the infrared and terahertz camera in the pulse control unit, respectively.
At this time,
Prior to the first trigger pulse, the second trigger pulse is generated with a set time interval, the first trigger pulse is output to the pulse light source, and the first trigger pulse is preceded. And outputting the second trigger pulse to the camera.
[付記24]
 前記パルス制御部は、前記第1のトリガパルス及び前記第2のトリガパルスを周期的に生成し、前記第1のトリガパルスの周期及び前記第2のトリガパルスの周期を同期して、各々前記パルス光源と前記カメラに出力することを特徴とする上記付記記載のテラヘルツ波の撮像方法。
[Appendix 24]
The pulse control unit periodically generates the first trigger pulse and the second trigger pulse, and synchronizes the cycle of the first trigger pulse and the cycle of the second trigger pulse, respectively, The terahertz wave imaging method according to the above-described supplementary note, wherein the image is output to a pulse light source and the camera.
[付記25]
 前記パルス制御部は、前記第1のトリガパルスまたは前記第2のトリガパルスを出力する場合に、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を、設定値に設定することを特徴とする上記付記記載のテラヘルツ波の撮像方法。
[Appendix 25]
The pulse control unit sets an interval between the first trigger pulse and the second trigger pulse to a set value when outputting the first trigger pulse or the second trigger pulse. A terahertz wave imaging method as set forth in the above supplementary note, which is characterized by the above.
[付記26]
 前記パルス制御部は、前記カメラが前記第2のトリガパルスを受けてからスキャンを開始するまでの期間に基づいて、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を設定することを特徴とする上記付記記載のテラヘルツ波の撮像方法。
[Appendix 26]
The pulse control unit is a set value that determines an interval between the first trigger pulse and the second trigger pulse based on a period from when the camera receives the second trigger pulse to when scanning is started. The terahertz wave imaging method according to the above supplementary note, characterized in that:
[付記27]
 前記パルス制御部は、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を、前記第1のトリガパルスを基準に前記パルス光源の発光期間を除いた先行した1周期以内に設定することを特徴とする上記付記記載のテラヘルツ波の撮像方法。
[Appendix 27]
The pulse control unit sets a set value for determining an interval between the first trigger pulse and the second trigger pulse as one preceding cycle excluding a light emission period of the pulsed light source based on the first trigger pulse. The terahertz wave imaging method according to the above supplementary note, wherein the terahertz wave is set within a range.
[付記28]
 前記パルス制御部は、前記カメラで測定された前記パルス光源の発光期間に基づいて、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を、前記第1のトリガパルスの1周期から前記発光期間を除いた時間以内に設定することを特徴とする上記付記記載のテラヘルツ波の撮像方法。
[Appendix 28]
The pulse control unit is configured to change an interval between the first trigger pulse and the second trigger pulse from one cycle of the first trigger pulse based on a light emission period of the pulse light source measured by the camera. The terahertz wave imaging method according to the above supplementary note, wherein the imaging method is set within a time period excluding the light emission period.
[付記29]
 前記パルス制御部は、前記パルス光源からの赤外線ないしテラヘルツ波が前記カメラに到達するまでの到達遅延時間に従って、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を、前記第1のトリガパルスを基準に前記到達遅延時間を除いた周期以内に設定することを特徴とする上記付記記載のテラヘルツ波の撮像方法。
[Appendix 29]
The pulse control unit sets a setting value for determining an interval between the first trigger pulse and the second trigger pulse according to an arrival delay time until the infrared or terahertz wave from the pulse light source reaches the camera. The terahertz wave imaging method according to the above supplementary note, wherein the terahertz wave imaging method is set within a period excluding the arrival delay time with reference to the first trigger pulse.
[付記30]
 前記カメラは、前記第2のトリガパルスを受け付けて、前記第2のトリガパルスから所定期間の経過後に、前記撮像センサの走査に用いるバイアス電圧を所定期間、印加することを特徴とする上記付記記載のテラヘルツ波の撮像方法。
[Appendix 30]
The above-described remarks, wherein the camera receives the second trigger pulse, and applies a bias voltage used for scanning of the imaging sensor for a predetermined period after a predetermined period has elapsed from the second trigger pulse. Imaging method for terahertz waves.
