WO2016140006A1 - Sludge volume reduction device and sewage treatment system comprising same - Google Patents

Sludge volume reduction device and sewage treatment system comprising same Download PDF

Info

Publication number
WO2016140006A1
WO2016140006A1 PCT/JP2016/053132 JP2016053132W WO2016140006A1 WO 2016140006 A1 WO2016140006 A1 WO 2016140006A1 JP 2016053132 W JP2016053132 W JP 2016053132W WO 2016140006 A1 WO2016140006 A1 WO 2016140006A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
resin sheet
porous structure
moisture
continuous porous
Prior art date
Application number
PCT/JP2016/053132
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 洋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016140006A1 publication Critical patent/WO2016140006A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/18Construction of the scrapers or the driving mechanisms for settling tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used

Definitions

  • the present invention relates to a sludge volume reducing device that removes moisture in sludge generated during sewage treatment and reduces the sludge volume, and a sewage treatment system having the same.
  • the sludge generated at the sewage treatment plant is generally treated as follows. First, water in the sludge is separated to some extent using centrifugation or the like. As a result, the sludge becomes clay-like, but contains about 80% of moisture in terms of weight. This is heated to vaporize the moisture and then incinerated. Incineration ash is entrusted to an industrial waste disposal company for disposal. However, when there are few heavy metals in sludge, it is diverted to fertilizer etc. after heat drying. However, in any case, enormous energy is required to volatilize the water in the sludge, and the fuel cost accounts for a considerable proportion of the entire sewage treatment system.
  • Patent Document 1 has been proposed as a technique for reducing moisture without going through a heating step.
  • it comprises the structure which makes the hydrophilic resin of a dewatering belt absorb the water
  • patent document 1 it is the structure which makes the water
  • sludge containing a large amount of moisture has high fluidity and may leak from the dewatering belt due to pressurization, making it difficult to effectively reduce the volume of sludge by removing moisture.
  • this invention is providing the sludge volume reducing apparatus which can perform volume reduction effectively also to sludge with high fluidity, and a sewage treatment system using the same.
  • the sludge volume reduction device of the present invention is a sludge recovery tank for recovering sludge after moisture removal, and a plurality of rollers that are rotationally driven and put moisture in the sludge placed on the surface thereof.
  • An endless belt-shaped resin sheet having a continuous porous structure capable of absorbing; and a pressure roller disposed at a position where the resin sheet is driven to be folded in the vicinity of the sludge collection tank, and the resin sheet is By conveying the sludge to the sludge collection tank in a non-pressurized state, the moisture in the sludge is absorbed, and the moisture is discharged from the resin sheet after the moisture absorption by the pressure roller. .
  • the sewage treatment system of the present invention includes a first sedimentation basin that separates organic substances from inflowing sewage by gravity sedimentation, and a biological treatment that performs nitrification and denitrification on the sewage flowing from the first sedimentation basin by using sludge containing microorganisms.
  • a tank a final sedimentation tank installed on the downstream side of the biological treatment tank, having a sludge scraper and sinking the sludge from the sewage flowing from the biological treatment tank, and separating the supernatant, and the final sedimentation tank
  • a dehydrator for separating water from the sludge extracted from the sludge
  • a sludge volume reducing device for removing water from the dewatered sludge, wherein the sludge volume reducing device collects the sludge after moisture removal.
  • a sludge collection tank an endless belt-shaped resin sheet having a continuous porous structure that is rotationally driven by a plurality of rollers and is placed on the surface of the sludge, and the resin sheet is in the vicinity of the collection tank
  • a pressure roller disposed at a position to be driven back, and by absorbing the moisture in the sludge by conveying the resin sheet to the sludge collection tank without pressing the sludge, Water is discharged from the resin sheet after moisture absorption by the pressure roller.
  • FIG. 1 is an overall configuration diagram of a sewage treatment system according to an embodiment of the present invention. It is a schematic block diagram of the sludge volume reduction apparatus shown in FIG.
  • FIG. 3 is an AA cross-sectional arrow view of the sludge volume reducing device shown in FIG. 2. It is a figure which shows the other structural example of a sludge volume reduction apparatus, and is a side view and an AA cross-sectional arrow view. It is a figure which shows the other structural example of a sludge volume reduction apparatus. It is an enlarged view of the area
  • the “endless belt-shaped resin sheet” to be described later is not limited to a so-called seamless belt, but may be any belt as long as it can continuously travel on a circular track.
  • the resin sheet is bonded at both ends with a metal joint, or a plurality of divided resin sheets are held in resin or non-resin Also included are those that are joined by members and formed into an endless belt shape.
  • the sewage treatment system 1 treats sewage (hereinafter referred to as treated water) such as domestic wastewater or industrial wastewater through a biological reaction tank that treats sewage with sludge containing microorganisms (activated sludge). .
  • the sewage treatment system 1 includes a first sedimentation basin 3, an aerobic tank 4, a nitrification denitrification tank 5, a final sedimentation basin 6, a centrifugal separator, and the like that separate organic matter from the treated water 15 by gravity sedimentation.
  • the dehydrator 7 used, the sludge volume reducing device 2, and the control unit 13 for controlling them are provided.
  • An aerobic tank aeration tube 8 is provided in the aerobic tank 4, and a stirrer 9 is provided in the nitrification denitrification tank 5.
  • the aerobic tank diffusing tube 8 is connected to the blower 10 via an air volume adjusting valve 11.
  • the control unit 13 controls the blower 10 and the air volume adjusting valve 11 so as to obtain a desired aeration air volume. Further, the control unit 13 controls the stirring intensity such as the rotational speed of the stirring blade constituting the stirrer 9.
  • the dehydrator 7 is, for example, a centrifugal dehydrator
  • the control unit 13 rotates the speed of a screw conveyor drive motor (not shown) constituting the dehydrator 7 and will be described in detail later.
  • the sludge volume reducing device 2 is controlled.
  • the control unit 13 includes, for example, a storage device such as a ROM, a RAM, and an external storage device (not shown), reads out and executes various programs stored in the ROM, and is data or execution results in the program execution process. It is comprised from processors, such as CPU which stores an arithmetic processing result in RAM or an external storage device.
  • the control unit 13 controls the stirring intensity of the stirrer 9 provided in the nitrification denitrification tank 5 based on the measurement result of ammonia nitrogen (NH 4 -N) concentration by an ammonia sensor (not shown) and a predetermined set value, The amount of aeration air supplied by lending the aerobic tank aeration pipe 8 to the aerobic tank 4 installed upstream of the nitrification denitrification tank 5 is controlled. Further, convection is generated in the nitrification denitrification tank 5 by the stirrer 9 to the water 15 to be treated.
  • NH 4 -N ammonia nitrogen
  • the command value of the stirring intensity output to the stirrer 9 output from the control unit 13 is such that sludge containing microorganisms (activated sludge) is almost uniformly dispersed in the water to be treated in the nitrification denitrification tank 5. Stirring intensity. Thereby, sedimentation of activated sludge on the bottom surface of the nitrification denitrification tank 5 can be prevented.
  • activated sludge is gravity settled from the treated water 15 flowing from the nitrification denitrification tank 5, and the supernatant liquid is separated and discharged as treated water.
  • a sludge scraping machine 60 that scrapes sludge containing microorganisms that settle on the bottom surface (activated sludge) is provided.
  • the sludge scraper 60 is provided at both ends of a drive shaft to which rotational force is transmitted by a plurality of flights 62 attached to the chain 61 at predetermined intervals and a drive device 64 installed on the water surface of the final sedimentation basin 6.
  • a chain 61 to which a plurality of flights 62 are attached at predetermined intervals is stretched in parallel with the drive sprocket wheel 63a and the driven sprocket wheels 63b to 63d, and is circulated by the drive device 63.
  • the flight 62 has a flat plate shape that is attached at a predetermined interval so as to cross the chain 61 stretched in parallel with the two strips.
  • the chain 61 moves along the direction of the arrow F1 (the direction from the downstream side to the upstream side), the microorganisms that settle on the bottom surface of the final sedimentation basin 6 are sludge (activated) by the flight 62 attached to the chain 61. Sludge) is scraped to the sludge pit P1 side. Further, when the chain 61 moves in the direction of the arrow F2 (in the direction from the upstream side to the downstream side) near the water surface position of the final sedimentation basin 6, the scum that floats on the water surface by the flight 62 attached to the chain 61 is on the scum skimmer 65 side. It is scraped and discharged.
  • Sludge containing microorganisms scraped to the sludge pit P1 side by the sludge scraper 60 is returned to the aerobic tank 4 by the sludge return pump 12.
  • the activated sludge which is the sludge containing the microorganisms which settle to the bottom face of the final sedimentation basin 6 is included, and is only called sludge.
  • the sludge settled on the bottom surface of the final sedimentation basin 6 is scraped to the sludge pit P1 and then returned to the aerobic tank 4 by the sludge return pump 12, but during the operation time of the sewage treatment system 1. Accordingly, the amount of sludge that settles on the bottom surface of the final sedimentation basin 6 and is scraped to the sludge pit P1 increases. Therefore, the sludge 16 raked into the sludge pit P1 is pulled out and introduced into the dehydrator 7 installed at the subsequent stage of the final sedimentation basin.
  • the rotational speed of the motor that rotationally drives the screw conveyor (not shown) is controlled by the control unit 13, and the sludge 16 containing a large amount of moisture is By the rotational drive, it is centrifuged into sludge 16 from which clarified water and moisture have been partially removed. Although the sludge 16 centrifuged by the dehydrator 7 becomes a clay, it still contains about 80% water by weight. The sludge 16 centrifuged by the dehydrator 7 is supplied to the sludge volume reducing device 2 installed at the subsequent stage of the dehydrator 7.
  • FIG. 2 the schematic block diagram of the sludge volume reduction apparatus 2 is shown.
  • the sludge volume reducing device 2 mounts a driving roller 22 driven by a motor 28 and a transport roller composed of a plurality of driven rollers 23 and 23a and a sludge 16 supplied from the dehydrator 7 and circulates by the transport roller.
  • Endless belt-shaped resin sheet 21 having a continuous porous structure traveling on a track sludge recovery tank 25 for recovering sludge 17 whose moisture has been absorbed and reduced by resin sheet 21, pressure roller 24, pressure roller 24, and
  • a water recovery tank 26 is provided for recovering water 27 released from the resin sheet 21 after moisture absorption by being pressurized by the driven roller 23.
  • FIG. 1 the example shown in FIG.
  • the driving roller 22 driven by the motor 28 rotates in the clockwise direction.
  • the plurality of driven rollers 23 and 23a are also rotated in the clockwise direction. Due to the rotation of these transport rollers, the resin sheet 21 having a continuous porous structure travels in a clockwise direction on an elliptical orbit. Thereby, the endless belt-shaped resin sheet 21 is folded at the position of the driven roller 23 a disposed above the sludge collection tank 25, and the pressure roller 24 disposed above the moisture collection tank 26 and the pressurization. It passes between the driven rollers 23 arranged to face the roller 24 and travels toward the drive roller 22 side.
  • the sludge 16 placed on the resin sheet 21 is conveyed in the direction indicated by the arrow S.
  • the drive roller 22 side is referred to as the upstream side
  • the driven roller 23a side is referred to as the downstream side along the conveying direction S of the sludge 16.
  • the sludge 16 placed on the resin sheet 21 is transported to the position of the driven roller 23a disposed at the downstream end, the water in the sludge 16 has a continuous porous structure.
  • the volume of the sludge 16 is gradually reduced. That is, the sludge 16 is reduced in volume.
  • the resin having a continuous porous structure is also called a hydrophilic resin having open cells, and in particular, as a result of the inventor's diligent efforts, a resin having a hydroxyl group and having a continuous porous structure is particularly pressurized. It has been found that moisture can be trapped in the continuous porous material.
  • the material for the resin sheet having a continuous porous structure will be described later.
  • the sludge 17 that has absorbed and reduced the moisture is detached from the resin sheet 21 by folding the resin sheet 21, It falls to the sludge collection tank 25 arranged below and is collected.
  • the resin sheet 21 folded back by the driven roller 23a and having a continuous porous structure after moisture absorption in the sludge 16 travels to the pressure roller 24 and the driven roller 23 arranged to face the pressure roller 24. .
  • Moisture 27 pressurized by the pressure roller 24 and the driven roller 23 and absorbed by the resin sheet 21 having a continuous porous structure is pushed out from the continuous porous body and in a moisture recovery tank 26 disposed below. Collected.
  • the recovered water is mixed with sewage and treated as sewage.
  • the resin sheet 21 having a continuous porous structure after passing through the pressure roller 24 is regenerated to a state in which the moisture in the sludge 16 can be absorbed again, as the absorbed moisture is discharged.
  • the volume-reduced sludge 17 collected in the sludge collection tank 25 is subjected to normal processing. If the heavy metal concentration in the sludge 17 whose volume has been reduced is high, the sludge 17 burns and the burned material is treated as industrial waste. If the heavy metal concentration is low, it is used as a fertilizer for agricultural products.
  • moisture content in the sludge 16 is especially sent to the resin sheet 21 which has a continuous porous structure with respect to the sludge 16 supplied from the dehydrator 7, without requiring a pressurization. Since it is absorbed, it is possible to effectively reduce the volume of sludge containing a large amount of water, that is, sludge having high fluidity.
  • the chemical structure and porosity of the resin sheet 21 having a continuous porous structure will be described.
  • a polymer having a large number of hydrophilic substituents such as hydroxyl groups, carboxyl groups, sulfonic acid groups, and amino groups in the molecule is used as a resin having a continuous porous structure, also called a hydrophilic resin having open cells.
  • carboxyl groups and sulfonic acid groups dissociate in water, and the water in contact with them exhibits acidity.
  • the hydroxyl group directly bonded to the aromatic structure such as the hydroxyl group of phenol, also dissociates, and the water in contact with it exhibits acidity.
  • the amino group is also dissociated in water, and the water in contact with the amino group is basic. Therefore, these may cause corrosion of the metal parts in the sludge volume reducing device 2 and are not preferable.
  • the alkyl chain or the hydroxyl group directly bonded to the alkylene chain hardly dissociates, and hardly changes the liquidity of water in the sludge to be treated. Therefore, there is almost no fear of corroding the metal parts in the sludge volume reducing device 2, which is preferable.
