WO2016140482A1 - Dual band wireless power reception unit - Google Patents

Dual band wireless power reception unit Download PDF

Info

Publication number
WO2016140482A1
WO2016140482A1 PCT/KR2016/002001 KR2016002001W WO2016140482A1 WO 2016140482 A1 WO2016140482 A1 WO 2016140482A1 KR 2016002001 W KR2016002001 W KR 2016002001W WO 2016140482 A1 WO2016140482 A1 WO 2016140482A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
frequency
rectifier
capacitor
wireless power
Prior art date
Application number
PCT/KR2016/002001
Other languages
French (fr)
Korean (ko)
Inventor
황종태
박성민
진기웅
전상오
송익규
신현익
이준
Original Assignee
주식회사 맵스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160022705A external-priority patent/KR101837121B1/en
Application filed by 주식회사 맵스 filed Critical 주식회사 맵스
Priority to CN201680013975.5A priority Critical patent/CN107431384B/en
Priority to US15/554,845 priority patent/US10714975B2/en
Publication of WO2016140482A1 publication Critical patent/WO2016140482A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a technique for wirelessly transmitting and receiving power.
  • the wireless charging system has been implemented in two ways.
  • One of them is a tightly coupled method where the antenna of a wireless power transmitter (PTU) and the antenna of a wireless power receiver (PRU) must be well matched in position and close to each other.
  • This method has a low operating frequency and the antenna of the power transmitter and the antenna of the power receiver are matched relatively accurately at a short distance, so the efficiency is excellent and the control method is similar to the conventional resonant inverter method.
  • Has Standards adopting these technologies include the Qi method of the Wireless Power Consortium (WPC), and the Power Matters Alliance (PMA).
  • Qi and PMA methods are highly efficient and can be manufactured at a relatively low cost.
  • the charging efficiency is reduced even if the distance between the power transmitter and the power receiver is a little far away, which is inconvenient for general users to use.
  • A4WP The Alliance for Wireless Power
  • Qi and PMA methods transmit energy at frequencies of about 80 kHz to 200 kHz
  • the A4WP uses a high frequency of 6.78 MHz so that the antenna size can be small, and the distance between the antennas is increased by matching the resonance frequency of the resonator of the power receiver and the power transmitter. Wireless charging is possible even if you fall.
  • a dual band wireless power receiver capable of receiving energy from different resonators with one rectifier is proposed.
  • a wireless power receiver includes a first rectifier, a second resonator connected in parallel with the first resonator, a single rectifier having a node in which outputs of the first resonator and the second resonator are connected in parallel with each other; A second output having a first output, a second output and an input, the second output being connected in parallel with the second resonator, one terminal connected to the first output of the switch and the other terminal connected to the rectifier input And at least one capacitor, and a frequency detector for sensing an input frequency from the rectifier input and having an output coupled to the input of the switch.
  • the first resonator may be a high frequency resonator and the second resonator may be a low frequency resonator.
  • the first resonator may be a series resonator in which at least one inductor and at least one capacitor are connected in series.
  • the second resonator may be a series resonator in which at least one inductor and at least one capacitor are connected in series.
  • the switch is switched on so that the capacitor is connected to the rectifier input. If the frequency sensed by the frequency detector is high frequency, the switch can be switched off to disconnect the capacitor from the rectifier input.
  • a dual band wireless power receiver that wirelessly receives power by connecting two resonators having different resonant frequencies using one rectifier.
  • energy is transferred to one resonator, energy is transferred to another resonator, and energy is not smoothly transferred to the rectifier. Therefore, the conventional technology uses two rectifiers.
  • the present invention uses an additional switch to solve this problem. The solution is to receive energy from different resonators with one rectifier. It is possible to build a wireless power receiver that supports both high frequency charging such as A4WP and low frequency charging such as Qi and PMA.
  • 1 is a circuit diagram of a wireless power receiver having two resonators and two rectifiers to simultaneously accommodate the Qi and A4WP schemes;
  • FIG. 3 is a circuit diagram showing a series resonant circuit and a parallel capacitor
  • FIG. 4 is a circuit diagram of a wireless power receiver for receiving energy at a Qi frequency
  • FIG. 5 is a circuit diagram of a wireless power receiver for receiving energy at an A4WP frequency
  • FIG. 6 is a circuit diagram of a dual band wireless power receiver having a single rectifier according to an embodiment of the present invention
  • 9 and 10 are experimental results of receiving power at the Qi frequency (no parallel capacitor in the Qi resonator) and a circuit diagram of the wireless power receiver thereof;
  • 11 and 12 show an experimental result when a parallel capacitor is attached to a Qi resonator and a circuit diagram of the wireless power receiver
  • FIG. 13 and FIG. 14 show an experimental result when the parallel capacitor of the Qi resonator is connected to the ground direction when the Qi resonator is operated and a circuit diagram of the wireless power receiver according to the method proposed by the present invention.
  • 15 is a circuit diagram of a dual band wireless power receiver using a half-wave rectifier according to an embodiment of the present invention.
  • 1 is a circuit diagram of a wireless power receiver having two resonators and two rectifiers to simultaneously accommodate the Qi and A4WP schemes.
  • a general dual band wireless power receiver includes a resonator and a rectifier suitable for a high frequency, and a resonator and a rectifier suitable for a low frequency, respectively.
  • the high frequency method may use the A4WP method.
  • the high frequency resonator and the rectifier will be described based on the A4WP resonator 10-1 and the A4WP rectifier 20-1.
  • the low frequency method may use a Qi or PMA method.
  • the Qi and PMA methods have similar frequency bands and similar methods.
  • the low frequency resonator and the rectifier will be described based on the Qi resonator 10-2 and the Qi rectifier 20-2. However, this is for convenience of description, and if the Qi and A4WP schemes can be used at the same time, the PMA and A4WP schemes can be easily used simultaneously.
  • the A4WP resonator 10-1 includes an inductor L 1 100-1, a capacitor Cs 1 102-1, and Cp 1 104-1.
  • the Qi resonator 10-2 includes an inductor L2 100-2, a capacitor Cs2 102-2, and Cp2 104-2.
  • the values of L1 (100-1), Cs1 (102-1), Cp1 (104-1), L2 (100-2), Cs2 (102-2), and Cp2 (104-2) are stable circuits. Values assumed for implementation are not limited to this.
  • Each resonator 10-1, 10-2 is an input voltage of the A4WP rectifier 20-1 and the Qi rectifier 20-2, VACP 200-1, VACN 202-1, and VACP 2-200-2. And VACN2 202-2, respectively, and a capacitor CRECT 222 is connected to the rectifier output voltage VRECT 220 to convert the received AC power into DC.
  • the buck converter 30 converts the rectifier output voltage VRECT 220 into a sophisticated voltage required for the load, thereby supplying a stable voltage to the load. In FIG. 1, it is assumed that the buck converter 30 outputs 5V.
  • the wireless power receiver described above with reference to FIG. 1 processes the A4WP and Qi frequency inputs using separate rectifiers 20-1 and 20-2, and thus can be used in both methods.
  • the wireless power receiver of FIG. 1 requires both rectifiers 20-1 and 20-2, which adds cost and hinders the implementation of small wireless power receivers suitable for portable devices.
  • the resonator Prior to solving this problem, the resonator will be analyzed with reference to FIGS. 2 and 3.
  • FIG. 2 is a circuit diagram illustrating a series resonant circuit.
  • the resonators are formed as shown in FIG. 2. Since the inductor L 100 and the capacitor Cs 102 are connected in series, they become a series resonator. At this time, the resonance frequency of the inductor L 100 and the capacitor Cs 102 should be set to be approximately the same as or similar to the power transmission frequency of the power transmitter to enable high efficiency reception. Therefore, in FIG. 1, the resonant frequencies of the inductor L1 100-1 and the capacitor Cs1 102-1 are higher than the resonant frequencies of the inductor L2 100-2 and the capacitor Cs2 102-2.
  • the impedance Ztank is theoretically zero at the resonance frequency, so that the received current is maximized.
  • the impedance Ztank increases, so that the output current of the resonator decreases rapidly.
  • the impedance Ztank is in a very high state when the resonance frequency is not.
  • FIG. 3 is a circuit diagram showing a series resonant circuit and a parallel capacitor.
  • the capacitor Cp 104 is a capacitor connected in parallel with the resonator, and is a kind of energy circulation path made to circulate energy when energy of the resonator is not transferred to the rectifier. Without the capacitor Cp 104, when the rectifier of FIG. 1 does not operate, parasitic capacitors generated in the VACP 200-1 and the VACN 202-1 and the series resonant circuit react to generate high frequency noise. . This affects the stability of the operation of the power receiver and increases the EMI, thus adding a capacitor Cp 104 to suppress this phenomenon. It is common to set capacitor Cp 104 to a value that is moderately smaller than capacitor Cs 102. If the value is much smaller than the capacitor Cs 102, the noise canceling effect disappears.
  • capacitors Cs1 102-1 and Cp1 104-1 are in the pF region, and capacitors Cs2 102-2 and Cp2 104-2 are similar in size to nF. It is preferable to set.
  • Capacitor Cp1 104-1 of A4WP resonator 10-1 of FIG. 1 is a very small value and may be at a level similar to the parasitic capacitor seen at the input of A4WP rectifier 20-1. Without this, there can be no problem with operation. That is, in the high frequency resonator, the capacitor Cp1 104-1 may be removed.
  • FIG. 4 is a circuit diagram of a wireless power receiver for receiving energy at the Qi frequency.
  • the impedances of the L2 100-2 and the Cs2 102-2 of the Qi resonator 10-2 become very small, and conversely, the L1 (100-1). ),
  • the resonant frequency of the A4WP resonator 10-1 composed of Cs1 102-1 is very different from the resonant frequency of the Qi resonator 10-2. Therefore, the impedances of the L1 100-1 and the Cs1 102-1 of the A4WP resonator 10-1 become very large, and the A4WP resonator 10-1 is negligible from the Qi resonator 10-2 standpoint. .
  • Cp1 104-1 and Cp2 104-2 are connected to remove noise.
  • 4 is an example of a case where the power receiver receives energy at the Qi frequency.
  • the impedance by L1 (100-1) and Cs1 (102-1) of the A4WP resonator (10-1) is very large and the value of Cp1 (104-1) is very small.
  • the impedance is also so large that the current of the Qi resonator 10-2 is mostly supplied to the rectifier 20 to be used to supply power to the load. Therefore, there is no problem in this case.
  • FIG. 5 is a circuit diagram of a wireless power receiver for receiving energy at the A4WP frequency.
  • the problem occurs in FIG. 5.
  • the A4WP resonator 10-1 reacts to generate a current. If this current is transmitted to the rectifier 20, there is no problem, but since the impedance of Cp2 104-2 of the Qi resonator 10-2 is low, many currents circulate through the Cp2 104-2, so that the rectifier 20 The amount of current delivered to the device becomes smaller, which causes problems in powering the load.
  • the resonator impedances of L2 (100-2) and Cs2 (102-2) of the Qi resonator (10-2) become very large.
  • FIG. 6 is a circuit diagram of a dual band wireless power receiver having a single rectifier according to an embodiment of the present invention.
  • a dual band wireless power receiver includes an A4WP resonator 10-1, a Qi resonator 10-2, one rectifier 20, a buck converter 30, and a frequency detector 40. , Two capacitors Cp2 104-2 separated from the Qi resonator 10-2, and two switches M1, M2 (50-1, 50-2).
  • the A4WP resonator 10-1 and the Qi resonator 10-2 are connected in parallel.
  • the rectifier 20 is a single unit, and receives as a input a node in which the outputs of the A4WP resonator 10-1 and the Qi resonator 10-2 are connected in parallel to each other.
  • the switches M1 and M2 50-1 and 50-2 have a first output and a second output and an input, respectively.
  • the first output is connected to capacitor Cp2 104-2 and the second output is connected to ground.
  • Capacitor Cp2 104-2 is connected in parallel with Qi resonator 10-2, respectively, with one terminal connected in series with the first output of switches M1 and M2 50-1 and 50-2.
  • the frequency detector 40 senses the input frequency from the rectifier inputs VACP, VACN, and the output is connected to the inputs of the switches M1, M2 50-1, 50-2.
  • the inductor L1 100-1, the capacitor Cs1 102-1 may be connected in series, and the capacitor Cp1 104-1 may be connected in parallel.
  • an inductor L2 100-2 and a capacitor Cs2 102-2 are connected in series.
  • the frequency detector 40 detects the input frequency from the voltage variations of the input voltages VACP 200-1 and VACN 202-1 of the rectifier 20.
  • the capacitors Cp2 1047-2 are connected in series to the switches M1 and M2 (50-1 and 50-2), respectively, and are connected to the rectifier input voltages VACP and VACN. If the frequency detected by the frequency detector 40 is a low frequency in the Qi region, the output of the frequency detector 40 becomes high so that the switches M1 and M2 50-1 and 50-2 are switched on. Therefore, the capacitor Cp2 104-2 is connected to the rectifier input voltage VACP 200-1 and VACN 202-1, respectively.
  • the capacitor Cp2 104-2 which was connected in parallel, is varied in the form of being connected in the ground direction. At this time, even if connected in the ground direction, the capacitance can be increased to a large, for example, twice, so as to have the same electrical characteristics as when connected in parallel.
  • the switches M1 and M2 50-1 and 50-2 are switched off, so that the capacitor Cp2 104-2 is not visible. Accordingly, the capacitor Cp2 104-2 is separated from the rectifier input voltages VACP 200-1 and VACN 202-1, respectively.
  • the capacitor Cp2 104-2 When the circuit is configured as described above, when the A4WP resonator 10-1 operates, the capacitor Cp2 104-2 is not visible, and the L2 (100-2) and the Cs2 (102) of the Qi resonator 10-2 are not shown. Since the impedance of -2) becomes very large, the output current of the A4WP resonator 10-1 is mostly supplied to the rectifier 20 so that there is no problem in supplying power to the load. Therefore, since the resonators 10-1 and 10-2 having two different frequencies can be positioned in parallel while using one rectifier 20 in the proposed method, dual band wireless power transmission is possible. .
  • the rectifier 20 is composed of a diode, but an active rectifier using an active element may be used.
  • the rectifier 20 may be a full-wave current as shown in FIG. 6, but may be a half-wave rectifier.
  • An example of using a half-wave rectifier will be described later with reference to FIG. 15.
  • the buck converter 30 behind the rectifier 20 is an example of a power converter, and various types of power converters may be located. For example, a boost converter, a buck-boost converter, a low drop-out regulator (LDO), and the like are possible.
  • LDO low drop-out regulator
  • the resonator composed of L1 (1.7uH) and Cs1 (600pF) is an A4WP resonator
  • the resonator composed of L2 (12uH) and Cs2 (470nF) is a Qi resonator.
  • a 6.78 MHz frequency was used to power the A4WP resonator and 100 kHz frequency to the Qi resonator. Therefore, the resonant frequency of each resonator is also located near 6.78 MHz and 100 kHz.
  • the frequency is 6.78MHz and 1W is supplied to the load.
  • the parallel capacitor was removed and tested in the Qi resonator 10-2.
  • the current I QI flowing through the Qi resonator 10-2 is approximately 30 mA peak, which is a very small value. That is, since the signal is very high compared to the resonant frequency of the Qi resonator 10-2, the impedance of the series resonator increases, so that the current does not flow much and most of the current is supplied to the rectifier 20. Since the rectifier output voltage VRECT is about 10V and the load is 100 kW, 1W is supplied.
  • the waveform is as shown in FIG. 9. Since there is no parallel capacitor in the Qi resonator 10-2, it can be seen that the rectifier input voltage VAC generates high frequency noise due to resonance caused by a parasitic capacitor.
  • 11 and 12 show an experimental result when a parallel capacitor is attached to a Qi resonator and a circuit diagram of the wireless power receiver.
  • two 47 nF capacitors Cp2 104-2 are connected in parallel to the Qi resonator 10-2 as shown in FIG. 12.
  • the current flowing into the Qi resonator 10-2 is greatly increased to a 500 mA peak. That is, since most of the output current of the A4WP resonator 10-1 circulates through the Qi resonator 10-2, the power supplied to the rectifier 20 is weakened so that the rectifier output voltage VRECT is reduced to 4 V and the power supplied to the load is also reduced. 60% reduction.
  • 13 and 14 are circuit diagrams of an experimental result and a wireless power receiver when the parallel capacitor of the Qi resonator is connected in the ground direction when the Qi resonator operates in the method proposed by the present invention.
  • the rectifier input voltage VAC is very stable and high frequency noise disappeared compared to FIG. 7, and the current flowing into the A4WP resonator 10-1 is also 4 mA peak, which is very small, so that most of the current is supplied to the load.
  • the rectifier output voltage VRECT is 10V and normally 1W is supplied to the load.
  • the dual band frequency wireless power transmission is possible by using a resonator having two different frequencies and a common rectifier in the proposed method.
  • the proposed method seems to increase the burden due to the addition of switches M1 and M2, but it is easier to implement the switches M1 and M2 than the components of the rectifier when implementing the integrated circuit.
  • the proposed structure has many advantages.
  • 15 is a circuit diagram of a dual band wireless power receiver using a half-wave rectifier according to an embodiment of the present invention.
  • FIG. 6 a full wave rectifier has been described. However, as shown in FIG. 15, a half wave rectifier may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A dual band wireless power reception unit is disclosed. The wireless power reception unit according to one embodiment comprises: a first resonator; a second resonator connected to the first resonator in parallel; a single rectifier having, as an input, a node in which outputs of the first resonator and the second resonator are connected to each other in parallel; at least one switch having a first output, a second output, and an input, wherein the second output is connected to the ground; at least one capacitor connected to the second resonator in parallel, and of which one terminal is connected to the first output of the switch and the other terminal is connected to the rectifier input; and a frequency sensor sensing an input frequency from the rectifier input, and of which an output is connected to the input of the switch.

