WO2016140032A1 - Method for determining conditions of motor driving mechanism - Google Patents

Method for determining conditions of motor driving mechanism Download PDF

Info

Publication number
WO2016140032A1
WO2016140032A1 PCT/JP2016/054041 JP2016054041W WO2016140032A1 WO 2016140032 A1 WO2016140032 A1 WO 2016140032A1 JP 2016054041 W JP2016054041 W JP 2016054041W WO 2016140032 A1 WO2016140032 A1 WO 2016140032A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
difference
value
amplitude
motor
Prior art date
Application number
PCT/JP2016/054041
Other languages
French (fr)
Japanese (ja)
Inventor
宮嵜克則
Original Assignee
株式会社ブレイド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015039732A external-priority patent/JP5777834B1/en
Application filed by 株式会社ブレイド filed Critical 株式会社ブレイド
Publication of WO2016140032A1 publication Critical patent/WO2016140032A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control

Definitions

  • the present invention relates to a state determination method for a motor drive mechanism, and more particularly to a state determination method that can be suitably used for determining the machining state of a motor drive spin caulking mechanism.
  • FIG. 16 shows an example of the caulking portion of the component.
  • the caulking pin 6 is passed through the resin plates 11 and 12 stacked one above the other, and both ends of the caulking pin 6 are expanded and collapsed into an arc cross-sectional shape via the metal washers 13 and 14. Thus, both resin plates 11 and 12 are coupled.
  • An example of a motor-driven spin caulking mechanism that performs such caulking is shown in FIG. In FIG. 17, the spin caulking mechanism has a main shaft 1 in a vertical posture, and the main shaft 1 is rotationally driven with a base end (upper end) connected to a drive motor 2.
  • the main shaft 1 has a sleeve portion 3 for holding the main shaft 1 coupled to a hydraulic device 4, and a constant pressing pressure is applied to the main shaft 1 during caulking.
  • a processing pin 5 protrudes obliquely inward and downward around the rotation axis Ax of the main shaft 1, and the outer peripheral portion of the tip is pre-shaped into a flat cylindrical shape in advance.
  • the crimping pin 6 is in pressure contact with the upper surface of one end 61 (FIG. 18).
  • Patent Document 1 in the internal thread tapping process, the fluctuation of the driving current of the motor is set as the actual machining load curve in synchronization with the progress of the internal thread tapping process, and the actual machining load curve, the standard load curve, the upper limit load curve, the lower limit load An abnormality monitoring method for determining deterioration of a tap by comparing with each load curve is disclosed.
  • the present invention solves such a problem, and it is possible to immediately determine whether the output side mechanical condition of a motor drive mechanism such as a motor drive spin caulking mechanism that performs spin caulking processing is good or bad on-line, and to detect defective parts. It is an object of the present invention to provide a method for determining the state of a motor drive mechanism that can eliminate the above in advance.
  • a step of detecting a drive current waveform of an AC drive motor and a predetermined cycle of the detected drive current waveform are included in the cycle. Obtaining an equivalent sine waveform having an area equal to that of the waveform area, calculating a waveform of a difference between each absolute value of the drive current waveform and the equivalent sine waveform for each predetermined cycle, and the step for each predetermined cycle Determining the mechanical condition on the output side of the AC drive motor from the transition of the difference waveform.
  • the mechanical condition on the output side of the AC drive motor can be determined from the transition of the difference between the drive current waveform and the equivalent sine waveform for each predetermined cycle. It is possible to immediately determine online and eliminate defective parts in advance.
  • the transition of the difference waveform is detected by a change in the centroid position of the difference waveform.
  • the transition of the difference waveform is obtained by multiplying the amplitude value at each time of the equivalent sine wave by the positive amplitude value of the difference waveform at the time.
  • the amplitude moment value is detected by a change in the amplitude moment integrated value obtained by integrating the amplitude moment value within a range in which the amplitude value of the waveform of the difference is positive within the predetermined cycle.
  • the difference waveform transition is a unit obtained by dividing the amplitude moment integrated value by the total area value of the difference waveform in the range in which the amplitude value is positive. Detection is based on the relative behavior of the amplitude moment integrated value with respect to the amplitude moment integrated value.
  • the relative behavior is an average of the difference of the amplitude moment integrated value with respect to the unit amplitude moment integrated value.
  • “average” includes, in addition to the average value, the height from the zero point of a straight line obtained by linearly approximating the time-varying portion of the difference of the integrated amplitude moment value with respect to the unit amplitude moment integrated value.
  • the relative behavior is the degree of inclination of a straight line obtained by linearly approximating a time-change portion of the difference between the integrated amplitude moment value and the integrated amplitude moment value.
  • the transition of the difference waveform is detected by at least the depression angle of the positive apex at which the amplitude moment integrated value changes.
  • the mechanical status is a quality of machining using a machining tool driven by the AC drive motor.
  • the means for detecting the drive current waveform of the AC drive motor has an area equal to the waveform area in the cycle for each predetermined cycle of the detected drive current waveform.
  • the method for determining the state of the motor drive mechanism of the present invention it is immediately determined online whether the mechanical state on the output side of the motor drive mechanism such as the motor drive spin caulking mechanism that performs spin caulking is good or not. Thus, defective parts can be eliminated in advance.
  • FIG. 3 is an enlarged view of a part A and a part B in FIG. 2. It is a figure which shows the time-dependent change of the drive current waveform of a half cycle, the waveform of an equivalent sine wave, and the waveform of a difference. It is a figure which shows the time-dependent change of the centroid of the difference waveform for every half cycle over a free running area
  • FIG. 1 shows an apparatus configuration for carrying out the method of the present invention.
  • the spin caulking mechanism to which the method of the present invention is applied has the same structure as the conventional one already described. That is, the spin caulking mechanism includes a main shaft 1 in a vertical posture, and the main shaft 1 is rotationally driven with a base end (upper end) connected to a three-phase AC drive motor 2.
  • the main shaft 1 is connected to a hydraulic device 4 with a sleeve 3 that rotatably holds the main shaft 1, and a constant pressing pressure is applied to the main shaft 1 during caulking.
  • a processing pin 5 protrudes obliquely inward and downward around the rotation axis Ax of the main shaft 1, and the outer peripheral portion of the tip is pre-shaped into a flat cylindrical shape in advance.
  • the crimping pin 6 is in pressure contact with the upper surface of one end 61.
  • the clamp meter 7 is installed in one phase of the three-phase power line of the drive motor 2 of such a spin caulking mechanism, and the drive current of the drive motor 2 is detected.
  • the detected drive current is input to the computer 9 via the A / D conversion circuit 8.
  • FIG. 2 shows an example of the detected drive current Id.
  • an X area indicates an idle running area where the machining pin 5 has not yet contacted the caulking pin 6
  • a Y area indicates a tool contact area where the machining pin 5 starts to contact the caulking pin 6
  • a Z area indicates pressure contact.
  • region where one end of the crimping pin 6 is diameter-expanded by the processed pin 5 is shown, respectively.
  • FIG. 3 (1) which is an enlargement of the portion A in FIG. Is observed.
  • the waveform distortion of the drive current Id is as shown in FIG. 3 (2), which is an enlargement of the portion B in FIG. 2, due to the fact that the machining resistance gradually increases in the process of shifting from the tool contact area Y to the crimping area Z. It gradually increases and the peak value (size) of the current Id also increases.
  • the waveform distortion of the drive current Id of the drive motor 2 is separated into a time axis (x axis) direction indicating the degree of caulking processing and a current axis (y axis) direction indicating the caulking processing force.
  • the difference between the waveform of the half cycle drive current Id and the waveform of the equivalent sine wave Se is calculated.
  • the equivalent sine wave Se is a sine wave having the same pitch and the same area as the waveform of the drive current Id.
  • the half cycle is determined in consideration of the number of detected samples of the drive current Id and the processing speed of the computer 9, and in this embodiment, about 500 data pieces sufficient for analysis are obtained for each half cycle waveform. The following processing is performed within the computer 9 by sampling within seconds.
  • a difference waveform (hereinafter referred to as a difference waveform) Dw obtained by subtracting the waveform (absolute value) of the equivalent sine wave Se from the waveform (absolute value) of the drive current Id in a half cycle.
  • the difference waveform Dw changes in magnitude and positive / negative depending on the waveform distortion of the drive current Id. Therefore, in the computer 9, the centroids fcp and fcm are calculated for the positive difference waveforms Dw1 and Dw2 and the negative difference waveforms Dw3 and Dw4.
  • the x-coordinates of the centroids fcp and fcm are positive when they are located on the left side of FIG. 4 from the center line lc of the equivalent sine wave Se.
  • the y-coordinates of the centroids fcp and fcm are located on the upper side of FIG. 4 with respect to the line in which the waveform of the drive current Id matches the waveform of the equivalent sine wave Se and the difference waveform Dw is zero. The case is positive. In this figure, for easy understanding, the amplitude of the difference waveform Dw is drawn larger than the actual size.
  • the calculation of the centroids fcp and fcm of the difference waveform Dw for each half cycle described above is performed using the drive current Id obtained in all the regions of the idle region X, the tool contact region Y, and the crimping region Z. Perform on the waveform.
  • An example is shown in FIG. As apparent from FIG. 5, not only in the crimping region (Z region) but also in the idle region (X region), the x-coordinate and y-coordinate of the centroid change with time due to the waveform distortion of the drive current Id. .
  • the scatter diagram is a plot of centroids fcp and fcm for each half cycle in the free-running region X and the crimping region Z with the horizontal axis as the x-axis and the vertical axis as the y-axis.
  • the centroids in the free running region are fcp0 and fcm0.
  • 6 (1) to 6 (4) are scatter plots in which the crimping region Z is divided into four in the time axis direction and the positions of the centroids fcp and fcm are plotted in each of the divided regions Z1 to Z4.
  • a new origin On is set in the scatter diagram in order to determine whether the caulking process is good or bad.
  • This origin On is, for example, the average value of the x and y coordinates of the centroids fcp0 and fcm0 in the free running region X. Then, the values of the x-coordinate and y-coordinate of the centroids fcp and fcm obtained in the respective divided areas Z1 to Z4 of the caulking process are converted into those for the new origin On.
  • FIG. 7A is a determination diagram showing a change range in the x-axis direction of the centroids fcp and fcm in each of the divided regions Z1 to Z4 (change range of the x coordinate with respect to the new origin On).
  • FIG. 7B is a determination diagram showing a change range in the y-axis direction of the centroids fcp and fcm in each of the divided regions Z1 to Z4 (change range of the y coordinate with respect to the new origin On).
  • the centroid fcm of the negative difference waveform Dw is inverted between positive and negative for easy comparison.
  • the centroids fcp and fcm are sufficiently separated from the zero axis in both the x-axis direction and the y-axis direction. This indicates that the caulking processing degree and processing force are sufficient, and in such a case, no defect occurs in the caulking pin 6 that is spin caulked.
  • the crimping region Z is divided into four in the time axis direction.
  • a scatter diagram of the change in the centroid position of each of the divided regions Z1 to Z4 is as shown in FIG.
  • the determination diagram for determining whether or not the caulking process is good is as shown in FIG.
  • the centroids fcp and fcm are sufficiently separated from the zero axis in the y-axis direction (FIG. 10 (2)) in each of the divided regions Z1 to Z4, but the x-axis direction (FIG. 10 (1) ) Shows that the change range of the centroid fcp is in the vicinity of the zero axis in the divided areas Z1 and Z2, indicating that the degree of caulking is not sufficient. Therefore, in this case, there is a possibility that a defect is generated in the caulking pin 6 to be spin caulked.
  • the quality of spin caulking is determined. Can be determined immediately online, and defective parts can be reliably eliminated.
  • the computer 9 determines whether or not the spin caulking process is good or not based on the change of the amplitude moment value described below, instead of the change of the centroid position of the first embodiment.
  • FIG. 11 shows a half-cycle waveform of the drive current Id of the drive motor 2 (see FIG. 1), similar to FIG. 4 described in the first embodiment.
  • the amplitude value Dw (n) of the waveform Dw at each sample time tn is Let Dw (n) ⁇ Se (n) multiplied by the amplitude value Se (n) of the equivalent sine wave Se at the sample time tn be the amplitude moment value at each sample time tn.
  • the amplitude moment values Dw (n) ⁇ Se (n) are integrated in the time ranges T1 and T2 in which the amplitude value of the difference waveform Dw is positive in the half cycle, and the integrated value is amplitude in the half cycle.
  • the moment integrated value AMi is used.
  • the reason why the amplitude moment value Dw (n) ⁇ Se (n) is calculated is that the portion having a larger current value is considered to have a larger influence on the machining.
  • the reason for integrating only in the time ranges T1 and T2 is that the portion where the drive current waveform is larger than the equivalent sine wave is considered to contribute more to machining.
  • FIG. 12 shows an example of changes in unit amplitude moment integrated value AMis and amplitude moment integrated value AMi for each half cycle obtained in this way.
  • the circles attached to the unit amplitude moment integrated value AMis and the amplitude moment integrated value AMi in FIG. 12 indicate the midpoints of the up and down fluctuations, and are attached to indicate the standard of the change.
  • the unit amplitude moment integrated value AMis maintains a substantially constant value. Therefore, a graph AMg in which the amplitude moment integrated value AMi is drawn in a bar graph shape for each half cycle with reference to the unit amplitude moment integrated value AMis is shown in the lower half of FIG.
  • the average value AMgv of the graph AMgv is calculated, and then the approximate straight line Lx of the changing part of the graph AMg is drawn by the least square method or the like. Then, the first determination is performed as follows based on the degree of change (inclination) of the approximate straight line Lx. Note that the height from the zero point of the approximate straight line Lx may be used instead of the average value.
  • the following second determination is further performed in addition to the first determination. That is, the depression angle ⁇ of the positive apex is detected for the enlarged waveform (FIG. 15) of the apex portion that fluctuates in a saw-like manner in the integrated amplitude moment value AMi for each half cycle.
  • points a and b indicate vertices with a large depression angle ⁇
  • points c and d indicate vertices with a small depression angle ⁇ .
  • the depression angle ⁇ calculates, for example, the number of vertices in the uppermost angle area in three stages and the number of vertices in the intermediate angle area.
  • the ratio Rmx of the number of vertices in the highest angle region with respect to the total number Na of vertices and the number of vertices in the intermediate angle region with respect to the total number Na of vertices The ratio Rmm multiplied by 1 ⁇ 2 is added to obtain the R value.
  • This R value is an index indicating the stability of processing. Therefore, when the R value is large, it is determined that the processing has been performed stably, and when the R value is small, it is determined that the processing has not been performed stably. If the processing is not stable, there is a possibility that a problem is caused in a component to be subjected to spin caulking. Note that the depression angle ⁇ may be detected not only on the positive vertex but also on the negative vertex.
  • R Rmx + 1/2 ⁇ Rmm (1)
  • the threshold value for determining the quality of the processing described above is determined by design by trial on site.
  • the present invention is not limited to the determination of quality of spin-caulking, and is widely applied to the quality of machining using a machining tool driven by an AC drive motor. can do.
  • the scope of application of the present invention is not only the judgment of the quality of machining, but also the wear damage of thrust bearings that receive caulking load and rotary bearings that receive machining pins, due to changes in centroid position during idle running and tool contact. Presence / absence can also be detected and can be widely used for the purpose of determining the mechanical condition on the output side of the drive motor.