  • hydroxyl group-containing resin examples include copolymers of water-soluble resins such as polyethylene glycol and polyvinyl alcohol, and resins such as polyalkyl acrylate, polymethacrylate, and polystyrene that hardly dissolve in water.
  • a polymer having a sugar skeleton such as cellulose is also included.
  • Cellulose has a structure in which sugars are connected in a straight line and is insoluble in water.
  • a substance with a helical structure like starch is soluble in water, it forms water by forming a copolymer with a monomer such as acrylonitrile. Use in a structure that is insoluble in.
  • the higher the void ratio the larger the internal void ratio, so that the water absorption rate per unit volume also tends to increase.
  • the lower limit is preferably about 70%.
  • the porosity is increased too much, specifically, if the porosity is 98% or more, the physical strength is remarkably reduced, so that the fracture occurs with a slight force.
  • the physical strength varies depending on the type of resin.
  • Cellulose resin with a repeating unit of sugar or sugar derivative skeleton, and starch copolymer are more physical than resins having a structure such as polyvinyl alcohol whose main chain is hydrocarbon and polyalkylene glycol whose main chain is polyalkylene oxide. High strength and difficult to break. This is considered that the physical strength is increased by hydrogen bonding between a large number of hydroxyl groups in cellulose.
  • the porosity is approximately 70 to 97% when the main chain of the resin has a cellulose skeleton, approximately 70 to 96% of the copolymer of starch as the main chain of the resin, and hydrocarbon chains as the main chain of the resin. Approximately 70 to 95% is preferable.
  • the resin having a continuous porous structure so that the porosity falls within a desired range as described above can be obtained, for example, by controlling the temperature and pressure of a reaction vessel containing a mixture of the resin and the volatile solvent. It is done.
  • the temperature increase and pressurization conditions in the case of producing a resin having a continuous porous structure are repeatedly performed by changing the temperature increase and pressurization conditions repeatedly. can get.
  • a resin having a continuous porous structure can be produced with good reproducibility.
  • a volatile solvent having a boiling point of 70 ° C. to 80 ° C. is used to mix with the above resin in the reaction vessel. Thereafter, the temperature of the reaction vessel is raised until the temperature of the mixture of the volatile solvent and the resin reaches 70 ° C. to 80 ° C. As a result, the volatile solvent in the mixture evaporates, and voids are formed in the resin where the volatile solvent previously existed. By combining these voids, a continuous porous structure is obtained.
  • FIG. 3 is a cross-sectional view of the sludge volume reducing device 2 shown in FIG.
  • the driven roller 23 has a recess formed in a substantially central portion in the axial direction.
  • the driven roller 23 has a shape in which the outer diameter decreases from the predetermined position toward the center from both ends in the axial direction.
  • the sludge 16 placed on the resin sheet 21 and conveyed to the driven roller 23a disposed at the downstream end leaks from both ends of the resin sheet 21 orthogonal to the sludge conveyance direction S. Can be prevented.
  • the degree of depression of the recess formed in the driven roller 23 is made larger as the driven roller 23 arranged on the upstream side. This is because, in the resin sheet 21 having a continuous porous structure running on the driven roller 23 arranged on the upstream side, the degree of moisture absorption in the sludge 16, that is, the volume reduction of the sludge 16 is low. by.
  • arranged to a downstream edge part it is preferable to set it as a cylindrical roller without providing a recessed part.
  • FIG. 4 is a diagram showing another example of the configuration of the sludge volume reducing device 2.
  • the left diagram is a side view
  • the right diagram is a sectional view taken along the line AA.
  • the resin sheet 21 having a continuous porous structure has a large number of pores.
  • the resin sheet 21 having a continuous porous structure is operated for a long time by the transport roller composed of the driving roller 22 and the driven rollers 23 and 23a shown in FIG. There is a possibility that breakage will occur. Therefore, in the configuration shown in FIG. 4, the resin sheet 21 having a continuous porous structure is fixed to a belt 29 having a high physical strength, and the belt 29 is caused to travel by a driven roller 23b.
  • the belt 29 for example, a belt made of an elastic body such as rubber or a belt made of a non-porous resin is used. Thereby, the tensile stress concerning the resin sheet 21 which has a continuous porous structure is reduced. Moreover, the resin sheet 21 having a continuous porous structure can be used without breakage for a long time by reducing the tensile stress. As shown in FIG. 4, a plurality of convex portions extending in the axial direction are formed on the outer peripheral surface of the driven roller 23b at predetermined intervals in the circumferential direction.
  • a plurality of concave portions extending in a direction (width direction of the belt 29) perpendicular to the sludge conveyance direction S are formed on the inner surface of the belt 29 at predetermined intervals.
  • the convex portions of the driven roller 23b and the concave portion of the belt 29 mesh with each other, so that the rotational force of the driving roller (not shown) and the driven roller 23b constituting the transport roller can be efficiently transmitted to the belt 29. Yes.
  • the convex portion of the driven roller 23b has a uniform height in the axial direction, but is not limited thereto.
  • the height of the convex portion may be configured to decrease from a predetermined position toward the central portion from both axial end portions.
  • FIG. 5 is a diagram illustrating another configuration example of the sludge volume reducing device 2.
  • the resin sheet 21 having a continuous porous structure is a resin sheet 21 a having a plurality of continuous porous structures divided into a predetermined length along the sludge transport direction S. Is different.
  • FIG. 6 shows an enlarged view of a region B surrounded by a dotted line in FIG. 5, and FIG. 7 shows a top view of the region B shown in FIG.
  • the divided resin sheets 21 a having a plurality of continuous porous structures are each held by a resin sheet holding member 30 formed on the outer surface of the belt 29.
  • Each resin sheet 21a is mounted by being pushed in the depth direction in FIG.
  • each resin sheet holding member 30 has an inverted L-shaped longitudinal section and a shape extending in the width direction of the belt 29 (direction perpendicular to the sludge transport direction S).
  • Two resin sheet holding members 30 are located between resin sheets 21a having a continuous porous structure arranged adjacent to each other.
  • the resin sheet holding member 30 is formed of, for example, an elastic body made of rubber or a non-porous resin like the belt 29.
  • the moisture absorbing material is formed by covering a resin sheet 21 a having a continuous porous structure with a mesh-like cloth 31.
  • the mesh-like cloth 31 is desirably a cloth made of polyethylene, polypropylene, or nylon that does not absorb moisture. This is because it is difficult to remove moisture from the mesh-like cloth 31 only by applying pressure by the above-described pressure roll 24 and the driven roller 23 facing the pressure roll 24.
  • polyethylene and polypropylene having a hydrophobic hydrocarbon structure that hardly absorbs moisture are desirable.
  • Nylon also absorbs moisture per unit weight slightly higher than polyethylene and polypropylene, but has a higher physical strength than polyethylene and polypropylene, and is therefore preferable because of its high strength as a cloth.
  • resistance to tensile stress can be improved, and the resin sheet 21a having the continuous porous structure can be damaged. Can be reduced.
  • the sludge 16 is placed flat on the resin sheet 21 having a continuous porous structure constituting the sludge volume reducing device 2 shown in FIG. At this time, the thickness of the sludge 16 was about 4.5 mm and the width was 1 m.
  • the water in the sludge 16 was 80% by weight, the water other than the water in the sludge 16 was 20% by weight, and the specific gravity was about 2. From this, the moisture per unit area of the sludge 16 immediately after being placed on the resin sheet 21 having a continuous porous structure is about 0.4 g / cm 2 , and other than the sludge 16 is about 0.1 g / cm 2. 2 .
  • the resin sheet 21 having a continuous porous structure of the sludge volume reducing device 2 has a width of 1.1 m and a length of 10 m.
  • the length of the resin sheet 21 having a continuous porous structure is the length from the position where the sludge 16 is placed to the position on the driven roller 23a disposed at the downstream end in FIG.
  • the rotation speed of the motor 28 which rotationally drives the drive roller 22 was set from the control part 13 (FIG. 1) so that the resin sheet 21 which has a continuous porous structure may drive
  • a cellulose resin having a porosity of 93% was used, and the resin sheet 21 was not covered with the mesh-like cloth 31.
  • the sludge 16 reached the follower roller 23a disposed at the downstream end shown in FIG. 2, and the sludge 16 at this time had a thickness of about 1.5 mm. Then, as a result of measuring the water
  • FIG. 9 is a schematic configuration diagram in the vicinity of the sludge supply unit constituting the sludge volume reducing device 2.
  • the sludge volume reducing device 2 places the sludge 16 supplied from the dehydrator 7 (FIG. 1) on the resin sheet 21 having a continuous porous structure.
  • the sludge supply unit 32 has a supply port 33 that rotates up and down in an arc shape around the fulcrum C.
  • the opening degree of the supply port 33 is adjusted by the control unit 13 (FIG. 1) on the resin sheet 21 having a continuous porous structure so that the sludge having a desired thickness is orthogonal to the width direction of the resin sheet 21 (the sludge transport direction S In the direction of movement) to be substantially uniform.
  • the portion of the supply port 33 that contacts the resin sheet 21 having a continuous porous structure has a rounded shape so as not to damage the resin sheet 21. Further, as shown in FIG. 9, the position of the supply port 33 in contact with the resin sheet 21 having a continuous porous structure is arranged upstream in the sludge transport direction S among the plurality of driven rollers 23 constituting the transport roller. It becomes the upper part of the driven roller 23 vicinity. That is, the supply port 33 is positioned downstream of the drive roller 22.
  • a plurality of resin sheets 212 having different arithmetic surface roughness (Ra) on the surface in contact with the sludge of the resin sheet 21 having a continuous porous structure are used using the sludge volume reducing apparatus 2 of the above-described first embodiment.
  • the arithmetic surface roughness (Ra) of the resin sheet 21 having the continuous porous structure is 2 mm, the sludge remaining on the surface of the resin sheet 21 having the continuous porous structure is not recovered into the sludge recovery tank 25. The average was about 2% by weight. Further, when the arithmetic surface roughness (Ra) was 1.4 mm, the average amount of sludge remaining on the surface of the resin sheet 21 having a continuous porous structure was about 1% by weight.
  • the arithmetic surface roughness (Ra) was 1.2 mm
  • the sludge remaining on the surface of the resin sheet 21 having a continuous porous structure was reduced to 0.1% by weight or less on average.
  • the arithmetic surface roughness (Ra) was set to 1.0 mm
  • the remaining amount ratio was almost the same as when the arithmetic surface roughness (Ra) was set to 1.2 mm. From this, it was found that the arithmetic surface roughness (Ra) of the surface in contact with the sludge of the resin sheet 21 having a continuous porous structure is desirably 1.2 mm or less.
  • the arithmetic surface roughness (Ra) of the surface in contact with the sludge of the resin sheet 21 having a continuous porous structure is 1.2 mm or less, so that the fluidity supplied from the dehydrator 7 is reduced. It is possible to effectively reduce the volume of high sludge and improve the recovery rate of the reduced sludge.
  • the sludge volume reducing device including the cylindrical driven roller 23 shown in FIG. 2 and the sludge volume reducing device in which the driven roller 23 has the shape shown in FIG. 3 are used.
  • a comparative experiment was conducted.
  • the moisture in the sludge supplied from the dehydrator 7 (FIG. 1) is about 80% by weight, the sludge has a viscosity of soft clay, and both can reduce the sludge appropriately.
  • the sludge volume reducing device provided with the cylindrical driven roller 23 shown in FIG. 2 used in Example 1 has sludge on the resin sheet 21 having a continuous porous structure.
  • sludge did not leak out from both ends in the width direction of the resin sheet 21 having a continuous porous structure. This is because when sludge is placed on the resin sheet 21 having the continuous porous structure, the sludge overcomes the tension of the resin sheet 21 having the continuous porous structure by its own weight, and is formed on the outer peripheral surface of the driven roller 23. It bends into a shape simulating a concave part.
  • the sludge placed on the resin sheet 21 having a continuous porous structure is suitably held on the resin sheet 21 while being transported above the driven roller 23a disposed on the downstream end. It was confirmed that sludge can be prevented from flowing out (leaking out).
  • the use of the driven roller 23 having the shape shown in FIG. 3 makes it possible to effectively sludge, particularly when the water content in the sludge is as high as 90% by weight or more and the sludge has extremely high fluidity. Can be reduced, and the recovery rate of sludge after volume reduction can be improved.
  • the durability test of the resin sheet 21 having a continuous porous structure was performed using the sludge volume reducing apparatus 2 shown in FIG. 2 used in Example 1 described above.
  • the resin sheet 21 having a continuous porous structure was allowed to travel 200 times on an elliptical orbit around the transport roller composed of the driving roller 22 and the driven rollers 23 and 23a shown in FIG.
  • fine cuts started to appear at the ends.
  • the resin sheet 21 having a continuous porous structure was run for 100 rotations on the elliptical orbit, and sludge volume reduction was performed.
  • the resin sheet 21 having a continuous porous structure was broken and dropped from the transport roller after running a total of 300 revolutions and an elliptical circular orbit.
  • a cellulose resin having a continuous porous structure was used as the resin sheet 21 a, the resin sheet 21 was covered with a polyethylene mesh cloth 31, and a long elliptical orbit was run by the transport roller. .
  • the mesh interval of the polyethylene mesh cloth 31 was set to 200 ⁇ m, and the thickness of the fibers forming the mesh was set to 100 ⁇ m.
  • the slender volume reduction process was continued by traveling on the long elliptical circular orbit, and when it was confirmed after traveling a total of 1000 revolutions, the occurrence of a break was confirmed for the first time.
  • the continuous porous structure is maintained while maintaining the volume reduction rate by covering the resin sheet 21a having the continuous porous structure with the mesh cloth 31. It is possible to extend the life of the resin sheet 21a having the continuous porous structure with the mesh cloth 31.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

The purpose of the present invention is to provide a sludge volume reduction device capable of effectively reducing the volume of even highly fluid sludge, and a sewage treatment system using same. To solve said problem, this sludge volume reduction device 2 is provided with: a sludge collection tank 25 for collecting sludge after moisture removal; an endless belt-shaped resin sheet 21, which is rotated by multiple rollers 22, 23, 23a and has a continuous porous structure capable of absorbing moisture in the sludge 16 that is placed on the surface thereof; and a pressurizing roller 24, which is disposed at a position where the resin sheet 21 is driven so as to double back near the sludge collection tank 25. Moisture in the sludge 16 is absorbed by conveying the resin sheet 21 towards the sludge collection tank 25 with the sludge in an unpressurized state, and moisture is discharged from the resin sheet after moisture absorption by the pressurizing roller 24 and collected in a moisture collection tank 26.