Description

듀얼 밴드 무선 전력 수신기 Dual band wireless power receiver
본 발명은 무선으로 전력을 송수신하는 기술에 관한 것이다.The present invention relates to a technique for wirelessly transmitting and receiving power.
최근 무선 충전 시스템은 크게 2가지 방법으로 구현되고 있다. 그 중 하나는 무선 전력 송신기(Power Transmitting Unit: PTU)의 안테나와 무선 전력 수신기(Power Receiving Unit: PRU)의 안테나가 위치적으로 잘 정합되어야 하고 거리가 가까워야 하는 밀착 결합(tightly coupled) 방식이다. 이 방식은 동작 주파수가 낮고 전력 송신기의 안테나와 전력 수신기의 안테나가 근거리에서 비교적 정확히 정합되어 있으므로 효율이 우수하고 제어방식이 기존의 공진 인버터(resonant inverter) 방식과 유사하여 제어방식이 확립되어 있다는 장점을 가진다. 이러한 기술을 채택하고 있는 표준으로는 무선충전 국제 표준화 단체(Wireless Power Consortium: WPC, 이하 WPC라 칭함)의 Qi 방식과 Power Matters Alliance(PMA, 이하 PMA라 칭함) 방식이 있다.Recently, the wireless charging system has been implemented in two ways. One of them is a tightly coupled method where the antenna of a wireless power transmitter (PTU) and the antenna of a wireless power receiver (PRU) must be well matched in position and close to each other. . This method has a low operating frequency and the antenna of the power transmitter and the antenna of the power receiver are matched relatively accurately at a short distance, so the efficiency is excellent and the control method is similar to the conventional resonant inverter method. Has Standards adopting these technologies include the Qi method of the Wireless Power Consortium (WPC), and the Power Matters Alliance (PMA).
Qi, PMA 방식은 효율이 우수하고 비교적 저렴하게 제작이 가능하다. 그러나 하나의 전력 송신기가 2개 이상의 전력 수신기에 동시에 에너지를 공급하기 어렵고, 전력 송신기와 전력 수신기 안테나가 위치적으로 정합되지 않으면 충전 효율이 급격히 감소하는 문제가 있다. 또한, 전력 송신기와 전력 수신기의 거리가 조금만 멀어져도 역시 충전 효율이 감소하므로 일반 사용자가 사용하기에 불편함이 따른다.Qi and PMA methods are highly efficient and can be manufactured at a relatively low cost. However, it is difficult for one power transmitter to supply energy to two or more power receivers at the same time, and if the power transmitter and the power receiver antenna are not matched in position, there is a problem that the charging efficiency is sharply reduced. In addition, the charging efficiency is reduced even if the distance between the power transmitter and the power receiver is a little far away, which is inconvenient for general users to use.
이러한 문제를 해결하기 위해 자기 공명(magnetic resonance) 기술을 이용하며 에너지 전송 주파수를 높여서 위의 표준에 비해 거리 및 위치상으로 자유로이 충전할 수 있는 표준이 제안되었다. 무선 충전 연합(Alliance for Wireless Power: A4WP, 이하 A4WP라 칭함)이 그 대표적인 표준이라 할 수 있다. Qi, PMA 방식이 80kHz ~ 200kHz 남짓의 주파수로 에너지를 전송하는 반면, A4WP는 6.78MHz의 고주파수를 사용하므로 안테나 크기가 작아도 되며, 전력 수신기와 전력 송신기의 공진기의 공진 주파수를 일치시킴으로써 안테나 간의 거리가 떨어져도 무선 충전이 가능하다. A4WP 방식을 사용하면, 수 cm에서 수 Watt를 부하에 공급하는 것이 어렵지 않고, 여러 개의 전력 수신기에 동시에 에너지를 전송하는 것도 가능하다. 이러한 방식을 느슨한 결합(loosely coupled) 방식이라고도 한다. 단, 이 방식은 구동 주파수가 높아서 제작이 어려우며 높은 주파수로 능동 소자를 구동하게 되어 효율이 밀착 결합(tightly coupled) 방식에 비해 낮다.In order to solve this problem, a standard has been proposed that uses magnetic resonance technology and increases the energy transmission frequency so that it can be freely charged at a distance and position compared to the above standard. The Alliance for Wireless Power (A4WP, hereinafter referred to as A4WP) is a representative standard. While the Qi and PMA methods transmit energy at frequencies of about 80 kHz to 200 kHz, the A4WP uses a high frequency of 6.78 MHz so that the antenna size can be small, and the distance between the antennas is increased by matching the resonance frequency of the resonator of the power receiver and the power transmitter. Wireless charging is possible even if you fall. Using the A4WP approach, it is not difficult to supply several Watts to several watts to the load, and it is also possible to transmit energy to multiple power receivers simultaneously. This method is also known as loosely coupled. However, this method is difficult to manufacture due to the high driving frequency and drives the active device at a high frequency, so the efficiency is lower than that of the tightly coupled method.
지금까지 소개한 Qi, PMA, A4WP 방식은 각각 장단점을 가지고 있어서, 3가지 방식이 혼재되어 사용되고 있다. 이러한 표준들에서는 서로 간의 주파수가 상이하므로 무선 충전 표준이 서로 호환이 안 된다는 단점이 있다. 따라서, 어떠한 표준을 따르는 전력 송신기 위에서도 무선 전력 수신이 되는 전력 수신기가 필요하다.The Qi, PMA, and A4WP methods introduced so far have advantages and disadvantages, and three methods are used in combination. These standards have a disadvantage in that wireless charging standards are not compatible with each other because of different frequencies. Therefore, there is a need for a power receiver with wireless power reception on a power transmitter that conforms to any standard.
일 실시 예에 따라, 하나의 정류기로 서로 다른 공진기로부터 에너지를 수신하는 것이 가능한 듀얼 밴드 무선 전력 수신기를 제안한다.According to one embodiment, a dual band wireless power receiver capable of receiving energy from different resonators with one rectifier is proposed.
일 실시 예에 따른 무선 전력 수신기는, 제1 공진기와, 제1 공진기와 병렬 연결되는 제2 공진기와, 제1 공진기 및 제2 공진기의 출력이 서로 병렬 연결된 노드를 입력으로 하는 단일의 정류기와, 제1 출력과 제2 출력 및 입력을 가지며 제2 출력은 접지에 연결되는 적어도 하나의 스위치와, 제2 공진기와 병렬 연결되며 일 단자가 스위치의 제1 출력과 연결되고 다른 단자는 정류기 입력과 연결되는 적어도 하나의 커패시터와, 정류기 입력으로부터 입력 주파수를 감지하고 출력이 스위치의 입력과 연결되는 주파수 감지기를 포함한다.According to an embodiment of the present disclosure, a wireless power receiver includes a first rectifier, a second resonator connected in parallel with the first resonator, a single rectifier having a node in which outputs of the first resonator and the second resonator are connected in parallel with each other; A second output having a first output, a second output and an input, the second output being connected in parallel with the second resonator, one terminal connected to the first output of the switch and the other terminal connected to the rectifier input And at least one capacitor, and a frequency detector for sensing an input frequency from the rectifier input and having an output coupled to the input of the switch.
제1 공진기는 고주파 공진기이고 제2 공진기는 저주파 공진기일 수 있다. 제1 공진기는 적어도 하나의 인덕터와 적어도 하나의 커패시터가 직렬로 연결되는 직렬 공진기일 수 있다. 제2 공진기는 적어도 하나의 인덕터와 적어도 하나의 커패시터가 직렬로 연결되는 직렬 공진기일 수 있다.The first resonator may be a high frequency resonator and the second resonator may be a low frequency resonator. The first resonator may be a series resonator in which at least one inductor and at least one capacitor are connected in series. The second resonator may be a series resonator in which at least one inductor and at least one capacitor are connected in series.
주파수 감지기가 감지한 주파수가 저주파수이면 스위치는 스위치 온되어 커패시터가 정류기 입력에 연결되고, 주파수 감지기가 감지한 주파수가 고주파수이면 스위치는 스위치 오프되어 커캐시터가 정류기 입력으로부터 분리될 수 있다.If the frequency sensed by the frequency detector is low frequency, the switch is switched on so that the capacitor is connected to the rectifier input. If the frequency sensed by the frequency detector is high frequency, the switch can be switched off to disconnect the capacitor from the rectifier input.
