WO2016140398A1 - 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기 - Google Patents

추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기 Download PDF

Info

Publication number
WO2016140398A1
WO2016140398A1 PCT/KR2015/004963 KR2015004963W WO2016140398A1 WO 2016140398 A1 WO2016140398 A1 WO 2016140398A1 KR 2015004963 W KR2015004963 W KR 2015004963W WO 2016140398 A1 WO2016140398 A1 WO 2016140398A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
vortex
vibration
noise
flow
Prior art date
Application number
PCT/KR2015/004963
Other languages
English (en)
French (fr)
Inventor
설한신
김기섭
안종우
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Priority to EP15884064.5A priority Critical patent/EP3266698B1/en
Priority to CN201580000741.2A priority patent/CN106163916B/zh
Priority to SG11201609079RA priority patent/SG11201609079RA/en
Publication of WO2016140398A1 publication Critical patent/WO2016140398A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/18Propellers with means for diminishing cavitation, e.g. supercavitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Definitions

  • the present invention relates to an apparatus and a method for reducing noise and vibration of a propeller installed on a ship, and more particularly, to control cavitation generated on the wing surface of a ship propeller by controlling a flow flowing into the propeller.
  • Asymmetric reflux generating vortex generator for reducing propeller noise and vibration configured to reduce the noise and vibration of the propeller by decreasing.
  • the ship is advanced through a propeller connected to the rotary shaft of the engine installed on the hull to generate a propulsion force by rotating with the driving force of the engine, such a propeller, the shape of the propeller blades according to the respective operating conditions and Various sizes are designed.
  • the thruster generates thrust and torque by the flow passing through the thruster blades, wherein the torque is overcome by the driving force of the engine, and the ship is advanced using the generated thrust.
  • the stern adjuncts for improving the speed of the ship and improving the flow of the stern shown in Korean Patent No. 10-1293006 are predetermined lengths which are symmetrically downwardly spaced apart in the transverse direction on the front upper stern surface of the propeller. It consists of a fixed length of the flow control blade is fixed to the front end of the support shaft and the support shaft is installed in the transverse direction so as to face in parallel to the upper side of the propeller, thereby reducing the resistance through improving the flow of water flow generated in the stern And at the same time, it relates to a stern adduct configured to improve propulsion by minimizing the cavitation of the propeller.
  • the wing-type flow improvement device having the function of stagnation reduction and forward force generation shown in Patent No. 10-1066213 is attached to a relatively uniform flow region in front of the stern propeller to use the lift force of the wing as part of thrust and It has the effect of improving propeller flow by accelerating the flow between the device and the hull surface to reduce the delamination point movement and the volume of the stern slow flow field, thereby improving the propeller efficiency by increasing the flow velocity of the flow into the propeller,
  • the present invention relates to a flow improving device configured to generate additional thrust and to save fuel of a ship.
  • the asymmetrical current fixing vanes presented in the above-mentioned Patent No. 10-0416720 introduce the concept of an asymmetric preswirl stator to change the velocity in the tangential direction of the flow flowing into the propeller.
  • the present invention relates to a flow improving device which improves propeller efficiency by generating a pre-swirl effect.
  • conventional techniques for reducing fluctuation pressures and vibrations caused by propellers generally include attaching wing-shaped adducts or flow control fins to the hull to control the flow into the propeller. It is configured to reduce the cavitation generated by the propeller wing surface, thereby reducing the cavitation noise, which is the main cause of the ship propeller noise, but these devices allow the wing-shaped structure to have an angle of attack with the incoming flow to control the flow entering the propeller. Therefore, the flow rate and flow direction due to the fluid force to control the large structure had the disadvantage that the effect was seen.
  • the wing-shaped adducts and flow control pins are not intended to reduce propeller noise and vibration, but change the tangential direction during the flow of propeller inflow to generate a pre-swirl effect.
  • the present invention suggests a method of inducing an improvement in propeller efficiency, but these devices improve the propeller efficiency while increasing the angle of attack of the wing surface, resulting in excessive cavitation on the propeller side. There was a disadvantage of being adversely affected.
  • the wing-shaped structure is attached to the hull surface in front of the propeller to control the flow rate and flow direction by the fluid force by having a wing angle with the inlet flow to control the flow flowing into the propeller
  • the structure must be effective, and also, by controlling the flow flowing into the propeller by changing the speed in the tangential direction, there is an effect of improving the propeller efficiency by the current effect but increasing the cavitation.
  • it is possible to control the flow rate even with a small structure.
  • Vortex creates a change in velocity in the axial direction rather than in the tangential direction By reducing the angle of attack that flows into the wing surface, it makes the overall flow faster, but when the direction of rotation of the propeller is clockwise when viewed from the stern side to the bow side, one quadrant side where the cavitation occurs especially It is desirable to provide a new configuration of vortex generators that is configured to minimize the generation of cavitation noise by creating an asymmetrical wake distribution that makes the flow of particles particularly fast. It is not provided.
  • the first quadrant is divided into four equal parts by 90 degrees with respect to the center of the propeller shaft, the plane when the propeller side is viewed from the rear of the ship, and the upper right area is made into one quadrant, and the remaining area is counterclockwise. It is defined as 2, 3, and 4 quadrants in turn, and the rotation direction of the propeller is assumed to be clockwise.
  • the vortex generator is configured to be attached to the left and right in reverse with respect to the case where the propeller rotates in the clockwise direction.
  • an object of the present invention is to attach the hull surface in front of the propeller to control the flow into the propeller and the wing-shaped structure is combined with the inflow flow. It is configured to control the flow velocity and flow direction by the fluid force by having the angle of attack, so that it is a large structure to have the disadvantage that the effect can be seen in the prior art wing-shaped adducts or flow control fins and the front of the propeller
  • the effect of the propeller efficiency is improved by the pre-swirl effect, while the side effect of the increase of the propeller noise and vibration is increased by the increase of cavitation.
  • hypertrophy One quadrant of the propeller plane where cavitation occurs most when the propeller is rotated clockwise when the propeller is viewed from the stern side to the bow side by reducing the angle of attack flowing into the wing surface by changing the speed in the axial direction caused by the vortex vortex.
  • the aim is to provide an asymmetric return-generating vortex generator for reducing propeller noise and vibration that is configured to minimize cavitation noise generation by creating an asymmetrical wake distribution that makes the side flow particularly fast.
  • another object of the present invention is to induce a speed change in the axial direction due to asymmetrical vortex generation by a vortex generator attached asymmetrically to the left and right sides of the hull and to the quadrant of the propeller surface where cavitation occurs most frequently.
  • a vortex generator attached asymmetrically to the left and right sides of the hull and to the quadrant of the propeller surface where cavitation occurs most frequently.
  • the wing-shaped structure in order to control the flow flowing into the propeller attached to the hull surface in front of the propeller, has a angle of attack with the inflow flow to flow velocity by the fluid force And a wing-shaped adjunct or flow control fin of the prior art, which was configured to control the flow direction and had a disadvantage in that it had to be a large structure, and was attached to the hull surface in front of the propeller.
  • the first vortex generating plate when the propeller rotates in the clockwise direction, is formed in the form of a metal plate and is attached to the starboard of the ship in front of the propeller (the port when the propeller rotates in the counterclockwise direction).
  • the inflow rate of the flow flowing into the wing surface of the propeller may be further increased from the upper right side of the propeller (the upper left side when the propeller rotates counterclockwise) corresponding to the portion where the cavitation occurs most.
  • the vortex generator is formed in the form of a metal plate of the same shape as the first vortex generating plate, the port of the vessel in front of the propeller forward opposite the first vortex generating plate (when the propeller rotates in a counterclockwise direction) Is configured to further include a second vortex generating plate attached to the starboard side, wherein the first vortex generating plate and the second vortex generating plate are attached to the same position on the left and right sides of the vessel at different angles.
  • an asymmetry that increases the inflow velocity of the flow flowing into the wing surface of the propeller faster from the upper right side of the propeller (the upper left side when the propeller rotates counterclockwise) corresponding to the portion where the cavitation occurs most frequently.
  • the cavitation is most It is characterized in that it is configured to reduce the occurrence of the cavitation in the upper right of the thruster that occurs a lot to reduce the noise and vibration caused by the thruster.
  • the vortex generator is attached to the starboard (side port when the propeller rotates counterclockwise) at the same height as the first vortex generator at a position closer to the propeller side than the first vortex generator.
  • a third vortex generating plate By further comprising a third vortex generating plate, the inflow of the flow flowing into the wing surface of the propeller from the upper right side of the propeller (the left when the propeller rotates counterclockwise) the cavitation occurs most It is characterized in that it is configured to further reduce the occurrence of the cavitation by increasing the speed even faster to further reduce the angle of attack of the flow flowing into each blade of the propeller.
  • the first vortex generating plate and the second vortex generating plate may be referred to as the total length LBP of the vessel (lengths AP to FP) from the head FP of the vessel to the stern portion AP.
  • the stern portion (AP) is characterized in that it is configured to be attached to each corresponding position between 12% to 18% of the total length (LBP).
  • the third vortex generating plate characterized in that configured to be attached to a position corresponding to between 8% to 15% of the full length (LBP) from the stern (AP).
  • first vortex generating plate to the third vortex generating plate is characterized in that it is configured to be installed in the range from the bottom surface of the vessel to the shaft height of the propeller.
  • first vortex generating plate to the third vortex generating plate is characterized in that each formed in a pentagonal shape.
  • the first vortex generating plate to the third vortex generating plate characterized in that configured to be installed at an angle such that the flow angle flowing into the vortex generating plate and the angle of attack formed by the vortex generating plate is between 5 to 15 degrees. do.
  • the vortex generator may include the first vortex generating plate and the third vortex generating plate and the vortex generating plate installed on the starboard of the vessel when the propeller rotates in the clockwise direction (the port port when the propeller rotates in the counterclockwise direction). It is characterized in that the difference in the mounting angle of the second vortex generating plate installed in the port port (starboard when the propeller rotates in the counterclockwise direction) is installed between 0 ⁇ 10 degrees.
  • the vortex generator, the first vortex generating plate and the third vortex generating plate and the installed on the starboard of the ship (when the propeller rotates in the counterclockwise direction) when the propeller rotates in the clockwise direction) when the propeller rotates in the clockwise direction
  • the difference in the attachment angle of the second vortex generating plate installed on the port port (starboard when the propeller is rotated in the counterclockwise direction) is characterized in that it is installed between 1 to 10 degrees.
  • the vortex generator, the first vortex generating plate and the third vortex generating plate and the installed on the starboard of the ship (when the propeller rotates in the counterclockwise direction) when the propeller rotates in the clockwise direction The difference in the attachment angle of the second vortex generating plate installed on the port of the ship (starboard when the propeller rotates in the counterclockwise direction) is characterized in that it is configured to be installed between 1 to 5 degrees.
  • a ship characterized in that it is configured to reduce noise and vibration by reducing the occurrence of cavitation by attaching an asymmetric return generating vortex generator for reducing the propeller noise and vibration described above. do.
  • the wing-shaped structure is attached to the hull surface in front of the propeller to control the flow into the propeller.
  • the propeller rotation direction when the propeller rotation direction is viewed from the stern side to the bow side by reducing the angle of attack introduced into the wing surface by changing the speed in the axial direction due to the asymmetrical vortex generation as described above Direction, which minimizes cavitation noise and vibration by creating an asymmetric wake distribution that makes the flow to the first quadrant of the propeller surface (two quadrants where the propeller rotation is counterclockwise) most cavitation occurs.
  • the angle of attack formed by the flow of the propeller wing is leveled by the vortex generator attached asymmetrically to the left and right sides of the hull, and the inflow into the propeller plane Flow Rectification Enhancements Through Uniform Reflux Flow The noise and vibration can be reduced.
  • FIG. 1 is a view schematically showing the overall configuration of an asymmetric return generating vortex generator for reducing propeller noise and vibration according to the first and second embodiments of the present invention.
  • FIG. 2 is a view schematically showing the overall configuration of an asymmetric return generating vortex generator for reducing propeller noise and vibration according to a third embodiment of the present invention.
  • 3 is a view for explaining the angle of attack with the flow to the vortex generator.
  • FIG. 4 is a view for explaining the angle of attack with the flow with respect to the propeller wing surface.
  • FIG. 5 is a view illustrating the return flow into the propeller plane when the vortex generator is not attached.
  • FIG. 6 is a view showing a case in which the vortex generator according to the first embodiment of the present invention is attached to the case where it is not attached.
  • FIG. 7 is a view illustrating a case in which the vortex generator according to the second embodiment of the present invention is attached to the case where it is not attached.
  • FIG. 8 is a view showing a case in which the vortex generator according to the third embodiment of the present invention is attached to the case where it is not attached.
  • FIG. 9 is a diagram illustrating a comparison between a case in which the vortex generator according to the first embodiment of the present invention is formed and attached to a quadrangular shape and a case in which the vortex generator is formed and attached to a pentagonal shape.
  • FIG. 10 is a view illustrating a comparison of flow velocity distributions in the case where the vortex generator according to the first embodiment of the present invention is formed and attached to a rectangular shape and the case where the vortex generator is formed and attached to a pentagonal shape.
  • FIG. 11 is a view illustrating a comparison between the vortex strengths generated when the vortex generators according to the first embodiment of the present invention are formed and attached to a rectangular shape and when they are attached and formed to a pentagonal shape.
  • Fig. 12 is a diagram showing comparisons between the results obtained by numerical analysis of the amount of cavitation generated on the propeller surface when the vortex generator is attached and when the vortex generator is not attached.
  • the present invention attached to the hull surface in front of the propeller to control the flow flowing into the propeller so that the wing-shaped structure has an angle of attack with the inflow flow to adjust the flow velocity and flow direction by the fluid force It is attached to the hull surface in front of the propeller and flow control fin of the prior art, which had a disadvantage in that it was configured to control and had a disadvantage in that it had to be a large structure to increase the speed in the tangential direction.
  • the axial velocity changes due to asymmetrical vortex generation
  • it creates an asymmetric wake distribution that makes the flow to the quadrant one particularly faster when cavitation occurs most frequently. It is an object of the present invention to provide an asymmetric return generating vortex generator for reducing propeller noise and vibration that is configured to minimize noise generation.
  • the present invention by the vortex generator asymmetrically attached to the left and right sides of the hull induces a speed change in the axial direction due to the asymmetrical vortex generation, one quadrant propeller surface cavitation occurs most frequently Creates an asymmetric wake distribution that makes the flow particularly fast, reducing the angle of attack on the wing plane across the first quadrant, leveling the angle of attack with the flow on the thruster wing plane, and equalizing the flow of air into the propeller plane By improving the flow rectifying performance through, it is directed to an asymmetric return generating vortex generator for reducing propeller noise and vibration configured to reduce cavitation noise and vibration.
  • FIG. 1 is a view schematically showing the overall configuration of an asymmetrical return generating vortex generator for reducing propeller noise and vibration according to the first and second embodiments of the present invention.
  • the asymmetrical return generating vortex generator 10 for reducing propeller noise and vibration is formed in the form of a metal plate, so that the propeller is rotated in a clockwise direction.
  • One is attached to the right side of the ship (left side when the propeller rotates counterclockwise) based on the propeller.
  • the vortex generator 10 formed in the form of a metal plate according to the rotational direction of the propeller is provided on the left or right side of the ship alone.
  • the angle of attack between the propeller face and the inlet flow can be configured to quickly create a flow in one or two quadrants where the greatest angle occurs.
  • the vortex generator 10 for reducing the propeller noise and vibration according to the second embodiment of the present invention
  • the vortex generator 10 formed in the form of a metal plate as shown in Figure 1 propeller front side ship
  • the left and right sides of the propeller are configured to attach in an asymmetrical form, respectively.
  • the vortex generator 10 formed in the shape of a metal plate as shown in Figure 1 in an asymmetrical form by varying the angle at the same position on the left and right sides of the ship, respectively.
  • the angle of attack between the propeller face and the inlet flow can be configured to make the flow in one or two quadrants with the greatest occurrence.
  • FIG. 2 is a diagram schematically illustrating an overall configuration of an asymmetric return generating vortex generator for reducing propeller noise and vibration according to a third embodiment of the present invention.
  • the vortex generator 10 is angled at the same position on the left and right sides of the ship in the same manner as in the second embodiment. And add one more vortex generator 20 to the starboard side when the propeller rotates in the clockwise direction and one port side when the propeller rotates in the counterclockwise direction to further flow in one quadrant.
  • the vortex generator 20 to be added is attached at the same height as the existing vortex generator 10 at a position further moved in the direction of the propeller.
  • the specific attachment position of the vortex generator 10 is defined by the length AP to FP from the head FP to the stern AP.
  • LBP length AP to FP from the head FP to the stern AP.
  • the specific attachment position of the additional vortex generator 20 is 8% to the total length LBP from the stern AP to the starboard or port side of the ship depending on the rotational direction of the propeller. It may be configured to attach at a position corresponding to between 15%.
  • the installation height of the vortex generators 10 and 20 described above can be installed within a range between the height from the bottom of the ship to the propeller shaft.
  • Figure 3 is a view for explaining the angle of attack with the flow to the vortex generator.
  • the attachment angles of the vortex generators 10 and 20 are determined by the angle of attack ⁇ formed by the flow velocity vector flowing into the vortex generator and the vortex generator, and preferably, the vortex generator.
  • Set the angle of attack ( ⁇ ) between the flow flowing into and the vortex generator to be between 5 and 15 degrees.
  • the angle of attachment between the port and starboard is set between 0 and 10 degrees, or 1 to 10, if necessary. It can be set between 1 degree or 5 degrees.
  • the said vortex generators 10 and 20 can be formed in various shapes, such as a triangle and a square, for example, Preferably, it is most effective to form and attach a metal plate of a pentagon shape.
  • the vortex generated in the vortex generator 10, 20 changes the existing flow pattern while passing through the hull surface to push out the slow water flowing into the propeller plane out of the propeller, By allowing the high speed flow to flow into the plane and reducing the angle of attack of the flow flowing into each wing, the load on the propeller plane is lowered to suppress the occurrence of cavitation.
  • the first quadrant is divided into four equal parts of the propeller plane when viewed from the stern side by 90 degrees with respect to the center of the propeller shaft to make the upper right region one quadrant, and the remaining region is a counterclockwise watch. It is defined as 2, 3, and 4 quadrants in turn, and the rotation direction of the propeller is assumed to be clockwise.
  • Figure 4 is a view for explaining the angle of attack with the flow to the propeller blade surface
  • Figure 5 is a view showing the return flow flowing into the propeller surface when the vortex generator is not attached.
  • the axial velocity Va of the propeller during the flow into the propeller is determined by the movement of the ship. It is expressed as the sum of velocity components in the propeller axial direction of wake propagated by (forward) velocity and hull shape, and the tangential velocity (Vt) in the horizontal axis direction is induced by the rotational speed of the propeller and the hull shape. It can be expressed as the sum of the velocity components in the horizontal axis direction of wake.
  • the angle between the vector generated by the sum of the velocity Va in the vertical axis direction and the velocity Vt in the horizontal axis direction and the chord line of the propeller blade is the angle ⁇ . Therefore, if the rotational speed of the propeller increases or the velocity in the horizontal axis direction of the inflow flowing into the propeller plane increases in the opposite direction to the propeller rotational speed, the angle of attack ( ⁇ ) becomes large, the movement speed, that is, the flow flowing into the propeller side If the flow velocity of (ie, Va) increases, the angle of attack ⁇ becomes smaller.
  • the vortex generator according to an embodiment of the present invention that is, the wing-shaped structure is attached to the hull surface in front of the propeller to control the flow flowing into the propeller so that the angle of attack with the inflow flow It is configured to control the flow velocity and flow direction by the fluid force to be attached to the hull surface in front of the propeller and flow control fin (flow control fin) and the propeller of the prior art that had the disadvantage that the effect should be large structure
  • the vortex generator according to the embodiment of the present invention By changing the speed in the tangential direction, there is an effect of improving the propeller efficiency by the pre-swirl effect, while the wing shape of the prior art, which has the side effect of increasing the propeller noise and vibration by increasing the cavitation Compared to the adjuncts and the flow control pins, the vortex generator according to the embodiment of the present invention, By only attaching the structure, it reduces the angle of attack that enters the wing surface by changing the speed in the axial direction due to the vortex rather than the change in the speed in the
  • Cavitation noise generation can be minimized by creating an asymmetric wake distribution that makes the flow particularly fast in the first quadrant (when the propeller rotates clockwise) or in the second quadrant (when the propeller rotates counterclockwise). It is distinguished from the existing vortex generators in that it is configured to be.
  • FIG. 6 to FIG. 8 are views illustrating a case in which the vortex generator according to the embodiment of the present invention is attached to the case of not attaching the vortex generator
  • FIG. 12 is a view illustrating a case in which the vortex generator according to the first embodiment of the present invention is attached and formed in a rectangular shape and the case in which the vortex generator is attached and formed in a pentagonal shape.
  • FIG. Fig. 2 shows the results obtained by numerical analysis of the amount of cavitation generated on the propeller surface.
  • the left side (w / o VG) is the case where no vortex generator is attached
  • the right side (w / VG) is the vortex generator according to the embodiment of the present invention attached to the port and starboard, respectively.
  • it shows the wake contour and streamline on the plane as seen from the stern side to the propeller side, respectively, and the closer to red color, the faster the flow rate, and the closer to blue color, the slower flow rate.
  • the left side (w / o VG) is the case where the vortex generator is not attached
  • the right side (w / VG) is the case where the vortex generator according to the first embodiment of the present invention is attached to the starboard. Each is shown.
  • the left side (w / o VG) of FIG. 7 is a case where the vortex generator is not attached, and the right side (w / VG) shows the vortex generator according to the second embodiment of the present invention.
  • the case of asymmetrical attachment to the starboard at different angles is shown.
  • the left side (w / o VG) of FIG. 8 is a case where no vortex generator is attached, and the right side (w / VG) shows the vortex generator according to the third embodiment of the present invention.
  • the case is attached to the starboard at different angles and asymmetrically attached to the starboard, and an additional vortex generator is attached to the starboard side.
  • the result shown in FIG. 8 shows that the angle of the vortex generator on the left is 8 degrees and the angle of the vortex generator on the right is 10 degrees, and the additional vortex generator is 2.5% of the ship length LBP toward the propeller at the same height only on the starboard side.
  • FIG. 9 the left side of FIG. 9 is a case where the vortex generator according to the first embodiment of the present invention is formed in a rectangular shape and attached (w / VG (rectangle)).
  • Figure 1 shows a comparison of the case where the vortex generator is formed in a pentagonal shape and attached (w / VG (pentagon)) according to the first embodiment.
  • FIG. 10 is a propeller plane in the region where there is no vortex generator and one rotational quadrant of the rectangular vortex generator and the pentagonal vortex generator of FIG.
  • the flow velocity distribution in the propeller axial direction at 0.5r / R and 0.7r / R in the radial direction is shown.
  • the reference point of the rotation angle is a positive direction to rotate in the counterclockwise direction with the top center (12 o'clock) as 0 degrees, in this case, one quadrant corresponds to 270 ⁇ 360 degrees do.
  • R means a propeller radius
  • RT means a vortex generator of a quadrilateral shape
  • PT means a vortex generator of a pentagonal shape, respectively.
  • both the vortex generator of the four-sided shape and the vortex generator of the five-sided shape reduce the occurrence of cavitation on the propeller surface because the flow velocity is faster than that without the vortex generator.
  • the flow is much faster than the pentagonal vortex generator between 315 to 360 degrees, and the flow velocity is increased by about 12% or more in the vicinity of 350 to 360 degrees, which is the slowest flow rate. Shows.
  • the left side of FIG. 11 is a case where the vortex generator according to the first embodiment of the present invention is formed in a rectangular shape and is attached, and the right side is a pentagonal generator according to the first embodiment of the present invention.
  • the vortex strenths generated by the respective vortex plates are compared.
  • the vortex-shaped vortex plate has a 20% or more increase in vortex strength than the rectangular vortex plate, and thus, it is confirmed that the vortex plate is much more effective in controlling the flow rate using the vortex than the rectangular vortex plate.
  • the vortex generator according to the present invention has been shown to have a pentagonal shape, but in the case of the pentagonal vortex plate, when actually attached to a ship, preferably
  • the plate is padded and welded, and the angular part of the vortex plate and the angled part of the vortex plate are processed so that the sharp right angle part is rounded by chamfering, fillet and fillet processing, etc. It can be configured to produce a vortex plate.
  • FIG. 12A shows a case where no vortex generator is attached
  • FIG. 12B shows a comparison of the cavitation distribution on the propeller surface when the vortex generator according to the second embodiment of the present invention is attached.
  • the blade through the axial speed change due to the asymmetric vortex generation One quadrant of the propeller plane where the cavitation occurs most when the direction of rotation of the propeller is clockwise when viewed from the stern side to the bower side by decreasing the angle of inflow into the plane (two quadrants when the propeller rotation direction is counterclockwise).
  • An asymmetric return-generating vortex generator is provided to reduce propeller noise and vibration, which is configured to create an asymmetrical wake distribution that makes the flow of the side particularly fast, thereby minimizing cavitation noise and vibration.
  • Wing shape to attach and control flow into propeller The wing-shaped adduct or flow control pin of the prior art, which has a disadvantage in that the structure has an angle of attack with the inflow flow to control the flow velocity and the flow direction due to the fluid force to be an effect of the large structure.
  • the propeller efficiency is improved by the pre-swirl effect by changing the velocity in the tangential direction, whereas the propeller noise and vibration are increased by the cavitation increase.
  • the problem of prior art wing-shaped adducts or flow control fins, which have increased side effects, can be solved.
  • the propeller rotation direction when the propeller rotation direction is viewed from the stern side to the bow side by reducing the angle of attack introduced into the wing surface by changing the speed in the axial direction due to the asymmetrical vortex generation as described above Direction, which minimizes cavitation noise and vibration by creating an asymmetric wake distribution that makes the flow to the first quadrant of the propeller surface (two quadrants where the propeller rotation is counterclockwise) most cavitation occurs.
  • the angle of attack formed by the flow of the propeller wing is leveled by the vortex generator attached asymmetrically to the left and right sides of the hull, and the inflow into the propeller plane Flow rectification performance is improved by uniformizing the return current Noise and vibration can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Hydraulic Turbines (AREA)
  • Wind Motors (AREA)