Description

汚泥減容化装置及びそれを有する下水処理システムSludge volume reduction device and sewage treatment system having the same
 本発明は、下水処理時に発生する汚泥中の水分を除去し、汚泥の容積を小さくする汚泥減容化装置及びそれを有する下水処理システムに関する。 The present invention relates to a sludge volume reducing device that removes moisture in sludge generated during sewage treatment and reduces the sludge volume, and a sewage treatment system having the same.
 下水処理場で発生する汚泥は概ね次のような処理を行う。まず、遠心分離等を用いて汚泥中の水分をある程度分離する。これにより汚泥は粘土状になるが、重量にすると約80%の水分を含有している。これを加熱し、水分を気化させた後、焼却する。焼却灰は産廃業者に委託し処分してもらう。但し、汚泥中の重金属が少ない場合は、加熱乾燥後、肥料等へ転用される。しかし、何れにしても汚泥中の水分を揮発させるため膨大なエネルギーを必要とし、その燃料コストは下水処理システム全体のかなりの割合を占める。
 そこで、加熱工程を経ずとも水分を減らす技術として、特許文献1が提案されている。特許文献1では、親水性樹脂にて形成された脱水ベルトに、押し付けロールにて汚泥を圧縮接触させることにより、汚泥中の水分を脱水ベルトの親水性樹脂に吸水させる構成を備える。すなわち、汚泥を加圧しながら親水性樹脂に水分を吸収させるものである。
The sludge generated at the sewage treatment plant is generally treated as follows. First, water in the sludge is separated to some extent using centrifugation or the like. As a result, the sludge becomes clay-like, but contains about 80% of moisture in terms of weight. This is heated to vaporize the moisture and then incinerated. Incineration ash is entrusted to an industrial waste disposal company for disposal. However, when there are few heavy metals in sludge, it is diverted to fertilizer etc. after heat drying. However, in any case, enormous energy is required to volatilize the water in the sludge, and the fuel cost accounts for a considerable proportion of the entire sewage treatment system.
Therefore, Patent Document 1 has been proposed as a technique for reducing moisture without going through a heating step. In patent document 1, it comprises the structure which makes the hydrophilic resin of a dewatering belt absorb the water | moisture content in a sludge by carrying out the compression contact of the sludge to a dewatering belt formed with hydrophilic resin with a pressing roll. That is, the hydrophilic resin absorbs moisture while pressurizing sludge.
特開2012-139648号公報JP 2012-139648 A
 特許文献1では、汚泥を加圧しながら親水性樹脂にて形成された脱水ベルトに、汚泥中の水分を吸収させる構成である。しかしながら、水分を多く含む汚泥は流動性が高く、加圧により脱水ベルトより漏れ出す恐れがあり、水分を除去することによる汚泥の減容化を効果的に行うことが困難となる。
 そこで本発明は、流動性の高い汚泥に対しても減容化を効果的に行い得る汚泥減容化装置及びそれを用いた下水処理システムを提供することにある。
In patent document 1, it is the structure which makes the water | moisture content in sludge absorb in the dehydration belt formed with hydrophilic resin, pressurizing sludge. However, sludge containing a large amount of moisture has high fluidity and may leak from the dewatering belt due to pressurization, making it difficult to effectively reduce the volume of sludge by removing moisture.
Then, this invention is providing the sludge volume reducing apparatus which can perform volume reduction effectively also to sludge with high fluidity, and a sewage treatment system using the same.
 上記課題を解決すため、本発明の汚泥減容化装置は、水分除去後の汚泥を回収する汚泥回収槽と、複数のローラーにより回転駆動され、その表面に載置される汚泥中の水分を吸収可能な連続多孔質構造を有する無端ベルト状の樹脂シートと、前記樹脂シートが前記汚泥回収槽付近にて折り返し駆動される位置に配される加圧ローラーと、を備え、前記樹脂シートを前記汚泥回収槽側へと汚泥を無加圧状態にて搬送することにより、前記汚泥中の水分を吸収すると共に、前記加圧ローラーにより水分吸収後の樹脂シートより水分を排出することを特徴とする。 
 また、本発明の下水処理システムは、流入する下水から重力沈降により有機物を分離する最初沈殿池と、微生物を含む汚泥により、前記最初沈殿池から流入する下水に対し硝化及び脱窒を行う生物処理槽と、前記生物処理槽の下流側に設置され、汚泥掻寄機を有し前記生物処理槽より流入する下水から前記汚泥を沈降させ、上澄み液を分離する最終沈殿池と、前記最終沈殿池から引き抜かれた汚泥から水分を分離する脱水機と、前記脱水後の汚泥から水分を除去する汚泥減容化装置と、を備え、前記汚泥減容化装置は、水分除去後の汚泥を回収する汚泥回収槽と、複数のローラーにより回転駆動され、その表面に載置される汚泥中の水分を吸収可能な連続多孔質構造を有する無端ベルト状の樹脂シートと、前記樹脂シートが前記回収槽付近にて折り返し駆動される位置に配される加圧ローラーと、を備え、汚泥を加圧することなく前記樹脂シートを前記汚泥回収槽側へと汚搬送することにより、前記汚泥中の水分を吸収すると共に、前記加圧ローラーにより水分吸収後の樹脂シートより水分を排出することを特徴とする。
In order to solve the above-mentioned problems, the sludge volume reduction device of the present invention is a sludge recovery tank for recovering sludge after moisture removal, and a plurality of rollers that are rotationally driven and put moisture in the sludge placed on the surface thereof. An endless belt-shaped resin sheet having a continuous porous structure capable of absorbing; and a pressure roller disposed at a position where the resin sheet is driven to be folded in the vicinity of the sludge collection tank, and the resin sheet is By conveying the sludge to the sludge collection tank in a non-pressurized state, the moisture in the sludge is absorbed, and the moisture is discharged from the resin sheet after the moisture absorption by the pressure roller. .
In addition, the sewage treatment system of the present invention includes a first sedimentation basin that separates organic substances from inflowing sewage by gravity sedimentation, and a biological treatment that performs nitrification and denitrification on the sewage flowing from the first sedimentation basin by using sludge containing microorganisms. A tank, a final sedimentation tank installed on the downstream side of the biological treatment tank, having a sludge scraper and sinking the sludge from the sewage flowing from the biological treatment tank, and separating the supernatant, and the final sedimentation tank A dehydrator for separating water from the sludge extracted from the sludge, and a sludge volume reducing device for removing water from the dewatered sludge, wherein the sludge volume reducing device collects the sludge after moisture removal. A sludge collection tank, an endless belt-shaped resin sheet having a continuous porous structure that is rotationally driven by a plurality of rollers and is placed on the surface of the sludge, and the resin sheet is in the vicinity of the collection tank In A pressure roller disposed at a position to be driven back, and by absorbing the moisture in the sludge by conveying the resin sheet to the sludge collection tank without pressing the sludge, Water is discharged from the resin sheet after moisture absorption by the pressure roller.
 本発明によれば、流動性の高い汚泥に対しても減容化を効果的に行い得る汚泥減容化装置及びそれを用いた下水処理システムを提供することが可能となる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the sludge volume reduction apparatus which can perform volume reduction effectively also to sludge with high fluidity, and a sewage treatment system using the same.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の一実施形態に係る下水処理システムの全体構成図である。1 is an overall configuration diagram of a sewage treatment system according to an embodiment of the present invention. 図1に示す汚泥減容化装置の概略構成図である。It is a schematic block diagram of the sludge volume reduction apparatus shown in FIG. 図2に示す汚泥減容化装置のA―A断面矢視図である。FIG. 3 is an AA cross-sectional arrow view of the sludge volume reducing device shown in FIG. 2. 汚泥減容化装置の他の構成例を示す図であり、側面図及びA-A断面矢視図である。It is a figure which shows the other structural example of a sludge volume reduction apparatus, and is a side view and an AA cross-sectional arrow view. 汚泥減容化装置の他の構成例を示す図である。It is a figure which shows the other structural example of a sludge volume reduction apparatus. 図5に示す汚泥減容化装置の領域Bの拡大図である。It is an enlarged view of the area | region B of the sludge volume reduction apparatus shown in FIG. 図6に示す領域Bにおける上面図である。It is a top view in the area | region B shown in FIG. 汚泥減容化装置を構成する水分吸収材の外観図及び断面図である。It is the external view and sectional drawing of the water | moisture-content absorber which comprise a sludge volume reduction apparatus. 汚泥減容化装置を構成する汚泥供給部付近の概略構成図である。It is a schematic block diagram of the sludge supply part vicinity which comprises a sludge volume reduction apparatus.
 本明細書において、後述する「無端ベルト状の樹脂シート」とは、所謂、シームレスベルトのみに限定されるものではなく、例えば、連続的に周回軌道を走行可能なベルト状であれば良く、樹脂シートの長さに応じて、上記周回軌道の走行方向において、樹脂シートの両端部を金属製のジョイントにて結合するもの、或いは、複数の分割された樹脂シートを樹脂製又は非樹脂製の保持部材にて結合し、無端ベルト状に形成されるものも含む。 In the present specification, the “endless belt-shaped resin sheet” to be described later is not limited to a so-called seamless belt, but may be any belt as long as it can continuously travel on a circular track. Depending on the length of the sheet, in the running direction of the above-mentioned orbit, the resin sheet is bonded at both ends with a metal joint, or a plurality of divided resin sheets are held in resin or non-resin Also included are those that are joined by members and formed into an endless belt shape.
 図1に、本発明の一実施形態に係る下水処理システムの全体構成図を示す。下水処理システム1は、生活廃水又は工業用排水等の下水(以下、被処理水と称す)を、微生物を含む汚泥(活性汚泥)により下水を処理する生物反応槽を介して処理するものである。図1に示すように、下水処理システム1は、被処理水15から重力沈降により有機物等を分離する最初沈殿池3、好気槽4、硝化脱窒槽5、最終沈殿池6、遠心分離等を用いた脱水機7、汚泥減容化装置2、及びこれらを制御する制御部13を備える。好気槽4内には好気槽散気管8が設けられ、また、硝化脱窒槽5には攪拌機9が設けられている。好気槽散気管8は、風量調整弁11を介してブロワ10に接続されている。制御部13は、所望の曝気風量となるよう、ブロワ10及び風量調整弁11を制御する。また、制御部13は、攪拌機9を構成する攪拌翼の回転速度等の攪拌強度を制御する。また、脱水機7が、例えば、遠心分離方式の遠心脱水機である場合、制御部13は、脱水機7を構成するスクリューコンベヤ用の駆動モータ(図示せず)の回転速度、及び詳細後述する汚泥減容化装置2を制御する。なお、図1では、生物処理槽として、好気槽4及び硝化脱窒槽5の組み合わせを示すがこれに限られず、その他、例えば、嫌気槽等を含む種々の組み合わせからなる生物処理槽を適宜適用できる。 
 ここで、制御部13は、例えば、図示しないROM、RAM、外部記憶装置等の記憶装置を備えると共に、ROMに格納された各種プログラムを読み出し実行し、プログラムの実行過程におけるデータ或いは実行結果である演算処理結果をRAM又は外部記憶装置に格納するCPU等のプロセッサから構成される。
In FIG. 1, the whole block diagram of the sewage treatment system which concerns on one Embodiment of this invention is shown. The sewage treatment system 1 treats sewage (hereinafter referred to as treated water) such as domestic wastewater or industrial wastewater through a biological reaction tank that treats sewage with sludge containing microorganisms (activated sludge). . As shown in FIG. 1, the sewage treatment system 1 includes a first sedimentation basin 3, an aerobic tank 4, a nitrification denitrification tank 5, a final sedimentation basin 6, a centrifugal separator, and the like that separate organic matter from the treated water 15 by gravity sedimentation. The dehydrator 7 used, the sludge volume reducing device 2, and the control unit 13 for controlling them are provided. An aerobic tank aeration tube 8 is provided in the aerobic tank 4, and a stirrer 9 is provided in the nitrification denitrification tank 5. The aerobic tank diffusing tube 8 is connected to the blower 10 via an air volume adjusting valve 11. The control unit 13 controls the blower 10 and the air volume adjusting valve 11 so as to obtain a desired aeration air volume. Further, the control unit 13 controls the stirring intensity such as the rotational speed of the stirring blade constituting the stirrer 9. When the dehydrator 7 is, for example, a centrifugal dehydrator, the control unit 13 rotates the speed of a screw conveyor drive motor (not shown) constituting the dehydrator 7 and will be described in detail later. The sludge volume reducing device 2 is controlled. In addition, in FIG. 1, although the combination of the aerobic tank 4 and the nitrification denitrification tank 5 is shown as a biological treatment tank, it is not restricted to this, For example, the biological treatment tank which consists of various combinations including an anaerobic tank etc. is applied suitably it can.
Here, the control unit 13 includes, for example, a storage device such as a ROM, a RAM, and an external storage device (not shown), reads out and executes various programs stored in the ROM, and is data or execution results in the program execution process. It is comprised from processors, such as CPU which stores an arithmetic processing result in RAM or an external storage device.
 制御部13は、図示しないアンモニアセンサによるアンモニア性窒素(NH-N)濃度の計測結果及び所定の設定値に基づいて、硝化脱窒槽5に設けられた攪拌機9の撹拌強度を制御すると共に、硝化脱窒槽5の上流に設置される好気槽4内へ好気槽散気管8を貸して供給する曝気風量を制御する。また、攪拌機9により硝化脱窒槽5内で被処理水15へ対流を生じさせる。すなわち、制御部13より出力される攪拌機9への攪拌強度の指令値は、硝化脱窒槽5内の被処理水中に微生物を含む汚泥(活性汚泥)がほぼ均一に分散する状態を維持できる程度の攪拌強度である。これにより、硝化脱窒槽5の底面への活性汚泥の沈殿を防止できる。 The control unit 13 controls the stirring intensity of the stirrer 9 provided in the nitrification denitrification tank 5 based on the measurement result of ammonia nitrogen (NH 4 -N) concentration by an ammonia sensor (not shown) and a predetermined set value, The amount of aeration air supplied by lending the aerobic tank aeration pipe 8 to the aerobic tank 4 installed upstream of the nitrification denitrification tank 5 is controlled. Further, convection is generated in the nitrification denitrification tank 5 by the stirrer 9 to the water 15 to be treated. That is, the command value of the stirring intensity output to the stirrer 9 output from the control unit 13 is such that sludge containing microorganisms (activated sludge) is almost uniformly dispersed in the water to be treated in the nitrification denitrification tank 5. Stirring intensity. Thereby, sedimentation of activated sludge on the bottom surface of the nitrification denitrification tank 5 can be prevented.
 最終沈殿池6は、硝化脱窒槽5より流入する被処理水15から活性汚泥を重力沈降させ、上澄み液を分離し処理水として排出する。最終沈殿池6内には、底面に沈殿する微生物を含む汚泥(活性汚泥)を掻き寄せる汚泥掻寄機60が設けられている。
 汚泥掻寄機60は、所定の間隔でチェーン61に取り付けられた複数のフライト62、最終沈殿池6の水上部に設置された駆動装置64により回転力が伝達される駆動軸の両端に設けられた駆動スプロケットホイール63a、駆動スプロケットホイール63aの下流側に配置された中間軸の両端に設けられた従動スプロケットホイール63b、従動スプロケットホイール63bの下流側であって最終沈殿池6の底面付近に配置されたテール軸の両端に設けられた従動スプロケットホイール63c、最終沈殿池6の底面付近であって従動スプロケットホイール63cの上流側に配置されたヘッド軸の両端に設けられた従動スプロケットホイール63dからなる。複数のフライト62が所定間隔にて取り付けられたチェーン61が、これら、駆動スプロケットホイール63a及び従動スプロケットホイール63b~63dに2条平行に張架され、駆動装置63により循環駆動される。フライト62は、この2条平行に張架されたチェーン61を渡るように所定間隔にて取り付けられた平板形状を有する。
In the final sedimentation basin 6, activated sludge is gravity settled from the treated water 15 flowing from the nitrification denitrification tank 5, and the supernatant liquid is separated and discharged as treated water. In the final sedimentation basin 6, a sludge scraping machine 60 that scrapes sludge containing microorganisms that settle on the bottom surface (activated sludge) is provided.
The sludge scraper 60 is provided at both ends of a drive shaft to which rotational force is transmitted by a plurality of flights 62 attached to the chain 61 at predetermined intervals and a drive device 64 installed on the water surface of the final sedimentation basin 6. The driven sprocket wheel 63a, the driven sprocket wheel 63b provided at both ends of the intermediate shaft disposed on the downstream side of the driving sprocket wheel 63a, and the downstream side of the driven sprocket wheel 63b and disposed near the bottom surface of the final sedimentation basin 6. A driven sprocket wheel 63c provided at both ends of the tail shaft, and a driven sprocket wheel 63d provided at both ends of the head shaft disposed near the bottom surface of the final sedimentation basin 6 and upstream of the driven sprocket wheel 63c. A chain 61 to which a plurality of flights 62 are attached at predetermined intervals is stretched in parallel with the drive sprocket wheel 63a and the driven sprocket wheels 63b to 63d, and is circulated by the drive device 63. The flight 62 has a flat plate shape that is attached at a predetermined interval so as to cross the chain 61 stretched in parallel with the two strips.