Abstract

[Problem] To immediately determine, online, how satisfactory are the processing conditions of a motor-driven mechanism such as a motor-driven spin riveting mechanism for performing spin riveting, and remove faulty components in advance. [Solution] The following process is performed using a computer 9. The drive current waveform of an AC drive motor is detected, and for every predetermined cycle of the detected drive current waveform, an equivalent sine waveform having an area identical to the waveform area in the cycle is obtained. The waveform of a difference between the equivalent sine waveform and the driving current waveform for each of the predetermined cycles is calculated. A change in the centroid position of the waveform of the difference for each of the predetermined cycles is detected. How satisfactory the processing conditions are is determined on the basis of the change in the centroid position.

Description

モータ駆動機構の状況判定方法Motor drive mechanism status determination method
 本発明はモータ駆動機構の状況判定方法に関し、特にモータ駆動スピンカシメ機構の加工状況等の判定に好適に使用できる状況判定方法に関するものである。 The present invention relates to a state determination method for a motor drive mechanism, and more particularly to a state determination method that can be suitably used for determining the machining state of a motor drive spin caulking mechanism.
 図16には部品のカシメ部分の一例を示し、上下に重ねた樹脂板11,12にカシメピン6を貫通させて、金属ワッシャ13,14を介してカシメピン6の両端を円弧断面形状に拡径圧潰して両樹脂板11,12を結合している。このようなカシメ加工を行うモータ駆動スピンカシメ機構の一例を図17に示す。図17において、スピンカシメ機構は垂直姿勢の主軸1を備えており、当該主軸1は基端(上端)が駆動モータ2に連結されて回転駆動される。 FIG. 16 shows an example of the caulking portion of the component. The caulking pin 6 is passed through the resin plates 11 and 12 stacked one above the other, and both ends of the caulking pin 6 are expanded and collapsed into an arc cross-sectional shape via the metal washers 13 and 14. Thus, both resin plates 11 and 12 are coupled. An example of a motor-driven spin caulking mechanism that performs such caulking is shown in FIG. In FIG. 17, the spin caulking mechanism has a main shaft 1 in a vertical posture, and the main shaft 1 is rotationally driven with a base end (upper end) connected to a drive motor 2.
 主軸1はこれを保持するスリーブ部分3が油圧装置4に結合されて、カシメ加工時には下方への一定の押付圧が主軸1に作用するようになっている。主軸1の先端(下端)面には当該主軸1の回転軸Ax回りに、斜め内下方へ向けて加工ピン5が突設されており、その先端外周部が、予め扁平円柱状に予備成形されたカシメピン6の一端61上面に圧接している(図18)。このように加工ピン5の先端をカシメピン6の一端に圧接させつつ加工ピン5を主軸1の回転軸Ax回りに回転させることで、カシメピン6の一端を上述のような円弧断面形状に拡径圧潰する。 The main shaft 1 has a sleeve portion 3 for holding the main shaft 1 coupled to a hydraulic device 4, and a constant pressing pressure is applied to the main shaft 1 during caulking. On the tip (lower end) surface of the main shaft 1, a processing pin 5 protrudes obliquely inward and downward around the rotation axis Ax of the main shaft 1, and the outer peripheral portion of the tip is pre-shaped into a flat cylindrical shape in advance. The crimping pin 6 is in pressure contact with the upper surface of one end 61 (FIG. 18). In this way, by rotating the machining pin 5 around the rotation axis Ax of the main shaft 1 while pressing the tip of the machining pin 5 against one end of the caulking pin 6, one end of the caulking pin 6 is expanded and collapsed into the arc cross-sectional shape as described above. To do.
 なお、特許文献1には雌ねじ立て加工において、雌ねじ立て加工の進行と同期してモータの駆動電流の変動を実加工負荷曲線とし、実加工負荷曲線と、標準負荷曲線、上限負荷曲線、下限負荷曲線の各負荷曲線とを対比してタップの劣化を判定する異常監視方法が開示されている。 In Patent Document 1, in the internal thread tapping process, the fluctuation of the driving current of the motor is set as the actual machining load curve in synchronization with the progress of the internal thread tapping process, and the actual machining load curve, the standard load curve, the upper limit load curve, the lower limit load An abnormality monitoring method for determining deterioration of a tap by comparing with each load curve is disclosed.
特開2002-239838JP 2002-239838 A
 ところで従来、スピンカシメ加工では、経験的に加工ピン5の押付力や押付速度、押付時の下降下限位置等を設定して加工を行っているが、カシメ結合される樹脂板11,12の公差や位置決めのバラツキ等によって加工条件が変化する。このため、量産工程において加工ピン6に曲り(図19(1))や折れ(図19(2))あるいは加工ピン6の端部での割れ(図19(3))等の欠陥が生じることがあった。しかし、これらの欠陥は加工後の外観検査では、見えないことや微細であること等によって発見が困難なことが多く、部品が組み付けられた後に不具合を生じることが往々にしてあった。 Conventionally, in spin caulking, processing is performed by empirically setting the pressing force and pressing speed of the processing pin 5, the lower limit of lowering at the time of pressing, and the like. Machining conditions change due to variations in positioning. For this reason, defects such as bending (FIG. 19 (1)) and bending (FIG. 19 (2)) or cracking at the end of the processing pin 6 (FIG. 19 (3)) occur in the mass production process. was there. However, these defects are often difficult to find by visual inspection after processing because they are invisible or fine, and often cause defects after the parts are assembled.
 そこで、本発明はこのような課題を解決するもので、スピンカシメ加工を行うモータ駆動スピンカシメ機構のようなモータ駆動機構の、出力側の機械的状況等の良否をオンラインで即座に判定して不具合部品を予め排除できるモータ駆動機構の状況判定方法を提供することを目的とする。 Therefore, the present invention solves such a problem, and it is possible to immediately determine whether the output side mechanical condition of a motor drive mechanism such as a motor drive spin caulking mechanism that performs spin caulking processing is good or bad on-line, and to detect defective parts. It is an object of the present invention to provide a method for determining the state of a motor drive mechanism that can eliminate the above in advance.
 上記課題を解決するために、本第1発明のモータ駆動機構の状況判定方法では、交流駆動モータの駆動電流波形を検出するステップと、検出された前記駆動電流波形の所定サイクル毎に当該サイクル内の波形面積に等しい面積を有する等価正弦波形を得るステップと、前記所定サイクル毎の前記駆動電流波形と前記等価正弦波形の各絶対値の差の波形を算出するステップと、前記所定サイクル毎の前記差の波形の推移より前記交流駆動モータの出力側の機械的状況を判定するステップと、を備えている。 In order to solve the above-described problem, in the motor drive mechanism status determination method according to the first aspect of the present invention, a step of detecting a drive current waveform of an AC drive motor and a predetermined cycle of the detected drive current waveform are included in the cycle. Obtaining an equivalent sine waveform having an area equal to that of the waveform area, calculating a waveform of a difference between each absolute value of the drive current waveform and the equivalent sine waveform for each predetermined cycle, and the step for each predetermined cycle Determining the mechanical condition on the output side of the AC drive motor from the transition of the difference waveform.
 本第1発明によれば、所定サイクル毎の駆動電流波形と等価正弦波形の差の波形の推移より交流駆動モータの出力側の機械的状況を判定することができるから、機械的状況の良否をオンラインで即座に判定して不具合部品を予め排除することができる。 According to the first aspect of the present invention, the mechanical condition on the output side of the AC drive motor can be determined from the transition of the difference between the drive current waveform and the equivalent sine waveform for each predetermined cycle. It is possible to immediately determine online and eliminate defective parts in advance.
 本第2発明のモータ駆動機構の状況判定方法では、前記差の波形の推移を、当該差の波形の図心位置の変化で検出する。 In the motor drive mechanism status determination method of the second aspect of the invention, the transition of the difference waveform is detected by a change in the centroid position of the difference waveform.