[付記31]
 前記カメラは、前記第2のトリガパルスを受け付けて、前記第2のトリガパルスに従うタイミングで前記撮像センサの走査位置を初期位置にセットすることを特徴とする上記付記記載のテラヘルツ波の撮像方法。
[Appendix 31]
The terahertz wave imaging method according to the above supplementary note, wherein the camera receives the second trigger pulse and sets the scanning position of the imaging sensor to an initial position at a timing according to the second trigger pulse.
[付記32]
 前記カメラは、前記第2のトリガパルスの送出から前記第1のトリガパルス送出までの期間に前記撮像センサの走査を開始することを特徴とする上記付記記載のテラヘルツ波の撮像方法。
[Appendix 32]
The terahertz wave imaging method according to the above supplementary note, wherein the camera starts scanning of the imaging sensor during a period from the transmission of the second trigger pulse to the transmission of the first trigger pulse.
[付記33]
 情報処理装置の制御部を、
 赤外線ないしテラヘルツ波を発光するパルス光源の発光タイミングを定める第1のトリガパルスと赤外・テラヘルツカメラの撮像タイミングを定める第2のトリガパルスとを、前記第1のトリガパルスに先行して前記第2のトリガパルスを設定値の時間を開けて生成するパルス生成部と、
 前記第1のトリガパルスと前記第2のトリガパルスとを各々出力するパルス出力部
として動作させることを特徴とするプログラム。
[Appendix 33]
The control unit of the information processing device
A first trigger pulse that determines the light emission timing of a pulse light source that emits infrared or terahertz waves and a second trigger pulse that determines the imaging timing of the infrared and terahertz camera are preceded by the first trigger pulse. A pulse generator for generating two trigger pulses with a set time interval;
A program that operates as a pulse output unit that outputs each of the first trigger pulse and the second trigger pulse.
[付記34]
 前記制御部を、前記パルス制御部として、前記第1のトリガパルス及び前記第2のトリガパルスを周期的に生成し、前記第1のトリガパルスの周期及び前記第2のトリガパルスの周期を同期して、各々前記パルス光源と前記カメラに出力するように動作させることを特徴とする上記付記記載のプログラム。
[Appendix 34]
The control unit as the pulse control unit periodically generates the first trigger pulse and the second trigger pulse, and synchronizes the cycle of the first trigger pulse and the cycle of the second trigger pulse. The program according to the above supplementary note, wherein the program is operated so as to output to the pulse light source and the camera, respectively.
[付記35]
 前記制御部を、前記パルス制御部として、前記第1のトリガパルスまたは前記第2のトリガパルスを出力する場合に、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を、設定値に設定するように動作させることを特徴とする上記付記記載のプログラム。
[Appendix 35]
When the control unit is used as the pulse control unit to output the first trigger pulse or the second trigger pulse, an interval between the first trigger pulse and the second trigger pulse is set as a set value. The program according to the above supplementary note, which is operated so as to be set to
[付記36]
 前記制御部を、前記パルス制御部として、前記カメラが前記第2のトリガパルスを受けてからスキャンを開始するまでの期間に基づいて、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を設定するように動作させることを特徴とする上記付記記載のプログラム。
[Appendix 36]
The control unit is the pulse control unit, and the first trigger pulse and the second trigger pulse are calculated based on a period from when the camera receives the second trigger pulse to when scanning is started. The program according to the above supplementary note, wherein the program is operated so as to set a setting value that determines the interval.
[付記37]
 前記制御部を、前記パルス制御部として、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を、前記第1のトリガパルスを基準に前記パルス光源の発光期間を除いた先行した1周期以内に設定するように動作させることを特徴とする上記付記記載のプログラム。
[Appendix 37]
Using the control unit as the pulse control unit, a set value for determining an interval between the first trigger pulse and the second trigger pulse is excluded from a light emission period of the pulse light source based on the first trigger pulse. The program according to the above supplementary note, which is operated so as to be set within one preceding cycle.
