WO2016141721A1 - 光学放大组合镜、头戴显示光学系统及虚拟现实显示设备 - Google Patents

光学放大组合镜、头戴显示光学系统及虚拟现实显示设备 Download PDF

Info

Publication number
WO2016141721A1
WO2016141721A1 PCT/CN2015/093084 CN2015093084W WO2016141721A1 WO 2016141721 A1 WO2016141721 A1 WO 2016141721A1 CN 2015093084 W CN2015093084 W CN 2015093084W WO 2016141721 A1 WO2016141721 A1 WO 2016141721A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
mirror
lens
combination
region
Prior art date
Application number
PCT/CN2015/093084
Other languages
English (en)
French (fr)
Inventor
黄琴华
宋海涛
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520130502.6U external-priority patent/CN204515244U/zh
Priority claimed from CN201510100253.0A external-priority patent/CN104749761B/zh
Priority claimed from CN201520130687.0U external-priority patent/CN204595324U/zh
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Priority to US15/555,554 priority Critical patent/US20180039068A1/en
Publication of WO2016141721A1 publication Critical patent/WO2016141721A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/002Magnifying glasses
    • G02B25/008Magnifying glasses comprising two or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/002Magnifying glasses
    • G02B25/004Magnifying glasses having binocular arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/04Eyepieces; Magnifying glasses affording a wide-angle view, e.g. through a spy-hole
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens

Definitions

  • the present invention relates to the field of optics, and in particular to an optical amplifying combination mirror applied to a head mounted display device, and a head mounted display optical system and a head mounted virtual reality display device with the optical amplifying combination mirror.
  • the optical amplifying components of the head-mounted virtual reality display system adopt conventional lenses, such as spherical lenses, aspherical lenses or free-form optical lenses, which are limited by optical processing technology and optical materials, and the diameter of the optical magnifying glass group in the display system is usually Will be made relatively small (if the diameter and volume of the large optical system will increase significantly), the visual field that the user can observe through the optical magnifying glass group is limited by the aperture of the magnifying glass group, and the field of view of the magnifying glass group is relative to the natural state of the human eye.
  • the field of view is small, so the visual impact and immersion of the image display system with limited vision will be greatly affected.
  • the size of the headset is small enough and the weight is light enough, how to realize the large field of view of the head-mounted virtual reality display system becomes an urgent problem to be solved.
  • an embodiment of the present invention first provides an optical amplifying combination mirror for use in a head-mounted virtual reality display device, wherein the optical amplifying combination mirror includes a primary mirror and a secondary mirror.
  • the primary mirror includes a central region and an edge region, the central region including a convex lens or a combined convex lens, the edge
  • the edge region is a focused thin optical element
  • the secondary mirror is a focused thin optical element formed with a hollowed out region
  • the primary mirror and the secondary mirror are superposed, and the hollowed out region of the secondary mirror is closely matched with the convex portion of the central region of the primary mirror.
  • an edge region of the primary mirror partially or entirely overlaps with the secondary mirror.
  • the sub-mirror is provided with a sinking lap at the inner diameter thereof, the lap being coincident with the edge region of the primary mirror.
  • the difference between the superimposed focal length of the edge region of the primary mirror and the sub-mirror and the focal length of the central region of the primary mirror is less than 10 mm.
  • the convex lens is a spherical lens, an aspheric lens or a free-form optical lens; and/or,
  • the secondary mirror is a Fresnel lens, a Fresnel zone plate or a binary optical element.
  • the central region convex lens of the primary mirror is an aspherical lens
  • the edge region and the secondary mirror of the primary mirror are planar base Fresnel lenses of uniform shape and size.
  • the surface of the convex lens is formed with a texture for achromatic.
  • the primary mirror and the secondary mirror are laminated together by optical bonding.
  • the central region and the edge region of the primary mirror are integrally injection molded.
  • the primary mirror comprises a central region or two centrally symmetric regions, the number of hollowed out regions of the secondary mirror being the same as the number of central regions of the primary mirror.
  • the present invention also provides a head mounted display optical system, the optical system comprising an image display source and an optical magnifying glass set, wherein the image display source is used for displaying optical information, and the optical information is enlarged by an optical magnifying glass set.
  • the virtual image is received by a human eye, wherein the optical magnifying lens set includes at least one optical magnifying combination mirror according to any one of the above
  • the optical magnifying glass set further comprises:
  • One or more intermediate optical elements disposed on a side of the optical magnifying lens away from the human eye, the optical information displayed by the image display source passing through the intermediate optical element, and then through the optical The magnifying combination mirror is injected into the human eye.
  • the plurality of intermediate optical elements are: a focusing thin optical element, or a convex lens, or a combination of a focusing thin optical element and a convex lens.
  • the present invention also provides a head mounted virtual reality display device comprising one or both sets of head mounted display optical systems as described in any one of the above.
  • the present invention has the following beneficial effects:
  • the optical amplifying combination mirror of the invention adopts a combination of a conventional lens and a focusing thin optical component, and is applied to a head-mounted virtual reality display device, which can ensure the central image quality and at the same time expand the edge view of the human eye and enhance the appearance.
  • the weight of the head-mounted virtual reality display device is greatly reduced, and the discomfort caused by the weight is reduced.
  • the present invention adopts a convex lens with a skirt and a focusing thin type.
  • the overlapping of the optical components can effectively reduce the difficulty of combining the two and improve the authenticity rate of the optical amplification combined mirror.
  • FIG. 1 is a schematic exploded view showing the structure of an optical amplifying combination mirror according to an embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view of the components of Figure 1;
  • FIG. 3 is a schematic view of the combined optical mirroring assembly of the structure of FIG. 1;
  • FIG. 4 is a schematic exploded view showing another structure of an optical amplifying combination mirror according to an embodiment of the present invention.
  • Figure 5 is a schematic view of the combined optical mirroring assembly of Figure 4.
  • FIG. 6 is another schematic structural view of a main mirror of an optical amplifying combination mirror according to an embodiment of the present invention.
  • Figure 7 is a schematic view showing the structure of the sub mirror corresponding to the main mirror of Figure 4.
  • FIG. 8 is a schematic diagram of components of an optical amplifying combination mirror in an optical path diagram according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of an embodiment of a head mounted display optical system according to an embodiment of the present invention.
  • Figure 10 is a schematic diagram showing the optical parameters of the central region and the edge region of the optically magnifying combination mirror of Figures 9 and 14;
  • FIG. 11 is a schematic structural view of an embodiment of a head mounted display optical system according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural view of a wearing display optical system according to still another embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing optical parameters of a central region and an edge region of the optically magnifying combined mirror of FIG. 12;
  • FIG. 14 is a schematic structural diagram of a head mounted display optical system according to still another embodiment of the present invention.
  • Figure 15 is a schematic diagram showing the parameters of the convex lens 4 of Figure 14;
  • FIG. 16 is a schematic structural view of a head-mounted display optical system according to still another embodiment of the present invention.
  • A-optical magnifying combination mirror central region A-optical magnifying combination mirror central region, B-optical magnifying combined mirror edge region 1 - image display source, 2-optical magnifying combination mirror, 3-focus thin optical element, 4-convex lens.
  • the optical amplifying combination mirror of the invention is mainly designed for a head-mounted VR display system, and VR refers to virtual reality, which is an abbreviation of Virtual Reality.
  • the optical amplifying combination mirror provided by the present invention includes a primary mirror and a secondary mirror.
  • the primary mirror includes a central region and a peripheral region, wherein the central region A is a convex lens (for example, a single convex or biconvex) or a combined convex lens, and the edge region B is a focused thin optical element (i.e., a sheet-type optical element having a focusing function).
  • the secondary mirror is a focused thin optical element in which a hollowed out region is formed.
  • the materials of the central region A and the edge region B of the primary mirror may be the same (for example, formed by using optical plastic PMMA) or different (for example, the central region).
  • the optical plastic PMMA is formed, and the edge region is formed using E48R), and the present invention is not limited thereto.
  • the present invention employs a sub-mirror as a compensating mirror to overlap the edge region of the main mirror, so that the edge region of the main mirror can have a larger focal length and increase the thickness of the edge region of the main mirror. This can effectively reduce the high requirements on the production process, thus effectively reducing the cost of injection molding.
  • the primary mirror and the secondary mirror are superposed, and the hollowed out region of the secondary mirror is closely fitted with the convex portion of the central region of the primary mirror.
  • the central area of the main mirror corresponds to the main field of view imaging, which enables the VR display system using the optical amplifying combination mirror to have high quality image quality.
  • the secondary mirror corresponds to the edge field of view imaging, which can effectively expand the peripheral view of the VR display system.
  • the combined convex lens refers to a lens group formed by combining at least two convex lenses, for example, two circular aspheric lenses having the same diameter are glued together to form a combined convex lens.
  • the edge region of the primary mirror i.e., the transparent flat skirt of the convex lens
  • its main function is to facilitate the combination of the convex lens and the secondary mirror constituting the primary mirror.
  • the surface of the central region of the main mirror of the optical amplifying combination mirror is engraved with a pattern for achromatic, that is, the central region of the main mirror may be a diffractive hybrid achromatic lens.
  • the convex lens constituting the main mirror may be a conventional spherical lens, an aspherical lens or a free-form optical lens, and the present invention is not limited thereto.
  • the focused thin optical element constituting the sub mirror may be a Fresnel lens, a Fresnel zone plate or a binary optical element, and the present invention is not limited thereto.
  • the convex lens forming the central region of the primary mirror is an aspherical lens
  • the edge region and the secondary mirror of the primary mirror are planar base Fresnel lenses of uniform shape and size.
  • one side of the planar base Fresnel lens is a smooth surface, and the other side may have a concentric sawtooth ring.
  • the smooth surface of the planar base Fresnel lens preferably faces the human eye.
  • the shape of the outer contour of the central region of the main mirror is not limited, and it may be circular or rectangular or other irregular shape, and the contour shape of the hollow region of the sub mirror and the center of the main mirror.
  • the outer contours of the area are identical in shape and can be closely matched
  • the superimposed focal length of the edge region of the main mirror and the sub-mirror is equal to the focal length of the central region of the main mirror, that is, the focal length is close to the focal length of the central region of the main mirror.
  • the superimposed focal length of the edge region of the main mirror and the sub mirror is not used without using the specific compensating optical element.
  • the difference from the focal length of the central area of the primary mirror is less than 10 mm.
  • the primary mirror and the secondary mirror are combined by optical bonding.
  • the primary mirror and the secondary mirror may also be combined in other reasonable manners (for example, mechanical combination), and the present invention is not limited thereto.
  • the sub mirrors may be mounted on different sides of the main mirror, and when the optical magnifying mirror is mounted on the head mounted display device, the sub mirror may be located at the main mirror away from the person.
  • One side of the eye can also be located on the side of the main mirror that is close to the human eye.
  • the optical amplifying combination mirror 2 includes a primary mirror 21 and a secondary mirror 22, wherein the primary mirror 21 is a set of convex lenses with transparent skirts, and the secondary mirror 22 is a set of centrally hollow planar base Fresnel lenses.
  • the inner diameter of the sub-mirror 22 is provided with a sinking lap which coincides with the skirt of the main mirror 21.
  • the primary mirror 21 in the optical amplifying combination mirror 2 is a set of convex lenses 21 with a transparent large skirt
  • the secondary mirror 22 is a set of centrally hollow planar base Fresnel lenses.
  • the shape and size of the skirt of the main mirror 21 coincide with the shape and size of the sub mirror 22.
  • the transparent flat skirt of the convex lens ie, the edge region of the main mirror 21