 そして、矢印F1の方向(下流側から上流側へ向かう方向)に沿ってチェーン61が移動する際、チェーン61に取り付けられたフライト62により、最終沈殿池6の底面に沈殿する微生物を汚泥(活性汚泥)は汚泥ピットP1側に掻き寄せられる。また、最終沈殿池6の水面位置付近で矢印F2方向(上流側から下流側へ向かう方向)にチェーン61が移動する際、チェーン61に取り付けられたフライト62により水面に浮上するスカムはスカムスキマ65側に掻き寄せられ排出される。 
 汚泥掻寄機60により汚泥ピットP1側に掻き寄せられた微生物を含む汚泥(活性汚泥)は、汚泥返送ポンプ12により好気槽4へ戻される。以下では、最終沈殿池6の底面に沈降する微生物を含む汚泥である活性汚泥を含み、単に、汚泥と称する。
Then, when the chain 61 moves along the direction of the arrow F1 (the direction from the downstream side to the upstream side), the microorganisms that settle on the bottom surface of the final sedimentation basin 6 are sludge (activated) by the flight 62 attached to the chain 61. Sludge) is scraped to the sludge pit P1 side. Further, when the chain 61 moves in the direction of the arrow F2 (in the direction from the upstream side to the downstream side) near the water surface position of the final sedimentation basin 6, the scum that floats on the water surface by the flight 62 attached to the chain 61 is on the scum skimmer 65 side. It is scraped and discharged.
Sludge containing microorganisms (activated sludge) scraped to the sludge pit P1 side by the sludge scraper 60 is returned to the aerobic tank 4 by the sludge return pump 12. Below, the activated sludge which is the sludge containing the microorganisms which settle to the bottom face of the final sedimentation basin 6 is included, and is only called sludge.
 上述のように、最終沈殿池6の底面に沈降する汚泥は、汚泥ピットP1に掻き寄せられ、その後、汚泥返送ポンプ12により好気槽4へ返送されるものの、下水処理システム1の運転時間に応じて、最終沈殿池6の底面に沈降し、汚泥ピットP1へ掻き寄せられる汚泥量は増大する。そこで、汚泥ピットP1内に掻き寄せられた汚泥16は引き抜かれ、最終沈殿池の後段に設置される脱水機7へ導入される。例えば、遠心分離方式の脱水機7では、上述のようにスクリューコンベヤ(図示せず)を回転駆動するモータの回転数が制御部13により制御され、水分を多量に含む汚泥16は、スクリューコンベヤの回転駆動により、清澄水と水分が一部除去された汚泥16に遠心分離される。脱水機7により遠心分離された汚泥16は、粘土状となるものの、それでも重量%で約80%の水分を含む。脱水機7により遠心分離された汚泥16は、脱水機7の後段に設置される汚泥減容化装置2へ供給される。 As described above, the sludge settled on the bottom surface of the final sedimentation basin 6 is scraped to the sludge pit P1 and then returned to the aerobic tank 4 by the sludge return pump 12, but during the operation time of the sewage treatment system 1. Accordingly, the amount of sludge that settles on the bottom surface of the final sedimentation basin 6 and is scraped to the sludge pit P1 increases. Therefore, the sludge 16 raked into the sludge pit P1 is pulled out and introduced into the dehydrator 7 installed at the subsequent stage of the final sedimentation basin. For example, in the centrifugal dehydrator 7, as described above, the rotational speed of the motor that rotationally drives the screw conveyor (not shown) is controlled by the control unit 13, and the sludge 16 containing a large amount of moisture is By the rotational drive, it is centrifuged into sludge 16 from which clarified water and moisture have been partially removed. Although the sludge 16 centrifuged by the dehydrator 7 becomes a clay, it still contains about 80% water by weight. The sludge 16 centrifuged by the dehydrator 7 is supplied to the sludge volume reducing device 2 installed at the subsequent stage of the dehydrator 7.
 図2に、汚泥減容化装置2の概略構成図を示す。汚泥減容化装置2は、モータ28にて駆動される駆動ローラー22及び複数の従動ローラー23、23aより構成される搬送ローラー、脱水機7より供給される汚泥16を載置し搬送ローラーにより周回軌道を走行する連続多孔質構造を有する無端ベルト状の樹脂シート21、樹脂シート21により水分が吸収され減容化した汚泥17を回収する汚泥回収槽25、加圧ローラー24、加圧ローラー24及び従動ローラー23により加圧されることで水分吸収後の樹脂シート21より放出される水分27を回収する水分回収槽26を備える。
 図2に示す例では、モータ28にて駆動される駆動ローラー22は、時計方向に回転する。駆動ローラー22の回転に応じて複数の従動ローラー23、23aも同様に時計方向に回転する。これら搬送ローラーの回転により、連続多孔質構造を有する樹脂シート21は、長楕円の周回軌道を時計回りに走行する。これにより、無端ベルト状の樹脂シート21は、汚泥回収槽25の上方に配される従動ローラー23aの位置で、折り返され、水分回収槽26の上方に配される加圧ローラー24及び当該加圧ローラー24と対向するよう配される従動ローラー23の間を通過し、駆動ローラー22側へと走行する。
In FIG. 2, the schematic block diagram of the sludge volume reduction apparatus 2 is shown. The sludge volume reducing device 2 mounts a driving roller 22 driven by a motor 28 and a transport roller composed of a plurality of driven rollers 23 and 23a and a sludge 16 supplied from the dehydrator 7 and circulates by the transport roller. Endless belt-shaped resin sheet 21 having a continuous porous structure traveling on a track, sludge recovery tank 25 for recovering sludge 17 whose moisture has been absorbed and reduced by resin sheet 21, pressure roller 24, pressure roller 24, and A water recovery tank 26 is provided for recovering water 27 released from the resin sheet 21 after moisture absorption by being pressurized by the driven roller 23.
In the example shown in FIG. 2, the driving roller 22 driven by the motor 28 rotates in the clockwise direction. In accordance with the rotation of the driving roller 22, the plurality of driven rollers 23 and 23a are also rotated in the clockwise direction. Due to the rotation of these transport rollers, the resin sheet 21 having a continuous porous structure travels in a clockwise direction on an elliptical orbit. Thereby, the endless belt-shaped resin sheet 21 is folded at the position of the driven roller 23 a disposed above the sludge collection tank 25, and the pressure roller 24 disposed above the moisture collection tank 26 and the pressurization. It passes between the driven rollers 23 arranged to face the roller 24 and travels toward the drive roller 22 side.
 このように、連続多孔質構造を有する樹脂シート21が走行することにより、樹脂シート21上に載置される汚泥16は、矢印Sに示す方向に搬送される。以下では、便宜上、この汚泥16の搬送方向Sに沿って、駆動ローラー22側を上流側、従動ローラー23a側を下流側と呼称する。樹脂シート21上に載置された汚泥16は、下流側の端部に配される従動ローラー23aの位置へと搬送される間に、汚泥16中の水分は連続多孔質構造を有する樹脂シート21に吸収され、徐々に汚泥16の容積が減少する。すなわち、汚泥16が減容化される。ここで、連続多孔質構造を有する樹脂は、連続気泡を有する親水性樹脂とも呼ばれ、特に、発明者の鋭意努力の結果、水酸基を有し連続多孔質構造の樹脂が、特に、加圧を要さず水分を連続多孔質内にトラップできることを見出したものである。なお、連続多孔質構造を有する樹脂シートの材料については後述する。 Thus, when the resin sheet 21 having a continuous porous structure travels, the sludge 16 placed on the resin sheet 21 is conveyed in the direction indicated by the arrow S. Hereinafter, for the sake of convenience, the drive roller 22 side is referred to as the upstream side and the driven roller 23a side is referred to as the downstream side along the conveying direction S of the sludge 16. While the sludge 16 placed on the resin sheet 21 is transported to the position of the driven roller 23a disposed at the downstream end, the water in the sludge 16 has a continuous porous structure. The volume of the sludge 16 is gradually reduced. That is, the sludge 16 is reduced in volume. Here, the resin having a continuous porous structure is also called a hydrophilic resin having open cells, and in particular, as a result of the inventor's diligent efforts, a resin having a hydroxyl group and having a continuous porous structure is particularly pressurized. It has been found that moisture can be trapped in the continuous porous material. The material for the resin sheet having a continuous porous structure will be described later.
 図2に示すように、下流側端部に配される従動ローラー23aへ到達する間に、水分を吸収され減容化した汚泥17は、樹脂シート21の折り返しにより、樹脂シート21より離脱し、下方に配される汚泥回収槽25へ降下し回収される。従動ローラー23aにて折り返され、汚泥16中の水分吸収後の連続多孔質構造を有する樹脂シート21は、加圧ローラー24と、当該加圧ローラー24と対向配置される従動ローラー23へと走行する。これら加圧ローラー24と従動ローラー23により加圧され、連続多孔質構造を有する樹脂シート21に吸収された水分27は、連続多孔質内より押し出され、下方に配される水分回収槽26にて回収される。回収された水分は下水に混合され、下水として処理される。加圧ローラー24を通過後の連続多孔質構造を有する樹脂シート21は、吸収された水分が排出されるにより、再び、汚泥16中の水分を吸収可能な状態に再生される。
 汚泥回収槽25にて回収された減容化された汚泥17は、通常の処理が施される。仮に、減容化された汚泥17中の重金属濃度が高い場合、燃焼し、燃焼物は産業廃棄物として処理される。また、重金属濃度が低ければ農作物の肥料として用いられる。
 このように、汚泥減容化装置2によれば、脱水機7より供給される汚泥16に対し、特に、加圧を要することなく連続多孔質構造を有する樹脂シート21へ汚泥16中の水分が吸収されるため、水分を多量に含む汚泥、すなわち、流動性の高い汚泥に対しても減容化を効果的に行うことが可能となる。
As shown in FIG. 2, while reaching the driven roller 23 a arranged at the downstream end, the sludge 17 that has absorbed and reduced the moisture is detached from the resin sheet 21 by folding the resin sheet 21, It falls to the sludge collection tank 25 arranged below and is collected. The resin sheet 21 folded back by the driven roller 23a and having a continuous porous structure after moisture absorption in the sludge 16 travels to the pressure roller 24 and the driven roller 23 arranged to face the pressure roller 24. . Moisture 27 pressurized by the pressure roller 24 and the driven roller 23 and absorbed by the resin sheet 21 having a continuous porous structure is pushed out from the continuous porous body and in a moisture recovery tank 26 disposed below. Collected. The recovered water is mixed with sewage and treated as sewage. The resin sheet 21 having a continuous porous structure after passing through the pressure roller 24 is regenerated to a state in which the moisture in the sludge 16 can be absorbed again, as the absorbed moisture is discharged.
The volume-reduced sludge 17 collected in the sludge collection tank 25 is subjected to normal processing. If the heavy metal concentration in the sludge 17 whose volume has been reduced is high, the sludge 17 burns and the burned material is treated as industrial waste. If the heavy metal concentration is low, it is used as a fertilizer for agricultural products.
Thus, according to the sludge volume reduction apparatus 2, the water | moisture content in the sludge 16 is especially sent to the resin sheet 21 which has a continuous porous structure with respect to the sludge 16 supplied from the dehydrator 7, without requiring a pressurization. Since it is absorbed, it is possible to effectively reduce the volume of sludge containing a large amount of water, that is, sludge having high fluidity.
 ここで、連続多孔質構造を有する樹脂シート21の化学構造及び空隙率について説明する。上述のように、連続気泡を有する親水性樹脂とも呼ばれる連続多孔質構造を有する樹脂として、分子内に水酸基、カルボキシル基、スルホン酸基、アミノ基等の親水性置換基を多数有する高分子を用いる。このうちカルボキシル基、スルホン酸基は水中で解離し、接する水は酸性を示す。またフェノールの水酸基のように芳香族構造に直接結合している水酸基も解離して、接する水は酸性を示す。一方アミノ基も水中で解離し、接する水は塩基性を示す。そのためこれらが汚泥減容化装置2内の金属部品を腐食させる可能性もあり好ましくない。
 これに比べてアルキル鎖、或いはアルキレン鎖に直接結合している水酸基はほとんど解離せず、処理する汚泥中の水の液性をほとんど変化させない。そのため、汚泥減容化装置2内の金属部品を腐食させる心配がほとんどなく好適である。
 このような水酸基を有する樹脂として具体的には、水溶性の樹脂であるポリエチレングリコール、ポリビニルアルコール等と水にほとんど溶解しないポリアルキルアクリレート、ポリメタクリレート、ポリスチレン等の樹脂のコポリマーが挙げられる。またセルロース等糖の骨格を有する高分子も挙げられる。これらの樹脂の連続多孔質体を用いることにより、表面だけでなく内部にも大量の水を付着(吸収)できるため、単位体積当たりの吸水量が増える。
 セルロースは糖が直線状につながっていて水に不溶の構造であるが、デンプンのようにらせん構造になっているものは水に可溶のため、アクリロニトリル等のモノマとコポリマーを形成することにより水に不溶の構造にして使用する。
Here, the chemical structure and porosity of the resin sheet 21 having a continuous porous structure will be described. As described above, a polymer having a large number of hydrophilic substituents such as hydroxyl groups, carboxyl groups, sulfonic acid groups, and amino groups in the molecule is used as a resin having a continuous porous structure, also called a hydrophilic resin having open cells. . Of these, carboxyl groups and sulfonic acid groups dissociate in water, and the water in contact with them exhibits acidity. Moreover, the hydroxyl group directly bonded to the aromatic structure, such as the hydroxyl group of phenol, also dissociates, and the water in contact with it exhibits acidity. On the other hand, the amino group is also dissociated in water, and the water in contact with the amino group is basic. Therefore, these may cause corrosion of the metal parts in the sludge volume reducing device 2 and are not preferable.
Compared to this, the alkyl chain or the hydroxyl group directly bonded to the alkylene chain hardly dissociates, and hardly changes the liquidity of water in the sludge to be treated. Therefore, there is almost no fear of corroding the metal parts in the sludge volume reducing device 2, which is preferable.
Specific examples of such a hydroxyl group-containing resin include copolymers of water-soluble resins such as polyethylene glycol and polyvinyl alcohol, and resins such as polyalkyl acrylate, polymethacrylate, and polystyrene that hardly dissolve in water. In addition, a polymer having a sugar skeleton such as cellulose is also included. By using a continuous porous body of these resins, a large amount of water can be adhered (absorbed) not only on the surface but also on the inside, so that the amount of water absorption per unit volume increases.
Cellulose has a structure in which sugars are connected in a straight line and is insoluble in water. However, since a substance with a helical structure like starch is soluble in water, it forms water by forming a copolymer with a monomer such as acrylonitrile. Use in a structure that is insoluble in.
 空隙率が高いほど内部の空隙割合が大きくなるため、単位体積当たりの吸水率も大きくなる傾向がある。通常の多孔質化プロセスでは最低でも70%程度の空隙率の材料は製造可能であるため、下限は概ね70%とすることが好ましい。
 しかし、この空隙率を大きくし過ぎると、具体的には空隙率が98%以上になると、物理的強度が著しく低下するので、僅かの力で破断する。
 一方、樹脂の種類によっても物理的強度が異なる。繰り返し単位が糖、或いは糖の誘導体骨格のセルロース系樹脂、及びデンプンのコポリマーは、主鎖が炭化水素のポリビニルアルコール、主鎖がポリアルキレンオキシドのポリアルキレングリコールといった構造を有する樹脂に比べて物理的強度が高く破断しにくい。これはセルロース中の多数の水酸基同士の水素結合により物理的強度が高まっていると考えられている。
The higher the void ratio, the larger the internal void ratio, so that the water absorption rate per unit volume also tends to increase. Since a material having a porosity of at least about 70% can be manufactured in a normal porosification process, the lower limit is preferably about 70%.
However, if the porosity is increased too much, specifically, if the porosity is 98% or more, the physical strength is remarkably reduced, so that the fracture occurs with a slight force.
On the other hand, the physical strength varies depending on the type of resin. Cellulose resin with a repeating unit of sugar or sugar derivative skeleton, and starch copolymer are more physical than resins having a structure such as polyvinyl alcohol whose main chain is hydrocarbon and polyalkylene glycol whose main chain is polyalkylene oxide. High strength and difficult to break. This is considered that the physical strength is increased by hydrogen bonding between a large number of hydroxyl groups in cellulose.
 以上より空隙率は、樹脂の主鎖がセルロース骨格を有するものは概ね70~97%、樹脂の主鎖がデンプンのコポリマーは概ね70~96%、樹脂の主鎖が炭化水素鎖であるものは概ね70~95%が好ましい。 
