WO2016140099A1 - Self-aligning roller bearing - Google Patents

Self-aligning roller bearing Download PDF

Info

Publication number
WO2016140099A1
WO2016140099A1 PCT/JP2016/055169 JP2016055169W WO2016140099A1 WO 2016140099 A1 WO2016140099 A1 WO 2016140099A1 JP 2016055169 W JP2016055169 W JP 2016055169W WO 2016140099 A1 WO2016140099 A1 WO 2016140099A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
cage
outer diameter
outer ring
self
Prior art date
Application number
PCT/JP2016/055169
Other languages
French (fr)
Japanese (ja)
Inventor
幹隆 佐波
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016140099A1 publication Critical patent/WO2016140099A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/54Cages for rollers or needles made from wire, strips, or sheet metal
    • F16C33/542Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal
    • F16C33/543Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal from a single part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • F16C33/4676Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned

Definitions

  • This invention relates to a self-aligning roller bearing.
  • Standard spherical roller bearings are formed with an outer ring having a spherical raceway, a double row inner ring having two single row raceways, a convex roller interposed between the spherical raceway and the single row raceway, and a pocket for accommodating the convex roller. And a retained cage.
  • an outer ring having a width wider than a standard dimension defined in Japanese Industrial Standard (JIS) may be adopted.
  • the inner diameter of the outer ring corresponds to the diameter of the circle inscribed in the edge of the spherical track. For this reason, when an outer ring wider than the standard dimension is adopted, the inner diameter of the outer ring may be smaller than the standard value, and the outer diameter of the cage may be larger.
  • the cage made of metal such as steel is poorly deformable, and the outer diameter of the cage cannot be accommodated inside the spherical track in a state where the outer ring and the central axis of the cage are orthogonal to each other. Therefore, an outer ring and a cage are divided in the circumferential direction and incorporated inside the spherical track (Patent Document 1 below). It is also common to employ an integral resin cage, deform the resin cage and place it inside the spherical track.
  • the problem to be solved by the present invention is that even if the inner diameter of the outer ring of the self-aligning roller bearing is smaller than the outer diameter of the cage, the outer ring and the cage can be used at a high temperature without being divided in the circumferential direction. It is to adopt a cage having excellent properties.
  • the present invention provides a self-aligning roller bearing including an outer ring having a spherical raceway, a plurality of convex rollers, and a cage that maintains a circumferential interval between the convex rollers. It consists of an integral annular part having an inner diameter part smaller than the outer diameter of the cage over the entire circumference in the circumferential direction, and the cage forms a ring over the entire circumference in the circumferential direction and a pocket together with this ring.
  • the outer diameter of the cage is defined by the pillar, and the outer diameter of the ring is smaller than the outer diameter of the cage and the inner diameter portion of the outer ring.
  • the outer diameter of the retainer is set inward of the spherical track from a state in which the ring of the retainer in a posture perpendicular to the outer ring and the inner diameter portion of the retainer are in contact with each other only on the half circumference side. Roll the cage until it is retracted Adopting a configuration in which the outer diameter difference is provided between urchin said ring and said posts.
  • retainer are not divided structures in the circumferential direction, respectively, but consist of integral components over the circumferential direction perimeter, and are advantageous at the point of manufacturing cost rather than the thing of division manufacturing.
  • the inner diameter portion of the outer ring is smaller than the outer diameter of the cage, and can be set to an allowable alignment angle of 0.5 ° or more.
  • a metal cage is superior in usability at a higher temperature than a resin cage.
  • the ring of the cage that is perpendicular to the outer ring When the ring of the cage that is perpendicular to the outer ring is brought into contact with the inner diameter of the outer ring only on the half-circumference side, it is on the opposite side of the contact point compared to the case where the central axes of the cage and outer ring are orthogonal to each other. Then, the distance between the inner diameter portions of the cage and the outer ring is increased, and accordingly, the cage can be moved further into the spherical track. If the outer diameter of the ring is reduced, the distance can be increased. Utilizing this fact, if the outer diameter difference is provided between the ring and the pillar so that the cage can be rolled until the outer diameter of the cage is kept inside the spherical track, the outer ring and the cage are divided. Is no longer necessary.
  • the cage includes a first press ring disposed on the center side of the width of the outer ring and a second press ring cage disposed on the end side of the width of the outer ring. It is good to be. If it does in this way, while defining the outer diameter of a holder
  • retainer to have the fall stop part which stops the fall of the said convex roller stored in the said pocket.
  • the column has a first protruding portion that receives the convex roller in a circumferential direction at a position closer to the first ring than the retaining portion, and closer to the second ring than the retaining portion. It is good to have the 2nd protrusion part which receives the said convex roller in the circumferential direction in this position. If it does in this way, the circumferential direction clearance between columns will be set appropriately by the both protrusions by both protrusion parts, and the movement of a convex roller can be stabilized.
  • the cage may be made of an iron-based metal.
  • An iron-based metal cage is resistant to temperature changes and is superior in usability at a higher temperature than a resin cage.
  • the cage is rolled to reduce the outer diameter of the cage. Since it can be inserted inward, a metal cage excellent in usability at high temperatures can be adopted without dividing the outer ring and the cage in the circumferential direction.
  • Sectional drawing which shows the self-aligning roller bearing which concerns on embodiment of this invention
  • the partial enlarged plan view which shows the pocket of the holder
  • Partial expanded sectional view which shows the circumferential direction end surface of the pillar of the holder
  • Sectional drawing which shows the interference relationship of a holder
  • showing the next stage from Figure 7 Enlarged view of the vicinity of the inner diameter part on the upper side in FIG.
  • the self-aligning roller bearing includes an outer ring 2 having a spherical raceway 1, an inner ring 3, a plurality of convex rollers 4, and a cage 5 that maintains a circumferential interval between the convex rollers 4.
  • the “circumferential direction” refers to a circumferential direction around the center axis of the bearing unless otherwise specified.
  • the direction along the bearing central axis is simply referred to as “axial direction”, and the direction perpendicular to the central axis is simply referred to as “radial direction”.
  • the concepts of “large diameter” and “small diameter” relate to the size relationship in the radial direction.
  • the outer ring 2 is made of an integral annular part.
  • the outer ring 2 has an inner diameter portion 6 having a smaller diameter than the outer diameter of the cage 5 over the entire circumference in the circumferential direction.
  • the inner diameter portion 6 is an edge of the spherical track 1 and defines the inner diameter of the outer ring 2.
  • the end 7 that defines the width of the outer ring 2 is a flat surface along the radial direction. Between the inner diameter portion 6 and the end 7 is a chamfered portion.
  • the inner ring 3 is a double row track ring having two tracks 8.
  • the outer peripheral portion between the end 9 defining the width of the inner ring 3 and the track 8 close to the end 9 has an outer diameter equal to or smaller than the track 8 and has no collar.
  • the allowable alignment angle of this spherical roller bearing is set to 0.5 ° or more.
  • the allowable alignment angle is an angle formed by the central axis of the inner ring 3 with respect to the central axis of the outer ring 2, and is defined as a limit value allowed during the bearing operation.
  • the width of the outer ring 2 is wider than that of the standard dimension defined in JIS. Since the inner ring 3 has a standard size, the inner ring 3 is narrower than the outer ring 2. However, the inner ring 3 may be of the same width or wider than the outer ring 2.
  • the convex roller 4 has a generatrix rolling surface that makes point contact with the spherical track 1 in a plane including the central axis of the convex roller 4.
  • the cage 5 is formed of an integral metal part having a first ring 10 and a second ring 11 that extend over the entire circumference in the circumferential direction, and pillars 13 that form pockets 12 together with the rings 10 and 11.
  • the first ring 10 is arranged on the center side of the width of the outer ring 2.
  • the first ring 10 has a cylindrical shape along the axial direction.
  • the pair of cages 5 face each other at the end faces of the first ring 10 and resist the skew of the convex rollers 4.
  • the second ring 11 is arranged on the end 7 side of the width of the outer ring 2.
  • the second ring 11 defines the inner diameter of the cage 5 and has a flange shape having an inner diameter surface substantially along the axial direction.
  • the cage 5 is guided in the radial direction by sliding contact between the inner diameter surface of the second ring 11 and the outer periphery of the inner ring 3.
  • the pillar 13 separates the pockets 12 adjacent in the circumferential direction between the first ring 10 and the second ring 11.
  • the inner periphery of the pocket 12 has a cage shape surrounding the convex roller 4.
  • the cage 5 is made of an iron-based metal.
  • iron-based metal refers to both iron and alloys containing iron as a main component.
  • the 1st ring 10, the 2nd ring 11, and each pillar 13 are formed by press processing with respect to a steel plate. That is, the cage 5 is a cage-type press cage.
  • the column 13 includes an outer diameter portion 14 formed at the center in the length direction of the column 13, a first connecting portion 15 formed between the outer diameter portion 14 and the first ring 10, and an outer diameter portion 14. And a second connecting portion 16 formed between the second rings 11.
  • the outer diameter portion 14 includes the largest diameter portion of the column 13 and is generally tapered along the central axis of the convex roller 4.
  • the first connecting portion 15 has a tapered shape with an inclination that gradually becomes smaller toward the first ring 10.
  • the second connecting portion 16 has a tapered shape with an inclination that gradually becomes smaller toward the second ring 11. That is, the outer diameter D1 of the cage 5 is defined by the outer diameter portion 14 of the column 13.
  • the outer diameter D2 of the first ring 10 is set to be smaller than the outer diameter D1 of the cage 5 and the inner diameter portion 6 of the outer ring 2.
  • the outer diameter D3 of the second ring 11 is set to be smaller than the outer diameter D1 of the cage 5, the outer diameter D2 of the first ring 10 and the inner diameter portion 6 of the outer ring 2.
  • the outer diameters D2 and D3 are smaller than the pitch circle diameter of the convex rollers 4.
  • drop-off portions 17 that stop the convex rollers 4 housed in the pockets 12 are formed on both end faces in the circumferential direction of the outer diameter portion 14 having a diameter larger than the pitch circle diameter of the convex rollers 4.
  • the circumferential interval between the pair of retaining portions 17 facing in the circumferential direction across the pocket 12 is narrower than the roller diameter of the convex roller 4.
  • the stopper portion 17 receives the central portion (rolling surface portion defining the roller diameter) of the convex roller 4 accommodated in the pocket 12 or the vicinity thereof and receives the convex roller from the pocket 12. 4 can be prevented from falling off.
  • the pillar 13 has a first protrusion 18 that receives the convex roller 4 in the circumferential direction at a position closer to the first ring 10 than the stopper 17, and a closer to the second ring 11 than the stopper 17. It has the 2nd protrusion part 19 which receives the convex roller 4 in the circumferential direction in a position.
  • the first projecting portions 18 are formed on both end surfaces in the circumferential direction of the first connecting portion 15.
  • the second projecting portions 19 are formed on both end surfaces in the circumferential direction of the second connecting portion 16.
  • the first protrusion 18 defines a circumferential clearance between the first connecting portion 15 and the convex roller 4.
  • the second protrusion 19 defines a circumferential clearance between the second connecting portion 16 and the convex roller 4.
  • protrusions 18 and 19 suppress the expansion of the circumferential clearance between both end sides of the convex roller 4 and the column 13, and the circumferential clearance of the same degree as the circumferential clearance between the outer diameter portion 14 and the convex roller 4. Is stipulated. For this reason, during bearing operation, both ends of the skewed convex roller 4 are quickly received in the circumferential direction by the two protrusions 18 and 19, and the movement of the convex roller 4 is stabilized.
  • FIG. 4 shows a cut surface by the plane when the central axis of the inner ring 3 and the cage 5 is coaxial and orthogonal to the central axis of the outer ring 2 on a plane passing through the center of the width of the spherical track 1.
  • the convex roller 4 can be stored in the pocket 12 located outside the outer ring 2.
  • the convex rollers 4 are struck to forcibly pass between the pair of stoppers 17.
  • the cage 5 is rotated to sequentially feed the pockets 12 located outside, and the convex rollers 4 can be accommodated in all the pockets 12. Thereafter, the cage 5 and the inner ring 3 are returned to be concentric with the outer ring 2 to be assembled into the self-aligning roller bearing shown in FIG.
  • FIG. 5 is an enlarged view of the vicinity of the pillar 13 of the cage 5 on the right side in FIG.
  • the outer diameter portion 14 of the column 13 that defines the outer diameter D1 of the cage 5 is larger than the inner diameter portion 6 of the outer ring 2 that is the edge of the spherical track 1. Therefore, even if the central axis of the retainer 5 is arranged so as to be orthogonal to the central axis of the outer ring 2 on one side of the outer ring 2 and the retainer 5 is moved in the axial direction in this state, the outer diameter portion 14 and Due to the interference of the inner diameter portion 6, the outer diameter D ⁇ b> 1 of the cage 5 cannot be accommodated inside the spherical track 1.
  • FIG. 5 shows the amount of interference ⁇ between the inner diameter portion 6 and the outer peripheral edge 14a (on the line BB in the figure) as an example.
  • the portion that most interferes with the inner diameter portion 6 of the outer ring 2 is the outer peripheral edge 14a on the second ring 11 side of the outer diameter portion 14 (on the line BB in the drawing).
  • the outer peripheral edge 14b of the outer diameter portion 14 on the first ring 10 side is a location that defines the outer diameter D1, but is not the most interfering portion because of the relationship with the curvature of the spherical orbit 1.
  • the outer diameter D1 of the cage 5 is changed from the state in which the first ring 10 of the cage 5 in a posture perpendicular to the outer ring 2 and the inner diameter portion 6 of the outer ring 2 are in contact only on the half circumference side to the inside of the spherical track 1.
  • An outer diameter difference is provided between the column 13 and the first ring 10 and between the column 13 and the second ring 11 so that the cage 5 can be rolled until it is retracted.
  • the cage 5 in a posture perpendicular to the outer ring 2 means a posture in which a plane including the central axis of the cage 5 and a plane including the central axis of the outer ring 2 are perpendicular to each other.
  • the central axis of the cage 5 is located on the lower side in the figure with respect to the central axis of the outer ring 2, and the distance between the upper side of the inner diameter portion 6 in the figure and the cage 5 is the above-mentioned assumption.
  • the cage 5 expands in the vertical direction in the figure.
  • the cage 5 is drawn with respect to the cage 5 from the first ring 10 side as viewed in the direction along the central axis Ca of the cage 5.
  • a spherical orbit 1 drawn with a two-dot chain line in FIG. 6 shows the shape of the spherical orbit 1 on the cut surface along the line BB in FIG.
  • a circle C drawn by a two-dot chain line in FIG. 6 indicates a pitch circle circumscribing the outer peripheral edge 14a of the outer diameter portion 14 of each column 13 in FIG.
  • the cage 5 is rolled inwardly of the spherical track 1 around the point b while maintaining the posture of the cage 5 from the contact state of FIG.
  • the circumferential end c point on the circle C of the column 13 located diagonally to the point b draws an arcuate locus L around the point b as shown in FIGS.
  • Cage dimensions such as the outer diameter D1 of the cage 5 and the outer diameter D2 of the first ring 10 are set so that a gap g is generated between the locus L and the inner diameter portion 6, and the column 13 and the first An outer diameter difference is provided between the ring 10, the column 13, and the second ring 11. For this reason, as shown in FIG.
  • the cage 5 can be rolled until the outer diameter D ⁇ b> 1 of the cage 5 is accommodated inside the spherical track 1.
  • the display of the inner ring 3 is omitted.
  • the inner ring 3 is housed inside the spherical track 1 together with the cage 5.
  • This self-aligning roller bearing is as described above, and the outer diameters D2 and D3 of the first ring 10 and the second ring 11 are made larger than the outer diameter D1 of the cage 5 (the outer diameter of the column 13).
  • the cage 5 can be rolled and inserted into the inner surface of the spherical track 1. Without dividing the outer ring 2 and the cage 5 in the circumferential direction, the ferrous metal cage 5 excellent in usability at high temperatures can be employed.
  • this spherical roller bearing employs a cage-type press cage (cage 5) having the first ring 10 and the second ring 11, it is for making a retaining portion on the ring. It is not necessary to secure the ring diameter, and the outer diameter D1 of the retainer 5 is defined in the middle of the pillar 13 where the retaining portion 17 is disposed, and the pillar 13 is inclined to be required between the rings 10, 11 and the pillar 13. It is easy to provide a difference in outer diameter.
  • this self-aligning roller bearing appropriately sets the circumferential clearance between the pillar 13 on both ends of the convex roller 4 by the first protrusion 18 and the second protrusion 19 of the pillar 13 and skews.
  • the convex roller 4 to be received can be quickly received by the two protruding portions 18 and 19 to stabilize the movement of the convex roller 4.

Abstract

An outer ring (2) has an inner-diameter section (6) having a diameter smaller than the outer diameter of a retainer (5), and the pillars (13) of the retainer (5) have retention sections (17) for preventing convex rollers (4) accommodated in pockets (12) from dropping. The outer diameters of the rings (10, 11) of the retainer (5) are set to be smaller than both the outer diameter of the retainer (5) and the diameter of the inner-diameter section (6) of the outer ring (2). Because of the differences in outer diameter among the rings (10, 11) and the pillars (13), the retainer (5) can be rolled from a state in which the inner diameter section (6) and the ring (10) which is in a position perpendicular to the outer ring (2) are in contact with each other only on the half-circle side, until the outer diameter of the retainer (5) is received into a spherical raceway (1).

Description

自動調心ころ軸受Spherical roller bearing
 この発明は、自動調心ころ軸受に関する。 This invention relates to a self-aligning roller bearing.
 標準的な自動調心ころ軸受は、球面軌道を有する外輪と、二つの単列軌道を有する複列内輪と、球面軌道及び単列軌道間に介在する凸面ころと、凸面ころを収めるポケットが形成された保持器とを備えている。その自動調心ころ軸受において許容調心角を0.5度よりも大きくする手段として、日本工業規格(JIS)で規定されている標準寸法に対して幅広な外輪を採用することがある。外輪の内径は、球面軌道の縁に内接する円径に相当する。このため、標準寸法に対して幅広な外輪を採用すると、その外輪の内径は、標準的な値よりも小さくなり、保持器の外径の方が大きくなる場合がある。 Standard spherical roller bearings are formed with an outer ring having a spherical raceway, a double row inner ring having two single row raceways, a convex roller interposed between the spherical raceway and the single row raceway, and a pocket for accommodating the convex roller. And a retained cage. As a means for making the allowable alignment angle larger than 0.5 degrees in the self-aligning roller bearing, an outer ring having a width wider than a standard dimension defined in Japanese Industrial Standard (JIS) may be adopted. The inner diameter of the outer ring corresponds to the diameter of the circle inscribed in the edge of the spherical track. For this reason, when an outer ring wider than the standard dimension is adopted, the inner diameter of the outer ring may be smaller than the standard value, and the outer diameter of the cage may be larger.
 この場合、鋼等の金属製の保持器は可変形性に乏しく、外輪及び保持器の中心軸が直交する態勢で保持器の外径を球面軌道の内方へ収めることはできない。それ故、外輪や保持器を周方向に分割して球面軌道の内方に組み込むことが行われている(下記特許文献1)。また、一体の樹脂保持器を採用し、樹脂保持器を変形させて球面軌道の内方へ配置することも一般的である。 In this case, the cage made of metal such as steel is poorly deformable, and the outer diameter of the cage cannot be accommodated inside the spherical track in a state where the outer ring and the central axis of the cage are orthogonal to each other. Therefore, an outer ring and a cage are divided in the circumferential direction and incorporated inside the spherical track (Patent Document 1 below). It is also common to employ an integral resin cage, deform the resin cage and place it inside the spherical track.
特開2009-180307号公報JP 2009-180307 A
 しかしながら、外輪や保持器を周方向に分割した構造にする場合、製造コストがかかる問題がある。また、樹脂保持器を採用する場合、高温で使用できない問題がある。 However, when the outer ring and the cage are divided in the circumferential direction, there is a problem that the manufacturing cost is high. Moreover, when employ | adopting a resin holder, there exists a problem which cannot be used at high temperature.
 そこで、この発明が解決しようとする課題は、自動調心ころ軸受の外輪の内径が保持器の外径よりも小さい場合でも、外輪や保持器を周方向に分割することなく、高温での使用性に優れた保持器を採用することにある。 Therefore, the problem to be solved by the present invention is that even if the inner diameter of the outer ring of the self-aligning roller bearing is smaller than the outer diameter of the cage, the outer ring and the cage can be used at a high temperature without being divided in the circumferential direction. It is to adopt a cage having excellent properties.
 上記の課題を達成するため、この発明は、球面軌道を有する外輪と、複数の凸面ころと、これら凸面ころの周方向間隔を保つ保持器とを備える自動調心ころ軸受において、前記外輪が、周方向全周に亘って前記保持器の外径よりも小径な内径部を有する一体の環状部品からなり、前記保持器が、周方向全周に亘るリングと、このリングと共にポケットを形成する各柱とを有する一体の金属製部品からなり、前記保持器の外径が、前記柱によって規定され、前記リングの外径が、前記保持器の外径及び前記外輪の内径部よりも小径に定められており、前記外輪に対して垂直な姿勢の前記保持器の前記リングと当該外輪の前記内径部を半周側でのみ接触させた状態から当該保持器の外径を前記球面軌道の内方に収めるまで当該保持器を転がせるように前記リング及び前記柱間に外径差が設けられている構成を採用した。 In order to achieve the above object, the present invention provides a self-aligning roller bearing including an outer ring having a spherical raceway, a plurality of convex rollers, and a cage that maintains a circumferential interval between the convex rollers. It consists of an integral annular part having an inner diameter part smaller than the outer diameter of the cage over the entire circumference in the circumferential direction, and the cage forms a ring over the entire circumference in the circumferential direction and a pocket together with this ring. The outer diameter of the cage is defined by the pillar, and the outer diameter of the ring is smaller than the outer diameter of the cage and the inner diameter portion of the outer ring. The outer diameter of the retainer is set inward of the spherical track from a state in which the ring of the retainer in a posture perpendicular to the outer ring and the inner diameter portion of the retainer are in contact with each other only on the half circumference side. Roll the cage until it is retracted Adopting a configuration in which the outer diameter difference is provided between urchin said ring and said posts.
 上記構成によれば、外輪及び保持器は、それぞれ周方向に分割構造でなく、周方向全周に亘る一体の部品からなり、分割製造のものよりも製造コストの点で有利である。その外輪の内径部は、保持器の外径よりも小径であり、0.5°以上の許容調心角に設定することが可能になる。金属製の保持器は、樹脂保持器よりも高温での使用性に優れる。
 外輪に対して垂直な姿勢の保持器のリングと外輪の内径部を半周側のみで接触させた場合、保持器及び外輪の中心軸同士が直交する場合に比して、その接触箇所と反対側では保持器及び外輪の内径部間の距離が拡がり、その分、保持器をより球面軌道の内方へ入り込ませることが可能となる。リングの外径を小径にすると、その距離を大きくすることができる。このことを利用し、保持器の外径を球面軌道の内方に収めるまで保持器を転がせるようにリング及び柱間に外径差を設けておけば、外輪や保持器を分割構造にすることが不要となる。
According to the said structure, an outer ring | wheel and a holder | retainer are not divided structures in the circumferential direction, respectively, but consist of integral components over the circumferential direction perimeter, and are advantageous at the point of manufacturing cost rather than the thing of division manufacturing. The inner diameter portion of the outer ring is smaller than the outer diameter of the cage, and can be set to an allowable alignment angle of 0.5 ° or more. A metal cage is superior in usability at a higher temperature than a resin cage.
When the ring of the cage that is perpendicular to the outer ring is brought into contact with the inner diameter of the outer ring only on the half-circumference side, it is on the opposite side of the contact point compared to the case where the central axes of the cage and outer ring are orthogonal to each other. Then, the distance between the inner diameter portions of the cage and the outer ring is increased, and accordingly, the cage can be moved further into the spherical track. If the outer diameter of the ring is reduced, the distance can be increased. Utilizing this fact, if the outer diameter difference is provided between the ring and the pillar so that the cage can be rolled until the outer diameter of the cage is kept inside the spherical track, the outer ring and the cage are divided. Is no longer necessary.
 例えば、前記保持器が、前記外輪の幅の中央側に配置される第1の前記リングと、前記外輪の幅の端側に配置される第2の前記リングとを有するかご形のプレス保持器になっているとよい。
 このようにすると、落ち止め部を配する柱の中程で保持器の外径を規定すると共に、柱に傾斜を与えて両リング及び柱間に所要の外径差を設けることができる。
For example, the cage includes a first press ring disposed on the center side of the width of the outer ring and a second press ring cage disposed on the end side of the width of the outer ring. It is good to be.
If it does in this way, while defining the outer diameter of a holder | retainer in the middle of the pillar which arrange | positions a fall prevention part, an inclination can be given to a pillar and a required outer diameter difference can be provided between both rings and pillars.
 また、前記保持器の前記柱が、前記ポケットに収められた前記凸面ころの落下を止める落ち止め部を有しているとよい。
 自動調心ころ軸受の組立てに際しては、内輪及び保持器の外径を球面軌道の内方に収めた状態で各ポケットに凸面ころを入れた後、内輪及び保持器を外輪と同心な姿勢にする返し工程が行われる。このため、ポケットに収められた凸面ころの落下を保持器で防ぐことが求められる。そのための落ち止め部を柱に配置すると、リングに落ち止め部を作るためのリング径確保が不要となる。
Moreover, it is good for the said pillar of the said holder | retainer to have the fall stop part which stops the fall of the said convex roller stored in the said pocket.
When assembling self-aligning roller bearings, place the inner ring and the cage concentrically with the outer ring after inserting convex rollers in each pocket with the outer diameter of the inner ring and cage kept inside the spherical raceway. A return process is performed. For this reason, it is calculated | required to prevent the convex roller stored in the pocket from falling with a cage. If the retaining portion for that purpose is arranged on the pillar, it is not necessary to secure a ring diameter for making the retaining portion on the ring.
 より好ましくは、前記柱が、前記落ち止め部よりも前記第1のリング寄りの位置で前記凸面ころを周方向に受ける第1の突出部と、前記落ち止め部よりも前記第2のリング寄りの位置で前記凸面ころを周方向に受ける第2の突出部とを有するとよい。
 このようにすると、両突出部によって凸面ころの両端側で柱との間の周方向すきまを適切に設定し、凸面ころの動きを安定させることができる。
More preferably, the column has a first protruding portion that receives the convex roller in a circumferential direction at a position closer to the first ring than the retaining portion, and closer to the second ring than the retaining portion. It is good to have the 2nd protrusion part which receives the said convex roller in the circumferential direction in this position.
If it does in this way, the circumferential direction clearance between columns will be set appropriately by the both protrusions by both protrusion parts, and the movement of a convex roller can be stabilized.
 例えば、前記保持器が鉄系金属より形成されているとよい。鉄系金属製の保持器は、温度変化に強く、樹脂保持器よりも高温での使用性に優れる。 For example, the cage may be made of an iron-based metal. An iron-based metal cage is resistant to temperature changes and is superior in usability at a higher temperature than a resin cage.
 上述のように、この発明は、上記構成の採用により、自動調心ころ軸受の外輪の内径が保持器の外径よりも小さい場合でも、保持器を転がして保持器の外径を球面軌道の内方へ挿入可能なので、外輪や保持器を周方向に分割することなく、高温での使用性に優れた金属製の保持器を採用することができる。 As described above, according to the present invention, by adopting the above configuration, even when the inner diameter of the outer ring of the self-aligning roller bearing is smaller than the outer diameter of the cage, the cage is rolled to reduce the outer diameter of the cage. Since it can be inserted inward, a metal cage excellent in usability at high temperatures can be adopted without dividing the outer ring and the cage in the circumferential direction.
この発明の実施形態に係る自動調心ころ軸受を示す断面図Sectional drawing which shows the self-aligning roller bearing which concerns on embodiment of this invention 図1に示す保持器のポケットを図3中のA方向から示す部分拡大平面図The partial enlarged plan view which shows the pocket of the holder | retainer shown in FIG. 1 from the A direction in FIG. 図1に示す保持器の柱の周方向端面を示す部分拡大断面図Partial expanded sectional view which shows the circumferential direction end surface of the pillar of the holder | retainer shown in FIG. 図1に示す保持器と外輪の干渉関係を示す断面図Sectional drawing which shows the interference relationship of a holder | retainer and an outer ring shown in FIG. 図4の右側の保持器の柱付近の部分拡大図4 is a partially enlarged view near the pillar of the cage on the right side of FIG. 図1に示す保持器を外輪の内方に挿入する工程の初期段階を示す図The figure which shows the initial stage of the process which inserts the holder | retainer shown in FIG. 1 inside an outer ring | wheel. 図6から続く次段階を示す図Figure showing the next stage from Figure 6 図7から続く次段階を示す図Figure showing the next stage from Figure 7 図8の図中上側の内径部付近の拡大図Enlarged view of the vicinity of the inner diameter part on the upper side in FIG.
 以下、この発明の一実施形態の自動調心ころ軸受を添付図面に基づいて説明する。この自動調心ころ軸受は、図1に示すように、球面軌道1を有する外輪2と、内輪3と、複数の凸面ころ4と、これら凸面ころ4の周方向間隔を保つ保持器5とを備える。ここで、「周方向」とは、特に言及しない限り、軸受中心軸周りの円周方向のことをいう。以下、軸受中心軸に沿った方向のことを単に「軸方向」といい、その中心軸に直角な方向のことを単に「径方向」という。また、「大径」、「小径」の概念は、その径方向での大小関係に関する。 Hereinafter, a self-aligning roller bearing according to an embodiment of the present invention will be described with reference to the accompanying drawings. As shown in FIG. 1, the self-aligning roller bearing includes an outer ring 2 having a spherical raceway 1, an inner ring 3, a plurality of convex rollers 4, and a cage 5 that maintains a circumferential interval between the convex rollers 4. Prepare. Here, the “circumferential direction” refers to a circumferential direction around the center axis of the bearing unless otherwise specified. Hereinafter, the direction along the bearing central axis is simply referred to as “axial direction”, and the direction perpendicular to the central axis is simply referred to as “radial direction”. The concepts of “large diameter” and “small diameter” relate to the size relationship in the radial direction.
 外輪2は、一体の環状部品からなる。外輪2は、周方向全周に亘って保持器5の外径よりも小径な内径部6を有する。内径部6は、球面軌道1の縁になっており、外輪2の内径を規定する。外輪2の幅を規定する端7は、径方向に沿った平坦面になっている。内径部6と端7との間は、面取り部になっている。 The outer ring 2 is made of an integral annular part. The outer ring 2 has an inner diameter portion 6 having a smaller diameter than the outer diameter of the cage 5 over the entire circumference in the circumferential direction. The inner diameter portion 6 is an edge of the spherical track 1 and defines the inner diameter of the outer ring 2. The end 7 that defines the width of the outer ring 2 is a flat surface along the radial direction. Between the inner diameter portion 6 and the end 7 is a chamfered portion.
 内輪3は、二つの軌道8を有する複列軌道輪になっている。内輪3の幅を規定する端9と、これに近い軌道8との間の外周部分は、軌道8以下の外径になっており、つばをもたない。 The inner ring 3 is a double row track ring having two tracks 8. The outer peripheral portion between the end 9 defining the width of the inner ring 3 and the track 8 close to the end 9 has an outer diameter equal to or smaller than the track 8 and has no collar.
 この自動調心ころ軸受の許容調心角は、0.5°以上に設定されている。許容調心角は、外輪2の中心軸に対して内輪3の中心軸が成す角度であって、軸受運転中に許される限界の値として規定される。外輪2の幅は、JISに規定された標準寸法のものよりも幅広になっている。内輪3は、標準寸法のものを例示しているので、外輪2よりも幅狭になっているが、外輪2に対して同幅又は幅広のものでもよい。 ¡The allowable alignment angle of this spherical roller bearing is set to 0.5 ° or more. The allowable alignment angle is an angle formed by the central axis of the inner ring 3 with respect to the central axis of the outer ring 2, and is defined as a limit value allowed during the bearing operation. The width of the outer ring 2 is wider than that of the standard dimension defined in JIS. Since the inner ring 3 has a standard size, the inner ring 3 is narrower than the outer ring 2. However, the inner ring 3 may be of the same width or wider than the outer ring 2.
 凸面ころ4は、凸面ころ4の中心軸を含む平面において球面軌道1と点接触する母線形状の転動面を有する。 The convex roller 4 has a generatrix rolling surface that makes point contact with the spherical track 1 in a plane including the central axis of the convex roller 4.
 保持器5は、周方向全周に亘る第1のリング10及び第2のリング11と、これらリング10,11と共にポケット12を形成する各柱13とを有する一体の金属製部品からなる。 The cage 5 is formed of an integral metal part having a first ring 10 and a second ring 11 that extend over the entire circumference in the circumferential direction, and pillars 13 that form pockets 12 together with the rings 10 and 11.
 第1のリング10は、外輪2の幅の中央側に配置される。第1のリング10は、軸方向に沿った円筒状になっている。一対の保持器5は、互いの第1のリング10の端面同士で突き合い、凸面ころ4のスキューに抵抗する。 The first ring 10 is arranged on the center side of the width of the outer ring 2. The first ring 10 has a cylindrical shape along the axial direction. The pair of cages 5 face each other at the end faces of the first ring 10 and resist the skew of the convex rollers 4.
 第2のリング11は、外輪2の幅の端7側に配置される。第2のリング11は、保持器5の内径を規定し、概ね軸方向に沿った内径面を有するフランジ状になっている。第2のリング11の内径面と内輪3の外周との滑り接触によって、保持器5が径方向に案内される。 The second ring 11 is arranged on the end 7 side of the width of the outer ring 2. The second ring 11 defines the inner diameter of the cage 5 and has a flange shape having an inner diameter surface substantially along the axial direction. The cage 5 is guided in the radial direction by sliding contact between the inner diameter surface of the second ring 11 and the outer periphery of the inner ring 3.
 図2、図3に示すように、柱13は、第1のリング10及び第2のリング11間で周方向に隣り合うポケット12間を分離する。ポケット12の内周は、凸面ころ4を囲むかご形になっている。 2 and 3, the pillar 13 separates the pockets 12 adjacent in the circumferential direction between the first ring 10 and the second ring 11. The inner periphery of the pocket 12 has a cage shape surrounding the convex roller 4.
 保持器5は、鉄系金属より形成されている。ここで、「鉄系金属」とは、鉄、及び鉄を主成分とした合金の双方のことをいう。第1のリング10、第2のリング11及び各柱13は、鋼板に対するプレス加工によって形成されている。すなわち、保持器5は、かご形のプレス保持器になっている。 The cage 5 is made of an iron-based metal. Here, “iron-based metal” refers to both iron and alloys containing iron as a main component. The 1st ring 10, the 2nd ring 11, and each pillar 13 are formed by press processing with respect to a steel plate. That is, the cage 5 is a cage-type press cage.
 柱13は、柱13の長さ方向の中央部に形成された外径部14と、外径部14及び第1のリング10間に形成された第1の繋ぎ部15と、外径部14及び第2のリング11間に形成された第2の繋ぎ部16とで構成されている。外径部14は、柱13の最も大径な部分を含み、概ね凸面ころ4の中心軸に沿ったテーパ状になっている。第1の繋ぎ部15は、第1のリング10の方に向かって次第に小径になる傾斜を与えたテーパ状になっている。第2の繋ぎ部16は、第2のリング11の方に向かって次第に小径になる傾斜を与えたテーパ状になっている。すなわち、保持器5の外径D1は、柱13の外径部14によって規定されている。第1のリング10の外径D2は、保持器5の外径D1及び外輪2の内径部6よりも小径に定められている。第2のリング11の外径D3は、保持器5の外径D1,第1のリング10の外径D2及び外輪2の内径部6よりも小径に定められている。外径D2,D3は、凸面ころ4のピッチ円径よりも小径になっている。 The column 13 includes an outer diameter portion 14 formed at the center in the length direction of the column 13, a first connecting portion 15 formed between the outer diameter portion 14 and the first ring 10, and an outer diameter portion 14. And a second connecting portion 16 formed between the second rings 11. The outer diameter portion 14 includes the largest diameter portion of the column 13 and is generally tapered along the central axis of the convex roller 4. The first connecting portion 15 has a tapered shape with an inclination that gradually becomes smaller toward the first ring 10. The second connecting portion 16 has a tapered shape with an inclination that gradually becomes smaller toward the second ring 11. That is, the outer diameter D1 of the cage 5 is defined by the outer diameter portion 14 of the column 13. The outer diameter D2 of the first ring 10 is set to be smaller than the outer diameter D1 of the cage 5 and the inner diameter portion 6 of the outer ring 2. The outer diameter D3 of the second ring 11 is set to be smaller than the outer diameter D1 of the cage 5, the outer diameter D2 of the first ring 10 and the inner diameter portion 6 of the outer ring 2. The outer diameters D2 and D3 are smaller than the pitch circle diameter of the convex rollers 4.
 一方、凸面ころ4のピッチ円径よりも大径な外径部14の周方向両端面には、ポケット12に収められた凸面ころ4の落下を止める落ち止め部17が形成されている。ポケット12を挟んで周方向に対向する一対の落ち止め部17間の周方向間隔は、凸面ころ4のころ径よりも狭くなっている。このため、落ち止め部17は、ポケット12に収められた凸面ころ4のころ長さ方向の中央部(ころ径を規定する転動面部分)ないしその付近を受けて、ポケット12からの凸面ころ4の脱落を防止することができる。 On the other hand, on both end faces in the circumferential direction of the outer diameter portion 14 having a diameter larger than the pitch circle diameter of the convex rollers 4, drop-off portions 17 that stop the convex rollers 4 housed in the pockets 12 are formed. The circumferential interval between the pair of retaining portions 17 facing in the circumferential direction across the pocket 12 is narrower than the roller diameter of the convex roller 4. For this reason, the stopper portion 17 receives the central portion (rolling surface portion defining the roller diameter) of the convex roller 4 accommodated in the pocket 12 or the vicinity thereof and receives the convex roller from the pocket 12. 4 can be prevented from falling off.
 また、柱13は、落ち止め部17よりも第1のリング10寄りの位置で凸面ころ4を周方向に受ける第1の突出部18と、落ち止め部17よりも第2のリング11寄りの位置で凸面ころ4を周方向に受ける第2の突出部19とを有する。第1の突出部18は、第1の繋ぎ部15の周方向両端面に形成されている。第2の突出部19は、第2の繋ぎ部16の周方向両端面に形成されている。第1の突出部18は、第1の繋ぎ部15及び凸面ころ4間の周方向すきまを規定する。第2の突出部19は、第2の繋ぎ部16及び凸面ころ4間の周方向すきまを規定する。これら両突出部18,19は、凸面ころ4の両端側と柱13との間で周方向すきまの拡大を抑え、外径部14及び凸面ころ4間の周方向すきまと同程度の周方向すきまを規定している。このため、軸受運転中、スキューする凸面ころ4の両端側が速やかに両突出部18,19によって周方向に受けられ、凸面ころ4の動きが安定する。 In addition, the pillar 13 has a first protrusion 18 that receives the convex roller 4 in the circumferential direction at a position closer to the first ring 10 than the stopper 17, and a closer to the second ring 11 than the stopper 17. It has the 2nd protrusion part 19 which receives the convex roller 4 in the circumferential direction in a position. The first projecting portions 18 are formed on both end surfaces in the circumferential direction of the first connecting portion 15. The second projecting portions 19 are formed on both end surfaces in the circumferential direction of the second connecting portion 16. The first protrusion 18 defines a circumferential clearance between the first connecting portion 15 and the convex roller 4. The second protrusion 19 defines a circumferential clearance between the second connecting portion 16 and the convex roller 4. These protrusions 18 and 19 suppress the expansion of the circumferential clearance between both end sides of the convex roller 4 and the column 13, and the circumferential clearance of the same degree as the circumferential clearance between the outer diameter portion 14 and the convex roller 4. Is stipulated. For this reason, during bearing operation, both ends of the skewed convex roller 4 are quickly received in the circumferential direction by the two protrusions 18 and 19, and the movement of the convex roller 4 is stabilized.
 図4は、内輪3及び保持器5の中心軸が同軸かつ外輪2の中心軸と球面軌道1の幅中央を通る平面上で直交している態勢のときの当該平面による切断面を示す。図4の態勢においては、外輪2の外部に位置するポケット12に対して凸面ころ4を収めることができる。この際、凸面ころ4を打って一対の落ち止め部17間を強制的に通過させる。保持器5を回転させて外部に位置するポケット12を順次に送り、全てのポケット12に凸面ころ4を収めることができる。その後、保持器5及び内輪3を返して外輪2と同心にすることにより、図1に示す自動調心ころ軸受に組み立てられる。 FIG. 4 shows a cut surface by the plane when the central axis of the inner ring 3 and the cage 5 is coaxial and orthogonal to the central axis of the outer ring 2 on a plane passing through the center of the width of the spherical track 1. In the posture of FIG. 4, the convex roller 4 can be stored in the pocket 12 located outside the outer ring 2. At this time, the convex rollers 4 are struck to forcibly pass between the pair of stoppers 17. The cage 5 is rotated to sequentially feed the pockets 12 located outside, and the convex rollers 4 can be accommodated in all the pockets 12. Thereafter, the cage 5 and the inner ring 3 are returned to be concentric with the outer ring 2 to be assembled into the self-aligning roller bearing shown in FIG.
 図5は、図4の図中右側の保持器5の柱13付近を拡大したものである。これら両図から明らかなように、保持器5の外径D1を規定する柱13の外径部14は、球面軌道1の縁になっている外輪2の内径部6よりも大径である。このため、外輪2の一側方で保持器5の中心軸が外輪2の中心軸に直交する配置とし、この態勢のまま保持器5を軸方向に移動させたとしても、外径部14と内径部6の干渉により、保持器5の外径D1を球面軌道1の内方へ収めることはできない。その干渉量は、図4において保持器5を外輪2に向かって軸方向(外輪2の中心軸方向)に投影したとき、保持器5及び外輪2の重なる領域を保持器5の中心軸に直角な方向に測った線分の長さに相当し、一例として内径部6と外周縁14a間(図中のB-B線上)の干渉量Δを図5中に示す。ここで、外輪2の内径部6と最も干渉する箇所は、外径部14の第2のリング11側の外周縁14aになる(図中のB-B線上となる)。外径部14の第1のリング10側の外周縁14bは、外径D1を規定する箇所となるが、球面軌道1の曲率との関係から、最も干渉する部分になっていない。 FIG. 5 is an enlarged view of the vicinity of the pillar 13 of the cage 5 on the right side in FIG. As is clear from these figures, the outer diameter portion 14 of the column 13 that defines the outer diameter D1 of the cage 5 is larger than the inner diameter portion 6 of the outer ring 2 that is the edge of the spherical track 1. Therefore, even if the central axis of the retainer 5 is arranged so as to be orthogonal to the central axis of the outer ring 2 on one side of the outer ring 2 and the retainer 5 is moved in the axial direction in this state, the outer diameter portion 14 and Due to the interference of the inner diameter portion 6, the outer diameter D <b> 1 of the cage 5 cannot be accommodated inside the spherical track 1. 4, when the cage 5 is projected toward the outer ring 2 in the axial direction (the central axis direction of the outer ring 2), the region where the cage 5 and the outer ring 2 overlap is perpendicular to the center axis of the cage 5. FIG. 5 shows the amount of interference Δ between the inner diameter portion 6 and the outer peripheral edge 14a (on the line BB in the figure) as an example. Here, the portion that most interferes with the inner diameter portion 6 of the outer ring 2 is the outer peripheral edge 14a on the second ring 11 side of the outer diameter portion 14 (on the line BB in the drawing). The outer peripheral edge 14b of the outer diameter portion 14 on the first ring 10 side is a location that defines the outer diameter D1, but is not the most interfering portion because of the relationship with the curvature of the spherical orbit 1.
 そこで、外輪2に対して垂直な姿勢の保持器5の第1のリング10と外輪2の内径部6を半周側でのみ接触させた状態から保持器5の外径D1を球面軌道1の内方に収めるまで保持器5を転がせるように、柱13及び第1のリング10間、並びに柱13及び第2のリング11間に外径差が設けられている。ここで、「外輪2に対して垂直な姿勢の保持器5」とは、保持器5の中心軸を含む平面と、外輪2の中心軸を含む平面とが直角になる姿勢のことをいう。 Therefore, the outer diameter D1 of the cage 5 is changed from the state in which the first ring 10 of the cage 5 in a posture perpendicular to the outer ring 2 and the inner diameter portion 6 of the outer ring 2 are in contact only on the half circumference side to the inside of the spherical track 1. An outer diameter difference is provided between the column 13 and the first ring 10 and between the column 13 and the second ring 11 so that the cage 5 can be rolled until it is retracted. Here, “the cage 5 in a posture perpendicular to the outer ring 2” means a posture in which a plane including the central axis of the cage 5 and a plane including the central axis of the outer ring 2 are perpendicular to each other.
 図4中の右側の保持器5を球面軌道1の内方に挿入する場合を例に説明すると、先ず、図6に示すように、保持器5を外輪2に対して垂直な姿勢とし、その第1のリング10の図中下側一箇所(図中にa点で示す)のみを外輪2に対して軸方向の一側方から外輪2の内径部6の図中下側に接触させる。この接触状態のとき、第1のリング10の外径D2よりも小径な外径D3の第2のリング11は、内径部6に接触していない。また、いずれの柱13も球面軌道1と接触していない。この接触状態では、保持器5の中心軸が外輪2の中心軸に対して図中下側に位置しており、内径部6の図中上側及び保持器5間の距離は、前述の仮定の保持器移動態勢のときに比べて図中上下方向に拡がる。なお、図6では、保持器5に対して第1のリング10側から保持器5を保持器5の中心軸Caに沿った方向に視た外観で描いている。図6中に二点鎖線で描いた球面軌道1は、図5中のB-B線の切断面における球面軌道1の形状を示す。また、図6中に二点鎖線で描いた円Cは、図5中の各柱13の外径部14の外周縁14aに外接するピッチ円を示す。 The case where the right cage 5 in FIG. 4 is inserted into the spherical track 1 will be described as an example. First, as shown in FIG. Only one portion of the first ring 10 on the lower side in the figure (indicated by point a in the figure) is brought into contact with the lower side of the inner diameter portion 6 of the outer ring 2 from one side in the axial direction with respect to the outer ring 2. In this contact state, the second ring 11 having an outer diameter D3 smaller than the outer diameter D2 of the first ring 10 is not in contact with the inner diameter portion 6. Also, none of the columns 13 is in contact with the spherical track 1. In this contact state, the central axis of the cage 5 is located on the lower side in the figure with respect to the central axis of the outer ring 2, and the distance between the upper side of the inner diameter portion 6 in the figure and the cage 5 is the above-mentioned assumption. Compared to the cage moving posture, it expands in the vertical direction in the figure. In FIG. 6, the cage 5 is drawn with respect to the cage 5 from the first ring 10 side as viewed in the direction along the central axis Ca of the cage 5. A spherical orbit 1 drawn with a two-dot chain line in FIG. 6 shows the shape of the spherical orbit 1 on the cut surface along the line BB in FIG. Further, a circle C drawn by a two-dot chain line in FIG. 6 indicates a pitch circle circumscribing the outer peripheral edge 14a of the outer diameter portion 14 of each column 13 in FIG.
 図6の接触状態から保持器5の姿勢を維持したまま、a点を中心として保持器5を球面軌道1の方へ転がすと、a点に対して外輪2の幅の中央側に最も近い柱13が、図7に示すように球面軌道1の一箇所(図中にb点で示す)と接触する。このとき、b点では、球面軌道1の二点鎖線上と、柱13の円C上の周方向端とが接触し、保持器5は、a点及びb点でのみ外輪2と接触している。 When the cage 5 is rolled toward the spherical track 1 around the point a while maintaining the posture of the cage 5 from the contact state of FIG. 6, the column closest to the center side of the width of the outer ring 2 with respect to the point a. 13 is in contact with one part of the spherical track 1 (indicated by point b in the figure) as shown in FIG. At this time, at the point b, the two-dot chain line of the spherical track 1 and the circumferential end of the column 13 on the circle C are in contact, and the cage 5 is in contact with the outer ring 2 only at the points a and b. Yes.
 さらに、図7の接触状態から保持器5の姿勢を維持したまま、b点を中心として保持器5を球面軌道1の内方へ転がす。このとき、b点と対角に位置する柱13の円C上の周方向端c点は、図8、図9に示すように、b点回りの円弧状の軌跡Lを描くことになる。その軌跡Lと内径部6との間に隙間gが生じるように、保持器5の外径D1、第1のリング10の外径D2等の保持器寸法が設定され、柱13及び第1のリング10、柱13及び第2のリング11間に外径差が設けられている。このため、図8に示すように、保持器5の外径D1を球面軌道1の内方に収めるまで保持器5を転がすことが可能である。なお、図6~図8では、内輪3の表示を省略した。内輪3を一体の環状部品にする場合、保持器5と共に球面軌道1の内方に収めることになる。 Further, the cage 5 is rolled inwardly of the spherical track 1 around the point b while maintaining the posture of the cage 5 from the contact state of FIG. At this time, the circumferential end c point on the circle C of the column 13 located diagonally to the point b draws an arcuate locus L around the point b as shown in FIGS. Cage dimensions such as the outer diameter D1 of the cage 5 and the outer diameter D2 of the first ring 10 are set so that a gap g is generated between the locus L and the inner diameter portion 6, and the column 13 and the first An outer diameter difference is provided between the ring 10, the column 13, and the second ring 11. For this reason, as shown in FIG. 8, the cage 5 can be rolled until the outer diameter D <b> 1 of the cage 5 is accommodated inside the spherical track 1. In FIGS. 6 to 8, the display of the inner ring 3 is omitted. When the inner ring 3 is an integral annular part, the inner ring 3 is housed inside the spherical track 1 together with the cage 5.
 この自動調心ころ軸受は、上述のようなものであり、第1のリング10,第2のリング11の外径D2,D3を保持器5の外径D1(柱13の外径)よりも小径にする外径差を設けたことにより、外輪2の内径が保持器5の外径D1よりも小さい場合でも、保持器5を転がして球面軌道1の内方へ挿入可能にしているので、外輪2や保持器5を周方向に分割することなく、高温での使用性に優れた鉄系金属製の保持器5を採用することができる。 This self-aligning roller bearing is as described above, and the outer diameters D2 and D3 of the first ring 10 and the second ring 11 are made larger than the outer diameter D1 of the cage 5 (the outer diameter of the column 13). By providing the outer diameter difference to make the diameter smaller, even when the inner diameter of the outer ring 2 is smaller than the outer diameter D1 of the cage 5, the cage 5 can be rolled and inserted into the inner surface of the spherical track 1. Without dividing the outer ring 2 and the cage 5 in the circumferential direction, the ferrous metal cage 5 excellent in usability at high temperatures can be employed.
 また、この自動調心ころ軸受は、第1のリング10及び第2のリング11を有するかご形のプレス保持器(保持器5)を採用しているので、リングに落ち止め部を作るためのリング径確保が不要となり、落ち止め部17を配する柱13の中程で保持器5の外径D1を規定すると共に、柱13に傾斜を与えて両リング10,11及び柱13間に所要の外径差を設けることが容易である。 In addition, since this spherical roller bearing employs a cage-type press cage (cage 5) having the first ring 10 and the second ring 11, it is for making a retaining portion on the ring. It is not necessary to secure the ring diameter, and the outer diameter D1 of the retainer 5 is defined in the middle of the pillar 13 where the retaining portion 17 is disposed, and the pillar 13 is inclined to be required between the rings 10, 11 and the pillar 13. It is easy to provide a difference in outer diameter.
 また、この自動調心ころ軸受は、柱13の第1の突出部18,第2の突出部19によって凸面ころ4の両端側で柱13との間の周方向すきまを適切に設定し、スキューする凸面ころ4を速やかに両突出部18,19で受けて凸面ころ4の動きを安定させることができる。なお、この発明の技術的範囲は、上述の実施形態に限定されず、特許請求の範囲の記載に基づく技術的思想の範囲内での全ての変更を含むものである。 Further, this self-aligning roller bearing appropriately sets the circumferential clearance between the pillar 13 on both ends of the convex roller 4 by the first protrusion 18 and the second protrusion 19 of the pillar 13 and skews. The convex roller 4 to be received can be quickly received by the two protruding portions 18 and 19 to stabilize the movement of the convex roller 4. The technical scope of the present invention is not limited to the above-described embodiment, but includes all modifications within the scope of the technical idea based on the description of the scope of claims.
1 球面軌道
2 外輪
3 内輪
4 凸面ころ
5 保持器
6 内径部
10 第1のリング
11 第2のリング
12 ポケット
13 柱
14 外径部
14a,14b 外周縁
15 第1の繋ぎ部
16 第2の繋ぎ部
17 落ち止め部
18 第1の突出部
19 第2の突出部
DESCRIPTION OF SYMBOLS 1 Spherical track 2 Outer ring 3 Inner ring 4 Convex roller 5 Cage 6 Inner diameter part 10 First ring 11 Second ring 12 Pocket 13 Column 14 Outer diameter parts 14a and 14b Outer peripheral edge 15 First connection part 16 Second connection Part 17 Locking part 18 First protrusion 19 Second protrusion

Claims (5)

  1.  球面軌道を有する外輪と、複数の凸面ころと、これら凸面ころの周方向間隔を保つ保持器とを備える自動調心ころ軸受において、
     前記外輪が、周方向全周に亘って前記保持器の外径よりも小径な内径部を有する一体の環状部品からなり、
     前記保持器が、周方向全周に亘るリングと、このリングと共にポケットを形成する各柱とを有する一体の金属製部品からなり、
     前記保持器の外径が、前記柱によって規定され、前記リングの外径が、前記保持器の外径及び前記外輪の内径部よりも小径に定められており、
     前記外輪に対して垂直な姿勢の前記保持器の前記リングと当該外輪の前記内径部を半周側でのみ接触させた状態から当該保持器の外径を前記球面軌道の内方に収めるまで当該保持器を転がせるように前記リング及び前記柱間に外径差が設けられていることを特徴とする自動調心ころ軸受。
    In a self-aligning roller bearing including an outer ring having a spherical raceway, a plurality of convex rollers, and a cage that maintains a circumferential interval between the convex rollers,
    The outer ring is composed of an integral annular part having an inner diameter portion smaller than the outer diameter of the cage over the entire circumference in the circumferential direction.
    The cage is composed of an integral metal part having a ring over the entire circumference in the circumferential direction and each pillar forming a pocket together with the ring,
    The outer diameter of the cage is defined by the pillar, and the outer diameter of the ring is set to be smaller than the outer diameter of the cage and the inner diameter portion of the outer ring,
    The holding from the state in which the ring of the cage in a posture perpendicular to the outer ring and the inner diameter portion of the outer ring are in contact only on the semicircular side until the outer diameter of the cage is accommodated inward of the spherical track. A self-aligning roller bearing, characterized in that an outer diameter difference is provided between the ring and the column so that the roller can be rolled.
  2.  前記保持器が、前記外輪の幅の中央側に配置される第1の前記リングと、前記外輪の幅の端側に配置される第2の前記リングとを有するかご形のプレス保持器になっている請求項1に記載の自動調心ころ軸受。 The cage is a squirrel-shaped press cage having the first ring arranged on the center side of the width of the outer ring and the second ring arranged on the end side of the width of the outer ring. The self-aligning roller bearing according to claim 1.
  3.  前記保持器の前記柱が、前記ポケットに収められた前記凸面ころの落下を止める落ち止め部を有している請求項1又は2に記載の自動調心ころ軸受。 The self-aligning roller bearing according to claim 1 or 2, wherein the pillar of the cage has a stopper portion that stops the convex roller stored in the pocket.
  4.  前記柱が、前記落ち止め部よりも前記第1のリング寄りの位置で前記凸面ころを周方向に受ける第1の突出部と、前記落ち止め部よりも前記第2のリング寄りの位置で前記凸面ころを周方向に受ける第2の突出部とを有する請求項3に記載の自動調心ころ軸受。 The column has a first projecting portion that receives the convex roller in a circumferential direction at a position closer to the first ring than the retaining portion, and a position closer to the second ring than the retaining portion. The self-aligning roller bearing according to claim 3, further comprising a second protrusion that receives the convex roller in the circumferential direction.
  5.  前記保持器が、鉄系金属より形成されている請求項1から4のいずれか1項に記載の自動調心ころ軸受。 The self-aligning roller bearing according to any one of claims 1 to 4, wherein the cage is made of an iron-based metal.
PCT/JP2016/055169 2015-03-02 2016-02-23 Self-aligning roller bearing WO2016140099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-040023 2015-03-02
JP2015040023A JP2016161037A (en) 2015-03-02 2015-03-02 Self-aligning roller bearing

Publications (1)

Publication Number Publication Date
WO2016140099A1 true WO2016140099A1 (en) 2016-09-09

Family

ID=56846485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055169 WO2016140099A1 (en) 2015-03-02 2016-02-23 Self-aligning roller bearing

Country Status (2)

Country Link
JP (1) JP2016161037A (en)
WO (1) WO2016140099A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3067772A1 (en) * 2017-06-15 2018-12-21 Ntn-Snr Roulements SPHERICAL BEARING CAGE AND SPHERICAL BEARING PROVIDED WITH SUCH A CAGE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017115906A1 (en) * 2017-07-14 2019-01-17 Schaeffler Technologies AG & Co. KG Bearing cage for roller bearings and roller bearings
JP7356233B2 (en) * 2019-03-05 2023-10-04 Ntn株式会社 Roller and roller bearings with cages

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336751A (en) * 2005-06-02 2006-12-14 Nsk Ltd Assembling method and assembling device of self-aligning roller bearing
JP2009036361A (en) * 2007-08-03 2009-02-19 Ntn Corp Self-aligning roller bearing
JP2011058508A (en) * 2009-09-07 2011-03-24 Ntn Corp Sealed rolling bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336751A (en) * 2005-06-02 2006-12-14 Nsk Ltd Assembling method and assembling device of self-aligning roller bearing
JP2009036361A (en) * 2007-08-03 2009-02-19 Ntn Corp Self-aligning roller bearing
JP2011058508A (en) * 2009-09-07 2011-03-24 Ntn Corp Sealed rolling bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3067772A1 (en) * 2017-06-15 2018-12-21 Ntn-Snr Roulements SPHERICAL BEARING CAGE AND SPHERICAL BEARING PROVIDED WITH SUCH A CAGE

Also Published As

Publication number Publication date
JP2016161037A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
US8899840B2 (en) Tapered roller bearing
JP2012017770A (en) Self-aligning roller bearing
WO2014098212A1 (en) Rolling bearing
US10527091B2 (en) Self-aligning roller bearing
WO2013051696A1 (en) Rolling bearing
WO2016140099A1 (en) Self-aligning roller bearing
JP2013015200A (en) Conical roller bearing
JP2018109448A (en) Conical roller bearing
JP6554831B2 (en) Tapered roller bearing
US10208797B2 (en) Tapered roller bearing
JP6337482B2 (en) Spherical roller bearing
JP6696610B2 (en) Cage cage for rolling bearings
JP2012149703A (en) Self-alignment roller bearing
JP2011127645A (en) Roller bearing and cage for roller bearing
TWI655374B (en) Radial roller bearing
JP2010025191A (en) Self-aligning roller bearing
JP6829522B2 (en) Self-aligning roller bearing
JP2019015373A (en) Radial roller bearing
JP2016023707A (en) Self-aligning roller bearing
JP2006316865A (en) Rolling bearing
WO2016194981A1 (en) Tapered roller bearing
WO2017030018A1 (en) Cylindrical roller bearing
JP2007205535A (en) Cage for rolling bearing, and rolling bearing
JP5218231B2 (en) Roller bearing cage, inner ring assembly, outer ring assembly and rolling bearing provided with the cage
WO2023063043A1 (en) Cylindrical roller bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758793

Country of ref document: EP

Kind code of ref document: A1