  • its main function is to facilitate the combination of the convex lens and the focusing thin optical element constituting the sub mirror 22, so the skirt of the convex lens
  • the size of the shape can also be inconsistent with the focusing thin optical element, ie the two can partially overlap.
  • the head-mounted VR display device is divided into two types: monocular and binocular.
  • the optical amplifying combination mirror structure shown in FIGS. 1 to 5 has only one central region, which is applicable to both monocular and binocular. From the optical path, the binocular head-mounted VR display device needs to be equipped with two sets of optical systems corresponding to the left and right eyes, respectively. In terms of physical structure, in the two optical systems that the binocular head-mounted VR display device needs to be equipped, some of the bilaterally symmetrical optical components can be integrally formed from the viewpoint of manufacturing process and installation convenience.
  • the primary mirror and the secondary mirror in the left and right optical magnification combination mirrors can be designed to be integrally molded.
  • the main mirror of the optical amplifying combination mirror is designed to have two central regions with left and right symmetry, and the number of hollow regions in the center of the sub mirror is consistent with the number of central regions of the main mirror.
  • the optical amplifying combination mirror adopted in the present embodiment is a non-standard lens, it is illustrated in the optical path diagram in the form of FIG. 8(a) or FIG. 8(b) in the drawings of the present specification.
  • the present invention also provides a head-mounted display optical system to which the above-described optical amplifying combination mirror is applied.
  • the head mounted display optical system includes an image display source and an optical magnifying glass set.
  • the image display source is used to display optical information, and the projected virtual image formed by the optical information magnified by the optical magnifying glass group is received by the human eye.
  • the optical magnifying glass set includes at least one of the above optical magnifying combined mirrors.
  • the image display source may be implemented in different reasonable manners, and the present invention is not limited thereto.
  • the image display source can be either a separate display or a mobile terminal display.
  • the optical magnifying lens set further includes one or more intermediate optical elements.
  • Intermediate optics The component is disposed on a side of the optical amplifying combination mirror away from the human eye, and the optical information displayed by the image display source passes through the intermediate optical component and then enters the human eye through the optical amplification combined mirror.
  • the intermediate optical component may be a focused thin optical component, a convex lens, or a combination of a focusing thin optical component and a convex lens, and the invention is not limited thereto.
  • the intermediate optical component is a focusing thin optical component, and the focusing thin optical component is located at an end of the optical amplification combined mirror away from the human eye, and the optical information displayed by the image display source passes through the focused thin optical component, and then The optical magnification combination mirror is injected into the human eye.
  • the intermediate optical component is a convex lens
  • the convex lens is located at an end of the optical amplification combined mirror away from the human eye, and the optical information displayed by the image display source first passes through the convex lens, and then enters the human eye through the optical amplification combined mirror.
  • the convex lens here may be a conventional spherical surface, an aspheric surface, a free-form optical transmission or a combined mirror of these conventional lenses, and the present invention also changes thereto.
  • FIG. 9 to FIG. 16 each take a binocular head-mounted display optical system as an example.
  • the monocular optical system only needs to select one of the binocular optical systems.
  • the side can be, not introduced separately.
  • FIG. 9 is a schematic structural view of a binocular head-mounted display optical system according to an embodiment of the present invention.
  • the binocular head-mounted display optical system includes an image display source 1 shared by the left and right eyes (the image display source 1 can be displayed as a large screen on the left and right screens, or as two separate small screens on the left and right sides). And two sets of optical magnifying glass sets, each set of optical magnifying glass consists of an optical magnifying combined mirror 2.
  • the image displays the light information displayed by the source 1, and the projected virtual image enlarged by the optical amplifying combination mirror 2 is received by the human eye.
  • the central region of the main mirror (ie, the convex lens portion) of the optical amplifying combination mirror 2 is glued by two circular aspheric lenses having the same diameter (two pieces of non-spherical Spherical lenses have a uniform skirt).
  • the secondary mirror is a centrally thin focused thin optical element that is preferably implemented using a planar base Fresnel lens.
  • the central region of the main mirror and the structure of the sub-mirror in the optical amplifying combination mirror 2 are shown in FIG. 10, and their respective parameters can be referred to Table 1.
  • the binocular display field has a binocular horizontal field of view of approximately 106 degrees and a diagonal field of view of approximately 152 degrees.
  • FIG. 11 is a block diagram showing the structure of a binocular head-mounted display optical system according to another embodiment of the present invention.
  • the binocular head-mounted display optical system has an image display source 1 and two sets of optical magnifier sets.
  • each set of optical magnifying glass consists of one optical amplifying combination mirror 2 and two focusing sheet type optical elements 3.
  • the two sheets of the focus sheet type optical element 3 are located between the optical magnification combining mirror 2 and the image display source 1.
  • the two focusing sheet-type optical elements 3 in each set of optical magnifying glass sets may be a piece of planar base Fresnel lens and a piece of curved base Fresnel lens.
  • the optical information displayed by the image display source 1 passes through the focused thin optical element 3 and then enters the human eye through the optical amplification combined mirror 2.
  • FIG. 12 is a schematic structural view of a binocular head-mounted display optical system according to still another embodiment of the present invention.
  • the binocular head-mounted display optical system has an image display source 1 and two left and right optical magnifying glass groups, each set of optical magnifying glass sets consisting of an optical magnifying combined mirror 2 and a piece of focusing thin optical element 3 (in the In an embodiment, the focusing thin optical element 3 is preferably implemented using a planar base Fresnel lens.
  • the optical information displayed by the image display source 1 passes through the Fresnel lens 3 and then enters the human eye through the optical amplifying combination mirror 2.
  • the optical amplifying combination mirror 2 is composed of a circular aspherical lens with a skirt and a planar base Fresnel lens hollowed out, and the aspherical lens portion and the edge Fresnel lens portion of the optical amplifying combination mirror 2
  • the structure labeling is shown in Figure 13, and its respective parameters can be referred to Table 2.
  • the optical amplifying combination mirror 2 satisfies the parameters of Table 2
  • the image display source 1 is a 6-inch screen and the focal length of the Fresnel lens 3 is 55 mm
  • the total focal length of the optical magnifying glass set is about 29 mm.
  • the optical system has a binocular horizontal field of view of approximately 110 degrees and a diagonal field of view of approximately 160 degrees.
  • FIG. 14 is a block diagram showing the structure of a binocular head-mounted display optical system according to still another embodiment of the present invention.
  • the binocular head-mounted display optical system has an image display source 1 and two sets of optical magnifiers, each of which is composed of an optical magnifying mirror 2 and a convex lens 4.
  • the optical information displayed by the image display source 1 passes through the convex lens 4 and then enters the human eye through the optical amplification combined mirror 2.
  • the optical amplifying combination mirror 2 is composed of a primary mirror and a secondary mirror.
  • the primary mirror is a circular aspherical lens with a skirt
  • the secondary mirror is a planar base Fresnel lens with a hollow center.
  • the structure of the aspherical lens portion and the edge Fresnel lens portion of the optical amplifying combination mirror 2 is shown in FIG. 15 , and the respective parameters thereof can be referred to Table 3.
  • the convex lens 4 is an aspherical lenticular lens, and its structure is shown in FIG. 16 , and its parameters can be referred to Table 4.
  • the optical shift is performed.
  • the total focal length of the large mirror group is about 33.5 mm (the convex lens focal length of the optical magnification combination mirror 2 is 45.95, the optical magnification combination mirror 2 edge Fresnel lens focal length is 46 mm, the convex lens 4 focal length is 104.3 mm), and the image display source 1 is a 6-inch screen.
  • the binocular horizontal field of view of the optical system can be calculated to be about 90 degrees, and the diagonal field of view is about 126 degrees.
  • Figure 16 is a block diagram showing the structure of a binocular head-mounted display optical system according to still another embodiment of the present invention.
  • the binocular head-mounted display optical system has an image display source 1 and two left and right optical magnifying glass groups, and each set of optical magnifying glass groups is vertically stacked by two optical magnifying combined mirrors.
  • the optical information displayed by the image display source 1 passes through the first optical amplifying combination mirror and then enters the human eye through the second optical amplifying combined mirror.
  • the optical components in the head-mounted display optical system provided by the above embodiments may be selectively plated with an anti-reflection film, such as a plating or hard film or an anti-fog film. Functional film layer.
  • the left and right optical magnifier groups are independent components, and in the case where the spacing of the binocular head-mounted VR display device does not need to be adjusted, left and right
  • the optically magnifying combination mirror with the skirting convex lens portion and the central hollowed focusing thin optical element can be separately designed for integral injection molding, and then the two are optically bonded together to form an integral optical amplifying combination mirror suitable for dual purpose.
  • the present invention also provides a head-mounted virtual reality display device, which may be monocular or binocular, and the optical system thereof is configured to include the optical amplifying combination mirror of the present invention.
  • Optical system, binocular optical system can be seen in Figures 9-16.
  • the invention adopts a special optical amplifying combination mirror, which can greatly expand the field of view of the image display system.
  • the device image display source displays the image with the phase difference on the left and right screens
  • the user can truly experience the great impact and the extreme effect brought by the stereo vision. Shocking effect.
  • the invention overcomes the fact that when a conventional lens (spherical surface, aspherical surface or free-form surface) is used as a magnifying lens set of a head-mounted display device, the visibility of the display system is limited due to the small lens aperture, which weakens the immersion feeling brought to the human eye, and the weight is large, and the wearing Uncomfortable and other issues.
  • a conventional lens spherical surface, aspherical surface or free-form surface
  • the focused thin optical element according to the present invention comprises a Fresnel lens, a Fresnel zone plate, a binary element or the like having a focusing function.
  • These components are light in weight, but the image quality is slightly poor, and they are combined with the conventional lens to ensure the central image quality and expand the edge view of the human eye, thereby enhancing the user's immersion.
  • the weight of the system is greatly reduced, and the discomfort caused by the weight on the wearing of the head mounted display device is reduced.
  • the present invention uses a convex lens with a skirt as a main
  • the superimposition of the mirror and the sub-mirror composed of the focusing thin optical element can effectively reduce the difficulty of combining the two and improve the authenticity rate of the optical amplification combined mirror.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学放大组合镜、头戴显示光学系统及虚拟现实显示设备,光学放大组合镜(2)在头戴式虚拟现实显示设备中使用,包括主镜(21)和副镜(22),主镜(21)包括中心区域(A)和边缘区域(B),中心区域(A)包括凸透镜或组合凸透镜,边缘区域(B)为聚焦薄型光学元件;副镜(22)为形成有镂空区域的聚焦薄型光学元件;其中,主镜(21)与副镜(22)叠合在一起,副镜(22)的镂空区域与主镜(21)的中心区域(A)的凸起部分紧密配合。应用该光学放大组合镜(2)的显示设备既能保证中心画质,又同时扩大了人眼的边缘视野,增强了使用者的沉浸感。