 なお、このように空隙率を所望の範囲内となるよう連続多孔質構造を有する樹脂は、例えば、樹脂と揮発性溶媒の混合物を収容する反応槽を、昇温及び加圧制御することにより得られる。ここで、予め、樹脂と揮発性溶媒の混合物に対し、昇温及び加圧の条件を変えて繰り返し実行することにより、連続多孔質構造を有する樹脂を製造する場合の昇温及び加圧条件が得られる。得られた昇温及び加圧条件にて反応槽を制御することにより、再現性良く連続多孔質構造を有する樹脂を製造することができる。例えば、沸点が70℃~80℃の揮発性溶媒を用いて、上述の樹脂と反応槽内で混合する。その後、揮発性溶媒と樹脂との混合物の温度を、70℃~80℃に達するまで反応槽を昇温する。これにより、混合物中の揮発性溶媒は蒸発し、樹脂内には、それまで揮発性溶媒が存在していた場所に空隙が形成され、この空隙が結合することにより、連続多孔質構造となる。
From the above, the porosity is approximately 70 to 97% when the main chain of the resin has a cellulose skeleton, approximately 70 to 96% of the copolymer of starch as the main chain of the resin, and hydrocarbon chains as the main chain of the resin. Approximately 70 to 95% is preferable.
The resin having a continuous porous structure so that the porosity falls within a desired range as described above can be obtained, for example, by controlling the temperature and pressure of a reaction vessel containing a mixture of the resin and the volatile solvent. It is done. Here, with respect to the mixture of the resin and the volatile solvent, the temperature increase and pressurization conditions in the case of producing a resin having a continuous porous structure are repeatedly performed by changing the temperature increase and pressurization conditions repeatedly. can get. By controlling the reaction vessel under the obtained temperature rise and pressure conditions, a resin having a continuous porous structure can be produced with good reproducibility. For example, a volatile solvent having a boiling point of 70 ° C. to 80 ° C. is used to mix with the above resin in the reaction vessel. Thereafter, the temperature of the reaction vessel is raised until the temperature of the mixture of the volatile solvent and the resin reaches 70 ° C. to 80 ° C. As a result, the volatile solvent in the mixture evaporates, and voids are formed in the resin where the volatile solvent previously existed. By combining these voids, a continuous porous structure is obtained.
 図3は、図2に示す汚泥減容化装置2のA―A断面矢視図である。図3に示すように、従動ローラー23は、軸方向において略中央部に凹部が形成されている。換言すれば、従動ローラー23は、軸方向両端部より所定の位置から中央部に向かうに従って外径が小さくなる形状を有する。このような形状とすることにより、流動性の高い水分を多く含む汚泥16は、その自重により連続多孔質構造を有する樹脂シート21の張力に打ち勝ち、従動ローラー23に形成された凹部を模した形状となる。これにより、樹脂シート21上に載置され下流側の端部に配される従動ローラー23aへと搬送される汚泥16は、汚泥の搬送方向Sに直交する樹脂シート21の両端部より漏れ出すことを防止できる。
 なお、従動ローラー23に形成される凹部の窪み度合いは、上流側に配される従動ローラー23程大きくすることが望ましい。これは、上流側に配される従動ローラー23上を走行する連続多孔質構造を有する樹脂シート21では、汚泥16中の水分の吸収度合、すなわち、汚泥16の減容化が低い状態にあることによる。また、下流側端部に配される従動ローラー23aについては、凹部を設けず円柱状のローラーとするのが好ましい。
FIG. 3 is a cross-sectional view of the sludge volume reducing device 2 shown in FIG. As shown in FIG. 3, the driven roller 23 has a recess formed in a substantially central portion in the axial direction. In other words, the driven roller 23 has a shape in which the outer diameter decreases from the predetermined position toward the center from both ends in the axial direction. By adopting such a shape, the sludge 16 containing a large amount of moisture with high fluidity overcomes the tension of the resin sheet 21 having a continuous porous structure due to its own weight, and is a shape simulating a recess formed in the driven roller 23. It becomes. As a result, the sludge 16 placed on the resin sheet 21 and conveyed to the driven roller 23a disposed at the downstream end leaks from both ends of the resin sheet 21 orthogonal to the sludge conveyance direction S. Can be prevented.
In addition, it is desirable that the degree of depression of the recess formed in the driven roller 23 is made larger as the driven roller 23 arranged on the upstream side. This is because, in the resin sheet 21 having a continuous porous structure running on the driven roller 23 arranged on the upstream side, the degree of moisture absorption in the sludge 16, that is, the volume reduction of the sludge 16 is low. by. Moreover, about the driven roller 23a distribute | arranged to a downstream edge part, it is preferable to set it as a cylindrical roller without providing a recessed part.
 図4は、汚泥減容化装置2の他の構成例示す図であり、左図は側面図を、右図はA-A断面矢視図である。連続多孔質構造を有する樹脂シート21は多数の細孔があり、上述の図2に示す駆動ローラー22及び従動ローラー23、23aより構成される搬送ローラーにて長時間稼動させると、細孔を起点とした破断が生じる可能性がある。そこで、図4に示す構成では、連続多孔質構造を有する樹脂シート21を物理的強度の高いベルト29に固定し、このベルト29を従動ローラー23bにて走行させる構成としている。ベルト29として、例えば、ゴム製等の弾性体からなるベルト、又は非多孔質樹脂からなるベルトが用いられる。これにより、連続多孔質構造を有する樹脂シート21へかかる引っ張り応力が低減される。また、引張応力の低減により連続多孔質構造を有する樹脂シート21を長期間破損無く使用できるようになる。
 図4に示すように、従動ローラー23bの外周面には、軸方向に延在する凸部が周方向に所定の間隔にて複数形成されている。また、ベルト29の内表面には、汚泥の搬送方向Sに直交する方向(ベルト29の幅方向)に延在する複数の凹部が所定の間隔にて形成されている。これら従動ローラー23bの凸部と、ベルト29の凹部とが噛み合うことにより、搬送ローラーを構成する駆動ローラー(図示せず)及び従動ローラー23bの回転力をベルト29に効率的に伝達可能となっている。
FIG. 4 is a diagram showing another example of the configuration of the sludge volume reducing device 2. The left diagram is a side view, and the right diagram is a sectional view taken along the line AA. The resin sheet 21 having a continuous porous structure has a large number of pores. When the resin sheet 21 having a continuous porous structure is operated for a long time by the transport roller composed of the driving roller 22 and the driven rollers 23 and 23a shown in FIG. There is a possibility that breakage will occur. Therefore, in the configuration shown in FIG. 4, the resin sheet 21 having a continuous porous structure is fixed to a belt 29 having a high physical strength, and the belt 29 is caused to travel by a driven roller 23b. As the belt 29, for example, a belt made of an elastic body such as rubber or a belt made of a non-porous resin is used. Thereby, the tensile stress concerning the resin sheet 21 which has a continuous porous structure is reduced. Moreover, the resin sheet 21 having a continuous porous structure can be used without breakage for a long time by reducing the tensile stress.
As shown in FIG. 4, a plurality of convex portions extending in the axial direction are formed on the outer peripheral surface of the driven roller 23b at predetermined intervals in the circumferential direction. In addition, a plurality of concave portions extending in a direction (width direction of the belt 29) perpendicular to the sludge conveyance direction S are formed on the inner surface of the belt 29 at predetermined intervals. The convex portions of the driven roller 23b and the concave portion of the belt 29 mesh with each other, so that the rotational force of the driving roller (not shown) and the driven roller 23b constituting the transport roller can be efficiently transmitted to the belt 29. Yes.
 なお、図4のA―A断面矢視図に示すように、従動ローラー23bの凸部は軸方向に一様な高さとしているが、これに限られない。例えば、上述の図3に示すように、軸方向両端部より所定の位置から中央部に向かうに従って凸部の高さを低くなるよう構成しても良い。これにより、流動性の高い水分を多く含む汚泥16は、その自重により連続多孔質構造を有する樹脂シート21の張力及びベルト29の弾性力に打ち勝ち、従動ローラー23bに形成された凸部を模した形状となる。 In addition, as shown in the AA cross-sectional arrow view of FIG. 4, the convex portion of the driven roller 23b has a uniform height in the axial direction, but is not limited thereto. For example, as shown in FIG. 3 described above, the height of the convex portion may be configured to decrease from a predetermined position toward the central portion from both axial end portions. Thereby, the sludge 16 containing a lot of fluid with high fluidity overcomes the tension of the resin sheet 21 having a continuous porous structure and the elastic force of the belt 29 by its own weight, imitating the convex portion formed on the driven roller 23b. It becomes a shape.
 図5は、汚泥減容化装置2の他の構成例を示す図である。図4に示す構成に対し、連続多孔質構造を有する樹脂シート21を、汚泥の搬送方向Sに沿って、所定の長さに分割された複数の連続多孔質構造を有する樹脂シート21aとした点が異なる。図5中の点線で囲まれた領域Bの拡大図を図6に示し、図6に示す領域Bの上面図を図7に示す。図6に示すように、分割された複数の連続多孔質構造を有する樹脂シート21aは、それぞれ、ベルト29の外表面に形成された樹脂シート保持部材30により保持される。各樹脂シート21aは、図6において奥行方向に押し込むことにより装着される。図6及び図7に示すように各樹脂シート保持部材30は、縦断面が逆L字状であって、ベルト29の幅方向(汚泥の搬送方向Sに直交する方向)に延在する形状を有する。相互に隣接配置される連続多孔質構造を有する樹脂シート21a間に2つの樹脂シート保持部材30が位置する。樹脂シート保持部材30は、例えば、ベルト29と同様にゴム製等の弾性体又は非多孔質樹脂にて形成される。
 このような連続多孔質構造を有する樹脂シート21aを用いることにより、万が一、連続多孔質構造を有する樹脂シート21aの何れかに破損が生じた場合には、当該破損した樹脂シート21aのみを交換することで対応できる。従って、汚泥減容化装置2の稼動時の運用コスト、特に、保守コストを低減できる。
FIG. 5 is a diagram illustrating another configuration example of the sludge volume reducing device 2. In contrast to the configuration shown in FIG. 4, the resin sheet 21 having a continuous porous structure is a resin sheet 21 a having a plurality of continuous porous structures divided into a predetermined length along the sludge transport direction S. Is different. FIG. 6 shows an enlarged view of a region B surrounded by a dotted line in FIG. 5, and FIG. 7 shows a top view of the region B shown in FIG. As shown in FIG. 6, the divided resin sheets 21 a having a plurality of continuous porous structures are each held by a resin sheet holding member 30 formed on the outer surface of the belt 29. Each resin sheet 21a is mounted by being pushed in the depth direction in FIG. As shown in FIGS. 6 and 7, each resin sheet holding member 30 has an inverted L-shaped longitudinal section and a shape extending in the width direction of the belt 29 (direction perpendicular to the sludge transport direction S). Have. Two resin sheet holding members 30 are located between resin sheets 21a having a continuous porous structure arranged adjacent to each other. The resin sheet holding member 30 is formed of, for example, an elastic body made of rubber or a non-porous resin like the belt 29.
By using the resin sheet 21a having such a continuous porous structure, if any of the resin sheets 21a having the continuous porous structure is damaged, only the damaged resin sheet 21a is replaced. It can respond. Therefore, the operation cost at the time of operation of the sludge volume reducing apparatus 2, especially the maintenance cost can be reduced.
 図8に、汚泥減容化装置2を構成する水分吸収材の外観図及び断面図を示す。図8の左図に示す外観図及び右図に示す断面図のように、水分吸収材とは、連続多孔質構造を有する樹脂シート21aをメッシュ状の布31により覆うことにより形成される。 
 ここで、メッシュ状の布31は、それ自身水分を吸収しないポリエチレン、ポリプロピレン、或いはナイロン製の布であることが望ましい。これは、上述の加圧ロール24及び、加圧ロール24に対向する従動ローラー23によって加圧するのみでは、メッシュ状の布31から水分を除去することは困難なことによる。むしろ水分を吸収し難い疎水性の炭化水素構造からなるポリエチレン、ポリプロピレンが望ましい。ナイロンもポリエチレン、ポリプロピレンに比べると単位重量あたりの水分を吸収する割合が若干大きいが、ポリエチレン、ポリプロピレンに比べると物理的強度が高いため、布としての強度は高く好適である。このように、連続多孔質構造を有する樹脂シート21aをメッシュ状の布31により覆う構造とすることにより、引っ張り応力に対する耐性を向上でき、連続多孔質構造を有する樹脂シート21aに破損が生じることを低減できる。
 以下、図面を用いて本発明の実施例について説明する。
In FIG. 8, the external view and sectional drawing of the water | moisture-content absorber which comprise the sludge volume reduction apparatus 2 are shown. As shown in the external view shown in the left diagram of FIG. 8 and the cross-sectional view shown in the right diagram, the moisture absorbing material is formed by covering a resin sheet 21 a having a continuous porous structure with a mesh-like cloth 31.
Here, the mesh-like cloth 31 is desirably a cloth made of polyethylene, polypropylene, or nylon that does not absorb moisture. This is because it is difficult to remove moisture from the mesh-like cloth 31 only by applying pressure by the above-described pressure roll 24 and the driven roller 23 facing the pressure roll 24. Rather, polyethylene and polypropylene having a hydrophobic hydrocarbon structure that hardly absorbs moisture are desirable. Nylon also absorbs moisture per unit weight slightly higher than polyethylene and polypropylene, but has a higher physical strength than polyethylene and polypropylene, and is therefore preferable because of its high strength as a cloth. Thus, by setting the resin sheet 21a having a continuous porous structure to be covered with the mesh-like cloth 31, resistance to tensile stress can be improved, and the resin sheet 21a having the continuous porous structure can be damaged. Can be reduced.
Embodiments of the present invention will be described below with reference to the drawings.
 図2に示す汚泥減容化装置2を構成する連続多孔質構造を有する樹脂シート21上に、汚泥16を平坦に載置する。この時、汚泥16の厚みは約4.5mm、幅は1mとした。汚泥16中の水分は80重量%、汚泥16中の水分以外が20重量%であり、比重が約2であった。このことから、連続多孔質構造を有する樹脂シート21上に載置された直後の汚泥16の単位面積あたりの水分は約0.4g/cmであり、汚泥16以外は約0.1g/cmとなる。
 一方、汚泥減容化装置2の連続多孔質構造を有する樹脂シート21は幅1.1m、長さは10mである。ここで連続多孔質構造を有する樹脂シート21の長さとは、図2において、汚泥16を載置した位置から下流側の端部に配される従動ローラー23a上までの長さである。そして、連続多孔質構造を有する樹脂シート21が毎分2.5mで搬送ローラー上を走行するよう駆動ローラー22を回転駆動するモータ28の回転数を制御部13(図1)より設定した。従って、汚泥16が多孔質構造を有する樹脂シート21と接する時間は4分間となる。連続多孔質構造を有する樹脂として、空隙率93%のセルロース樹脂を用い、メッシュ状の布31で樹脂シート21を覆っていなかった。
The sludge 16 is placed flat on the resin sheet 21 having a continuous porous structure constituting the sludge volume reducing device 2 shown in FIG. At this time, the thickness of the sludge 16 was about 4.5 mm and the width was 1 m. The water in the sludge 16 was 80% by weight, the water other than the water in the sludge 16 was 20% by weight, and the specific gravity was about 2. From this, the moisture per unit area of the sludge 16 immediately after being placed on the resin sheet 21 having a continuous porous structure is about 0.4 g / cm 2 , and other than the sludge 16 is about 0.1 g / cm 2. 2 .
On the other hand, the resin sheet 21 having a continuous porous structure of the sludge volume reducing device 2 has a width of 1.1 m and a length of 10 m. Here, the length of the resin sheet 21 having a continuous porous structure is the length from the position where the sludge 16 is placed to the position on the driven roller 23a disposed at the downstream end in FIG. And the rotation speed of the motor 28 which rotationally drives the drive roller 22 was set from the control part 13 (FIG. 1) so that the resin sheet 21 which has a continuous porous structure may drive | work on a conveyance roller at 2.5 m / m. Therefore, the time for which the sludge 16 is in contact with the resin sheet 21 having a porous structure is 4 minutes. As the resin having a continuous porous structure, a cellulose resin having a porosity of 93% was used, and the resin sheet 21 was not covered with the mesh-like cloth 31.
 4分後、汚泥16は、図2に示す下流側の端部に配される従動ローラー23a上まで到達し、このときの汚泥16は厚みが約1.5mmであった。この後、汚泥回収槽25に回収された汚泥中の水分を測定した結果、50重量%であった。以上より、汚泥回収槽25に回収される直前の汚泥、すなわち、減容化した汚泥17の単位面積あたりの水分は約0.1g/cmであり、汚泥以外は約0.1g/cmのままとなる。 After 4 minutes, the sludge 16 reached the follower roller 23a disposed at the downstream end shown in FIG. 2, and the sludge 16 at this time had a thickness of about 1.5 mm. Then, as a result of measuring the water | moisture content in the sludge collect | recovered by the sludge collection tank 25, it was 50 weight%. From the above, the moisture per unit area of the sludge immediately before being collected in the sludge collection tank 25, that is, the volume of the sludge 17 reduced in volume is about 0.1 g / cm 2 , and other than the sludge is about 0.1 g / cm 2. Will remain.