[付記38]
 前記制御部を、前記パルス制御部として、前記カメラで測定された前記パルス光源の発光期間に基づいて、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を、前記第1のトリガパルスの1周期から前記発光期間を除いた時間以内に設定するように動作させることを特徴とする上記付記記載のプログラム。
[Appendix 38]
The control unit is the pulse control unit, and the interval between the first trigger pulse and the second trigger pulse is determined based on the light emission period of the pulse light source measured by the camera. The program according to the above supplementary note, wherein the program is operated so as to be set within a time obtained by removing the light emission period from one cycle of the pulse.
[付記39]
 前記制御部を、前記パルス制御部として、前記パルス光源からの赤外線ないしテラヘルツ波が前記カメラに到達するまでの到達遅延時間に従って、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を、前記第1のトリガパルスを基準に前記到達遅延時間を除いた周期以内に設定するように動作させることを特徴とする上記付記記載のプログラム。
[Appendix 39]
The control unit is the pulse control unit, and the interval between the first trigger pulse and the second trigger pulse is set according to the arrival delay time until the infrared or terahertz wave from the pulse light source reaches the camera. The program according to the above-mentioned supplementary note, wherein the set value to be determined is operated so as to be set within a cycle excluding the arrival delay time with reference to the first trigger pulse.
[付記40]
 上記プログラムを記録した記録媒体。
[Appendix 40]
A recording medium on which the program is recorded.
[付記41]
 第1、第2の入力インタフェース、第1、第2、第3の出力インタフェース、及びプロセッサを具備するコンピュータのためのプログラムをコンピュータ読み取り可能に非一時的に記録した記録媒体であって、
 前記プログラムは前記プロセッサを以下のように動作させる、
 前記第1の入力インタフェースから、赤外線ないしテラヘルツ波を発光するパルス光源の発光タイミングを定める第1のトリガパルスと赤外・テラヘルツカメラの撮像タイミングを定める第2のトリガパルスとの時間間隔を示す設定値であって前記第1のトリガパルスに先行して前記第2のトリガパルスを出力する時間間隔を定める設定値を、前記プロセッサによって受け付け、
 前記第1のトリガパルスと前記第2のトリガパルスとを、前記設定値に従った時間間隔を開けて前記プロセッサによって第1のトリガパルス列と第2のトリガパルス列として各々逐次生成し、
 前記第1のトリガパルス列を前記パルス光源に向けて前記第1の出力インタフェースから前記プロセッサによって逐次出力すると共に、前記第2のトリガパルス列を前記赤外・テラヘルツカメラに向けて前記第2の出力インタフェースから前記プロセッサによって逐次出力し、
 更に、前記赤外・テラヘルツカメラからセンシング画像を前記第2の入力インタフェースを介して受け付け、前記センシング画像を前記第3の出力インタフェース/内部記憶装置/モニタの少なくとも一つに出力し、
 更に、前記設定値の入力範囲を制限する調整メカニズムを必要に応じて前記プロセッサによって動作させ、
 該調整メカニズムは、少なくとも以下の一つの条件を満たす前記設定値に設定値入力範囲を制限する
       i) 前記赤外・テラヘルツカメラの駆動時間よりも大きい値
       ii)前記光源パルス信号を基準にテラヘルツ波幅を除いた1周期以内の値
       iii) 前記光源パルス信号を基準にテラヘルツ波の到達遅延時間を除いた1周期以内の値。
[Appendix 41]
A recording medium in which a program for a computer including first, second input interfaces, first, second, third output interfaces, and a processor is recorded in a non-transitory manner in a computer-readable manner,
The program causes the processor to operate as follows:
Setting indicating a time interval between a first trigger pulse that determines the emission timing of a pulse light source that emits infrared or terahertz waves and a second trigger pulse that determines the imaging timing of the infrared and terahertz camera from the first input interface. A set value that defines a time interval for outputting the second trigger pulse preceding the first trigger pulse, the value being received by the processor;
The first trigger pulse and the second trigger pulse are sequentially generated as a first trigger pulse train and a second trigger pulse train by the processor with a time interval according to the set value,
The first trigger pulse train is sequentially output from the first output interface to the pulse light source by the processor, and the second trigger pulse train is directed to the infrared / terahertz camera. Sequentially output by the processor,
Further, a sensing image is received from the infrared / terahertz camera via the second input interface, and the sensing image is output to at least one of the third output interface / internal storage device / monitor,
Further, an adjustment mechanism for limiting the input range of the set value is operated by the processor as needed,
The adjustment mechanism restricts a set value input range to the set value satisfying at least one of the following conditions: i) a value larger than the driving time of the infrared and terahertz camera ii) a terahertz wave width based on the light source pulse signal Iii) A value within one cycle excluding the arrival delay time of the terahertz wave based on the light source pulse signal.