 本第3発明のモータ駆動機構の状況判定方法では、前記差の波形の推移を、前記等価正弦波の各時間における振幅値に当該時間における前記差の波形の正側振幅値を乗じた値を振幅モーメント値として、当該振幅モーメント値を前記所定サイクル内で前記差の波形の振幅値が正となる範囲で積算した振幅モーメント積算値の変化で検出する。 In the situation determination method of the motor drive mechanism according to the third aspect of the present invention, the transition of the difference waveform is obtained by multiplying the amplitude value at each time of the equivalent sine wave by the positive amplitude value of the difference waveform at the time. As the amplitude moment value, the amplitude moment value is detected by a change in the amplitude moment integrated value obtained by integrating the amplitude moment value within a range in which the amplitude value of the waveform of the difference is positive within the predetermined cycle.
 本第4発明のモータ駆動機構の状況判定方法では、前記差の波形の推移を、前記振幅モーメント積算値を、振幅値が正となった範囲の前記差の波形の総面積値で除した単位振幅モーメント積算値に対する前記振幅モーメント積算値の相対的挙動で検出する。 In the motor drive mechanism status determination method of the fourth aspect of the invention, the difference waveform transition is a unit obtained by dividing the amplitude moment integrated value by the total area value of the difference waveform in the range in which the amplitude value is positive. Detection is based on the relative behavior of the amplitude moment integrated value with respect to the amplitude moment integrated value.
 本第5発明のモータ駆動機構の状況判定方法では、前記相対的挙動は、前記単位振幅モーメント積算値に対する前記振幅モーメント積算値の差分の平均である。ここで、「平均」には平均値のほか、前記単位振幅モーメント積算値に対する前記振幅モーメント積算値の差分の時間変化部分を直線近似して得られる直線の零点からの高さが含まれる。 In the motor drive mechanism status determination method according to the fifth aspect of the invention, the relative behavior is an average of the difference of the amplitude moment integrated value with respect to the unit amplitude moment integrated value. Here, “average” includes, in addition to the average value, the height from the zero point of a straight line obtained by linearly approximating the time-varying portion of the difference of the integrated amplitude moment value with respect to the unit amplitude moment integrated value.
 本第6発明では、前記相対的挙動は、前記単位振幅モーメント積算値に対する前記振幅モーメント積算値の差分の時間変化部分を直線近似して得られる直線の傾きの程度である。 In the sixth aspect of the present invention, the relative behavior is the degree of inclination of a straight line obtained by linearly approximating a time-change portion of the difference between the integrated amplitude moment value and the integrated amplitude moment value.
 本第7発明では、前記差の波形の推移を、前記振幅モーメント積算値の変化する少なくとも正側の頂点の夾角で検出する。 In the seventh aspect of the invention, the transition of the difference waveform is detected by at least the depression angle of the positive apex at which the amplitude moment integrated value changes.
 本第8発明のモータ駆動機構の状況判定方法では、前記機械的状況は、前記交流駆動モータによって駆動される加工工具を使用した加工の良否である。 In the motor drive mechanism status determination method according to the eighth aspect of the invention, the mechanical status is a quality of machining using a machining tool driven by the AC drive motor.
 本第9発明のモータ駆動機構の状況判定装置では、交流駆動モータの駆動電流波形を検出する手段と、検出された前記駆動電流波形の所定サイクル毎に当該サイクル内の波形面積に等しい面積を有する等価正弦波形を得る手段と、前記所定サイクル毎の前記駆動電流波形と前記等価正弦波形の各絶対値の差の波形を算出する手段と、前記所定サイクル毎の前記差の波形の推移より前記交流駆動モータの出力側の機械的状況を判定する手段と、を備える。 In the motor drive mechanism status determination device of the ninth aspect of the invention, the means for detecting the drive current waveform of the AC drive motor has an area equal to the waveform area in the cycle for each predetermined cycle of the detected drive current waveform. Means for obtaining an equivalent sine waveform; means for calculating a waveform of a difference between the absolute values of the drive current waveform and the equivalent sine waveform for each predetermined cycle; and the alternating current from a transition of the waveform of the difference for each predetermined cycle. Means for determining a mechanical condition on the output side of the drive motor.
 以上のように、本発明のモータ駆動機構の状況判定方法によれば、スピンカシメ加工を行うモータ駆動スピンカシメ機構のようなモータ駆動機構の、出力側の機械的状況等の良否をオンラインで即座に判定して不具合部品を予め排除することができる。 As described above, according to the method for determining the state of the motor drive mechanism of the present invention, it is immediately determined online whether the mechanical state on the output side of the motor drive mechanism such as the motor drive spin caulking mechanism that performs spin caulking is good or not. Thus, defective parts can be eliminated in advance.
本発明の第1実施形態における、本発明方法を実施するモータ駆動機構の概略構成図である。It is a schematic block diagram of the motor drive mechanism which implements the method of this invention in 1st Embodiment of this invention. モータ駆動電流の波形の経時変化を示す図である。It is a figure which shows the time-dependent change of the waveform of a motor drive current. 図2のA部およびB部の拡大図である。FIG. 3 is an enlarged view of a part A and a part B in FIG. 2. 半サイクルの駆動電流波形と等価正弦波の波形、および差の波形の経時変化を示す図である。It is a figure which shows the time-dependent change of the drive current waveform of a half cycle, the waveform of an equivalent sine wave, and the waveform of a difference. 空走領域、工具接触領域、カシメ加工領域に亘る半サイクル毎の差波形の図心の経時変化を示す図である。It is a figure which shows the time-dependent change of the centroid of the difference waveform for every half cycle over a free running area | region, a tool contact area | region, and a crimping process area | region. 図心の散布図である。It is a scatter diagram of centroids. 図心のx軸方向、y軸方向の変化範囲を示す判定図である。It is a determination figure which shows the change range of the x-axis direction of a centroid, and a y-axis direction. 空走領域、工具接触領域、カシメ加工領域に亘る半サイクル毎の差波形の図心の経時変化を示す図である。It is a figure which shows the time-dependent change of the centroid of the difference waveform for every half cycle over a free running area | region, a tool contact area | region, and a crimping process area | region. 図心の散布図である。It is a scatter diagram of centroids. 図心のx軸方向、y軸方向の変化範囲を示す判定図である。It is a determination figure which shows the change range of the x-axis direction of a centroid, and a y-axis direction. 本発明の第2実施形態における、半サイクルの駆動電流波形と等価正弦波の波形、および差の波形の経時変化を示す図である。It is a figure which shows the time-dependent change of the drive current waveform of a half cycle, the waveform of an equivalent sine wave, and the waveform of a difference in 2nd Embodiment of this invention. 加工が良好に行われた場合の、半サイクル毎の単位振幅モーメント積算値AMisと振幅モーメント積算値AMiの変化を示す図である。It is a figure which shows the change of unit amplitude moment integrated value AMis and amplitude moment integrated value AMi for every half cycle when processing is performed favorably. 加工が良好に行われなかった場合の、半サイクル毎の単位振幅モーメント積算値AMisと振幅モーメント積算値AMiの変化を示す図である。It is a figure which shows the change of unit amplitude moment integrated value AMis and amplitude moment integrated value AMi for every half cycle when a process is not performed favorably. 加工が良好に行われなかった場合の、半サイクル毎の単位振幅モーメント積算値AMisと振幅モーメント積算値AMiの変化の他の例を示す図である。It is a figure which shows the other example of the change of unit amplitude moment integrated value AMis and amplitude moment integrated value AMi for every half cycle when a process is not performed favorably. 半サイクル毎の振幅モーメント積算値AMiの、鋸状に変動する頂部の拡大波形を示す図である。It is a figure which shows the enlarged waveform of the top part which fluctuates in saw shape of amplitude moment integrated value AMi for every half cycle. 部品カシメ部分の断面図である。It is sectional drawing of a component crimping part. 従来のモータ駆動機構の概略構成図である。It is a schematic block diagram of the conventional motor drive mechanism. 加工ピン圧接部の部分断面拡大側面図である。It is a partial cross section enlarged side view of a processing pin press-contact part. カシメピンの拡大側面図である。It is an enlarged side view of a caulking pin.
 (第1実施形態)
 図1には、本発明の方法を実施する場合の装置構成を示す。図1において、本発明方法が適用されるスピンカシメ機構は既に説明した従来のものと同様の構造である。すなわち、スピンカシメ機構は垂直姿勢の主軸1を備えており、当該主軸1は基端(上端)が三相交流の駆動モータ2に連結されて回転駆動される。主軸1はこれを回転可能に保持するスリーブ3が油圧装置4に結合されて、カシメ加工時には下方への一定の押付圧が主軸1に作用するようになっている。主軸1の先端(下端)面には当該主軸1の回転軸Ax回りに、斜め内下方へ向けて加工ピン5が突設されており、その先端外周部が、予め扁平円柱状に予備成形されたカシメピン6の一端61上面に圧接している。
(First embodiment)
FIG. 1 shows an apparatus configuration for carrying out the method of the present invention. In FIG. 1, the spin caulking mechanism to which the method of the present invention is applied has the same structure as the conventional one already described. That is, the spin caulking mechanism includes a main shaft 1 in a vertical posture, and the main shaft 1 is rotationally driven with a base end (upper end) connected to a three-phase AC drive motor 2. The main shaft 1 is connected to a hydraulic device 4 with a sleeve 3 that rotatably holds the main shaft 1, and a constant pressing pressure is applied to the main shaft 1 during caulking. On the tip (lower end) surface of the main shaft 1, a processing pin 5 protrudes obliquely inward and downward around the rotation axis Ax of the main shaft 1, and the outer peripheral portion of the tip is pre-shaped into a flat cylindrical shape in advance. The crimping pin 6 is in pressure contact with the upper surface of one end 61.
 そして本実施形態では、このようなスピンカシメ機構の上記駆動モータ2の、三相電源ラインの一相にクランプメータ7が設置されて、駆動モータ2の駆動電流が検出されている。検出された駆動電流はA/D変換回路8を経てコンピュータ9に入力している。 And in this embodiment, the clamp meter 7 is installed in one phase of the three-phase power line of the drive motor 2 of such a spin caulking mechanism, and the drive current of the drive motor 2 is detected. The detected drive current is input to the computer 9 via the A / D conversion circuit 8.
 図2には検出された駆動電流Idの一例を示す。なお、図2中のX領域は、加工ピン5が未だカシメピン6に当接していない空走領域を示し、Y領域は加工ピン5がカシメピン6に当接し始めた工具接触領域、Z領域は圧接した加工ピン5によってカシメピン6の一端が拡径圧潰されるカシメ加工領域をそれぞれ示す。 FIG. 2 shows an example of the detected drive current Id. In FIG. 2, an X area indicates an idle running area where the machining pin 5 has not yet contacted the caulking pin 6, a Y area indicates a tool contact area where the machining pin 5 starts to contact the caulking pin 6, and a Z area indicates pressure contact. The crimping process area | region where one end of the crimping pin 6 is diameter-expanded by the processed pin 5 is shown, respectively.
 空走領域Xにおいても、図2のA部の拡大である図3(1)に示すように、偏心させて設けた加工ピン5の影響で、本来正弦波である駆動電流Idの波形に歪が観察される。この駆動電流Idの波形歪は、工具接触領域Yからカシメ加工領域Zへ移行する過程で加工抵抗が次第に増大する等によって、図2のB部の拡大である図3(2)に示すように次第に大きくなり、電流Idのピーク値(大きさ)も大きくなる。 Also in the idling region X, as shown in FIG. 3 (1), which is an enlargement of the portion A in FIG. Is observed. The waveform distortion of the drive current Id is as shown in FIG. 3 (2), which is an enlargement of the portion B in FIG. 2, due to the fact that the machining resistance gradually increases in the process of shifting from the tool contact area Y to the crimping area Z. It gradually increases and the peak value (size) of the current Id also increases.
 本実施形態では、駆動モータ2の駆動電流Idの波形歪を、カシメ加工の加工度を示す時間軸(x軸)方向と、カシメ加工の加工力を示す電流軸 (y軸)方向とに分離して考える。このために、図4に示すように、半サイクルの駆動電流Idの波形について、当該波形と等価正弦波Seの波形との差を算出する。ここで等価正弦波Seとは、駆動電流Idの波形と同一ピッチで同一面積の正弦波をいう。なお、半サイクルとしたのは、駆動電流Idの検出サンプル数とコンピュータ9の処理速度を勘案したもので、本実施形態では半サイクルの波形毎に、解析に十分な500程度のデータ数を1秒以内でサンプルして、コンピュータ9内で以下の処理を行う。 In the present embodiment, the waveform distortion of the drive current Id of the drive motor 2 is separated into a time axis (x axis) direction indicating the degree of caulking processing and a current axis (y axis) direction indicating the caulking processing force. Think about it. For this purpose, as shown in FIG. 4, the difference between the waveform of the half cycle drive current Id and the waveform of the equivalent sine wave Se is calculated. Here, the equivalent sine wave Se is a sine wave having the same pitch and the same area as the waveform of the drive current Id. Note that the half cycle is determined in consideration of the number of detected samples of the drive current Id and the processing speed of the computer 9, and in this embodiment, about 500 data pieces sufficient for analysis are obtained for each half cycle waveform. The following processing is performed within the computer 9 by sampling within seconds.
 図4中の斜線を付した波形が半サイクルでの駆動電流Idの波形(絶対値)から等価正弦波Seの波形(絶対値)を引いた差の波形(以下、差波形という)Dwである。差波形Dwは駆動電流Idの波形歪に応じてその大きさや正負が変化する。そこで、コンピュータ9内では、正の差波形Dw1,Dw2および負の差波形Dw3,Dw4について、それぞれの図心fcp,fcmを算出する。図心fcp,fcmのx座標については、等価正弦波Seの中央線lcから図4の左側に位置している場合を正とする。また、図心fcp,fcmのy座標については、駆動電流Idの波形が等価正弦波Seの波形と一致している、差波形Dwが零の線に対して図4の上側に位置している場合を正とする。なお、本図では、理解を容易にするために、差波形Dwの振幅を実際の大きさよりも大きく描いてある。 4 is a difference waveform (hereinafter referred to as a difference waveform) Dw obtained by subtracting the waveform (absolute value) of the equivalent sine wave Se from the waveform (absolute value) of the drive current Id in a half cycle. . The difference waveform Dw changes in magnitude and positive / negative depending on the waveform distortion of the drive current Id. Therefore, in the computer 9, the centroids fcp and fcm are calculated for the positive difference waveforms Dw1 and Dw2 and the negative difference waveforms Dw3 and Dw4. The x-coordinates of the centroids fcp and fcm are positive when they are located on the left side of FIG. 4 from the center line lc of the equivalent sine wave Se. Further, the y-coordinates of the centroids fcp and fcm are located on the upper side of FIG. 4 with respect to the line in which the waveform of the drive current Id matches the waveform of the equivalent sine wave Se and the difference waveform Dw is zero. The case is positive. In this figure, for easy understanding, the amplitude of the difference waveform Dw is drawn larger than the actual size.
 本実施形態では、上述した半サイクル毎の差波形Dwの図心fcp,fcmの算出を、空走領域X、工具接触領域Y、カシメ加工領域Zの全ての領域で得られた駆動電流Idの波形について行う。その一例を図5に示す。図5より明らかなように、カシメ加工領域(Z領域)のみならず空走領域(X領域)においても、駆動電流Idの波形歪によって図心のx座標、y座標は時間と共に変化している。 In the present embodiment, the calculation of the centroids fcp and fcm of the difference waveform Dw for each half cycle described above is performed using the drive current Id obtained in all the regions of the idle region X, the tool contact region Y, and the crimping region Z. Perform on the waveform. An example is shown in FIG. As apparent from FIG. 5, not only in the crimping region (Z region) but also in the idle region (X region), the x-coordinate and y-coordinate of the centroid change with time due to the waveform distortion of the drive current Id. .
 そこで、コンピュータ9内では、図6に示すような図心fcp,fcmの散布図を描く。散布図は横軸をx軸、縦軸をy軸として、空走領域Xと、カシメ加工領域Zにおける半サイクル毎の図心fcp,fcmをプロットしたものである。なお、空走領域における図心はfcp0,fcm0とする。なお、図6(1)~(4)は、カシメ加工領域Zを時間軸方向へ四分割して各分割領域Z1~Z4で図心fcp,fcmの位置をプロットした散布図である。 Therefore, in the computer 9, a scatter plot of centroids fcp and fcm as shown in FIG. 6 is drawn. The scatter diagram is a plot of centroids fcp and fcm for each half cycle in the free-running region X and the crimping region Z with the horizontal axis as the x-axis and the vertical axis as the y-axis. The centroids in the free running region are fcp0 and fcm0. 6 (1) to 6 (4) are scatter plots in which the crimping region Z is divided into four in the time axis direction and the positions of the centroids fcp and fcm are plotted in each of the divided regions Z1 to Z4.
 次にコンピュータ9内では、カシメ加工の良否を判定するために、散布図に新たな原点Onを設定する。この原点Onは、空走領域Xにおける図心fcp0,fcm0のx座標、y座標の例えば平均値とする。そして、カシメ加工の各分割領域Z1~Z4で得られた図心fcp,fcmのx座標、y座標の値を、新たな原点Onに対するものに変換しておく。 Next, in the computer 9, a new origin On is set in the scatter diagram in order to determine whether the caulking process is good or bad. This origin On is, for example, the average value of the x and y coordinates of the centroids fcp0 and fcm0 in the free running region X. Then, the values of the x-coordinate and y-coordinate of the centroids fcp and fcm obtained in the respective divided areas Z1 to Z4 of the caulking process are converted into those for the new origin On.
 続いてコンピュータ9内では、図7に示すような、カシメ加工の良否判定を行うための判定図を作成する。ここで、図7(1)は各分割領域Z1~Z4での図心fcp,fcmのx軸方向での変化範囲(上記新たな原点Onに対するx座標の変化範囲)を示す判定図であり、図7(2)は各分割領域Z1~Z4での図心fcp,fcmのy軸方向での変化範囲(上記新たな原点Onに対するy座標の変化範囲)を示す判定図である。なお、図7では比較を容易にするために、負の差波形Dwの図心fcmは正負を反転させてある。 Subsequently, in the computer 9, a determination diagram for determining whether the caulking process is good or bad is created as shown in FIG. Here, FIG. 7A is a determination diagram showing a change range in the x-axis direction of the centroids fcp and fcm in each of the divided regions Z1 to Z4 (change range of the x coordinate with respect to the new origin On). FIG. 7B is a determination diagram showing a change range in the y-axis direction of the centroids fcp and fcm in each of the divided regions Z1 to Z4 (change range of the y coordinate with respect to the new origin On). In FIG. 7, the centroid fcm of the negative difference waveform Dw is inverted between positive and negative for easy comparison.
 図7に示す例では、x軸方向、y軸方向のいずれも図心fcp,fcmは零の軸線から十分離れている。これは、カシメ加工の加工度も加工力も十分であることを示しており、このような場合はスピンカシメ加工されるカシメピン6に欠陥は生じない。 In the example shown in FIG. 7, the centroids fcp and fcm are sufficiently separated from the zero axis in both the x-axis direction and the y-axis direction. This indicates that the caulking processing degree and processing force are sufficient, and in such a case, no defect occurs in the caulking pin 6 that is spin caulked.
 これに対して、空走領域X、工具接触領域Y、カシメ加工領域Zにおいて図8に示すような図心fcp,fcmの時間変化があった場合、カシメ加工領域Zを時間軸方向へ四分割した各分割領域Z1~Z4の図心位置変化の散布図は図9に示すようなものとなる。そしてこの場合の、カシメ加工の良否判定を行うための判定図は図10に示すようなものになる。 On the other hand, when there is a time change of the centroids fcp and fcm as shown in FIG. 8 in the idle running region X, the tool contact region Y, and the crimping region Z, the crimping region Z is divided into four in the time axis direction. A scatter diagram of the change in the centroid position of each of the divided regions Z1 to Z4 is as shown in FIG. In this case, the determination diagram for determining whether or not the caulking process is good is as shown in FIG.
 図10に示す例では、各分割領域Z1~Z4でy軸方向(図10(2))では図心fcp,fcmは零の軸線から十分離れているが、x軸方向(図10(1))では分割領域Z1,Z2で図心fcpの変化範囲が零の軸線付近にあることから、カシメ加工の加工度が十分でなかったことを示している。したがって、この場合はスピンカシメ加工されるカシメピン6に欠陥が生じているおそれがある。 In the example shown in FIG. 10, the centroids fcp and fcm are sufficiently separated from the zero axis in the y-axis direction (FIG. 10 (2)) in each of the divided regions Z1 to Z4, but the x-axis direction (FIG. 10 (1) ) Shows that the change range of the centroid fcp is in the vicinity of the zero axis in the divided areas Z1 and Z2, indicating that the degree of caulking is not sufficient. Therefore, in this case, there is a possibility that a defect is generated in the caulking pin 6 to be spin caulked.
 このように本実施形態によれば、駆動モータの駆動電流波形と等価正弦波形の差波形の、図心位置のx軸方向およびy軸方向での変化範囲を確認することによって、スピンカシメ加工の良否をオンラインで即座に判定して不具合部品を確実に排除することができる。 As described above, according to this embodiment, by confirming the range of change in the x-axis direction and the y-axis direction of the centroid position of the difference waveform between the drive current waveform of the drive motor and the equivalent sine waveform, the quality of spin caulking is determined. Can be determined immediately online, and defective parts can be reliably eliminated.
(第2実施形態)
  本実施形態では、コンピュータ9(図1参照)において第1実施形態の図心位置の変化に代えて、以下に説明する振幅モーメント値の変化でスピンカシメ加工の良否を判定する。
(Second Embodiment)
In the present embodiment, the computer 9 (see FIG. 1) determines whether or not the spin caulking process is good or not based on the change of the amplitude moment value described below, instead of the change of the centroid position of the first embodiment.
 図11には第1実施形態で説明した図4と同様の、駆動モータ2(図1参照)の駆動電流Idの半サイクルの波形を示す。本実施形態では、駆動電流Id(絶対値)の波形から等価正弦波Seの波形(絶対値)を引いた差の波形Dwについて、各サンプル時間tnにおける波形Dwの振幅値Dw(n)に、当該サンプル時間tnにおける等価正弦波Seの振幅値Se(n)を乗じたDw(n)・Se(n)を、各サンプル時間tnにおける振幅モーメント値とする。 FIG. 11 shows a half-cycle waveform of the drive current Id of the drive motor 2 (see FIG. 1), similar to FIG. 4 described in the first embodiment. In the present embodiment, for the waveform Dw of the difference obtained by subtracting the waveform (absolute value) of the equivalent sine wave Se from the waveform of the drive current Id (absolute value), the amplitude value Dw (n) of the waveform Dw at each sample time tn is Let Dw (n) · Se (n) multiplied by the amplitude value Se (n) of the equivalent sine wave Se at the sample time tn be the amplitude moment value at each sample time tn.
 そして、振幅モーメント値Dw(n)・Se(n)を、当該半サイクル中で差波形Dwの振幅値が正となる時間範囲T1およびT2で積算して、当該積算値を当該半サイクルにおける振幅モーメント積算値AMiとする。続いて振幅モーメント積算値AMiを、当該半サイクル中で振幅値が正となっている差波形Dw1,Dw2の総面積Stで除して単位振幅モーメント積算値AMis(=Dw(n)・Se(n)/St)を得る。ここで、振幅モーメント値Dw(n)・Se(n)を算出するのは、電流値の大きい部分の方が加工に対する影響が大きいと考えられるからである。また、時間範囲T1,T2でのみ積算するのは、駆動電流波形が等価正弦波よりも大きい部分の方が加工に対する寄与が大きいと考えられるからである。 Then, the amplitude moment values Dw (n) · Se (n) are integrated in the time ranges T1 and T2 in which the amplitude value of the difference waveform Dw is positive in the half cycle, and the integrated value is amplitude in the half cycle. The moment integrated value AMi is used. Subsequently, the unit amplitude amplitude integrated value AMis (= Dw (n) · Se () is obtained by dividing the amplitude moment integrated value AMi by the total area St of the difference waveforms Dw1 and Dw2 whose amplitude value is positive in the half cycle. n) / St). Here, the reason why the amplitude moment value Dw (n) · Se (n) is calculated is that the portion having a larger current value is considered to have a larger influence on the machining. The reason for integrating only in the time ranges T1 and T2 is that the portion where the drive current waveform is larger than the equivalent sine wave is considered to contribute more to machining.
 このようにして得られた各半サイクル毎の単位振幅モーメント積算値AMisと振幅モーメント積算値AMiの変化の一例を図12に示す。なお、図12中の単位振幅モーメント積算値AMisと振幅モーメント積算値AMiに付された丸印は上下の変動の中間点を示すもので、変化の目安を示すために付されたものである。図12によると、単位振幅モーメント積算値AMisはほぼ一定の値を維持している。そこで、単位振幅モーメント積算値AMisを基準にして振幅モーメント積算値AMiを各半サイクル毎に棒グラフ状に描いたグラフAMgを図12の下半部に示す。 FIG. 12 shows an example of changes in unit amplitude moment integrated value AMis and amplitude moment integrated value AMi for each half cycle obtained in this way. Note that the circles attached to the unit amplitude moment integrated value AMis and the amplitude moment integrated value AMi in FIG. 12 indicate the midpoints of the up and down fluctuations, and are attached to indicate the standard of the change. According to FIG. 12, the unit amplitude moment integrated value AMis maintains a substantially constant value. Therefore, a graph AMg in which the amplitude moment integrated value AMi is drawn in a bar graph shape for each half cycle with reference to the unit amplitude moment integrated value AMis is shown in the lower half of FIG.
 このグラフAMgについて、その平均値AMgvを算出し、続いてグラフAMgの変化部分の近似直線Lxを最小二乗法等で描く。そして、この近似直線Lxの変化度(傾き)によって以下のように第1判定を行う。なお、上記平均値に代えて、近似直線Lxの零点からの高さを使用しても良い。 The average value AMgv of the graph AMgv is calculated, and then the approximate straight line Lx of the changing part of the graph AMg is drawn by the least square method or the like. Then, the first determination is performed as follows based on the degree of change (inclination) of the approximate straight line Lx. Note that the height from the zero point of the approximate straight line Lx may be used instead of the average value.
 上記平均値AMgvが正の値で大きく、かつ近似直線Lxが水平に近いほど加工が良好に行われていることを示している。この点で、図2に示す状態では、平均値AMgvの値が正で大きく、しかも近似直線Lxの傾きも水平に近いから、加工度レベルが高く、加工は良好に行われている。 The above average value AMgv is positive and large, and the closer the approximate straight line Lx is to the horizontal, the better the processing is performed. In this respect, in the state shown in FIG. 2, since the average value AMgv is positive and large, and the inclination of the approximate straight line Lx is almost horizontal, the processing level is high and the processing is performed well.
 これに対して、図13に示すように、グラフAMgが途中で正側から負側へ反転していると平均値AMgvの値は正で小さいか負になり、しかも近似直線Lxの傾きが水平から大きく外れて傾斜する。これは加工が良好に行われていないことを示しており、加工部断面が太鼓型に変形する等によってスピンカシメ加工される部品に不具合を生じているおそれがある。 On the other hand, as shown in FIG. 13, when the graph AMg is inverted from the positive side to the negative side in the middle, the average value AMgv becomes positive and small or negative, and the slope of the approximate straight line Lx is horizontal. Inclined far away from. This indicates that the machining is not performed well, and there is a possibility that a defect is caused in a component to be subjected to spin caulking due to the cross section of the machining portion being deformed to a drum shape.
 さらに図14に示すように、グラフAMgが一貫して負側になっている場合には平均値AMgvの値は負になる。したがって、近似直線Lxの傾きが水平に近くても、加工は良好に行われていないことを示す。 Furthermore, as shown in FIG. 14, when the graph AMg is consistently negative, the average value AMgv is negative. Therefore, even if the inclination of the approximate straight line Lx is almost horizontal, it indicates that the processing is not performed well.
 本実施形態では上記第1判定に加えて以下の第2判定をさらに行う。すなわち、半サイクル毎の振幅モーメント積算値AMiの、鋸状に変動する頂部の拡大波形(図15)について、正側の頂点の夾角θを検出する。なお、図15中のa点、b点は夾角θが大きい頂点を示し、c点、d点は夾角θが小さい頂点を示す。上記夾角θが、例えば三段階の、最上位の角度領域にある頂点の数と、中間位の角度領域にある頂点の数を算出する。そして下式(1)に示すように、頂点の全数Naに対して最上位の角度領域にある頂点の数の割合Rmxと、頂点の全数Naに対して中間位の角度領域にある頂点の数の割合Rmmに1/2を乗じたものとを加えてR値とする。このR値は加工の安定度を示す指標になる。そこで、R値が大きい場合に加工は安定的に行われたものと判定し、R値が小さい場合には加工が安定して行われなかったものと判定する。加工が安定していないと、スピンカシメ加工される部品に不具合を生じているおそれがある。なお、正側の頂点に加えて負側の頂点についても夾角θを検出するようにしても良い。
 R=Rmx+1/2・Rmm … (1)
In the present embodiment, the following second determination is further performed in addition to the first determination. That is, the depression angle θ of the positive apex is detected for the enlarged waveform (FIG. 15) of the apex portion that fluctuates in a saw-like manner in the integrated amplitude moment value AMi for each half cycle. In FIG. 15, points a and b indicate vertices with a large depression angle θ, and points c and d indicate vertices with a small depression angle θ. The depression angle θ calculates, for example, the number of vertices in the uppermost angle area in three stages and the number of vertices in the intermediate angle area. Then, as shown in the following formula (1), the ratio Rmx of the number of vertices in the highest angle region with respect to the total number Na of vertices and the number of vertices in the intermediate angle region with respect to the total number Na of vertices The ratio Rmm multiplied by ½ is added to obtain the R value. This R value is an index indicating the stability of processing. Therefore, when the R value is large, it is determined that the processing has been performed stably, and when the R value is small, it is determined that the processing has not been performed stably. If the processing is not stable, there is a possibility that a problem is caused in a component to be subjected to spin caulking. Note that the depression angle θ may be detected not only on the positive vertex but also on the negative vertex.
R = Rmx + 1/2 · Rmm (1)
 このようにして、本実施形態においては、第1判定に加えて第2判定を行うことによって、加工時に不具合を生じた部品をさらに確実に排除している。なお、以上に説明した加工の良否の判定の閾値は現場での試行によって設計的に決定されるものである。 In this way, in the present embodiment, by performing the second determination in addition to the first determination, the parts that have failed during processing are more reliably excluded. In addition, the threshold value for determining the quality of the processing described above is determined by design by trial on site.
 上記各実施形態ではスピンカシメ加工の良否を判定する場合について説明したが、スピンカシメ加工の良否の判定に限られるものではなく、交流駆動モータによって駆動される加工工具を使用した加工の良否判定に広く適用することができる。さらに、本発明の適用範囲は、加工の良否の判定のみならず、空走時、工具接触時の図心位置変化より、カシメ荷重を受けるスラスト軸受や加工ピンを受ける回転軸受の摩耗破損等の有無も検知することが可能であって、駆動モータの出力側の機械的状況を判定する用途に広く使用することができる。 In each of the above-described embodiments, the case of determining the quality of spin-caulking is described. However, the present invention is not limited to the determination of quality of spin-caulking, and is widely applied to the quality of machining using a machining tool driven by an AC drive motor. can do. Furthermore, the scope of application of the present invention is not only the judgment of the quality of machining, but also the wear damage of thrust bearings that receive caulking load and rotary bearings that receive machining pins, due to changes in centroid position during idle running and tool contact. Presence / absence can also be detected and can be widely used for the purpose of determining the mechanical condition on the output side of the drive motor.
 1…主軸、2…駆動モータ、3…スリーブ、4…油圧装置、5…加工ピン、6…カシメピン、7…クランプメータ、8…A/D変換回路、9…コンピュータ。 DESCRIPTION OF SYMBOLS 1 ... Main shaft, 2 ... Drive motor, 3 ... Sleeve, 4 ... Hydraulic device, 5 ... Processing pin, 6 ... Caulking pin, 7 ... Clamp meter, 8 ... A / D conversion circuit, 9 ... Computer.

Claims (9)

  1. 交流駆動モータの駆動電流波形を検出するステップと、検出された前記駆動電流波形の所定サイクル毎に当該サイクル内の波形面積に等しい面積を有する等価正弦波形を得るステップと、前記所定サイクル毎の前記駆動電流波形と前記等価正弦波形の各絶対値の差の波形を算出するステップと、前記所定サイクル毎の前記差の波形の推移より前記交流駆動モータの出力側の機械的状況を判定するステップと、を備えるモータ駆動機構の状況判定方法。 Detecting a drive current waveform of an AC drive motor; obtaining an equivalent sine waveform having an area equal to a waveform area in the cycle for each predetermined cycle of the detected drive current waveform; and Calculating a waveform of a difference between each absolute value of the drive current waveform and the equivalent sine waveform; determining a mechanical condition on the output side of the AC drive motor from a transition of the waveform of the difference for each predetermined cycle; A method for determining the status of a motor drive mechanism comprising:
  2. 前記差の波形の推移を、当該差の波形の図心位置の変化で検出する請求項1に記載のモータ駆動機構の状況判定方法。 The motor drive mechanism status determination method according to claim 1, wherein transition of the difference waveform is detected by a change in a centroid position of the difference waveform.
  3. 前記差の波形の推移を、前記等価正弦波の各時間における振幅値に当該時間における前記差の波形の正側振幅値を乗じた値を振幅モーメント値として、当該振幅モーメント値を前記所定サイクル内で前記差の波形の振幅値が正となる範囲で積算した振幅モーメント積算値の変化で検出する請求項1に記載のモータ駆動機構の状況判定方法。 Transition of the waveform of the difference is obtained by multiplying the amplitude value at each time of the equivalent sine wave by the positive amplitude value of the waveform of the difference at the time as an amplitude moment value, and the amplitude moment value is within the predetermined cycle. The motor drive mechanism status determination method according to claim 1, wherein the detection is performed by a change in an amplitude moment integrated value integrated within a range in which the amplitude value of the waveform of the difference is positive.
  4. 前記差の波形の推移を、前記振幅モーメント積算値を、振幅値が正となった範囲の前記差の波形の総面積値で除した単位振幅モーメント積算値に対する前記振幅モーメント積算値の相対的挙動で検出する請求項3に記載のモータ駆動機構の状況判定方法。 Relative behavior of the amplitude moment integrated value with respect to a unit amplitude moment integrated value obtained by dividing the transition of the difference waveform by the amplitude moment integrated value by the total area value of the difference waveform in the range where the amplitude value is positive The method for determining the state of the motor drive mechanism according to claim 3, which is detected at step (1).
  5. 前記相対的挙動は、前記単位振幅モーメント積算値に対する前記振幅モーメント積算値の差分の平均である請求項4に記載のモータ駆動機構の状況判定方法。 The motor drive mechanism status determination method according to claim 4, wherein the relative behavior is an average of a difference of the amplitude moment integrated value with respect to the unit amplitude moment integrated value.
  6. 前記相対的挙動は、前記単位振幅モーメント積算値に対する前記振幅モーメント積算値の差分の時間変化部分を直線近似して得られる直線の傾きの程度である請求項4又は5に記載のモータ駆動機構の状況判定方法。 6. The motor drive mechanism according to claim 4, wherein the relative behavior is a degree of a slope of a straight line obtained by linearly approximating a time-changing portion of a difference of the amplitude moment integrated value with respect to the unit amplitude moment integrated value. Situation judgment method.
  7. 前記差の波形の推移を、前記振幅モーメント積算値の変化する少なくとも正側の頂点の夾角で検出する請求項3ないし6のいずれかに記載のモータ駆動機構の状況判定方法。 The motor drive mechanism status determination method according to any one of claims 3 to 6, wherein a transition of the waveform of the difference is detected by at least a depression angle of a positive apex at which the amplitude moment integrated value changes.
  8. 前記機械的状況は、前記交流駆動モータによって駆動される加工工具を使用した加工の良否である請求項1ないし7のいずれかに記載のモータ駆動機構の状況判定方法。 The motor drive mechanism status determination method according to claim 1, wherein the mechanical status is quality of machining using a machining tool driven by the AC drive motor.
  9. 交流駆動モータの駆動電流波形を検出する手段と、検出された前記駆動電流波形の所定サイクル毎に当該サイクル内の波形面積に等しい面積を有する等価正弦波形を得る手段と、前記所定サイクル毎の前記駆動電流波形と前記等価正弦波形の各絶対値の差の波形を算出する手段と、前記所定サイクル毎の前記差の波形の推移より前記交流駆動モータの出力側の機械的状況を判定する手段と、を備えるモータ駆動機構の状況判定装置。 Means for detecting a drive current waveform of an AC drive motor; means for obtaining an equivalent sine waveform having an area equal to a waveform area in the cycle for each predetermined cycle of the detected drive current waveform; and Means for calculating a waveform of a difference between the absolute values of the drive current waveform and the equivalent sine waveform; and means for determining a mechanical condition on the output side of the AC drive motor from a transition of the waveform of the difference for each predetermined cycle; The state determination apparatus of a motor drive mechanism provided with these.
PCT/JP2016/054041 2015-03-02 2016-02-11 Method for determining conditions of motor driving mechanism WO2016140032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015039732A JP5777834B1 (en) 2014-03-04 2015-03-02 Motor drive mechanism status determination method
JP2015-039732 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016140032A1 true WO2016140032A1 (en) 2016-09-09

Family

ID=56851809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054041 WO2016140032A1 (en) 2015-03-02 2016-02-11 Method for determining conditions of motor driving mechanism

Country Status (1)

Country Link
WO (1) WO2016140032A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081014B1 (en) * 2016-09-29 2017-02-15 株式会社ブレイド How to judge the quality of friction stir welding
US20210257943A1 (en) * 2020-01-29 2021-08-19 Cepheid Motor having integrated actuator with absolute encoder and methods of use
CN117411381A (en) * 2023-12-14 2024-01-16 威海天拓合创电子工程有限公司 Servo motor output precision control method based on real-time data monitoring

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973264A (en) * 1982-10-15 1984-04-25 Hioki Denki Kk Abnormality monitor for machine tool and the like
JP2002181670A (en) * 2000-12-11 2002-06-26 Japan System Engineering Kk Facility diagnosing device
JP2002239838A (en) * 2001-02-15 2002-08-28 Tokyo Taping Machine Seisakusho:Kk Abnormality monitoring method in female threading process
JP2011020221A (en) * 2009-07-16 2011-02-03 Honda Motor Co Ltd Method for predicting life of rotary blade device
JP2012200119A (en) * 2011-03-23 2012-10-18 Aisin Seiki Co Ltd Control method and control unit of ac motor
JP5777834B1 (en) * 2014-03-04 2015-09-09 株式会社ブレイド Motor drive mechanism status determination method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973264A (en) * 1982-10-15 1984-04-25 Hioki Denki Kk Abnormality monitor for machine tool and the like
JP2002181670A (en) * 2000-12-11 2002-06-26 Japan System Engineering Kk Facility diagnosing device
JP2002239838A (en) * 2001-02-15 2002-08-28 Tokyo Taping Machine Seisakusho:Kk Abnormality monitoring method in female threading process
JP2011020221A (en) * 2009-07-16 2011-02-03 Honda Motor Co Ltd Method for predicting life of rotary blade device
JP2012200119A (en) * 2011-03-23 2012-10-18 Aisin Seiki Co Ltd Control method and control unit of ac motor
JP5777834B1 (en) * 2014-03-04 2015-09-09 株式会社ブレイド Motor drive mechanism status determination method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081014B1 (en) * 2016-09-29 2017-02-15 株式会社ブレイド How to judge the quality of friction stir welding
US20210257943A1 (en) * 2020-01-29 2021-08-19 Cepheid Motor having integrated actuator with absolute encoder and methods of use
US11876479B2 (en) * 2020-01-29 2024-01-16 Cepheid Motor having integrated actuator with absolute encoder and methods of use
CN117411381A (en) * 2023-12-14 2024-01-16 威海天拓合创电子工程有限公司 Servo motor output precision control method based on real-time data monitoring
CN117411381B (en) * 2023-12-14 2024-03-26 威海天拓合创电子工程有限公司 Servo motor output precision control method based on real-time data monitoring

Similar Documents

Publication Publication Date Title
WO2016140032A1 (en) Method for determining conditions of motor driving mechanism
JP5777834B1 (en) Motor drive mechanism status determination method
JP5449889B2 (en) Method and apparatus for quantitatively detecting unbalanced state and method for detecting clamped state of workpiece
JP2007304057A (en) Method and device for failure diagnosis
JP2010017842A5 (en)
CN104535587A (en) PCBA solder joint inspection method based on machine vision
Yang et al. Automatic gap detection in friction stir butt welding operations
CN108469327A (en) A kind of torsion-testing apparatus of pile welding joint
JP2012073182A (en) Method for testing material
CN104215439A (en) Correction method of center of rocker
CN205300466U (en) Universal joint angle clearance detection device
WO2012020079A1 (en) Method for determining defects in a wind turbine blade root attachment and measuring tool for carrying out such method
CN206160900U (en) A device for detecting single cone face part wall thickness difference
JP2019063882A (en) Abnormality determination device of robot
CN205834910U (en) Cylinder body cylinder holes detection device
JP2016028227A (en) Inspection system for inspecting object by utilizing force sensor
CN209656434U (en) A kind of wire rod torsion tester jaw
CN110259435B (en) Well condition change identification method based on oil pumping unit electrical parameters
CN113503787B (en) Thread detection method
JP6076119B2 (en) Friction stir welding method and friction stir welding apparatus
JP6069011B2 (en) Friction stir welding method and friction stir welding apparatus
CN204881410U (en) Utensil is examined to car C post reinforcing plate
JP6081014B1 (en) How to judge the quality of friction stir welding
CN209665160U (en) A kind of round electric connector universal clipping tooling
JP2019007947A (en) Inspection method of worm gear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758727

Country of ref document: EP

Kind code of ref document: A1