Description

光学放大组合镜、头戴显示光学系统及虚拟现实显示设备
相关技术的交叉引用
本申请要求享有如下中国专利申请的优先权:2015年03月06日提交的名称为“光学放大组合镜、头戴显示光学系统及设备”的中国专利申请CN201510100253.0、2015年03月06日提交的名称为“光学放大组合镜、头戴显示光学系统及设备”的中国专利申请CN201520130502.6以及2015年03月06日提交的名称为“光学放大组合镜、头戴显示光学系统及设备”的中国专利申请CN201520130687.0,上述专利申请的全部内容通过引用并入本文中。
技术领域
本发明涉及光学领域,尤其涉及一种应用于头戴显示设备上的光学放大组合镜,以及带有该光学放大组合镜的头戴显示光学系统及头戴式虚拟现实显示设备。
背景技术
目前头戴式虚拟现实显示系统的光学放大元件均采用传统透镜,如球面透镜、非球面透镜或自由曲面光学透镜,受光学加工技术及光学材料的限制,显示系统中的光学放大镜组的口径通常会做得比较小(若口径做大光学系统的重量和体积均会大幅增加),使用者通过光学放大镜组所能观察到的视野被放大镜组的口径限制,放大镜组的视野相对人眼自然状态下的视野显得很小,故此视野受限的图像显示系统给人眼带来的视觉冲击及沉浸感将会受到很大的影响。在保证头戴设备体积足够小、重量足够轻的前提下,如何实现头戴式虚拟现实显示系统大视场成为亟待解决的问题。
发明内容
本发明所要解决的技术问题是为了在保证头戴设备体积足够小、重量足够轻的前提下,实现头戴式虚拟现实显示系统大视场。为解决上述问题,本发明的一个实施例首先提供了一种光学放大组合镜,其在头戴式虚拟现实显示设备中使用,其中,所述光学放大组合镜包括主镜和副镜,
所述主镜包括中心区域和边缘区域,所述中心区域包括凸透镜或组合凸透镜,所述边 缘区域为聚焦薄型光学元件;
所述副镜为形成有镂空区域的聚焦薄型光学元件;
其中,所述主镜与副镜叠合在一起,所述副镜的镂空区域与所述主镜的中心区域的凸起部分紧密配合。
根据本发明的一个实施例,当所述主镜与副镜叠合在一起时,所述主镜的边缘区域与所述副镜部分或全部重叠在一起。
根据本发明的一个实施例,所述副镜的内径处配置有下沉的搭接沿,所述搭接沿与所述主镜的边缘区域相吻合。
根据本发明的一个实施例,所述主镜的边缘区域与副镜的叠加焦距与所述主镜的中心区域的焦距之差小于10毫米。
根据本发明的一个实施例,
所述凸透镜为球面透镜、非球面透镜或自由曲面光学透镜;且/或,
所述副镜为菲涅尔透镜、菲涅尔波带片或二元光学元件。
根据本发明的一个实施例,所述主镜的中心区域凸透镜为非球面透镜,所述主镜的边缘区域和副镜为形状和大小一致的平面基底菲涅尔透镜。
根据本发明的一个实施例,所述凸透镜表面形成有用于消色差的纹路。
根据本发明的一个实施例,所述主镜与副镜通过光学胶合方式叠合在一起。
根据本发明的一个实施例,所述主镜的中心区域与边缘区域是通过一体注塑成型的。
根据本发明的一个实施例,所述主镜包括一个中心区域或左右对称的两个中心区域,所述副镜的镂空区域的个数与所述主镜的中心区域的个数相同。
本发明还提供了一种头戴显示光学系统,所述光学系统包括图像显示源和光学放大镜组,所述图像显示源用于显示光信息,所述光信息经光学放大镜组放大后形成的投影虚像由人眼接收,其中,所述光学放大镜组包括至少一片如上任一项所述的光学放大组合镜
根据本发明的一个实施例,所述光学放大镜组还包括:
一片或多片中间光学元件,所述中间光学元件设置于所述光学放大组合镜远离人眼的一侧,所述图像显示源显示的光信息先经过所述中间光学元件,再经所述光学放大组合镜射入人眼。
根据本发明的一个实施例,所述多片中间光学元件为:聚焦薄型光学元件,或凸透镜,或聚焦薄型光学元件与凸透镜的组合。
本发明还提供了一种头戴式虚拟现实显示设备,所述显示设备包括一组和或两组如上任一项所述的头戴显示光学系统。
与现有技术相比,本发明具有如下有益效果:
1.本发明光学放大组合镜,采用传统透镜与聚焦薄型光学元件的结合,运用于头戴式虚拟现实显示设备上,既能保证中心画质,又同时扩大了人眼的边缘视野,增强了使用者的沉浸感;
2.由于聚焦薄型光学元件的使用,很大程度上减小了头戴式虚拟现实显示设备的重量,减轻了重量对佩戴造成的不适感。
3.若用普通不带裙边凸统透镜与中心镂空的聚焦薄型光学元件结合,很容易发生偏斜,错位等影响光学放大组合镜精度的问题,本发明采用带裙边的凸透镜与聚焦薄型光学元件的叠合,能有效降低二者结合难度,提高光学放大组合镜正品率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图:
图1为本发明实施例光学放大组合镜的一种结构分解示意图;
图2为图1各组件剖面图示意图;
图3为图1结构组合好后的光学放大时组合镜示意图;
图4为本发明实施例光学放大组合镜的又一种结构分解示意图;
图5为图4结构组合好后的光学放大时组合镜示意图;
图6为本发明实施例光学放大组合镜主镜的又一种结构示意图;
图7为对应图4主镜的副镜结构示意图;
图8为本发明实施例中光学放大组合镜在光路图中的元件示意图;
图9为本发明一个实施例中头戴显示光学系统实施例结构示意图;
图10为图9和图14中光学放大组合镜中心区域和边缘区域的光学参数标注示意图;
图11为本发明另一个实施例中头戴显示光学系统实施例的结构示意图;
图12为本发明头又一个实施例中戴显示光学系统的结构示意图;
图13为图12中光学放大组合镜中心区域和边缘区域的光学参数标注示意图;
图14为本发明再一个实施例中头戴显示光学系统的结构示意图;
图15为图14中凸透镜4的参数标注示意图;
图16为本发明再一个实施例中头戴显示光学系统的结构示意图;
图中标记:A-光学放大组合镜的中心区域,B-光学放大组合镜的边缘区域1-图像显示源,2-光学放大组合镜,3-聚焦薄型光学元件,4-凸透镜。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明光学放大组合镜主要针对头戴式VR显示系统设计,VR指虚拟现实,是Virtual Reality的简称。
本发明所提供的光学放大组合镜包括主镜和副镜。主镜包括中心区域和边缘区域,其中,中心区域A为凸透镜(例如单凸或双凸)或组合凸透镜,而边缘区域B为聚焦薄型光学元件(即具有聚焦功能的薄片型光学元件)。副镜为形成有镂空区域的聚焦薄型光学元件。