 本発明は、パルス光源から放出されるパルス状の電磁波のビームプロファイルを取得することによって、各種パルス光源の開発・製造・検査を容易にする手法や、高輝度パルス光源からのビームを広げてイメージングを行うことによる非破壊検査への利用が考えられる。 The present invention acquires a beam profile of a pulsed electromagnetic wave emitted from a pulsed light source, thereby facilitating the development, manufacturing and inspection of various pulsed light sources, and imaging by expanding the beam from a high-intensity pulsed light source. It can be used for non-destructive inspection.
 この出願は、2015年3月11日に出願された日本出願特願2015-048497号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-048497 filed on March 11, 2015, the entire disclosure of which is incorporated herein.
 1,2,3,4 撮像システム
 10  光源装置(パルス光源)
 11  カメラ(テラヘルツカメラ)
 12  パルス制御部(パルス制御手段)
 13  撮像センサ
 14  コンピュータ(パルス制御部)

 
1, 2, 3, 4 Imaging system 10 Light source device (pulse light source)
11 Camera (Terahertz camera)
12 Pulse control unit (pulse control means)
13 Imaging Sensor 14 Computer (Pulse Control Unit)

Claims (16)

  1.  赤外線ないしテラヘルツ波を発光するパルス光源と、
     撮像センサを駆動して撮像するカメラと、
     前記パルス光源の発光タイミングを定める第1のトリガパルスと前記カメラの撮像タイミングを定める第2のトリガパルスとをそれぞれ生成するパルス制御部と、
    を有し、
     前記パルス制御部は、前記第1のトリガパルスを前記パルス光源に出力し、前記第1のトリガパルスに先行して前記第2のトリガパルスを前記カメラに出力する
    ことを特徴とする撮像システム。
    A pulsed light source that emits infrared or terahertz waves;
    A camera for imaging by driving an imaging sensor;
    A pulse control unit for generating a first trigger pulse for determining the light emission timing of the pulse light source and a second trigger pulse for determining the imaging timing of the camera;
    Have
    The imaging system, wherein the pulse control unit outputs the first trigger pulse to the pulse light source, and outputs the second trigger pulse to the camera prior to the first trigger pulse.
  2.  前記パルス制御部は、前記第1のトリガパルス及び前記第2のトリガパルスを周期的に生成し、前記第1のトリガパルスの周期及び前記第2のトリガパルスの周期を同期して、各々前記パルス光源と前記カメラに出力することを特徴とする請求項1に記載の撮像システム。 The pulse control unit periodically generates the first trigger pulse and the second trigger pulse, and synchronizes the cycle of the first trigger pulse and the cycle of the second trigger pulse, respectively, The imaging system according to claim 1, wherein the imaging system outputs the pulse light source to the camera.
  3.  前記パルス制御部は、前記第1のトリガパルスまたは前記第2のトリガパルスを出力する場合に、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を、設定値に設定することを特徴とする請求項1又は2に記載の撮像システム。 The pulse control unit sets an interval between the first trigger pulse and the second trigger pulse to a set value when outputting the first trigger pulse or the second trigger pulse. The imaging system according to claim 1, wherein the imaging system is characterized.