Abstract

본 발명은 선박에 설치되는 추진기(propeller)에 유입되는 유동을 제어하여 선박 추진기 날개면에 발생하는 캐비테이션(cavitation)을 감소하는 것에 의해 추진기의 소음 및 진동을 감소할 수 있도록 구성되는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기에 관한 것으로, 본 발명에 따르면, 추진기 전방의 선체 표면에 부착되어 추진기에 유입되는 유동을 제어하기 위해 날개 형상의 구조물이 유입 유동과의 받음각을 가지게 하여 유체 힘에 의한 유속 및 유동 방향을 제어하도록 구성되어 대형 구조물이 되어야 효과를 볼 수 있는 단점이 있으며, 또한, 추진기 전방의 선체 표면에 부착되어 수평(tangential) 방향의 속도를 변화시키는 것에 의해 전류(Pre-swirl) 효과에 의한 추진기 효율 향상의 효과가 있는 반면, 캐비테이션 증가에 의해 추진기 소음 및 진동이 증가하는 부작용이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin)의 문제점을 해결하기 위해, 비대칭 와류 발생에 의한 축(axial) 방향의 속도 변화를 통해 날개면에 유입되는 받음각을 감소함으로써 캐비테이션이 가장 많이 발생하는 프로펠러면 1 사분면 또는 2 사분면 쪽의 유동을 특히 빠르게 만드는 비대칭적 반류(wake) 분포를 생성하여 캐비테이션 소음 발생을 최소화할 수 있도록 구성되는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기가 제공된다.

Description

추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기
본 발명은 선박에 설치되는 추진기(propeller)의 소음 및 진동 저감을 위한 장치 및 방법에 관한 것으로, 더 상세하게는, 추진기에 유입되는 유동을 제어하여 선박 추진기 날개면에 발생하는 캐비테이션(cavitation)을 감소하는 것에 의해 추진기의 소음 및 진동을 감소시킬 수 있도록 구성되는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기에 관한 것이다.
일반적으로, 선박은, 선체에 설치되는 엔진의 회전축에 연결되어 엔진의 구동력으로 회전함으로써 추진력을 발생시키는 추진기(propeller)를 통해 전진하며, 이러한 추진기는, 각각의 운항조건에 따라 추진기 날개의 형상 및 크기 등이 다양하게 설계된다.
또한, 추진기는, 추진기 날개를 지나는 유동에 의해 추력과 토크를 발생하게 되는데, 이때, 토크는 엔진의 구동력으로 극복되고, 발생한 추력을 이용하여 배가 전진하게 된다.
아울러, 최근에는, 선박에 보다 많은 여객과 화물을 탑재하여 빠르게 운반하는 것에 의해 선박의 운항비용을 절감하기 위해 선박의 대형화 및 고속화가 이루어지고 있으나, 이러한 선박의 대형화와 고속화는 엔진 마력을 증가시켜 추진기의 부하를 증가시키고, 이는 추진기에 의한 변동 압력 및 진동의 증가를 야기하게 된다.
이러한 문제점을 해결하기 위해, 종래, 선박의 추진효율 향상 및 추진기에 의한 변동 압력 및 진동을 감소하기 위한 다양한 기술들이 개발되어 왔다.
즉, 상기한 바와 같은 선박의 추진효율 향상 및 추진기에 의한 진동을 감소하기 위한 종래기술의 예로는, 예를 들면, 한국 등록특허 제10-1293006호에 따르면 "선속 향상 및 선미부의 유동 개선을 위한 선미 부가물"이 제시된 바 있고, 또한, 한국 등록특허 제10-1066213호에 따르면 "정체류 감소 및 전진력 발생 기능을 가지는 날개형 유동개선 장치"가 제시된 바 있으며, 아울러, 한국 등록특허공보 제10-0416720호에 따르면 "비대칭 전류 고정 날개"가 제시된 바 있다.
더 상세하게는, 먼저, 등록특허 제10-1293006호에 제시된 선속 향상 및 선미부의 유동 개선을 위한 선미 부가물은, 프로펠러의 전방 상측부 선미 표면에 횡 방향으로 이격되어 대칭되게 하향 설치되는 일정 길이의 지지축 및 상기 지지축의 선단부에 고정되어 상기 프로펠러의 상측부에 평행하게 대향되도록 횡방향으로 설치되는 일정 길이의 유동 조절블레이드로 구성됨으로써, 선미에 발생되는 수류의 유동 개선을 통해 저항을 감소시킴과 동시에 프로펠러의 공동형상(cavitation)을 최소화하여 추진력을 향상시킬 수 있도록 구성되는 선미 부가물에 관한 것이다.
아울러, 등록특허 제10-1066213호에 제시된 정체류 감소 및 전진력 발생 기능을 가지는 날개형 유동개선 장치는, 선미 추진기 전방의 비교적 균일한 유동영역에 부착되어 날개의 양력을 일부 추력으로 사용하고 날개 장치와 선체 표면 사이의 유동을 가속시켜 박리지점 이동 및 선미 저속 유동장의 체적을 감소시키는 것에 의해 추진기 유입유동을 개선하는 효과를 가짐으로써, 프로펠러로 유입되는 유동의 유속을 높여 프로펠러 효율을 향상시키고, 추가적인 추력을 발생하여 선박의 연료를 절감할 수 있도록 구성되는 유동개선 장치에 관한 것이다.
더욱이, 상기한 등록특허 제10-0416720호에 제시된 비대칭 전류 고정 날개는, 비대칭 전류 날개(asymmetric preswirl stator)의 개념을 도입하여, 추진기에 유입되는 유동의 수평(tangential) 방향의 속도를 변화시키는 것에 의해 전류(Pre-swirl) 효과를 발생시켜 추진기 효율을 향상시키는 유동개선 장치에 관한 것이다.
상기한 바와 같이, 종래, 복잡한 장치를 설치하지 않고 간단한 구성을 통해 효율적으로 선박의 추진효율을 향상시킬 수 있도록 하기 위해 다양한 기술내용들이 제시된 바 있으나, 상기한 바와 같은 종래의 기술내용들은 다음과 같은 문제점이 있는 것이었다.
즉, 추진기에 의한 변동 압력 및 진동을 감소하기 위한 종래의 기술들은, 일반적으로, 날개 형상의 부가물이나 유동 제어 핀(flow control fin) 등을 선체에 부착하여 추진기에 유입되는 유동을 제어하는 것에 의해 추진기 날개면에 발생하는 캐비테이션을 감소하여 선박 추진기 소음의 주원인인 캐비테이션 소음을 감소하도록 구성되나, 이러한 장치들은, 추진기에 유입되는 유동을 제어하기 위해 날개 형상의 구조물이 유입 유동과의 받음각을 가지게 하여 유체 힘에 의한 유속 및 유동 방향을 제어하기 때문에 대형 구조물이 되어야 효과를 볼 수 있다는 단점이 있는 것이었다.
또한, 상기한 날개 형상의 부가물이나 유동제어 핀은, 추진기 소음 및 진동 저감의 관점이 아니라, 추진기 유입류의 유동 중 수평(tangential) 방향의 변화를 주어 전류(Pre-swirl) 효과를 발생시키는 것에 의해 추진기의 효율 향상을 유도하는 방법을 제시하고 있으나, 이러한 장치들은, 추진기 효율은 향상시키는 반면, 날개면의 받음각이 증가하여 추진기 면에서 캐비테이션이 과도하게 발생함으로 인해 추진기 소음 및 진동의 측면에는 악영향을 미치게 되는 단점이 있었다.
따라서 상기한 바와 같이, 추진기 전방의 선체 표면에 부착되어 추진기에 유입되는 유동을 제어하기 위해 날개 형상의 구조물이 유입 유동과의 받음각을 가지게 하여 유체 힘에 의한 유속 및 유동 방향을 제어하도록 구성되어 대형 구조물이 되어야 효과를 볼 수 있는 단점에 있으며, 또한, 수평(tangential) 방향의 속도를 변화시키는 것에 의해 추진기에 유입되는 유동을 제어하여 전류(Preswirl) 효과에 의한 추진기 효율 향상의 효과가 있으나 캐비테이션 증가에 의한 추진기 소음 및 진동이 증가하는 부작용을 야기하는 단점이 있었던 종래기술의 날개 형상의 부가물이나 유동 제어 핀(flow control fin)들의 문제점을 해결하기 위하여는, 작은 구조물로도 유속의 제어가 가능한 와류를 발생하여 수평(tangential) 방향의 속도변화보다 축(axial) 방향의 속도 변화를 통해 날개면에 유입되는 받음각을 줄여주는 것에 의해, 전반적으로 유동을 빠르게 만들면서도, 선미 측에서 선수측으로 바라보았을 때 프로펠러의 회전방향이 시계방향인 경우, 캐비테이션이 특히 많이 발생하는 프로펠러면 1 사분면 쪽의 유동을 특별히 빠르게 만드는 비대칭적 반류(wake) 분포를 생성하여 캐비테이션 소음 발생을 최소화할 수 있도록 구성되는 새로운 구성의 와류 발생기를 제공하는 것이 바람직하나, 아직까지 그러한 요구를 모두 만족시키는 장치나 방법은 제공되지 못하고 있는 실정이다.
여기서, 본 발명에 있어서, 1 사분면이란, 선박의 후미에서 프로펠러 측을 바라보았을 때의 평면을 프로펠러 축의 중심을 기준으로 90도씩 4 등분하여 우측 상단의 영역을 1 사분면으로 하고, 나머지 영역은 반시계 방향으로 돌아가면서 차례로 2, 3, 4 분면으로 정의하며, 이때, 프로펠러의 회전방향은 시계 방향인 것으로 가정한다.
즉, 프로펠러가 반시계방향으로 회전할 경우, 캐비테이션이 특히 많이 발생하는 영역은 2사분면이 되고, 와류 발생기는 프로펠러가 시계 방향으로 회전하는 경우에 대하여 좌우를 바꾸어 부착하도록 구성된다.
[선행기술문헌]
1. 한국 등록특허공보 제10-1293006호 (2013.07.29.)
2. 한국 등록특허공보 제10-1066213호 (2011.09.14.)
3. 한국 등록특허공보 제10-0416720호 (2004.01.15.)
본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하고자 하는 것으로, 따라서 본 발명의 목적은, 추진기 전방의 선체 표면에 부착되어 추진기에 유입되는 유동을 제어하기 위해 날개 형상의 구조물이 유입 유동과의 받음각을 가지게 하여 유체 힘에 의한 유속 및 유동 방향을 제어하도록 구성되어 대형 구조물이 되어야 효과를 볼 수 있는 단점이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin) 및 추진기 전방의 선체 표면에 부착되어 수평(tangential) 방향의 속도를 변화시키는 것에 의해 전류(Pre-swirl) 효과에 의한 추진기 효율 향상의 효과가 있는 반면, 캐비테이션 증가에 의해 추진기 소음 및 진동이 증가하는 부작용이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin)의 문제점을 해결하기 위해, 비대칭 와류 발생에 의한 축(axial) 방향의 속도 변화를 통해 날개면에 유입되는 받음각을 감소함으로써 프로펠러를 선미 측에서 선수 측으로 바라보았을 때 시계 방향으로 회전하는 경우 캐비테이션이 가장 많이 발생하는 프로펠러면 1 사분면 쪽의 유동을 특히 빠르게 만드는 비대칭적 반류(wake) 분포를 생성하여 캐비테이션 소음 발생을 최소화할 수 있도록 구성되는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기를 제공하고자 하는 것이다.
또한, 본 발명의 다른 목적은, 선체의 좌우 측면에 비대칭으로 부착되는 와류 발생기에 의해 비대칭 와류 발생에 의한 축(axial) 방향의 속도 변화를 유도하고 캐비테이션이 가장 많이 발생하는 프로펠러면 1 사분면 쪽의 유동을 특히 빠르게 만드는 비대칭적 반류(wake) 분포를 생성하여 1 사분면을 지나는 날개 면에 유입되는 받음각을 감소시키고 추진기 날개면의 유동과 이루는 받음각이 평준화되며, 추진기 면에 유입되는 반류의 균일화를 통해 유동 정류 성능을 향상시킴으로써, 캐비테이션 소음 및 진동을 감소할 수 있도록 구성되는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기를 제공하고자 하는 것이다.
상기한 바와 같은 목적을 달성하기 위해, 본 발명에 따르면, 추진기 전방의 선체 표면에 부착되어 추진기에 유입되는 유동을 제어하기 위해 날개 형상의 구조물이 유입 유동과의 받음각을 가지게 하여 유체 힘에 의한 유속 및 유동 방향을 제어하도록 구성되어 대형 구조물이 되어야 효과를 볼 수 있는 단점이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin) 및 추진기 전방의 선체 표면에 부착되어 수평(tangential) 방향의 속도를 변화시키는 것에 의해 전류(Pre-swirl) 효과에 의한 추진기 효율 향상의 효과가 있는 반면, 캐비테이션 증가에 의해 추진기 소음 및 진동이 증가하는 부작용이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin)의 문제점을 해결하기 위한 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기에 있어서, 프로펠러가 시계방향으로 회전할 시, 금속판 형태로 형성되어 상기 추진기 전방의 선박의 우현(상기 프로펠러가 반시계 방향으로 회전시는 좌현) 측에 부착되는 제 1 와류생성판을 포함하여 구성됨으로써, 상기 캐비테이션이 가장 많이 발생하는 부분에 해당하는 상기 추진기의 우측 상부(상기 프로펠러가 반시계 방향으로 회전 시는 좌측상부)에서 상기 추진기의 날개면으로 유입되는 유동의 유입속도를 더욱 빠르게 증가시키는 비대칭 반류(wake)를 생성하여 상기 추진기의 각 날개에 유입되는 유동의 받음각을 감소하는 것에 의해, 상기 캐비테이션이 가장 많이 발생하는 상기 추진기의 우측 상부(상기 프로펠러가 반시계 방향으로 회전 시는 좌측 상부)에서의 상기 캐비테이션의 발생을 감소하여 상기 추진기에 의한 소음 및 진동을 감소할 수 있도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기가 제공된다.