需要指出的是,在本发明的不同实施例中,主镜的中心区域A与边缘区域B的材质既可以是相同的(例如距采用光学塑料PMMA形成),也可以是不同的(例如中心区域采用光学塑料PMMA形成,而边缘区域采用E48R形成),本发明不限于此。
在实际应用中,当光学放大组合经完全有一片主镜构成时,由于主镜的中心区域与边缘区域之间的焦距相当,同时在主镜的中心区域与聚焦薄型光学元件的之间的焦距相当的情况下,将造成二者中心厚度将相差较大且主镜的边缘区域的面积较大,从而造成边缘区域过薄。这对注塑工艺的要求较高,特别是主镜采取一体成型时对注塑工艺的要求会更高。因此本发明采用副镜作为补偿镜来与主镜边缘区域叠加,从而使得主镜边缘区域可以拥有较大的焦距,并增加了主镜边缘区域的厚度。这样可以有效降低对生产工艺高要求的限值,从而有效降低注塑成本。
本发明中,主镜与副镜叠合在一起,并且副镜的镂空区域与所述主镜的中心区域的凸起部分紧密配合。其中,主镜的中心区域对应主视场成像,其使得使用该光学放大组合镜的VR显示系统能够具有优质的画质。副镜对应边缘视场成像,其可以有效扩大VR显示系统的周边视野。
组合凸透镜是指至少两块凸透镜组合在一起所形成的一个透镜组,例如两块口径一致的圆形的非球面透镜胶合在一起形成组合凸透镜。本实施例中,主镜的边缘区域(即凸透镜的透明平板裙边)不具任何光学作用,其主要作用在于方便构成主镜的凸透镜与副镜相结合。同时,本实施例中,优选地,光学放大组合镜的主镜中心区域的表面刻有用于消色差的纹路,也就是说,主镜的中心区域可以为折衍混合消色差透镜。
需要指出的是,在本发明的不同实施例中,构成主镜的凸透镜可以为传统球面透镜、非球面透镜或自由曲面光学透镜,本发明不限于此。同时,在本发明的不同实施例中,构成副镜的聚焦薄型光学元件可以为菲涅尔透镜、菲涅尔波带片或二元光学元件,本发明同样不限于此。
例如在本发明的一个实施例中,形成主镜中心区域的凸透镜为非球面透镜,而主镜的边缘区域和副镜为形状及大小一致的平面基底菲涅尔透镜。其中,平面基底菲涅尔透镜的一面为光面,另一边可有同心锯齿圆环。该类光学放大组合镜安装于头戴式VR显示设备上时,平面基底菲涅尔透镜的光面优选地面对人眼。
同时还需要指出的是,主镜的中心区域的外围轮廓形状不限,其既可以是圆形,也可以是矩形或其他非规则形状,而副镜的镂空区域的轮廓形状与主镜的中心区域的外围轮廓形状一致,并且能够紧密配合
本实施例中,主镜的边缘区域与副镜叠加在一起后的叠加焦距与主镜的中心区域的焦距相当,即加焦距与主镜的中心区域的焦距接近。具体地,在本实施例中,将本发明实施例光学放大组合镜运用到头戴式VR设备上时,在不采用特定补偿光学元件的情况下,主镜的边缘区域与副镜的叠加焦距与主镜的中心区域的焦距之差小于10毫米。
本实施例中,主镜与副镜通过光学胶合方式结合在一起。当然,在本发明的其他实施例中,主镜与副镜还可以采用其他合理的方式(例如机械组合方式)结合在一起,本发明不限于此。
需要指出的是,在本发明的不同实施例中,副镜可以安装在主镜的不同侧,极当光学放大组合镜安装于头戴式显示设备上时,副镜既可以位于主镜远离人眼的一侧,也可以位于主镜靠近人眼的一侧。
图1~图3示出了根据本发明一个实施例的光学放大组合镜。从图1~图3中可以看出, 该光学放大组合镜2包括主镜21和副镜22,其中,主镜21为一组带透明小裙边的凸透镜,副镜22为一组中心镂空的平面基底菲涅尔透镜。副镜22的内径带下沉的搭接沿,该搭接沿与主镜21的裙边相吻合。当将主镜21与副镜22组合在一起时,主镜21正好嵌入副镜22的中心镂空区域,主镜21的裙边与副镜22的下沉搭接沿重叠。
图4和图5示出了根据本发明另一个实施例的光学放大组合镜。从图4和图5中可以看出,该光学放大组合镜2中的主镜21为一组带透明大裙边的凸透镜21,副镜22为一组中心镂空的平面基底菲涅尔透镜。其中,主镜21的裙边形状以及大小与副镜22的形状以及大小相一致。当主镜21与副镜22叠合在一起时,主镜21的裙边与副镜22完全重叠在一起。
需要说明的是,由于凸透镜的透明平板裙边(即主镜21的边缘区域)不具任何光学作用,其主要作用在于方便凸透镜与构成副镜22的聚焦薄型光学元件相结合,因此凸透镜的裙边的大小形状也可以与聚焦薄型光学元件不一致,即二者可以部分重叠。
头戴式VR显示设备分单目和双目两种,图1~图5所示出的光学放大组合镜结构中只具有一个中心区域,其既适用于单目,又适用于双目。从光路上来说,双目头戴式VR显示设备需配备分别对应于左右眼的两套光学系统。而从实物结构上来说,双目头戴式VR显示设备需配备的两套光学系统中,从制造工艺和安装方便的角度考虑,部分左右对称的光学元件可以一体成型。
例如,在双目头戴式VR显示设备的瞳间距不需要做调整操作的情况下,如图6和图7所示,左右光学放大组合镜中的主镜和副镜均可以设计为一体注塑成型,即光学放大组合镜主镜设计为具有左右对称的两个中心区域,而副镜中心镂空区域个数则与主镜中心区域个数保持一致。
由于本实施例所通过的光学放大组合镜为非标准透镜,因此在本说明书附图中,将其以图8(a)或图8(b)的形式在光路图中示意。
本发明还提供了一种应用上述光学放大组合镜的头戴显示光学系统。该头戴显示光学系统包括图像显示源和光学放大镜组。图像显示源用于显示光信息,该光信息经光学放大镜组放大后形成的投影虚像由人眼接收。其中,光学放大镜组包括至少一片上述的光学放大组合镜。
需要说明的是,在本发明的不同实施例中,图像显示源可以采用不同的合理方式来实现,本发明不限于此。例如在本发明的一个实施例中,图像显示源既可以为单独显示屏,也可以为移动终端显示屏。
在本发明的一些实施例中,光学放大镜组还包括一片或多片中间光学元件。中间光学 元件设置于所述光学放大组合镜远离人眼的一侧,图像显示源显示的光信息先经过中间光学元件,再经光学放大组合镜射入人眼。
需要指出的是,在发明的不同实施例中,上述中间光学元件既可以为聚焦薄型光学元件,也可以为凸透镜,还可以是聚焦薄型光学元件与凸透镜的组合,本发明不限于此。例如在本发明的一个实施例中,上述中间光学元件为聚焦薄型光学元件,聚焦薄型光学元件位于光学放大组合镜远离人眼一端,图像显示源显示的光信息先经过聚焦薄型光学元件,再经光学放大组合镜射入人眼。而在另一个实施例中,上述中间光学元件为凸透镜,凸透镜位于光学放大组合镜远离人眼一端,图像显示源显示的光信息先经过凸透镜,再经光学放大组合镜射入人眼。而此处的凸透镜可以为传统球面、非球面、自由曲面光学透或这些传统透镜的组合镜,本发明同样变于此。
下面结合图9~图16介绍本发明头戴显示光学系统的部分实施例,图9~图16均以双目头戴显示光学系统为例,单目光学系统只需要选用双目光学系统的一侧即可,不单独进行介绍。
图9示出了本发明一个实施例所提供的双目头戴显示光学系统结构示意图。
如图9所示,该双目头戴显示光学系统包括左右眼共用的图像显示源1(图像显示源1既可以为一块大屏分左右屏显示,也可以为分开的左右两块小屏)和左右两组光学放大镜组,每组光学放大镜组由一片光学放大组合镜2构成。图像显示源1显示的光信息,经光学放大组合镜2放大后的投影虚像由人眼接收。
在图9所示的双目头戴显示光学系统中,光学放大组合镜2中主镜的中心区域(即凸透镜部分)由两块口径一致的圆形的非球面透镜胶合而成(两块非球面透镜具有一致的裙边)。副镜为中心镂空的聚焦薄型光学元件,其优选地采用平面基底菲涅尔透镜来实现。光学放大组合镜2中主镜的中心区域与副镜的结构标注如图10所示,其各自的参数可参考表1。
表1
Figure PCTCN2015093084-appb-000001
该实施例中,在光学放大组合镜2满足表1参数时,主镜的中心区域和副镜的焦距均为30mm时(此时光学放大镜组的总焦距30mm),当图像显示源1为6英寸屏幕时,该头戴显示光学系统的双目水平视场约为106度,对角视场约152度。
图11示出了本发明另一个实施例所提供的双目头戴显示光学系统结构示意图。
如图11所示,该双目头戴显示光学系统具有一图像显示源1和左右两组光学放大镜组。其中,每组光学放大镜组由一片光学放大组合镜2和两片聚焦薄片型光学元件3组成。这两片聚焦薄片型光学元件3位于光学放大组合镜2与图像显示源1之间。该实施例中,每组光学放大镜组中的两片聚焦薄片型光学元件3可以为一片平面基底菲涅尔透镜和一片弧面基底菲涅尔透镜。图像显示源1显示的光信息先经过聚焦薄型光学元件3,再经光学放大组合镜2射入人眼。
图12示出了本发明又一个实施例所提供的双目头戴显示光学系统结构示意图。
如图12所示,该双目头戴显示光学系统具有一图像显示源1和左右两组光学放大镜组,每组光学放大镜组由一片光学放大组合镜2和一片聚焦薄型光学元件3(在该实施例中,聚焦薄型光学元件3优选地选用平面基底菲涅尔透镜来实现)组成。图像显示源1显示的光信息先经过菲涅尔透镜3,再经光学放大组合镜2射入人眼。
在该实施例中,光学放大组合镜2由一带裙边的圆形非球面透镜和中心镂空的平面基底菲涅尔透镜组成,光学放大组合镜2的非球面透镜部分与边缘菲涅尔透镜部分的结构标注如图13所示,其各自的参数可参考表2。
表2
Figure PCTCN2015093084-appb-000002
Figure PCTCN2015093084-appb-000003
本实施例中,在光学放大组合镜2满足表2参数时,当图像显示源1为6英寸屏幕且菲涅尔透镜3的焦距为55mm时,此时光学放大镜组的总焦距约为29mm,该光学系统的双目水平视场约为110度,对角视场约160度。
图14示出了本发明再一个实施例所提供的双目头戴显示光学系统结构示意图。
如图14所示,该双目头戴显示光学系统具有一图像显示源1和左右两组光学放大镜组,每组光学放大镜组由一片光学放大组合镜2和一片凸透镜4组成。图像显示源1显示的光信息先经过凸透镜4,再经光学放大组合镜2射入人眼。
在该实施例中,光学放大组合镜2由主镜和副镜构成。其中,主镜为一带裙边的圆形非球面透镜,副镜为中心镂空的平面基底菲涅尔透镜。光学放大组合镜2的非球面透镜部分与边缘菲涅尔透镜部分的结构标注如图15所示,其各自的参数可参考表3。凸透镜4为非球面双凸透镜,其结构标注如图16所示,其参数可参考表4。
表3
Figure PCTCN2015093084-appb-000004
表4
Figure PCTCN2015093084-appb-000005
该实施例中,在光学放大组合镜2满足表3参数且凸透镜4满足表3参数时,光学放 大镜组的总焦距约为33.5mm(光学放大组合镜2的凸透镜焦距45.95,光学放大组合镜2边缘菲涅尔透镜焦距46mm,凸透镜4焦距104.3mm),当图像显示源1为6英寸屏幕时,可计算获得该光学系统的双目水平视场约为90度,对角视场约126度。
图16出了本发明再一个实施例所提供的双目头戴显示光学系统结构示意图。
如图16所示,该双目头戴显示光学系统具有一图像显示源1和左右两组光学放大镜组,每组光学放大镜组由两片光学放大组合镜纵向叠放而成。图像显示源1显示的光信息先经过第一光学放大组合镜,再经第二光学放大组合镜射入人眼。
需要说明的是,为了满足某些特定需求,上述各实施例所提供的头戴显示光学系统中的光学元件均可以选择性地增镀增透膜,例如增镀加硬膜或防雾膜等功能性膜层。
在上述头戴显示光学系统的实施例中,如图9至图16,左右光学放大镜组均为独立元件,在双目头戴式VR显示设备的瞳间距不需要做调整操作的情况下,左右光学放大组合镜带裙边的凸透镜部分和中心镂空的聚焦薄型光学元件可以分别设计为一体注塑成型,然后二者通过光学胶合方式结合到一起形成适用于双目的一体光学放大组合镜。
本发明还提供了一种头戴式虚拟现实显示设备,该头戴式虚拟现实显示设备可以为单目式,也可以为双目式,其光学系统采用的为包含本发明光学放大组合镜的光学系统,双目式光学系统可参见图9至图16。
本发明采用一种特制的光学放大组合镜,可极大的扩大图像显示系统的视野。将其应用于双目式头戴虚拟现实显示设备中时,在设备图像显示源左右分屏显示带有相差的图像时,更可让使用者真实地体验到立体视觉带来的巨大冲击和极致震撼的效果。
本发明克服了单用传统透镜(球面、非球面或自由曲面)作为头戴显示设备放大镜组时,因透镜口径小限制显示系统视野,削弱了给人眼带来的沉浸感,重量大,佩戴不舒服等问题。
本发明所述的聚焦薄型光学元件包括菲涅尔透镜,菲涅尔波带片、二元元件等具有聚焦功能的薄片型光学元件。这些元件重量轻,但成像质量略差,将其与传统透镜向组合,既保证了中心画质,又扩大了人眼的边缘视野,增强了使用者的沉浸感。同时由于聚焦薄型光学元件的使用,很大程度上减小了系统的重量,减轻了重量对头戴显示设备佩戴造成的不适感。
另外,若使用普通不带裙边凸统透镜与中心镂空的聚焦薄型光学元件结合,很容易发生偏斜,错位等影响光学放大组合镜精度的问题,而本发明采用带裙边的凸透镜作为主镜来与聚焦薄型光学元件构成的副镜的叠合,能有效降低二者结合难度,提高光学放大组合镜正品率。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (14)

  1. 一种光学放大组合镜,其在头戴式虚拟现实显示设备中使用,其中,所述光学放大组合镜包括主镜和副镜,
    所述主镜包括中心区域和边缘区域,所述中心区域包括凸透镜或组合凸透镜,所述边缘区域为聚焦薄型光学元件;
    所述副镜为形成有镂空区域的聚焦薄型光学元件;
    其中,所述主镜与副镜叠合在一起,所述副镜的镂空区域与所述主镜的中心区域的凸起部分紧密配合。
  2. 如权利要求1所述的光学放大组合镜,其中,当所述主镜与副镜叠合在一起时,所述主镜的边缘区域与所述副镜部分或全部重叠在一起。
  3. 如权利要求1所述的光学放大组合镜,其中,所述副镜的内径处配置有下沉的搭接沿,所述搭接沿与所述主镜的边缘区域相吻合。
  4. 如权利要求1所述的光学放大组合镜,其中,所述主镜的边缘区域与副镜的叠加焦距与所述主镜的中心区域的焦距之差小于10毫米。
  5. 如权利要求1所述的光学放大组合镜,其中,
    所述凸透镜为球面透镜、非球面透镜或自由曲面光学透镜;且/或,
    所述副镜为菲涅尔透镜、菲涅尔波带片或二元光学元件。
  6. 如权利要求5所述的光学放大组合镜,其中,所述主镜的中心区域凸透镜为非球面透镜,所述主镜的边缘区域和副镜为形状和大小一致的平面基底菲涅尔透镜。
  7. 如权利要求5所述的光学放大组合镜,其中,所述凸透镜表面形成有用于消色差的纹路。
  8. 如权利要求1~7中任一项所述的光学放大组合镜,其中,所述主镜与副镜通过光学胶合方式叠合在一起。
  9. 如权利要求1~7中任一项所述的光学放大组合镜,其中,所述主镜的中心区域与边缘区域是通过一体注塑成型的。
  10. 如权利要求1~7中任一项所述的光学放大组合镜,其中,所述主镜包括一个中心区域或左右对称的两个中心区域,所述副镜的镂空区域的个数与所述主镜的中心区域的个数相同。
  11. 头戴显示光学系统,其中,所述光学系统包括图像显示源和光学放大镜组,所述图像显示源用于显示光信息,所述光信息经光学放大镜组放大后形成的投影虚像由人眼接收,其中,所述光学放大镜组包括至少一片如权利要求1~10中任一项所述的光学放大组 合镜
  12. 如权利要求11所述的光学系统,其中,所述光学放大镜组还包括:
    一片或多片中间光学元件,所述中间光学元件设置于所述光学放大组合镜远离人眼的一侧,所述图像显示源显示的光信息先经过所述中间光学元件,再经所述光学放大组合镜射入人眼。
  13. 如权利要求12所述的光学系统,其中,所述多片中间光学元件为:聚焦薄型光学元件,或凸透镜,或聚焦薄型光学元件与凸透镜的组合。
  14. 头戴式虚拟现实显示设备,其中,所述显示设备包括一组和或两组权利要求11~13中任一项所述的头戴显示光学系统。
PCT/CN2015/093084 2015-03-06 2015-10-28 光学放大组合镜、头戴显示光学系统及虚拟现实显示设备 WO2016141721A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/555,554 US20180039068A1 (en) 2015-03-06 2015-10-28 Optical magnifying combination lens, head-mounted display optical system and virtual reality display device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201520130502.6 2015-03-06
CN201520130502.6U CN204515244U (zh) 2015-03-06 2015-03-06 光学放大组合镜、头戴显示光学系统及设备
CN201520130687.0 2015-03-06
CN201510100253.0A CN104749761B (zh) 2015-03-06 2015-03-06 光学放大组合镜、头戴显示光学系统及设备
CN201520130687.0U CN204595324U (zh) 2015-03-06 2015-03-06 光学放大组合镜、头戴显示光学系统及设备
CN201510100253.0 2015-03-06

Publications (1)

Publication Number Publication Date
WO2016141721A1 true WO2016141721A1 (zh) 2016-09-15

Family

ID=56878478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093084 WO2016141721A1 (zh) 2015-03-06 2015-10-28 光学放大组合镜、头戴显示光学系统及虚拟现实显示设备

Country Status (2)

Country Link
US (1) US20180039068A1 (zh)
WO (1) WO2016141721A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710190A (zh) * 2009-11-03 2010-05-19 上海聚恒太阳能有限公司 一种削顶曲面聚光透镜及其制作方法
CN202948204U (zh) * 2012-12-07 2013-05-22 香港应用科技研究院有限公司 可透视型头戴式显示器光学系统
CN203573028U (zh) * 2013-07-10 2014-04-30 北京小米科技有限责任公司 一种显示屏观看透镜及眼镜
CN203786396U (zh) * 2014-03-20 2014-08-20 成都理想境界科技有限公司 一种头戴显示设备
CN104090354A (zh) * 2014-06-28 2014-10-08 青岛歌尔声学科技有限公司 一种无色差的头戴设备用广角内调焦镜头及头戴设备
CN104267507A (zh) * 2014-06-07 2015-01-07 杭州立体世界科技有限公司 高清裸眼便携式立体影视播放器左右目视反光镜构成结构
CN104749761A (zh) * 2015-03-06 2015-07-01 成都理想境界科技有限公司 光学放大组合镜、头戴显示光学系统及设备
CN204515244U (zh) * 2015-03-06 2015-07-29 成都理想境界科技有限公司 光学放大组合镜、头戴显示光学系统及设备
CN204595324U (zh) * 2015-03-06 2015-08-26 成都理想境界科技有限公司 光学放大组合镜、头戴显示光学系统及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048997B2 (en) * 1995-03-03 2006-05-23 Vision-Ease Lens Production of optical elements
US20070247715A1 (en) * 2006-04-21 2007-10-25 Melvin Francis Projection illumination systems lenses with diffractive optical elements
AT507254B1 (de) * 2008-09-09 2010-06-15 Fiala Werner Linse mit unabhängigen nichtinterferierenden teilzonen
EP3100096A1 (en) * 2014-01-31 2016-12-07 Mack, Corey Augmented reality eyewear and methods for using same
US9681804B2 (en) * 2015-01-12 2017-06-20 X Development Llc Hybrid lens system for head wearable display

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710190A (zh) * 2009-11-03 2010-05-19 上海聚恒太阳能有限公司 一种削顶曲面聚光透镜及其制作方法
CN202948204U (zh) * 2012-12-07 2013-05-22 香港应用科技研究院有限公司 可透视型头戴式显示器光学系统
CN203573028U (zh) * 2013-07-10 2014-04-30 北京小米科技有限责任公司 一种显示屏观看透镜及眼镜
CN203786396U (zh) * 2014-03-20 2014-08-20 成都理想境界科技有限公司 一种头戴显示设备
CN104267507A (zh) * 2014-06-07 2015-01-07 杭州立体世界科技有限公司 高清裸眼便携式立体影视播放器左右目视反光镜构成结构
CN104090354A (zh) * 2014-06-28 2014-10-08 青岛歌尔声学科技有限公司 一种无色差的头戴设备用广角内调焦镜头及头戴设备
CN104749761A (zh) * 2015-03-06 2015-07-01 成都理想境界科技有限公司 光学放大组合镜、头戴显示光学系统及设备
CN204515244U (zh) * 2015-03-06 2015-07-29 成都理想境界科技有限公司 光学放大组合镜、头戴显示光学系统及设备
CN204595324U (zh) * 2015-03-06 2015-08-26 成都理想境界科技有限公司 光学放大组合镜、头戴显示光学系统及设备

Also Published As

Publication number Publication date
US20180039068A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2016141720A1 (zh) 光学放大组合镜、头戴光学显示系统及虚拟现实显示设备
CN107430277B (zh) 用于沉浸式虚拟现实的高级折射光学器件
US10890694B2 (en) Optical system for head-mounted display system
TWI627463B (zh) 目鏡光學系統
CN104991340B (zh) 光学放大组合镜、双目头戴式虚拟现实显示设备
JP2020512568A (ja) 多様なファセット角を有するフレネルレンズアセンブリ
US20180052309A1 (en) Method for expanding field of view of head-mounted display device and apparatus using the same
WO2019149176A1 (zh) 目镜、眼镜、头盔式显示器和vr系统
TWI692650B (zh) 目鏡光學系統
CN104749761B (zh) 光学放大组合镜、头戴显示光学系统及设备
CN104749762B (zh) 光学放大组合镜、头戴显示光学系统及设备
CN206270594U (zh) 一种用于虚拟现实的近眼显示系统及头戴显示设备
CN104133293A (zh) 虚像显示装置
CN204515243U (zh) 光学放大组合镜、头戴显示光学系统及设备
WO2013123887A1 (zh) 滤色器基板、其制造方法及3d显示装置
CN107966811A (zh) 一种折反式自由曲面大视场增强现实光学系统
CN106371212B (zh) 双元素凸凹镜片的vr/mr光学系统及vr/mr设备
JP2021517653A (ja) Vrレンズ構造および表示装置
CN204883042U (zh) 光学放大组合镜、双目头戴式虚拟现实显示设备
TW201901217A (zh) 目鏡光學系統
CN206321875U (zh) 双元素凸凹镜片的vr/mr光学系统及vr/mr设备
WO2016150166A1 (zh) 成虚像的放大显示装置
WO2016141721A1 (zh) 光学放大组合镜、头戴显示光学系统及虚拟现实显示设备
CN204595324U (zh) 光学放大组合镜、头戴显示光学系统及设备
TW201537227A (zh) 裸視立體顯示裝置及排列裸視立體顯示裝置之像素的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15555554

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884399

Country of ref document: EP

Kind code of ref document: A1