 連続多孔質構造を有する樹脂シート21上に載置した直後の汚泥16中の水分は、連続多孔質構造を有する樹脂シート21との接触により1/4まで減じられた。汚泥16の容積でみると、連続多孔質構造を有する樹脂シート21上に載置した直後の厚み(約4.5mm)、及び汚泥回収槽25に回収される直前の汚泥の厚み(約1.5mm)の変化から換算し、汚泥の容積は1/3に減容化できることが明らかになった。
 ここで、上述のように、連続多孔質構造を有する樹脂シート21上に汚泥16を平坦に載置する汚泥減容化装置2の構成について説明する。図9は、汚泥減容化装置2を構成する汚泥供給部付近の概略構成図である。
 図9に示すように、汚泥減容化装置2は、脱水機7(図1)より供給される汚泥16を、連続多孔質構造を有する樹脂シート21上に載置するため、汚泥供給部32を備える。汚泥供給部32は、支点Cを中心とし円弧状に上下に回動する供給口33を有する。供給口33の開度は、制御部13(図1)により、連続多孔質構造を有する樹脂シート21上に、所望の厚さの汚泥を樹脂シート21の幅方向(汚泥の搬送方向Sに直交する方向)にほぼ均一となるよう制御される。供給口33の連続多孔質構造を有する樹脂シート21と接する部分は、樹脂シート21を傷つけぬよう丸みを持たせた形状としている。また、図9に示すように、供給口33の連続多孔質構造を有する樹脂シート21と接する位置は、搬送ローラーを構成する複数の従動ローラー23のうち、汚泥の搬送方向Sにおいて上流側に配される従動ローラー23付近の上方となる。すなわち、供給口33は、駆動ローラー22より下流側に位置付けられる。
Moisture in the sludge 16 immediately after being placed on the resin sheet 21 having a continuous porous structure was reduced to ¼ by contact with the resin sheet 21 having a continuous porous structure. In terms of the volume of the sludge 16, the thickness immediately after being placed on the resin sheet 21 having a continuous porous structure (about 4.5 mm) and the thickness of the sludge immediately before being collected in the sludge collection tank 25 (about 1. It was clarified that the volume of sludge can be reduced to 1/3 by converting from the change of 5 mm).
Here, as described above, the configuration of the sludge volume reducing apparatus 2 that flatly places the sludge 16 on the resin sheet 21 having a continuous porous structure will be described. FIG. 9 is a schematic configuration diagram in the vicinity of the sludge supply unit constituting the sludge volume reducing device 2.
As shown in FIG. 9, the sludge volume reducing device 2 places the sludge 16 supplied from the dehydrator 7 (FIG. 1) on the resin sheet 21 having a continuous porous structure. Is provided. The sludge supply unit 32 has a supply port 33 that rotates up and down in an arc shape around the fulcrum C. The opening degree of the supply port 33 is adjusted by the control unit 13 (FIG. 1) on the resin sheet 21 having a continuous porous structure so that the sludge having a desired thickness is orthogonal to the width direction of the resin sheet 21 (the sludge transport direction S In the direction of movement) to be substantially uniform. The portion of the supply port 33 that contacts the resin sheet 21 having a continuous porous structure has a rounded shape so as not to damage the resin sheet 21. Further, as shown in FIG. 9, the position of the supply port 33 in contact with the resin sheet 21 having a continuous porous structure is arranged upstream in the sludge transport direction S among the plurality of driven rollers 23 constituting the transport roller. It becomes the upper part of the driven roller 23 vicinity. That is, the supply port 33 is positioned downstream of the drive roller 22.
 本実施例によれば、脱水機より供給される80重量%の水分を含む流動性の高い汚泥を、1/3まで減容化することが可能となる。 According to this embodiment, it is possible to reduce the volume of highly fluid sludge containing 80% by weight of water supplied from the dehydrator to 1/3.
 本実施例では、上述の実施例1の汚泥減容化装置2を用い、連続多孔質構造を有する樹脂シート21の汚泥と接する表面の算術表面粗さ(Ra)が異なる複数の樹脂シート212を用いた。
 連続多孔質構造を有する樹脂シート21の算術表面粗さ(Ra)を2mmとした場合、汚泥回収槽25へ回収されることなく、連続多孔質構造を有する樹脂シート21の表面に残存する汚泥は、平均で約2重量%あった。また、算術表面粗さ(Ra)を1.4mmとした場合、連続多孔質構造を有する樹脂シート21の表面に残存する汚泥は、平均で約1重量%あった。
In the present embodiment, a plurality of resin sheets 212 having different arithmetic surface roughness (Ra) on the surface in contact with the sludge of the resin sheet 21 having a continuous porous structure are used using the sludge volume reducing apparatus 2 of the above-described first embodiment. Using.
When the arithmetic surface roughness (Ra) of the resin sheet 21 having the continuous porous structure is 2 mm, the sludge remaining on the surface of the resin sheet 21 having the continuous porous structure is not recovered into the sludge recovery tank 25. The average was about 2% by weight. Further, when the arithmetic surface roughness (Ra) was 1.4 mm, the average amount of sludge remaining on the surface of the resin sheet 21 having a continuous porous structure was about 1% by weight.
 これに対し、算術表面粗さ(Ra)を1.2mmとした場合、連続多孔質構造を有する樹脂シート21の表面に残存する汚泥は、平均で0.1重量%以下に低減した。また、算術表面粗さ(Ra)を1.0mmとした場合も、算術表面粗さ(Ra)を1.2mmとした場合とほぼ同等の残量割合であった。
 このことから、連続多孔質構造を有する樹脂シート21の汚泥と接する表面の算術表面粗さ(Ra)は、1.2mm以下とすることが望ましいことが判った。
On the other hand, when the arithmetic surface roughness (Ra) was 1.2 mm, the sludge remaining on the surface of the resin sheet 21 having a continuous porous structure was reduced to 0.1% by weight or less on average. Further, when the arithmetic surface roughness (Ra) was set to 1.0 mm, the remaining amount ratio was almost the same as when the arithmetic surface roughness (Ra) was set to 1.2 mm.
From this, it was found that the arithmetic surface roughness (Ra) of the surface in contact with the sludge of the resin sheet 21 having a continuous porous structure is desirably 1.2 mm or less.
 本実施例によれば、連続多孔質構造を有する樹脂シート21の汚泥と接する表面の算術表面粗さ(Ra)を、1.2mm以下とすることにより、脱水機7から供給される流動性の高い汚泥を効果的に減容化でき、且つ、減容化された汚泥の回収率を向上することが可能となる。 According to the present embodiment, the arithmetic surface roughness (Ra) of the surface in contact with the sludge of the resin sheet 21 having a continuous porous structure is 1.2 mm or less, so that the fluidity supplied from the dehydrator 7 is reduced. It is possible to effectively reduce the volume of high sludge and improve the recovery rate of the reduced sludge.
 本実施例では、実施例1で用いた図2に示す円柱状の従動ローラー23を備える汚泥減容化装置と、従動ローラー23を上述の図3に示す形状とした汚泥減容化装置を用い、比較実験を行った。
 脱水機7(図1)より供給される汚泥中の水分が80重量%程度の場合、汚泥は柔らかめの粘土程度の粘性であり、双方とも好適に汚泥を減容化することができた。 
 しかし、汚泥中の水分が90重量%の場合、実施例1で用いた図2に示す円柱状の従動ローラー23を備える汚泥減容化装置では、連続多孔質構造を有する樹脂シート21上に汚泥を載置し、駆動ローラー22及び従動ローラー23、23aよりなる搬送ローラーを駆動し、連続多孔質構造を有する樹脂シート21を走行させた。すると、汚泥の搬送方向Sに直交する方向の連続多孔質構造を有する樹脂シート21の両端部から、汚泥が漏れ出す(樹脂シート21の下方へ滴り落ちる)現象が生じた。これは、汚泥中の水分が多すぎると汚泥の粘度は低下し、汚泥の流動性が極めて高くなることにより、連続多孔質構造を有する樹脂シート21上に濡れ拡がり、樹脂シート21の両端部より下方へと漏れ出したものと考えられる。
In this embodiment, the sludge volume reducing device including the cylindrical driven roller 23 shown in FIG. 2 and the sludge volume reducing device in which the driven roller 23 has the shape shown in FIG. 3 are used. A comparative experiment was conducted.
When the moisture in the sludge supplied from the dehydrator 7 (FIG. 1) is about 80% by weight, the sludge has a viscosity of soft clay, and both can reduce the sludge appropriately.
However, when the water content in the sludge is 90% by weight, the sludge volume reducing device provided with the cylindrical driven roller 23 shown in FIG. 2 used in Example 1 has sludge on the resin sheet 21 having a continuous porous structure. Was driven, and the transport roller composed of the driving roller 22 and the driven rollers 23 and 23a was driven to run the resin sheet 21 having a continuous porous structure. Then, the phenomenon that sludge leaks out from both ends of the resin sheet 21 having a continuous porous structure in a direction orthogonal to the sludge conveyance direction S (dripping down the resin sheet 21) occurred. This is because when the moisture in the sludge is too much, the viscosity of the sludge decreases and the fluidity of the sludge becomes extremely high, so that it wets and spreads on the resin sheet 21 having a continuous porous structure, and from both ends of the resin sheet 21 It is thought that leaked downward.
 これに対し、図3に示す、軸方向両端部より所定の位置から中央部に向かうに従い外径が小さくなる形状(凹部)を有する従動ローラー23を有する汚泥減容化装置では、汚泥中の水分が90重量%の場合でも、連続多孔質構造を有する樹脂シート21の幅方向両端部より汚泥が漏れ出ることは無かった。これは、連続多孔質構造を有する樹脂シート21に汚泥が載置されると、汚泥は、その自重により連続多孔質構造を有する樹脂シート21の張力に打ち勝ち、従動ローラー23の外周面に形成された凹部を模した形状に撓む。これにより、連続多孔質構造を有する樹脂シート21上に載置された汚泥が、下流側の端部に配される従動ローラー23aの上方へと搬送される間、樹脂シート21上に好適に保持され、汚泥の流出(漏れ出すこと)防止できることが確認できた。 On the other hand, in the sludge volume reducing device having the driven roller 23 having a shape (recessed portion) whose outer diameter decreases from the predetermined position toward the central portion from the axial end portions shown in FIG. Even in the case of 90% by weight, sludge did not leak out from both ends in the width direction of the resin sheet 21 having a continuous porous structure. This is because when sludge is placed on the resin sheet 21 having the continuous porous structure, the sludge overcomes the tension of the resin sheet 21 having the continuous porous structure by its own weight, and is formed on the outer peripheral surface of the driven roller 23. It bends into a shape simulating a concave part. Accordingly, the sludge placed on the resin sheet 21 having a continuous porous structure is suitably held on the resin sheet 21 while being transported above the driven roller 23a disposed on the downstream end. It was confirmed that sludge can be prevented from flowing out (leaking out).
 本実施例によれば、図3に示す形状の従動ローラー23を用いることにより、特に、汚泥中の水分割合が90重量%以上と高く、汚泥の流動性が極めて高い場合に、効果的に汚泥を減容化できると共に、減容化後の汚泥の回収率を向上することが可能となる。 According to the present embodiment, the use of the driven roller 23 having the shape shown in FIG. 3 makes it possible to effectively sludge, particularly when the water content in the sludge is as high as 90% by weight or more and the sludge has extremely high fluidity. Can be reduced, and the recovery rate of sludge after volume reduction can be improved.
 本実施例では、上述の実施例1で用いた図2に示す汚泥減容化装置2を用い、連続多孔質構造を有する樹脂シート21の耐久試験を行った。図2に示す、駆動ローラー22及び従動ローラー23、23aから構成される搬送ローラーにより、連続多孔質構造を有する樹脂シート21を長楕円の周回軌道を200回転走行させた。200回転走行後の連続多孔質構造を有する樹脂シート21を確認したところ、端部に細かな切れ目が生じ始めた。その後、更に上記長楕円の周回軌道を100回転、連続多孔質構造を有する樹脂シート21を走行させ、汚泥の減容化の処理を行った。すると、トータル300回転、長楕円周回軌道走行後において、連続多孔質構造を有する樹脂シート21は破断し、搬送ローラーから脱落した。 In this example, the durability test of the resin sheet 21 having a continuous porous structure was performed using the sludge volume reducing apparatus 2 shown in FIG. 2 used in Example 1 described above. The resin sheet 21 having a continuous porous structure was allowed to travel 200 times on an elliptical orbit around the transport roller composed of the driving roller 22 and the driven rollers 23 and 23a shown in FIG. When the resin sheet 21 having a continuous porous structure after running for 200 revolutions was confirmed, fine cuts started to appear at the ends. After that, the resin sheet 21 having a continuous porous structure was run for 100 rotations on the elliptical orbit, and sludge volume reduction was performed. The resin sheet 21 having a continuous porous structure was broken and dropped from the transport roller after running a total of 300 revolutions and an elliptical circular orbit.
 一方、図8に示すように、連続多孔質構造を有するセルロース樹脂を樹脂シート21aとして用い、樹脂シート21をポリエチレン製のメッシュ状の布31で覆い、搬送ローラーにより長楕円周回軌道を走行させた。このとき、ポリエチレン製のメッシュ状の布31のメッシュ間隔を200μmとし、メッシュを形成する繊維の太さを100μmとした。
 長楕円周回軌道を300回転走行後において、確認したところ細かな切れ目は発生していなかった。その後、更に、上記長楕円周回軌道を走行させ、汚泥の減容化処理を継続し、トータル1000回転、走行後に確認したところ、初めて切れ目の発生を確認できた。なお、汚泥の減容化率については、メッシュ状の布31で覆うことなく連続多孔質構造を有する樹脂シート21のみで減容化処理を行った場合と差は認められなかった。
 また、メッシュ状の布31をポリプロピレン製とし、メッシュ間隔を100μm、メッシュを形成する繊維の太さを50μmとした場合においても、ほぼ同等の結果が得られた。
On the other hand, as shown in FIG. 8, a cellulose resin having a continuous porous structure was used as the resin sheet 21 a, the resin sheet 21 was covered with a polyethylene mesh cloth 31, and a long elliptical orbit was run by the transport roller. . At this time, the mesh interval of the polyethylene mesh cloth 31 was set to 200 μm, and the thickness of the fibers forming the mesh was set to 100 μm.
As a result of checking the ellipsoidal orbit after traveling 300 revolutions, a fine cut was not generated. After that, the slender volume reduction process was continued by traveling on the long elliptical circular orbit, and when it was confirmed after traveling a total of 1000 revolutions, the occurrence of a break was confirmed for the first time. In addition, about the volume reduction rate of sludge, the difference was not recognized with the case where volume reduction processing was performed only with the resin sheet 21 which has a continuous porous structure, without covering with the mesh-like cloth 31. FIG.
Further, when the mesh-like cloth 31 was made of polypropylene, the mesh interval was 100 μm, and the thickness of the fibers forming the mesh was 50 μm, almost the same result was obtained.
 本実施例によれば、図8に示すように、連続多孔質構造を有する樹脂シート21aをメッシュ状の布31で覆う構成とすることにより、減容化率を維持しつつ、連続多孔質構造を有する樹脂シート21aを長寿命化することが可能となる。 According to the present embodiment, as shown in FIG. 8, the continuous porous structure is maintained while maintaining the volume reduction rate by covering the resin sheet 21a having the continuous porous structure with the mesh cloth 31. It is possible to extend the life of the resin sheet 21a having
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.
1…下水処理システム
2…汚泥減容化装置
3…最初沈殿池
4…好気槽
5…硝化脱窒槽
6…最終沈殿池
7…脱水機
8…好気槽散気管
9…撹拌機
10…硝化脱窒槽ブロワ
11…風量調整弁
12…汚泥返送ポンプ
13…制御部
15…被処理水
16…汚泥
17…減容化した汚泥
21,21a…樹脂シート
22…駆動ローラー
23,23a,23b…従動ローラー
24…加圧ローラー
25…汚泥回収槽
26…水分回収槽
27…吸収した水分
28…モータ
29…ベルト
30…樹脂シート保持部材
31…メッシュ状の布
32…汚泥供給部
33…供給口
60…汚泥掻寄機
61…チェーン
62…フライト
63a…駆動スプロケットホイール
63b,63c,63d…従動スプロケットホイール
64…駆動装置
65…スカムスキマ
DESCRIPTION OF SYMBOLS 1 ... Sewage treatment system 2 ... Sludge volume reduction apparatus 3 ... First sedimentation tank 4 ... Aerobic tank 5 ... Nitrification denitrification tank 6 ... Final sedimentation tank 7 ... Dehydrator 8 ... Aerobic tank diffuser tube 9 ... Stirrer 10 ... Nitrification Denitrification tank blower 11 ... Air volume adjustment valve 12 ... Sludge return pump 13 ... Control unit 15 ... Water to be treated 16 ... Sludge 17 ... Volumetric sludge 21 and 21a ... Resin sheet 22 ... Drive rollers 23, 23a and 23b ... Follower rollers 24 ... Pressure roller 25 ... Sludge collection tank 26 ... Moisture collection tank 27 ... Moisture absorbed 28 ... Motor 29 ... Belt 30 ... Resin sheet holding member 31 ... Mesh cloth 32 ... Sludge supply part 33 ... Supply port 60 ... Sludge Scraper 61 ... Chain 62 ... Flight 63a ... Drive sprocket wheel 63b, 63c, 63d ... Driven sprocket wheel 64 ... Drive device 65 ... Scum clearance