본 발명에 따르면, 하나의 정류기를 이용하여 공진 주파수가 다른 두 개의 공진기를 연결하여 무선으로 전력을 수신하는 듀얼 밴드 무선 전력 수신기를 제안한다. 하나의 공진기로 에너지가 전달될 때 다른 공진기로 에너지가 전달되어 정류기로 에너지가 원활하게 전달되지 않은 문제점이 있어서 기존의 기술에서는 2개의 정류기를 사용해야 하지만, 본 발명은 추가적인 스위치를 이용하여 이 문제를 해결하여 하나의 정류기로 서로 다른 공진기로부터 에너지를 수신하는 것이 가능하다. A4WP와 같은 고주파 충전 방식과 Qi나 PMA와 같은 저주파 충전 방식이 동시에 지원되는 무선 전력 수신기를 제작할 수 있다.According to the present invention, there is proposed a dual band wireless power receiver that wirelessly receives power by connecting two resonators having different resonant frequencies using one rectifier. When energy is transferred to one resonator, energy is transferred to another resonator, and energy is not smoothly transferred to the rectifier. Therefore, the conventional technology uses two rectifiers. However, the present invention uses an additional switch to solve this problem. The solution is to receive energy from different resonators with one rectifier. It is possible to build a wireless power receiver that supports both high frequency charging such as A4WP and low frequency charging such as Qi and PMA.
도 1은 Qi 방식 및 A4WP 방식을 동시에 수용하기 위해 2개의 공진기(resonator)와 2개의 정류기(rectifier)를 가지는 무선 전력 수신기의 회로도,1 is a circuit diagram of a wireless power receiver having two resonators and two rectifiers to simultaneously accommodate the Qi and A4WP schemes;
도 2는 직렬 공진 회로도2 is a series resonant circuit diagram
도 3은 직렬 공진 회로와 병렬 커패시터를 도시한 회로도,3 is a circuit diagram showing a series resonant circuit and a parallel capacitor;
도 4는 Qi 주파수로 에너지를 수신하는 무선 전력 수신기의 회로도,4 is a circuit diagram of a wireless power receiver for receiving energy at a Qi frequency;
도 5는 A4WP 주파수로 에너지를 수신하는 무선 전력 수신기의 회로도,5 is a circuit diagram of a wireless power receiver for receiving energy at an A4WP frequency;
도 6은 본 발명의 일 실시 예에 따른 단일의 정류기를 가지는 듀얼 밴드 무선 전력 수신기의 회로도,6 is a circuit diagram of a dual band wireless power receiver having a single rectifier according to an embodiment of the present invention;
도 7 및 도 8은 A4WP 주파수로 전력을 수신한 경우(Qi 공진기에 병렬 커패시터 없음)의 실험 결과와 그 무선 전력 수신기의 회로도,7 and 8 are experimental results of the case of receiving power at the A4WP frequency (no parallel capacitor in the Qi resonator) and a circuit diagram of the wireless power receiver thereof;
도 9 및 도 10은 Qi 주파수로 전력을 수신하는 경우(Qi 공진기에 병렬 커패시터 없음)의 실험 결과와 그 무선 전력 수신기의 회로도,9 and 10 are experimental results of receiving power at the Qi frequency (no parallel capacitor in the Qi resonator) and a circuit diagram of the wireless power receiver thereof;
도 11 및 도 12는 Qi 공진기에 병렬 커패시터를 부착하는 경우의 실험 결과와 그 무선 전력 수신기의 회로도,11 and 12 show an experimental result when a parallel capacitor is attached to a Qi resonator and a circuit diagram of the wireless power receiver;
도 13 및 도 14는 본 발명에서 제안하는 방법으로 Qi 공진기의 병렬 커패시터를 Qi 공진기가 동작할 때 접지 방향으로 연결한 경우의 실험 결과 및 그 무선 전력 수신기의 회로도,FIG. 13 and FIG. 14 show an experimental result when the parallel capacitor of the Qi resonator is connected to the ground direction when the Qi resonator is operated and a circuit diagram of the wireless power receiver according to the method proposed by the present invention.
도 15는 본 발명의 일 실시 예에 따른 반파 정류기를 이용한 듀얼 밴드 무선 전력 수신기의 회로도이다.15 is a circuit diagram of a dual band wireless power receiver using a half-wave rectifier according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시 예들을 상세히 설명한다. 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; In the following description of the present invention, if it is determined that detailed descriptions of related well-known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
도 1은 Qi 방식 및 A4WP 방식을 동시에 수용하기 위해 2개의 공진기(resonator)와 2개의 정류기(rectifier)를 가지는 무선 전력 수신기의 회로도이다.1 is a circuit diagram of a wireless power receiver having two resonators and two rectifiers to simultaneously accommodate the Qi and A4WP schemes.
도 1을 참조하면, 일반적인 듀얼 밴드 무선 전력 수신기는 고주파수에 적합한 공진기 및 정류기와, 저주파수에 적합한 공진기 및 정류기를 각각 포함한다. 고주파 방식은 A4WP 방식을 사용할 수 있다. 이하, 고주파 공진기 및 정류기는 A4WP 공진기(10-1) 및 A4WP 정류기(20-1)를 위주로 설명한다. 저주파 방식은 Qi 또는 PMA 방식을 사용할 수 있는데, Qi, PMA 방식은 주파수 대역이 유사하고 방식도 유사하다. 이하, 저주파 공진기 및 정류기는 Qi 공진기(10-2)와 Qi 정류기(20-2)를 위주로 설명한다. 그러나 이는 설명의 편의를 위한 것으로, Qi 및 A4WP 방식이 동시에 사용 가능하다면, 쉽게 PMA 및 A4WP 방식도 동시에 사용 가능하다.Referring to FIG. 1, a general dual band wireless power receiver includes a resonator and a rectifier suitable for a high frequency, and a resonator and a rectifier suitable for a low frequency, respectively. The high frequency method may use the A4WP method. Hereinafter, the high frequency resonator and the rectifier will be described based on the A4WP resonator 10-1 and the A4WP rectifier 20-1. The low frequency method may use a Qi or PMA method. The Qi and PMA methods have similar frequency bands and similar methods. Hereinafter, the low frequency resonator and the rectifier will be described based on the Qi resonator 10-2 and the Qi rectifier 20-2. However, this is for convenience of description, and if the Qi and A4WP schemes can be used at the same time, the PMA and A4WP schemes can be easily used simultaneously.
A4WP 공진기(10-1)는 인덕터 L1(100-1)과, 커패시터 Cs1(102-1), Cp1(104-1)를 포함한다. Qi 공진기(10-2)는 인덕터 L2(100-2)와, 커패시터 Cs2(102-2), Cp2(104-2)를 포함한다. 도 1에 있어서 L1(100-1), Cs1(102-1), Cp1(104-1), L2(100-2), Cs2(102-2), Cp2(104-2)의 값은 안정적인 회로 구현을 위해 가정한 값으로 이에 한정되는 것은 아니다.The A4WP resonator 10-1 includes an inductor L 1 100-1, a capacitor Cs 1 102-1, and Cp 1 104-1. The Qi resonator 10-2 includes an inductor L2 100-2, a capacitor Cs2 102-2, and Cp2 104-2. In Fig. 1, the values of L1 (100-1), Cs1 (102-1), Cp1 (104-1), L2 (100-2), Cs2 (102-2), and Cp2 (104-2) are stable circuits. Values assumed for implementation are not limited to this.
각 공진기(10-1,10-2)는 A4WP 정류기(20-1)와 Qi 정류기(20-2)의 입력전압인 VACP(200-1), VACN(202-1), VACP2(200-2), VACN2(202-2)에 각각 연결되고, 정류기 출력전압 VRECT(220)에는 커패시터 CRECT(222)가 연결되어 수신된 AC 전력을 DC로 바꾸고 있다. 벅 컨버터(buck converter)(30)는 정류기 출력전압 VRECT(220)를 부하에 필요한 정교한 전압으로 변환하여, 부하에 안정적인 전압을 공급한다. 도 1에서는 벅 컨버터(30)가 5V를 출력하고 있다고 가정한다.Each resonator 10-1, 10-2 is an input voltage of the A4WP rectifier 20-1 and the Qi rectifier 20-2, VACP 200-1, VACN 202-1, and VACP 2-200-2. And VACN2 202-2, respectively, and a capacitor CRECT 222 is connected to the rectifier output voltage VRECT 220 to convert the received AC power into DC. The buck converter 30 converts the rectifier output voltage VRECT 220 into a sophisticated voltage required for the load, thereby supplying a stable voltage to the load. In FIG. 1, it is assumed that the buck converter 30 outputs 5V.
도 1을 참조로 하여 전술한 무선 전력 수신기는 A4WP 및 Qi 방식의 주파수 입력을 별도의 정류기(20-1,20-2)를 이용하여 처리하므로 두 가지 방식 모두에서 사용이 가능하다. 그러나 도 1의 무선 전력 수신기는 2개의 정류기(20-1,20-2)가 모두 필요하므로, 추가적인 비용이 들고 휴대용 기기에 적합한 작은 무선 전력 수신기를 구현하는 데 걸림돌이 된다. 이 문제를 해결하기에 앞서, 도 2 및 도 3를 참조로 하여 공진기에 대해 분석하고자 한다.The wireless power receiver described above with reference to FIG. 1 processes the A4WP and Qi frequency inputs using separate rectifiers 20-1 and 20-2, and thus can be used in both methods. However, the wireless power receiver of FIG. 1 requires both rectifiers 20-1 and 20-2, which adds cost and hinders the implementation of small wireless power receivers suitable for portable devices. Prior to solving this problem, the resonator will be analyzed with reference to FIGS. 2 and 3.
도 2는 직렬 공진 회로를 도시한 회로도이다.2 is a circuit diagram illustrating a series resonant circuit.
도 1의 2개의 공진기(10-1,10-2)에서 Cp1(104-1), Cp2(104-2)를 제거하면, 도 2에 도시된 바와 같은 형태로 공진기가 형성된다. 인덕터 L(100)과 커패시터 Cs(102)가 직렬로 연결되어 있으므로 직렬 공진기가 된다. 이때 인덕터 L(100), 커패시터 Cs(102)에 의한 공진 주파수는 대략 전력 송신기의 전력 송신 주파수와 같거나 유사한 주파수가 되도록 설정해야 높은 효율의 수신이 가능하다. 따라서, 도 1에서 인덕터 L1(100-1), 커패시터 Cs1(102-1)의 공진 주파수는 인덕터 L2(100-2), 커패시터 Cs2(102-2)의 공진 주파수보다 높은 상태이다.When the Cp1 104-1 and the Cp2 104-2 are removed from the two resonators 10-1 and 10-2 of FIG. 1, the resonators are formed as shown in FIG. 2. Since the inductor L 100 and the capacitor Cs 102 are connected in series, they become a series resonator. At this time, the resonance frequency of the inductor L 100 and the capacitor Cs 102 should be set to be approximately the same as or similar to the power transmission frequency of the power transmitter to enable high efficiency reception. Therefore, in FIG. 1, the resonant frequencies of the inductor L1 100-1 and the capacitor Cs1 102-1 are higher than the resonant frequencies of the inductor L2 100-2 and the capacitor Cs2 102-2.
도 2의 직렬 공진기는 공진 주파수에서 임피던스 Ztank가 이론적으로는 0이 되어 수신되는 전류가 최대가 되게 된다. 이에 비해, 전력 송신기에서 공급되는 전력의 주파수가 공진 주파수보다 낮거나 높으면 임피던스 Ztank가 증가하여, 공진기의 출력 전류가 급격히 작아지게 된다. 즉, 공진 주파수가 아니면 임피던스 Ztank가 매우 높은 상태가 됨을 알 수 있다.In the series resonator of FIG. 2, the impedance Ztank is theoretically zero at the resonance frequency, so that the received current is maximized. In contrast, when the frequency of the power supplied from the power transmitter is lower or higher than the resonant frequency, the impedance Ztank increases, so that the output current of the resonator decreases rapidly. In other words, it can be seen that the impedance Ztank is in a very high state when the resonance frequency is not.
도 3은 직렬 공진 회로와 병렬 커패시터를 도시한 회로도이다.3 is a circuit diagram showing a series resonant circuit and a parallel capacitor.
도 3를 참조하면, 커패시터 Cp(104)는 공진기와 병렬로 연결되는 커패시터로, 공진기의 에너지가 정류기로 전달되지 않을 때 에너지를 순환할 수 있도록 만든 일종의 에너지 순환 통로이다. 커패시터 Cp(104)가 없으면, 도 1의 정류기가 동작하지 않을 때 VACP(200-1), VACN(202-1)에 발생하는 기생 커패시터와 직렬 공진 회로가 반응을 하여 고주파의 잡음이 발생하게 된다. 이것은 전력 수신기의 동작의 안정성에 영향을 주고 EMI를 증가시키게 되므로, 이러한 현상을 억제하기 위해 커패시터 Cp(104)를 추가한다. 커패시터 Cp(104)는 커패시터 Cs(102)보다는 적당히 작은 값으로 설정하는 것이 일반적이다. 커패시터 Cs(102)보다 그 값이 매우 작으면 잡음을 제거하는 효과가 사라지고, 너무 크게 되면 큰 전류가 커패시터 Cp(104)를 통해 공진기로 되돌아가므로 정류기로 공급되는 전류가 작아지게 되어 부하에 원활한 전력 공급이 되지 않게 된다. 따라서, 도 1에 도시되어 있는 것처럼 커패시터 Cs1(102-1), Cp1(104-1)은 pF 영역이고 커패시터 Cs2(102-2), Cp2(104-2)는 nF의 크기로 서로 비슷한 값으로 설정하는 것이 바람직하다.Referring to FIG. 3, the capacitor Cp 104 is a capacitor connected in parallel with the resonator, and is a kind of energy circulation path made to circulate energy when energy of the resonator is not transferred to the rectifier. Without the capacitor Cp 104, when the rectifier of FIG. 1 does not operate, parasitic capacitors generated in the VACP 200-1 and the VACN 202-1 and the series resonant circuit react to generate high frequency noise. . This affects the stability of the operation of the power receiver and increases the EMI, thus adding a capacitor Cp 104 to suppress this phenomenon. It is common to set capacitor Cp 104 to a value that is moderately smaller than capacitor Cs 102. If the value is much smaller than the capacitor Cs 102, the noise canceling effect disappears. If the value is too large, the large current is returned to the resonator through the capacitor Cp 104, so that the current supplied to the rectifier becomes small, and thus smooth to the load. The power supply will not work. Accordingly, as illustrated in FIG. 1, capacitors Cs1 102-1 and Cp1 104-1 are in the pF region, and capacitors Cs2 102-2 and Cp2 104-2 are similar in size to nF. It is preferable to set.
도 1의 A4WP 공진기(10-1)의 커패시터 Cp1(104-1)의 경우 매우 작은 값이고 A4WP 정류기(20-1) 입력에서 보이는 기생 커패시터와 비슷한 수준일 수도 있으므로, 커패시터 Cp1(104-1)이 없어도 동작에는 문제가 없을 수 있다. 즉, 고주파 공진기에서는 커패시터 Cp1(104-1)을 제거해도 무방할 수 있다.Capacitor Cp1 104-1 of A4WP resonator 10-1 of FIG. 1 is a very small value and may be at a level similar to the parasitic capacitor seen at the input of A4WP rectifier 20-1. Without this, there can be no problem with operation. That is, in the high frequency resonator, the capacitor Cp1 104-1 may be removed.
도 4는 Qi 주파수로 에너지를 수신하는 무선 전력 수신기의 회로도이다.4 is a circuit diagram of a wireless power receiver for receiving energy at the Qi frequency.
도 4를 참조하면, 무선 전력 수신기가 Qi 주파수로 동작할 때는 Qi 공진기(10-2)의 L2(100-2), Cs2(102-2)의 임피던스가 매우 작아지고, 반대로 L1(100-1), Cs1(102-1)으로 구성된 A4WP 공진기(10-1)의 공진 주파수가 Qi 공진기(10-2)의 공진 주파수와 매우 많이 차이가 난다. 따라서, A4WP 공진기(10-1)의 L1(100-1), Cs1(102-1)의 임피던스는 매우 커지게 되어, Qi 공진기(10-2) 입장에서는 A4WP 공진기(10-1)는 무시할 만하다.Referring to FIG. 4, when the wireless power receiver operates at the Qi frequency, the impedances of the L2 100-2 and the Cs2 102-2 of the Qi resonator 10-2 become very small, and conversely, the L1 (100-1). ), The resonant frequency of the A4WP resonator 10-1 composed of Cs1 102-1 is very different from the resonant frequency of the Qi resonator 10-2. Therefore, the impedances of the L1 100-1 and the Cs1 102-1 of the A4WP resonator 10-1 become very large, and the A4WP resonator 10-1 is negligible from the Qi resonator 10-2 standpoint. .
반대의 경우로 A4WP 주파수로 에너지가 전송되는 경우, A4WP 공진기(10-1)의 L1(100-1), Cs1(102-1)의 임피던스는 매우 작아지며, Qi 공진기(10-2)의 L2(100-2), Cs2(102-2)의 공진 주파수는 매우 낮으므로 Qi 공진기(10-2)의 임피던스는 매우 증가되어 Qi용 직렬 공진 회로는 없다고 보아도 무방한 상태가 된다. 따라서, 도 4에 도시된 바와 같이, 공진기 2개(10-1,10-2)를 병렬연결하고 하나의 정류기(20)만을 사용해도 동작에는 문제가 없으며, 각각의 공진기(10-1,10-2)가 수신되는 주파수에 따라 배타적으로 동작할 수 있음을 의미한다.On the contrary, when energy is transmitted at the A4WP frequency, the impedances of L1 (100-1) and Cs1 (102-1) of the A4WP resonator 10-1 become very small, and L2 of the Qi resonator 10-2. Since the resonant frequencies of (100-2) and Cs2 (102-2) are very low, the impedance of the Qi resonator 10-2 is greatly increased, and it can be considered that there is no Qi series resonant circuit. Therefore, as shown in FIG. 4, even if two resonators 10-1 and 10-2 are connected in parallel and only one rectifier 20 is used, there is no problem in operation, and each resonator 10-1 and 10 is not limited. -2) may operate exclusively according to the received frequency.
그러나 잡음을 제거하기 위한 Cp1(104-1), Cp2(104-2)를 연결한 경우 문제가 발생할 수 있다. 도 4는 전력 수신기가 Qi 주파수로 에너지를 수신하는 경우의 예이다. 전술한 바처럼, A4WP 공진기(10-1)의 L1(100-1), Cs1(102-1)에 의한 임피던스는 매우 커지고 Cp1(104-1) 값이 매우 작으므로 Cp1(104-1)의 임피던스도 매우 커서 Qi 공진기(10-2)의 전류는 대부분 정류기(20)로 공급되어 부하에 전력을 공급하는 데 사용되게 된다. 따라서 이 경우는 문제가 없다.However, a problem may occur when Cp1 104-1 and Cp2 104-2 are connected to remove noise. 4 is an example of a case where the power receiver receives energy at the Qi frequency. As described above, the impedance by L1 (100-1) and Cs1 (102-1) of the A4WP resonator (10-1) is very large and the value of Cp1 (104-1) is very small. The impedance is also so large that the current of the Qi resonator 10-2 is mostly supplied to the rectifier 20 to be used to supply power to the load. Therefore, there is no problem in this case.
도 5는 A4WP 주파수로 에너지를 수신하는 무선 전력 수신기의 회로도이다.5 is a circuit diagram of a wireless power receiver for receiving energy at the A4WP frequency.