  4.  前記パルス制御部は、前記カメラが前記第2のトリガパルスを受けてからスキャンを開始するまでの期間に基づいて、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を設定することを特徴とする請求項3記載の撮像システム。 The pulse control unit is a set value that determines an interval between the first trigger pulse and the second trigger pulse based on a period from when the camera receives the second trigger pulse to when scanning is started. The imaging system according to claim 3, wherein: is set.
  5.  前記パルス制御部は、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を、前記第1のトリガパルスを基準に前記パルス光源の発光期間を除いた先行した1周期以内に設定することを特徴とする請求項3又は4に記載の撮像システム。 The pulse control unit sets a set value for determining an interval between the first trigger pulse and the second trigger pulse as one preceding cycle excluding a light emission period of the pulsed light source based on the first trigger pulse. The imaging system according to claim 3, wherein the imaging system is set within a range.
  6.  前記パルス制御部は、前記カメラで測定された前記パルス光源の発光期間に基づいて、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を、前記第1のトリガパルスの1周期から前記発光期間を除いた時間以内に設定することを特徴とする請求項3ないし5の何れか一項に記載の撮像システム。 The pulse control unit is configured to change an interval between the first trigger pulse and the second trigger pulse from one cycle of the first trigger pulse based on a light emission period of the pulse light source measured by the camera. 6. The imaging system according to claim 3, wherein the imaging system is set within a time excluding the light emission period.
  7.  前記パルス制御部は、前記パルス光源からの赤外線ないしテラヘルツ波が前記カメラに到達するまでの到達遅延時間に従って、前記第1のトリガパルスと前記第2のトリガパルスとの間隔を定める設定値を、前記第1のトリガパルスを基準に前記到達遅延時間を除いた周期以内に設定することを特徴とする請求項3ないし6の何れか一項に記載の撮像システム。 The pulse control unit sets a setting value for determining an interval between the first trigger pulse and the second trigger pulse according to an arrival delay time until the infrared or terahertz wave from the pulse light source reaches the camera. The imaging system according to any one of claims 3 to 6, wherein the imaging system is set within a cycle excluding the arrival delay time with reference to the first trigger pulse.
  8.  前記カメラは、前記第2のトリガパルスを受け付けて、前記第2のトリガパルスから所定期間の経過後に、前記撮像センサの走査に用いるバイアス電圧を所定期間、印加することを特徴とする請求項1ないし7の何れか一項に記載の撮像システム。 2. The camera according to claim 1, wherein the camera receives the second trigger pulse, and applies a bias voltage used for scanning of the imaging sensor for a predetermined period after a predetermined period has elapsed from the second trigger pulse. 8. The imaging system according to any one of items 7 to 7.
  9.  前記カメラは、前記第2のトリガパルスを受け付けて、前記第2のトリガパルスに従うタイミングで前記撮像センサの走査位置を初期位置にセットすることを特徴とする請求項1ないし8の何れか一項に記載の撮像システム。 9. The camera according to claim 1, wherein the camera receives the second trigger pulse and sets the scanning position of the imaging sensor to an initial position at a timing according to the second trigger pulse. The imaging system described in 1.
  10.  前記カメラは、前記第2のトリガパルスの送出から前記第1のトリガパルス送出までの期間に前記撮像センサの走査を開始することを特徴とする請求項1ないし9の何れか一項に記載の撮像システム。 10. The camera according to claim 1, wherein the camera starts scanning the imaging sensor during a period from the transmission of the second trigger pulse to the transmission of the first trigger pulse. Imaging system.
  11.  赤外線ないしテラヘルツ波を発光するパルス光源の発光タイミングを定める第1のトリガパルスと撮像センサを駆動して撮像するカメラの撮像タイミングを定める第2のトリガパルスとをそれぞれ生成するパルス生成部と、
     前記第1のトリガパルスを前記パルス光源に出力し、前記第1のトリガパルスに先行して前記第2のトリガパルスを前記カメラに出力する出力部とを有することを特徴とするパルス制御装置。
    A pulse generator that generates a first trigger pulse that determines the light emission timing of a pulse light source that emits infrared rays or terahertz waves, and a second trigger pulse that determines the imaging timing of a camera that drives and images the imaging sensor;
    The pulse control device further comprising: an output unit that outputs the first trigger pulse to the pulse light source and outputs the second trigger pulse to the camera prior to the first trigger pulse.
  12.  前記第1のトリガパルス及び前記第2のトリガパルスを周期的に生成し、前記第1のトリガパルスの周期及び前記第2のトリガパルスの周期を同期して、各々前記パルス光源と前記カメラに出力することを特徴とする請求項11に記載のパルス制御装置。 The first trigger pulse and the second trigger pulse are periodically generated, and the period of the first trigger pulse and the period of the second trigger pulse are synchronized to each of the pulse light source and the camera. The pulse control device according to claim 11, wherein the pulse control device outputs the pulse control device.
  13.  前記第1のトリガパルスと前記第2のトリガパルスとの間隔を、前記カメラが前記第2のトリガパルスを受けてからスキャンを開始するまでの期間、前記パルス光源の発光期間、前記パルス光源からのテラヘルツ波が前記カメラに到達するまでの到達遅延時間、の少なくとも何れか1つに従って、先行した1周期以内に設定することを特徴とする請求項11又は12に記載のパルス制御装置。 The interval between the first trigger pulse and the second trigger pulse is defined as a period from when the camera receives the second trigger pulse until scanning is started, a light emission period of the pulse light source, and from the pulse light source. 13. The pulse control device according to claim 11, wherein the terahertz wave is set within one preceding period according to at least one of arrival delay times until the terahertz wave reaches the camera.
  14.  赤外線ないしテラヘルツ波を検出する撮像センサと、
     赤外線ないしテラヘルツ波を発光するパルス光源の発光タイミングを定めるトリガパルスを生成するパルス制御部と、
    を含み、
     前記パルス制御部は、前記トリガパルスを出力するタイミングから設定値の時間を先行した前記撮像センサの露光タイミングを定めつつ、前記トリガパルスを前記パルス光源に出力する
    ことを特徴とするカメラ。
    An imaging sensor for detecting infrared or terahertz waves;
    A pulse controller that generates a trigger pulse that determines the light emission timing of a pulse light source that emits infrared or terahertz waves;
    Including
    The said pulse control part outputs the said trigger pulse to the said pulse light source, determining the exposure timing of the said image sensor which preceded the time of setting value from the timing which outputs the said trigger pulse.
  15.  パルス光源とカメラとパルス制御部を含む撮像システムで、
     前記パルス光源から赤外線ないしテラヘルツ波を前記パルス制御部から受け付けたパルス間隔で発光し、
     前記カメラで撮像センサを駆動して撮像する画像を前記パルス制御部から受け付けたパルス間隔で取得し、
     前記パルス制御部で前記パルス光源の発光タイミングを定める第1のトリガパルスと前記赤外・テラヘルツカメラの撮像タイミングを定める第2のトリガパルスとをそれぞれ出力する、
     この際に、
     前記第1のトリガパルスに先行して前記第2のトリガパルスを設定値の時間を開けて生成して、前記第1のトリガパルスを前記パルス光源に出力し、前記第1のトリガパルスに先行して前記第2のトリガパルスを前記カメラに出力する
    ことを特徴とするテラヘルツ波の撮像方法。
    An imaging system that includes a pulse light source, a camera, and a pulse controller.
    Emitting infrared or terahertz waves from the pulse light source at a pulse interval received from the pulse controller,
    An image captured by driving the image sensor with the camera is acquired at a pulse interval received from the pulse controller,
    A first trigger pulse for determining the emission timing of the pulsed light source and a second trigger pulse for determining the imaging timing of the infrared and terahertz camera in the pulse control unit, respectively.
    At this time,
    Prior to the first trigger pulse, the second trigger pulse is generated with a set time interval, the first trigger pulse is output to the pulse light source, and the first trigger pulse is preceded. And outputting the second trigger pulse to the camera.
  16.  コンピュータのプロセッサを、
     赤外線ないしテラヘルツ波を発光するパルス光源の発光タイミングを定める第1のトリガパルスと赤外・テラヘルツカメラの撮像タイミングを定める第2のトリガパルスとを、前記第1のトリガパルスに先行して前記第2のトリガパルスを設定値の時間を開けて生成するパルス生成部と、
     前記第1のトリガパルスと前記第2のトリガパルスとを各々出力するパルス出力部
    として動作させることを特徴とする記録媒体。
    Computer processor,
    A first trigger pulse that determines the light emission timing of a pulse light source that emits infrared or terahertz waves and a second trigger pulse that determines the imaging timing of the infrared and terahertz camera are preceded by the first trigger pulse. A pulse generator for generating two trigger pulses with a set time interval;
    A recording medium that operates as a pulse output unit that outputs the first trigger pulse and the second trigger pulse, respectively.
PCT/JP2015/006213 2015-03-11 2015-12-14 Image pickup system WO2016142976A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017504304A JPWO2016142976A1 (en) 2015-03-11 2015-12-14 Imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015048497 2015-03-11
JP2015-048497 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016142976A1 true WO2016142976A1 (en) 2016-09-15

Family

ID=56880158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006213 WO2016142976A1 (en) 2015-03-11 2015-12-14 Image pickup system

Country Status (2)

Country Link
JP (1) JPWO2016142976A1 (en)
WO (1) WO2016142976A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11579330B2 (en) 2018-03-08 2023-02-14 Deutsche Post Ag Method and apparatus for examining shipments
CN116600211A (en) * 2023-06-09 2023-08-15 苏州洞悉科技有限公司 Imaging system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044631A (en) * 2007-08-10 2009-02-26 Toyota Motor Corp Object detection device
JP2014160919A (en) * 2013-02-19 2014-09-04 Nec Corp Imaging system and imaging method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044631A (en) * 2007-08-10 2009-02-26 Toyota Motor Corp Object detection device
JP2014160919A (en) * 2013-02-19 2014-09-04 Nec Corp Imaging system and imaging method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11579330B2 (en) 2018-03-08 2023-02-14 Deutsche Post Ag Method and apparatus for examining shipments
CN116600211A (en) * 2023-06-09 2023-08-15 苏州洞悉科技有限公司 Imaging system
CN116600211B (en) * 2023-06-09 2024-01-02 苏州洞悉科技有限公司 Imaging system

Also Published As

Publication number Publication date
JPWO2016142976A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP5305482B2 (en) Imaging apparatus and imaging method
US7466359B2 (en) Image-pickup apparatus and method having distance measuring function
JP5623121B2 (en) Subject information acquisition device
US10007337B2 (en) Eye gaze imaging
JP2008128792A (en) Distance image producing device and method
US20160248997A1 (en) Image acquisition device, and imaging device
JP2002369049A (en) Image detector and aperture device
WO2016147315A1 (en) Device for generating fluorescence image and method for generating fluorescence image
JP2008032427A (en) Range image forming method, range image sensor and imaging device
JP2010286307A (en) Image pickup device
JP2001313958A (en) Three-dimensional image reader
JP4010779B2 (en) Image detection device and diaphragm device
WO2016142976A1 (en) Image pickup system
WO2015004975A1 (en) Image capture system
US20190274560A1 (en) System and method for monitoring periodic signals
JP2019086374A (en) Light detector and laser scanning microscope
JP3646164B2 (en) Fluorescence image measuring device
JP6072417B2 (en) Imaging system and imaging method
JP2010008092A (en) Infrared imaging apparatus and infrared imaging method
JP2008045926A (en) Optical displacement sensor and its control method
JP6539139B2 (en) Image processing method for infrared image data and infrared image processing apparatus
CN106999037B (en) Eye detection device
JP6231271B2 (en) Electronic endoscope system
JP2009219611A (en) Electronic endoscope apparatus
JP6094089B2 (en) Lighting device and lighting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884474

Country of ref document: EP

Kind code of ref document: A1