Claims (15)

  1.  水分除去後の汚泥を回収する汚泥回収槽と、
     複数のローラーにより回転駆動され、その表面に載置される汚泥中の水分を吸収可能な連続多孔質構造を有する無端ベルト状の樹脂シートと、
     前記樹脂シートが前記汚泥回収槽付近にて折り返し駆動される位置に配される加圧ローラーと、を備え、
     前記樹脂シートを前記汚泥回収槽側へと汚泥を無加圧状態にて搬送することにより、前記汚泥中の水分を吸収すると共に、前記加圧ローラーにより水分吸収後の樹脂シートより水分を排出することを特徴とする汚泥減容化装置。
    A sludge collection tank for collecting the sludge after moisture removal;
    An endless belt-like resin sheet having a continuous porous structure that is rotationally driven by a plurality of rollers and can absorb moisture in sludge placed on the surface thereof,
    A pressure roller disposed at a position where the resin sheet is driven back in the vicinity of the sludge collection tank, and
    By transporting the resin sheet to the sludge collecting tank side in a non-pressurized state, the resin sheet absorbs moisture in the sludge and discharges moisture from the resin sheet after moisture absorption by the pressure roller. A sludge volume reduction device characterized by that.
  2.  請求項1に記載の汚泥減容化装置において、
     前記連続多孔質構造を有する無端ベルト状の樹脂シートの材質は、セルロース構造であることを特徴とする汚泥減容化装置。
    In the sludge volume reduction apparatus of Claim 1,
    The sludge volume reducing device according to claim 1, wherein a material of the endless belt-shaped resin sheet having the continuous porous structure is a cellulose structure.
  3.  請求項1又は請求項2に記載の汚泥減容化装置において、
     前記複数のローラーは、駆動ローラー及び当該駆動ローラーの下流側へ配される複数の従動ローラーを含み、
     前記複数の従動ローラーのうち、所定数の従動ローラーは、軸方向両端部より所定の位置から中央部に向かうに従い外径が小さくなる形状を有することを特徴とする汚泥減容化装置。
    In the sludge volume reduction apparatus of Claim 1 or Claim 2,
    The plurality of rollers include a driving roller and a plurality of driven rollers arranged on the downstream side of the driving roller,
    Among the plurality of driven rollers, a predetermined number of driven rollers have a shape in which an outer diameter decreases from a predetermined position toward a central portion from both ends in the axial direction.
  4.  請求項3に記載の汚泥減容化装置において、
     下流側の端部であって前記汚泥回収槽の上方に配される従動ローラー及び、前記駆動ローラーは、軸方向に外径が一様な円柱形状を有することを特徴とする汚泥減容化装置。
    In the sludge volume reduction apparatus of Claim 3,
    The sludge volume reducing device characterized in that the driven roller disposed at the downstream end and above the sludge recovery tank and the driving roller have a cylindrical shape with a uniform outer diameter in the axial direction. .
  5.  請求項1又は請求項2に記載の汚泥減容化装置において、
     外周面が前記連続多孔質構造を有する無端ベルト状の樹脂シートの内周面に固定され、内周面が前記複数のローラーの外周面と接触する固定ベルトを有し、
     前記ベルトは、弾性体又は非多孔質樹脂にて形成されることを特徴とする汚泥減容化装置。
    In the sludge volume reduction apparatus of Claim 1 or Claim 2,
    The outer peripheral surface is fixed to the inner peripheral surface of the endless belt-shaped resin sheet having the continuous porous structure, and the inner peripheral surface has a fixed belt that comes into contact with the outer peripheral surfaces of the plurality of rollers,
    The sludge volume reducing device, wherein the belt is formed of an elastic body or a non-porous resin.
  6.  請求項5に記載の汚泥減容化装置において、
     前記固定ベルトの長手方向に所定の間隔にて離間配置され、前記固定ベルトの幅方向に延在する複数の樹脂シート保持部材を備え、
     隣接する樹脂シート保持部材間に、分割された前記連続多孔質構造を有する樹脂シートを配することを特徴とする汚泥減容化装置。
    In the sludge volume reduction apparatus of Claim 5,
    A plurality of resin sheet holding members that are spaced apart at predetermined intervals in the longitudinal direction of the fixed belt and extend in the width direction of the fixed belt;
    A sludge volume reducing device, wherein a resin sheet having the divided continuous porous structure is disposed between adjacent resin sheet holding members.
  7.  請求項1又は請求項2に記載の汚泥減容化装置において、
     前記連続多孔質構造を有する無端ベルト状の樹脂シートがメッシュ状の布で覆われていることを特徴とする汚泥減容化装置。
    In the sludge volume reduction apparatus of Claim 1 or Claim 2,
    An endless belt-like resin sheet having the continuous porous structure is covered with a mesh-like cloth.
  8.  請求項7に記載の汚泥減容化装置において、
     前記メッシュ状の布の材質は、ポリエチレン、ポリプロピレン、又はナイロンであることを特徴とする汚泥減容化装置。
    In the sludge volume reduction apparatus of Claim 7,
    The sludge volume reducing device, wherein the mesh cloth is made of polyethylene, polypropylene, or nylon.
  9.  請求項1又は請求項2に記載の汚泥減容化装置において、
     前記連続多孔質構造を有する無端ベルト状の樹脂シートの汚泥と接する面の算術表面粗さは、1.2mm以下であることを特徴とする汚泥減容化装置。
    In the sludge volume reduction apparatus of Claim 1 or Claim 2,
    An arithmetic surface roughness of a surface in contact with the sludge of the endless belt-shaped resin sheet having the continuous porous structure is 1.2 mm or less, and the sludge volume reducing device.
  10.  流入する下水から重力沈降により有機物を分離する最初沈殿池と、
     微生物を含む汚泥により、前記最初沈殿池から流入する下水に対し硝化及び脱窒を行う生物処理槽と、
     前記生物処理槽の下流側に設置され、汚泥掻寄機を有し前記生物処理槽より流入する下水から前記汚泥を沈降させ、上澄み液を分離する最終沈殿池と、
     前記最終沈殿池から引き抜かれた汚泥から水分を分離する脱水機と、
     前記脱水後の汚泥から水分を除去する汚泥減容化装置と、を備え、
     前記汚泥減容化装置は、
     水分除去後の汚泥を回収する汚泥回収槽と、複数のローラーにより回転駆動され、その表面に載置される汚泥中の水分を吸収可能な連続多孔質構造を有する無端ベルト状の樹脂シートと、前記樹脂シートが前記汚泥回収槽付近にて折り返し駆動される位置に配される加圧ローラーと、を備え、汚泥を加圧することなく前記樹脂シートを前記汚泥回収槽側へと汚搬送することにより、前記汚泥中の水分を吸収すると共に、前記加圧ローラーにより水分吸収後の樹脂シートより水分を排出することを特徴とする下水処理システム。
    An initial settling basin that separates organic matter from the incoming sewage by gravity settling;
    A biological treatment tank for nitrifying and denitrifying the sewage flowing from the first sedimentation basin by sludge containing microorganisms;
    A final settling basin installed on the downstream side of the biological treatment tank, having a sludge scraper and settling the sludge from the sewage flowing from the biological treatment tank, and separating the supernatant liquid;
    A dehydrator for separating water from the sludge drawn from the final sedimentation basin;
    A sludge volume reduction device that removes moisture from the sludge after dehydration,
    The sludge volume reduction device is:
    A sludge collection tank for collecting sludge after moisture removal, an endless belt-like resin sheet having a continuous porous structure that is rotationally driven by a plurality of rollers and is capable of absorbing moisture in the sludge placed on its surface; A pressure roller disposed at a position where the resin sheet is driven back in the vicinity of the sludge collection tank, and by conveying the resin sheet to the sludge collection tank side without pressurizing the sludge A sewage treatment system that absorbs moisture in the sludge and discharges moisture from the resin sheet after moisture absorption by the pressure roller.
  11.  請求項10に記載の下水処理システムにおいて、
     前記連続多孔質構造を有する無端ベルト状の樹脂シートの材質は、セルロース構造であることを特徴とする下水処理システム。
    The sewage treatment system according to claim 10,
    The sewage treatment system, wherein a material of the endless belt-shaped resin sheet having the continuous porous structure is a cellulose structure.
  12.  請求項10又は請求項11に記載の下水処理システムにおいて、
     前記複数のローラーは、駆動ローラー及び当該駆動ローラーの下流側へ配される複数の従動ローラーを含み、
     前記複数の従動ローラーのうち、所定数の従動ローラーは、軸方向両端部より所定の位置から中央部に向かうに従い外径が小さくなる形状を有することを特徴とする下水処理システム。
    The sewage treatment system according to claim 10 or 11,
    The plurality of rollers include a driving roller and a plurality of driven rollers arranged on the downstream side of the driving roller,
    Of the plurality of driven rollers, a predetermined number of driven rollers have a shape in which an outer diameter decreases from a predetermined position toward a central portion from both ends in the axial direction.
  13.  請求項10又は請求項11に記載の下水処理システムにおいて、
     外周面が前記連続多孔質構造を有する無端ベルト状の樹脂シートの内周面に固定され、内周面が前記複数のローラーの外周面と接触する固定ベルトを有し、
     前記ベルトは、弾性体又は非多孔質樹脂にて形成されることを特徴とする下水処理システム。
    The sewage treatment system according to claim 10 or 11,
    The outer peripheral surface is fixed to the inner peripheral surface of the endless belt-shaped resin sheet having the continuous porous structure, and the inner peripheral surface has a fixed belt that comes into contact with the outer peripheral surfaces of the plurality of rollers,
    The sewage treatment system, wherein the belt is formed of an elastic body or a non-porous resin.
  14.  請求項13に記載の下水処理システムにおいて、
     前記固定ベルトの長手方向に所定の間隔にて離間配置され、前記固定ベルトの幅方向に延在する複数の樹脂シート保持部材を備え、
     隣接する樹脂シート保持部材間に、分割された前記連続多孔質構造を有する樹脂シートを配することを特徴とする下水処理システム。
    The sewage treatment system according to claim 13,
    A plurality of resin sheet holding members that are spaced apart at predetermined intervals in the longitudinal direction of the fixed belt and extend in the width direction of the fixed belt;
    A sewage treatment system, wherein a resin sheet having the divided continuous porous structure is disposed between adjacent resin sheet holding members.
  15.  請求項10又は請求項11に記載の下水処理システムにおいて、
     前記連続多孔質構造を有する無端ベルト状の樹脂シートがメッシュ状の布で覆われていることを特徴とする下水処理システム。
    The sewage treatment system according to claim 10 or 11,
    A sewage treatment system, wherein the endless belt-like resin sheet having the continuous porous structure is covered with a mesh cloth.
PCT/JP2016/053132 2015-03-03 2016-02-03 Sludge volume reduction device and sewage treatment system comprising same WO2016140006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015040935A JP2018086601A (en) 2015-03-03 2015-03-03 Sludge volume reduction device and sewage treatment system containing the same
JP2015-040935 2015-03-03

Publications (1)

Publication Number Publication Date
WO2016140006A1 true WO2016140006A1 (en) 2016-09-09

Family

ID=56848837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053132 WO2016140006A1 (en) 2015-03-03 2016-02-03 Sludge volume reduction device and sewage treatment system comprising same

Country Status (2)

Country Link
JP (1) JP2018086601A (en)
WO (1) WO2016140006A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911469A (en) * 2018-08-20 2018-11-30 华南理工大学 A kind of device for deeply dehydrating sludge
CN112429934A (en) * 2020-11-10 2021-03-02 中国科学院广州能源研究所 Sludge drying material moisture conduction accelerating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445898A (en) * 1990-06-14 1992-02-14 Yukimasa Sato Dehydrator for sludge or the like and dehydration method thereof
JPH0671493A (en) * 1992-05-27 1994-03-15 Ebara Infilco Co Ltd Dehydration treatment device for hydrous material
JP2003080299A (en) * 2001-09-10 2003-03-18 Hitachi Kiden Kogyo Ltd Method of treating sludge
JP3123688U (en) * 2006-04-21 2006-07-27 エル・サイエンス株式会社 Belt conveyor device for high water content mud.
JP2011183362A (en) * 2010-03-11 2011-09-22 Yanagisawa Concrete Kogyo Kk Solid-liquid separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445898A (en) * 1990-06-14 1992-02-14 Yukimasa Sato Dehydrator for sludge or the like and dehydration method thereof
JPH0671493A (en) * 1992-05-27 1994-03-15 Ebara Infilco Co Ltd Dehydration treatment device for hydrous material
JP2003080299A (en) * 2001-09-10 2003-03-18 Hitachi Kiden Kogyo Ltd Method of treating sludge
JP3123688U (en) * 2006-04-21 2006-07-27 エル・サイエンス株式会社 Belt conveyor device for high water content mud.
JP2011183362A (en) * 2010-03-11 2011-09-22 Yanagisawa Concrete Kogyo Kk Solid-liquid separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911469A (en) * 2018-08-20 2018-11-30 华南理工大学 A kind of device for deeply dehydrating sludge
CN112429934A (en) * 2020-11-10 2021-03-02 中国科学院广州能源研究所 Sludge drying material moisture conduction accelerating device

Also Published As

Publication number Publication date
JP2018086601A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
KR960015105B1 (en) Liquid separator
WO2016140006A1 (en) Sludge volume reduction device and sewage treatment system comprising same
RU2431610C2 (en) Compound method for reagentless treatment of waste water and briquetting sludge
FR2594111A1 (en) SYSTEM AND METHOD FOR TREATING WASTE WATER FROM A PASTA AND PAPER FACTORY
JP2007144239A (en) Oil and water separator and wastewater treatment apparatus
KR101954139B1 (en) Method for treatment sludge of sewage using alkane solvent
JP6038679B2 (en) Sludge treatment system
CN110590109A (en) Sludge dewatering device
CN110713217A (en) Automatic mixing sewage treatment valve with flow rate control function
KR100322251B1 (en) A removal method of organic matter etc. in rivers used pressure waters and apparatus therefor
KR101644081B1 (en) Sludge condensing machine
JP6330210B2 (en) Wastewater treatment facility
CN212864205U (en) Slag scraping device of air floatation machine
JP4129479B1 (en) Sludge treatment method and treatment system
KR102445715B1 (en) The Centrifugal Dehydrator And The Method For Centrifugal Dehydration
CN115432878A (en) High-salinity mine water treatment device
KR100294420B1 (en) 5) Solid and liquid separation device of wastewater
CN211595370U (en) Waste emulsion treatment system
CN207726939U (en) A kind of oil field settling tank sludge treatment equipment
JP5481654B2 (en) Sludge treatment method and treatment system
JP2008272630A (en) Belt type thickening machine and its operation method
CN218909946U (en) Air floatation equipment
CN205347083U (en) Processing system of desulfurization waste water
CN108821535A (en) A kind of Treatment of Sludge high effective dehydration device
JP4459801B2 (en) Sludge dewatering machine equipped with sludge concentrator and sludge concentrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP