WO2016140369A1 - Cellulose three-dimensional structure and production method therefor - Google Patents

Cellulose three-dimensional structure and production method therefor Download PDF

Info

Publication number
WO2016140369A1
WO2016140369A1 PCT/JP2016/057253 JP2016057253W WO2016140369A1 WO 2016140369 A1 WO2016140369 A1 WO 2016140369A1 JP 2016057253 W JP2016057253 W JP 2016057253W WO 2016140369 A1 WO2016140369 A1 WO 2016140369A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
dimensional structure
cdp
sponge
concentration
Prior art date
Application number
PCT/JP2016/057253
Other languages
French (fr)
Japanese (ja)
Inventor
芹澤 武
敏樹 澤田
裕道 大倉
裕樹 秦
太郎 小泉
秀一 三橋
西澤 剛
Original Assignee
Jxエネルギー株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社, 国立大学法人東京工業大学 filed Critical Jxエネルギー株式会社
Priority to JP2017503744A priority Critical patent/JPWO2016140369A1/en
Publication of WO2016140369A1 publication Critical patent/WO2016140369A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to, for example, an artificially synthesized cellulose three-dimensional structure and a method for producing the same.
  • Cellulose is the most abundant organic polymer on earth. Cellulose is a material material attracting attention because of its high sustainability in addition to its resource. Cellulose obtained from natural products by mechanical treatment or chemical treatment is known to be in a fibrous form, and its use according to its structure and physical properties is being developed. In addition, cellulose nanocrystals (CNC) obtained by acid treatment of natural resources are expected to be used as new cellulose materials. CNC has an I-type crystal structure in which cellulose chains are arranged in parallel, and has attracted attention as a filler for composite materials because of its high aspect ratio, excellent mechanical strength, thermal stability, and the like.
  • crystalline cellulose can also be synthesized artificially (since cellulose obtained by artificial synthesis is generally an oligomer, such cellulose is called cellodextrin. All called cellulose).
  • the following reaction shows the enzymatic synthesis of cellulose using the reverse reaction of cellodextrin phosphorylase (CDP).
  • CDP cellodextrin phosphorylase
  • a cellulose crystal cellulose nanosheet having a nanosheet structure having a length of several ⁇ m, a width of several hundreds of nm, and a thickness of 4.5 nm is obtained by enzymatic synthesis utilizing a reverse reaction of CDP which is a phosphorolytic enzyme.
  • CNS Non-patent Document 1
  • ⁇ -D-glucose monophosphate ( ⁇ G1P) is sequentially polymerized as a monomer with respect to D-(+)-glucose serving as a primer.
  • D-(+)-glucose used for cellulose synthesis is difficult to recognize, but as a result, the polymerization reaction proceeds successfully.
  • CNS has a more stable antiparallel chain type II crystal structure, unlike naturally occurring type I crystals. Therefore, the cellulose chains are arranged in antiparallel to the thickness direction in the CNS, and as a result, the reducing end and non-reducing end of cellulose are regularly exposed on the sheet surface.
  • CNS is stably dispersed in pure water, but has a property of dissolving in an aqueous NaOH solution.
  • an object of the present invention is to synthesize a cellulose structure having novel characteristics using various polymers in the synthesis of cellulose using cellodextrin phosphorylase (CDP). .
  • CDP cellodextrin phosphorylase
  • the present inventors have found that a cellulose three-dimensional structure having the above can be synthesized and have completed the present invention. That is, the present invention includes the following. (1) The following formula (I): (In the formula, n is 4 to 10) The cellulose three-dimensional structure which contains the compound shown by these as a structural component. (2) The cellulose three-dimensional structure according to (1), which contains a polymer. (3) The cellulose three-dimensional structure according to (2), wherein the polymer is a cellulose nanocrystal or a water-soluble polymer. (4) The cellulose three-dimensional structure according to (3), wherein the water-soluble polymer is selected from the group consisting of polyethylene glycol, dextran and polyvinylpyrrolidone.
  • a scaffold comprising the cellulose three-dimensional structure according to any one of (1) to (7).
  • a film comprising the cellulose three-dimensional structure according to any one of (1) to (7).
  • the observation result of the AFM (atomic force microscope) of the uniformly sponged sample (conditions of maboya-derived CNC of 0.10 w / v% and CDP of 0.20 U / mL) in the cellulose synthesis method 1 of Example 1 Show.
  • the analysis result by the total reflection infrared spectrophotometer of the sample sponge-formed uniformly in the synthesis method 1 of the cellulose of Example 1 is shown.
  • the analysis result by the nuclear magnetic resonance spectroscopy apparatus of the cellulose sponge-formed uniformly in the cellulose synthesis method 1 of Example 1 is shown.
  • MALDI-TOF-MS Microx-Assisted Laser Desorption
  • Sample Sponge Uniformly Sponge in Cellulose Synthesis Method 1 of Example 1 (Condition of Maboya-derived CNC of 0.10 w / v% and CDP of 0.20 U / mL)
  • An analysis result by an ionization time-of-flight mass spectrometer is shown.
  • the numbers indicate the degree of polymerization of cellulose.
  • rupture of the sample sponge-formed uniformly in the synthesis method 1 of the cellulose of Example 1 is shown.
  • concentration in the synthesis method 1 of the cellulose of Example 1 (CDP is 0.20 U / mL conditions) is shown.
  • the analysis result by the total reflection infrared spectrophotometer of the sample sponge-formed uniformly in the synthesis method 1 of the cellulose of Example 1 (Condition that wood origin CNC is 0.50 w / v%) is shown.
  • Samples uniformly sponged in the cellulose synthesis method 1 of Example 1 (conditions where maboya-derived CNC is 0.10 w / v%, wood-derived CNC is 0.50 w / v%, CDP is 0.20 U / mL)
  • rod is shown.
  • concentration in the synthesis method 2 of the cellulose of Example 1 is changed (conditions where CDP is 0.20 U / mL) is shown.
  • concentration in the synthesis method 2 of the cellulose of Example 1 (condition that PEG is 10 w / v%) is shown.
  • Observation result of scanning electron microscope left photo: magnification 5000 times) of the uniformly sponged sample (conditions in which PEG is 10 w / v% and CDP is 0.20 U / mL) in the cellulose synthesis method 2 of Example 1
  • Sample tube inversion test of uniformly sponged sample conditions of dextran (Dex), PEG or polyvinylpyrrolidone (PVP) 10 w / v%, CDP 0.20 U / mL) in cellulose synthesis method 2 of Example 1
  • Dex dextran
  • PEG polyvinylpyrrolidone
  • CDP polyvinylpyrrolidone
  • the chemical structure and the crystal structure analysis result of the uniformly sponged cellulose (Dex, PEG or PVP is 10 w / v%, CDP is 0.20 U / mL) in the cellulose synthesis method 2 of Example 1 are shown.
  • the photograph of the sample tube fall test of the sponge-like cellulose structure (Dex is 10 w / v%, CDP is 0.20 U / mL) prepared by coexistence of Dex in the cellulose synthesis method 2 of Example 1 is shown.
  • the photograph of the sample tube tipping test of the sponge-like cellulose structure prepared by the coexistence of Dex in the cellulose synthesis method 2 of Example 1 is shown.
  • Cellulose three-dimensional structure according to the present invention has the following formula (I): (In the formula, n is 4 to 10) Is contained as a constituent component. Unlike the type I cellulose structure in which naturally occurring cellulose chains are arranged in parallel, the cellulose three-dimensional structure according to the present invention has a more stable antiparallel chain type II cellulose structure.
  • the degree of polymerization of the compound of the formula (I) is, for example, 6 or more, 7 or more, preferably 8 or more (that is, n is 4 or more, 5 or more, preferably 6 or more in the compound of the formula (I)), and 12 or less, preferably 11 or less (that is, in the compound of formula (I), n is 10 or less, preferably 9 or less).
  • the cellulose three-dimensional structure according to the present invention has a three-dimensional network structure such as a sponge-like structure (ribbon-like cellulose network) due to the coexistence of polymers in the synthesis of cellulose using cellodextrin phosphorylase (CDP). It becomes the three-dimensional structure which has.
  • the voids in the network structure are connected to the outer surface (thus, the solvent (moisture) goes out). Accordingly, the three-dimensional structure has a structure in which the solvent (moisture) comes out on the outer surface while being collapsed (applying pressure), accompanied by the collapse of the structure corresponding to the pressure. Due to the coexistence of the polymer during synthesis, the cellulose three-dimensional structure according to the present invention contains a polymer. Examples of the polymer include cellulose nanocrystals and water-soluble polymers. Cellulose nanocrystals are of natural origin such as maboya or wood. Cellulose nanocrystals derived from maboya or wood are described in J. Am. Araki et al., Colloids Surf.
  • water-soluble polymer examples include polyethylene glycol (for example, molecular weight: 15000 to 25000), dextran (for example, molecular weight: 90000 to 210000), and polyvinylpyrrolidone (for example, weight average molecular weight: ca. 29000).
  • the water-soluble polymer can be removed to obtain a three-dimensional cellulose structure composed of the compound of formula (I) alone. 2.
  • ⁇ -D-glucose monophosphate ( ⁇ G1P) and D-(+)-glucose as a primer in the presence of a polymer are obtained by enzymatic synthesis utilizing the reverse reaction of cellodextrin phosphorylase (CDP).
  • CDP cellodextrin phosphorylase
  • the cellulose three-dimensional structure according to the present invention can be produced by reacting with CDP.
  • ⁇ G1P is sequentially polymerized as a monomer.
  • ⁇ G1P and D-(+)-glucose may be commercially available products.
  • CDP is, for example, M.P. Krishnareddy et al. Appl. Glycosci. , 2002, 49, 1-8.
  • CDP derived from Clostridium thermocellum YM4 strain can be prepared.
  • the enzyme amount of CDP is determined by, for example, incubating ⁇ -D-glucose monophosphate, D-(+)-cellobiose and CDP, quantifying the phosphate produced by CDP, and adding 1 ⁇ mol of phosphate per minute. The amount of enzyme released can be determined as 1U.
  • HEPES ethan
  • the cellulose three-dimensional structure according to the present invention can be manufactured.
  • the water-soluble polymer used at the time of manufacture can be removed from the manufactured cellulose three-dimensional structure.
  • the removal of the water-soluble polymer can be performed, for example, by immersing the cellulose three-dimensional structure in water. 3.
  • Use of cellulose three-dimensional structure according to the present invention 3-1. Medical field 3-1-1.
  • Cell culture scaffold The cellulose three-dimensional structure according to the present invention can be used as a scaffold for growing animal cells on its surface, for example.
  • the cells to be grown may be derived from animals, and examples include cells derived from mammals, reptiles, or insects. Further, primary cultured cells isolated from organs and tissues such as heart, liver, spleen and epidermis, subcultured established cells and tumor cells may be used. Furthermore, somatic stem cells such as mesenchymal stem cells (MSC), induced pluripotent stem cells, CHO cells, BHK cells, cell lines such as Vero cells, and the like may be used. Examples of the medium used for cell culture include a basal medium in which low molecular weight compounds such as amino acids and vitamins are added to a balanced salt solution.
  • the cellulose three-dimensional structure can be formed into a thin film and cells can be cultured on the surface of the thin film. The culture efficiency can be increased by supplying the nutrient components also from the bottom surface of the thin film. Cells grown in a monolayer on the cellulose three-dimensional structure can be detached and recovered with a cell release agent.
  • a chelating agent for removing divalent cations such as ethylenediaminetetraacetic acid (EDTA), a protease such as trypsin for cell-matrix, cell-cell adhesion protein, or cellulase can be used.
  • the cell can also be detached by decomposing and solubilizing part or all of the cellulose three-dimensional structure. In the latter method using no protease, the cell-cell adhesion does not peel off and does not affect the cells, so that a highly active suspension cell or cell sheet can be obtained.
  • the obtained cell sheet was laminated with the obtained cell sheet in the same manner, or the surface of the cell sheet was coated with an intercellular adhesion protein or the like, and further cultured, the cells were three-dimensionally thick.
  • a cell mass can be obtained.
  • the cellulose three-dimensional structure according to the present invention can be used as a scaffold for growing animal cells therein.
  • the cellulose three-dimensional structure can be formed into a structure having voids of a size that allows cells to enter or larger, and the cells can be cultured in the structure.
  • the cells to be grown may be any cells as long as they are derived from animals, as described in Section 3-1-1 above.
  • the medium used for the culture may be a basal medium, a serum-added medium, or a medium supplemented with other components, as described in Section 3-1-1 above.
  • the concentration of cells per culture solution can be increased.
  • rCHO cells and the like that have been given the ability to produce biopharmaceuticals such as antibodies and proteins are cultured at a high concentration in the cellulose three-dimensional structure, the production amount of antibodies and proteins per batch will increase, Manufacturing cost can be reduced.
  • a new medium is added and cultured again, or a medium containing the target product is continuously collected and a new medium is additionally added.
  • the cellulose three-dimensional structure according to the present invention can be used as a scaffold for growing animal cells therein.
  • the cellulose three-dimensional structure can be formed into a structure having voids of a size that allows cells to enter or larger, and the cells can be cultured in the structure.
  • the cells to be grown may be any cells as long as they are derived from animals, as described in Section 3-1-1 above.
  • the medium used for the culture may be a basal medium, a serum-added medium, or a medium to which other components are added, as described in Section 3-1-1 above.
  • the cellulose three-dimensional structure can be formed into a shape suitable for a target tissue before, during or after cell culture and used for regeneration of a living tissue or organ. In the case of molding before cell culture, the cellulose three-dimensional structure can be reacted in a mold having a desired shape during the polymerization reaction, or can be formed into a desired shape by cutting, laminating, weaving, etc. after molding. .
  • the cellulose three-dimensional structure can be decomposed and solubilized by cellulase treatment without affecting the cells. Prior to transplantation into the organ, it may be subjected to cellulase treatment, and part or all may be decomposed and solubilized, or may be transplanted together with the scaffold without being subjected to cellulase treatment. Furthermore, the three-dimensional structure in which the cells are grown is used for basic medical research such as elucidation of the mechanism of cancer metastasis, evaluation of the efficacy of anticancer drugs, etc., assuming that the shape and function of the tissue or organ are reproduced ex vivo.
  • the cellulose three-dimensional structure according to the present invention can also be used as a transplant material to an animal bone defect site and a periodontal tissue regeneration-inducing material.
  • the cellulose three-dimensional structure can be easily molded into a desired shape and can be sterilized by high-pressure steam.
  • the cellulose three-dimensional structure may be engrafted with cells before transplantation, or may be transplanted as it is. 3-2.
  • the three-dimensional cellulose structure according to the present invention includes a film (for example, a microporous film (application example: separator, adsorbent, biosensor, etc.), a dense film (application). For example, it can be used in the environment / energy field as a barrier film or the like)).
  • a film for example, a microporous film (application example: separator, adsorbent, biosensor, etc.), a dense film (application).
  • it can be used in the environment / energy field as a barrier film or the like.
  • 3-2-1. Application to Battery Separator The three-dimensional cellulose structure according to the present invention can be used as a separator for a secondary battery such as a lithium ion battery. By using it as a separator, it has higher heat resistance than conventional polyolefin separators. For example, when the battery overheats due to overcharging, etc., it prevents the separator from melting and causing an internal short circuit.
  • the cellulose three-dimensional structure according to the present invention is obtained by dispersing and supporting adsorbent fine particles such as silica, alumina, zeolite, Prussian blue, etc., toxic gases such as ammonia and aldehydes, harmful substances such as radioactive waste, It is possible to absorb and recover valuable metals.
  • adsorbent fine particles such as silica, alumina, zeolite, Prussian blue, etc.
  • toxic gases such as ammonia and aldehydes
  • harmful substances such as radioactive waste
  • an enzyme such as glucose oxidase
  • it can be used as a glucose sensor.
  • Gas barrier sheet (including structure)
  • a gas barrier sheet that blocks gas such as water vapor
  • the inorganic nanomaterial include nanoparticles such as silica or clay such as montmorillonite.
  • Heat-dissipating sheet It is possible to use as a heat-dissipating material by densely supporting a material having high thermal conductivity on the three-dimensional cellulose structure according to the present invention.
  • Examples of the material having high thermal conductivity include carbon-based materials such as diamond, graphene, and carbon nanotubes, metal materials such as silver, copper, gold, and aluminum, and inorganic materials such as alumina, magnesia, and hexagonal boron nitride. 3-2-6.
  • Thermal storage sheet It is possible to use as a thermal storage material by disperse
  • Examples of the heat storage material include latent heat storage materials such as erythritol, sodium acetate trihydrate, sodium sulfate decahydrate, paraffin, and Fe-Co alloy, and other sensible heat storage materials and chemical heat storage materials.
  • the latent heat storage material uses the phase transition of the substance, and in the case of the heat storage material using the solid-liquid phase transition, it is necessary to devise so that no leakage occurs when it becomes liquid, such as petroleum resin There is a method of inclusion in the capsule. 3-2-7.
  • Separation and purification substrate column packing, electrophoresis
  • the cellulose three-dimensional structure according to the present invention has a nano-sized space, it can be used as a separation / purification column or a packing for electrophoresis using the space.
  • CDP cellodextrin phosphorylase
  • CNC cellulose nanocrystal
  • PEG polyethylene glycol
  • Dex dextran
  • PVP polyvinylpyrrolidone
  • PEG molecular weight 15000-25000
  • Dex molecular weight 90000-210000
  • PVP has a weight average molecular weight of ca. The 29,000 one was purchased from Sigma-Aldrich.
  • 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (Good buffer) and 3- (N-morpholino) propanesulfonic acid (Biotechnology grade) were purchased from Nacalai Tesque.
  • a 4 mol / L aqueous sodium hydroxide solution was purchased from Nacalai Tesque.
  • Acetic acid (special reagent for spectrum) and sodium acetate (special grade) were purchased from Nacalai Tesque. Cellulase was purchased from Sigma-Aldrich from Trichoderma violet. As the ultrapure water, water purified by a Milli-Q system (Milli-Q Advantage A10, Millipore) was used. 40% sodium bicarbonate / heavy aqueous solution, glycerol (special grade), kanamycin sulfate (for biochemistry), isopropyl- ⁇ -D ( ⁇ )-thiogalactopyranoside (for biochemistry), N, N, N ′, N'-tetramethylethylenediamine (special grade) was purchased from Wako Pure Chemical.
  • Dithiothreitol (special reagent for molecular biology research), L (+)-ascorbic acid (biotechnology grade), hexaammonium heptamolybdate tetrahydrate (special grade), zinc acetate dihydrate (special grade), phosphorus Sodium dihydrogen acid dihydrate (special grade), sodium chlorite (chemical grade), sodium hydroxide (special grade), potassium hydroxide (special grade), imidazole (special reagent for molecular biology research), sodium chloride (molecule) Special reagent for biological research), sodium azide (special grade), tris (hydroxymethyl) aminomethane (special reagent for molecular biology research), 6M hydrochloric acid, 1-butanol (special grade), glycine (special grade for molecular biology research) Reagent), ethanol (biotechnology grade), ethanol (special reagent for spectrum), tert-butyl alcohol (special grade) are Naka It was purchased from Itesuku.
  • LB-BROTH LENNOX and LB-AGAR LENNOX were purchased from Funakoshi.
  • Ni-NTA agarose gel was purchased from QIAGEN. 1-2.
  • Measurement of enzyme activity The activity of CDP was measured as follows. 50 mM 3- (N-morpholino) propanesulfonic acid buffer (pH 7.5) containing 10 mM ⁇ -D-glucose monophosphate, 10 mM D-(+)-cellobiose, and CDP diluted at a predetermined magnification. Incubated at 37 ° C.
  • U / mL was defined as the enzyme activity when the amount of enzyme that liberates 1 ⁇ mol of phosphoric acid per minute was defined as 1 U.
  • the dilution rate of CDP was determined such that the conversion rate of ⁇ -D-glucose monophosphate was 10% or less when the reaction time was 100 minutes. 1-3.
  • Cellulose synthesis method 1 coexistence of CNC
  • the monomer ⁇ -D-glucose monophosphate is 200 mM
  • the primer D-(+)-glucose is 50 mM
  • CDP is 0.01 to 0.40 U / mL
  • the CNC is These were mixed in 500 mM 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid buffer (pH 7.5) so as to be 0.001 to 0.50 w / v%.
  • the reaction was carried out at 60 ° C. for 3 days.
  • the produced sponge-like cellulose structure was immersed in ultrapure water for 1 week and purified. 1-4.
  • Cellulose synthesis method 2 Coexistence of water-soluble polymer Monomer ⁇ -D-glucose monophosphate is 200 mM, primer D-(+)-glucose is 50 mM, CDP is 0.05 to 0.40 U / mL. , PEG, Dex or PVP so that they are 2 to 20 w / v% or 5 to 20 w / v%, these are added with 500 mM 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid buffer. (PH 7.5) and mixed at 60 ° C. for 3 days. The produced sponge-like cellulose structure was immersed in ultrapure water for 1 week and purified. 1-5.
  • the presence or absence of sponge formation was evaluated by a sample tube overturning test (determined that the sample tube did not flow when the sample tube was placed upside down).
  • the structure of the sponge-like cellulose structure was determined by freeze-drying the sponge-like cellulose structure and then using a scanning electron microscope (JSM-7500F, JEOL) and a total reflection infrared spectrophotometer (FT / IR-4100, JASCO). evaluated.
  • the structure and average degree of polymerization of cellulose were evaluated by a nuclear magnetic resonance spectrometer (DPX-300, Bruker) after freeze-drying the sponge-like cellulose structure and adding a 4% sodium bicarbonate / heavy aqueous solution.
  • the coexisting CNC was removed by centrifugation after adding a 4% sodium bicarbonate / heavy aqueous solution.
  • a sponge having a diameter of 3 mm was pushed into the sponge-like cellulose at a speed of 1 mm / min by a universal small tester (AGS-X, Shimadzu Corp.) to break the sponge.
  • AGS-X universal small tester
  • the structure of the sponge-like cellulose structure includes AFM (atomic force microscope; SPM-9600, Shimadzu Corporation) and MALDI-TOF-MS (matrix-assisted laser desorption / ionization time-of-flight mass spectrometer; AXIMA-performance, Shimadzu). Evaluation was performed by a manufacturing company).
  • AFM atomic force microscope
  • MALDI-TOF-MS matrix-assisted laser desorption / ionization time-of-flight mass spectrometer; AXIMA-performance, Shimadzu. Evaluation was performed by a manufacturing company).
  • 1-6 Enzymatic degradation of sponge-like cellulose structure
  • Enzymatic degradation of sponge-like cellulose was performed in a columnar shape having a thickness of 0.75 mm and a diameter of 8.5 mm in 50 mM acetic acid-sodium acetate buffer (pH 4.8) containing 3 mg / mL cellulase.
  • FIG. 1 shows a photograph of a sample tube overturning test when the concentration of maboya-derived CNC was changed. Due to the coexistence of the CNC, all or part of the solution stopped flowing after the reaction. When the CNC was 0.01 w / v% or less, a part of the solution was spongy, but it was non-uniform. On the other hand, when the CNC was 0.02 w / v% or more, it was spongy uniformly.
  • FIG. 2 shows a photograph of the sample tube overturning test when the CDP concentration was changed.
  • FIG. 3 shows an observation result of a uniform sponged sample with a scanning electron microscope (magnification of 20,000 times). A network structure (ribbon-like cellulose network) characteristic of the sponge-like cellulose structure was observed.
  • FIG. 4 shows the observation results of an AFM (atomic force microscope) of a uniformly sponged sample (conditions of maboya-derived CNC of 0.10 w / v% and CDP of 0.20 U / mL).
  • the ribbon thickness characteristic of the sponge-like cellulose structure was found to be approximately 5.7 nm.
  • FIG. 5 shows the result of analysis of a uniform sponged sample by a total reflection infrared spectrophotometer. Peak derived from a type II cellulose is observed around 3488cm -1 and 3445cm -1, it was found to be sponge-like cellulosic structure including type II cellulose.
  • FIG. 6 shows the result of analysis of cellulose sponged uniformly by a nuclear magnetic resonance spectrometer.
  • FIG. 7 shows a MALDI-TOF-MS (matrix-assisted laser desorption / ionization time-of-flight mass spectrometry analysis) of a uniformly sponged sample (conditions of maboya-derived CNC of 0.10 w / v% and CDP of 0.20 U / mL). The result of the analysis is shown. The degree of polymerization was 6-12.
  • FIG. 8 shows the measurement results of the indentation fracture of the uniformly sponged sample.
  • FIG. 9A and 9B show a photograph of the sample tube overturning test when the tree-derived CNC concentration was changed (FIG. 9A) and an analysis result by a total reflection infrared spectrophotometer (FIG. 9B). Due to the coexistence of the CNC, all or part of the solution stopped flowing after the reaction. When the CNC was 0.10 w / v% or less, a part of the solution was spongy, but was non-uniform. On the other hand, when the CNC was at a concentration of 0.50 w / v%, it was spongy uniformly.
  • FIG. 10 shows a photograph after the sponge is broken by pressing the test rod into the uniformly sponged sample. By pushing the test rod into the sample, the squeezed water (arrow part) was observed, and it was confirmed that the sample was sponge-like.
  • FIG. 11 shows a photograph of a sample tube tipping test when the PEG concentration is changed. At a concentration of 5 w / v% PEG, the solution flowed slowly.
  • FIG. 12 shows a photograph of the sample tube overturning test when the CDP concentration was changed. At a concentration of CDP of 0.20 U / mL or more, the solution stopped flowing after the reaction and was uniformly spongy.
  • FIG. 13 shows the results of observation of a uniformly sponged sample with a scanning electron microscope (left photo: magnification 5000 times; right photo: magnification 10,000 times). A network-like structure (network) characteristic of the sponge-like cellulose structure was observed.
  • FIG. 12 shows a photograph of the sample tube overturning test when the CDP concentration was changed. At a concentration of CDP of 0.20 U / mL or more, the solution stopped flowing after the reaction and was uniformly spongy.
  • FIG. 13 shows the results of observation of a uniformly sponged sample with a scanning electron microscope (left photo: magnification 5000 times; right photo: magnification 10,000 times). A network-like structure (network) characteristic of the sponge-like cellulose structure was observed.
  • FIG. 14 shows a photograph of a sample tube overturning test of a uniformly sponged sample and an observation result of a scanning electron microscope of a uniformly sponged sample (condition that PEG is 10 w / v% and CDP is 0.20 U / mL). (Left photo) and ⁇ G1P conversion (right graph). Ribbon-like structures were seen in spongy samples prepared using PEG. In addition, the conversion rate of ⁇ G1P when no additive was added was about 35%, whereas when the water-soluble polymer was added, it was lower than that. 15 and 16 show the results of observation of a uniform sponged sample with a scanning electron microscope. A network structure (ribbon) was seen in spongy samples prepared using Dex or PVP. FIG.
  • FIG. 17 shows the analysis result of a uniformly spongy sample by a total reflection infrared spectrophotometer. Peak derived from a type II cellulose is observed around 3488cm -1 and 3445cm -1, it was found to be sponge-like cellulosic structure including type II cellulose.
  • FIG. 18 shows the result of analysis of cellulose sponged uniformly by a nuclear magnetic resonance spectrometer. A cellulose-derived peak was observed in the vicinity of 3 to 5 ppm, and the average degree of polymerization determined from the proton ratio of the 1-position CH group of the glucose unit at the reducing end to the 1-position CH group of the other glucose units was 9 to 11. .
  • FIG. 19 shows the chemical structure / crystal structure analysis results of uniformly sponged cellulose.
  • FIG. 20 shows a photograph of a sample tube overturning test of a sponge-like cellulose structure prepared by the coexistence of Dex. Due to the coexistence of Dex, the solution stopped flowing after the reaction and was similarly spongy.
  • FIG. 21 shows a photograph of a sample tube overturning test of a sponge-like cellulose structure prepared by the coexistence of Dex. Sponge was uniformly formed with a CDP concentration of 0.20 U / mL or more and a Dex concentration of 5 w / v% or more. 22 and 23 show the measurement results of the indentation breakage of the uniformly sponged sample. The strength increased as the concentration of CDP increased.
  • FIG. 24 shows a photograph after the sponge was broken by pressing the test rod into the uniformly sponged sample. By squeezing the test rod into the sample, the squeezed water was observed, confirming that the sample was sponge-like.
  • FIG. 25 shows the result of analysis by a total reflection infrared spectrophotometer of a sample sponged uniformly by coexistence of Dex or PEG. Peak derived from a type II cellulose is observed around 3488cm -1 and 3445cm -1, it was found to be sponge-like cellulosic structure including type II cellulose.
  • FIG. 24 shows a photograph after the sponge was broken by pressing the test rod into the uniformly sponged sample. By squeezing the test rod into the sample, the squeezed water was observed, confirming that the sample was sponge-like.
  • FIG. 25 shows the result of analysis by a total reflection infrared spectrophotometer of a sample sponged uniformly by coexistence of Dex or PEG. Peak derived from a type II cellulose is
  • the Dex concentration is 10 w / v% with respect to the CDP concentration of 0.20 or 0.40 U / mL, or the CDP with respect to the Dex concentration of 2 to 20 w / v%.
  • NMR measurement under conditions where the concentration is 0.20 U / mL) and a sample (CDP concentration 0.05 to 0.40 U / mL, Dex concentration is 10 w / v%, or Dex concentration 2 to 20 w /
  • the analysis result by IR measurement under the condition that the CDP concentration is 0.20 U / mL with respect to v% is shown.
  • the Dex concentration is 10 w / v% with respect to the CDP concentration of 0.20 or 0.40 U / mL, or the CDP with respect to the Dex concentration of 2 to 20 w / v%.
  • the analysis result by NMR measurement under the condition that the concentration is 0.20 U / mL is shown.
  • a cellulose-derived peak is observed in the vicinity of 3-5 ppm, and the average degree of polymerization determined from the proton ratio of the 1-position CH group of the glucose unit at the reducing end to the 1-position CH group of the other glucose unit is 8-10. I understood.
  • FIG. 28 shows an AFM (atomic force microscope) observation result of a uniformly sponged sample (conditions where Dex is 10 w / v% and CDP is 0.20 U / mL).
  • the thickness of the nanoribbon was approximately 5.4 nm, which was in good agreement with the length of the molecular chain having a polymerization degree of 9 (4.7 nm). 2-3. Enzymatic degradation of sponge-like cellulose structure
  • areas such as a scaffold, and environmental / energy fields, such as a separator for storage batteries, can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Wood Science & Technology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Materials For Medical Uses (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The purpose of the present invention is to provide a cellulose structure having novel characteristics. Specifically, the present invention pertains to synthesizing a cellulose three-dimensional structure having novel characteristics by using various polymers in the synthesis of a cellulose using cellodextrin phosphorylase (CDP).

Description

セルロース三次元構造体及びその製造方法Cellulose three-dimensional structure and method for producing the same
 本発明は、例えば人工的に合成したセルロース三次元構造体及びその製造方法に関する。 The present invention relates to, for example, an artificially synthesized cellulose three-dimensional structure and a method for producing the same.
 セルロースは、地球上で最も豊富に存在する有機高分子である。セルロースは、その資源性に加え、高いサステイナビリティをもつことから、注目されているマテリアル素材である。機械的処理や化学的処理によって天然物から得られるセルロースは、繊維状の形態であることが知られており、その構造や物性に応じた利用が展開されている。また、天然資源を酸処理することによって得られるセルロースナノ結晶(CNC)は、新たなセルロース素材としての利用が期待されている。CNCは、セルロース鎖が平行に配列したI型結晶構造を有し、高いアスペクト比や優れた機械的強度、熱的安定性等から複合材料のフィラーとして注目されている。
 一方、結晶性のセルロースが人工的にも合成できることが知られている(人工合成で得られるセルロースは一般にオリゴマーであることから、このようなセルロースはセロデキストリンと呼ばれる。ここでは、区別せずにすべてセルロースと呼ぶ)。下記の反応は、セロデキストリンホスホリラーゼ(CDP)の逆反応を利用したセルロースの酵素合成を示す。
Figure JPOXMLDOC01-appb-C000003
 上記反応に示すように、加リン酸分解酵素であるCDPの逆反応を利用した酵素合成により、長さ数μm、幅数百nm、厚さ4.5nmのナノシート構造を有するセルロース結晶(セルロースナノシート;CNS)が得られる(非特許文献1)。当該合成においては、プライマーとして働くD−(+)−グルコースに対して、α−D−グルコース一リン酸(αG1P)がモノマーとして逐次的に重合される。CDPが本来加水分解する基質に対する認識能と比較し、セルロース合成に用いられるD−(+)−グルコースは認識されにくいものの、結果として首尾良く重合反応が進む。また、CNSは、天然由来のI型結晶とは異なり、より安定な逆平行鎖のII型結晶構造を有する。そのため、CNS内でセルロース鎖は厚さ方向に逆平行に配列しており、結果としてセルロースの還元末端及び非還元末端がシート表面に規則的に露出している。また、CNSは純水に安定に分散するが、NaOH水溶液に溶解する性質を有する。
Cellulose is the most abundant organic polymer on earth. Cellulose is a material material attracting attention because of its high sustainability in addition to its resource. Cellulose obtained from natural products by mechanical treatment or chemical treatment is known to be in a fibrous form, and its use according to its structure and physical properties is being developed. In addition, cellulose nanocrystals (CNC) obtained by acid treatment of natural resources are expected to be used as new cellulose materials. CNC has an I-type crystal structure in which cellulose chains are arranged in parallel, and has attracted attention as a filler for composite materials because of its high aspect ratio, excellent mechanical strength, thermal stability, and the like.
On the other hand, it is known that crystalline cellulose can also be synthesized artificially (since cellulose obtained by artificial synthesis is generally an oligomer, such cellulose is called cellodextrin. All called cellulose). The following reaction shows the enzymatic synthesis of cellulose using the reverse reaction of cellodextrin phosphorylase (CDP).
Figure JPOXMLDOC01-appb-C000003
As shown in the above reaction, a cellulose crystal (cellulose nanosheet having a nanosheet structure having a length of several μm, a width of several hundreds of nm, and a thickness of 4.5 nm is obtained by enzymatic synthesis utilizing a reverse reaction of CDP which is a phosphorolytic enzyme. CNS) is obtained (Non-patent Document 1). In the synthesis, α-D-glucose monophosphate (αG1P) is sequentially polymerized as a monomer with respect to D-(+)-glucose serving as a primer. Compared with the ability to recognize a substrate that CDP inherently hydrolyzes, D-(+)-glucose used for cellulose synthesis is difficult to recognize, but as a result, the polymerization reaction proceeds successfully. In addition, CNS has a more stable antiparallel chain type II crystal structure, unlike naturally occurring type I crystals. Therefore, the cellulose chains are arranged in antiparallel to the thickness direction in the CNS, and as a result, the reducing end and non-reducing end of cellulose are regularly exposed on the sheet surface. CNS is stably dispersed in pure water, but has a property of dissolving in an aqueous NaOH solution.
 上述のセロデキストリンホスホリラーゼ(CDP)を用いたセルロースの合成において、多様な高分子を添加することで、セルロース分子間の相互作用が変化し、新規な特性を有するセルロース構造体を合成できると考えられる。
 そこで、本発明は、これらの実情に鑑み、セロデキストリンホスホリラーゼ(CDP)を用いたセルロースの合成において、多様な高分子を利用し、新規な特性を有するセルロース構造体を合成することを目的とする。
 上記課題を解決するため鋭意研究を行った結果、セロデキストリンホスホリラーゼ(CDP)を用いたセルロースの合成において、セルロースナノ結晶や水溶性高分子等の様々な高分子を添加することで、新規な特性を有するセルロース三次元構造体を合成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下を包含する。
(1)次式(I):
Figure JPOXMLDOC01-appb-C000004
(式中、nは、4~10である)
で示される化合物を構成成分として含有するセルロース三次元構造体。
(2)高分子を含有する、(1)記載のセルロース三次元構造体。
(3)高分子がセルロースナノ結晶又は水溶性高分子である、(2)記載のセルロース三次元構造体。
(4)水溶性高分子がポリエチレングリコール、デキストラン及びポリビニルピロリドンから成る群より選択される、(3)記載のセルロース三次元構造体。
(5)含有される水溶性高分子が除去された、(3)又は(4)記載のセルロース三次元構造体。
(6)セルロース三次元構造体が三次元網目構造を有する、(1)~(5)のいずれか1記載のセルロース三次元構造体。
(7)三次元網目構造がスポンジ状である、(6)記載のセルロース三次元構造体。
(8)(1)~(7)のいずれか1記載のセルロース三次元構造体を含む足場材。
(9)(1)~(7)のいずれか1記載のセルロース三次元構造体を含むフィルム。
(10)(1)~(7)のいずれか1記載のセルロース三次元構造体又は(9)記載のフィルムを含むセパレータ。
(11)α−D−グルコース一リン酸と、プライマーとしてD−(+)−グルコースとを、高分子存在下でセロデキストリンホスホリラーゼと反応させる工程を含む、次式(I):
Figure JPOXMLDOC01-appb-C000005
(式中、nは、4~10である)
で示される化合物を構成成分として含有するセルロース三次元構造体の製造方法。
(12)高分子がセルロースナノ結晶又は水溶性高分子である、(11)記載の方法。
(13)水溶性高分子がポリエチレングリコール、デキストラン及びポリビニルピロリドンから成る群より選択される、(12)記載の方法。
(14)セルロース三次元構造体から水溶性高分子を除去する工程をさらに含む、(12)又は(13)記載の方法。
(15)セルロース三次元構造体が三次元網目構造を有する、(11)~(14)のいずれか1記載の方法。
(16)三次元網目構造がスポンジ状である、(15)記載の方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015−040735号の開示内容を包含する。
In the synthesis of cellulose using the above-mentioned cellodextrin phosphorylase (CDP), it is considered that by adding various polymers, the interaction between cellulose molecules is changed and a cellulose structure having novel properties can be synthesized. .
In view of these circumstances, an object of the present invention is to synthesize a cellulose structure having novel characteristics using various polymers in the synthesis of cellulose using cellodextrin phosphorylase (CDP). .
As a result of diligent research to solve the above problems, in the synthesis of cellulose using cellodextrin phosphorylase (CDP), by adding various polymers such as cellulose nanocrystals and water-soluble polymers, new characteristics can be obtained. The present inventors have found that a cellulose three-dimensional structure having the above can be synthesized and have completed the present invention.
That is, the present invention includes the following.
(1) The following formula (I):
Figure JPOXMLDOC01-appb-C000004
(In the formula, n is 4 to 10)
The cellulose three-dimensional structure which contains the compound shown by these as a structural component.
(2) The cellulose three-dimensional structure according to (1), which contains a polymer.
(3) The cellulose three-dimensional structure according to (2), wherein the polymer is a cellulose nanocrystal or a water-soluble polymer.
(4) The cellulose three-dimensional structure according to (3), wherein the water-soluble polymer is selected from the group consisting of polyethylene glycol, dextran and polyvinylpyrrolidone.
(5) The three-dimensional cellulose structure according to (3) or (4), wherein the water-soluble polymer contained is removed.
(6) The cellulose three-dimensional structure according to any one of (1) to (5), wherein the cellulose three-dimensional structure has a three-dimensional network structure.
(7) The cellulose three-dimensional structure according to (6), wherein the three-dimensional network structure is sponge-like.
(8) A scaffold comprising the cellulose three-dimensional structure according to any one of (1) to (7).
(9) A film comprising the cellulose three-dimensional structure according to any one of (1) to (7).
(10) A separator including the cellulose three-dimensional structure according to any one of (1) to (7) or the film according to (9).
(11) A step of reacting α-D-glucose monophosphate and D-(+)-glucose as a primer with cellodextrin phosphorylase in the presence of a polymer, represented by the following formula (I):
Figure JPOXMLDOC01-appb-C000005
(In the formula, n is 4 to 10)
The manufacturing method of the cellulose three-dimensional structure which contains the compound shown by these as a structural component.
(12) The method according to (11), wherein the polymer is a cellulose nanocrystal or a water-soluble polymer.
(13) The method according to (12), wherein the water-soluble polymer is selected from the group consisting of polyethylene glycol, dextran and polyvinylpyrrolidone.
(14) The method according to (12) or (13), further comprising a step of removing the water-soluble polymer from the cellulose three-dimensional structure.
(15) The method according to any one of (11) to (14), wherein the cellulose three-dimensional structure has a three-dimensional network structure.
(16) The method according to (15), wherein the three-dimensional network structure is sponge-like.
This specification includes the disclosure of Japanese Patent Application No. 2015-040735, which is the basis of the priority of the present application.
実施例1のセルロースの合成方法1におけるマボヤ由来セルロースナノ結晶(CNC)濃度を変化させたとき(セロデキストリンホスホリラーゼ(CDP)が0.20U/mLの条件)のサンプル管転倒試験の写真を示す。The photograph of the sample tube overturning test when the concentration of the maboya-derived cellulose nanocrystal (CNC) in the cellulose synthesis method 1 of Example 1 is changed (cellodextrin phosphorylase (CDP) is 0.20 U / mL) is shown. 実施例1のセルロースの合成方法1におけるCDP濃度を変化させたとき(マボヤ由来CNCが0.10w/v%の条件)のサンプル管転倒試験の写真を示す。The photograph of the sample tube fall test when the CDP density | concentration in the synthesis method 1 of the cellulose of Example 1 is changed (Condition of maboya origin CNC is 0.10 w / v%) is shown. 実施例1のセルロースの合成方法1における均一にスポンジ化した試料(マボヤ由来CNCが0.10w/v%、CDPが0.20U/mLの条件)の走査型電子顕微鏡(20,000倍の倍率)の観察結果を示す。A scanning electron microscope (magnification of 20,000 times) of a uniformly sponged sample (conditions of maboya-derived CNC of 0.10 w / v% and CDP of 0.20 U / mL) in the cellulose synthesis method 1 of Example 1 ) Shows the observation results. 実施例1のセルロースの合成方法1における均一にスポンジ化した試料(マボヤ由来CNCが0.10w/v%、CDPが0.20U/mLの条件)のAFM(原子間力顕微鏡)の観察結果を示す。The observation result of the AFM (atomic force microscope) of the uniformly sponged sample (conditions of maboya-derived CNC of 0.10 w / v% and CDP of 0.20 U / mL) in the cellulose synthesis method 1 of Example 1 Show. 実施例1のセルロースの合成方法1における均一にスポンジ化した試料の全反射赤外分光光度計による解析結果を示す。The analysis result by the total reflection infrared spectrophotometer of the sample sponge-formed uniformly in the synthesis method 1 of the cellulose of Example 1 is shown. 実施例1のセルロースの合成方法1における均一にスポンジ化したセルロースの核磁気共鳴分光装置による解析結果を示す。The analysis result by the nuclear magnetic resonance spectroscopy apparatus of the cellulose sponge-formed uniformly in the cellulose synthesis method 1 of Example 1 is shown. 実施例1のセルロースの合成方法1における均一にスポンジ化した試料(マボヤ由来CNCが0.10w/v%、CDPが0.20U/mLの条件)のMALDI−TOF−MS(マトリックス支援レーザー脱離イオン化飛行時間型質量分析計)による解析結果を示す。数字はセルロースの重合度を示す。MALDI-TOF-MS (Matrix-Assisted Laser Desorption) of Sample Sponge Uniformly Sponge in Cellulose Synthesis Method 1 of Example 1 (Condition of Maboya-derived CNC of 0.10 w / v% and CDP of 0.20 U / mL) An analysis result by an ionization time-of-flight mass spectrometer is shown. The numbers indicate the degree of polymerization of cellulose. 実施例1のセルロースの合成方法1における均一にスポンジ化した試料の押し込み破断の測定結果を示す。The measurement result of the indentation fracture | rupture of the sample sponge-formed uniformly in the synthesis method 1 of the cellulose of Example 1 is shown. 実施例1のセルロースの合成方法1における木由来CNC濃度を変化させたとき(CDPが0.20U/mLの条件)のサンプル管転倒試験の写真を示す。The photograph of the sample tube fall test when changing the tree origin CNC density | concentration in the synthesis method 1 of the cellulose of Example 1 (CDP is 0.20 U / mL conditions) is shown. 実施例1のセルロースの合成方法1における均一にスポンジ化した試料(木由来CNCが0.50w/v%の条件)の全反射赤外分光光度計による解析結果を示す。The analysis result by the total reflection infrared spectrophotometer of the sample sponge-formed uniformly in the synthesis method 1 of the cellulose of Example 1 (Condition that wood origin CNC is 0.50 w / v%) is shown. 実施例1のセルロースの合成方法1における均一にスポンジ化した試料(マボヤ由来CNCが0.10w/v%、木由来CNCが0.50w/v%、CDPが0.20U/mLの条件)に、試験棒の押込みによりスポンジが破断した後の写真を示す。Samples uniformly sponged in the cellulose synthesis method 1 of Example 1 (conditions where maboya-derived CNC is 0.10 w / v%, wood-derived CNC is 0.50 w / v%, CDP is 0.20 U / mL) The photograph after a sponge fracture | ruptures by pressing of a test stick | rod is shown. 実施例1のセルロースの合成方法2におけるポリエチレングリコール(PEG)濃度を変化させたとき(CDPが0.20U/mLの条件)のサンプル管転倒試験の写真を示す。The photograph of the sample tube fall test when the polyethyleneglycol (PEG) density | concentration in the synthesis method 2 of the cellulose of Example 1 is changed (conditions where CDP is 0.20 U / mL) is shown. 実施例1のセルロースの合成方法2におけるCDP濃度を変化させたとき(PEGが10w/v%の条件)のサンプル管転倒試験の写真を示す。The photograph of the sample tube fall test when changing the CDP density | concentration in the synthesis method 2 of the cellulose of Example 1 (condition that PEG is 10 w / v%) is shown. 実施例1のセルロースの合成方法2における均一にスポンジ化した試料(PEGが10w/v%、CDPが0.20U/mLの条件)の走査型電子顕微鏡の観察結果(左の写真:倍率5000倍;右の写真:倍率10000倍)を示す。Observation result of scanning electron microscope (left photo: magnification 5000 times) of the uniformly sponged sample (conditions in which PEG is 10 w / v% and CDP is 0.20 U / mL) in the cellulose synthesis method 2 of Example 1 Right photograph: 10000 times magnification). 実施例1のセルロースの合成方法2における均一にスポンジ化した試料(デキストラン(Dex)、PEG又はポリビニルピロリドン(PVP)が10w/v%、CDPが0.20U/mLの条件)のサンプル管転倒試験の写真及び均一にスポンジ化した試料(PEGが10w/v%、CDPが0.20U/mLの条件)の走査型電子顕微鏡の観察結果(左の写真)とαG1Pの転化率(右のグラフ)を示す。Sample tube inversion test of uniformly sponged sample (conditions of dextran (Dex), PEG or polyvinylpyrrolidone (PVP) 10 w / v%, CDP 0.20 U / mL) in cellulose synthesis method 2 of Example 1 And a result of scanning electron microscope observation (left photo) of a uniform sponged sample (PEG is 10 w / v%, CDP is 0.20 U / mL) and αG1P conversion rate (right graph) Indicates. 実施例1のセルロースの合成方法2における均一にスポンジ化した試料(Dexが10w/v%、CDPが0.20U/mLの条件)の走査型電子顕微鏡の観察結果を示す。The observation result of the scanning electron microscope of the sample (Dex is 10 w / v%, CDP is 0.20 U / mL) uniformly sponged in the cellulose synthesis method 2 of Example 1 is shown. 実施例1のセルロースの合成方法2における均一にスポンジ化した試料(PVPが10w/v%、CDPが0.20U/mLの条件)の走査型電子顕微鏡の観察結果を示す。The observation result of the scanning electron microscope of the sample (PVP is 10 w / v%, CDP is 0.20 U / mL) uniformly sponged in the cellulose synthesis method 2 of Example 1 is shown. 実施例1のセルロースの合成方法2における均一にスポンジ化した試料(PEGが10w/v%、CDPが0.20又は0.40U/mLの条件)の全反射赤外分光光度計による解析結果を示す。The analysis result by the total reflection infrared spectrophotometer of the uniform sponge-formed sample (conditions of PEG of 10 w / v%, CDP of 0.20 or 0.40 U / mL) in the cellulose synthesis method 2 of Example 1 Show. 実施例1のセルロースの合成方法2における均一にスポンジ化したセルロース(PEGが10w/v%、CDPが0.20又は0.40U/mLの条件)の核磁気共鳴分光装置による解析結果を示す。The analysis result by the nuclear magnetic resonance spectrometer of the cellulose in the synthesis | combining method 2 of Example 1 of the sponge sponge uniformly (conditions of PEG is 10 w / v%, CDP is 0.20 or 0.40 U / mL) is shown. 実施例1のセルロースの合成方法2における均一にスポンジ化したセルロース(Dex、PEG又はPVPが10w/v%、CDPが0.20U/mLの条件)の化学構造・結晶構造解析結果を示す。The chemical structure and the crystal structure analysis result of the uniformly sponged cellulose (Dex, PEG or PVP is 10 w / v%, CDP is 0.20 U / mL) in the cellulose synthesis method 2 of Example 1 are shown. 実施例1のセルロースの合成方法2におけるDexの共存により調製したスポンジ状セルロース構造体(Dexが10w/v%、CDPが0.20U/mLの条件)のサンプル管転倒試験の写真を示す。The photograph of the sample tube fall test of the sponge-like cellulose structure (Dex is 10 w / v%, CDP is 0.20 U / mL) prepared by coexistence of Dex in the cellulose synthesis method 2 of Example 1 is shown. 実施例1のセルロースの合成方法2におけるDexの共存により調製したスポンジ状セルロース構造体のサンプル管転倒試験の写真を示す。The photograph of the sample tube tipping test of the sponge-like cellulose structure prepared by the coexistence of Dex in the cellulose synthesis method 2 of Example 1 is shown. 実施例1のセルロースの合成方法2における均一にスポンジ化した試料の押し込み破断の測定結果を示す。The measurement result of the indentation fracture | rupture of the sample sponge-formed uniformly in the synthesis method 2 of the cellulose of Example 1 is shown. 実施例1のセルロースの合成方法2における均一にスポンジ化した試料(Dexが10w/v%、PEGが10w/v%、PVPが10w/v%、CDPが0.20U/mLの条件)の押し込み破断の測定結果を示す。Indentation of uniformly sponged sample (conditions of Dex = 10 w / v%, PEG = 10 w / v%, PVP = 10 w / v%, CDP = 0.20 U / mL) in cellulose synthesis method 2 of Example 1 The measurement result of a fracture is shown. 実施例1のセルロースの合成方法2における均一にスポンジ化した試料(PEGが10w/v%、Dexが10w/v%、CDPが0.20U/mLの条件)に、試験棒の押込みによりスポンジが破断した後の写真を示す。The sponge was formed by pressing the test rod into the uniformly sponged sample (conditions in which PEG was 10 w / v%, Dex was 10 w / v%, and CDP was 0.20 U / mL) in the cellulose synthesis method 2 of Example 1. The photograph after a fracture is shown. 実施例1のセルロースの合成方法2におけるDexもしくはPEGの共存により、均一にスポンジ化した試料の全反射赤外分光光度計による解析結果を示す。The analysis result by the total reflection infrared spectrophotometer of the sample sponge-formed uniformly by the coexistence of Dex or PEG in the cellulose synthesis method 2 of Example 1 is shown. 実施例1のセルロースの合成方法2におけるDexの共存により調製した試料(CDP濃度0.20又は0.40U/mLに対してDex濃度が10w/v%であるか、又はDex濃度2~20w/v%に対してCDP濃度が0.20U/mLである条件)のNMR測定、及び試料(CDP濃度0.05~0.40U/mLに対してDex濃度が10w/v%であるか、又はDex濃度2~20w/v%に対してCDP濃度が0.20U/mLである条件)のIR測定による解析結果を示す。Sample prepared by coexistence of Dex in cellulose synthesis method 2 of Example 1 (Dex concentration is 10 w / v% with respect to CDP concentration of 0.20 or 0.40 U / mL, or Dex concentration of 2 to 20 w / NMR measurement of CDP concentration with respect to v% of 0.20 U / mL) and sample (Dex concentration with respect to CDP concentration of 0.05 to 0.40 U / mL is 10 w / v%, or The analysis results by IR measurement under the condition that the CDP concentration is 0.20 U / mL with respect to the Dex concentration of 2 to 20 w / v% are shown. 実施例1のセルロースの合成方法2におけるDexの共存により、均一にスポンジ化した試料(CDP濃度0.20又は0.40U/mLに対してDex濃度が10w/v%であるか、又はDex濃度2~20w/v%に対してCDP濃度が0.20U/mLである条件)のNMR測定による解析結果を示す。Samples uniformly sponged due to coexistence of Dex in the cellulose synthesis method 2 of Example 1 (Dex concentration is 10 w / v% with respect to CDP concentration of 0.20 or 0.40 U / mL, or Dex concentration The analysis results by NMR measurement under the condition that the CDP concentration is 0.20 U / mL with respect to 2 to 20 w / v% are shown. 実施例1のセルロースの合成方法2における均一にスポンジ化した試料(Dexが10w/v%、CDPが0.20U/mLの条件)のAFM(原子間力顕微鏡)の観察結果を示す。The observation result of the AFM (atomic force microscope) of the sample sponge-formed uniformly (Dex is 10 w / v%, CDP is 0.20 U / mL) in the cellulose synthesis method 2 of Example 1 is shown. 実施例1におけるスポンジ状セルロース構造体を酵素水溶液に浸漬したときの観察結果を示す。The observation result when the sponge-like cellulose structure in Example 1 is immersed in an enzyme aqueous solution is shown.
1.本発明に係るセルロース三次元構造体
 本発明に係るセルロース三次元構造体は、次式(I):
Figure JPOXMLDOC01-appb-C000006
(式中、nは、4~10である)
で示される化合物を構成成分として含有するものである。天然由来のセルロース鎖が平行に配列したI型セルロース構造とは異なり、本発明に係るセルロース三次元構造体は、より安定な逆平行鎖のII型セルロース構造を有する。
 式(I)の化合物の重合度は、例えば6以上、7以上、好ましくは8以上(すなわち、式(I)の化合物において、nが4以上、5以上、好ましくは6以上)であり、且つ12以下、好ましくは11以下(すなわち、式(I)の化合物において、nが10以下、好ましくは9以下)である。
 本発明に係るセルロース三次元構造体は、セロデキストリンホスホリラーゼ(CDP)を用いたセルロースの合成の際の高分子の共存により、スポンジ状の構造(リボン状セルロースのネットワーク)等の三次元網目構造を有する三次元構造体となる。当該三次元構造体においては、網目構造中の空隙が外面につながっている(よって、溶媒(水分)が外に出る)状態である。従って、当該三次元構造体は、押す(圧力をかける)と、圧力に応じた構造の崩壊を伴いながら、溶媒(水分)が外面に出る構造を有する。
 合成の際の高分子の共存により、本発明に係るセルロース三次元構造体は、高分子を含有する。高分子としては、例えばセルロースナノ結晶、水溶性高分子等が挙げられる。セルロースナノ結晶は、例えばマボヤ又は木等の天然由来のものである。マボヤ又は木由来のセルロースナノ結晶は、J.Arakiら,Colloids Surf.A:Physicochem.Eng.Aspects,1998年,142,75−82に記載の方法に準じて製造することができる。水溶性高分子としては、例えばポリエチレングリコール(例えば分子量:15000~25000)、デキストラン(例えば分子量:90000~210000)、及びポリビニルピロリドン(例えば重量平均分子量:ca.29000)等が挙げられる。
 また、本発明に係るセルロース三次元構造体の製造後、水溶性高分子を除去し、式(I)の化合物単独から構成されるセルロース三次元構造体とすることができる。
2.本発明に係るセルロース三次元構造体の製造方法
 以上に説明した本発明に係るセルロース三次元構造体は、以下に示される反応に準じて製造することができる。
Figure JPOXMLDOC01-appb-C000007
 具体的には、セロデキストリンホスホリラーゼ(CDP)の逆反応を利用した酵素合成により、α−D−グルコース一リン酸(αG1P)とプライマーとしてD−(+)−グルコースとを、高分子存在下でCDPと反応させることにより、本発明に係るセルロース三次元構造体を製造することができる。プライマーとして働くD−(+)−グルコースに対して、αG1Pがモノマーとして逐次的に重合される。
 αG1P及びD−(+)−グルコースは、市販品として入手できるものであってよい。
 一方、CDPは、例えばM.Krishnareddyら,J.Appl.Glycosci.,2002年,49,1−8に記載の方法に準じて調製することができる。具体的には、M.Krishnareddyら,J.Appl.Glycosci.,2002年,49,1−8によれば、Clostridium thermocellumYM4株由来のCDPを調製することができる。
 また、CDPの酵素量は、例えばα−D−グルコース一リン酸とD−(+)−セロビオース及びCDPをインキュベーションし、CDPにより生成されるリン酸を定量し、1分間当たり1μmolのリン酸を遊離する酵素量を1Uとして求めることができる。
 例えば、10~1000mM(好ましくは100~300mM)のαG1P、10~200mM(好ましくは50~60mM)のD−(+)−グルコース、高分子(例えば、セルロースナノ結晶の場合、0.001~1w/v%、好ましくは0.02~0.50w/v%;水溶性高分子の場合、2~20w/v%、5~20w/v%、好ましくは10w/v%)、及び0.01~1.5U/mL(好ましくは0.05~0.50U/mL)のCDPを、100~1000mM(好ましくは250~750mM)の2−[4−(2−ヒドロキシエチル)−1−ピペラジニル]エタンスルホン酸(HEPES)緩衝液(pH7.0~8.0(好ましくはpH7.5))中で混合し、10~80℃(好ましくは、20~60℃)で0.5~30日間(好ましくは、1~14日間)インキュベートし、反応させる。このようにして、本発明に係るセルロース三次元構造体を製造することができる。
 また、製造されたセルロース三次元構造体から製造時に使用した水溶性高分子を除去することができる。水溶性高分子の除去は、例えばセルロース三次元構造体を水に浸漬させることにより行うことができる。
3.本発明に係るセルロース三次元構造体の用途
3−1.医療分野
3−1−1.細胞培養足場材
 本発明に係るセルロース三次元構造体は、例えばその表面に動物細胞を生育させる足場材として使用することができる。
 生育させる細胞としては、動物由来であれば良く、例えば哺乳類、爬虫類、又は昆虫由来の細胞が挙げられる。また、心臓、肝臓、脾臓、表皮等の臓器や組織から分離した初代培養細胞でも、継代培養した株化細胞、腫瘍細胞でも良い。さらに、間葉系幹細胞(MSC)等の体性幹細胞、人工多能性幹細胞、CHO細胞、BHK細胞、Vero細胞等の細胞株(Cell Line)等でも良い。
 細胞培養に用いる培地としては、平衡塩類溶液にアミノ酸やビタミン等の低分子化合物を加えた基礎培地が挙げられる。さらに、血清或いは血清・組織抽出物、加水分解物、成長因子、ホルモン、搬送体タンパク質、脂質、ポリアミン酸、微量元素、ビタミン、増粘剤、界面活性剤、細胞接着因子等を添加した培地を使用することもできる。
 当該セルロース三次元構造体を、薄膜状に成形して、薄膜の表面で細胞を培養できる。栄養成分を薄膜底面からも供給することで培養効率を高めることができる。
 当該セルロース三次元構造体上に単層状に生育した細胞は、細胞剥離剤にて剥離し回収することができる。細胞剥離剤には、エチレンジアミン四酢酸(EDTA)等の2価カチオン除去のためのキレート剤、細胞・基質間、細胞・細胞間接着タンパク質のためのトリプシン等のプロテアーゼを用いることもできるし、セルラーゼにより当該セルロース三次元構造体の一部又は全部を分解し、可溶化することで細胞を剥離することもできる。プロテアーゼを用いない後者の方法では、細胞・細胞間の接着は剥離することなく、また細胞への影響も無いことから、活性の高い懸濁細胞又は細胞シートを得ることができる。
 得られた細胞シートは、同様に得られた細胞シートと積層するか、或いは細胞シートの表面を細胞間接着タンパク質等でコートし、さらに細胞を培養することで、三次元的に厚みを持った細胞塊を得ることができる。
3−1−2.高濃度細胞培養用足場材
 本発明に係るセルロース三次元構造体は、その内部に動物細胞を生育させる足場材として使用することができる。当該セルロース三次元構造体を、細胞が入ることができる大きさ程度又はそれ以上の空隙を持つ構造体に成形し、構造体の中で細胞を培養することができる。
 生育させる細胞は、上記の第3−1−1節に記載するように、動物由来であればどのような細胞でも良い。また、培養に用いる培地は、上記の第3−1−1節に記載するように、基礎培地、血清添加培地又はその他成分を添加した培地でも良い。
 当該セルロース三次元構造体中で細胞を培養することで、浮遊懸濁培養の際に起こる撹拌のせん断応力による細胞の傷害が起こらず、培養液当たりの細胞の高濃度化が可能となる。
 また、抗体やタンパク質等のバイオ医薬品の生成能を付与したrCHO細胞等を当該セルロース三次元構造体で高濃度に培養すれば、バッチ当たりの抗体やタンパク質等の生産量が増大し、バイオ医薬品の製造コスト低減が可能である。さらに、目的生産物を回収後、新しい培地を添加し、再度培養を行うか、或いは連続的に目的生産物を含む培地を回収し、新しい培地を追加添加することで、バッチ連続式又は連続式に生産物を得ることができる。
 さらに、高濃度培養した細胞は、足場材として利用したセルロース三次元構造体をセルラーゼ処理に供することで、プロテアーゼ処理の際に起こるような細胞への傷害を起こさずに細胞を遊離させ、回収することができる。iPS細胞やES細胞等の全能性幹細胞を当該手法で大量に培養し、再生医療や創薬産業のために必要な細胞を供給することができる。
3−1−3.三次元構造体足場材
 本発明に係るセルロース三次元構造体は、その内部に動物細胞を生育させる足場材として使用することができる。当該セルロース三次元構造体を、細胞が入ることができる大きさ程度又はそれ以上の空隙を持つ構造体に成形し、構造体の中で細胞を培養することができる。
 生育させる細胞は、上記の第3−1−1節に記載するように、動物由来であればどのような細胞でも良い。培養に用いる培地は、上記の第3−1−1節に記載するように、基礎培地、血清添加培地又はその他成分を添加した培地でも良い。
 当該セルロース三次元構造体を、細胞培養の前、途中又は後に、目的組織に合わせた形状に成形し、生体組織又は臓器の再生のために用いることができる。細胞培養の前に成形する場合、当該セルロース三次元構造体の重合反応時に目的の形状の型枠で反応させることもできるし、成形後に切断、積層、編み込み等で目的の形状にすることができる。
 当該セルロース三次元構造体は、セルラーゼ処理により、細胞へ影響することなく分解可溶化することができる。臓器への移植する前に、セルラーゼ処理に供し、部分的に、又は全部を分解可溶化しても良いし、セルラーゼ処理に供することなく足場材と共に移植しても良い。
 さらに、細胞を生育させた三次元構造体は、組織又は臓器の形状や機能を生体外(ex vivo)で再現したものとして、癌転移の機構解明、制癌剤の薬効評価等の基礎医学研究用、或いは、近年動物試験が禁止された化粧品の皮膚等の生体組織への影響を検討するための素材として利用することができる。
3−1−4.骨欠損部位への移植材料
 本発明に係るセルロース三次元構造体は、動物の骨欠損部位への移植材料、歯周組織の再生誘導材料としても使用することができる。当該セルロース三次元構造体は、容易に望む形に成形加工することができ、高圧蒸気による滅菌も可能である。当該セルロース三次元構造体は、移植する前に細胞を生着させても良いし、そのまま移植しても良い。
3−2.環境・エネルギー分野
 下記に説明するように、本発明に係るセルロース三次元構造体は、フィルム(例えば、微多孔性のフィルム(用途例:セパレータ、吸着材、バイオセンサー等)、緻密なフィルム(用途例:バリアフィルム等))として環境・エネルギー分野において使用することができる。
3−2−1.電池セパレータ用途
 本発明に係るセルロース三次元構造体は、例えばリチウムイオン電池等の二次電池向けのセパレータとしても用いることができる。セパレータとして用いることにより、従来のポリオレフィン製のセパレータに比べ、高い耐熱性を有するため、例えば、過充電等により、電池が異常発熱した場合に、セパレータが融解し、内部短絡することを防ぐことができ、安全性を向上させることができる。
3−2−2.吸着材、濃縮(生分解性)
 本発明に係るセルロース三次元構造体は、シリカ、アルミナ、ゼオライト、プルシアンブルー等の吸着材微粒子を分散、担持させることにより、アンモニア、アルデヒド等の有毒ガス、放射性廃棄物等の有害物質、海水中の有価金属等を吸着回収することが可能である。
 また、該セルロース三次元構造体は、分解酵素を用いて簡単に分解可能であることから、吸着回収した物質を必要に応じて簡単に濃縮することができるといった特長も有する。
3−2−3.バイオセンサー
 本発明に係るセルロース三次元構造体は、酵素や抗体を担持することによってバイオセンサーとして使用することができる。例えば、グルコースオキシダーゼ等の酵素を担持すればグルコースセンサーとして使用することが可能である。
3−2−4.ガスバリアシート(構造体も含む)
 本発明に係るセルロース三次元構造体に無機ナノ材料を緻密に担持させることにより、例えば水蒸気等のガスを遮断するガスバリアシートとすることができる。無機ナノ材料としては、シリカ等のナノ粒子、又はモンモリロナイト等のクレイが挙げられる。
3−2−5.放熱シート
 本発明に係るセルロース三次元構造体に高熱伝導率を持つ材料を緻密に担持させることにより、放熱材料として使用することが可能である。高熱伝導率を持つ材料としては、ダイヤモンド、グラフェン、カーボンナノチューブ等の炭素系材料、銀、銅、金、アルミニウム等の金属材料、アルミナ、マグネシア、六方晶窒化ホウ素等の無機材料等が挙げられる。
3−2−6.蓄熱シート
 本発明に係るセルロース三次元構造体に蓄熱性を有する材料を分散、担持させることにより、蓄熱材として使用することが可能である。蓄熱材としては、エリスリトール、酢酸ナトリウム3水塩、硫酸ナトリウム10水塩、パラフィン、Fe−Co合金等の潜熱蓄熱材、その他、顕熱蓄熱材、化学蓄熱材等が挙げられる。潜熱蓄熱材は物質の相転移を利用するものであり、固液相転移を利用する蓄熱材の場合は、液状となった場合に漏洩が生じないように工夫する必要があり、例えば石油樹脂等のカプセル内に包含させる方法がある。
3−2−7.分離精製の基材(カラムの充填剤、電気泳動)
 本発明に係るセルロース三次元構造体は、ナノサイズの空間を有しているため、該空間を利用して分離精製カラムや電気泳動の充填剤として用いることが可能である。
 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。
 なお、以下の実施例において、略語は、以下の用語を示す;CDP:セロデキストリンホスホリラーゼ、CNC:セルロースナノ結晶、PEG:ポリエチレングリコール、Dex:デキストラン、PVP:ポリビニルピロリドン。
1. Cellulose three-dimensional structure according to the present invention The cellulose three-dimensional structure according to the present invention has the following formula (I):
Figure JPOXMLDOC01-appb-C000006
(In the formula, n is 4 to 10)
Is contained as a constituent component. Unlike the type I cellulose structure in which naturally occurring cellulose chains are arranged in parallel, the cellulose three-dimensional structure according to the present invention has a more stable antiparallel chain type II cellulose structure.
The degree of polymerization of the compound of the formula (I) is, for example, 6 or more, 7 or more, preferably 8 or more (that is, n is 4 or more, 5 or more, preferably 6 or more in the compound of the formula (I)), and 12 or less, preferably 11 or less (that is, in the compound of formula (I), n is 10 or less, preferably 9 or less).
The cellulose three-dimensional structure according to the present invention has a three-dimensional network structure such as a sponge-like structure (ribbon-like cellulose network) due to the coexistence of polymers in the synthesis of cellulose using cellodextrin phosphorylase (CDP). It becomes the three-dimensional structure which has. In the three-dimensional structure, the voids in the network structure are connected to the outer surface (thus, the solvent (moisture) goes out). Accordingly, the three-dimensional structure has a structure in which the solvent (moisture) comes out on the outer surface while being collapsed (applying pressure), accompanied by the collapse of the structure corresponding to the pressure.
Due to the coexistence of the polymer during synthesis, the cellulose three-dimensional structure according to the present invention contains a polymer. Examples of the polymer include cellulose nanocrystals and water-soluble polymers. Cellulose nanocrystals are of natural origin such as maboya or wood. Cellulose nanocrystals derived from maboya or wood are described in J. Am. Araki et al., Colloids Surf. A: Physicochem. Eng. It can be produced according to the method described in Aspects, 1998, 142, 75-82. Examples of the water-soluble polymer include polyethylene glycol (for example, molecular weight: 15000 to 25000), dextran (for example, molecular weight: 90000 to 210000), and polyvinylpyrrolidone (for example, weight average molecular weight: ca. 29000).
In addition, after the production of the three-dimensional cellulose structure according to the present invention, the water-soluble polymer can be removed to obtain a three-dimensional cellulose structure composed of the compound of formula (I) alone.
2. Production method of cellulose three-dimensional structure according to the present invention The cellulose three-dimensional structure according to the present invention described above can be produced according to the reaction shown below.
Figure JPOXMLDOC01-appb-C000007
Specifically, α-D-glucose monophosphate (αG1P) and D-(+)-glucose as a primer in the presence of a polymer are obtained by enzymatic synthesis utilizing the reverse reaction of cellodextrin phosphorylase (CDP). The cellulose three-dimensional structure according to the present invention can be produced by reacting with CDP. For D-(+)-glucose acting as a primer, αG1P is sequentially polymerized as a monomer.
αG1P and D-(+)-glucose may be commercially available products.
On the other hand, CDP is, for example, M.P. Krishnareddy et al. Appl. Glycosci. , 2002, 49, 1-8. Specifically, M.M. Krishnareddy et al. Appl. Glycosci. , 2002, 49, 1-8, CDP derived from Clostridium thermocellum YM4 strain can be prepared.
The enzyme amount of CDP is determined by, for example, incubating α-D-glucose monophosphate, D-(+)-cellobiose and CDP, quantifying the phosphate produced by CDP, and adding 1 μmol of phosphate per minute. The amount of enzyme released can be determined as 1U.
For example, 10 to 1000 mM (preferably 100 to 300 mM) αG1P, 10 to 200 mM (preferably 50 to 60 mM) D-(+)-glucose, polymer (for example, 0.001 to 1 w in the case of cellulose nanocrystals) / V%, preferably 0.02 to 0.50 w / v%; in the case of water-soluble polymers, 2 to 20 w / v%, 5 to 20 w / v%, preferably 10 w / v%), and 0.01 ~ 1.5 U / mL (preferably 0.05 to 0.50 U / mL) of CDP is added to 100 to 1000 mM (preferably 250 to 750 mM) of 2- [4- (2-hydroxyethyl) -1-piperazinyl] Mix in ethanesulfonic acid (HEPES) buffer (pH 7.0 to 8.0 (preferably pH 7.5)) and mix at 10 to 80 ° C. (preferably 20 to 60 ° C.) for 0.5 to 30 days ( Preferably 1-14 days Incubate and react. In this manner, the cellulose three-dimensional structure according to the present invention can be manufactured.
Moreover, the water-soluble polymer used at the time of manufacture can be removed from the manufactured cellulose three-dimensional structure. The removal of the water-soluble polymer can be performed, for example, by immersing the cellulose three-dimensional structure in water.
3. 3. Use of cellulose three-dimensional structure according to the present invention 3-1. Medical field 3-1-1. Cell culture scaffold The cellulose three-dimensional structure according to the present invention can be used as a scaffold for growing animal cells on its surface, for example.
The cells to be grown may be derived from animals, and examples include cells derived from mammals, reptiles, or insects. Further, primary cultured cells isolated from organs and tissues such as heart, liver, spleen and epidermis, subcultured established cells and tumor cells may be used. Furthermore, somatic stem cells such as mesenchymal stem cells (MSC), induced pluripotent stem cells, CHO cells, BHK cells, cell lines such as Vero cells, and the like may be used.
Examples of the medium used for cell culture include a basal medium in which low molecular weight compounds such as amino acids and vitamins are added to a balanced salt solution. In addition, a medium supplemented with serum or serum / tissue extract, hydrolyzate, growth factor, hormone, carrier protein, lipid, polyamic acid, trace element, vitamin, thickener, surfactant, cell adhesion factor, etc. It can also be used.
The cellulose three-dimensional structure can be formed into a thin film and cells can be cultured on the surface of the thin film. The culture efficiency can be increased by supplying the nutrient components also from the bottom surface of the thin film.
Cells grown in a monolayer on the cellulose three-dimensional structure can be detached and recovered with a cell release agent. As the cell release agent, a chelating agent for removing divalent cations such as ethylenediaminetetraacetic acid (EDTA), a protease such as trypsin for cell-matrix, cell-cell adhesion protein, or cellulase can be used. The cell can also be detached by decomposing and solubilizing part or all of the cellulose three-dimensional structure. In the latter method using no protease, the cell-cell adhesion does not peel off and does not affect the cells, so that a highly active suspension cell or cell sheet can be obtained.
The obtained cell sheet was laminated with the obtained cell sheet in the same manner, or the surface of the cell sheet was coated with an intercellular adhesion protein or the like, and further cultured, the cells were three-dimensionally thick. A cell mass can be obtained.
3-1-2. Scaffold for high-concentration cell culture The cellulose three-dimensional structure according to the present invention can be used as a scaffold for growing animal cells therein. The cellulose three-dimensional structure can be formed into a structure having voids of a size that allows cells to enter or larger, and the cells can be cultured in the structure.
The cells to be grown may be any cells as long as they are derived from animals, as described in Section 3-1-1 above. The medium used for the culture may be a basal medium, a serum-added medium, or a medium supplemented with other components, as described in Section 3-1-1 above.
By culturing the cells in the cellulose three-dimensional structure, cell damage due to shearing stress generated during suspension suspension culture does not occur, and the concentration of cells per culture solution can be increased.
In addition, if rCHO cells and the like that have been given the ability to produce biopharmaceuticals such as antibodies and proteins are cultured at a high concentration in the cellulose three-dimensional structure, the production amount of antibodies and proteins per batch will increase, Manufacturing cost can be reduced. Furthermore, after collecting the target product, a new medium is added and cultured again, or a medium containing the target product is continuously collected and a new medium is additionally added. You can get a product.
Furthermore, cells that have been cultured at a high concentration can be recovered by subjecting the three-dimensional cellulose structure used as a scaffold to cellulase treatment to release the cells without causing damage to the cells as occurs during protease treatment. be able to. Totipotent stem cells such as iPS cells and ES cells can be cultured in a large amount by this technique, and cells necessary for regenerative medicine and drug discovery industry can be supplied.
3-1-3. Three-dimensional structure scaffold The cellulose three-dimensional structure according to the present invention can be used as a scaffold for growing animal cells therein. The cellulose three-dimensional structure can be formed into a structure having voids of a size that allows cells to enter or larger, and the cells can be cultured in the structure.
The cells to be grown may be any cells as long as they are derived from animals, as described in Section 3-1-1 above. The medium used for the culture may be a basal medium, a serum-added medium, or a medium to which other components are added, as described in Section 3-1-1 above.
The cellulose three-dimensional structure can be formed into a shape suitable for a target tissue before, during or after cell culture and used for regeneration of a living tissue or organ. In the case of molding before cell culture, the cellulose three-dimensional structure can be reacted in a mold having a desired shape during the polymerization reaction, or can be formed into a desired shape by cutting, laminating, weaving, etc. after molding. .
The cellulose three-dimensional structure can be decomposed and solubilized by cellulase treatment without affecting the cells. Prior to transplantation into the organ, it may be subjected to cellulase treatment, and part or all may be decomposed and solubilized, or may be transplanted together with the scaffold without being subjected to cellulase treatment.
Furthermore, the three-dimensional structure in which the cells are grown is used for basic medical research such as elucidation of the mechanism of cancer metastasis, evaluation of the efficacy of anticancer drugs, etc., assuming that the shape and function of the tissue or organ are reproduced ex vivo. Alternatively, it can be used as a material for studying the effects of cosmetics, which have been prohibited from animal tests in recent years, on living tissues such as skin.
3-1-4. Transplant Material to Bone Defect Site The cellulose three-dimensional structure according to the present invention can also be used as a transplant material to an animal bone defect site and a periodontal tissue regeneration-inducing material. The cellulose three-dimensional structure can be easily molded into a desired shape and can be sterilized by high-pressure steam. The cellulose three-dimensional structure may be engrafted with cells before transplantation, or may be transplanted as it is.
3-2. Environment / Energy Field As described below, the three-dimensional cellulose structure according to the present invention includes a film (for example, a microporous film (application example: separator, adsorbent, biosensor, etc.), a dense film (application). For example, it can be used in the environment / energy field as a barrier film or the like)).
3-2-1. Application to Battery Separator The three-dimensional cellulose structure according to the present invention can be used as a separator for a secondary battery such as a lithium ion battery. By using it as a separator, it has higher heat resistance than conventional polyolefin separators. For example, when the battery overheats due to overcharging, etc., it prevents the separator from melting and causing an internal short circuit. And safety can be improved.
3-2-2. Adsorbent, concentration (biodegradable)
The cellulose three-dimensional structure according to the present invention is obtained by dispersing and supporting adsorbent fine particles such as silica, alumina, zeolite, Prussian blue, etc., toxic gases such as ammonia and aldehydes, harmful substances such as radioactive waste, It is possible to absorb and recover valuable metals.
In addition, since the cellulose three-dimensional structure can be easily decomposed using a degrading enzyme, it has an advantage that the substance collected by adsorption can be easily concentrated as necessary.
3-2-3. Biosensor The three-dimensional cellulose structure according to the present invention can be used as a biosensor by supporting an enzyme or an antibody. For example, if an enzyme such as glucose oxidase is supported, it can be used as a glucose sensor.
3-2-4. Gas barrier sheet (including structure)
By densely supporting the inorganic nanomaterial on the cellulose three-dimensional structure according to the present invention, for example, a gas barrier sheet that blocks gas such as water vapor can be obtained. Examples of the inorganic nanomaterial include nanoparticles such as silica or clay such as montmorillonite.
3-2-5. Heat-dissipating sheet It is possible to use as a heat-dissipating material by densely supporting a material having high thermal conductivity on the three-dimensional cellulose structure according to the present invention. Examples of the material having high thermal conductivity include carbon-based materials such as diamond, graphene, and carbon nanotubes, metal materials such as silver, copper, gold, and aluminum, and inorganic materials such as alumina, magnesia, and hexagonal boron nitride.
3-2-6. Thermal storage sheet It is possible to use as a thermal storage material by disperse | distributing and carrying the material which has thermal storage property in the cellulose three-dimensional structure which concerns on this invention. Examples of the heat storage material include latent heat storage materials such as erythritol, sodium acetate trihydrate, sodium sulfate decahydrate, paraffin, and Fe-Co alloy, and other sensible heat storage materials and chemical heat storage materials. The latent heat storage material uses the phase transition of the substance, and in the case of the heat storage material using the solid-liquid phase transition, it is necessary to devise so that no leakage occurs when it becomes liquid, such as petroleum resin There is a method of inclusion in the capsule.
3-2-7. Separation and purification substrate (column packing, electrophoresis)
Since the cellulose three-dimensional structure according to the present invention has a nano-sized space, it can be used as a separation / purification column or a packing for electrophoresis using the space.
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope of this invention is not limited to these Examples.
In the following examples, abbreviations indicate the following terms: CDP: cellodextrin phosphorylase, CNC: cellulose nanocrystal, PEG: polyethylene glycol, Dex: dextran, PVP: polyvinylpyrrolidone.
スポンジ状セルロース構造体の合成
1.実験方法
1−1.材料
 α−D−グルコース一リン酸二ナトリウムn水和物(生化学用)は和光純薬工業株式会社より購入した。D−(+)−グルコース(特級、バイオテクノロジーグレード)及びD−(+)−セロビオース(特級)はナカライテスクから購入した。
 CDPは、M.Krishnareddyら,J.Appl.Glycosci.,2002年,49,1−8に記載の方法と同様の方法により調製した。
 Avicelは、Sigma−Aldrichから購入した。マボヤ由来及び木(Avicel)由来CNCは、J.Arakiら,Colloids Surf.A:Physicochem.Eng.Aspects,1998年,142,75−82に記載の方法と同様の方法により調製した。
 PEG(分子量15000~25000)はナカライテスクから、Dex(分子量90000~210000)は和光純薬工業株式会社から購入した。PVPは、重量平均分子量がca.29,000のものをSigma−Aldrichから購入した。
 2−[4−(2−ヒドロキシエチル)−1−ピペラジニル]エタンスルホン酸(グッドバッファー)及び3−(N−モルホリノ)プロパンスルホン酸(バイオテクノロジーグレード)はナカライテスクから購入した。
 4mol/Lの水酸化ナトリウム水溶液はナカライテスクから購入した。
 酢酸(スペクトル用特製試薬)及び酢酸ナトリウム(特級)はナカライテスクより購入した。
 セルラーゼはTrichoderma viride由来のものをSigma−Aldrichより購入した。
 超純水は、Milli−Qシステム(Milli−Q Advantage A10、Millipore)で精製した水を用いた。
 40%重水酸化ナトリウム/重水溶液、グリセロール(特級)、カナマイシン硫酸塩(生化学用)、イソプロピル−β−D(−)−チオガラクトピラノシド(生化学用)、N,N,N’,N’−テトラメチルエチレンジアミン(特級)は和光純薬から購入した。
 アクリルアミド(for electrophoresis)、N,N’−メチレンビスアクリルアミド(for electrophoresis)、ドデシル硫酸ナトリウム(A.C.S.reagent)、過硫酸アンモニウム(for molecular biology、for electrophoresis)、2,5−ジヒドロキシ安息香酸(matrix substance for MALDI−MS)、重水、MALDI−TOF−MS測定のキャリブレーションに用いるペプチドスタンダード及び1%トリフルオロ酢酸水溶液及びアセトニトリル(ProteoMassTM Peptide and Protein MALDI−MS Calibration Kit)はSigma−Aldrichから購入した。
 カーボンテープ、ドータイトは日新EMから購入した。
 ジチオスレイトール(分子生物学研究用特製試薬)、L(+)−アスコルビン酸(バイオテクノロジーグレード)、七モリブデン酸六アンモニウム四水和物(特級)、酢酸亜鉛二水和物(特級)、リン酸二水素ナトリウム二水和物(特級)、亜塩素酸ナトリウム(化学用)、水酸化ナトリウム(特級)、水酸化カリウム(特級)、イミダゾール(分子生物学研究用特製試薬)、塩化ナトリウム(分子生物学研究用特製試薬)、アジ化ナトリウム(特級)、トリス(ヒドロキシメチル)アミノメタン(分子生物学研究用特製試薬)、6M塩酸、1−ブタノール(特級)、グリシン(分子生物学研究用特製試薬)、エタノール(バイオテクノロジーグレード)、エタノール(スペクトル用特製試薬)、tert−ブチルアルコール(特級)はナカライテスクから購入した。
 LB−BROTH LENNOX及びLB−AGAR LENNOXはフナコシから購入した。
 Ni−NTAアガロースゲルはQIAGENから購入した。
1−2.酵素の活性測定
 CDPの活性は以下のように測定した。10mMのα−D−グルコース一リン酸と10mMのD−(+)−セロビオース、及び所定倍率希釈されたCDPを含む50mMの3−(N−モルホリノ)プロパンスルホン酸緩衝液(pH7.5)を37℃でインキュベーションした。CDPにより生成されるリン酸を定量し、1分間当たり1μmolのリン酸を遊離する酵素量を1Uと定義した際のU/mLを求め、酵素活性とした。CDPの希釈率は、反応時間が100分の際におけるα−D−グルコース一リン酸の転化率が10%以下になるように決定した。
1−3.セルロースの合成方法1:CNCの共存
 モノマーであるα−D−グルコース一リン酸が200mM、プライマーであるD−(+)−グルコースが50mM、CDPが0.01~0.40U/mL、CNCが0.001~0.50w/v%になるように、これらを500mMの2−[4−(2−ヒドロキシエチル)−1−ピペラジニル]エタンスルホン酸緩衝液(pH7.5)中で混合し、60℃で3日間反応させた。生成したスポンジ状セルロース構造体を超純水に1週間浸漬させ、精製した。
1−4.セルロースの合成方法2:水溶性高分子の共存
 モノマーであるα−D−グルコース一リン酸が200mM、プライマーであるD−(+)−グルコースが50mM、CDPが0.05~0.40U/mL、PEG、Dex又はPVPが2~20w/v%又は5~20w/v%になるように、これらを500mMの2−[4−(2−ヒドロキシエチル)−1−ピペラジニル]エタンスルホン酸緩衝液(pH7.5)中で混合し、60℃で3日間反応させた。生成したスポンジ状セルロース構造体を超純水に1週間浸漬させ、精製した。
1−5.セルロースの評価方法
 スポンジ化の有無をサンプル管転倒試験(サンプル管を上下逆さま置いたときに流れてこないときにスポンジ化したと判断)により評価した。
 スポンジ状セルロース構造体の構造は、スポンジ状セルロース構造体を凍結乾燥後に、走査型電子顕微鏡(JSM−7500F、日本電子)及び全反射赤外分光光度計(FT/IR−4100、日本分光)により評価した。
 セルロースの構造及び平均重合度は、スポンジ状セルロース構造体を凍結乾燥した後に、4%重水酸化ナトリウム/重水溶液を加え、核磁気共鳴分光装置(DPX−300、Bruker)により評価した。なお、第1−3節で得たセルロースの場合、4%重水酸化ナトリウム/重水溶液を加えた後に、遠心分離により共存するCNCを取り除いた。
 スポンジ状セルロースに対し、万能小型試験機(AGS−X,島津製作所)により直径3mmの試験棒を1mm/minの速度で押込み、スポンジを破断させた。この際、破断した後の様子からセルロースの状態を評価した。
 また、スポンジ状セルロース構造体の構造は、AFM(原子間力顕微鏡;SPM−9600、島津製作所)及びMALDI−TOF−MS(マトリックス支援レーザー脱離イオン化飛行時間型質量分析計;AXIMA−performance、島津製作所)により評価した。
1−6.スポンジ状セルロース構造体の酵素分解
 スポンジ状セルロースの酵素分解は、3mg/mLのセルラーゼを含む50mMの酢酸−酢酸ナトリウム緩衝液(pH4.8)に厚さ0.75mm、直径8.5mmの円柱状のスポンジ状セルロースを浸漬させて50℃で反応させ、大きさの経時変化を観察することで評価した。
2.結果
2−1.セルロースの合成方法1:CNCの共存
 図1に、マボヤ由来CNC濃度を変化させたときのサンプル管転倒試験の写真を示す。同CNCの共存により、反応後に溶液の全部若しくは一部は流れなくなった。同CNCが0.01w/v%以下では、溶液の一部がスポンジ化したものの不均一であった。一方、同CNCが0.02w/v%以上の濃度では、均一にスポンジ化した。
 図2に、CDP濃度を変化させたときのサンプル管転倒試験の写真を示す。CDPが0.025U/mL以上の濃度で、反応後に溶液は流れなくなった。CDPが0.025U/mLの濃度では、溶液の一部がスポンジ化したものの不均一であった。一方、CDPが0.05U/mL以上の濃度では、均一にスポンジ化した。
 図3に、均一にスポンジ化した試料の走査型電子顕微鏡(20,000倍の倍率)の観察結果を示す。スポンジ状セルロース構造体に特長的な網目状の構造(リボン状セルロースのネットワーク)が観察された。
 図4に、均一にスポンジ化した試料(マボヤ由来CNCが0.10w/v%、CDPが0.20U/mLの条件)のAFM(原子間力顕微鏡)の観察結果を示す。スポンジ状セルロース構造体に特長的なリボンの厚さは、およそ5.7nmであることが分かった。
 図5に、均一にスポンジ化した試料の全反射赤外分光光度計による解析結果を示す。II型セルロース由来のピークが3488cm−1と3445cm−1付近に観察され、II型セルロースを含むスポンジ状セルロース構造体であることが分かった。
 図6に、均一にスポンジ化したセルロースの核磁気共鳴分光装置による解析結果を示す。セルロース由来のピークが3~5ppm付近に観察され、還元末端のグルコース単位の1位CH基とそれ以外のグルコース単位の1位CH基のプロトン比から求めた平均重合度は9~10であった。
 図7に、均一にスポンジ化した試料(マボヤ由来CNCが0.10w/v%、CDPが0.20U/mLの条件)のMALDI−TOF−MS(マトリックス支援レーザー脱離イオン化飛行時間型質量分析計)による解析結果を示す。重合度は6~12であった。
 図8に、均一にスポンジ化した試料の押し込み破断の測定結果を示す。CDP濃度及びマボヤ由来CNCの濃度が高くなるにつれて、強度が上昇した。
 図9A及びBに、木由来CNC濃度を変化させた時のサンプル管転倒試験の写真(図9A)と全反射赤外分光光度計による解析結果(図9B)を示す。同CNCの共存により、反応後に溶液の全部若しくは一部は流れなくなった。同CNCが0.10w/v%以下では、溶液の一部がスポンジ化したものの不均一であった。一方、同CNCが0.50w/v%の濃度では、均一にスポンジ化した。また、全反射赤外分光光度計による解析の結果、II型セルロース由来のピークが3488cm−1と3445cm−1付近に観察され、II型セルロースを含むスポンジ状セルロース構造体であることが分かった。
 図10に、均一にスポンジ化した試料に、試験棒の押込みによりスポンジが破断した後の写真を示す。試験棒を試料に押込むことにより、絞り出された水(矢印部)が観察されたことから、試料がスポンジ状であることが確認できた。
2−2.セルロースの合成方法2:水溶性高分子の共存
 図11に、PEG濃度を変化させたときのサンプル管転倒試験の写真を示す。PEGが5w/v%の濃度では、溶液がゆっくりと流れた。一方、PEGが10w/v%の濃度では、均一にスポンジ化した。PEGが20w/v%の濃度では溶液が二相に分離し、下の相のみがスポンジ化した。
 図12に、CDP濃度を変化させたときのサンプル管転倒試験の写真を示す。CDPが0.20U/mL以上の濃度で、反応後に溶液は流れなくなり、均一にスポンジ化した。
 図13に、均一にスポンジ化した試料の走査型電子顕微鏡の観察結果(左の写真:倍率5000倍;右の写真:倍率10000倍)を示す。スポンジ状セルロース構造体に特長的な網目状の構造(ネットワーク)が観察された。
 図14に、均一にスポンジ化した試料のサンプル管転倒試験の写真及び均一にスポンジ化した試料(PEGが10w/v%、CDPが0.20U/mLの条件)の走査型電子顕微鏡の観察結果(左の写真)とαG1Pの転化率(右のグラフ)を示す。PEGを用いて調製したスポンジ化した試料においてリボン状の構造体が見られた。また、何も添加物を加えなかった場合のαG1Pの転化率が35%程度なのに対して、水溶性高分子を添加した場合は、それよりも低かった。
 図15及び16に、均一にスポンジ化した試料の走査型電子顕微鏡の観察結果を示す。Dex又はPVPを用いて調製したスポンジ化した試料において網目構造(リボン)が見られた。
 図17に、均一にスポンジ化した試料の全反射赤外分光光度計による解析結果を示す。II型セルロース由来のピークが3488cm−1と3445cm−1付近に観察され、II型セルロースを含むスポンジ状セルロース構造体であることが分かった。
 図18に、均一にスポンジ化したセルロースの核磁気共鳴分光装置による解析結果を示す。セルロース由来のピークが3~5ppm付近に観察され、還元末端のグルコース単位の1位CH基とそれ以外のグルコース単位の1位CH基のプロトン比から求めた平均重合度は9~11であった。
 図19に、均一にスポンジ化したセルロースの化学構造・結晶構造解析結果を示す。スポンジ化したセルロースは、結晶性のセルロースオリゴマーで構成されていることが分かった。
 図20に、Dexの共存により調製したスポンジ状セルロース構造体のサンプル管転倒試験の写真を示す。Dexの共存により、反応後に溶液は流れなくなり、同様にスポンジ化した。
 図21に、Dexの共存により調製したスポンジ状セルロース構造体のサンプル管転倒試験の写真を示す。CDP濃度が0.20U/mL以上、Dex濃度が5w/v%以上で、均一にスポンジ化した。
 図22及び23に、均一にスポンジ化した試料の押し込み破断の測定結果を示す。CDPの濃度が高くなるにつれて、強度が上昇した。またPEG又はPVPの共存により調製したスポンジ状セルロースと比較して、Dexの共存により調製したスポンジ状セルロースの方が、強度が高かった。
 図24に、均一にスポンジ化した試料に、試験棒の押込みによりスポンジが破断した後の写真を示す。試験棒を試料に押込むことにより、絞り出された水が観察されたことから、試料がスポンジ状であることが確認できた。
 図25に、DexもしくはPEGの共存により、均一にスポンジ化した試料の全反射赤外分光光度計による解析結果を示す。II型セルロース由来のピークが3488cm−1と3445cm−1付近に観察され、II型セルロースを含むスポンジ状セルロース構造体であることが分かった。
 図26に、Dexの共存により調製した試料(CDP濃度0.20又は0.40U/mLに対してDex濃度が10w/v%であるか、又はDex濃度2~20w/v%に対してCDP濃度が0.20U/mLである条件)のNMR測定、及び試料(CDP濃度0.05~0.40U/mLに対してDex濃度が10w/v%であるか、又はDex濃度2~20w/v%に対してCDP濃度が0.20U/mLである条件)のIR測定による解析結果を示す。
 図27に、Dexの共存により調製した試料(CDP濃度0.20又は0.40U/mLに対してDex濃度が10w/v%であるか、又はDex濃度2~20w/v%に対してCDP濃度が0.20U/mLである条件)のNMR測定による解析結果を示す。セルロース由来のピークが3−5ppm付近に観察され、還元末端のグルコース単位の1位CH基とそれ以外のグルコース単位の1位CH基のプロトン比から求めた平均重合度は8−10であることが分かった。なお、図26において、CDP濃度が0.05U/mLのサンプル、及びDex濃度が2w/v%のサンプルはスポンジ化しなかった。また、図27において、Dex濃度が2w/v%のサンプルはスポンジ化しなかった。
 図28に、均一にスポンジ化した試料(Dexが10w/v%、CDPが0.20U/mLの条件)のAFM(原子間力顕微鏡)の観察結果を示す。ナノリボンの厚さはおよそ5.4nmであり、重合度9の分子鎖の長さ4.7nmとよく一致した。
2−3.スポンジ状セルロース構造体の酵素分解
 図29に、スポンジ状セルロース構造体を酵素水溶液に浸漬したときの観察結果を示す。時間の経過とともにスポンジの大きさが小さくなり、酵素により分解されることが確認できた。酵素処理後、マボヤ由来CNC添加スポンジ状セルロース構造体は48時間で、PEG添加スポンジ状セルロース構造体は3時間でほとんど分解された。
Synthesis of sponge-like cellulose structure Experimental method 1-1. Material α-D-glucose monophosphate disodium n hydrate (for biochemistry) was purchased from Wako Pure Chemical Industries, Ltd. D-(+)-glucose (special grade, biotechnology grade) and D-(+)-cellobiose (special grade) were purchased from Nacalai Tesque.
CDP is an M.I. Krishnareddy et al. Appl. Glycosci. , 2002, 49, 1-8.
Avicel was purchased from Sigma-Aldrich. Maboya-derived and Avicel-derived CNCs are Araki et al., Colloids Surf. A: Physicochem. Eng. Prepared by a method similar to that described in Aspects, 1998, 142, 75-82.
PEG (molecular weight 15000-25000) was purchased from Nacalai Tesque, and Dex (molecular weight 90000-210000) was purchased from Wako Pure Chemical Industries, Ltd. PVP has a weight average molecular weight of ca. The 29,000 one was purchased from Sigma-Aldrich.
2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (Good buffer) and 3- (N-morpholino) propanesulfonic acid (Biotechnology grade) were purchased from Nacalai Tesque.
A 4 mol / L aqueous sodium hydroxide solution was purchased from Nacalai Tesque.
Acetic acid (special reagent for spectrum) and sodium acetate (special grade) were purchased from Nacalai Tesque.
Cellulase was purchased from Sigma-Aldrich from Trichoderma violet.
As the ultrapure water, water purified by a Milli-Q system (Milli-Q Advantage A10, Millipore) was used.
40% sodium bicarbonate / heavy aqueous solution, glycerol (special grade), kanamycin sulfate (for biochemistry), isopropyl-β-D (−)-thiogalactopyranoside (for biochemistry), N, N, N ′, N'-tetramethylethylenediamine (special grade) was purchased from Wako Pure Chemical.
Acrylamide (for electrophoresis), N, N′-methylenebisacrylamide (for electrophoresis), sodium dodecyl sulfate (A.C.S. reagent), ammonium persulfate (for molecular biology, for electrophoresis), 2,5-dihydroxybenzoic acid (Matrix substantence for MALDI-MS), peptide standard used for calibration of heavy water, MALDI-TOF-MS measurement, and 1% aqueous trifluoroacetic acid and acetonitrile (ProteoMass Peptide and Protein MALDI-MS Calibration Kit) from Sigma-Aldri Purchased.
Carbon tape and dotite were purchased from Nissin EM.
Dithiothreitol (special reagent for molecular biology research), L (+)-ascorbic acid (biotechnology grade), hexaammonium heptamolybdate tetrahydrate (special grade), zinc acetate dihydrate (special grade), phosphorus Sodium dihydrogen acid dihydrate (special grade), sodium chlorite (chemical grade), sodium hydroxide (special grade), potassium hydroxide (special grade), imidazole (special reagent for molecular biology research), sodium chloride (molecule) Special reagent for biological research), sodium azide (special grade), tris (hydroxymethyl) aminomethane (special reagent for molecular biology research), 6M hydrochloric acid, 1-butanol (special grade), glycine (special grade for molecular biology research) Reagent), ethanol (biotechnology grade), ethanol (special reagent for spectrum), tert-butyl alcohol (special grade) are Naka It was purchased from Itesuku.
LB-BROTH LENNOX and LB-AGAR LENNOX were purchased from Funakoshi.
Ni-NTA agarose gel was purchased from QIAGEN.
1-2. Measurement of enzyme activity The activity of CDP was measured as follows. 50 mM 3- (N-morpholino) propanesulfonic acid buffer (pH 7.5) containing 10 mM α-D-glucose monophosphate, 10 mM D-(+)-cellobiose, and CDP diluted at a predetermined magnification. Incubated at 37 ° C. Phosphoric acid produced by CDP was quantified, and U / mL was defined as the enzyme activity when the amount of enzyme that liberates 1 μmol of phosphoric acid per minute was defined as 1 U. The dilution rate of CDP was determined such that the conversion rate of α-D-glucose monophosphate was 10% or less when the reaction time was 100 minutes.
1-3. Cellulose synthesis method 1: coexistence of CNC The monomer α-D-glucose monophosphate is 200 mM, the primer D-(+)-glucose is 50 mM, CDP is 0.01 to 0.40 U / mL, and the CNC is These were mixed in 500 mM 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid buffer (pH 7.5) so as to be 0.001 to 0.50 w / v%. The reaction was carried out at 60 ° C. for 3 days. The produced sponge-like cellulose structure was immersed in ultrapure water for 1 week and purified.
1-4. Cellulose synthesis method 2: Coexistence of water-soluble polymer Monomer α-D-glucose monophosphate is 200 mM, primer D-(+)-glucose is 50 mM, CDP is 0.05 to 0.40 U / mL. , PEG, Dex or PVP so that they are 2 to 20 w / v% or 5 to 20 w / v%, these are added with 500 mM 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid buffer. (PH 7.5) and mixed at 60 ° C. for 3 days. The produced sponge-like cellulose structure was immersed in ultrapure water for 1 week and purified.
1-5. Cellulose Evaluation Method The presence or absence of sponge formation was evaluated by a sample tube overturning test (determined that the sample tube did not flow when the sample tube was placed upside down).
The structure of the sponge-like cellulose structure was determined by freeze-drying the sponge-like cellulose structure and then using a scanning electron microscope (JSM-7500F, JEOL) and a total reflection infrared spectrophotometer (FT / IR-4100, JASCO). evaluated.
The structure and average degree of polymerization of cellulose were evaluated by a nuclear magnetic resonance spectrometer (DPX-300, Bruker) after freeze-drying the sponge-like cellulose structure and adding a 4% sodium bicarbonate / heavy aqueous solution. In addition, in the case of the cellulose obtained in Section 1-3, the coexisting CNC was removed by centrifugation after adding a 4% sodium bicarbonate / heavy aqueous solution.
A sponge having a diameter of 3 mm was pushed into the sponge-like cellulose at a speed of 1 mm / min by a universal small tester (AGS-X, Shimadzu Corp.) to break the sponge. At this time, the state of cellulose was evaluated from the state after the fracture.
In addition, the structure of the sponge-like cellulose structure includes AFM (atomic force microscope; SPM-9600, Shimadzu Corporation) and MALDI-TOF-MS (matrix-assisted laser desorption / ionization time-of-flight mass spectrometer; AXIMA-performance, Shimadzu). Evaluation was performed by a manufacturing company).
1-6. Enzymatic degradation of sponge-like cellulose structure Enzymatic degradation of sponge-like cellulose was performed in a columnar shape having a thickness of 0.75 mm and a diameter of 8.5 mm in 50 mM acetic acid-sodium acetate buffer (pH 4.8) containing 3 mg / mL cellulase. This was evaluated by immersing the sponge-like cellulose and reacting at 50 ° C., and observing the change in size over time.
2. Result 2-1. Cellulose Synthesis Method 1: Coexistence of CNC FIG. 1 shows a photograph of a sample tube overturning test when the concentration of maboya-derived CNC was changed. Due to the coexistence of the CNC, all or part of the solution stopped flowing after the reaction. When the CNC was 0.01 w / v% or less, a part of the solution was spongy, but it was non-uniform. On the other hand, when the CNC was 0.02 w / v% or more, it was spongy uniformly.
FIG. 2 shows a photograph of the sample tube overturning test when the CDP concentration was changed. At a concentration of CDP of 0.025 U / mL or more, the solution stopped flowing after the reaction. When the concentration of CDP was 0.025 U / mL, a part of the solution was spongy, but nonuniform. On the other hand, when the concentration of CDP was 0.05 U / mL or more, it was sponged uniformly.
FIG. 3 shows an observation result of a uniform sponged sample with a scanning electron microscope (magnification of 20,000 times). A network structure (ribbon-like cellulose network) characteristic of the sponge-like cellulose structure was observed.
FIG. 4 shows the observation results of an AFM (atomic force microscope) of a uniformly sponged sample (conditions of maboya-derived CNC of 0.10 w / v% and CDP of 0.20 U / mL). The ribbon thickness characteristic of the sponge-like cellulose structure was found to be approximately 5.7 nm.
FIG. 5 shows the result of analysis of a uniform sponged sample by a total reflection infrared spectrophotometer. Peak derived from a type II cellulose is observed around 3488cm -1 and 3445cm -1, it was found to be sponge-like cellulosic structure including type II cellulose.
FIG. 6 shows the result of analysis of cellulose sponged uniformly by a nuclear magnetic resonance spectrometer. A cellulose-derived peak was observed in the vicinity of 3 to 5 ppm, and the average degree of polymerization determined from the proton ratio of the 1-position CH group of the glucose unit at the reducing end to the 1-position CH group of the other glucose unit was 9 to 10. .
FIG. 7 shows a MALDI-TOF-MS (matrix-assisted laser desorption / ionization time-of-flight mass spectrometry analysis) of a uniformly sponged sample (conditions of maboya-derived CNC of 0.10 w / v% and CDP of 0.20 U / mL). The result of the analysis is shown. The degree of polymerization was 6-12.
FIG. 8 shows the measurement results of the indentation fracture of the uniformly sponged sample. The strength increased as the CDP concentration and the concentration of maboya-derived CNC increased.
9A and 9B show a photograph of the sample tube overturning test when the tree-derived CNC concentration was changed (FIG. 9A) and an analysis result by a total reflection infrared spectrophotometer (FIG. 9B). Due to the coexistence of the CNC, all or part of the solution stopped flowing after the reaction. When the CNC was 0.10 w / v% or less, a part of the solution was spongy, but was non-uniform. On the other hand, when the CNC was at a concentration of 0.50 w / v%, it was spongy uniformly. As a result of analysis by the total reflection infrared spectrometer, a peak derived from a type II cellulose is observed around 3488cm -1 and 3445cm -1, it was found to be sponge-like cellulosic structure including type II cellulose.
FIG. 10 shows a photograph after the sponge is broken by pressing the test rod into the uniformly sponged sample. By pushing the test rod into the sample, the squeezed water (arrow part) was observed, and it was confirmed that the sample was sponge-like.
2-2. Cellulose Synthesis Method 2: Coexistence of Water-Soluble Polymers FIG. 11 shows a photograph of a sample tube tipping test when the PEG concentration is changed. At a concentration of 5 w / v% PEG, the solution flowed slowly. On the other hand, when the concentration of PEG was 10 w / v%, it was spongy uniformly. When the concentration of PEG was 20 w / v%, the solution was separated into two phases, and only the lower phase was spongy.
FIG. 12 shows a photograph of the sample tube overturning test when the CDP concentration was changed. At a concentration of CDP of 0.20 U / mL or more, the solution stopped flowing after the reaction and was uniformly spongy.
FIG. 13 shows the results of observation of a uniformly sponged sample with a scanning electron microscope (left photo: magnification 5000 times; right photo: magnification 10,000 times). A network-like structure (network) characteristic of the sponge-like cellulose structure was observed.
FIG. 14 shows a photograph of a sample tube overturning test of a uniformly sponged sample and an observation result of a scanning electron microscope of a uniformly sponged sample (condition that PEG is 10 w / v% and CDP is 0.20 U / mL). (Left photo) and αG1P conversion (right graph). Ribbon-like structures were seen in spongy samples prepared using PEG. In addition, the conversion rate of αG1P when no additive was added was about 35%, whereas when the water-soluble polymer was added, it was lower than that.
15 and 16 show the results of observation of a uniform sponged sample with a scanning electron microscope. A network structure (ribbon) was seen in spongy samples prepared using Dex or PVP.
FIG. 17 shows the analysis result of a uniformly spongy sample by a total reflection infrared spectrophotometer. Peak derived from a type II cellulose is observed around 3488cm -1 and 3445cm -1, it was found to be sponge-like cellulosic structure including type II cellulose.
FIG. 18 shows the result of analysis of cellulose sponged uniformly by a nuclear magnetic resonance spectrometer. A cellulose-derived peak was observed in the vicinity of 3 to 5 ppm, and the average degree of polymerization determined from the proton ratio of the 1-position CH group of the glucose unit at the reducing end to the 1-position CH group of the other glucose units was 9 to 11. .
FIG. 19 shows the chemical structure / crystal structure analysis results of uniformly sponged cellulose. Sponge cellulose was found to be composed of crystalline cellulose oligomers.
FIG. 20 shows a photograph of a sample tube overturning test of a sponge-like cellulose structure prepared by the coexistence of Dex. Due to the coexistence of Dex, the solution stopped flowing after the reaction and was similarly spongy.
FIG. 21 shows a photograph of a sample tube overturning test of a sponge-like cellulose structure prepared by the coexistence of Dex. Sponge was uniformly formed with a CDP concentration of 0.20 U / mL or more and a Dex concentration of 5 w / v% or more.
22 and 23 show the measurement results of the indentation breakage of the uniformly sponged sample. The strength increased as the concentration of CDP increased. Moreover, compared with sponge-like cellulose prepared by coexistence of PEG or PVP, the strength of sponge-like cellulose prepared by coexistence of Dex was higher.
FIG. 24 shows a photograph after the sponge was broken by pressing the test rod into the uniformly sponged sample. By squeezing the test rod into the sample, the squeezed water was observed, confirming that the sample was sponge-like.
FIG. 25 shows the result of analysis by a total reflection infrared spectrophotometer of a sample sponged uniformly by coexistence of Dex or PEG. Peak derived from a type II cellulose is observed around 3488cm -1 and 3445cm -1, it was found to be sponge-like cellulosic structure including type II cellulose.
FIG. 26 shows a sample prepared by the coexistence of Dex (the Dex concentration is 10 w / v% with respect to the CDP concentration of 0.20 or 0.40 U / mL, or the CDP with respect to the Dex concentration of 2 to 20 w / v%. NMR measurement under conditions where the concentration is 0.20 U / mL) and a sample (CDP concentration 0.05 to 0.40 U / mL, Dex concentration is 10 w / v%, or Dex concentration 2 to 20 w / The analysis result by IR measurement under the condition that the CDP concentration is 0.20 U / mL with respect to v% is shown.
FIG. 27 shows a sample prepared by coexistence of Dex (the Dex concentration is 10 w / v% with respect to the CDP concentration of 0.20 or 0.40 U / mL, or the CDP with respect to the Dex concentration of 2 to 20 w / v%. The analysis result by NMR measurement under the condition that the concentration is 0.20 U / mL is shown. A cellulose-derived peak is observed in the vicinity of 3-5 ppm, and the average degree of polymerization determined from the proton ratio of the 1-position CH group of the glucose unit at the reducing end to the 1-position CH group of the other glucose unit is 8-10. I understood. In FIG. 26, the sample having a CDP concentration of 0.05 U / mL and the sample having a Dex concentration of 2 w / v% were not spongy. In FIG. 27, the sample having a Dex concentration of 2 w / v% was not spongy.
FIG. 28 shows an AFM (atomic force microscope) observation result of a uniformly sponged sample (conditions where Dex is 10 w / v% and CDP is 0.20 U / mL). The thickness of the nanoribbon was approximately 5.4 nm, which was in good agreement with the length of the molecular chain having a polymerization degree of 9 (4.7 nm).
2-3. Enzymatic degradation of sponge-like cellulose structure FIG. 29 shows the observation results when the sponge-like cellulose structure is immersed in an aqueous enzyme solution. It was confirmed that the size of the sponge decreased with the passage of time and was degraded by the enzyme. After the enzyme treatment, the maboya-derived CNC-added sponge-like cellulose structure was almost degraded in 48 hours, and the PEG-added sponge-like cellulose structure was almost degraded in 3 hours.
 本発明によれば、足場材などの医療分野、および蓄電池用セパレータなどの環境・エネルギー分野において有用なセルロース三次元構造体を提供することができる。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
ADVANTAGE OF THE INVENTION According to this invention, the cellulose three-dimensional structure useful in the medical field | areas, such as a scaffold, and environmental / energy fields, such as a separator for storage batteries, can be provided.
All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.

Claims (16)

  1.  次式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは、4~10である)
    で示される化合物を構成成分として含有するセルロース三次元構造体。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, n is 4 to 10)
    The cellulose three-dimensional structure which contains the compound shown by these as a structural component.
  2.  高分子を含有する、請求項1記載のセルロース三次元構造体。 The cellulose three-dimensional structure according to claim 1, comprising a polymer.
  3.  高分子がセルロースナノ結晶又は水溶性高分子である、請求項2記載のセルロース三次元構造体。 The cellulose three-dimensional structure according to claim 2, wherein the polymer is a cellulose nanocrystal or a water-soluble polymer.
  4.  水溶性高分子がポリエチレングリコール、デキストラン及びポリビニルピロリドンから成る群より選択される、請求項3記載のセルロース三次元構造体。 The cellulose three-dimensional structure according to claim 3, wherein the water-soluble polymer is selected from the group consisting of polyethylene glycol, dextran and polyvinylpyrrolidone.
  5.  含有される水溶性高分子が除去された、請求項3又は4記載のセルロース三次元構造体。 The cellulose three-dimensional structure according to claim 3 or 4, wherein the water-soluble polymer contained therein is removed.
  6.  セルロース三次元構造体が三次元網目構造を有する、請求項1~5のいずれか1項記載のセルロース三次元構造体。 The cellulose three-dimensional structure according to any one of claims 1 to 5, wherein the cellulose three-dimensional structure has a three-dimensional network structure.
  7.  三次元網目構造がスポンジ状である、請求項6記載のセルロース三次元構造体。 The cellulose three-dimensional structure according to claim 6, wherein the three-dimensional network structure is sponge-like.
  8.  請求項1~7のいずれか1項記載のセルロース三次元構造体を含む足場材。 A scaffold comprising the cellulose three-dimensional structure according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか1項記載のセルロース三次元構造体を含むフィルム。 A film comprising the cellulose three-dimensional structure according to any one of claims 1 to 7.
  10.  請求項1~7のいずれか1項記載のセルロース三次元構造体又は請求項9記載のフィルムを含むセパレータ。 A separator comprising the cellulose three-dimensional structure according to any one of claims 1 to 7 or the film according to claim 9.
  11.  α−D−グルコース一リン酸と、プライマーとしてD−(+)−グルコースとを、高分子存在下でセロデキストリンホスホリラーゼと反応させる工程を含む、次式(I):
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは、4~10である)
    で示される化合物を構成成分として含有するセルロース三次元構造体の製造方法。
    A step of reacting α-D-glucose monophosphate and D-(+)-glucose as a primer with cellodextrin phosphorylase in the presence of a polymer, represented by the following formula (I):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, n is 4 to 10)
    The manufacturing method of the cellulose three-dimensional structure which contains the compound shown by these as a structural component.
  12.  高分子がセルロースナノ結晶又は水溶性高分子である、請求項11記載の方法。 The method according to claim 11, wherein the polymer is a cellulose nanocrystal or a water-soluble polymer.
  13.  水溶性高分子がポリエチレングリコール、デキストラン及びポリビニルピロリドンから成る群より選択される、請求項12記載の方法。 The method according to claim 12, wherein the water-soluble polymer is selected from the group consisting of polyethylene glycol, dextran and polyvinylpyrrolidone.
  14.  セルロース三次元構造体から水溶性高分子を除去する工程をさらに含む、請求項12又は13記載の方法。 The method according to claim 12 or 13, further comprising a step of removing the water-soluble polymer from the cellulose three-dimensional structure.
  15.  セルロース三次元構造体が三次元網目構造を有する、請求項11~14のいずれか1項記載の方法。 The method according to any one of claims 11 to 14, wherein the cellulose three-dimensional structure has a three-dimensional network structure.
  16.  三次元網目構造がスポンジ状である、請求項15記載の方法。 The method according to claim 15, wherein the three-dimensional network structure is sponge-like.
PCT/JP2016/057253 2015-03-02 2016-03-02 Cellulose three-dimensional structure and production method therefor WO2016140369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017503744A JPWO2016140369A1 (en) 2015-03-02 2016-03-02 Cellulose three-dimensional structure and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015040735 2015-03-02
JP2015-040735 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016140369A1 true WO2016140369A1 (en) 2016-09-09

Family

ID=56848220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057253 WO2016140369A1 (en) 2015-03-02 2016-03-02 Cellulose three-dimensional structure and production method therefor

Country Status (2)

Country Link
JP (1) JPWO2016140369A1 (en)
WO (1) WO2016140369A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107875452A (en) * 2017-10-12 2018-04-06 广州贝奥吉因生物科技有限公司 Porous compound support frame for bone tissue engineer and preparation method thereof
JP2020065486A (en) * 2018-10-24 2020-04-30 国立大学法人東京工業大学 Enzyme immobilization carrier and immobilized enzyme
KR20210007215A (en) * 2019-07-10 2021-01-20 인하대학교 산학협력단 Microbial Fuel Cells Comprising Activated Carbon Electrode Based on Miscanthus sinensis
JP2021069339A (en) * 2019-10-31 2021-05-06 国立大学法人東京工業大学 Medium additive for suspension culture, medium composition and culture method
CN114159981A (en) * 2021-11-20 2022-03-11 宁波大学 Method for modifying hydrophobic polymer microfiltration membrane by functionalized cellulose
JP7493713B2 (en) 2019-10-31 2024-06-03 国立大学法人東京工業大学 Medium additive for suspension culture, medium composition and culture method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIRAISHI M. ET AL.: "Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase", CARBOHYDRATE RESEARCH, vol. 344, 2009, pages 2468 - 2473, XP055005255, DOI: doi:10.1016/j.carres.2009.10.002 *
SEKKAL M. ET AL.: "Conformations of amylose and cellulose oligomers as studied using vibrational spectroscopies and molecular mechanics", SPECTROSCOPY OF BIOLOGICAL MOLECULES, 1995, pages 431 - 432 *
TARO KOIZUMI: "Suiyosei Kobunshi Sonzaika ni Okeru Sponge-jo Cellulose no Koso Gosei to Tokusei Hyoka", THE 95TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING 2015 NEN KOEN YOKOSHU III, vol. 95, no. 3, 11 March 2015 (2015-03-11), pages 787 *
YUKI HATA: "Cellulose Nano-kessho Sonzaika de Koso Gosei shita Sponge-jo Cellulose no Tokusei Hyoka", THE 95TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING 2015 NEN KOEN YOKOSHU III, vol. 95, no. 3, 11 March 2015 (2015-03-11), pages 787 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107875452A (en) * 2017-10-12 2018-04-06 广州贝奥吉因生物科技有限公司 Porous compound support frame for bone tissue engineer and preparation method thereof
KR20210082158A (en) 2018-10-24 2021-07-02 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Carrier and Immobilized Enzyme for Enzyme Immobilization
JP2020065486A (en) * 2018-10-24 2020-04-30 国立大学法人東京工業大学 Enzyme immobilization carrier and immobilized enzyme
WO2020085217A1 (en) 2018-10-24 2020-04-30 国立大学法人東京工業大学 Carrier for enzyme immobilization use, and immobilized enzyme
CN112689671A (en) * 2018-10-24 2021-04-20 国立大学法人东京工业大学 Enzyme immobilization carrier and immobilized enzyme
JP7170989B2 (en) 2018-10-24 2022-11-15 国立大学法人東京工業大学 Enzyme immobilization carrier and immobilized enzyme
KR20210007215A (en) * 2019-07-10 2021-01-20 인하대학교 산학협력단 Microbial Fuel Cells Comprising Activated Carbon Electrode Based on Miscanthus sinensis
KR102262014B1 (en) * 2019-07-10 2021-06-08 인하대학교 산학협력단 Microbial Fuel Cells Comprising Activated Carbon Electrode Based on Miscanthus sinensis
JP2021069339A (en) * 2019-10-31 2021-05-06 国立大学法人東京工業大学 Medium additive for suspension culture, medium composition and culture method
EP4053141A4 (en) * 2019-10-31 2023-11-08 DKS Co. Ltd. Medium additive for suspension culture, medium composition and culture method
JP7493713B2 (en) 2019-10-31 2024-06-03 国立大学法人東京工業大学 Medium additive for suspension culture, medium composition and culture method
CN114159981A (en) * 2021-11-20 2022-03-11 宁波大学 Method for modifying hydrophobic polymer microfiltration membrane by functionalized cellulose
CN114159981B (en) * 2021-11-20 2023-08-22 宁波大学 Method for modifying hydrophobic polymer micro-filtration membrane by functionalized cellulose

Also Published As

Publication number Publication date
JPWO2016140369A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
WO2016140369A1 (en) Cellulose three-dimensional structure and production method therefor
Saha et al. Additive manufacturing of catalytically active living materials
Yu et al. Synthesis of self-supporting gold microstructures with three-dimensional morphologies by direct replication of diatom templates
Mishra et al. Ionic Liquid‐Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future
Wang et al. Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives
Hu et al. Biomimetic graphene-based 3D scaffold for long-term cell culture and real-time electrochemical monitoring
Dubey et al. Graphene: a versatile carbon‐based material for bone tissue engineering
Lyu et al. One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities
Hu et al. Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders
Hanczyc et al. Replicating vesicles as models of primitive cell growth and division
Zhao et al. Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor
US8986999B2 (en) Virus/nanowire encapsulation within polymer microgels for 2D and 3D devices for energy and electronics
JP6604581B2 (en) Cellulose nanostructure and method for producing the same
Wang et al. Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review
Zhong et al. Enzymes-encapsulated defective metal–organic framework hydrogel coupling with a smartphone for a portable glucose biosensor
EP2781594A1 (en) Cell culture substrate, and method for manufacturing same
Sada et al. Near-IR laser-triggered target cell collection using a carbon nanotube-based cell-cultured substrate
Jiang et al. Charge-transfer resonance and surface defect-dominated WO3 hollow microspheres as SERS substrates for the miRNA 155 assay
CN105540869A (en) Paracoccus-denitrificans-loaded modified graphene oxide composite material and preparation method and use thereof
Zhao et al. Oriented assembly of zinc oxide mesocrystal in chitosan and applications for glucose biosensors
Butelmann et al. Metabolism control in 3D-printed living materials improves fermentation
Qiao et al. Fabricating bimetal organic material capsules with a commodious microenvironment and synergistic effect for glycosyltransferase
Cuéllar-Cruz Influence of abiotic factors in the chemical origin of life: Biomorphs as a study model
JP2018145216A (en) Enzymatic synthesis of three-dimensional structure comprising cellulose oligomer
JP2018174871A (en) Nanoribbon structure comprising cellulose oligomer having amino group, and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16759060

Country of ref document: EP

Kind code of ref document: A1