WO2016140538A1 - Method for transmitting and receiving mbms related signal in wireless communication system, and device therefor - Google Patents

Method for transmitting and receiving mbms related signal in wireless communication system, and device therefor Download PDF

Info

Publication number
WO2016140538A1
WO2016140538A1 PCT/KR2016/002156 KR2016002156W WO2016140538A1 WO 2016140538 A1 WO2016140538 A1 WO 2016140538A1 KR 2016002156 W KR2016002156 W KR 2016002156W WO 2016140538 A1 WO2016140538 A1 WO 2016140538A1
Authority
WO
WIPO (PCT)
Prior art keywords
ecgi
list
mbms
mbsfn
mce
Prior art date
Application number
PCT/KR2016/002156
Other languages
French (fr)
Korean (ko)
Inventor
김래영
류진숙
김현숙
김재현
김태훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2016140538A1 publication Critical patent/WO2016140538A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving signals related to multimedia broadcast multicast services (MBMS) of a multi-cell / multicast coordination entity (MCE).
  • MBMS multimedia broadcast multicast services
  • MCE multi-cell / multicast coordination entity
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • a method for transmitting and receiving a signal related to MBMS (Multimedia Broadcast Multicast Services) of a multi-cell / multicast coordination entity (MCE) in a wireless communication system includes a service area identifier (SAI) and a first ECGI list.
  • SAI service area identifier
  • Receiving a session start message Constructing an MBSFN list using the SAI; Removing from the MBSFN list an MBSFN that does not need to allocate resources based on the first ECGI list; Allocating a resource for an MBMS bearer based on the MBSFN list from which the MBSFN has not been allocated and the first ECGI list; Constructing a second ECGI list to which MBMS transmission is to be performed by the resource allocation; And transmitting the second ECGI list to the network, wherein the MCE is not capable of Single Cell Point To Multiploint (SC-PTM) or if SC-PTM is available but decides to use an MBSFN transmission scheme.
  • the second ECGI list is an MBMS related signal transmission / reception method including ECGI grouping information.
  • a multi-cell / Multicast Coordination Entity (MCE) device for transmitting and receiving MBMS (Multimedia Broadcast Multicast Services) related signals in a wireless communication system, the transceiver; And a processor, wherein the processor receives a session start message including a service area identifier (SAI) and a first ECGI list, constructs an MBSFN list using the SAI, and configures the first ECGI list.
  • SAI service area identifier
  • the second ECGI list is an MCE device that includes ECGI grouping information.
  • the MCE may determine whether to use the MBSFN transmission scheme in consideration of the relationship between the number of cells of the first ECGI list and the number of cells of the second ECGI list.
  • the MCE may decide to use the MBSFN transmission scheme although SC-PTM is possible.
  • a transmission stop request for some of the cells indicated in the ECGI grouping information may not be allowed.
  • the change of the transmission scheme from MBMS to unicast may not be allowed.
  • the second ECGI list may be delivered to a group communication service application server (GCS AS) through a mobility management entity (MME), an MBMS gateway, and a broadcast multicast service center (BM-SC).
  • GCS AS group communication service application server
  • MME mobility management entity
  • BM-SC broadcast multicast service center
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • GCSE_LTE Group Communication System Enablers for LTE
  • FIG. 10 is an illustration of an MBMS bearer initialization procedure.
  • 11 is an illustration of an MBMS bearer notification procedure.
  • MCE Multi-cell / Multicast Coordination Entity
  • FIG. 13 is a diagram illustrating a cell-by-cell transmission stop request according to the prior art.
  • FIG. 14 is a view for explaining the operation of the MCE according to an embodiment of the present invention.
  • 15 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • ProSe communication Means communication through a ProSe communication path between two or more ProSe capable terminals. Unless specifically stated otherwise, ProSe communication may mean one of ProSe E-UTRA communication, ProSe-assisted WLAN direct communication between two terminals, ProSe group communication, or ProSe broadcast communication.
  • ProSe-assisted WLAN direct communication ProSe communication using a direct communication path
  • ProSe communication path As a communication path supporting ProSe communication, a ProSe E-UTRA communication path may be established between ProSe-enabled UEs or through a local eNB using E-UTRA. ProSe-assisted WLAN direct communication path can be established directly between ProSe-enabled UEs using WLAN.
  • EPC path (or infrastructure data path): user plane communication path through EPC
  • ProSe Discovery A process of identifying / verifying a nearby ProSe-enabled terminal using E-UTRA
  • ProSe Group Communication One-to-many ProSe communication using a common communication path between two or more ProSe-enabled terminals in close proximity.
  • ProSe UE-to-Network Relay ProSe-enabled public safety terminal acting as a communication relay between ProSe-enabled network using E-UTRA and ProSe-enabled public safety terminal
  • ProSe UE-to-UE Relay A ProSe-enabled public safety terminal operating as a ProSe communication relay between two or more ProSe-enabled public safety terminals.
  • -Remote UE In the UE-to-Network Relay operation, a ProSe-enabled public safety terminal that is connected to the EPC network through ProSe UE-to-Network Relay without receiving service by E-UTRAN, that is, provides a PDN connection, and is a UE.
  • a ProSe-enabled public safety terminal In -to-UE Relay operation, a ProSe-enabled public safety terminal that communicates with other ProSe-enabled public safety terminals through a ProSe UE-to-UE Relay.
  • ProSe-enabled Network A network that supports ProSe Discovery, ProSe Communication, and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled Network may be referred to simply as a network.
  • ProSe-enabled UE a terminal supporting ProSe discovery, ProSe communication and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled UE and the ProSe-enabled Public Safety UE may be called terminals.
  • Proximity Satisfying proximity criteria defined in discovery and communication, respectively.
  • SLP SULP Location Platform
  • SLP An entity that manages Location Service Management and Position Determination.
  • SLP includes a SPL (SUPL Location Center) function and a SPC (SUPL Positioning Center) function.
  • SPL SUPL Location Center
  • SPC SUPL Positioning Center
  • OMA Open Mobile Alliance
  • the application / service layer includes Temporary Mobile Group Identity (TMGI) for each MBMS service, session start and end time, frequencies, MBMS service area identities (MBMS SAIs) information belonging to the MBMS service area. To put in USD to the terminal. See 3GPP TS 23.246 for details.
  • TMGI Temporary Mobile Group Identity
  • MBMS SAIs MBMS service area identities
  • ISR Interle mode Signaling Reduction
  • MBMS Single Frequency Network A simulcast transmission technique implemented by simultaneously transmitting the same waveform to multiple grouped cells covering a certain area.
  • EPC Evolved Packet Core
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • the 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services. It is the reference point between the PDN GW and the packet data network.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active.
  • BCHs broadcaster channels
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing).
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • GCSE_LTE Group Communication System Enablers for LTE
  • the GCS Application Server may use the enablers provided by the 3GPP system to provide Group Communication Service (GCS). Such enablers are referred to as Group Communication System Enablers (GCSE).
  • GCS AS supports GC1 signaling with the UE, receives unicast uplink data from the UE, transmits data to terminals belonging to the group using unicast or MBMS, and transmits application level session information to the PCRF through the Rx interface. It also supports functions such as session continuity procedure between unicast and MBMS.
  • FIG. 8 shows a media traffic delivery procedure of unicast and MBMS.
  • the GCS AS may transmit unicast to some UEs and MBMS to other UEs.
  • the media can be transmitted to all UEs belonging to the same group by unicast or MBMS.
  • UE-2, UE-3, and UE-4 are connected to eNB-2, which is the same eNB, different downlink transmission schemes between these UEs may be used.
  • UE-2 is located in an area where the MBMS signal strength is weak, and thus receives the group communication-related media by unicast rather than MBMS.
  • 3GPP TS 23.468 shall apply mutatis mutandis.
  • the broadcast area may be pre-configured by the GCS AS, and the number of group member UEs in any area (within a cell or a collection of cells) is sufficient. If it is determined that the size is large, it may be dynamically determined to transmit downlink media for this region by MBMS. If the GCS AS determines the transmission of the MBMS scheme for a group, the Activate MBMS bearer procedure as shown in FIG. 9 is performed.
  • the Activate MBMS bearer procedure is a procedure for requesting resource allocation for an MBMS bearer from a Broadcast Multicast Service Center (BM-SC).
  • BM-SC Broadcast Multicast Service Center
  • the GCS AS requests the BM-SC to activate MBMS Bearer Request including a Temporary Mobile Group Identity (TMGI) indicating a MBMS bearer to be started, FlowID, QoS, MBMS broadcast area, start time, and the like. Send a message.
  • TMGI may optionally be included, and FlowID is included only when TMGI is included. If the FlowID is included, the BM-SC associates the FlowID with the TMGI for the MBMS broadcast area. QoS is mapped to appropriate QoS parameters of the MBMS bearer.
  • the MBMS broadcast area carries the MBMS service area.
  • GCS AS When GCS AS requests BM-SC to transmit MBMS downlink traffic, it includes MBMS broadcast area as a parameter, which is a unit of MBMS service area.
  • the Activate MBMS Bearer Request message sent by the GCS AS to the BM-SC is in the form of a GCS-Action-Request (GAR) command of 3GPP TS 29.468. It may be a format such as 2.
  • the BM-SC allocates resources.
  • the BM-SC must determine whether the GCS AS is authorized. If the TMGI is not authenticated, the BM-SC rejects the request. If TMGI is not included in the request, the BM-SC assigns a value not used for TMGI. If the FlowID is not included in the request, the BM-SC assigns a FlowID value corresponding to the TMGI and MBMS broadcast area. If the MBMS bearer with the same TMGI and FlowID but different MBMS broadcast area is already activated, the BM-SC rejects the request.
  • the BM-SC ensures that the MBMS broadcast area of this MBMS bearer does not overlap with the MBMS broadcast areas corresponding to the existing MBMS bearer of the same TMGI. .
  • the BM-SC allocates MBMS resources.
  • the BM-SC transmits an Activate MBMS Bearer Response message to the GCS AS.
  • the Activate MBMS Bearer Response message may include TMGI, FlowID (echoed back if initially included in the request, or allocated by BM-SC), service description, BM-SC IP address, port number for user plane, expiration time, etc. Can be.
  • the service description includes the MBMS bearer associated with the configuration information defined in TS 26.346. (Eg, infoBindling element containing serviceArea and radiofrequency) The expiration time is included only if the BM-SC has assigned a TMGI.
  • the MBMS is being modified / evolved to be used as a method of group communication for public safety, and one of the directions is that the transmission of the MBMS method is a regional unit (eg, cell) in a range other than the conventional MBMS Service Area unit. Unit).
  • the GMS AS needs to be allowed to request an MBMS bearer based on the MBMS service area or the MBMS service of any network where the GCS AS provides MBMS service. It may be necessary to know the area configuration.
  • ECGI E-UTRAN Cell Global Identifiers
  • the MBMS bearer initialization procedure illustrated in FIG. 10 is possible.
  • step S1001 when the GCS AS wants to activate an MBMS bearer on MB2, the GCS AS transmits an Activate MBMS Bearer Request message to the BM-SC.
  • the MBMS broadcast area parameter may contain a list of MBMS service areas or a list of cell identifiers (ie, ECGI). If the MBMS broadcast area parameter includes a list of cell identifiers, in step S1002, the BM-SC maps the received cell identifiers to a set of MBMS service areas. In step S1002, the BM-SC maps ECGIs to SAIs and determines an MBMS gateway.
  • the BM-SC transmits a Session Start message to the MBMS-GW (s) including the ECGIs list and related parameters previously defined.
  • the MBMS-GW transmits a Session Start message including the ECGIs list and related parameters previously defined to the MME.
  • the MME transmits a Session Start message including the ECGIs list and related parameters previously defined to the MCE.
  • the MCE maps the SAI list to the MBSFN list. Then, based on the ECGI list, unused MBSFNs are removed. The MCE allocates resources in the MBSFN selected for the MBSFN bearer.
  • the MCE forms a list of all ECGIs in the selected MBSFN to which the MBMS bearer will be broadcast.
  • the MCE sends a Session Start response message including a list of ECGIs and conventional parameters to which the MBMS bearer is to be broadcast, to the MME.
  • the MME sends a Session Start response message including a list of ECGIs and conventional parameters to which the MBMS bearer is to be broadcast, to the MBMS-GW.
  • the MBMS-GW sends a Session Start response message including a list of ECGIs and conventional parameters, to which the MBMS bearer is to be broadcast, to the BM-SC.
  • step S1010 the BM-SC sends an Activate MBMS Bearer Response message to the GCS AS.
  • the detailed description of this message is the same as that of step S903 with respect to FIG.
  • the BM-SC receives the ECGI list in the Activate MBMS Bearer Request message
  • the BM-SC sends the ECGI list in the Activate MBMS Bearer Response message.
  • the BM-SC chooses to transmit the Activate MBMS Bearer Response message before receiving the Session Start response message, the BM-SC must include the ECGIs list in the Activate MBMS Bearer Request message.
  • step S1101 when the MCE determines in step S1101 that the list of cells broadcasting MBMS has changed, the MCE forms a list of all broadcast ECGIs.
  • step S1102 the MCE transmits a Session Notification message including a list of TMGI, FlowID, and ECGIs to the MME. This message is sent from the MME to the MBMS-GW (step S1103), and from the MBMS-GW to the BM-SC (step S1104).
  • step S1105 the BM-SC sends an MBMS Delivery Status Indication message to the GCS AS indicating that there is a change in the MBMS broadcast area.
  • the MCE is a logical entity and can be configured as part of another network node.
  • the MCE performs the function of allocating radio resources used by all eNBs in admission control and MBSFN areas. If there is not enough radio resources or resources are preempted by the radio bearer of the ongoing MBMS service according to the ARP, the MCE does not establish a radio bearer for the new MBMS service.
  • the allocation of radio resources includes radio configurations such as time / frequency resource allocation, modulation and coding schemes.
  • the MCE decides whether to use SC-PTM or MBSFN.
  • the MCE performs counting and acquisition of counting results for the MBMS service.
  • the MCE performs resume / stop of the MBMS session in the MBSFN area. (E.g., ARP and / or the counting results for the corresponding MBMS service (s)),
  • MBMS bearer initialization procedure when there are a lot of requests for stopping MBMS transmission or changing downlink transmission schemes in public safety (Public Safety terminals or terminals participating in group communication), The location may be changed frequently according to the occurrence of an incident / accident, and thus, the GCS AS may change the downlink traffic transmission method for a specific cell frequently), unnecessary signaling exchange, and waste of network resources. This will be described with reference to FIG. 13.
  • MBMS SAI # 1 is composed of three MBSFNs.
  • Each MBSFN consists of 10 cells, ECGI # 1 ⁇ ECGI # 5 is eNB # 1, ECGI # 6 ⁇ ECGI # 10 is eNB # 2, ECGI # 11 ⁇ ECGI # 15 is eNB # 3, ECGI # 16 ⁇ It is assumed that ECGI # 20 is eNB # 4, ECGI # 21 to ECGI # 25 are eNB # 5, and ECGI # 26 to ECGI # 30 are cells of eNB # 6. In addition, it is assumed that the MCE maintains the information shown in Table 3 through the M2 setup procedure with the configuration and the eNB. For M2 setup procedure between eNB and MCE, refer to 3GPP TS 36.443.
  • the GCS AS when the GCS AS decides to transmit MBMS for ECGI # 7 to ECGI # 18, the GCS AS provides MBMS SAI # 1 and ECGI # 7 to ECGI # 18 when the MBMS request is sent to the BM-SC. .
  • the MCE extracts MBSFN # 1, MBSFN # 2, and MBSFN # 3 based on MBMS SAI # 1 and constructs an MBSFN list.
  • the MCE deletes MBSFN # 3 from the MBSFN list based on an ECGI list, that is, ECGI # 7 to ECGI # 18.
  • the MCE allocates resources for the MBMS bearer only for the last selected MBSFN # 1 and MBSFN # 2.
  • the MBMS Session Start is requested to the eNB # 2, the eNB # 3, and the eNB # 4 so that the MBMS transmission can be made to the ECGI # 7 to the ECGI # 18.
  • the eNB allocates resources for the MBMS bearer to all cells belonging to the MBMS Service Area.
  • eNB # 2 performs ECGI # 6 to ECGI # 10
  • eNB # 3 performs ECGI # 11 to ECGI # 15
  • eNB # 4 performs MBMS transmission on ECGI # 16 to ECGI # 20.
  • the MCE constructs a list of ECGIs for which MBMS transmission will occur, that is, a list including ECGI # 6 to ECGI # 20. It is included when sending a Session Start response message to the MME, which is sent to the GCS AS via MBMS GW and BM-SC.
  • the BM-SC informs the BM-SC.
  • a request for canceling a resource allocated for the MBMS bearer that is, a request for stopping MBMS transmission for ECGI # 10 may be transmitted.
  • the MCE cannot request the eNB # 2 to stop MBMS transmission for ECGI # 10. Therefore, the MCE transmits a response message notifying the failure or rejection of the received MBMS transmission stop request to the GCS AS.
  • the MCE may receive a Session Start message including a Service Area Identities (SAI) and a first ECGI list, and configure an MBSFN list using the SAI. And, based on the first ECGI list, the MBSFN which does not need to allocate resources can be removed from the MBSFN list.
  • the resource allocation for the MBMS bearer may be allocated based on the MBSFN list and the first ECGI list from which the MBSFN has not been allocated. At this time, resource allocation is performed by transmitting an MBMS Session Start request including MBMS Service Area information to the eNB by the MCE as described above.
  • the eNB allocates resources according to MBMS Service Area information. Thereafter, the MCE may configure a second ECGI list on which MBMS transmission is to be performed through resource allocation.
  • the second ECGI list may be transmitted to a network (delivered to a Group Communication Service Application Server (GCS AS) through an MME, an MBMS gateway, and a Broadcast Multicast Service Center (BM-SC)).
  • GCS AS Group Communication Service Application Server
  • MME Management Entity
  • MME Mobility Management Entity
  • BM-SC Broadcast Multicast Service Center
  • the second ECGI list may contain ECGI grouping information. It may include.
  • the ECGI grouping information may be group / collection information of cells in which MBMS transmission and suspension always occur together among cells. A transmission stop request for some of the cells indicated in such ECGI grouping information may not be allowed. Alternatively, a change of the transmission scheme from MBMS to unicast may not be allowed for some of the cells indicated in the ECGI grouping information. That is, the GCS AS does not determine to switch the downlink traffic transmission scheme from the MBMS scheme to the unicast scheme for only some of the cells belonging to the same group. Or, the GCS AS does not make a request to the BM-SC to stop MBMS transmission for only some of the cells belonging to the same group. Applying this in the case of FIG.
  • the MCE is ECGI # 6: Index # 1, ECGI # 7: Index # 1, ECGI # 8: Index # 1, ECGI # 9: Index # 1, ECGI # 10: Index #. 1, ECGI # 11: Index # 2, ECGI # 12: Index # 2, ECGI # 13: Index # 2, ECGI # 14: Index # 2, ECGI # 15: Index # 2, ECGI # 16: Index # 3, ECGI grouping information in index format such as ECGI # 17: Index # 3, ECGI # 18: Index # 3, ECGI # 19: Index # 3, ECGI # 20: Index # 3 is transmitted to the GCS AS, and the GCS AS is the same. For some cells among the cells belonging to the group, for example, only some cells of ECGI # 6 to ECGI # 10 do not decide to stop the MBMS transmission or request the BM-SC to stop the transmission.
  • the ECGI grouping information may be delivered in a manner other than a method in which an index (or group ID) is assigned to the illustrated ECGI.
  • the grouped ECGIs may be included in the sub-list unit to inform that the cells included in each sub-list belong to the same group.
  • a separator may be inserted to indicate that the cells separated by the separator belong to the same group.
  • information indicating that MBMS transmission can be stopped only in units of grouped cells that is, information indicating that MBMS transmission can be stopped for all grouped cells
  • only some cells of the grouped cells indicate that MBMS transmission cannot be stopped.
  • One or more pieces of information, or information indicating that a cell grouped with respect to the grouping information belongs to a cell belonging to the same eNB, may be transmitted together with the ECGI grouping information.
  • the MCE may determine whether to use the MBSFN transmission scheme in consideration of the relationship between the number of cells of the first ECGI list and the number of cells of the second ECGI list. For example, if the number of cells of the first ECGI list for the number of cells of the second ECGI list is greater than a preset value, the MCE may decide to use the MBSFN transmission scheme although SC-PTM is possible.
  • step S1401 the MCE determines whether SC-PTM transmission is possible. If SC-PTM transmission is possible, it is determined whether to transmit to SC-PTM (step S1402). If it is determined to transmit to the SC-PTM, and transmits the MBMS SESSION START REQUEST to the eNB (s) (S1403). At this time, the information according to the SC-PTM transmission is included. For details, the content of TS 36.443 shall apply mutatis mutandis.
  • step S1404 MCE receives a response from the eNB (s) that sent the request and determines whether to finally perform the SC-PTM transmission based on this.
  • step S1405 a broadcasting ECGI list, which is information about a cell on which actual MBMS transmission is to be made, is reflected by reflecting the SC-PTM transmission decision. This can be transmitted in units of cells rather than in units of eNBs, and may reflect cell lists requested for MBMS transmission.
  • the MCE determines not to provide grouping information of the cell.
  • information indicating that SC-PTM transmission is possible may be included in a Session Start Response message.
  • the MCE decides to transmit the MBSFN.
  • the actual MBMS transmission is reflected by the MBSFN transmission decision. It configures a broadcasting ECGI list which is information on the cell to be formed. This reflects the cells in which the MBMS transmission is controlled at each eNB.
  • the MCE determines to provide grouping information of the cell.
  • information indicating that SC-PTM transmission is not possible (or MBSFN transmission only) may be included in the Session Start Response message.
  • MCE capable of SC-PTM transmission may mean that not only MCE but also eNBs controlled by MCE have SC-PTM transmission capability.
  • the cell-related group / collection information has been described as being delivered to the GCS AS, in contrast, only the BM-SC may be delivered.
  • the BM-SC may transmit a response message indicating the failure or rejection to the GCS AS.
  • the GCS AS may include cause information (eg, partial MBMS stop is not possible) indicating a reason for failure or rejection.
  • the information may be configured in the BM-SC or the GCS AS.
  • grouping related information about the cells eg, index or group ID
  • grouping related information about the cells eg, index or group ID
  • the GCS AS refers to various application servers or functions that provide services in relation to group communication and / or public safety. Examples can be MCPTT AS, Public Safety AS, ProSe Function, and so on.
  • 15 is a diagram showing the configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
  • the terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the processor 120 may be configured to perform a terminal operation proposed in the present invention.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the network node apparatus 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the processor 220 may be configured to perform the network node operation proposed in the present invention.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Abstract

One embodiment of the present invention provides a method for transmitting and receiving a multimedia broadcast multicast services (MBMS) related signal of a multi-cell/multicast coordination entity (MCE) in a wireless communication system, the method comprising the steps of: receiving a session start message including service area identities (SAIs) and a first ECGI list; configuring an MBSFN list by using the SAIs; removing, from the MBSFN list, an MBSFN to which a resource is not required to be allocated, on the basis of the first ECGI list; allocating a resource for an MBMS bearer on the basis of the first ECGI list and the MBSFN list, from which the MBSFN, to which the resource is not required to be allocated, is removed; configuring a second ECGI list for which MBMS transmission is to be performed through the resource allocation; and transmitting the second ECGI list to a network, wherein the second ECGI list includes ECGI grouping information if the MCE cannot use a single cell point to multipoint (SC-PTM) transmission or determines to use an MBSFN transmission method even if the SC-PTM transmission is possible.

Description

무선 통신 시스템에서 MBMS 관련 신호 송수신 방법 및 이를 위한 장치Method for transmitting / receiving MBMS related signal in wireless communication system and apparatus therefor
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 MCE(Multi-cell/Multicast Coordination Entity)의 MBMS (Multimedia Broadcast Multicast Services) 관련 신호 송수신 방법 및 장치에 대한 것이다.The following description relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving signals related to multimedia broadcast multicast services (MBMS) of a multi-cell / multicast coordination entity (MCE).
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data. In general, a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access (MCD) systems and multi-carrier frequency division multiple access (MC-FDMA) systems.
본 발명에서는 셀 단위의 전송 중지 요청이 불필요하게 발생하는 것을 해결하는 것을 기술적 과제로 한다.In the present invention, it is a technical problem to solve an unnecessary occurrence of a transmission stop request for each cell.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 발명의 일 실시예는, 무선통신시스템에서 MCE(Multi-cell/Multicast Coordination Entity)의 MBMS (Multimedia Broadcast Multicast Services) 관련 신호 송수신 방법에 있어서, SAI (Service Area Identities) 및 제1 ECGI 리스트를 포함하는 세션 시작(Session Start) 메시지를 수신하는 단계; 상기 SAI를 사용하여 MBSFN 리스트 구성하는 단계; 상기 제1 ECGI 리스트에 기초해 리소스를 할당할 필요가 없는 MBSFN을 상기 MBSFN 리스트로부터 제거하는 단계; 상기 리소스를 할당할 필요가 없는 MBSFN이 제거된 MBSFN 리스트와 상기 제1 ECGI 리스트에 기초해 MBMS 베어러를 위한 리소스 할당하는 단계; 상기 리소스가 할당을 통해 MBMS 전송이 수행될 제2 ECGI 리스트를 구성하는 단계; 및 상기 제2 ECGI 리스트를 네트워크로 전송하는 단계를 포함하며, 상기 MCE가 SC-PTM(Single Cell Point To Multiploint)이 가능하지 않은 경우 또는 SC-PTM이 가능하지만 MBSFN 전송 방식을 사용하기로 결정한 경우 중 어느 하나의 경우, 상기 제2 ECGI 리스트는 ECGI 그룹핑 정보를 포함하는, MBMS 관련 신호 송수신 방법이다.According to an embodiment of the present invention, a method for transmitting and receiving a signal related to MBMS (Multimedia Broadcast Multicast Services) of a multi-cell / multicast coordination entity (MCE) in a wireless communication system includes a service area identifier (SAI) and a first ECGI list. Receiving a session start message; Constructing an MBSFN list using the SAI; Removing from the MBSFN list an MBSFN that does not need to allocate resources based on the first ECGI list; Allocating a resource for an MBMS bearer based on the MBSFN list from which the MBSFN has not been allocated and the first ECGI list; Constructing a second ECGI list to which MBMS transmission is to be performed by the resource allocation; And transmitting the second ECGI list to the network, wherein the MCE is not capable of Single Cell Point To Multiploint (SC-PTM) or if SC-PTM is available but decides to use an MBSFN transmission scheme. In any case, the second ECGI list is an MBMS related signal transmission / reception method including ECGI grouping information.
본 발명의 일 실시예는, 무선 통신 시스템에서 MBMS (Multimedia Broadcast Multicast Services) 관련 신호를 송수신하는 MCE(Multi-cell/Multicast Coordination Entity) 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는, SAI (Service Area Identities) 및 제1 ECGI 리스트를 포함하는 세션 시작(Session Start) 메시지를 수신하고, 상기 SAI를 사용하여 MBSFN 리스트 구성하고, 상기 제1 ECGI 리스트에 기초해 리소스를 할당할 필요가 없는 MBSFN을 상기 MBSFN 리스트로부터 제거하며, 상기 리소스를 할당할 필요가 없는 MBSFN이 제거된 MBSFN 리스트와 상기 제1 ECGI 리스트에 기초해 MBMS 베어러를 위한 리소스 할당하고, 상기 리소스 할당을 통해 MBMS 전송이 수행될 제2 ECGI 리스트를 구성하고, 상기 제2 ECGI 리스트를 네트워크로 전송하며, 상기 MCE가 SC-PTM(Single Cell Point To Multiploint)이 가능하지 않은 경우 또는 SC-PTM이 가능하지만 MBSFN 전송 방식을 사용하기로 결정한 경우 중 어느 하나의 경우, 상기 제2 ECGI 리스트는 ECGI 그룹핑 정보를 포함하는, MCE 장치이다.An embodiment of the present invention, a multi-cell / Multicast Coordination Entity (MCE) device for transmitting and receiving MBMS (Multimedia Broadcast Multicast Services) related signals in a wireless communication system, the transceiver; And a processor, wherein the processor receives a session start message including a service area identifier (SAI) and a first ECGI list, constructs an MBSFN list using the SAI, and configures the first ECGI list. Remove the MBSFN from the MBSFN list that does not need to allocate resources based on the resource allocation, allocate the resource for the MBMS bearer based on the MBSFN list and the first ECGI list from which the MBSFN does not need to allocate the resource; Compose a second ECGI list to perform MBMS transmission through the resource allocation, transmit the second ECGI list to the network, when the MCE is not capable of Single Cell Point To Multiploint (SC-PTM) or SC- In any of the cases where PTM is possible but decided to use the MBSFN transmission scheme, the second ECGI list is an MCE device that includes ECGI grouping information.
상기 MCE는 상기 SC-PTM이 가능한 경우, 상기 제1 ECGI 리스트의 셀 개수와 상기 제2 ECGI 리스트의 셀 개수의 관계를 고려하여, MBSFN 전송 방식을 사용할지 여부를 결정할 수 있다.When the SC-PTM is available, the MCE may determine whether to use the MBSFN transmission scheme in consideration of the relationship between the number of cells of the first ECGI list and the number of cells of the second ECGI list.
상기 MCE는 상기 제2 ECGI 리스트의 셀 개수에 대한 상기 제1 ECGI 리스트의 셀 개수가 미리 설정된 값보다 큰 경우, SC-PTM이 가능하지만 MBSFN 전송 방식을 사용하기로 결정할 수 있다.When the number of cells of the first ECGI list with respect to the number of cells of the second ECGI list is larger than a preset value, the MCE may decide to use the MBSFN transmission scheme although SC-PTM is possible.
상기 ECGI 그룹핑 정보에서 지시된 셀들 중 일부의 셀에 대한 전송 중지 요청은 허용되지 않을 수 있다.A transmission stop request for some of the cells indicated in the ECGI grouping information may not be allowed.
상기 ECGI 그룹핑 정보에서 지시된 셀들 중 일부의 셀에 대해서는 MBMS에서 유니캐스트로의 전송 방식의 변경이 허용되지 않을 수 있다.For some of the cells indicated in the ECGI grouping information, the change of the transmission scheme from MBMS to unicast may not be allowed.
상기 제2 ECGI 리스트는 MME(Mobility Management Entity), MBMS 게이트웨이 및 BM-SC(Broadcast Multicast Service Center)를 통해 GCS AS (Group Communication Service Application Server)에게 전달될 수 있다.The second ECGI list may be delivered to a group communication service application server (GCS AS) through a mobility management entity (MME), an MBMS gateway, and a broadcast multicast service center (BM-SC).
본 발명에 따르면, 셀 단위의 전송 중지 요청시 발생할 수 있는 불필요한 시그널링의 교환, 망 자원 낭비 등을 줄일 수 있다.According to the present invention, it is possible to reduce unnecessary signaling exchange, network resource waste, etc., which may occur when a cell stop request is transmitted.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다. BRIEF DESCRIPTION OF THE DRAWINGS The drawings appended hereto are for the purpose of providing an understanding of the present invention and for illustrating various embodiments of the present invention and for describing the principles of the present invention together with the description of the specification.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다. 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.5 is a flowchart illustrating a random access procedure.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.6 is a diagram illustrating a connection process in a radio resource control (RRC) layer.
도 7은 GCSE_LTE(Group Communication System Enablers for LTE)를 위한 Non-roaming architecture model의 예시이다.7 is an example of a non-roaming architecture model for Group Communication System Enablers for LTE (GCSE_LTE).
도 8은 유니캐스트와 MBMS의 미디어 트래픽 전달 절차를 도시한다.8 shows a media traffic delivery procedure of unicast and MBMS.
도 9는 Activate MBMS bearer 절차의 예시이다.9 is an illustration of an Activate MBMS bearer procedure.
도 10은 MBMS 베어러 초기화 절차의 예시이다.10 is an illustration of an MBMS bearer initialization procedure.
도 11은 MBMS 베어러 통지 절차의 예시이다.11 is an illustration of an MBMS bearer notification procedure.
도 12는 MCE(Multi-cell/Multicast Coordination Entity)의 논리 구조이다.12 is a logical structure of an MCE (Multi-cell / Multicast Coordination Entity).
도 13은 종래 기술에 따른 셀 단위 전송 중지 요청을 설명하기 위한 도면이다.13 is a diagram illustrating a cell-by-cell transmission stop request according to the prior art.
도 14는 본 발명의 일 실시예에 의한 MCE의 동작을 설명하기 위한 도면이다.14 is a view for explaining the operation of the MCE according to an embodiment of the present invention.
도 15는 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.15 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.Specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.The following techniques can be used in various wireless communication systems. For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다. Terms used in this document are defined as follows.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.UMTS (Universal Mobile Telecommunications System): A third generation mobile communication technology based on Global System for Mobile Communication (GSM) developed by 3GPP.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다. Evolved Packet System (EPS): A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN. UMTS is an evolutionary network.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.NodeB: base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.eNodeB: base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다. UE (User Equipment): a user device. The UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like. In addition, the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device. In the context of MTC, the term UE or UE may refer to an MTC device.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다. Home NodeB (HNB): A base station of a UMTS network, which is installed indoors and has a coverage of a micro cell.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다. HeNB (Home eNodeB): A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.Mobility Management Entity (MME): A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.Packet Data Network-Gateway (PDN-GW) / PGW: A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.Serving Gateway (SGW): A network node of an EPS network that performs mobility anchor, packet routing, idle mode packet buffering, and triggers the MME to page the UE.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다. Non-Access Stratum (NAS): Upper stratum of the control plane between the UE and the MME. A functional layer for exchanging signaling and traffic messages between a UE and a core network in an LTE / UMTS protocol stack, which supports session mobility and establishes and maintains an IP connection between the UE and the PDN GW. Supporting is the main function.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크. Packet Data Network (PDN): A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결. PDN connection: A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다. RAN (Radio Access Network): a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.Home Location Register (HLR) / Home Subscriber Server (HSS): A database containing subscriber information in the 3GPP network. The HSS may perform functions such as configuration storage, identity management, and user state storage.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.Public Land Mobile Network (PLMN): A network composed for the purpose of providing mobile communication services to individuals. It may be configured separately for each operator.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
- ProSe 커뮤니케이션: 둘 이상의 ProSe 가능한 단말들 사이의, ProSe 커뮤니케이션 경로를 통한 커뮤니케이션을 의미한다. 특별히 달리 언급되지 않는 한, ProSe 커뮤니케이션은 ProSe E-UTRA 커뮤니케이션, 두 단말 사이의 ProSe-assisted WLAN direct communication, ProSe 그룹 커뮤니케이션 또는 ProSe 브로드캐스트 커뮤니케이션 중 하나를 의미할 수 있다.ProSe communication: Means communication through a ProSe communication path between two or more ProSe capable terminals. Unless specifically stated otherwise, ProSe communication may mean one of ProSe E-UTRA communication, ProSe-assisted WLAN direct communication between two terminals, ProSe group communication, or ProSe broadcast communication.
- ProSe E-UTRA 커뮤니케이션 : ProSe E-UTRA 커뮤니케이션 경로를 사용한 ProSe 커뮤니케이션-ProSe E-UTRA communication: ProSe communication using ProSe E-UTRA communication path
- ProSe-assisted WLAN direct communication: 직접 커뮤니케이션 경로를 사용한 ProSe 커뮤니케이션ProSe-assisted WLAN direct communication: ProSe communication using a direct communication path
- ProSe 커뮤니케이션 경로 : ProSe 커뮤니케이션을 지원하는 커뮤니케이션 경로로써, ProSe E-UTRA 커뮤니케이션 경로는 E-UTRA를 사용하여 ProSe-enabled UE들 사이에서 또는 로컬 eNB를 통해 수립될 수 있다. ProSe-assisted WLAN direct communication path는 WLAN을 사용하여 ProSe-enabled UEs 사이에서 직접 수립될 수 있다.ProSe communication path: As a communication path supporting ProSe communication, a ProSe E-UTRA communication path may be established between ProSe-enabled UEs or through a local eNB using E-UTRA. ProSe-assisted WLAN direct communication path can be established directly between ProSe-enabled UEs using WLAN.
- EPC 경로 (또는 infrastructure data path): EPC를 통한 사용자 평면 커뮤니케이션 경로EPC path (or infrastructure data path): user plane communication path through EPC
- ProSe 디스커버리: E-UTRA를 사용하여, 근접한 ProSe-enabled 단말을 식별/확인하는 과정ProSe Discovery: A process of identifying / verifying a nearby ProSe-enabled terminal using E-UTRA
- ProSe Group Communication: 근접한 둘 이상의 ProSe-enabled 단말 사이에서, 공통 커뮤니케이션 경로를 사용하는 일 대 다 ProSe 커뮤니케이션ProSe Group Communication: One-to-many ProSe communication using a common communication path between two or more ProSe-enabled terminals in close proximity.
- ProSe UE-to-Network Relay : E-UTRA를 사용하는 ProSe-enabled 네트워크와 ProSe-enabled 퍼블릭 세이프티 단말 사이의 커뮤니케이션 릴레이로 동작하는 ProSe-enabled 퍼블릭 세이프티 단말ProSe UE-to-Network Relay: ProSe-enabled public safety terminal acting as a communication relay between ProSe-enabled network using E-UTRA and ProSe-enabled public safety terminal
- ProSe UE-to-UE Relay: 둘 이상의 ProSe-enabled 퍼블릭 세이프티 단말 사이에서 ProSe 커뮤니케이션 릴레이로 동작하는 ProSe-enabled 퍼블릭 세이프티 단말ProSe UE-to-UE Relay: A ProSe-enabled public safety terminal operating as a ProSe communication relay between two or more ProSe-enabled public safety terminals.
- Remote UE: UE-to-Network Relay 동작에서는 E-UTRAN에 의해 서비스 받지 않고 ProSe UE-to-Network Relay를 통해 EPC 네트워크에 연결되는, 즉 PDN 연결을 제공받는 ProSe-enabled 퍼블릭 세이프티 단말이며, UE-to-UE Relay 동작에서는 ProSe UE-to-UE Relay를 통해 다른 ProSe-enabled 퍼블릭 세이프티 단말과 통신하는 ProSe-enabled 퍼블릭 세이프티 단말.-Remote UE: In the UE-to-Network Relay operation, a ProSe-enabled public safety terminal that is connected to the EPC network through ProSe UE-to-Network Relay without receiving service by E-UTRAN, that is, provides a PDN connection, and is a UE. In -to-UE Relay operation, a ProSe-enabled public safety terminal that communicates with other ProSe-enabled public safety terminals through a ProSe UE-to-UE Relay.
- ProSe-enabled Network: ProSe 디스커버리, ProSe 커뮤니케이션 및/또는 ProSe-assisted WLAN 직접 통신을 지원하는 네트워크. 이하에서는 ProSe-enabled Network 를 간단히 네트워크라고 지칭할 수 있다.ProSe-enabled Network: A network that supports ProSe Discovery, ProSe Communication, and / or ProSe-assisted WLAN direct communication. Hereinafter, the ProSe-enabled Network may be referred to simply as a network.
- ProSe-enabled UE: ProSe 디스커버리, ProSe 커뮤니케이션 및/또는 ProSe-assisted WLAN 직접 통신을 지원하는 단말. 이하에서는 ProSe-enabled UE 및 ProSe-enabled Public Safety UE를 단말이라 칭할 수 있다.ProSe-enabled UE: a terminal supporting ProSe discovery, ProSe communication and / or ProSe-assisted WLAN direct communication. Hereinafter, the ProSe-enabled UE and the ProSe-enabled Public Safety UE may be called terminals.
- Proximity: 디스커버리와 커뮤니케이션에서 각각 정의되는 proximity 판정 기준을 만족하는 것Proximity: Satisfying proximity criteria defined in discovery and communication, respectively.
- SLP(SUPL Location Platform): 위치 서비스 관리(Location Service Management)와 포지션 결정(Position Determination)을 관장하는 엔티티. SLP는 SLC(SUPL Location Center) 기능과 SPC(SUPL Positioning Center) 기능을 포함한다. 자세한 사항은 Open Mobile Alliance(OMA) 표준문서 OMA AD SUPL: "Secure User Plane Location Architecture"을 참고하기로 한다.SULP Location Platform (SLP): An entity that manages Location Service Management and Position Determination. SLP includes a SPL (SUPL Location Center) function and a SPC (SUPL Positioning Center) function. For details, refer to the Open Mobile Alliance (OMA) standard document OMA AD SUPL: "Secure User Plane Location Architecture".
- USD(User Service Description): 애플리케이션/서비스 레이어는 각 MBMS 서비스를 위한 TMGI(Temporary Mobile Group Identity), 세션의 시작 및 종료 시간, frequencies, MBMS 서비스 지역에 속하는 MBMS service area identities(MBMS SAIs) 정보 등을 USD에 담아 단말에게 전송한다. 자세한 사항은 3GPP TS 23.246 내용을 참고하기로 한다.User Service Description (USD): The application / service layer includes Temporary Mobile Group Identity (TMGI) for each MBMS service, session start and end time, frequencies, MBMS service area identities (MBMS SAIs) information belonging to the MBMS service area. To put in USD to the terminal. See 3GPP TS 23.246 for details.
- ISR(Idle mode Signalling Reduction): 단말이 E-UTRAN과 UTRAN/GERAN 사이를 자주 이동하게 되는 경우 반복적인 위치 등록 절차에 의한 네트워크 자원의 낭비가 발생한다. 이를 줄이기 위한 방법으로써 단말이 idle mode인 경우 E-UTRAN과 UTRAN/GERAN을 경유하여 각각 MME와 SGSN (이하 이 두 노드를 mobility management node라 칭함)에게 위치 등록 후, 이미 등록한 두 RAT(Radio Access Technology) 사이의 이동 또는 cell reselection을 수행한 경우 별도의 위치 등록을 하지 않게 하는 기술이다. 따라서 해당 단말로의 DL(downlink) data가 도착하는 경우 paging을 E-UTRAN과 UTRAN/GERAN에 동시에 보냄으로써, 단말을 성공적으로 찾아 DL data를 전달할 수 있다. [3GPP TS 23.401 및 3GPP TS 23.060 참조]ISR (Idle mode Signaling Reduction): When a terminal frequently moves between E-UTRAN and UTRAN / GERAN, waste of network resources occurs by repeated location registration procedure. As a way to reduce this, when the terminal is in idle mode, two RATs (Radio Access Technology) already registered after the location registration with MME and SGSN (hereinafter referred to as mobility management node) via E-UTRAN and UTRAN / GERAN, respectively. This is a technology that does not register a separate location when moving between cells or performing cell reselection. Therefore, when DL (downlink) data arrives to the terminal, paging is simultaneously sent to the E-UTRAN and UTRAN / GERAN, thereby successfully finding the terminal and delivering the DL data. [See 3GPP TS 23.401 and 3GPP TS 23.060]
- MBSFN(MBMS Single Frequency Network): 어떠한 지역을 커버하는 그룹핑된 다수 셀에 동일한 waveform을 동시에 전송함으로써 구현되는 simulcast 전송 기술.MBMS Single Frequency Network (MBSFN): A simulcast transmission technique implemented by simultaneously transmitting the same waveform to multiple grouped cells covering a certain area.
EPC(Evolved Packet Core)Evolved Packet Core (EPC)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.EPC is a key element of System Architecture Evolution (SAE) to improve the performance of 3GPP technologies. SAE is a research project to determine network structure supporting mobility between various kinds of networks. SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다. Specifically, the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services. In a conventional mobile communication system (i.e., a second generation or third generation mobile communication system), the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data. The function has been implemented. However, in the 3GPP LTE system, an evolution of the third generation mobile communication system, the sub-domains of CS and PS have been unified into one IP domain. That is, in the 3GPP LTE system, the connection between the terminal and the terminal having the IP capability (capability), IP-based base station (for example, eNodeB (evolved Node B)), EPC, application domain (for example, IMS ( IP Multimedia Subsystem)). That is, EPC is an essential structure for implementing end-to-end IP service.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.The EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다. The SGW (or S-GW) acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW. In addition, when the UE moves over the area served by the eNodeB, the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later). SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다. The PDN GW (or P-GW) corresponds to the termination point of the data interface towards the packet data network. The PDN GW may support policy enforcement features, packet filtering, charging support, and the like. In addition, mobility management between 3GPP networks and non-3GPP networks (for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다. Although the example of the network structure of FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다. The MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. The MME controls control plane functions related to subscriber and session management. The MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks. The MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다. SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다. The ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다. As described with reference to FIG. 1, a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.). In the 3GPP system, a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point. Table 1 below summarizes the reference points shown in FIG. 1. In addition to the examples of Table 1, there may be various reference points according to the network structure.
표 1
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
Table 1
Reference point Explanation
S1-MME Reference point for the control plane protocol between E-UTRAN and MME
S1-U Reference point between E-UTRAN and Serving GW for the per bearer user plane tunneling and inter eNodeB path switching during handover
S3 Reference point between the MME and SGSN providing user and bearer information exchange for mobility between 3GPP access networks in idle and / or active state. This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
S4 (Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.) and the 3GPP Anchor function of Serving GW.In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW. It provides user plane tunneling and tunnel management between Serving GW and PDN GW. for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 Reference point between MME and SGW
SGi Reference point between the PDN GW and the PDN. The PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services. It is the reference point between the PDN GW and the packet data network.Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.Among the reference points shown in FIG. 1, S2a and S2b correspond to non-3GPP interfaces. S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW. S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.As shown, an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active. Can perform functions for dynamic allocation to the UE, configuration and provision for measurement of the eNodeB, radio bearer control, radio admission control, and connection mobility control. Within the EPC, paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station, and FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.The air interface protocol is based on the 3GPP radio access network standard. The air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.The protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.Hereinafter, each layer of the radio protocol of the control plane shown in FIG. 3 and the radio protocol in the user plane shown in FIG. 4 will be described.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.The physical layer, which is the first layer, provides an information transfer service using a physical channel. The physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel. In addition, data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.The physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis. Here, one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis. One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers. The transmission time interval (TTI), which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.According to 3GPP LTE, the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
제2계층에는 여러 가지 계층이 존재한다.There are several layers in the second layer.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.First, the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing). The MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.The Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.The Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size. In addition, in the LTE system, the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.The radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release. In this case, RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.Hereinafter, the RRC state and the RRC connection method of the UE will be described. The RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell. That is, the terminal in the RRC_IDLE state is only detected whether the terminal exists in a larger area than the cell, and the terminal must transition to the RRC_CONNECTED state in order to receive a normal mobile communication service such as voice or data. Each TA is identified by a tracking area identity (TAI). The terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell. When it is necessary to establish an RRC connection, the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state. There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.A non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.The following describes the NAS layer shown in FIG. 3 in detail.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.ESM (evolved Session Management) belonging to the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network. The default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN). At this time, the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer. LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth. In case of Default bearer, Non-GBR bearer is assigned. In the case of a dedicated bearer, a bearer having a QoS characteristic of GBR or non-GBR may be allocated.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.The bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID. One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.5 is a flowchart illustrating a random access procedure in 3GPP LTE.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.The random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.The UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB. Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.Transmission of the random access preamble is limited to a specific time and frequency resource for each cell. The PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.The UE sends the randomly selected random access preamble to the eNodeB. The UE selects one of the 64 candidate random access preambles. Then, the corresponding subframe is selected by the PRACH configuration index. The UE transmits the selected random access preamble in the selected subframe.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE. The random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.6 shows a connection process in a radio resource control (RRC) layer.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.As shown in FIG. 6, the RRC state is shown depending on whether the RRC is connected. The RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB. When the RRC state is connected, the RRC state is referred to as an RRC connected state. The non-state is called the RRC idle state.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.Since the UE in the connected state has an RRC connection, the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE. On the other hand, the UE in the idle state (idle state) can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit. The tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.There are several cases in which the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.In order to establish an RRC connection with the eNodeB, the UE in an idle state must proceed with an RRC connection procedure as described above. The RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.1) When a UE in idle mode attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to an eNodeB's paging, the UE first sends an RRC connection request message. Send to eNodeB.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.2) When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.3) When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
그룹 커뮤니케이션과 MBMS의 진화Group Communications and the Evolution of MBMS
도 7은 GCSE_LTE(Group Communication System Enablers for LTE)를 위한 Non-roaming architecture model의 예시이다. GCS AS(GCS Application Server)는 GCS(Group Communication Service)를 제공하기 위해 3GPP 시스템에 의해 제공되는 enablers를 사용할 수 있다. 이러한 enablers를 GCSE(Group Communication System Enablers)라고 일컫는다. GCS AS는 UE와의 GC1 시그널링의 지원, UE로부터의 유니캐스트 상향링크 데이터의 수신, 유니캐스트 또는 MBMS를 사용하여 그룹에 속한 단말들로의 데이터 전달, Rx 인터페이스를 통한 PCRF로의 애플리케이션 레벨 세션 정보의 전송, 유니캐스트와 MBMS 사이의 세션 연속성 절차 지원 등의 기능을 지원한다.7 is an example of a non-roaming architecture model for Group Communication System Enablers for LTE (GCSE_LTE). The GCS Application Server (AS) may use the enablers provided by the 3GPP system to provide Group Communication Service (GCS). Such enablers are referred to as Group Communication System Enablers (GCSE). The GCS AS supports GC1 signaling with the UE, receives unicast uplink data from the UE, transmits data to terminals belonging to the group using unicast or MBMS, and transmits application level session information to the PCRF through the Rx interface. It also supports functions such as session continuity procedure between unicast and MBMS.
도 8은 유니캐스트와 MBMS의 미디어 트래픽 전달 절차를 도시한다. 도 8을 참조하면, GCS AS는 동일 그룹에 속한 UE들에게 그룹 커뮤니케이션관련 media를 전송 시, 일부의 UE들에게는 유니캐스트 방식으로 다른 UE들에게는 MBMS 방식으로 전송 가능하다. 물론 동일 그룹에 속한 모든 UE들에게 유니캐스트 방식으로 media를 전송하거나 MBMS 방식으로 media를 전송할 수도 있다. UE-2, UE-3, UE-4가 동일한 eNB인 eNB-2에 연결되어 있음에도 불구하고 이 UE들간에 서로 다른 하향링크 전송 방식이 사용될 수도 있다. 일례로, UE-2는 MBMS signal strength가 약한 지역에 있는 바, MBMS 방식이 아닌 유니캐스트 방식으로 그룹 커뮤니케이션관련 media를 전송 받게 된다. 이외, GCSE_LTE 관련한 자세한 사항은 3GPP TS 23.468을 준용키로 한다.8 shows a media traffic delivery procedure of unicast and MBMS. Referring to FIG. 8, when the GCS AS transmits group communication-related media to UEs belonging to the same group, the GCS AS may transmit unicast to some UEs and MBMS to other UEs. Of course, the media can be transmitted to all UEs belonging to the same group by unicast or MBMS. Although UE-2, UE-3, and UE-4 are connected to eNB-2, which is the same eNB, different downlink transmission schemes between these UEs may be used. For example, UE-2 is located in an area where the MBMS signal strength is weak, and thus receives the group communication-related media by unicast rather than MBMS. In addition, for details regarding GCSE_LTE, 3GPP TS 23.468 shall apply mutatis mutandis.
MBMS 방식의 하향링크 media 전송이 사용될 때, broadcast 되는 지역이 GCS AS에 의해 pre-configure 되어 있을 수도 있고, GCS AS가 어떠한 지역 (within a cell or a collection of cells)에 있는 그룹 멤버 UE의 수가 충분히 크다고 판단하면 이 지역에 대해 MBMS 방식으로 하향링크 media 전송되도록 동적으로 결정할 수도 있다. GCS AS가 어떤 group에 대해 MBMS 방식의 전송을 결정한 경우, 도 9에 도시된 것과 같은 Activate MBMS bearer 절차를 수행한다. Activate MBMS bearer 절차는, BM-SC(Broadcast Multicast Service Center)에게 MBMS bearer를 위한 resource 할당을 요청하는 절차이다. When MBMS downlink media transmission is used, the broadcast area may be pre-configured by the GCS AS, and the number of group member UEs in any area (within a cell or a collection of cells) is sufficient. If it is determined that the size is large, it may be dynamically determined to transmit downlink media for this region by MBMS. If the GCS AS determines the transmission of the MBMS scheme for a group, the Activate MBMS bearer procedure as shown in FIG. 9 is performed. The Activate MBMS bearer procedure is a procedure for requesting resource allocation for an MBMS bearer from a Broadcast Multicast Service Center (BM-SC).
도 9를 참조하면, 단계 S901에서 GCS AS는 BM-SC에게, 시작되어야 할 MBMS 베어러를 나타내는 TMGI(Temporary Mobile Group Identity), FlowID, QoS, MBMS broadcast area, 시작 시간 등을 포함하는 Activate MBMS Bearer Request 메시지를 전송한다. TMGI는 선택적으로 포함될 수 있고, FlowID는 TMGI가 포함될 때만 포함된다. 만약, FlowID가 포함되면 BM-SC는 MBMS broadcast area 를 위해 FlowID를 TMGI에 연관시킨다. QoS는 MBMS 베어러의 적절한 QoS 파라미터에 매핑된다. MBMS broadcast area는 MBMS service area를 나른다. GCS AS는 BM-SC에게 MBMS 방식의 하향링크 traffic 전송 요청 시, MBMS broadcast area를 파라미터로 포함시키는데 이는 MBMS Service Area 단위이다. GCS AS가 BM-SC에게 보내는 Activate MBMS Bearer Request 메시지는 3GPP TS 29.468의 GCS-Action-Request (GAR) command 형태이며, 상기 GAR command를 구성하는 정보 중 주요 정보인 MBMS-Bearer-Request AVP는 다음 표 2와 같은 포맷일 수 있다.Referring to FIG. 9, in step S901, the GCS AS requests the BM-SC to activate MBMS Bearer Request including a Temporary Mobile Group Identity (TMGI) indicating a MBMS bearer to be started, FlowID, QoS, MBMS broadcast area, start time, and the like. Send a message. TMGI may optionally be included, and FlowID is included only when TMGI is included. If the FlowID is included, the BM-SC associates the FlowID with the TMGI for the MBMS broadcast area. QoS is mapped to appropriate QoS parameters of the MBMS bearer. The MBMS broadcast area carries the MBMS service area. When GCS AS requests BM-SC to transmit MBMS downlink traffic, it includes MBMS broadcast area as a parameter, which is a unit of MBMS service area. The Activate MBMS Bearer Request message sent by the GCS AS to the BM-SC is in the form of a GCS-Action-Request (GAR) command of 3GPP TS 29.468. It may be a format such as 2.
표 2
MBMS-Bearer-Request::= < AVP Header: 3504 > { MBMS-StartStop-Indication } [ TMGI] [ MBMS-Flow-Identifier ] [ QoS-Information ] [ MBMS-Service-Area ] [ MBMS-Start-Time ] [ MB2U-Security ] *[ AVP ]
TABLE 2
MBMS-Bearer-Request :: = <AVP Header: 3504> {MBMS-StartStop-Indication} [TMGI] [MBMS-Flow-Identifier] [QoS-Information] [MBMS-Service-Area] [MBMS-Start-Time] [MB2U-Security] * [AVP]
단계 S902에서, BM-SC는는 리소스를 할당한다. 이와 관련해, 만약 TMGI가 요청에 포함되었다면, BM-SC는 GCS AS가 인증되었는지 여부를 결정해야만 한다. TMGI가 인증되지 않은 경우, BM-SC는 요청을 거절한다. 만약 TMGI가 요청에 포함되지 않은 경우, BM-SC는 TMGI를 위해 사용되지 않은 값을 할당한다. FlowID가 요청에 포함되지 않은 경우, BM-SC는 TMGI와 MBMS broadcast area 에 상응하는 FlowID 값을 할당한다. 만약 동일한 TMGI와 FlowID를 갖지만 MBMS broadcast area가 다른 MBMS 베어러가 이미 활성화되어 있는 경우, BM-SC는 요청을 거절한다. 만약, 동일한 TMGI, 다른 FlowID의 MBMS 베어러가 이미 활성화되어 있는 경우, BM-SC는 이 MBMS 베어러의 MBMS broadcast area 가, 동일한 TMGI의 기 존재하는 MBMS 베어러에 상응하는 MBMS broadcast areas와 겹치지 않음을 보장한다. BM-SC는 MBMS 리소스를 할당한다. 단계 S903에서, BM-SC는 GCS AS에게 Activate MBMS Bearer Response 메시지를 전송한다. Activate MBMS Bearer Response 메시지는, TMGI, FlowID (echoed back if initially included in the request, or allocated by BM-SC), service description, BM-SC IP address, 사용자 평면을 위한 port number, expiration time 등을 포함할 수 있다. service description은 TS 26.346에 정의되어 있는 구성 정보에 연관된 MBMS 베어러를 포함한다. (예를 들어, infoBindling element containing serviceArea and radiofrequency) expiration time은 BM-SC가 TMGI를 할당한 경우에만 포함된다.In step S902, the BM-SC allocates resources. In this regard, if TMGI is included in the request, the BM-SC must determine whether the GCS AS is authorized. If the TMGI is not authenticated, the BM-SC rejects the request. If TMGI is not included in the request, the BM-SC assigns a value not used for TMGI. If the FlowID is not included in the request, the BM-SC assigns a FlowID value corresponding to the TMGI and MBMS broadcast area. If the MBMS bearer with the same TMGI and FlowID but different MBMS broadcast area is already activated, the BM-SC rejects the request. If an MBMS bearer of the same TMGI and another FlowID is already active, the BM-SC ensures that the MBMS broadcast area of this MBMS bearer does not overlap with the MBMS broadcast areas corresponding to the existing MBMS bearer of the same TMGI. . The BM-SC allocates MBMS resources. In step S903, the BM-SC transmits an Activate MBMS Bearer Response message to the GCS AS. The Activate MBMS Bearer Response message may include TMGI, FlowID (echoed back if initially included in the request, or allocated by BM-SC), service description, BM-SC IP address, port number for user plane, expiration time, etc. Can be. The service description includes the MBMS bearer associated with the configuration information defined in TS 26.346. (Eg, infoBindling element containing serviceArea and radiofrequency) The expiration time is included only if the BM-SC has assigned a TMGI.
한편, MBMS는 Public Safety를 위한 그룹 커뮤니케이션의 방법으로 사용될 수 있도록 수정/진화하고 있으며, 그 중 하나의 방향성은 MBMS 방식의 전송을 종래의 MBMS Service Area 단위가 아닌 다른 범위의 지역 단위 (예, cell 단위)로 전송하는 것이다. (그 외 방향성에 대한 상세는 3GPP SP-140883 문서를 참고) 이와 관련해, GCS AS가 MBMS 서비스 에어리어에 기초한 MBMS 베어러를 요청하는 것이 허용될 필요 또는 GCS AS가 MBMS 서비스를 제공하는 모든 네트워크의 MBMS 서비스 에어리어 구성을 알 필요가 있을 수 있다. 이러한 필요성들은 ECGI(E-UTRAN Cell Global Identifiers)의 리스트 전송에 기반한 MBMS 베어러 생성 방법을 통해 충족될 수 있으며, 그 예로써, 도 10에 예시된 MBMS 베어러 초기화 절차가 가능하다.On the other hand, the MBMS is being modified / evolved to be used as a method of group communication for public safety, and one of the directions is that the transmission of the MBMS method is a regional unit (eg, cell) in a range other than the conventional MBMS Service Area unit. Unit). (See 3GPP SP-140883 for details on other directions.) In this regard, the GMS AS needs to be allowed to request an MBMS bearer based on the MBMS service area or the MBMS service of any network where the GCS AS provides MBMS service. It may be necessary to know the area configuration. These needs may be satisfied through the MBMS bearer generation method based on the list transmission of E-UTRAN Cell Global Identifiers (ECGI). As an example, the MBMS bearer initialization procedure illustrated in FIG. 10 is possible.
도 10을 참조하면, 단계 S1001에서, GCS AS는 MB2 상에서 MBMS 베어러를 활성화시키고 싶은 경우, Activate MBMS Bearer Request 메시지를 BM-SC로 전송한다. 이와 관련해 구체적인 내용은 도 9의 단계 S901에서 앞서 설명된 바와 같다. 다만 추가 사항은 MBMS broadcast area 파라미터가 MBMS service area의 리스트를 포함할 수도 있고 cell identifier (즉, ECGI)의 리스트를 포함할 수도 있다는 점이다. 만약 MBMS broadcast area 파라미터가 cell identifier의 리스트를 포함했다면 단계 S1002에서 BM-SC는 수신한 cell identifier들을 MBMS service area의 set로 매핑한다. 단계 S1002에서, BM-SC는 ECGIs를 SAIs에 매핑하고, MBMS 게이트웨이를 결정한다. S1003에서, BM-SC는 MBMS-GW(s)에게 ECGIs 리스트와 종래 정의되어 있는 관련 파라미터를 포함하는 Session Start 메시지를 전송한다. 단계 S1004에서, MBMS-GW는 MME에게 ECGIs 리스트와 종래 정의되어 있는 관련 파라미터를 포함하는 Session Start 메시지를 전송한다. 단계 S1005에서, MME는 MCE에게 ECGIs 리스트와 종래 정의되어 있는 관련 파라미터를 포함하는 Session Start 메시지를 전송한다. 단계 S1006에서, MCE는 SAI list를 MBSFN 리스트에 매핑한다. 그리고, ECGI 리스트에 기초하여, 사용되지 않는 MBSFN을 제거한다. MCE는 MBSFN 베어러를 위해 선택된 MBSFN에서 자원을 할당한다. MCE는 MBMS 베어러가 브로드캐스트될, 선택된 MBSFN에서 모든 ECGIs 의 리스트를 형성한다. 단계 S1007에서, MCE는 MBMS 베어러가 브로드캐스트될, ECGIs 의 리스트 및 종래 파라미터를 포함하는 Session Start response 메시지를 MME에게 전송한다. 단계 S1008에서, MME는 MBMS 베어러가 브로드캐스트될, ECGIs 의 리스트 및 종래 파라미터를 포함하는 Session Start response 메시지를 MBMS-GW에게 전송한다. 단계 S1009에서, MBMS-GW는 MBMS 베어러가 브로드캐스트될, ECGIs 의 리스트 및 종래 파라미터를 포함하는 Session Start response 메시지를 BM-SC에게 전송한다. 단계 S1010에서, BM-SC는 Activate MBMS Bearer Response 메시지를 GCS AS에게 전송한다. 이 메시지에 대한 상세한 설명은 도 9에 관한 단계 S903의 설명과 동일하다. 추가 사항은 BM-SC가 Activate MBMS Bearer Request 메시지에 ECGI 리스트를 받았다면 Activate MBMS Bearer Response 메시지에 ECGI 리스트를 포함시켜 보낸다. 만약, BM-SC가 Session Start response 메시지를 수신하기 앞서 Activate MBMS Bearer Response 메시지를 전송하기로 선택한 경우, BM-SC는 Activate MBMS Bearer Request 메시지 상에 ECGIs 리스트를 포함시켜야만 한다. Referring to FIG. 10, in step S1001, when the GCS AS wants to activate an MBMS bearer on MB2, the GCS AS transmits an Activate MBMS Bearer Request message to the BM-SC. In this regard, specific contents are the same as those described above in step S901 of FIG. 9. Note that the MBMS broadcast area parameter may contain a list of MBMS service areas or a list of cell identifiers (ie, ECGI). If the MBMS broadcast area parameter includes a list of cell identifiers, in step S1002, the BM-SC maps the received cell identifiers to a set of MBMS service areas. In step S1002, the BM-SC maps ECGIs to SAIs and determines an MBMS gateway. In S1003, the BM-SC transmits a Session Start message to the MBMS-GW (s) including the ECGIs list and related parameters previously defined. In step S1004, the MBMS-GW transmits a Session Start message including the ECGIs list and related parameters previously defined to the MME. In step S1005, the MME transmits a Session Start message including the ECGIs list and related parameters previously defined to the MCE. In step S1006, the MCE maps the SAI list to the MBSFN list. Then, based on the ECGI list, unused MBSFNs are removed. The MCE allocates resources in the MBSFN selected for the MBSFN bearer. The MCE forms a list of all ECGIs in the selected MBSFN to which the MBMS bearer will be broadcast. In step S1007, the MCE sends a Session Start response message including a list of ECGIs and conventional parameters to which the MBMS bearer is to be broadcast, to the MME. In step S1008, the MME sends a Session Start response message including a list of ECGIs and conventional parameters to which the MBMS bearer is to be broadcast, to the MBMS-GW. In step S1009, the MBMS-GW sends a Session Start response message including a list of ECGIs and conventional parameters, to which the MBMS bearer is to be broadcast, to the BM-SC. In step S1010, the BM-SC sends an Activate MBMS Bearer Response message to the GCS AS. The detailed description of this message is the same as that of step S903 with respect to FIG. If the BM-SC receives the ECGI list in the Activate MBMS Bearer Request message, the BM-SC sends the ECGI list in the Activate MBMS Bearer Response message. If the BM-SC chooses to transmit the Activate MBMS Bearer Response message before receiving the Session Start response message, the BM-SC must include the ECGIs list in the Activate MBMS Bearer Request message.
도 11은 MBMS 베어러 통지 절차의 예시이다. 도 11을 참조하면, 단계 S1101에서 MCE가 MBMS를 브로드캐스트하는 셀의 리스트가 변경된 것으로 결정한 경우, MCE는 브로드캐스트하는 모든 ECGIs의 리스트를 형성한다. 그리고, 단계 S1102에서 MCE는 TMGI, FlowID, ECGIs의 리스트를 포함하는 Session Notification 메시지를 MME로 전송한다. 이 메시지는 MME로부터 MBMS-GW로 전송되고(단계 S1103), MBMS-GW에서 BM-SC로 전송된다(단계 S1104). 단계 S1105에서, BM-SC는 MBMS 브로드캐스트 에이리어에 변경이 있음을 지시하는 MBMS Delivery Status Indication 메시지를 GCS AS로 전송한다. 11 is an illustration of an MBMS bearer notification procedure. Referring to FIG. 11, when the MCE determines in step S1101 that the list of cells broadcasting MBMS has changed, the MCE forms a list of all broadcast ECGIs. In step S1102, the MCE transmits a Session Notification message including a list of TMGI, FlowID, and ECGIs to the MME. This message is sent from the MME to the MBMS-GW (step S1103), and from the MBMS-GW to the BM-SC (step S1104). In step S1105, the BM-SC sends an MBMS Delivery Status Indication message to the GCS AS indicating that there is a change in the MBMS broadcast area.
도 12는 MCE(Multi-cell/Multicast Coordination Entity)의 논리 구조를 예시한다. MCE는 논리 개체로써, 다른 네트워크 노드의 일부로써 구성될 수 있다. MCE는 admission control, MBSFN area 의 모든 eNBs에 의해 사용되는 무선 자원의 할당 기능을 수행한다. 만약, 무선 자원이 충분하지 않거나, ARP에 따라 진행 중인 MBMS 서비스의 무선 베어러로에 의해 자원이 선취된 경우, MCE는 새로운 MBMS 서비스에 대한 무선 베어러를 수립하지 않는다. 여기서, 무선 자원의 할당이란 시간/주파수 자원의 할당, 변조 및 코딩 스킴 등의 무선 구성을 포함한다. MCE는 SC-PTM 또는 MBSFN을 사용할지 결정한다. MCE는 MBMS 서비스를 위해 카운팅 및 카운팅 결과의 획득을 수행한다. MCE는 MBSFN area 내 MBMS 세션의 재개/정지를 수행한다. (예를 들어, ARP 및/또는 the counting results for the corresponding MBMS service(s)), 12 illustrates a logical structure of a multi-cell / multicast coordination entity (MCE). The MCE is a logical entity and can be configured as part of another network node. The MCE performs the function of allocating radio resources used by all eNBs in admission control and MBSFN areas. If there is not enough radio resources or resources are preempted by the radio bearer of the ongoing MBMS service according to the ARP, the MCE does not establish a radio bearer for the new MBMS service. Here, the allocation of radio resources includes radio configurations such as time / frequency resource allocation, modulation and coding schemes. The MCE decides whether to use SC-PTM or MBSFN. The MCE performs counting and acquisition of counting results for the MBMS service. The MCE performs resume / stop of the MBMS session in the MBSFN area. (E.g., ARP and / or the counting results for the corresponding MBMS service (s)),
앞서 설명된 MBMS 베어러 초기화 절차에 의할 경우, Public Safety에서 셀 단위의 MBMS 전송 중지 요청 또는 하향링크 전송 방식의 변경 요청이 많이 발생하는 경우(Public Safety 단말 또는 그룹 커뮤니케이션에 참여하는 단말들은 근무 시간이나 사건/사고 발생 등에 따라 그 위치가 자주 변경될 수 있고, 따라서 GCS AS는 특정 cell에 대해 자주 하향링크 traffic 전송 방식을 변경할 수 있다), 불필요한 시그널링 교환, 망 자원 낭비가 발생할 수 있다. 이에 대해 도 13을 참조하여 살펴본다. 도 13을 참조하면, MBMS SAI#1은 3개의 MBSFN으로 구성된다. 각 MBSFN은 10개의 cell로 구성되며, ECGI#1 ~ ECGI#5는 eNB#1, ECGI#6 ~ ECGI#10은 eNB#2, ECGI#11 ~ ECGI#15는 eNB#3, ECGI#16 ~ ECGI#20은 eNB#4, ECGI#21 ~ ECGI#25는 eNB#5, ECGI#26 ~ ECGI#30은 eNB#6의 cell이라고 가정한다. 그리고 MCE는 configuration 및 eNB와의 M2 setup 절차를 통해 표 3과 같은 정보를 유지하고 있다고 가정한다. eNB와 MCE 간의 M2 setup 절차는 3GPP TS 36.443을 참고하기로 한다.According to the MBMS bearer initialization procedure described above, when there are a lot of requests for stopping MBMS transmission or changing downlink transmission schemes in public safety (Public Safety terminals or terminals participating in group communication), The location may be changed frequently according to the occurrence of an incident / accident, and thus, the GCS AS may change the downlink traffic transmission method for a specific cell frequently), unnecessary signaling exchange, and waste of network resources. This will be described with reference to FIG. 13. Referring to FIG. 13, MBMS SAI # 1 is composed of three MBSFNs. Each MBSFN consists of 10 cells, ECGI # 1 ~ ECGI # 5 is eNB # 1, ECGI # 6 ~ ECGI # 10 is eNB # 2, ECGI # 11 ~ ECGI # 15 is eNB # 3, ECGI # 16 ~ It is assumed that ECGI # 20 is eNB # 4, ECGI # 21 to ECGI # 25 are eNB # 5, and ECGI # 26 to ECGI # 30 are cells of eNB # 6. In addition, it is assumed that the MCE maintains the information shown in Table 3 through the M2 setup procedure with the configuration and the eNB. For M2 setup procedure between eNB and MCE, refer to 3GPP TS 36.443.
표 3
eNB ECGI MBSFN MBMS SAI
#1 #1 #1 #1
#1 #2 #1 #1
#1 #3 #1 #1
#1 #4 #1 #1
#1 #5 #1 #1
#2 #6 #1 #1
#2 #7 #1 #1
#2 #8 #1 #1
#2 #9 #1 #1
#2 #10 #1 #1
#3 #11 #2 #1
#3 #12 #2 #1
#3 #13 #2 #1
#3 #14 #2 #1
#3 #15 #2 #1
#4 #16 #2 #1
#4 #17 #2 #1
#4 #18 #2 #1
#4 #19 #2 #1
#4 #20 #2 #1
#5 #21 #3 #1
#5 #22 #3 #1
#5 #23 #3 #1
#5 #24 #3 #1
#5 #25 #3 #1
#6 #26 #3 #1
#6 #27 #3 #1
#6 #28 #3 #1
#6 #29 #3 #1
#6 #30 #3 #1
TABLE 3
eNB ECGI MBSFN MBMS SAI
#One #One #One #One
#One #2 #One #One
#One # 3 #One #One
#One #4 #One #One
#One # 5 #One #One
#2 # 6 #One #One
#2 # 7 #One #One
#2 #8 #One #One
#2 # 9 #One #One
#2 # 10 #One #One
# 3 # 11 #2 #One
# 3 # 12 #2 #One
# 3 # 13 #2 #One
# 3 # 14 #2 #One
# 3 # 15 #2 #One
#4 # 16 #2 #One
#4 # 17 #2 #One
#4 # 18 #2 #One
#4 # 19 #2 #One
#4 # 20 #2 #One
# 5 # 21 # 3 #One
# 5 # 22 # 3 #One
# 5 # 23 # 3 #One
# 5 # 24 # 3 #One
# 5 # 25 # 3 #One
# 6 # 26 # 3 #One
# 6 # 27 # 3 #One
# 6 # 28 # 3 #One
# 6 # 29 # 3 #One
# 6 # 30 # 3 #One
이와 같은 상황에서, GCS AS가 ECGI#7 ~ ECGI#18에 대해 MBMS 전송을 하고자 결정하면 GCS AS는 BM-SC에게 MBMS 전송 요청 시, MBMS SAI#1 및 ECGI#7 ~ ECGI#18을 제공한다. 이를 수신한 MCE는 MBMS SAI#1에 기반하여 MBSFN#1, MBSFN#2, MBSFN#3를 추출하고 MBSFN 리스트를 구성한다. MCE는 ECGI 리스트, 즉 ECGI#7 ~ ECGI#18에 기반하여 상기 MBSFN 리스트에서 MBSFN#3은 삭제한다. MCE는 최종 선택된 MBSFN#1, MBSFN#2에 대해서만 MBMS bearer를 위한 resource를 할당한다. 구체적으로는 ECGI#7 ~ ECGI#18에 MBMS 전송이 이루어질 수 있도록, eNB#2, eNB#3, eNB#4에게 MBMS Session Start를 요청한다. 여기서, MBMS Session Start 요청은 MBMS Service Area 정보를 포함하므로, eNB는 상기 MBMS Service Area에 속하는 모든 cell에 대해 MBMS bearer를 위한 resource를 할당하게 된다. 결과적으로 eNB#2는 ECGI#6 ~ ECGI#10, eNB#3은 ECGI#11 ~ ECGI#15, eNB#4는 ECGI#16 ~ ECGI#20에 MBMS 전송을 수행하게 된다. 이에 MCE는 실제로 MBMS 전송이 일어나게 될 ECGI에 대한 리스트, 즉 ECGI#6 ~ ECGI#20를 포함하는 리스트를 구성한다. MME에게 Session Start response 메시지를 보낼 때 포함시키며, 이는 MBMS GW, BM-SC를 거쳐 GCS AS에게 전달된다. In such a situation, when the GCS AS decides to transmit MBMS for ECGI # 7 to ECGI # 18, the GCS AS provides MBMS SAI # 1 and ECGI # 7 to ECGI # 18 when the MBMS request is sent to the BM-SC. . Receiving this, the MCE extracts MBSFN # 1, MBSFN # 2, and MBSFN # 3 based on MBMS SAI # 1 and constructs an MBSFN list. The MCE deletes MBSFN # 3 from the MBSFN list based on an ECGI list, that is, ECGI # 7 to ECGI # 18. The MCE allocates resources for the MBMS bearer only for the last selected MBSFN # 1 and MBSFN # 2. Specifically, the MBMS Session Start is requested to the eNB # 2, the eNB # 3, and the eNB # 4 so that the MBMS transmission can be made to the ECGI # 7 to the ECGI # 18. In this case, since the MBMS Session Start request includes MBMS Service Area information, the eNB allocates resources for the MBMS bearer to all cells belonging to the MBMS Service Area. As a result, eNB # 2 performs ECGI # 6 to ECGI # 10, eNB # 3 performs ECGI # 11 to ECGI # 15, and eNB # 4 performs MBMS transmission on ECGI # 16 to ECGI # 20. In this case, the MCE constructs a list of ECGIs for which MBMS transmission will occur, that is, a list including ECGI # 6 to ECGI # 20. It is included when sending a Session Start response message to the MME, which is sent to the GCS AS via MBMS GW and BM-SC.
여기서, 만약 GCS AS가 ECGI#10에 대해 MBMS 방식에서 유니캐스트 방식으로의 전환을 결정(예를 들어, ECGI#10에 그룹 멤버 UE의 수가 일정 threshold 이하로 떨어진 경우 등)하면, BM-SC에게 ECGI#10에 대해서는 MBMS bearer를 위해 할당된 resource를 취소하는 요청, 즉 ECGI#10에 대해 MBMS 전송을 중단하기 위한 요청을 전송할 수 있다. 그러나, 이러한 셀 단위 전송 중단 요청은 허용되지 않으므로 MCE는 ECGI#10에 대한 MBMS 전송 중단을 eNB#2에게 요청할 수 없다. 따라서 MCE에서는 수신한 MBMS 전송 중단 요청에 대해 실패 또는 거절을 알리는 응답 메시지를 GCS AS에게 전송한다. 앞서 언급된 바와 같이 Public Safety에서는 다수의 GCS AS가 이처럼 무의미한 MBMS 전송 중지 요청 메시지를 BM-SC로 전송할 경우, 불필요한 시그널링 교환이 MBMS 관련 노드 (즉, BM-SC, MBMS GW, MCE)들 뿐만 아니라 MME에도 이루어지는 망 자원 낭비가 발생하게 된다.Here, if the GCS AS determines the transition from the MBMS scheme to the unicast scheme for the ECGI # 10 (for example, when the number of group member UEs falls below a certain threshold in ECGI # 10), the BM-SC informs the BM-SC. For ECGI # 10, a request for canceling a resource allocated for the MBMS bearer, that is, a request for stopping MBMS transmission for ECGI # 10, may be transmitted. However, since such a cell-by-cell transmission stop request is not allowed, the MCE cannot request the eNB # 2 to stop MBMS transmission for ECGI # 10. Therefore, the MCE transmits a response message notifying the failure or rejection of the received MBMS transmission stop request to the GCS AS. As mentioned above, in Public Safety, when a large number of GCS AS sends this meaningless MBMS transmission stop request message to the BM-SC, unnecessary signaling exchanges are not only performed by MBMS-related nodes (ie, BM-SC, MBMS GW, MCE). MME also wastes network resources.
실시예Example
이하에서는 이와 같은 문제를 해결하기 위한 본 발명의 실시예에 대해 설명한다. 본 발명의 실시예에 의한 MCE는 SAI (Service Area Identities) 및 제1 ECGI 리스트를 포함하는 세션 시작(Session Start) 메시지를 수신하고, SAI를 사용하여 MBSFN 리스트 구성할 수 있다. 그리고, 제1 ECGI 리스트에 기초해 리소스를 할당할 필요가 없는 MBSFN을 MBSFN 리스트로부터 제거할 수 있다. 리소스를 할당할 필요가 없는 MBSFN이 제거된 MBSFN 리스트와 제1 ECGI 리스트에 기초해 MBMS 베어러를 위한 리소스 할당할 수 있다. 이 때 리소스 할당은 앞서 설명된 바와 같이, MCE가 eNB로 MBMS Service Area 정보를 포함하는 MBMS Session Start 요청을 전송함으로써 수행된다. eNB는 MBMS Service Area 정보에 따라 리소스를 할당한다. 이후, MCE는 리소스 할당을 통해 MBMS 전송이 수행될 제2 ECGI 리스트를 구성할 수 있다. 이 제2 ECGI 리스트는 네트워크(MME, MBMS 게이트웨이 및 BM-SC(Broadcast Multicast Service Center)를 통해 GCS AS (Group Communication Service Application Server)에게 전달)로 전송될 수 있다.Hereinafter, an embodiment of the present invention for solving such a problem will be described. The MCE according to an embodiment of the present invention may receive a Session Start message including a Service Area Identities (SAI) and a first ECGI list, and configure an MBSFN list using the SAI. And, based on the first ECGI list, the MBSFN which does not need to allocate resources can be removed from the MBSFN list. The resource allocation for the MBMS bearer may be allocated based on the MBSFN list and the first ECGI list from which the MBSFN has not been allocated. At this time, resource allocation is performed by transmitting an MBMS Session Start request including MBMS Service Area information to the eNB by the MCE as described above. The eNB allocates resources according to MBMS Service Area information. Thereafter, the MCE may configure a second ECGI list on which MBMS transmission is to be performed through resource allocation. The second ECGI list may be transmitted to a network (delivered to a Group Communication Service Application Server (GCS AS) through an MME, an MBMS gateway, and a Broadcast Multicast Service Center (BM-SC)).
여기서, MCE가 SC-PTM(Single Cell Point To Multiploint)이 가능하지 않은 경우 또는 SC-PTM이 가능하지만 MBSFN 전송 방식을 사용하기로 결정한 경우 중 어느 하나의 경우, 제2 ECGI 리스트는 ECGI 그룹핑 정보를 포함할 수 있다. Here, in the case where the MCE is not capable of Single Cell Point To Multiploint (SC-PTM) or if SC-PTM is available but decides to use the MBSFN transmission scheme, the second ECGI list may contain ECGI grouping information. It may include.
ECGI 그룹핑 정보는 cell들 중에서 MBMS 전송과 중지가 항상 같이 일어나게 되는 cell들의 그룹/모음 정보일 수 있다. 이러한 ECGI 그룹핑 정보에서 지시된 셀들 중 일부의 셀에 대한 전송 중지 요청은 허용되지 않을 수 있다. 또는, ECGI 그룹핑 정보에서 지시된 셀들 중 일부의 셀에 대해서는 MBMS에서 유니캐스트로의 전송 방식의 변경이 허용되지 않을 수 있다. 즉, GCS AS는 동일 그룹에 속한 cell들 중 일부의 cell에 대해서만 하향링크 traffic 전송 방식을 MBMS 방식에서 유니캐스트 방식으로 전환하는 것을 결정하지 않는다. 또는, GCS AS는 동일 그룹에 속한 cell들 중 일부의 cell에 대해서만 MBMS 전송을 중지하는 요청을 BM-SC에게 하지 않는다. 앞서 도 13의 경우에 이를 적용하면, MCE는 ECGI#6:Index#1, ECGI#7:Index#1, ECGI#8:Index#1, ECGI#9:Index#1, ECGI#10:Index#1, ECGI#11:Index#2, ECGI#12:Index#2, ECGI#13:Index#2, ECGI#14:Index#2, ECGI#15:Index#2, ECGI#16:Index#3, ECGI#17:Index#3, ECGI#18:Index#3, ECGI#19:Index#3, ECGI#20:Index#3 와 같은 인덱스 형식의 ECGI 그룹핑 정보를 GCS AS로 전송하고, GCS AS는 동일 그룹에 속한 cell들 중 일부의 cell에 대해서만, 예를 들어 ECGI#6 ~ ECGI#10 중 일부의 cell에 대해서만 MBMS 전송 중지를 결정하지 않거나 전송 중지를 BM-SC에게 요청하지 않는다.The ECGI grouping information may be group / collection information of cells in which MBMS transmission and suspension always occur together among cells. A transmission stop request for some of the cells indicated in such ECGI grouping information may not be allowed. Alternatively, a change of the transmission scheme from MBMS to unicast may not be allowed for some of the cells indicated in the ECGI grouping information. That is, the GCS AS does not determine to switch the downlink traffic transmission scheme from the MBMS scheme to the unicast scheme for only some of the cells belonging to the same group. Or, the GCS AS does not make a request to the BM-SC to stop MBMS transmission for only some of the cells belonging to the same group. Applying this in the case of FIG. 13, the MCE is ECGI # 6: Index # 1, ECGI # 7: Index # 1, ECGI # 8: Index # 1, ECGI # 9: Index # 1, ECGI # 10: Index #. 1, ECGI # 11: Index # 2, ECGI # 12: Index # 2, ECGI # 13: Index # 2, ECGI # 14: Index # 2, ECGI # 15: Index # 2, ECGI # 16: Index # 3, ECGI grouping information in index format such as ECGI # 17: Index # 3, ECGI # 18: Index # 3, ECGI # 19: Index # 3, ECGI # 20: Index # 3 is transmitted to the GCS AS, and the GCS AS is the same. For some cells among the cells belonging to the group, for example, only some cells of ECGI # 6 to ECGI # 10 do not decide to stop the MBMS transmission or request the BM-SC to stop the transmission.
ECGI 그룹핑 정보는 위 예시된 ECGI에 index (또는 group ID)가 부여되는 방식 이외에 다른 방식으로 전달될 수 있다. 예를 들어, broadcasting ECGI 리스트를 포함 시, 그룹핑된 ECGI들을 sub-리스트 단위로 포함함으로써 각 sub-리스트에 포함된 cell들이 동일 그룹에 속함을 알려 줄 수 있다. 또는, broadcasting ECGI 리스트를 포함 시 동일 그룹에 속한 cell의 ECGI가 끝날 때마다 구분자를 넣음으로써 구분자로 구분된 cell들이 동일 그룹에 속함을 나타낼 수도 있다. 그리고, 그룹핑된 cell 단위로만 MBMS 전송 중지가 가능함을 알리는 정보(즉, 그룹핑된 모든 cell에 대해서 MBMS 전송 중지가 가능함을 알리는 정보), 그룹핑된 cell 중 일부의 cell만은 MBMS 전송 중지가 불가능함을 알리는 정보, 또는 상기 그룹핑 정보 관련하여 그룹핑된 cell은 동일 eNB에 속하는 cell임을 알리는 정보 중 하나 이상이 ECGI 그룹핑 정보와 함께 전송될 수 있다.The ECGI grouping information may be delivered in a manner other than a method in which an index (or group ID) is assigned to the illustrated ECGI. For example, when the broadcasting ECGI list is included, the grouped ECGIs may be included in the sub-list unit to inform that the cells included in each sub-list belong to the same group. Alternatively, when the broadcasting ECGI list is included, whenever a ECGI of a cell belonging to the same group ends, a separator may be inserted to indicate that the cells separated by the separator belong to the same group. In addition, information indicating that MBMS transmission can be stopped only in units of grouped cells (that is, information indicating that MBMS transmission can be stopped for all grouped cells), and only some cells of the grouped cells indicate that MBMS transmission cannot be stopped. One or more pieces of information, or information indicating that a cell grouped with respect to the grouping information belongs to a cell belonging to the same eNB, may be transmitted together with the ECGI grouping information.
MCE는 SC-PTM이 가능한 경우, 제1 ECGI 리스트의 셀 개수와 제2 ECGI 리스트의 셀 개수의 관계를 고려하여, MBSFN 전송 방식을 사용할지 여부를 결정할 수 있다. 예를 들어, MCE는 제2 ECGI 리스트의 셀 개수에 대한 제1 ECGI 리스트의 셀 개수가 미리 설정된 값보다 큰 경우, SC-PTM이 가능하지만 MBSFN 전송 방식을 사용하기로 결정할 수 있다.When SC-PTM is available, the MCE may determine whether to use the MBSFN transmission scheme in consideration of the relationship between the number of cells of the first ECGI list and the number of cells of the second ECGI list. For example, if the number of cells of the first ECGI list for the number of cells of the second ECGI list is greater than a preset value, the MCE may decide to use the MBSFN transmission scheme although SC-PTM is possible.
도 14에는 상술한 실시예와 관련하여, MCE의 동작의 예가 도시되어 있다. 도 14를 참조하면, 단계 S1401에서, MCE는 SC-PTM 전송이 가능한지 판단한다. 만약, SC-PTM 전송이 가능하면, SC-PTM으로 전송할지 여부를 판단(단계 S1402)한다. SC-PTM으로 전송하는 것으로 결정한 경우, eNB(s)에게 MBMS SESSION START REQUEST를 전송(S1403)한다. 이 때, SC-PTM 전송에 따른 정보를 포함시킨다. 자세한 사항은 TS 36.443 내용을 준용한다. 단계 S1404에서 MCE가 상기 요청을 전송한 eNB(s)로부터 응답을 수신하고 이에 기반하여 최종적으로 SC-PTM 전송을 할 것인지 결정한다. 예컨대, eNB로부터 radio resource 등의 문제로 인해 SC-PTM 전송이 불가능함을 응답 받는다면, MCE는 MBSFN 전송 방식을 사용하는 것을 결정한다. 최종적으로 SC-PTM 전송을 하는 것으로 결정했다면 단계 S1405를 수행한다. 단계 S1405에서, SC-PTM 전송 결정사항을 반영하여 실제 MBMS 전송이 이루어질 cell에 대한 정보인 broadcasting ECGI 리스트를 구성한다. 이는 eNB 단위가 아닌 cell 단위로 전송이 가능한 바, MBMS 전송을 요청받은 cell 리스트를 그대로 반영한 것일 수 있다. 또한, 이 때 MCE는 cell의 그룹핑 정보를 제공하지 않는 것을 결정한다. 추가적으로는 SC-PTM 전송이 가능함을 알리는 정보를 Session Start Response 메시지에 포함시킬 수도 있다.14 shows an example of the operation of the MCE in connection with the above-described embodiment. Referring to FIG. 14, in step S1401, the MCE determines whether SC-PTM transmission is possible. If SC-PTM transmission is possible, it is determined whether to transmit to SC-PTM (step S1402). If it is determined to transmit to the SC-PTM, and transmits the MBMS SESSION START REQUEST to the eNB (s) (S1403). At this time, the information according to the SC-PTM transmission is included. For details, the content of TS 36.443 shall apply mutatis mutandis. In step S1404, MCE receives a response from the eNB (s) that sent the request and determines whether to finally perform the SC-PTM transmission based on this. For example, if a response from the eNB that SC-PTM transmission is impossible due to a problem such as a radio resource, the MCE determines to use the MBSFN transmission scheme. If it is determined that the SC-PTM transmission is finally performed, step S1405 is performed. In step S1405, a broadcasting ECGI list, which is information about a cell on which actual MBMS transmission is to be made, is reflected by reflecting the SC-PTM transmission decision. This can be transmitted in units of cells rather than in units of eNBs, and may reflect cell lists requested for MBMS transmission. In addition, at this time, the MCE determines not to provide grouping information of the cell. In addition, information indicating that SC-PTM transmission is possible may be included in a Session Start Response message.
만약, MCE가 SC-PTM 전송이 가능하지 않은 경우 또는 MCE가 SC-PTM 전송이 가능한데도 MBSFN 전송 방식을 결정한 경우, MBSFN으로 전송하는 것을 결정하고, 이 경우 MBSFN 전송 결정사항을 반영하여 실제 MBMS 전송이 이루어질 cell에 대한 정보인 broadcasting ECGI 리스트를 구성한다. 이는 각 eNB에서 한꺼번에 MBMS 전송이 제어되는 cell들을 반영한 것이다. 또한, 이 때 MCE는 cell의 그룹핑 정보를 제공하는 것을 결정한다. 추가적으로는 SC-PTM 전송이 불가능함을 (또는 MBSFN 전송만 가능함을) 알리는 정보를 Session Start Response 메시지에 포함시킬 수도 있다. MCE가 SC-PTM 전송이 가능함에도 불구하고 MBSFN 전송 방식을 결정한 경우, SC-PTM 전송이 가능함을 알리는 정보를 Session Start Response 메시지에 포함시킬 수도 있다. SC-PTM 전송이 가능함을 알리는 이유는 이번 요청의 경우 eNB 단위로 MBMS 전송을 수행하지만, cell 단위로 MBMS 전송이 가능함을 GCS AS에게 알리기 위함이다. 상술한 설명에서 MCE가 SC-PTM 전송이 가능한 것은 MCE 뿐만 아니라 MCE가 제어하는 eNB들이 모두 SC-PTM 전송 능력이 있음을 의미할 수 있다. MCE가 SC-PTM 전송이 가능함에도 불구하고 MBSFN 전송 방식을 결정하는 이유는 MBMS 전송을 요청받은 cell의 범위가 eNB 단위로 전송할 때 커버되는 cell의 범위 대비하여 어떤 threshold 이상을 차지하기 때문일 수 있다. 예를 들어, 도 13에서의 예시와 같이 ECGI#7 ~ ECGI#18는, eNB#2, eNB#3, eNB#4가 커버하는 총 15개의 cell 대비 (12/15)*100 = 80%에 해당한다. 이에 상기 threshold 값이 80%라면 MCE는 MBSFN 전송을 결정할 수 있다. 만약 상기 threshold 값이 90%라면 MCE는 SC-PTM 전송을 결정할 수 있다.If the MCE cannot transmit the SC-PTM or if the MCE determines the MBSFN transmission even though the SC-PTM transmission is possible, the MCE decides to transmit the MBSFN. In this case, the actual MBMS transmission is reflected by the MBSFN transmission decision. It configures a broadcasting ECGI list which is information on the cell to be formed. This reflects the cells in which the MBMS transmission is controlled at each eNB. In addition, at this time, the MCE determines to provide grouping information of the cell. In addition, information indicating that SC-PTM transmission is not possible (or MBSFN transmission only) may be included in the Session Start Response message. If the MCE determines the MBSFN transmission method despite SC-PTM transmission, information indicating that SC-PTM transmission is possible may be included in the Session Start Response message. The reason for notifying that SC-PTM transmission is possible is to perform MBMS transmission in units of eNBs for this request, but to inform GCS AS that MBMS transmission is possible in units of cells. In the above description, MCE capable of SC-PTM transmission may mean that not only MCE but also eNBs controlled by MCE have SC-PTM transmission capability. Although the MCE enables the SC-PTM transmission, the reason for determining the MBSFN transmission scheme may be that a range of a cell that is requested for MBMS transmission occupies a certain threshold or more in comparison to the range of a cell to be covered when transmitting in units of eNBs. For example, as shown in FIG. 13, ECGI # 7 to ECGI # 18 are compared to (12/15) * 100 = 80% of a total of 15 cells covered by eNB # 2, eNB # 3, and eNB # 4. Corresponding. Accordingly, if the threshold value is 80%, the MCE may determine the MBSFN transmission. If the threshold value is 90%, the MCE may determine the SC-PTM transmission.
상술한 설명에서, cell 관련 그룹/모음 정보가 GCS AS까지 전달되는 것으로 설명하였으나, 이와는 달리 BM-SC까지만 전달될 수도 있다. 이러한 경우 GCS AS가 동일 그룹에 속한 cell들 중 일부의 cell에 대해서만 MBMS 전송을 중지하는 요청을 BM-SC에게 하면 BM-SC는 이에 대해 실패 또는 거절을 알리는 응답 메시지를 GCS AS에게 전송할 수 있다. 이 때 실패 또는 거절의 이유를 알리는 cause 정보 (예, partial MBMS stop이 불가능 등)를 포함할 수도 있다. 또한, 상술한 바와 같이 MCE가 정보를 제공하는 대신, BM-SC 또는 GCS AS에 상기 정보가 configure 되어 있을 수도 있다. GCS AS가 동일 그룹/모음에 속하는 모든 cell들에 대해 MBMS 전송 중지를 요청 시, 상기 cell들에 대한 모든 ECGI 리스트를 포함하는 대신 상기 cell들에 대한 그룹핑 관련 정보 (예, index 또는 group ID)를 GCS AS에게 제공할 수도 있다. In the above description, the cell-related group / collection information has been described as being delivered to the GCS AS, in contrast, only the BM-SC may be delivered. In this case, when the GCS AS sends a request to the BM-SC to stop MBMS transmission for only some of the cells belonging to the same group, the BM-SC may transmit a response message indicating the failure or rejection to the GCS AS. At this time, it may include cause information (eg, partial MBMS stop is not possible) indicating a reason for failure or rejection. In addition, instead of providing information by the MCE as described above, the information may be configured in the BM-SC or the GCS AS. When the GCS AS requests to stop transmitting MBMS for all cells belonging to the same group / collection, instead of including all ECGI lists for the cells, grouping related information about the cells (eg, index or group ID) is obtained. It can also be provided to the GCS AS.
본 발명에서 GCS AS는 group communication 관련 및/또는 Public Safety 관련해서 서비스를 제공하는 다양한 Application Server 또는 function을 의미한다. 그 예로는 MCPTT AS, Public Safety AS, ProSe Function 등이 될 수 있다.In the present invention, the GCS AS refers to various application servers or functions that provide services in relation to group communication and / or public safety. Examples can be MCPTT AS, Public Safety AS, ProSe Function, and so on.
도 15는 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.15 is a diagram showing the configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
도 15를 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. The terminal device 100 according to the present invention with reference to FIG. 15 may include a transceiver 110, a processor 120, and a memory 130. The transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device. The terminal device 100 may be connected to an external device by wire and / or wirelessly. The processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device. In addition, the processor 120 may be configured to perform a terminal operation proposed in the present invention. The memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
도 15를 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. Referring to FIG. 15, the network node apparatus 200 according to the present invention may include a transceiver 210, a processor 220, and a memory 230. The transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device. The network node device 200 may be connected to an external device by wire and / or wirelessly. The processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device. In addition, the processor 220 may be configured to perform the network node operation proposed in the present invention. The memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다. In addition, the specific configuration of the terminal device 100 and the network device 200 as described above, may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. Embodiments of the present invention described above may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.For implementation in hardware, a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations. The software code may be stored in a memory unit and driven by a processor. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable any person skilled in the art to make and practice the invention. Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art will variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. I can understand that you can. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.Various embodiments of the present invention as described above have been described with reference to the 3GPP system, but may be applied to various mobile communication systems in the same manner.

Claims (12)

  1. 무선통신시스템에서 MCE(Multi-cell/Multicast Coordination Entity)의 MBMS (Multimedia Broadcast Multicast Services) 관련 신호 송수신 방법에 있어서,In the method of transmitting and receiving a signal related to MBMS (Multimedia Broadcast Multicast Services) of MCE (Multi-cell / Multicast Coordination Entity) in a wireless communication system,
    SAI (Service Area Identities) 및 제1 ECGI 리스트를 포함하는 세션 시작(Session Start) 메시지를 수신하는 단계;Receiving a Session Start message including a Service Area Identities (SAI) and a first ECGI list;
    상기 SAI를 사용하여 MBSFN 리스트 구성하는 단계; Constructing an MBSFN list using the SAI;
    상기 제1 ECGI 리스트에 기초해 리소스를 할당할 필요가 없는 MBSFN을 상기 MBSFN 리스트로부터 제거하는 단계; Removing from the MBSFN list an MBSFN that does not need to allocate resources based on the first ECGI list;
    상기 리소스를 할당할 필요가 없는 MBSFN이 제거된 MBSFN 리스트와 상기 제1 ECGI 리스트에 기초해 MBMS 베어러를 위한 리소스 할당하는 단계;Allocating a resource for an MBMS bearer based on the MBSFN list from which the MBSFN has not been allocated and the first ECGI list;
    상기 리소스가 할당을 통해 MBMS 전송이 수행될 제2 ECGI 리스트를 구성하는 단계; 및Constructing a second ECGI list to which MBMS transmission is to be performed by the resource allocation; And
    상기 제2 ECGI 리스트를 네트워크로 전송하는 단계;Transmitting the second ECGI list to a network;
    를 포함하며,Including;
    상기 MCE가 SC-PTM(Single Cell Point To Multiploint)이 가능하지 않은 경우 또는 SC-PTM이 가능하지만 MBSFN 전송 방식을 사용하기로 결정한 경우 중 어느 하나의 경우, 상기 제2 ECGI 리스트는 ECGI 그룹핑 정보를 포함하는, MBMS 관련 신호 송수신 방법.If the MCE is not capable of Single Cell Point To Multiploint (SC-PTM) or if SC-PTM is enabled but decides to use the MBSFN transmission scheme, the second ECGI list may contain ECGI grouping information. MBMS-related signal transmission and reception method comprising.
  2. 제1항에 있어서,The method of claim 1,
    상기 MCE는 상기 SC-PTM이 가능한 경우, 상기 제1 ECGI 리스트의 셀 개수와 상기 제2 ECGI 리스트의 셀 개수의 관계를 고려하여, MBSFN 전송 방식을 사용할지 여부를 결정하는, MBMS 관련 신호 송수신 방법.When the SC-PTM is available, the MCE determines whether to use the MBSFN transmission scheme in consideration of the relationship between the number of cells in the first ECGI list and the number of cells in the second ECGI list. .
  3. 제2항에 있어서,The method of claim 2,
    상기 MCE는 상기 제2 ECGI 리스트의 셀 개수에 대한 상기 제1 ECGI 리스트의 셀 개수가 미리 설정된 값보다 큰 경우, SC-PTM이 가능하지만 MBSFN 전송 방식을 사용하기로 결정하는, MBMS 관련 신호 송수신 방법.The MCE, if the number of cells of the first ECGI list for the number of cells of the second ECGI list is larger than a preset value, SC-PTM is possible, but determines to use the MBSFN transmission method, MBMS-related signal transmission and reception method .
  4. 제1항에 있어서,The method of claim 1,
    상기 ECGI 그룹핑 정보에서 지시된 셀들 중 일부의 셀에 대한 전송 중지 요청은 허용되지 않는, MBMS 관련 신호 송수신 방법.The request to stop transmission for some of the cells indicated in the ECGI grouping information is not allowed.
  5. 제1항에 있어서,The method of claim 1,
    상기 ECGI 그룹핑 정보에서 지시된 셀들 중 일부의 셀에 대해서는 MBMS에서 유니캐스트로의 전송 방식의 변경이 허용되지 않는, MBMS 관련 신호 송수신 방법.The change of the transmission scheme from MBMS to unicast is not allowed for some of the cells indicated in the ECGI grouping information.
  6. 제1항에 있어서,The method of claim 1,
    상기 제2 ECGI 리스트는 MME(Mobility Management Entity), MBMS 게이트웨이 및 BM-SC(Broadcast Multicast Service Center)를 통해 GCS AS (Group Communication Service Application Server)에게 전달되는, MBMS 관련 신호 송수신 방법.The second ECGI list is transmitted to a Group Communication Service Application Server (GCS AS) through a Mobility Management Entity (MME), an MBMS Gateway, and a Broadcast Multicast Service Center (BM-SC).
  7. 무선 통신 시스템에서 MBMS (Multimedia Broadcast Multicast Services) 관련 신호를 송수신하는 MCE(Multi-cell/Multicast Coordination Entity) 장치에 있어서,In the multi-cell / multicast coordination entity (MCE) device for transmitting and receiving MBMS (Multimedia Broadcast Multicast Services) related signals in a wireless communication system,
    송수신 장치; 및A transceiver; And
    프로세서를 포함하고, Includes a processor,
    상기 프로세서는, SAI (Service Area Identities) 및 제1 ECGI 리스트를 포함하는 세션 시작(Session Start) 메시지를 수신하고, 상기 SAI를 사용하여 MBSFN 리스트 구성하고, 상기 제1 ECGI 리스트에 기초해 리소스를 할당할 필요가 없는 MBSFN을 상기 MBSFN 리스트로부터 제거하며, 상기 리소스를 할당할 필요가 없는 MBSFN이 제거된 MBSFN 리스트와 상기 제1 ECGI 리스트에 기초해 MBMS 베어러를 위한 리소스 할당하고, 상기 리소스 할당을 통해 MBMS 전송이 수행될 제2 ECGI 리스트를 구성하고, 상기 제2 ECGI 리스트를 네트워크로 전송하며,The processor receives a Session Start message including a Service Area Identities (SAI) and a first ECGI list, constructs an MBSFN list using the SAI, and allocates resources based on the first ECGI list. Removes the MBSFN from the MBSFN list, which do not need to be allocated, allocates resources for the MBMS bearer based on the MBSFN list and the first ECGI list from which the MBSFN has not been allocated, and allocates the MBMS through the resource allocation. Construct a second ECGI list to be transmitted, transmit the second ECGI list to a network,
    상기 MCE가 SC-PTM(Single Cell Point To Multiploint)이 가능하지 않은 경우 또는 SC-PTM이 가능하지만 MBSFN 전송 방식을 사용하기로 결정한 경우 중 어느 하나의 경우, 상기 제2 ECGI 리스트는 ECGI 그룹핑 정보를 포함하는, MCE 장치.If the MCE is not capable of Single Cell Point To Multiploint (SC-PTM) or if SC-PTM is enabled but decides to use the MBSFN transmission scheme, the second ECGI list may contain ECGI grouping information. Included, MCE device.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 MCE는 상기 SC-PTM이 가능한 경우, 상기 제1 ECGI 리스트의 셀 개수와 상기 제2 ECGI 리스트의 셀 개수의 관계를 고려하여, MBSFN 전송 방식을 사용할지 여부를 결정하는, MCE 장치.The MCE apparatus determines whether to use the MBSFN transmission scheme in consideration of the relationship between the number of cells of the first ECGI list and the number of cells of the second ECGI list when the SC-PTM is available.
  9. 제8항에 있어서,The method of claim 8,
    상기 MCE는 상기 제2 ECGI 리스트의 셀 개수에 대한 상기 제1 ECGI 리스트의 셀 개수가 미리 설정된 값보다 큰 경우, SC-PTM이 가능하지만 MBSFN 전송 방식을 사용하기로 결정하는, MCE 장치.The MCE apparatus, if the number of cells of the first ECGI list for the number of cells of the second ECGI list is greater than a predetermined value, SC-PTM is possible, but determines to use the MBSFN transmission scheme.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 ECGI 그룹핑 정보에서 지시된 셀들 중 일부의 셀에 대한 전송 중지 요청은 허용되지 않는, MCE 장치.MCE device is not allowed to stop transmission for some of the cells indicated in the ECGI grouping information.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 ECGI 그룹핑 정보에서 지시된 셀들 중 일부의 셀에 대해서는 MBMS에서 유니캐스트로의 전송 방식의 변경이 허용되지 않는, MCE 장치.MCE apparatus is not allowed to change the transmission scheme from MBMS to unicast for some of the cells indicated in the ECGI grouping information.
  12. 제7항에 있어서,The method of claim 7, wherein
    상기 제2 ECGI 리스트는 MME(Mobility Management Entity), MBMS 게이트웨이 및 BM-SC(Broadcast Multicast Service Center)를 통해 GCS AS (Group Communication Service Application Server)에게 전달되는, MCE 장치.The second ECGI list is delivered to a Group Communication Service Application Server (GCS AS) through a Mobility Management Entity (MME), an MBMS Gateway, and a Broadcast Multicast Service Center (BM-SC).
PCT/KR2016/002156 2015-03-03 2016-03-03 Method for transmitting and receiving mbms related signal in wireless communication system, and device therefor WO2016140538A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562127755P 2015-03-03 2015-03-03
US62/127,755 2015-03-03

Publications (1)

Publication Number Publication Date
WO2016140538A1 true WO2016140538A1 (en) 2016-09-09

Family

ID=56848937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002156 WO2016140538A1 (en) 2015-03-03 2016-03-03 Method for transmitting and receiving mbms related signal in wireless communication system, and device therefor

Country Status (1)

Country Link
WO (1) WO2016140538A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537380A (en) * 2017-04-20 2019-12-03 Lg电子株式会社 The method and apparatus of wake-up signal is sent and received in a wireless communication system
CN113099390A (en) * 2020-01-09 2021-07-09 成都鼎桥通信技术有限公司 Method and system for non-independently deployed 5G system to bear MBMS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014099292A1 (en) * 2012-12-20 2014-06-26 Motorola Solutions, Inc. Method and apparatus for identifying a multimedia broadcast/multicast service (mbms) area in a wireless communication system
WO2014126424A1 (en) * 2013-02-14 2014-08-21 엘지전자 주식회사 Method for reporting mbms information in wireless communication system and device for supporting same
WO2014163382A1 (en) * 2013-04-02 2014-10-09 주식회사 팬택 Method for supporting continuity of mbms considering nct carrier wave and apparatus therefor
CN104270725A (en) * 2014-09-24 2015-01-07 中兴通讯股份有限公司 Indication information determination and processing method and device and request message processing method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014099292A1 (en) * 2012-12-20 2014-06-26 Motorola Solutions, Inc. Method and apparatus for identifying a multimedia broadcast/multicast service (mbms) area in a wireless communication system
WO2014126424A1 (en) * 2013-02-14 2014-08-21 엘지전자 주식회사 Method for reporting mbms information in wireless communication system and device for supporting same
WO2014163382A1 (en) * 2013-04-02 2014-10-09 주식회사 팬택 Method for supporting continuity of mbms considering nct carrier wave and apparatus therefor
CN104270725A (en) * 2014-09-24 2015-01-07 中兴通讯股份有限公司 Indication information determination and processing method and device and request message processing method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SA WG2: "New WID on Study on MBMS Enhancements", SP-140883, 3GPP TSG SA MEETING #66, 12 December 2014 (2014-12-12), Maui. Hawaii, U.S.A, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/tsg_sa/TSGS_66/Docs> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537380A (en) * 2017-04-20 2019-12-03 Lg电子株式会社 The method and apparatus of wake-up signal is sent and received in a wireless communication system
CN110537380B (en) * 2017-04-20 2023-05-23 Lg电子株式会社 Method and apparatus for transmitting and receiving wake-up signal in wireless communication system
CN113099390A (en) * 2020-01-09 2021-07-09 成都鼎桥通信技术有限公司 Method and system for non-independently deployed 5G system to bear MBMS
CN113099390B (en) * 2020-01-09 2023-06-30 成都鼎桥通信技术有限公司 Method and system for carrying MBMS by non-independently deployed 5G system

Similar Documents

Publication Publication Date Title
WO2016186414A1 (en) Method for providing broadcast service in wireless communication system and apparatus therefor
WO2016024773A1 (en) Method and device for selecting relay in wireless communication system
WO2017030348A1 (en) Method for transmitting and receiving v2x message in wireless communication system, and an apparatus for same
WO2018084635A1 (en) Method for moving from ngs to eps in wireless communication system and apparatus therefor
WO2016039579A1 (en) Method for establishing mcptt group call in wireless communication system and device therefor
WO2017126948A1 (en) Method for transmitting/receiving v2x message in local network in wireless communication system and apparatus for same
WO2017052335A1 (en) Method for performing device-to-device direct communication in wireless communication system and device therefor
WO2017026872A1 (en) Signal transmission and reception method by remote ue in a wireless communication system and device for same
WO2015174702A1 (en) Method and apparatus for signal transmission and reception of hss/mme in wireless communication system
WO2018008922A2 (en) Method for supporting nas signaling by base station in wireless communication system and apparatus therefor
WO2016126092A1 (en) Method for selecting plmn of terminal in wireless communication system and apparatus for same
WO2017086618A1 (en) Device-to-device direct communication method in wireless communication system and device therefor
WO2016111528A1 (en) Method for transmitting and receiving signal related to mcptt in wireless communication system, and device therefor
WO2016163635A1 (en) Method for selecting plmn of terminal in wireless communication system and apparatus therefor
WO2017043854A1 (en) Method for supporting device-to-device direct communication in wireless communication system, and apparatus therefor
WO2018169281A1 (en) Method for receiving report, network device, method for performing report, and base station
WO2017026772A1 (en) Method for selecting p-cscf and transmitting sip message in wireless communication system and device for same
WO2016111603A1 (en) Method for transmitting and receiving signals related to pdn connection recovery in wireless communication system, and device therefor
WO2018009025A1 (en) Method for transceiving signals related to pdn connection in wireless communication system, and device therefor
WO2016153327A2 (en) Method for receiving and transmitting tau-less psm related signal in wireless communication system, and apparatus therefor
WO2019059740A1 (en) Method for transmitting/receiving ims voice support-related signal by ng-ran in wireless communication system, and apparatus therefor
WO2016056815A1 (en) Method for transmitting/receiving signal related to nbifom in wireless communication system, and apparatus therefor
WO2016003199A1 (en) Method for performing d2d communication in wireless communication system and device therefor
WO2016163745A1 (en) Method for selecting relay and transmitting/receiving signal through relay in wireless communication system and method therefor
WO2017164686A1 (en) Method for performing operation related to v2x message transmission in wireless communication system, and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16759174

Country of ref document: EP

Kind code of ref document: A1