도 4와 달리 도 5의 경우는 문제가 발생한다. A4WP의 주파수로 에너지가 수신되는 경우, A4WP 공진기(10-1)가 반응을 하여 전류를 발생시킨다. 이 전류가 정류기(20)로 전달되면 문제가 없으나, Qi 공진기(10-2)의 Cp2(104-2)의 임피던스가 낮기 때문에 많은 전류가 Cp2(104-2)를 통해 순환하므로 정류기(20)로 전달되는 전류량이 작아져서 부하에 전력을 공급하는 데 문제가 발생한다. 물론 이 경우도 Qi 공진기(10-2)의 L2(100-2), Cs2(102-2)에 의한 공진기 임피던스는 매우 큰 상태가 되는 것은 맞다.Unlike FIG. 4, the problem occurs in FIG. 5. When energy is received at a frequency of A4WP, the A4WP resonator 10-1 reacts to generate a current. If this current is transmitted to the rectifier 20, there is no problem, but since the impedance of Cp2 104-2 of the Qi resonator 10-2 is low, many currents circulate through the Cp2 104-2, so that the rectifier 20 The amount of current delivered to the device becomes smaller, which causes problems in powering the load. Of course, also in this case, it is true that the resonator impedances of L2 (100-2) and Cs2 (102-2) of the Qi resonator (10-2) become very large.
도 6은 본 발명의 일 실시 예에 따른 단일의 정류기를 가지는 듀얼 밴드 무선 전력 수신기의 회로도이다.6 is a circuit diagram of a dual band wireless power receiver having a single rectifier according to an embodiment of the present invention.
도 5를 참조로 하여 전술한 문제를 해결하기 위해, 도 6에 도시된 바와 같은 회로를 제안한다. 도 6을 참조하면, 듀얼 밴드 무선 전력 수신기는 A4WP 공진기(10-1), Qi 공진기(10-2), 1개의 정류기(20), 벅 컨버터(30), 주파수 감지기(frequency detector)(40), Qi 공진기(10-2)로부터 분리된 2개의 커패시터 Cp2(104-2), 2개의 스위치 M1,M2(50-1,50-2)를 포함한다.In order to solve the problem described above with reference to FIG. 5, a circuit as shown in FIG. 6 is proposed. Referring to FIG. 6, a dual band wireless power receiver includes an A4WP resonator 10-1, a Qi resonator 10-2, one rectifier 20, a buck converter 30, and a frequency detector 40. , Two capacitors Cp2 104-2 separated from the Qi resonator 10-2, and two switches M1, M2 (50-1, 50-2).
A4WP 공진기(10-1)와 Qi 공진기(10-2)는 병렬 연결된다. 정류기(20)는 단일 개로, A4WP 공진기(10-1) 및 Qi 공진기(10-2)의 출력이 서로 병렬 연결된 노드를 입력으로 받는다. 스위치 M1,M2(50-1,50-2)는 각각 제1 출력과 제2 출력 및 입력을 가진다. 제1 출력은 커패시터 Cp2(104-2)와 연결되고 제2 출력은 접지에 연결된다. 커패시터 Cp2(104-2)는 각각 Qi 공진기(10-2)와 병렬 연결되며, 일 단자가 스위치(M1,M2)(50-1,50-2)의 제1 출력과 직렬 연결되고 다른 단자는 정류기 입력(VACP, VACN)(200-1,202-1)과 연결된다. 주파수 감지기(40)는 정류기 입력 VACP, VACN으로부터 입력 주파수를 감지하고, 출력이 스위치 M1,M2(50-1,50-2)의 입력과 연결된다. A4WP 공진기(10-1)는 인덕터 L1(100-1), 커패시터 Cs1(102-1)이 직렬로 연결되고, 커패시터 Cp1(104-1)이 병렬 연결될 수 있다. Qi 공진기(10-2)는 인덕터 L2(100-2), 커패시터 Cs2(102-2)가 직렬로 연결된다.The A4WP resonator 10-1 and the Qi resonator 10-2 are connected in parallel. The rectifier 20 is a single unit, and receives as a input a node in which the outputs of the A4WP resonator 10-1 and the Qi resonator 10-2 are connected in parallel to each other. The switches M1 and M2 50-1 and 50-2 have a first output and a second output and an input, respectively. The first output is connected to capacitor Cp2 104-2 and the second output is connected to ground. Capacitor Cp2 104-2 is connected in parallel with Qi resonator 10-2, respectively, with one terminal connected in series with the first output of switches M1 and M2 50-1 and 50-2. It is connected to the rectifier inputs (VACP, VACN) 200-1, 202-1. The frequency detector 40 senses the input frequency from the rectifier inputs VACP, VACN, and the output is connected to the inputs of the switches M1, M2 50-1, 50-2. In the A4WP resonator 10-1, the inductor L1 100-1, the capacitor Cs1 102-1 may be connected in series, and the capacitor Cp1 104-1 may be connected in parallel. In the Qi resonator 10-2, an inductor L2 100-2 and a capacitor Cs2 102-2 are connected in series.
이하, 전술한 구성을 가진 무선 전력 수신기의 동작 프로세스에 대해 후술한다. 주파수 감지기(40)는 정류기(20)의 입력전압 VACP(200-1), VACN(202-1)의 전압 변동으로부터 입력 주파수를 감지한다. 스위치 M1,M2(50-1,50-2)에 직렬로 커패시터 Cp2(1047-2)가 각각 연결되어, 정류기 입력전압 VACP, VACN에 연결된다. 만약 주파수 감지기(40)가 감지한 주파수가 Qi 영역의 저주파수이면, 주파수 감지기(40)의 출력은 high가 되어 스위치 M1,M2(50-1,50-2)가 스위치 온(on) 되게 된다. 따라서, 커패시터 Cp2(104-2)가 정류기 입력전압 VACP(200-1), VACN(202-1)에 각각 연결된 형태가 된다. 즉, 병렬 연결되어 있던 커패시터 Cp2(104-2)를 접지 방향으로 연결되는 형태로 가변 되게 한 것이다. 이때, 접지 방향으로 연결된다 하더라도 커패시턴스를 크게, 예를 들어 2배로 키워서, 병렬로 연결된 경우와 전기적으로 동일한 특성을 가지도록 할 수 있다.Hereinafter, an operation process of the wireless power receiver having the above-described configuration will be described below. The frequency detector 40 detects the input frequency from the voltage variations of the input voltages VACP 200-1 and VACN 202-1 of the rectifier 20. The capacitors Cp2 1047-2 are connected in series to the switches M1 and M2 (50-1 and 50-2), respectively, and are connected to the rectifier input voltages VACP and VACN. If the frequency detected by the frequency detector 40 is a low frequency in the Qi region, the output of the frequency detector 40 becomes high so that the switches M1 and M2 50-1 and 50-2 are switched on. Therefore, the capacitor Cp2 104-2 is connected to the rectifier input voltage VACP 200-1 and VACN 202-1, respectively. That is, the capacitor Cp2 104-2, which was connected in parallel, is varied in the form of being connected in the ground direction. At this time, even if connected in the ground direction, the capacitance can be increased to a large, for example, twice, so as to have the same electrical characteristics as when connected in parallel.
반면에 주파수 감지기(40)가 감지한 주파수가 고주파수이면, 스위치 M1,M2(50-1,50-2)가 스위치 오프(off) 되어 커패시터 Cp2(104-2)가 보이지 않게 된다. 따라서, 커패시터 Cp2(104-2)가 정류기 입력전압 VACP(200-1), VACN(202-1)과 각각 분리된 형태가 된다.On the other hand, if the frequency detected by the frequency detector 40 is a high frequency, the switches M1 and M2 50-1 and 50-2 are switched off, so that the capacitor Cp2 104-2 is not visible. Accordingly, the capacitor Cp2 104-2 is separated from the rectifier input voltages VACP 200-1 and VACN 202-1, respectively.
전술한 바와 같이 회로를 구성하게 되면, A4WP 공진기(10-1)가 동작할 때는 커패시터 Cp2(104-2)가 보이지 않으며, Qi 공진기(10-2)의 L2(100-2), Cs2(102-2)의 임피던스는 매우 커지므로 A4WP 공진기(10-1)의 출력 전류는 대부분 정류기(20)로 공급되어 부하에 전력을 공급하는 데 문제가 없게 된다. 따라서, 제안하는 방식으로 하나의 정류기(20)를 사용하면서 2개의 서로 다른 주파수를 갖는 공진기(10-1,10-2)가 병렬로 위치할 수 있도록 할 수 있으므로 듀얼 밴드 무선 전력 전송이 가능해 진다.When the circuit is configured as described above, when the A4WP resonator 10-1 operates, the capacitor Cp2 104-2 is not visible, and the L2 (100-2) and the Cs2 (102) of the Qi resonator 10-2 are not shown. Since the impedance of -2) becomes very large, the output current of the A4WP resonator 10-1 is mostly supplied to the rectifier 20 so that there is no problem in supplying power to the load. Therefore, since the resonators 10-1 and 10-2 having two different frequencies can be positioned in parallel while using one rectifier 20 in the proposed method, dual band wireless power transmission is possible. .
도 6에서 정류기(20)는 다이오드로 구성되어 있으나, 능동 소자를 사용한 능동 정류기(active rectifier)를 사용하여도 무방하다. 정류기(20)는 도 6에 도시된 바와 같이 전파 전류기일 수 있으나, 반파 정류기일 수 있다. 반파 정류기를 사용하는 예에 대해서는 도 15를 참조로 하여 후술한다. 정류기(20) 뒷 단의 벅 컨버터(30)는 전력 컨버터(power converter)의 일례로 든 것으로, 다양한 종류의 전력 컨버터가 위치할 수 있다. 예를 들어, 부스트 컨버터(boost converter), 벅-부스트 컨버터(buck-boost converter), LDO(Low Drop-out Regulator) 등이 가능하다. 따라서, 정류기(20)의 형태와 뒷 단의 전력 변환기가 이 발명을 한정 짓는 것은 아니다.In FIG. 6, the rectifier 20 is composed of a diode, but an active rectifier using an active element may be used. The rectifier 20 may be a full-wave current as shown in FIG. 6, but may be a half-wave rectifier. An example of using a half-wave rectifier will be described later with reference to FIG. 15. The buck converter 30 behind the rectifier 20 is an example of a power converter, and various types of power converters may be located. For example, a boost converter, a buck-boost converter, a low drop-out regulator (LDO), and the like are possible. Thus, the shape of the rectifier 20 and the power converter in the back stage do not limit this invention.
이하, 도 6을 참조로 하여 제안된 방식을 검증하기 위해, 도 7 내지 도 14를 참조로 하여 실제의 회로로 검증을 하였다. 실험한 회로에서 L1(1.7uH), Cs1(600pF)으로 구성되는 공진기는 A4WP 공진기이고, L2(12uH), Cs2(470nF)로 구성되는 공진기는 Qi 공진기이다. A4WP 공진기로 전력을 공급할 때는 6.78MHz 주파수를 사용하였으며, Qi 공진기로 전력을 공급할 때는 100kHz 주파수를 사용하였다. 따라서 각각의 공진기의 공진 주파수도 6.78MHz 및 100kHz 부근에 위치하게 된다.Hereinafter, in order to verify the proposed scheme with reference to FIG. 6, an actual circuit was verified with reference to FIGS. 7 to 14. In the experiment circuit, the resonator composed of L1 (1.7uH) and Cs1 (600pF) is an A4WP resonator, and the resonator composed of L2 (12uH) and Cs2 (470nF) is a Qi resonator. A 6.78 MHz frequency was used to power the A4WP resonator and 100 kHz frequency to the Qi resonator. Therefore, the resonant frequency of each resonator is also located near 6.78 MHz and 100 kHz.
도 7 및 도 8은 A4WP 주파수로 전력을 수신한 경우(Qi 공진기에 병렬 커패시터 없음)의 실험 결과와 그 무선 전력 수신기의 회로도이다.7 and 8 show the results of experiments when power is received at the A4WP frequency (no parallel capacitor in the Qi resonator) and a circuit diagram of the wireless power receiver.
주파수는 6.78MHz이고 부하에 1W를 공급하도록 하였다. 이 실험에서는 Qi 공진기(10-2)에 병렬 커패시터를 제거하고 실험한 것이다. 이때 Qi 공진기(10-2)에 흐르는 전류(IQI)는 대략 30mA peak로 매우 작은 값이 된다. 즉, Qi 공진기(10-2)의 공진 주파수에 비해 매우 높은 신호가 들어오므로 직렬 공진기의 임피던스가 높아져서 전류가 많이 흐르지 않으며 대부분의 전류가 정류기(20)로 공급됨을 알 수 있다. 정류기 출력전압 VRECT는 10V 정도이고, 부하는 100Ω이므로, 1W가 공급되고 있다.The frequency is 6.78MHz and 1W is supplied to the load. In this experiment, the parallel capacitor was removed and tested in the Qi resonator 10-2. At this time, the current I QI flowing through the Qi resonator 10-2 is approximately 30 mA peak, which is a very small value. That is, since the signal is very high compared to the resonant frequency of the Qi resonator 10-2, the impedance of the series resonator increases, so that the current does not flow much and most of the current is supplied to the rectifier 20. Since the rectifier output voltage VRECT is about 10V and the load is 100 kW, 1W is supplied.
도 9 및 도 10은 Qi 주파수로 전력을 수신하는 경우(Qi 공진기에 병렬 커패시터 없음)의 실험 결과와 그 무선 전력 수신기의 회로도이다.9 and 10 show the results of experiments in the case of receiving power at the Qi frequency (no parallel capacitor in the Qi resonator) and a circuit diagram of the wireless power receiver.
도 10의 회로와 같이 Qi 주파수로 무선 전력을 수신했을 때 파형은 도 9에 도시된 바와 같다. Qi 공진기(10-2)에 병렬 커패시터가 없으므로 정류기 입력전압 VAC는 기생 커패시터에 의한 공진 현상으로 고주파 잡음이 발생하고 있음을 알 수 있다.When the wireless power is received at the Qi frequency as in the circuit of FIG. 10, the waveform is as shown in FIG. 9. Since there is no parallel capacitor in the Qi resonator 10-2, it can be seen that the rectifier input voltage VAC generates high frequency noise due to resonance caused by a parasitic capacitor.
도 11 및 도 12는 Qi 공진기에 병렬 커패시터를 부착하는 경우의 실험 결과와 그 무선 전력 수신기의 회로도이다.11 and 12 show an experimental result when a parallel capacitor is attached to a Qi resonator and a circuit diagram of the wireless power receiver.
Qi 주파수로 무선 전력을 수신할 때 잡음을 제거하기 위해, 도 12에 도시된 바와 같이 Qi 공진기(10-2)에 47nF 커패시터 Cp2 2개(104-2)를 병렬로 연결하였다. 이러한 회로에서 A4WP로 에너지를 전송한 경우, Qi 공진기(10-2)로 유입되는 전류는 500mA peak로 크게 증가되었다. 즉, A4WP 공진기(10-1)의 출력전류 대부분이 Qi 공진기(10-2)를 통해 순환하므로 정류기(20)에 공급되는 전력이 약해져서 정류기 출력 전압 VRECT는 4V로 감소하였고 부하에 공급되는 전력도 60% 감소하게 되었다.In order to remove noise when receiving wireless power at the Qi frequency, two 47 nF capacitors Cp2 104-2 are connected in parallel to the Qi resonator 10-2 as shown in FIG. 12. In this circuit, when energy is transferred to A4WP, the current flowing into the Qi resonator 10-2 is greatly increased to a 500 mA peak. That is, since most of the output current of the A4WP resonator 10-1 circulates through the Qi resonator 10-2, the power supplied to the rectifier 20 is weakened so that the rectifier output voltage VRECT is reduced to 4 V and the power supplied to the load is also reduced. 60% reduction.
도 13 및 도 14는 본 발명에서 제안하는 방법으로 Qi 공진기의 병렬 커패시터를 Qi 공진기가 동작할 때 접지 방향으로 연결한 경우의 실험 결과 및 그 무선 전력 수신기의 회로도이다.13 and 14 are circuit diagrams of an experimental result and a wireless power receiver when the parallel capacitor of the Qi resonator is connected in the ground direction when the Qi resonator operates in the method proposed by the present invention.
이 경우 정류기 입력전압 VAC이 도 7과 비교했을 때 매우 안정적이며 고주파 잡음이 사라졌으며 A4WP 공진기(10-1)로 유입되는 전류도 4mA peak로 매우 작아서 대부분의 전류가 부하로 공급되게 되고 실험 결과에서도 정류기 출력전압 VRECT가 10V가 되었으며 부하에 정상적으로 1W를 공급하고 있다.In this case, the rectifier input voltage VAC is very stable and high frequency noise disappeared compared to FIG. 7, and the current flowing into the A4WP resonator 10-1 is also 4 mA peak, which is very small, so that most of the current is supplied to the load. The rectifier output voltage VRECT is 10V and normally 1W is supplied to the load.
이상에서 제안된 방식으로 2개의 서로 다른 주파수를 갖는 공진기와 공통의 정류기를 이용하여 듀얼 밴드 주파수 무선 전력 전송이 가능함을 알 수 있다. 제안된 방식은 스위치 M1, M2가 추가되어 부담이 증가하는 것으로 보이지만, 집적회로로 구현할 때 정류기를 구성하는 소자에 비해 스위치 M1, M2를 구현하는 것이 용이하므로 가격적인 면이나 회로 구성의 난이도를 보았을 때 제안하는 구조가 많은 장점을 가진다고 할 수 있다.It can be seen that the dual band frequency wireless power transmission is possible by using a resonator having two different frequencies and a common rectifier in the proposed method. The proposed method seems to increase the burden due to the addition of switches M1 and M2, but it is easier to implement the switches M1 and M2 than the components of the rectifier when implementing the integrated circuit. The proposed structure has many advantages.
도 15는 본 발명의 일 실시 예에 따른 반파 정류기를 이용한 듀얼 밴드 무선 전력 수신기의 회로도이다.15 is a circuit diagram of a dual band wireless power receiver using a half-wave rectifier according to an embodiment of the present invention.
도 6에서는 전파 정류기를 이용하여 설명하였으나, 도 15에 도시된 바와 같이 반파 정류기를 이용할 수 있다.In FIG. 6, a full wave rectifier has been described. However, as shown in FIG. 15, a half wave rectifier may be used.
도 15를 참조하면, 도 6의 각 공진기(10-1,10-2)와 병렬 연결되는 커패시터 Cp1(104-1), Cp2(104-2)의 수와, 스위치 M1(50)의 수 및 정류기(20)의 다이오드 수가 변경된 외에는 도 6의 회로 구조와 그 원리가 동일하므로, 상세한 설명은 생략한다.Referring to FIG. 15, the number of capacitors Cp1 104-1 and Cp2 104-2 connected in parallel with the resonators 10-1, 10-2 of FIG. 6, the number of switches M1 50, and Since the circuit structure of FIG. 6 is the same as that of the diode of the rectifier 20 is changed, detailed description thereof will be omitted.
이제까지 본 발명에 대하여 그 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been described with reference to the embodiments. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (5)

  1. 제1 공진기;A first resonator;
    상기 제1 공진기와 병렬 연결되는 제2 공진기;A second resonator connected in parallel with the first resonator;
    상기 제1 공진기 및 제2 공진기의 출력이 서로 병렬 연결된 노드를 입력으로 하는 단일의 정류기;A single rectifier having an input of a node whose outputs of the first and second resonators are connected in parallel with each other;
    제1 출력과 제2 출력 및 입력을 가지며, 제2 출력은 접지에 연결되는 적어도 하나의 스위치;At least one switch having a first output and a second output and an input, the second output being connected to ground;
    상기 제2 공진기와 병렬 연결되며, 일 단자가 상기 스위치의 제1 출력과 연결되고 다른 단자는 정류기 입력과 연결되는 적어도 하나의 커패시터; 및At least one capacitor connected in parallel with the second resonator, one terminal connected to a first output of the switch and the other terminal connected to a rectifier input; And
    정류기 입력으로부터 입력 주파수를 감지하고, 출력이 상기 스위치의 입력과 연결되는 주파수 감지기;A frequency detector for sensing an input frequency from a rectifier input and having an output coupled to the input of the switch;
    를 포함하는 것을 특징으로 하는 무선 전력 수신기.Wireless power receiver comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1 공진기는 고주파 공진기이고 상기 제2 공진기는 저주파 공진기인 것을 특징으로 하는 무선 전력 수신기.And wherein the first resonator is a high frequency resonator and the second resonator is a low frequency resonator.
  3. 제 1 항에 있어서, 상기 제1 공진기는The method of claim 1, wherein the first resonator
    적어도 하나의 인덕터와 적어도 하나의 커패시터가 직렬로 연결되는 직렬 공진기인 것을 특징으로 하는 무선 전력 수신기.And a series resonator in which at least one inductor and at least one capacitor are connected in series.
  4. 제 1 항에 있어서, 상기 제2 공진기는The method of claim 1, wherein the second resonator
    적어도 하나의 인덕터와 적어도 하나의 커패시터가 직렬로 연결되는 직렬 공진기인 것을 특징으로 하는 무선 전력 수신기.And a series resonator in which at least one inductor and at least one capacitor are connected in series.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 주파수 감지기가 감지한 주파수가 저주파수이면 상기 스위치는 스위치 온되어 상기 커패시터가 정류기 입력에 연결되고,If the frequency detected by the frequency detector is a low frequency, the switch is switched on so that the capacitor is connected to the rectifier input,
    상기 주파수 감지기가 감지한 주파수가 고주파수이면 상기 스위치는 스위치 오프되어 상기 커캐시터가 정류기 입력과 분리되는 것을 특징으로 하는 무선 전력 수신기.And the switch is switched off when the frequency detected by the frequency detector is a high frequency so that the capacitor is separated from the rectifier input.
PCT/KR2016/002001 2015-03-05 2016-02-29 Dual band wireless power reception unit WO2016140482A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680013975.5A CN107431384B (en) 2015-03-05 2016-02-29 Dual-band wireless power receiving unit
US15/554,845 US10714975B2 (en) 2015-03-05 2016-02-29 Dual band wireless power reception unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0031104 2015-03-05
KR20150031104 2015-03-05
KR1020160022705A KR101837121B1 (en) 2015-03-05 2016-02-25 Dual band Wireless Power Receiving Unit
KR10-2016-0022705 2016-02-25

Publications (1)

Publication Number Publication Date
WO2016140482A1 true WO2016140482A1 (en) 2016-09-09

Family

ID=56848354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002001 WO2016140482A1 (en) 2015-03-05 2016-02-29 Dual band wireless power reception unit

Country Status (1)

Country Link
WO (1) WO2016140482A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090011509A (en) * 2007-07-26 2009-02-02 한국전기연구원 Apparatus of high efficiency wureless power supply using dual frequency bands
US20120306282A1 (en) * 2011-05-31 2012-12-06 Apple Inc. Combining power from multiple resonance magnetic receivers in resonance magnetic power system
US20130077360A1 (en) * 2011-09-26 2013-03-28 Qualcomm Incorporated Systems, methods, and apparatus for rectifier filtering for input waveform shaping
KR20140131428A (en) * 2013-05-02 2014-11-13 한국전자통신연구원 Wireless charge apparatus and wirelss charge method
US20140368052A1 (en) * 2012-01-06 2014-12-18 Access Business Group International Llc Wireless power receiver system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090011509A (en) * 2007-07-26 2009-02-02 한국전기연구원 Apparatus of high efficiency wureless power supply using dual frequency bands
US20120306282A1 (en) * 2011-05-31 2012-12-06 Apple Inc. Combining power from multiple resonance magnetic receivers in resonance magnetic power system
US20130077360A1 (en) * 2011-09-26 2013-03-28 Qualcomm Incorporated Systems, methods, and apparatus for rectifier filtering for input waveform shaping
US20140368052A1 (en) * 2012-01-06 2014-12-18 Access Business Group International Llc Wireless power receiver system
KR20140131428A (en) * 2013-05-02 2014-11-13 한국전자통신연구원 Wireless charge apparatus and wirelss charge method

Similar Documents

Publication Publication Date Title
KR101837121B1 (en) Dual band Wireless Power Receiving Unit
US9904306B2 (en) Voltage converter, wireless power reception device and wireless power transmission system including the same
WO2016133329A1 (en) Wireless power transmission apparatus and wireless power transmission method
US10075018B2 (en) Wireless power receiver
US9083180B2 (en) Combination GFCI/AFCI receptacle with class 2 power units
EP2389718B1 (en) Adaptive power control for wireless charging
CN106357011B (en) Radio energy transmitter
WO2013151259A1 (en) Device and system for wireless power transmission using transmission coil array
WO2013073759A1 (en) Method and apparatus for data communication in wireless power transmission
US20150115729A1 (en) Wireless power transmission apparatus and wireless power transfer system
CN108028121A (en) Wireless power transfer antenna with separation shielding part
US20190013687A1 (en) Smart priority detection for wired and wireless charging
WO2016093478A1 (en) Wireless power transmission apparatus
KR20140032631A (en) Method and apparatus for communication and power control in magnetic resonant wireless power transfer system
US10790691B2 (en) In system reconfigurable rectifier/power converters for wired and wireless charging
AU2015362164B2 (en) Wireless power receiver
KR20150032366A (en) Resonator device with improved isoalation for stable wireless power transfer
US10608471B2 (en) Multimode wireless power receiver circuit
WO2016114629A1 (en) Wireless power transmission device
KR102608558B1 (en) Power relay device and system
WO2023138322A1 (en) Transmitting end for wireless charging, charging base, and system
WO2016153208A1 (en) Wireless power receiver
KR20180111731A (en) Wireless Power Transmission Apparatus of Improving User's Convenience for Mobile Device Usage
WO2016140482A1 (en) Dual band wireless power reception unit
WO2016064254A1 (en) Wireless power transmission device and wireless power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15554845

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16759118

Country of ref document: EP

Kind code of ref document: A1