여기서, 상기 와류 발생기는, 상기 제 1 와류생성판과 동일한 형태의 금속판 형태로 형성되어 상기 제 1 와류생성판의 맞은편인 상기 추진기 전방의 상기 선박의 좌현(상기 프로펠러가 반시계 방향으로 회전 시는 우현) 측에 부착되는 제 2 와류생성판을 더 포함하여 구성되고, 상기 제 1 와류생성판 및 상기 제 2 와류생성판은, 상기 선박의 좌우 측면의 동일한 위치에 각도를 각각 달리하여 부착됨으로써, 상기 캐비테이션이 가장 많이 발생하는 부분에 해당하는 상기 추진기의 우측 상부(상기 프로펠러가 반시계 방향으로 회전 시는 좌측 상부)에서 상기 추진기의 날개면으로 유입되는 유동의 유입속도를 더 빠르게 증가시키는 비대칭 반류(wake)를 생성하여 상기 추진기의 각 날개에 유입되는 유동의 받음각을 감소하는 것에 의해, 상기 캐비테이션이 가장 많이 발생하는 상기 추진기의 우측 상부에서의 상기 캐비테이션의 발생을 감소하여 상기 추진기에 의한 소음 및 진동을 감소할 수 있도록 구성되는 것을 특징으로 한다.
또한, 상기 와류 발생기는, 상기 제 1 와류 발생기보다 상기 추진기 측에 더 가까운 위치에 상기 제 1 와류 발생기와 같은 높이로 상기 선박의 우현(상기 프로펠러가 반시계 방향으로 회전시는 좌현) 측에 부착되는 제 3 와류생성판을 더 포함하여 구성됨으로써, 상기 캐비테이션이 가장 많이 발생하는 상기 추진기의 우측(상기 프로펠러가 반시계 방향으로 회전시는 좌측) 상부에서 상기 추진기의 날개면으로 유입되는 유동의 유입속도를 더욱 빠르게 증가시켜 상기 추진기의 각 날개에 유입되는 유동의 받음각을 더 크게 감소하는 것에 의해 상기 캐비테이션의 발생을 더욱 크게 감소할 수 있도록 구성되는 것을 특징으로 한다.
또한, 상기 제 1 와류생성판 및 상기 제 2 와류생성판은, 상기 선박의 선두부(FP)에서 선미부(AP)까지의 길이(AP ~ FP)를 상기 선박의 전체 길이(LBP)라 할 때, 상기 선미부(AP)에서부터 상기 전체 길이(LBP)의 12% ~ 18% 사이에 해당하는 위치에 각각 부착되도록 구성되는 것을 특징으로 한다.
아울러, 상기 제 3 와류생성판은, 상기 선미부(AP)에서부터 상기 전체 길이(LBP)의 8% ~ 15% 사이에 해당하는 위치에 부착되도록 구성되는 것을 특징으로 한다.
더욱이, 상기 제 1 와류생성판 내지 상기 제 3 와류생성판은, 상기 선박의 선저면에서부터 상기 추진기의 축 높이까지의 범위 내에 설치되도록 구성되는 것을 특징으로 한다.
또한, 상기 제 1 와류생성판 내지 상기 제 3 와류생성판은, 각각 5각형 형상으로 형성되는 것을 특징으로 한다.
아울러, 상기 제 1 와류생성판 내지 상기 제 3 와류생성판은, 상기 와류 생성판에 유입되는 유동과 상기 와류 생성판이 이루는 받음각이 5 ~ 15도 사이가 되도록 하는 각도로 설치되도록 구성되는 것을 특징으로 한다.
더욱이, 상기 와류 발생기는, 상기 프로펠러가 시계 방향으로 회전시 상기 선박의 우현(상기 프로펠러가 반시계 방향으로 회전시는 좌현)에 설치되는 상기 제 1 와류생성판 및 상기 제 3 와류생성판과 상기 선박의 좌현(상기 프로펠러가 반시계 방향으로 회전시는 우현)에 설치되는 상기 제 2 와류생성판의 부착각도 차이가 0 ~ 10도 사이로 설치되도록 구성되는 것을 특징으로 한다.
또는, 상기 와류 발생기는, 상기 프로펠러가 시계 방향으로 회전시 상기 선박의 우현(상기 프로펠러가 반시계 방향으로 회전시는 좌현)에 설치되는 상기 제 1 와류생성판 및 상기 제 3 와류생성판과 상기 선박의 좌현(상기 프로펠러가 반시계 방향으로 회전시는 우현)에 설치되는 상기 제 2 와류생성판의 부착각도 차이가 1 ~ 10도 사이로 설치되도록 구성되는 것을 특징으로 한다.
또는, 상기 와류 발생기는, 상기 프로펠러가 시계 방향으로 회전시 상기 선박의 우현(상기 프로펠러가 반시계 방향으로 회전시는 좌현)에 설치되는 상기 제 1 와류생성판 및 상기 제 3 와류생성판과 상기 선박의 좌현(상기 프로펠러가 반시계 방향으로 회전시는 우현)에 설치되는 상기 제 2 와류생성판의 부착각도 차이가 1 ~ 5도 사이로 설치되도록 구성되는 것을 특징으로 한다.
또한, 본 발명에 따르면, 상기에 기재된 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기를 이용하여 캐비테이션의 발생을 감소함으로써 선박의 소음 및 진동을 저감할 수 있도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감방법이 제공된다.
아울러, 본 발명에 따르면, 상기에 기재된 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기를 부착하는 것에 의해 캐비테이션의 발생을 감소함으로써 소음 및 진동을 저감할 수 있도록 구성되는 것을 특징으로 하는 선박이 제공된다.
상기한 바와 같이, 본 발명에 따르면, 비대칭 와류 발생에 의한 축(axial) 방향의 속도 변화를 통해 날개면에 유입되는 받음각을 감소하는 것에 의해 프로펠러 회전 방향이 선미 측에서 선수 측으로 바라보았을 때 시계 방향인 경우 캐비테이션이 가장 많이 발생하는 프로펠러면 1 사분면(프로펠러 회전방향이 반시계 방향인 경우는 2 사분면) 쪽의 유동을 특히 빠르게 만드는 비대칭적 반류(wake) 분포를 생성하여 캐비테이션 소음 및 진동을 최소화할 수 있도록 구성되는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기가 제공됨으로써, 추진기 전방의 선체 표면에 부착되어 추진기에 유입되는 유동을 제어하기 위해 날개 형상의 구조물이 유입 유동과의 받음각을 가지게 하여 유체 힘에 의한 유속 및 유동 방향을 제어하도록 구성되어 대형 구조물이 되어야 효과를 볼 수 있는 단점이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin) 및 추진기 전방의 선체 표면에 부착되어 수평(tangential) 방향의 속도를 변화시키는 것에 의해 전류(Pre-swirl) 효과에 의한 추진기 효율 향상의 효과가 있는 반면, 캐비테이션 증가에 의해 추진기 소음 및 진동이 증가하는 부작용이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin)의 문제점을 해결할 수 있다.
또한, 본 발명에 따르면, 상기한 바와 같이 비대칭 와류 발생에 의한 축(axial) 방향의 속도 변화를 통해 날개면에 유입되는 받음각을 감소하는 것에 의해 프로펠러 회전 방향이 선미 측에서 선수 측으로 바라보았을 때 시계 방향인 경우 캐비테이션이 가장 많이 발생하는 프로펠러면 1 사분면(프로펠러 회전방향이 반시계 방향인 경우는 2 사분면) 쪽의 유동을 특히 빠르게 만드는 비대칭적 반류(wake) 분포를 생성하여 캐비테이션 소음 및 진동을 최소화할 수 있도록 구성되는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기가 제공됨으로써, 선체의 좌우 측면에 비대칭으로 부착되는 와류 발생기에 의해 추진기 날개면의 유동과 이루는 받음각이 평준화되고, 추진기 면에 유입되는 반류의 균일화를 통해 유동 정류 성능이 향상되어 캐비테이션 소음 및 진동을 감소할 수 있다.
도 1은 본 발명의 제 1 실시예 및 제 2 실시예에 따른 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기의 전체적인 구성을 개략적으로 나타내는 도면이다.
도 2는 본 발명의 제 3 실시예에 따른 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기의 전체적인 구성을 개략적으로 나타내는 도면이다.
도 3은 와류 발생기에 대한 유동과의 받음각을 설명하기 위한 도면이다.
도 4는 추진기 날개면에 대한 유동과의 받음각을 설명하기 위한 도면이다.
도 5는 와류 발생기를 부착하지 않은 경우 추진기 면에 유입되는 반류를 나타낸 도면이다.
도 6은 본 발명의 제 1 실시예에 따른 와류 발생기를 부착한 경우와 부착하지 않은 경우를 비교하여 나타낸 도면이다.
도 7은 본 발명의 제 2 실시예에 따른 와류 발생기를 부착한 경우와 부착하지 않은 경우를 비교하여 나타낸 도면이다.
도 8은 본 발명의 제 3 실시예에 따른 와류 발생기를 부착한 경우와 부착하지 않은 경우를 비교하여 나타낸 도면이다.
도 9는 본 발명의 제 1 실시예에 따른 와류 발생기를 사각형 형상으로 형성하여 부착한 경우와 오각형 형상으로 형성하여 부착한 경우를 각각 비교하여 나타낸 도면이다.
도 10은 본 발명의 제 1 실시예에 따른 와류 발생기를 사각형 형상으로 형성하여 부착한 경우와 오각형 형상으로 형성하여 부착한 경우의 유속 분포를 각각 비교하여 나타낸 도면이다.
도 11은 본 발명의 제 1 실시예에 따른 와류 발생기를 사각형 형상으로 형성하여 부착한 경우와 오각형 형상으로 형성하여 부착한 경우 발생하는 와류 강도를 각각 비교하여 나타낸 도면이다.
도 12는 와류 발생기를 부착한 경우와 부착하지 않은 경우에 프로펠러 표면에서 발생하는 캐비테이션의 발생량을 수치 해석으로 추정한 결과를 각각 비교하여 나타낸 도면이다.
이하, 첨부된 도면을 참조하여, 본 발명에 따른 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기의 구체적인 실시예에 대하여 설명한다.
여기서, 이하에 설명하는 내용은 본 발명을 실시하기 위한 하나의 실시예일 뿐이며, 본 발명은 이하에 설명하는 실시예의 내용으로만 한정되는 것은 아니라는 사실에 유념해야 한다.
또한, 이하의 본 발명의 실시예에 대한 설명에 있어서, 종래기술의 내용과 동일 또는 유사하거나 당업자의 수준에서 용이하게 이해하고 실시할 수 있다고 판단되는 부분에 대하여는, 설명을 간략히 하기 위해 그 상세한 설명을 생략하였음에 유념해야 한다.
아울러, 이하의 본 발명의 실시예에 대한 설명에 있어서, 동일 또는 유사한 구성요소에 대해서는, 설명을 간략히 하기 위해 동일한 참조부호를 붙이고 그 상세한 설명을 생략하였음에 유념해야 한다.
즉, 본 발명은, 후술하는 바와 같이, 추진기 전방의 선체 표면에 부착되어 추진기에 유입되는 유동을 제어하기 위해 날개 형상의 구조물이 유입 유동과의 받음각을 가지게 하여 유체 힘에 의한 유속 및 유동 방향을 제어하도록 구성되어 대형 구조물이 되어야 효과를 볼 수 있는 단점이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin) 및 추진기 전방의 선체 표면에 부착되어 수평(tangential) 방향의 속도를 변화시키는 것에 의해 전류(Pre-swirl) 효과에 의한 추진기 효율 향상의 효과가 있는 반면, 캐비테이션 증가에 의해 추진기 소음 및 진동이 증가하는 부작용이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin)의 문제점을 해결하기 위해, 비대칭 와류 발생에 의한 축(axial) 방향의 속도 변화를 통해 날개면에 유입되는 받음각을 감소함으로써 프로펠러를 선미 측에서 선수 측으로 바라보았을 때 시계 방향으로 회전하는 경우 캐비테이션이 가장 많이 발생하는 프로펠러면 1 사분면 쪽의 유동을 특히 빠르게 만드는 비대칭적 반류(wake) 분포를 생성하여 캐비테이션 소음 발생을 최소화할 수 있도록 구성되는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기를 제공하고자 하는 것이다.
또한, 본 발명은, 후술하는 바와 같이, 선체의 좌우 측면에 비대칭으로 부착되는 와류 발생기에 의해 비대칭 와류 발생에 의한 축(axial) 방향의 속도 변화를 유도하고 캐비테이션이 가장 많이 발생하는 프로펠러면 1 사분면 쪽의 유동을 특히 빠르게 만드는 비대칭적 반류(wake) 분포를 생성하여 1 사분면을 지나는 날개 면에 유입되는 받음각을 감소시키고 추진기 날개면의 유동과 이루는 받음각이 평준화되며, 추진기 면에 유입되는 반류의 균일화를 통해 유동 정류 성능을 향상시킴으로써, 캐비테이션 소음 및 진동을 감소할 수 있도록 구성되는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기에 관한 것이다.
계속해서, 도면을 참조하여, 상기한 바와 같이 구성되는 본 발명에 따른 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기의 구체적인 실시예에 대하여 상세히 설명한다.
먼저, 도 1을 참조하면, 도 1은 본 발명의 제 1 실시예 및 제 2 실시예에 따른 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기의 전체적인 구성을 개략적으로 나타내는 도면이다.
도 1에 나타낸 바와 같이, 본 발명의 제 1 실시예에 따른 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기(10)는, 금속판 형태로 형성되어, 프로펠러가 시계방향으로 회전시 프로펠러 전방 측의 선박의 우측면(프로펠러가 반시계 방향으로 회전시는 좌측면)에 프로펠러를 기준으로 1개가 부착된다.
즉, 본 발명의 제 1 실시예에 따른 와류 발생기(10)는, 도 1에 나타낸 바와 같이, 프로펠러의 회전방향에 따라 금속판 형태로 형성되는 와류 발생기(10)를 선박 좌측 또는 우측 면에 단독으로 부착하는 것에 의해 프로펠러 면과 유입 유동이 이루는 받음각이 가장 크게 발생하는 1 사분면 또는 2 사분면의 유동을 빠르게 만들도록 구성될 수 있다.
또한, 본 발명의 제 2 실시예에 따른 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기(10)는, 도 1에 나타낸 바와 같이 금속판 형태로 형성되는 와류 발생기(10)를 프로펠러 전방 측의 선박의 좌우 측면에 프로펠러를 기준으로 비대칭인 형태로 각각 부착하도록 구성된다.
즉, 본 발명의 제 2 실시예에 따른 와류 발생기(10)는, 도 1에 나타낸 바와 같이 금속판 형태로 형성되는 와류 발생기(10)를 선박 좌우 측면의 동일한 위치에 각도를 각각 달리하여 비대칭 형태로 부착하는 것에 의해, 프로펠러 면과 유입 유동과 이루는 받음각이 가장 크게 발생하는 1 사분면 또는 2 사분면의 유동을 더욱 빠르게 만들도록 구성될 수 있다.
계속해서, 도 2를 참조하면, 도 2는 본 발명의 제 3 실시예에 따른 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기의 전체적인 구성을 개략적으로 나타내는 도면이다.
즉, 본 발명의 제 3 실시예에 따른 와류 발생기(20)는, 도 2에 나타낸 바와 같이, 상기한 제 2 실시예와 마찬가지로 하여 선박 좌우 측면의 동일한 위치에 와류 발생기(10)를 각도를 달리하여 각각 부착하고, 여기에 추가적인 와류 발생기(20)를, 프로펠러가 시계방향으로 회전시는 우현 측에, 프로펠러가 반시계 방향으로 회전시는 좌현 측에 하나 더 부착하여, 1 사분면의 유동을 더욱 빠르게 만들도록 구성되는 것이며, 이때, 추가되는 와류 발생기(20)는, 기존의 와류 발생기(10)와 같은 높이에, 추진기 쪽 방향으로 좀 더 이동한 위치에 부착한다.
더 상세하게는, 상기한 제 1 및 제 2 실시예에서 와류 발생기(10)의 구체적인 부착 위치는, 선두부(FP)에서 선미부(AP)까지의 길이(AP ~ FP)를 선박의 전체 길이(LBP)라 할 때, 선미부(AP)에서부터 전체 길이(LBP)의 12% ~ 18% 사이에 해당하는 위치에 선박의 좌현 및 우현에 각각 부착되도록 구성될 수 있다.
아울러, 상기한 제 3 실시예에서 추가적인 와류 발생기(20)의 구체적인 부착 위치는, 프로펠러의 회전방향에 따라 선박의 우현 또는 좌현 측에, 선미부(AP)에서부터 전체 길이(LBP)의 8% ~ 15% 사이에 해당하는 위치에 부착되도록 구성될 수 있다.
더욱이, 상기한 와류 발생기(10, 20)의 설치 높이는, 선저면에서부터 추진기 축까지의 높이 사이의 범위 내에 설치될 수 있다.
또한, 도 3을 참조하면, 도 3은 와류 발생기에 대한 유동과의 받음각을 설명하기 위한 도면이다.
도 3에 나타낸 바와 같이, 상기한 와류 발생기(10, 20)의 부착각도는, 와류 발생기에 유입되는 유동 속도 벡터와 와류 발생기가 이루는 받음각(β)에 의해 정해지며, 바람직하게는, 상기 와류 발생기에 유입되는 유동과 와류 발생기가 이루는 받음각(β)이 5 ~ 15도 사이가 되도록 설정하며, 이때, 좌현과 우현의 부착각도 차이는, 0 ~ 10도 사이로 설정하거나, 필요에 따라, 1 ~ 10도 사이, 또는, 1 ~ 5도 사이로 설정할 수 있다.
아울러, 상기한 와류 발생기(10, 20)는, 예를 들면, 삼각형이나 사각형 등 여러 가지 형상으로 형성하는 것이 가능하나, 바람직하게는, 5각형 형상의 금속판으로 형성하여 부착하는 것이 가장 효과적이다.
따라서 상기한 바와 같은 구성에 의해, 와류 발생기(10, 20)에서 발생한 와류(vortex)가 선체 표면을 지나면서 기존의 유동 패턴을 변화시켜 추진기 면으로 유입되는 느린 물들을 추진기 바깥으로 밀어내고, 추진기 면에 빠른 속도의 유동이 유입되도록 하여 각 날개에 유입되는 유동의 받음각을 작게 함으로써 추진기 면의 부하를 낮추어 캐비테이션 발생을 억제하게 된다.
특히, 프로펠러가 시계방향으로 회전할 때 캐비테이션이 가장 많이 발생하는 1 사분면(프로펠러가 반시계 방향으로 회전시는 2 사분면)에서의 유동이 빨라짐으로 인해, 추진기 면과 유동과의 받음각이 줄어들어 캐비테이션의 발생이 크게 감소하며, 그것에 의해, 추진기 주 소음원인 캐비테이션에 의한 소음이 크게 감소하여 추진기에 의한 소음 및 진동을 감소할 수 있다.
여기서, 상기한 바와 같이 구성되는 본 발명의 실시예에 따른 와류발생기(10, 20)에 의한 추진기 소음 및 진동 감소 원리에 대하여 보다 구체적으로 설명하면 다음과 같다.
먼저, 본 발명에 있어서, 1 사분면이란, 선미 측에서 선수 측을 바라보았을 때의 프로펠러 면을 프로펠러 축의 중심을 기준으로 90도씩 4 등분하여 우측 상단의 영역을 1 사분면으로 하고, 나머지 영역은 반시계 방향으로 돌아가면서 차례로 2, 3, 4 분면으로 정의하며, 이때, 프로펠러의 회전방향은 시계 방향인 것으로 가정한다.
또한, 도 4 및 도 5를 참조하면, 도 4는 추진기 날개면에 대한 유동과의 받음각을 설명하기 위한 도면이고, 도 5는 와류 발생기를 부착하지 않은 경우 추진기 면에 유입되는 반류를 나타낸 도면이다.
도 4에 있어서, 선박 후미의 프로펠러 부분을 고정 좌표계로 두고 위에서 바라본 평면을 상정하면, 도 4에 나타낸 바와 같이, 프로펠러에 유입되는 유동 중 프로펠러 수직축 방향의 속도(axial velocity ; Va)는 선박의 이동(전진) 속도와 선체 형상에 의해 유기되는 반류(wake)의 프로펠러 축 방향의 속도 성분의 합으로 나타내지며, 수평축 방향의 속도(tangential velocity ; Vt)는 프로펠러의 회전속도와 선체 형상에 의해 유기되는 반류(wake)의 수평축 방향의 속도 성분의 합으로 나타낼 수 있다.
즉, 도 4에 나타낸 바와 같이, 이러한 프로펠러 수직축 방향의 속도(Va)와 수평축 방향의 속도(Vt)의 합에 의해 생성되는 벡터와 프로펠러 날개의 중심선(chord line) 사이의 각도를 받음각(α)이라 하며, 따라서 프로펠러의 회전속도가 증가하거나 추진기면에 유입되는 반류의 수평축 방향의 속도가 추진기 회전속도와 반대 방향으로 증가하면 받음각(α)이 커지고, 이동속도, 다시 말해, 프로펠러 측으로 유입되는 유동의 유속(즉, Va)이 증가하면 받음각(α)이 작아지게 된다.
더 상세하게는, 받음각(α)이 커지면 프로펠러 날개의 윗면(suction 면)과 아래면(pressure 면)에 걸리는 압력 차이가 커져서 프로펠러 날개에 걸리는 힘이 커짐으로 인해 저압 영역인 윗면(suction 면)에서의 캐비테이션 발생이 증가하며, 여기서, 상기한 바와 같은 1 사분면(프로펠러가 시계방향으로 회전시)을 고려하면, 도 5에 나타낸 바와 같이, 1 사분면에서는 반류(wake)의 수평(tangential) 성분이 추진기의 회전방향(시계 방향)과 반대 방향이므로 프로펠러 회전 방향과 수평(tangential) 성분이 동일한 2 사분면에 비해 상대적으로 유속이 빨라져 받음각(α)이 커지게 되고, 이는, 상기한 바와 같이 프로펠러 날개의 윗면(suction 면)과 아래면(pressure 면)에 걸리는 압력 차이를 증가시키므로, 다른 부분에 비해 1 사분면에서 가장 강한 캐비테이션이 발생하게 되고 소음 및 진동 유발의 주요 원인이 된다.
따라서 상기한 바와 같은 내용을 고려하여, 프로펠러가 시계방향으로 회전시 1 사분면에서의 받음각을 감소시키는 것이 전체적인 캐비테이션 감소의 측면에서 가장 효과적이며, 이를 위해, 상기한 본 발명의 실시예에 나타낸 바와 같이, 프로펠러의 전방에 와류 발생기를 부착하게 되면, 와류에 의해 수직축 방향의 속도(Va)가 증가하여 프로펠러 날개에 유입되는 유동의 받음각이 감소하게 되고, 그것에 의해, 프로펠러 날개면에 걸리는 힘이 감소하여 프로펠러 날개 윗면(suction 면)에서의 압력 저하가 완화됨으로써, 캐비테이션의 발생이 감소하여 추진기의 소음 및 진동을 감소할 수 있다.
더욱이, 상기한 제 3 실시예에서와 같이, 프로펠러가 시계방향으로 회전시 우현 측에 2개의 와류 발생기를 부착함으로써, 프로펠러 날개에 유입되는 유동의 속도를 더욱 증가시켜 상기한 바와 같은 받음각 감소에 의한 캐비테이션 발생의 감소 및 추진기 소음 및 진동 감소 효과를 더욱 증대시킬 수 있다.
상기한 바와 같이 하여 본 발명의 실시예에 따른 와류 발생기를 구현할 수 있으며, 즉, 추진기 전방의 선체 표면에 부착되어 추진기에 유입되는 유동을 제어하기 위해 날개 형상의 구조물이 유입 유동과의 받음각을 가지게 하여 유체 힘에 의한 유속 및 유동 방향을 제어하도록 구성되어 대형 구조물이 되어야 효과를 볼 수 있는 단점이 있었던 종래기술의 날개 형상의 부가물이나 유동 제어 핀(flowcontrol fin) 및 추진기 전방의 선체 표면에 부착되어 수평(tangential) 방향의 속도를 변화시키는 것에 의해 전류(Pre-swirl) 효과에 의한 추진기 효율 향상의 효과가 있는 반면, 캐비테이션 증가에 의해 추진기 소음 및 진동이 증가하는 부작용이 있었던 종래기술의 날개 형상의 부가물이나 유동제어 핀에 비해, 본 발명의 실시예에 따른 와류 발생기는, 선체 측면에 작은 구조물을 부착하는 것만으로 수평(tangential) 방향의 속도변화보다는 와류에 의한 축(axial) 방향의 속도 변화를 통해 날개면에 유입되는 받음각을 줄여줌으로써, 전반적으로 유동을 빠르게 만들면서도 캐비테이션이 가장 많이 발생하는 프로펠러면 1 사분면(프로펠러가 시계방향 회전시) 또는 2 사분면(프로펠러가 반시계 방향 회전시) 쪽의 유동을 특히 빠르게 만드는 비대칭적 반류(wake) 분포를 생성함으로써 캐비테이션 소음 발생을 최소화할 수 있도록 구성되는 점에서 기존의 와류 발생기들과는 차별되는 특징을 가지는 것이다.
계속해서, 도 6 내지 도 12를 참조하면, 도 6 내지 도 8은 본 발명의 실시예에 따른 와류 발생기를 부착한 경우와 부착하지 않은 경우를 비교하여 나타낸 도면이고, 도 9 내지 도 11은 본 발명의 제 1 실시예에 따른 와류 발생기를 사각형 형상으로 형성하여 부착한 경우와 오각형 형상으로 형성하여 부착한 경우를 각각 비교하여 나타낸 도면이며, 도 12는 와류 발생기를 부착한 경우와 부착하지 않은 경우에 프로펠러 표면에서 발생하는 캐비테이션의 발생량을 수치 해석으로 추정한 결과를 각각 비교하여 나타낸 도면이다.
여기서, 도 6 내지 도 12에 있어서, 프로펠러는 선미 측에서 선수 측을 바라볼 때 시계 방향으로 회전하는 것으로 가정한다.
또한, 도 6 내지 도 8에 있어서, 좌측(w/o VG)은 와류 발생기를 부착하지 않은 경우이고, 우측(w/ VG)은 본 발명의 실시예에 따른 와류 발생기를 좌현과 우현에 각각 부착한 경우에 선미 측에서 프로펠러 측을 바라본 평면상의 반류 분포(wake contour) 및 흐름(streamline)을 각각 나타내고 있으며, 아울러, 붉은색에 가까울수록 유속이 빠른 것을 나타내고, 푸른 색에 가까울수록 유속이 느린 것을 나타낸다.
먼저, 도 6을 참조하면, 좌측(w/o VG)은 와류 발생기를 부착하지 않은 경우이고, 우측(w/ VG)은 본 발명의 제 1 실시예에 따른 와류 발생기를 우현에 부착한 경우를 각각 나타내고 있다.
즉, 도 6에 나타낸 바와 같이, 본 발명의 제 1 실시예에 따라 와류 발생기를 부착한 경우가 부착하지 않은 경우에 비하여 1 사분면에서의 유속이 증가하였음을 확인할 수 있다.
다음으로, 도 7을 참조하면, 도 7의 좌측(w/o VG)은 와류 발생기를 부착하지 않은 경우이고, 우측(w/ VG)은 본 발명의 제 2 실시예에 따른 와류 발생기를 좌현과 우현에 각각 각도를 달리하여 비대칭으로 부착한 경우를 각각 나타내고 있다.
여기서, 도 7에 나타낸 결과는, 좌측의 와류 발생기의 각도를 8도로 하고 우측의 와류 발생기의 각도는 10도로 한 경우를 나타내고 있으나, 본 발명은 반드시 이러한 경우로만 한정되는 것은 아님에 유념해야 한다.
즉, 도 7에 나타낸 바와 같이, 본 발명의 제 2 실시예에 따라 와류 발생기를 부착한 경우가 부착하지 않은 경우에 비하여 전체적인 유속이 증가하는 것에 더하여, 우측의 와류 발생기의 각도를 더 크게 함으로써 1 사분면에 해당하는 우측 상부의 유속이 다른 부분에 비해 더욱 증가하였음을 확인할 수 있다.
다음으로, 도 8을 참조하면, 도 8의 좌측(w/o VG)은 와류 발생기를 부착하지 않은 경우이고, 우측(w/ VG)은 본 발명의 제 3 실시예에 따라 와류 발생기를 좌현과 우현에 각각 각도를 달리하여 비대칭으로 부착하는 동시에 우현 측에 추가적인 와류 발생기를 부착한 경우를 각각 나타내고 있다.
여기서, 도 8에 나타낸 결과는, 좌측의 와류 발생기의 각도를 8도로 하고 우측의 와류 발생기의 각도는 10도로 하며, 추가적인 와류 발생기는 우현 측에만 동일 높이에서 추진기 쪽으로 선박 길이(LBP)의 2.5%에 해당하는 길이만큼 이동한 위치에 부착한 경우를 나타내고 있으나, 본 발명은 반드시 이러한 경우로만 한정되는 것은 아님에 유념해야 한다.
즉, 도 8에 나타낸 바와 같이, 본 발명의 제 3 실시예에 따라 와류 발생기를 부착한 경우가 부착하지 않은 경우에 비하여 전체적인 유속이 증가하는 것을 알 수 있으며, 이에 더하여, 우현 측에 추가적인 와류 발생기를 부착함으로써 상기한 도 7에 나타낸 경우에 비하여도 1 사분면에 해당하는 우측 상부의 유속이 더욱 증가하였음을 확인할 수 있다.
계속해서, 도 9를 참조하면, 도 9의 좌측은 본 발명의 제 1 실시예에 따른 와류 발생기를 사각형 형상으로 형성하여 부착한 경우(w/ VG(rectangle))이고, 우측은 본 발명의 제 1 실시예에 따른 와류 발생기를 오각형 형상으로 형성하여 부착한 경우(w/ VG(pentagon))를 각각 비교하여 나타낸 도면이다.
즉, 도 9에 나타낸 바와 같이, 사각형의 경우에 비해 오각형의 경우가 좀 더 유속이 빠르게 나타나는 것을 알 수 있으며, 이는, 5각형 형상의 와류 발생기가 4각형 형상의 와류 발생기에 비해 와류 발생기 전방에서부터 와류가 더욱 잘 발달하게 만들어 전체적으로 더 강한 와류를 발생시키고, 결과적으로 더 빠른 유속을 유도하게 되는 것에 기인한 것이다.
또한, 도 10을 참조하면, 도 10은 와류발생기가 없는 경우 및 도 9의 사각형 와류 발생기와 5각형 와류 발생기의 1사분면 중 특히 느린 유동이 지나가는 회전각 315 ~ 360도 사이의 영역에서의 프로펠러 면에서 반경 방향으로 0.5r/R 및 0.7r/R에서의 프로펠러 축 방향의 유속 분포를 나타내고 있다.
이때, 도 10에 있어서, 회전각의 기준점은 맨 위 가운데(12시 방향)를 0도로 하여 반시계 방향으로 회전하는 것을 양의 방향으로 하며, 이 경우, 1사분면은 270 ~ 360도에 해당하게 된다.
아울러, 도 10에 있어서, Bare는 와류발생기가 없는 경우이고, R은 프로펠러 반경을 의미하며, RT는 4각형 형상의 와류발생기를, PT는 5각형 형상의 와류발생기를 각각 의미한다.
도 10에 나타낸 바와 같이, 4각형 형상의 와류발생기 및 5각형 형상의 와류발생기 모두 와류발생기가 없는 경우보다 유속이 빨라져 프로펠러 면에서의캐비테이션의 발생을 줄여주는 것을 확인할 수 있다.
여기서, 5각형 와류발생기의 경우, 유속이 느린 315 ~ 360도 사이에서 4각형 와류발생기에 비해 휠씬 빠른 유동이 지나가며, 특히, 유속이 가장 느린 350 ~ 360도 부근에서는 약 12% 이상의 유속 증가를 보여준다.
즉, 이러한 결과는, 4각형 형상의 와류판이나 5각형 형상의 와류판 모두 와류발생기가 없는 경우보다는 유속이 빨라져 프로펠러 면에서의 캐비테이션의 발생을 줄여주는 것을 확인할 수 있으나, 5각형 형상의 와류발생기가 4각형 형상의 와류발생기에 비해 유속이 느린 영역에서 캐비테이션의 발생을 더욱 크게 감소시켜 소음 및 진동 현상을 보다 효과적으로 줄여줄 수 있음을 의미한다.
또한, 도 11를 참조하면, 도 11의 좌측은 본 발명의 제 1 실시예에 따른 와류 발생기를 사각형 형상으로 형성하여 부착한 경우이고, 우측은 본 발명의 제 1 실시예에 따른 와류 발생기를 오각형 형상으로 형성하여 부착한 경우 각각의 와류판이 발생시키는 와류 강도(vortex strenth)를 각각 비교하여 나타낸 도면이다.
도 11에 나타낸 바와 같이, 오각형 형상의 와류판이 사각형 형상의 와류판 보다 와류 강도가 최대 20% 이상 증가하여 사각형 형상의 와류판에 비해 와류를 이용한 유속 제어에 훨씬 효과적인 것을 확인할 수 있다.
이러한 결과를 바탕으로, 와류 발생기의 형상은 4각형보다 5각형 형상이 훨씬 효과적인 것을 알 수 있다.
여기서, 상기한 본 발명의 실시예에서는, 설명을 간략히 하기 위해 본 발명에 따른 와류발생기의 형태가 5각형 형상인 것으로 나타내었으나, 5각형 형상의 와류판의 경우, 실제로 선박에 부착시, 바람직하게는, 구조 안정성을 위해 용접시 판을 덧대고, 와류판과 선체가 만나는 부분 및 와류판의 각진 부분에서는 모따기(chamfering), 모깍기(fillet) 및 필렛 가공 등을 통하여 날카로운 직각 부분이 라운드지도록 가공하여 와류판을 제작하도록 구성될 수 있다.
계속해서, 도 12를 참조하면, 도 12a는 와류 발생기를 부착하지 않은 경우이고, 도 12b는 본 발명의 제 2 실시예에 따른 와류 발생기를 부착한 경우 프로펠러 표면에서의 캐비테이션 분포를 각각 비교하여 나타낸 도면이다.
즉, 도 12에 나타낸 바와 같이, 와류 발생기를 부착한 경우 프로펠러 표면에서 발생하는 캐비테이션 부피가 크게 줄어드는 것을 알 수 있으며, 이는 결과적으로 캐비테이션에 의한 추진기 소음 및 진동을 크게 줄일 수 있음을 의미한다.
따라서 상기한 바와 같이 하여, 본 발명에 따른 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기를 구현할 수 있다.
또한, 상기한 바와 같이 하여 본 발명에 따른 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기를 구현하는 것에 의해, 본 발명에 따르면, 비대칭 와류 발생에 의한 축(axial) 방향의 속도 변화를 통해 날개면에 유입되는 받음각을 감소하는 것에 의해 프로펠러 회전 방향이 선미 측에서 선수 측으로 바라보았을 때 시계 방향인 경우 캐비테이션이 가장 많이 발생하는 프로펠러면 1사분면(프로펠러 회전방향이 반시계 방향인 경우는 2 사분면) 쪽의 유동을 특히 빠르게 만드는 비대칭적 반류(wake) 분포를 생성하여 캐비테이션 소음 및 진동을 최소화할 수 있도록 구성되는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기가 제공됨으로써, 추진기 전방의 선체 표면에 부착되어 추진기에 유입되는 유동을 제어하기 위해 날개 형상의 구조물이 유입 유동과의 받음각을 가지게 하여 유체 힘에 의한 유속 및 유동 방향을 제어하도록 구성되어 대형 구조물이 되어야 효과를 볼 수 있는 단점이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin) 및 추진기 전방의 선체 표면에 부착되어 수평(tangential) 방향의 속도를 변화시키는 것에 의해 전류(Pre-swirl) 효과에 의한 추진기 효율 향상의 효과가 있는 반면, 캐비테이션 증가에 의해 추진기 소음 및 진동이 증가하는 부작용이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin)의 문제점을 해결할 수 있다.
아울러, 본 발명에 따르면, 상기한 바와 같이 비대칭 와류 발생에 의한 축(axial) 방향의 속도 변화를 통해 날개면에 유입되는 받음각을 감소하는 것에 의해 프로펠러 회전 방향이 선미 측에서 선수 측으로 바라보았을 때 시계 방향인 경우 캐비테이션이 가장 많이 발생하는 프로펠러면 1 사분면(프로펠러 회전방향이 반시계 방향인 경우는 2 사분면) 쪽의 유동을 특히 빠르게 만드는 비대칭적 반류(wake) 분포를 생성하여 캐비테이션 소음 및 진동을 최소화할 수 있도록 구성되는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기가 제공됨으로써, 선체의 좌우 측면에 비대칭으로 부착되는 와류 발생기에 의해 추진기 날개면의 유동과 이루는 받음각이 평준화되고, 추진기 면에 유입되는 반류의 균일화를 통해 유동 정류 성능이 향상되어 캐비테이션 소음 및 진동을 감소할 수 있다.
이상, 상기한 바와 같은 본 발명의 실시예를 통하여 본 발명에 따른 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기의 상세한 내용에 대하여 설명하였으나, 본 발명은 상기한 실시예에 기재된 내용으로만 한정되는 것은 아니며, 따라서 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 설계상의 필요 및 기타 다양한 요인에 따라 여러 가지 수정, 변경, 결합 및 대체 등이 가능한 것임은 당연한 일이라 하겠다.
[부호의 설명]
10. 와류 발생기
20. 와류 발생기

Claims (13)

  1. 추진기 전방의 선체 표면에 부착되어 추진기에 유입되는 유동을 제어하기 위해 날개 형상의 구조물이 유입 유동과의 받음각을 가지게 하여 유체 힘에 의한 유속 및 유동 방향을 제어하도록 구성되어 대형 구조물이 되어야 효과를 볼 수 있는 단점이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin) 및 추진기 전방의 선체 표면에 부착되어 수평(tangential) 방향의 속도를 변화시키는 것에 의해 전류(Pre-swirl) 효과에 의한 추진기 효율 향상의 효과가 있는 반면, 캐비테이션 증가에 의해 추진기 소음 및 진동이 증가하는 부작용이 있었던 종래기술의 날개 형상의 부가물 또는 유동 제어 핀(flow control fin)의 문제점을 해결하기 위한 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기에 있어서,
    프로펠러가 시계방향으로 회전할 시, 금속판 형태로 형성되어 상기 추진기 전방의 선박의 우현(상기 프로펠러가 반시계 방향으로 회전시는 좌현) 측에 부착되는 제 1 와류생성판;을 포함하여 구성됨으로써,
    상기 캐비테이션이 가장 많이 발생하는 부분에 해당하는 상기 추진기의 우측 상부(상기 프로펠러가 반시계 방향으로 회전 시는 좌측 상부)에서 상기 추진기의 날개면으로 유입되는 유동의 유입속도를 더욱 빠르게 증가시키는 비대칭 반류(wake)를 생성하여 상기 추진기의 각 날개에 유입되는 유동의 받음각을 감소하는것에 의해, 상기 캐비테이션이 가장 많이 발생하는 상기 추진기의 우측 상부(상기 프로펠러가 반시계 방향으로 회전 시는 좌측 상부)에서의 상기 캐비테이션의 발생을 감소하여 상기 추진기에 의한 소음 및 진동을 감소할 수 있도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기.
  2. 제 1항에 있어서,
    상기 와류 발생기는,
    상기 제 1 와류생성판과 동일한 형태의 금속판 형태로 형성되어 상기 제 1 와류생성판의 맞은편인 상기 추진기 전방의 상기 선박의 좌현(상기 프로펠러가 반시계 방향으로 회전 시는 우현) 측에 부착되는 제 2 와류생성판을 더 포함하여 구성되고,
    상기 제 1 와류생성판 및 상기 제 2 와류생성판은,
    상기 선박의 좌우 측면의 동일한 위치에 각도를 각각 달리하여 부착됨으로써,
    상기 캐비테이션이 가장 많이 발생하는 부분에 해당하는 상기 추진기의 우측 상부(상기 프로펠러가 반시계 방향으로 회전 시는 좌측 상부)에서 상기 추진기의 날개면으로 유입되는 유동의 유입속도를 더 빠르게 증가시키는 비대칭 반류(wake)를 생성하여 상기 추진기의 각 날개에 유입되는 유동의 받음각을 감소하는 것에 의해, 상기 캐비테이션이 가장 많이 발생하는 상기 추진기의 우측 상부에서의 상기 캐비테이션의 발생을 감소하여 상기 추진기에 의한 소음 및 진동을 감소할 수 있도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기.
  3. 제 2항에 있어서,
    상기 와류 발생기는,
    상기 제 1 와류 발생기보다 상기 추진기 측에 더 가까운 위치에 상기 제 1 와류 발생기와 같은 높이로 상기 선박의 우현(상기 프로펠러가 반시계 방향으로 회전시는 좌현) 측에 부착되는 제 3 와류생성판을 더 포함하여 구성됨으로써,
    상기 캐비테이션이 가장 많이 발생하는 상기 추진기의 우측(상기 프로펠러가 반시계 방향으로 회전시는 좌측) 상부에서 상기 추진기의 날개면으로 유입되는 유동의 유입속도를 더욱 빠르게 증가시켜 상기 추진기의 각 날개에 유입되는 유동의 받음각을 더 크게 감소하는 것에 의해 상기 캐비테이션의 발생을 더욱 크게 감소할 수 있도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기.
  4. 제 3항에 있어서,
    상기 제 1 와류생성판 및 상기 제 2 와류생성판은,
    상기 선박의 선두부(FP)에서 선미부(AP)까지의 길이(AP ~ FP)를 상기 선박의 전체 길이(LBP)라 할 때, 상기 선미부(AP)에서부터 상기 전체 길이(LBP)의 12% ~ 18% 사이에 해당하는 위치에 각각 부착되도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기.
  5. 제 4항에 있어서,
    상기 제 3 와류생성판은,
    상기 선미부(AP)에서부터 상기 전체 길이(LBP)의 8% ~ 15% 사이에 해당하는 위치에 부착되도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기.
  6. 제 5항에있어서,
    상기 제 1 와류생성판 내지 상기 제 3 와류생성판은,
    상기 선박의 선저면에서부터 상기 추진기의 축 높이까지의 범위 내에 설치되도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기.
  7. 제 6항에있어서,
    상기 제 1 와류생성판 내지 상기 제 3 와류생성판은,
    각각 5각형 형상으로 형성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기.
  8. 제 7항에 있어서,
    상기 제 1 와류생성판 내지 상기 제 3 와류생성판은,
    상기 와류 생성판에 유입되는 유동과 상기 와류 생성판이 이루는 받음각이 5 ~ 15도 사이가 되도록 하는 각도로 설치되도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기.
  9. 제 8항에 있어서,
    상기 와류 발생기는,
    상기 프로펠러가 시계 방향으로 회전시 상기 선박의 우현(상기 프로펠러가 반시계 방향으로 회전시는 좌현)에 설치되는 상기 제 1 와류생성판 및 상기 제 3 와류생성판과 상기 선박의 좌현(상기 프로펠러가 반시계 방향으로 회전시는 우현)에 설치되는 상기 제 2 와류생성판의 부착각도 차이가 0 ~ 10도 사이로 설치되도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기.
  10. 제 9항에 있어서,
    상기 와류 발생기는,
    상기 프로펠러가 시계 방향으로 회전시 상기 선박의 우현(상기 프로펠러가 반시계 방향으로 회전시는 좌현)에 설치되는 상기 제 1 와류생성판 및 상기 제 3와류생성판과 상기 선박의 좌현(상기 프로펠러가 반시계 방향으로 회전시는 우현)에 설치되는 상기 제 2 와류생성판의 부착각도 차이가 1 ~ 10도 사이로 설치되도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기.
  11. 제 10항에 있어서,
    상기 와류 발생기는,
    상기 프로펠러가 시계 방향으로 회전시 상기 선박의 우현(상기 프로펠러가 반시계 방향으로 회전시는 좌현)에 설치되는 상기 제 1 와류생성판 및 상기 제 3 와류생성판과 상기 선박의 좌현(상기 프로펠러가 반시계 방향으로 회전시는 우현)에 설치되는 상기 제 2 와류생성판의 부착각도 차이가 1 ~ 5도 사이로 설치되도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기.
  12. 청구항 1항 내지 11항 중 어느 한 항에 기재된 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기를 이용하여 캐비테이션의 발생을 감소함으로써 선박의 소음 및 진동을 저감할 수 있도록 구성되는 것을 특징으로 하는 추진기 소음 및 진동 저감방법.
  13. 청구항 1항 내지 11항 중 어느 한 항에 기재된 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기를 부착하는 것에 의해 캐비테이션의 발생을 감소함으로써 소음 및 진동을 저감할 수 있도록 구성되는 것을 특징으로 하는 선박.
PCT/KR2015/004963 2015-03-04 2015-05-18 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기 WO2016140398A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15884064.5A EP3266698B1 (en) 2015-03-04 2015-05-18 Asymmetric wake generating vortex generator for reducing propeller noise and vibration
CN201580000741.2A CN106163916B (zh) 2015-03-04 2015-05-18 产生用于减少推进器噪音与振动的非对称伴流的涡流发生器
SG11201609079RA SG11201609079RA (en) 2015-03-04 2015-05-18 Asymmetric wake generating vortex generator for reducing propeller noise and vibration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150030460A KR101661584B1 (ko) 2015-03-04 2015-03-04 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기
KR10-2015-0030460 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016140398A1 true WO2016140398A1 (ko) 2016-09-09

Family

ID=56848972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004963 WO2016140398A1 (ko) 2015-03-04 2015-05-18 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기

Country Status (5)

Country Link
EP (1) EP3266698B1 (ko)
KR (1) KR101661584B1 (ko)
CN (1) CN106163916B (ko)
SG (1) SG11201609079RA (ko)
WO (1) WO2016140398A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180687B2 (en) 2017-08-29 2021-11-23 Cac Shanghai International Trading Co., Ltd. Anhydrous heat transfer medium and application thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102028320B1 (ko) 2019-01-17 2019-10-04 엘아이지넥스원 주식회사 와류를 이용한 일체형 추진 장치 및 이의 에너지 하베스팅 시스템
CN110103934A (zh) * 2019-04-25 2019-08-09 哈尔滨创奇旅游装备科技开发有限公司 基于涡流发生器的高速救援全垫升气垫船装备减阻方法
CN112977713B (zh) * 2021-04-07 2021-12-21 浙江海洋大学 一种用于螺旋桨式船舶的涡流发生器及船舶
CN115017609B (zh) * 2022-05-23 2023-05-26 中国船舶科学研究中心 一种实尺度船舶附体空化部位有效攻角评估方法
KR102439312B1 (ko) 2022-06-15 2022-09-01 주식회사 모쓰 질량 호흡 제어를 이용한 팁 보오텍스 케비테이션 저감 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920009838B1 (ko) * 1989-07-28 1992-10-31 현대중공업 주식회사 비대칭 유도판을 이용한 선미류 유도장치
JP2002362485A (ja) * 2001-06-05 2002-12-18 Sanoyas Hishino Meisho Corp 船舶フィン装置
KR20080092850A (ko) * 2007-04-13 2008-10-16 가부시키가이샤 오시마 조우센죠 선박
KR20090072242A (ko) * 2007-12-28 2009-07-02 삼성중공업 주식회사 추진기 유기 기진력 저감을 위한 선박의 다중 유동제어장치
KR20130004757A (ko) * 2011-07-04 2013-01-14 현대중공업 주식회사 선속 향상 및 선미부의 유동 개선을 위한 선미 부가물

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548388A (en) * 1977-06-20 1979-01-22 Nippon Kokan Kk <Nkk> Shipping
KR100718934B1 (ko) * 2006-09-01 2007-05-18 삼성중공업 주식회사 압력저항 및 진동 개선 용 유동제어장치
WO2009154495A1 (ru) * 2008-06-09 2009-12-23 Федеральное Государственное Унитарное Предприятие "Санкт-Петербургское Морское Бюро Машиностроения "Малахит" Кормовое крестообразное оперение подводного аппарата
US7802533B1 (en) * 2009-04-09 2010-09-28 CSBC Corporation, Taiwan Marine vehicle having pre-swirl generator for generating pre-swirl flow
KR20120019280A (ko) * 2010-08-25 2012-03-06 삼성중공업 주식회사 선박 및 선박의 제어 방법
JP5372977B2 (ja) * 2011-01-31 2013-12-18 株式会社新来島どっく 複合型フィン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920009838B1 (ko) * 1989-07-28 1992-10-31 현대중공업 주식회사 비대칭 유도판을 이용한 선미류 유도장치
JP2002362485A (ja) * 2001-06-05 2002-12-18 Sanoyas Hishino Meisho Corp 船舶フィン装置
KR20080092850A (ko) * 2007-04-13 2008-10-16 가부시키가이샤 오시마 조우센죠 선박
KR20090072242A (ko) * 2007-12-28 2009-07-02 삼성중공업 주식회사 추진기 유기 기진력 저감을 위한 선박의 다중 유동제어장치
KR20130004757A (ko) * 2011-07-04 2013-01-14 현대중공업 주식회사 선속 향상 및 선미부의 유동 개선을 위한 선미 부가물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180687B2 (en) 2017-08-29 2021-11-23 Cac Shanghai International Trading Co., Ltd. Anhydrous heat transfer medium and application thereof

Also Published As

Publication number Publication date
EP3266698A4 (en) 2018-10-24
EP3266698B1 (en) 2019-11-06
CN106163916A (zh) 2016-11-23
KR20160107558A (ko) 2016-09-19
CN106163916B (zh) 2018-09-21
KR101661584B1 (ko) 2016-10-10
EP3266698A1 (en) 2018-01-10
SG11201609079RA (en) 2016-12-29

Similar Documents

Publication Publication Date Title
WO2016140398A1 (ko) 추진기 소음 및 진동 저감을 위한 비대칭 반류 생성 와류 발생기
KR101023052B1 (ko) 덕트를 구비한 전류고정날개
KR101334217B1 (ko) 연료절감형 선박용 크라운 덕트
KR20100103982A (ko) 선박의 전류고정날개
WO2015199332A1 (ko) 환기 및 냉각용 무코어 도너츠형 모터팬
JP2006347285A (ja) 船舶の船尾部構造及びその設計方法
KR20120126910A (ko) 복수열의 핀을 가지는 선박의 프로펠러 덕트 구조체
KR101516839B1 (ko) 선박용 덕트 구조체
WO2020121671A1 (ja) モータ一体型流体機械及び垂直離着陸機
CN106043641A (zh) 一种船用环形导流栅
KR20120023843A (ko) 전류고정날개의 덕트 고정방법
KR20120058632A (ko) 덕트를 구비한 전류고정날개 및 덕트의 고정방법
WO2019027126A1 (ko) 덕트형 선박 에너지 절감 장치
WO2015108354A1 (ko) 가스 터빈의 블레이드 팁 실링 장치
WO2020166250A1 (ja) モータ一体型流体機械及び垂直離着陸機
KR101506050B1 (ko) 선박용 덕트 구조체
KR100416720B1 (ko) 비대칭 전류 고정 날개
KR20120094763A (ko) 전류고정날개를 적용한 선박용 덕트-프로펠러
WO2020158361A1 (ja) モータ一体型流体機械及び垂直離着陸機
KR20120068250A (ko) 선박용 덕트 구조체
WO2018201812A1 (zh) 涵道风扇
WO2022114541A1 (ko) 기계적 강성 및 출력 특성을 고려한 라인 기동식 동기형 릴럭턴스 전동기의 회전자
WO2016208867A1 (ko) 양방향 축류펌프
WO2018221766A1 (ko) 자기부상 임펠러를 갖는 유체기기
KR20150135906A (ko) 외측 핀이 장착된 프로펠러 덕트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884064

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015884064

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015884064

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE