WO2016139893A1 - Anemoscope - Google Patents

Anemoscope Download PDF

Info

Publication number
WO2016139893A1
WO2016139893A1 PCT/JP2016/000636 JP2016000636W WO2016139893A1 WO 2016139893 A1 WO2016139893 A1 WO 2016139893A1 JP 2016000636 W JP2016000636 W JP 2016000636W WO 2016139893 A1 WO2016139893 A1 WO 2016139893A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
sensor
magnetic sensor
anemometer
detecting
Prior art date
Application number
PCT/JP2016/000636
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 弘
康友 山野井
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016139893A1 publication Critical patent/WO2016139893A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane

Definitions

  • This disclosure relates to anemometers.
  • a measuring instrument for measuring the wind direction there is a wind direction anemometer provided with a blade fixing plate, a pair of blades, a plurality of magnets, and a bearing magnet (for example, see Patent Document 1).
  • the blade fixing plate rotates so that the tip end portion faces the windward side.
  • the support portion rotatably supports the blade fixing plate.
  • the pair of blades are openable and closable, and are attached to both ends of the blade fixing plate.
  • the plurality of magnets gives a repulsive force in the direction in which the pair of blades open.
  • the compass is provided on the support.
  • JP 2006-292540 A Japanese Patent Laid-Open No. 2001-215241
  • an anemometer that measures the wind direction in the engine room even when the hood of the automobile is closed is required. ing.
  • the wind direction anemometer described in the above-mentioned Patent Document 1 has a blade fixing plate that rotates in the horizontal direction so that the tip portion is directed to the windward direction, and the direction of the blade fixing plate and the direction of the wind are visually observed by a compass magnet. It is a configuration to check. For this reason, for example, it is impossible to measure both the horizontal component and the vertical component of the wind direction by installing in a narrow space such as in the engine room with the hood closed.
  • anemometer As such an anemometer, it has a rotating shaft extending in the vertical direction and a horizontal axis extending in the horizontal direction, detects the horizontal component and the vertical component of the wind direction, and is configured by using a magnet and a coil. There is also one in which the wind speed is measured by a detector (see, for example, Patent Document 2).
  • this wind direction anemometer uses a magnet and a coil for the wind direction vertical component detector and the wind direction vertical component detector. Therefore, it is difficult to reduce the size of the anemometer. For example, it is difficult to install the anemometer in a narrow space such as in an engine room with the hood closed.
  • the present disclosure has been made in view of the above points, and an object thereof is to provide an anemometer that can be installed in a narrow space and can measure both a horizontal component and a vertical component of a wind direction.
  • the anemometer of the present disclosure includes a fixed part, a movable part, a magnet, and a magnetic sensor.
  • the movable part is attached to the fixed part so as to be rotatable around the first rotation axis and around the second rotation axis orthogonal to the first rotation axis so as to face the windward direction.
  • the magnet is disposed on the movable part and generates a magnetic field.
  • the magnetic sensor is arranged to face the magnet, detects a magnetic field generated by the magnet, and outputs a signal for specifying a horizontal component and a vertical component of the wind direction.
  • the movable portion is fixed to be rotatable about the first rotation axis and the second rotation axis orthogonal to the first rotation axis so as to face the windward direction. Is attached.
  • a magnet that generates a magnetic field is disposed in the movable part.
  • a magnetic sensor that detects a magnetic field generated by the magnet and outputs a signal for specifying a horizontal component and a vertical component of the wind direction is disposed so as to face the magnet.
  • FIG. 3 is a sectional view taken along line III-III shown in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV shown in FIG. 2.
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG.
  • FIG. 12 is a cross-sectional view taken along line XIII-XIII in FIG. It is a figure for demonstrating arrangement
  • the anemometer of the present embodiment is used as a sensor that measures the wind direction in an engine room (measurement space) of an automobile, for example.
  • the anemometer is configured as a small omnidirectional anemometer capable of simultaneously measuring the wind direction, wind speed, and temperature. As shown in FIG. 1, the anemometer has a fixed portion 20 and a movable portion 10.
  • the fixing unit 20 includes a fixing stage 21 and a support member 22.
  • the fixed stage 21 and the support member 22 are each integrally formed of resin.
  • the fixed stage 21 corresponds to a bottom plate part serving as a base, and the upper surface is substantially square. One side of the upper surface of the fixed stage 21 is about 20 mm. The height from the bottom surface of the fixed stage 21 to the upper end of the movable part 10 is about 24 millimeters.
  • mounting screw holes 211 are formed at four corners of the fixed stage 21.
  • an opening 21 a is formed on the bottom side of the fixed stage 21, and a circuit board 80 on which a control unit 81 and the like to be described later are mounted is stored in the opening 21 a. Yes.
  • the circuit board 80 is provided with connector terminals 80a.
  • a cover 21c is attached to the opening 21a.
  • An opening hole 21 b penetrating the side surface of the fixed stage 21 is formed on the side surface on the back surface side of the fixed stage 21.
  • Connector terminals 80a mounted on the circuit board 80 are exposed to the outside through the opening holes 21b.
  • a connection line (not shown) for connecting to the power source is connected to the connector terminal 80a. Power is supplied from the vehicle via this connection line.
  • the support member 22 has a substantially cylindrical shape, and extends in the vertical direction from the central portion of the upper surface of the fixed stage 21 toward the movable portion 10. Inside the support member 22, a hollow portion 22a extending in the axial direction and a magnetic sensor storage portion 22b for storing the magnetic sensor 35 are formed.
  • connection line 25a for connecting the magnetic sensor 35 and the circuit board 80 is disposed in the hollow portion 22a.
  • a magnetic sensor 35 is stored in the magnetic sensor storage unit 22b.
  • a protrusion 220 for supporting a U-shaped member 13 of the movable portion 10 to be described later is formed at the tip of the support member 22.
  • a wind speed sensor 60 and a temperature sensor 61 are provided at corners located at both ends of the front side of the fixed stage 21, respectively.
  • the front side means the side opposite to the connector terminal 80a with respect to the support member 22 in the direction in which the side of the fixed stage 21 where the connector terminal 81a is disposed and the side facing the side are aligned. That is, the wind speed sensor 60 and the temperature sensor 61 are disposed at both ends of the side opposite to the side where the connector terminal 81a is disposed.
  • the direction in which the side of the fixed stage 21 where the connector terminal 81a is arranged and the side opposite to the side is referred to as the front-rear direction. It is assumed that the connector terminal 81a is disposed behind the support member 22 in the front-rear direction. In addition, the direction in which the remaining two sides of the fixed stage 21 are aligned is referred to as the left-right direction. However, the front, back, left, and right directions do not limit the actual mounting direction.
  • the wind speed sensor 60 is constituted by a hot-wire omnidirectional anemometer.
  • the hot-wire anemometer obtains the wind speed from the temperature when the heating wire is exposed to the environment and energized, and the heat generated in the heating wire and the cooling by the wind are balanced. As a result, the anemometer can accurately measure the wind speed without depending on the wind direction.
  • the wind speed sensor 60 detects the wind speed and outputs a signal indicating the detected wind speed to the control unit 81.
  • the temperature sensor 61 detects the ambient temperature and outputs a signal indicating the detected temperature to the control unit 81.
  • the temperature sensor 61 can be configured using, for example, a thermocouple, a thermistor, or the like.
  • the movable part 10 includes a movable member 110 having a body part 111 and a blade part 112, and a U-shaped member 13.
  • the movable unit 10 is supported by the support member 22 of the fixed unit 20.
  • the U-shaped member 13 is supported by the support member 22 of the fixed portion 20 so as to be rotatable around a first rotation axis (vertical axis) extending in the vertical direction.
  • the bottom surface of the U-shaped member 13 is formed with a hole portion 130 that fits into the protrusion 220 formed on the support member 22 of the fixed portion 20. By fitting the protrusion 220 into the hole 130, the U-shaped member 13 can rotate around the vertical axis.
  • the U-shaped member 13 can turn the movable member 110 about a second rotation axis (horizontal axis) orthogonal to the first rotation axis so as to sandwich the body portion 111 of the movable member 110 from both sides.
  • the U-shaped member 13 has two through holes 131 through which the male screw member 13a for rotatably supporting the body portion 111 is inserted.
  • the male screw member 13 a is inserted into each through hole 131 formed in the U-shaped member 13 and then tightened into a screw hole portion (not shown) formed on the side surface of the body portion 111 of the movable member 110.
  • the movable member 110 is supported by the U-shaped member 13 so as to be rotatable around the horizontal axis.
  • the body portion 111 is made of resin, and has a rounded tip portion 111 a and a magnet storage portion 111 b that stores the spherical magnet 30.
  • the magnet storage unit 111b stores a spherical magnet 30 that is magnetized in two hemispheres, S pole and N pole.
  • the spherical magnet 30 is disposed at a position that is the center of gravity of the movable member 110, that is, a position that is the center of balance between the front, rear, left, and right of the movable member 110.
  • the spherical magnet 30 is stored in the magnet storage unit 111b so that the boundary between the S pole and the N pole is orthogonal to the upper surface (detection surface) of the magnetic sensor 35 in a state where the body unit 111 is in a horizontal state. Has been.
  • the blade portion 112 has a thin plate-like horizontal blade (second plate member) 112a extending in the horizontal direction and a plurality of thin plate-like vertical blades (first plate member) 112b extending from the horizontal blade 112a in the vertical direction. It is fixed to the upper surface of the body part 111.
  • the anemometer is installed such that the upper surface of the fixed stage 21 is horizontal with respect to the installation surface. Since the spherical magnet 30 is disposed at a position that becomes the center of gravity of the movable member 110, the body portion 111 is horizontal in a windless state.
  • the body portion 111 rotates around the vertical axis so that the front end portion 111a faces upwind while the body portion 111 is maintained in a horizontal state.
  • the spherical magnet 30 also rotates around the vertical axis together with the body portion 111.
  • the body portion 111 rotates about the horizontal axis so that the tip 111a moves upward in the vertical direction and faces the windward direction.
  • the spherical magnet 30 is also rotated around the horizontal axis together with the body portion 111.
  • the trunk portion 111 rotates about the horizontal axis so that the tip 111a moves downward in the vertical direction and faces upwind.
  • the spherical magnet 30 is also rotated around the horizontal axis together with the body portion 111.
  • the anemometer includes a spherical magnet 30 stored in the magnet storage portion 111 b of the body portion 111 and a magnetic sensor 35 disposed on the support member 22 so as to face the spherical magnet 30. ing.
  • the magnetic sensor 35 is a rotation angle sensor that detects a rotation angle of the spherical magnet 30 by detecting a magnetic field generated by the spherical magnet 30 in a non-contact manner.
  • the spherical magnet 30 and the magnetic sensor 35 are arranged so as to be aligned in the extending direction (vertical direction) of the support member 22.
  • the distance in the vertical direction between the spherical magnet 30 and the magnetic sensor 35 is shorter than the distance in the vertical direction between the magnetic sensor 35 and the fixed stage 21.
  • the magnetic sensor 35 is located between the spherical magnet 30 and the fixed stage 21 in the vertical direction.
  • the magnetic sensor 35 of this embodiment is configured by patterning a thin film (thin film ferromagnetic metal) made of an alloy mainly composed of a ferromagnetic metal such as Ni (nickel) or Fe (iron) on a glass substrate. ing.
  • This ferromagnetic metal thin film has a characteristic that the resistance value changes depending on the strength of the external magnetic field in a specific direction.
  • the magnetic sensor 35 of this embodiment forms a waveform of a full-bridge circuit in which four ferromagnetic metal thin films formed on a glass substrate plane are formed in a bridge shape, and a voltage waveform output from the full-bridge circuit. It is configured as an IC-type AMR (Anisotropic-Magneto-Resistive) sensor in which a waveform shaping circuit (none of which is shown) is configured as one chip.
  • IC type AMR sensor is a known sensor, and for example, KG-1402-61 (type name) manufactured by Hamamatsu Photoelectric Co., Ltd. can be used.
  • FIG. 5 is a top view of the magnetic sensor 35.
  • the magnetic sensor 35 has a rectangular parallelepiped shape.
  • the magnetic sensor 35 is arranged such that the center line L in the longitudinal direction faces a predetermined direction (for example, the front of the anemometer).
  • a predetermined direction for example, the front of the anemometer.
  • On the bottom surface of the magnetic sensor 35 there are provided two power supply terminals VCC, two ground terminals GND, a pair of A-phase output terminals + A and -A, and a pair of B-phase output terminals + B and -B. Yes.
  • the magnetic sensor 35 is mounted on a circuit board (not shown). This circuit board is connected to the circuit board 80 via the connection line 25a shown in FIG. A DC constant voltage is applied to each power supply terminal VCC from the circuit board 80 via the connection line 25a. Each ground terminal GND is grounded via a circuit board 80. Further, the A-phase output terminals + A and -A and the B-phase output terminals + B and -B are connected to the control unit 81 mounted on the circuit board 80 via connection lines 25a.
  • the magnetic sensor 35 is placed so as to face the two-pole spherical magnet 30.
  • the spherical magnet 30 rotates and the magnetic field detected by the magnetic sensor 35 changes, outputs having different phases are output from the A-phase output terminals + A and -A and the B-phase output terminals + B and -B of the magnetic sensor 35, respectively. It has become so.
  • FIG. 7 shows the A phase output from the A phase output terminals + A and ⁇ A of the magnetic sensor 35 when the spherical magnet 30 is rotated about the rotation axis J extending in the vertical direction as shown in FIG.
  • the characteristics of the output (peak to peak output voltage) and the B phase output (peak to peak output voltage) output from the B phase output terminals + B and -B are shown.
  • the horizontal axis of the characteristic diagram shown in FIG. 7 represents the angle ⁇ 1 formed by the longitudinal center line L of the magnetic sensor 35 shown in FIG. 5 and the direction of the applied magnetic field (applied magnetic field). 7 represents the peak-to-peak output voltage of the A-phase output and the B-phase output.
  • each of the magnetic sensors 35 When the spherical magnet 30 is rotated once (360 °) in the horizontal direction around the rotation axis J extending in the vertical direction, as shown in FIG. 7, each of the magnetic sensors 35 outputs an A-phase output (sin waveform) of one cycle. ) And B phase output (cos waveform).
  • the angle ⁇ 1 is the rotation angle of the spherical magnet 30 in the horizontal direction.
  • the anemometer not only rotates about the vertical axis in which the body portion 111 extends in the vertical direction, but also rotates about a horizontal axis (second rotation axis) orthogonal to the first rotation axis.
  • the wind direction is measured three-dimensionally.
  • the spherical magnet 30 is inclined and the rotation axis J is orthogonal to the upper surface of the magnetic sensor 35. Disappear.
  • the A phase output and the B phase output are respectively equal to those of the spherical magnet 30. It attenuates according to the degree of inclination of the rotation axis J.
  • the A-phase output and the B-phase output indicate that the rotation axis J of the spherical magnet 30 is orthogonal to the upper surface (detection surface) of the magnetic sensor 35, that is, the rotation axis of the spherical magnet 30. It becomes maximum when the angle ⁇ 2 formed by J and the vertical direction of the upper surface of the magnetic sensor 35 is 0 °.
  • the A-phase output and the B-phase output are attenuated and become smaller as the angle ⁇ 2 increases, and are minimized when the angle ⁇ 2 is 90 °.
  • the angle ⁇ 2 is the rotation angle of the spherical magnet 30 in the vertical direction.
  • a characteristic map representing the relationship among the A-phase output and B-phase output of the magnetic sensor 35, the horizontal rotation angle ⁇ 1 of the spherical magnet 30 and the vertical rotation angle ⁇ 2 of the spherical magnet 30 is prepared. Specifically, a map showing the relationship between the A-phase output and B-phase output of the magnetic sensor 35 and the horizontal rotation angle ⁇ 1 of the spherical magnet 30 as shown in FIG. A characteristic map is prepared by changing the rotation angle ⁇ 2 of each angle by a predetermined angle (for example, 5 °). This characteristic map is stored in the ROM of the control unit 81.
  • the control unit 81 uses the characteristic map stored in the ROM to determine the horizontal rotation angle ⁇ 1 of the spherical magnet 30 from the A-phase output and B-phase output output from the magnetic sensor 35 and the vertical direction of the spherical magnet 30.
  • the rotation angle ⁇ 2 is specified.
  • the control unit 81 in the present embodiment specifies the horizontal rotation angle ⁇ 1 and the vertical rotation angle ⁇ 2 of the spherical magnet 30 from the signals of the A phase output and the B phase output output from the magnetic sensor 35.
  • Signal that is, a signal for specifying the horizontal component and the vertical component of the wind direction. That is, the control unit 81 specifies the horizontal rotation angle ⁇ 1 and the vertical rotation angle ⁇ 2 of the spherical magnet 30 from the A-phase output and the B-phase output output from the magnetic sensor 35, and is perpendicular to the horizontal component of the wind direction. Identify ingredients.
  • the anemometer includes a magnetic sensor 35, a wind speed sensor 60, a temperature sensor 61, a control unit 81, and a wireless transmission unit 82 corresponding to a transmission unit.
  • the anemometer wirelessly transmits various data such as detected wind direction, wind speed, and temperature to a personal computer (PC) 91, and is installed, for example, in an engine room (measurement space) of an automobile.
  • the wireless reception unit 90 and the PC 91 are disposed outside the automobile.
  • the control unit 81 is configured as a computer including a CPU, a ROM, a RAM, an I / O, an A / D conversion unit, and the like, and the CPU performs various processes according to a program stored in the ROM.
  • the control unit 81 includes a sensor control circuit that controls the wind speed sensor 60, an amplification circuit that amplifies a signal input from the temperature sensor 61, and the like.
  • the wireless transmission unit 82 wirelessly transmits data to a predetermined communication partner.
  • the wireless transmission unit 82 wirelessly transmits the frame according to a predetermined communication method.
  • the control unit 81 performs a wind direction specifying process, a wind speed specifying process, and an air temperature specifying process in parallel.
  • the wind direction specifying process is a process for specifying a horizontal component and a vertical component of the wind direction based on a signal input from the magnetic sensor 35.
  • the wind speed specifying process is a process of specifying the wind speed based on a signal input from the wind speed sensor 60.
  • the temperature specifying process is a process of specifying the temperature based on a signal input from the temperature sensor 61.
  • control unit 81 transmits the wind speed detected by the wind speed sensor 60 that detects the wind speed and the temperature detected by the temperature sensor 61 to the PC 91 that is an external device, together with information indicating the horizontal component and the vertical component of the wind direction. To implement.
  • the PC 91 When the PC 91 receives a frame transmitted from the anemometer via the wireless receiver 90, the PC 91 extracts necessary data from the frame, and stores the horizontal and vertical components of the wind direction, the wind speed, and the temperature in the storage unit. Implement the process.
  • the anemometer includes a fixed portion 50, a movable portion 40, a spherical magnet 30, and a magnetic sensor 35.
  • the movable portion 40 is fixed to be rotatable around a vertical axis (first rotation axis) and a horizontal axis (second rotation axis) orthogonal to the first rotation axis so as to face the windward direction. It is attached to the part 50.
  • the spherical magnet 30 is disposed on the movable portion 40 and generates a magnetic field.
  • the magnetic sensor 35 is disposed so as to face the spherical magnet 30, detects a magnetic field generated by the spherical magnet 30, and outputs a signal for specifying a horizontal component and a vertical component of the wind direction. According to this configuration, it is possible to provide an anemometer that can be installed in a narrow space and can measure both the horizontal component and the vertical component of the wind direction.
  • the anemometer of the present embodiment can measure both the horizontal component and the vertical component of the wind direction with one spherical magnet 30 and one magnetic sensor 35. Therefore, for example, compared with the case where the horizontal component and the vertical component of the wind direction are measured using a plurality of magnets and a plurality of magnetic sensors, both the horizontal component and the vertical component of the wind direction are reduced with a small number of parts. It can be measured. As a result, downsizing and cost reduction of the anemometer can be realized.
  • the anemometer further includes a wind speed sensor 60 for detecting the wind speed and a temperature sensor 61 for detecting the air temperature, the wind direction, the wind speed and the air temperature can be measured in a composite manner.
  • the fixed unit 20 has a fixed stage 21 as a base.
  • the wind speed sensor 60 for detecting the wind speed and the temperature sensor 61 for detecting the temperature are provided on the fixed stage 21 so as not to contact the movable part. Thereby, wind speed and temperature can be detected without narrowing the movable range of the movable part 10.
  • the wireless transmission unit 82 transmits information detected by the wind speed sensor 60 and the temperature sensor 61 to the PC 91 that is an external device, together with information indicating the horizontal component and the vertical component of the wind direction. Thereby, it is possible to install an external device in a place away from the anemometer and measure the wind direction, wind speed and temperature.
  • the fixed stage 21 has a quadrangular outer shape when viewed from the vertical direction, and the wind speed sensor 60 and the temperature sensor 61 are arranged at the peripheral edge of the fixed stage 21. Thereby, the influence by the wind speed sensor 60 and the temperature sensor 61 with respect to the wind direction which the movable part 10 receives can be reduced.
  • wind speed sensor 60 and the temperature sensor 61 are arranged on one side of the fixed stage 21. Thereby, the measurement conditions of wind speed and temperature can be made uniform.
  • anemometer according to the second embodiment will be described with reference to FIGS.
  • one spherical magnet 30 is disposed on the movable portion 10 and one magnetic sensor 35 is disposed so as to face the spherical magnet 30 to detect the wind direction.
  • the anemometer of the present embodiment has two magnets and two magnetic sensors. Specifically, the anemometer of the present embodiment has a first magnet 31 and a second magnet 32 as two magnets, and a first magnetic sensor 36 and a second magnetic sensor 37 as two magnetic sensors. .
  • the first magnet 31 and the first magnetic sensor 36 detect the horizontal component of the wind direction
  • the second magnet 32 and the second magnetic sensor 37 detect the vertical component of the wind direction.
  • Each of the first magnet 31 and the second magnet 32 is magnetized in two poles and has a cylindrical shape.
  • the anemometer according to the present embodiment has a fixed part 50 and a movable part 40.
  • the fixed unit 50 includes a fixed stage 51 and a guide member 52.
  • the fixed stage 51 corresponds to a bottom plate portion serving as a base, and the upper surface is substantially square as shown in FIG.
  • the fixed stage 51 and the guide member 52 are each formed of resin.
  • the guide member 52 has two side plate portions 52a extending in the vertical direction from both side surfaces of the fixed stage 51, and a top plate portion 52b connecting the two side plate portions 52a.
  • the two side plate portions 52a extend in the vertical direction from two opposite sides of the fixed stage 51, respectively.
  • the length of one side of the upper surface of the fixed stage 51 is about 15 millimeters.
  • the height from the bottom surface of the fixed stage 51 to the top surface of the guide member 52 is about 17 millimeters.
  • the fixed stage 51 is provided with a wind speed sensor 60.
  • a hole 521 is formed in the top plate portion 52b of the guide member 52.
  • a central portion of the upper surface of the fixed stage 51 is located below the hole portion 521 in the vertical direction, and a hole portion 511 is formed in the central portion.
  • the first magnetic sensor 36 is stored in the fixed stage 51 so as to be located immediately below the hole 511.
  • the first magnetic sensor 36 has the same configuration as the magnetic sensor 35 of the first embodiment.
  • a circuit board (not shown) is stored in the fixed stage 51. Further, a connection line 80b for supplying power is connected to the circuit board. Power is supplied from the vehicle via the connection line 80b.
  • the movable part 40 has a frame-shaped frame member 41 corresponding to the first member and a movable member 42 corresponding to the second member.
  • a protrusion 411 that protrudes from the frame member 41 to the outer peripheral side is formed at the center of the upper surface in the vertical direction of the frame member 41 in the left-right direction.
  • a protruding portion 411 that protrudes from the frame member 41 to the outer peripheral side is formed at the central portion of the lower surface in the vertical direction of the frame member 41.
  • the left-right direction referred to here is the left-right direction in FIG.
  • the protrusion 411 formed on the upper surface of the frame member 41 is inserted into the hole 521 formed in the top plate 52 b of the guide member 52. Further, the protrusion 411 formed on the lower surface of the frame member 41 is inserted into a hole 511 formed in the center of the upper surface of the fixed stage 51.
  • the frame member 41 is supported by the guide member 52 of the fixed portion 50 and rotates through the hole portion 521 of the guide member 52 and the hole portion 511 of the fixed stage 51, that is, a vertical axis (first axis extending in the vertical direction). 1 rotation axis).
  • the fixed stage 51 is provided with the first magnet 31 so as to be positioned below the protrusion 411 formed on the lower surface of the frame member 41 in the vertical direction. That is, the first magnet 31 is disposed so as to face the first magnetic sensor 36 stored in the fixed stage 51 (see FIG. 12).
  • fixing portions 412 are provided on two side surfaces of the frame member 41 in the left-right direction.
  • the fixing portions 412 are respectively provided on two side surfaces of the frame member 41 that are opposed in the horizontal direction.
  • Hole portions 413 are formed in the inner peripheral surface of each fixing portion 412.
  • a second magnetic sensor 37 is stored in the right fixed portion 412.
  • the second magnetic sensor 37 is stored in one of the two fixed portions 412.
  • the second magnetic sensor 37 has the same configuration as the magnetic sensor 35 of the first embodiment.
  • the front side means the opposite side of the connection line 80b to the vertical axis in the direction in which the side of the fixed stage 51 to which the connection line 80b is connected and the side opposite to the side are aligned.
  • the movable member 42 has a body portion 421, a blade portion 422, an arm portion 423, and a rotation support member 424.
  • the body part 421, the blade part 422, the arm part 423, and the rotation support member 424 are integrally formed of resin.
  • drum 421 has the rounded front-end
  • the blade portion 422 includes a thin plate-like horizontal blade (second plate member) 422a extending in the horizontal direction and a thin plate-like vertical blade (first plate member) 422b extending in the vertical direction from the horizontal blade 422a. .
  • arm portions 423 extending toward the front end portion 421a side of the body portion 421 are provided so as to be parallel to the body portion 421, respectively.
  • a rotation support member 424 is provided at the tip of each arm portion 423.
  • Each rotation support member 424 has a protrusion 424a, and the protrusion 424a is inserted into a hole 413 formed on the inner peripheral side of two side surfaces of the frame member 41 facing in the horizontal direction.
  • the The movable member 42 is supported by the frame member 41 by inserting the protrusions 424 a into the holes 413.
  • the movable member 42 is supported by the frame member 41 so as to be rotatable around a rotation axis passing through each hole 413 of the frame member 41, that is, a horizontal axis (second rotation axis).
  • the second magnet 32 is stored in one rotation support member 424.
  • the second magnet 32 is disposed so as to face the second magnetic sensor 37 stored in one fixed portion 412 in the horizontal direction.
  • the movable member 42 is configured so that the body part 421 is horizontal when there is no wind.
  • the anemometer is installed such that the upper surface of the fixed stage 51 is horizontal to the installation surface.
  • the body portion 421 is horizontal when there is no wind.
  • the anemometer is supplied with power from the vehicle via a connection line 80b.
  • the movable member 42 and the frame member 41 rotate around the vertical axis so that the front end 421a of the body 421 faces upwind while maintaining the body 421 horizontal.
  • the first magnet 31 together with the frame member 41 also rotates around the vertical axis.
  • the movable member 42 rotates around the horizontal axis so that the tip 421a moves upward in the vertical direction and faces upwind.
  • the second magnet 32 rotates around the horizontal axis together with the movable member 42.
  • the movable member 42 rotates around the horizontal axis so that the tip 421a moves downward in the vertical direction and faces upwind.
  • the second magnet 32 rotates around the horizontal axis together with the movable member 42.
  • the anemometer of the present embodiment detects a horizontal component of the wind direction with the pair of first magnets 31 and the first magnetic sensor 36, and detects the vertical component of the wind direction with the pair of second magnets 32 and the second magnetic sensor 37. It is configured as follows.
  • the magnetic sensors 36 and 37 of the anemometer of the present embodiment are configured so that the rotation axis J of the magnetic sensors 36 and 37 is orthogonal to the upper surfaces (detection surfaces) of the magnetic sensors 36 and 37, respectively. Be placed.
  • the A phase output terminals + A and ⁇ A of the magnetic sensors 36 and 37 to the A phase are the same as those shown in FIG.
  • the output is output, and the B-phase output is output from the B-phase output terminals + B and -B.
  • the first magnetic sensor 36 detects the magnetic field of the first magnet 31 provided on the frame member 41 supported so as to be rotatable about the vertical axis, and outputs a signal for specifying the horizontal component of the wind direction. .
  • the second magnetic sensor 37 detects a magnetic field of the second magnet 32 provided on the movable member 42 supported so as to be rotatable around a horizontal axis, and outputs a signal for specifying the vertical component of the wind direction. .
  • the control unit 81 specifies the horizontal component and the vertical component of the wind direction from the A-phase output and the B-phase output output from the first magnetic sensor 36, and the A-phase output and the B-phase output output from the second magnetic sensor 37. To determine the horizontal and vertical components of the wind direction.
  • control unit 81 performs a wind speed specifying process for specifying the wind speed based on a signal input from the wind speed sensor 60.
  • control unit 81 performs a process of transmitting the wind speed detected by the wind speed sensor 60 to the PC 91 that is an external device together with information indicating the horizontal component and the vertical component of the wind direction.
  • the movable part 40 includes a frame member 41 supported by the fixed part 50 so as to be rotatable around a vertical axis, and a movable member 42 supported by the frame member 41 so as to be rotatable around a horizontal axis.
  • the magnet has a first magnet 31 disposed on the frame member 41 and a second magnet 32 disposed on the movable member 42.
  • the magnetic sensor is fixed to the fixing unit 50 so as to face the first magnet 31, and includes a first magnetic sensor 36 and a second magnetic sensor 37.
  • the first magnetic sensor 36 detects a magnetic field generated by the first magnet 31 and outputs a signal for specifying the horizontal component of the wind direction.
  • the second magnetic sensor 37 is fixed to the frame member 41 so as to face the second magnet 32, detects a magnetic field generated by the second magnet 32, and outputs a signal for specifying the vertical component of the wind direction.
  • the horizontal component and the vertical component of the wind direction are separately detected by the first magnetic sensor 36 and the second magnetic sensor 37, the horizontal component and the vertical component of the wind direction can be accurately detected. It is also possible to simplify the processing and circuit configuration of the control unit 81.
  • the wind direction anemometer described in Patent Document 1 Japanese Patent Application Laid-Open No. 2001-215241
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-215241
  • a wind direction vertical component detector and a wind direction vertical component detector that are composed of a coil and a magnet having an iron core and a winding. is doing. Therefore, the anemometer of Patent Document 1 is difficult to downsize, and for example, it is difficult to install it in a narrow space in the engine room with the hood closed.
  • this anemometer is a method for detecting an electromotive force generated in a coil by electromagnetic induction. For this reason, for example, in a windless state, since the magnet is stationary and no electromotive force is generated in the coil, the direction in which the body portion is facing cannot be detected.
  • the anemometer according to the present embodiment outputs an A-phase output and a B-phase output from the magnetic sensor 35 while applying a constant voltage to the magnetic sensor 35. As a result, it is possible to detect the direction in which the body portion 111 is facing even in a windless state.
  • the power is supplied from the vehicle via the connection line connected to the connector terminal 80a or the connection line 80b.
  • the power supply may be made wireless by storing a battery for supplying the power.
  • the controller 81 performs the wind direction specifying process, the wind speed specifying process, and the air temperature specifying process using the signals output from the magnetic sensor 35, the wind speed sensor 60, and the temperature sensor 61.
  • the control unit 81 may not perform the processing for specifying the wind direction, wind speed, and temperature. For example, after the data is wirelessly transmitted to the PC 91 via the wireless transmission unit 82, the wind direction specifying process, the wind speed specifying process, and the air temperature specifying process may be performed on the software in the PC 91.
  • data is wirelessly transmitted from the anemometer to the PC 91 via the wireless transmission unit 82.
  • the anemometer and the PC 91 may be connected by wire, and data may be transmitted from the anemometer to the PC 91 by wire communication.
  • the configuration including the wind speed sensor 60 and the temperature sensor 61 is shown, but the wind speed sensor 60 and the temperature sensor 61 are not necessarily provided.
  • a triaxial geomagnetic sensor 62 that detects geomagnetism and outputs a signal indicating geomagnetism
  • a triaxial tilt angle sensor that detects a tilt angle and outputs a signal indicating the tilt angle
  • 63 and a humidity sensor 64 that detects the humidity and outputs a signal indicating the humidity may be provided in the fixed stage 21.
  • the geomagnetic sensor 62 may be configured using an acceleration sensor. Further, it may be configured to include at least one of these sensors 60-64.
  • the configuration including the wind speed sensor 60 is shown, but the wind speed sensor 60 is not necessarily provided.
  • the fixed stage 51 may include at least one of the sensors 60 to 64 shown in FIG.
  • the geomagnetic sensor 62 by including the geomagnetic sensor 62, it is possible to detect which direction (direction) the anemometer is installed. It is also possible to specify the direction (direction) of the wind direction based on the detection result of the geomagnetic sensor 62.
  • the tilt angle sensor 63 by providing the tilt angle sensor 63, it is possible to detect whether or not the anemometer is installed tilted. For example, when an anemometer is installed in a narrow space, it is conceivable that the anemometers cannot be installed horizontally. Even in this case, it is also possible to correct the wind direction based on the detection result of the inclination angle sensor 63 by providing the inclination angle sensor 63.
  • At least one sensor among the wind speed sensor 60 that detects the wind speed, the temperature sensor 61 that detects the air temperature, and the humidity sensor 64 that detects the humidity does not come into contact with the movable parts 10 and 40. , 51 may be provided.
  • the movable range of the movable parts 10 and 40 can be prevented from being narrowed.
  • At least one of the wind speed sensor 60, the temperature sensor 61, and the humidity sensor 64 may be disposed on the periphery of the bottom plate portions 21 and 51. Thereby, it is possible to reduce the influence on the wind direction by each sensor.
  • the bottom plate portions 21 and 51 have a quadrangular outer shape on the top surface, and at least one of the wind speed sensor 60, the temperature sensor 61, and the humidity sensor 64 is arranged on one side of the bottom plate portions 21 and 51. Good. Alternatively, at least two of the wind speed sensor 60, the temperature sensor 61, and the humidity sensor 64 may be arranged on one side of the bottom plate portions 21 and 51. Thereby, it is possible to arrange the measurement conditions of each sensor.
  • the present disclosure is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the present disclosure. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes. In each of the above embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless otherwise specified, or in principle limited to a specific material, shape, positional relationship, etc. The material, shape, positional relationship, etc. are not limited.

Abstract

This anemoscope is provided with a fixed portion (20, 50) a movable portion (10, 40), a magnet (30, 31, 32) and a magnetic sensor (35 to 37). The movable portion (10, 40) is attached to the fixed portion in such a way as to be capable of rotating around a first axis of rotation and around a second axis of rotation orthogonal to the first axis of rotation, in order for the movable portion (10, 40) to face in an upwind direction. The magnet (30, 31, 32) is disposed on the movable portion and generates a magnetic field. The magnetic sensor (35 to 37) is disposed in such a way as to oppose the magnet, detects the magnetic field generated by the magnet, and outputs a signal for identifying a horizontal component and a vertical component of the wind direction.

Description

風向計Anemometer 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年3月5日に出願された日本特許出願2015-043780号を基にしている。 This application is based on Japanese Patent Application No. 2015-043780 filed on Mar. 5, 2015, the disclosure of which is incorporated herein by reference.
 本開示は、風向計に関するものである。 This disclosure relates to anemometers.
 風向を計測する計測器として、羽根固定板と、一対の羽根と、複数の磁石と、方位磁石と、を備えた風向風速計がある(例えば、特許文献1参照)。羽根固定板は、先端部が風上へ向く用に回動する。支持部は、この羽根固定板を回動自在に支持する。一対の羽根は、開閉自在であり、羽根固定板の両端に取り付けられている。複数の磁石は、一対の羽根が開く方向に反発力を付与する。方位磁石は、支持部に設けられている。 As a measuring instrument for measuring the wind direction, there is a wind direction anemometer provided with a blade fixing plate, a pair of blades, a plurality of magnets, and a bearing magnet (for example, see Patent Document 1). The blade fixing plate rotates so that the tip end portion faces the windward side. The support portion rotatably supports the blade fixing plate. The pair of blades are openable and closable, and are attached to both ends of the blade fixing plate. The plurality of magnets gives a repulsive force in the direction in which the pair of blades open. The compass is provided on the support.
特開2006-292540号公報JP 2006-292540 A 特開2001-215241号公報Japanese Patent Laid-Open No. 2001-215241
 近年、自動車の走行用エンジンの排ガス浄化性能の向上のため、走行用エンジンとして、排ガスの排気口を車両前方に設ける型式のエンジンから、排ガスの排気口を車両後方に設ける型式のエンジンに変わりつつある。このため、エンジンルームのうちエンジンの車両後方側にエンジンの排気管等から排熱され、この排熱される熱によりエンジンルーム内の機器等に不具合が生じる可能性がある。この対策として、エンジンルーム内の空気流れを改善して、エンジンルーム内の冷却性を向上したいという要望がある。 In recent years, in order to improve exhaust gas purification performance of automobile driving engines, as a driving engine, an engine of an exhaust gas exhaust port provided at the front of the vehicle has changed to an engine of an exhaust gas exhaust port provided at the rear of the vehicle. is there. For this reason, in the engine room, heat is exhausted from the engine exhaust pipe or the like to the vehicle rear side of the engine, and this exhausted heat may cause problems in the equipment in the engine room. As a countermeasure, there is a desire to improve the air flow in the engine room and improve the cooling performance in the engine room.
 そこで、排ガスの排気口を車両後方に設ける型式のエンジンを配置したエンジンルーム内の空気流れを解析するために、自動車のボンネットを閉じた状態でもエンジンルーム内の風向を計測する風向計が求められている。 Therefore, in order to analyze the air flow in the engine room where the engine of the type that provides the exhaust gas exhaust port at the rear of the vehicle is analyzed, an anemometer that measures the wind direction in the engine room even when the hood of the automobile is closed is required. ing.
 しかしながら、上記特許文献1に記載された風向風速計は、先端部が風上へ向くよう水平方向に回動する羽根固定板を有し、この羽根固定板の向きと方位磁石で風向を目視で確認する構成となっている。このため、例えば、ボンネットを閉じた状態におけるエンジンルーム内のような狭小空間に設置して、風向の水平成分と垂直成分の両方を計測することはできない。 However, the wind direction anemometer described in the above-mentioned Patent Document 1 has a blade fixing plate that rotates in the horizontal direction so that the tip portion is directed to the windward direction, and the direction of the blade fixing plate and the direction of the wind are visually observed by a compass magnet. It is a configuration to check. For this reason, for example, it is impossible to measure both the horizontal component and the vertical component of the wind direction by installing in a narrow space such as in the engine room with the hood closed.
 また、このような風向風速計として、鉛直方向に延びる回転軸と水平方向に延びる水平軸を有し、風向の水平成分と垂直成分を検出するとともに、磁石とコイルを使用して構成された風速検出器により風速を測定するようにしたものもある(例えば、特許文献2参照)。しかし、この風向風速計は、風向の垂直成分検出器と風向の垂直成分検出器を、磁石とコイルを使用する構成となっている。従って、この風向風速計は、小型化が困難であり、例えば、ボンネットを閉じた状態におけるエンジンルーム内のような狭小空間に設置するのは困難である。 Moreover, as such an anemometer, it has a rotating shaft extending in the vertical direction and a horizontal axis extending in the horizontal direction, detects the horizontal component and the vertical component of the wind direction, and is configured by using a magnet and a coil. There is also one in which the wind speed is measured by a detector (see, for example, Patent Document 2). However, this wind direction anemometer uses a magnet and a coil for the wind direction vertical component detector and the wind direction vertical component detector. Therefore, it is difficult to reduce the size of the anemometer. For example, it is difficult to install the anemometer in a narrow space such as in an engine room with the hood closed.
 本開示は上記点に鑑みたもので、狭小空間に設置することが可能で、かつ、風向の水平成分と垂直成分の両方を計測することができる風向計を提供することを目的とする。 The present disclosure has been made in view of the above points, and an object thereof is to provide an anemometer that can be installed in a narrow space and can measure both a horizontal component and a vertical component of a wind direction.
 本開示の風向計は、固定部、可動部、磁石、および磁気センサを備える。可動部は、風上の方向を向くよう第1の回転軸の周りおよび該第1の回転軸と直交する第2の回転軸の周りに回動可能に固定部に取り付けられている。磁石は、可動部に配置され、磁界を発生する。磁気センサは、磁石と対向するよう配置され、磁石が発生する磁界を検出して風向の水平成分と垂直成分を特定するための信号を出力する。 The anemometer of the present disclosure includes a fixed part, a movable part, a magnet, and a magnetic sensor. The movable part is attached to the fixed part so as to be rotatable around the first rotation axis and around the second rotation axis orthogonal to the first rotation axis so as to face the windward direction. The magnet is disposed on the movable part and generates a magnetic field. The magnetic sensor is arranged to face the magnet, detects a magnetic field generated by the magnet, and outputs a signal for specifying a horizontal component and a vertical component of the wind direction.
 本開示の風向計によれば、可動部が、風上の方向を向くよう第1の回転軸の周りおよび該第1回転軸と直交する第2の回転軸の周りに回動可能に固定部に取り付けられている。可動部には、磁界を発生する磁石を配置している。また、磁石と対向するように、磁石が発生する磁界を検出して風向の水平成分と垂直成分を特定するための信号を出力する磁気センサを配置している。これにより、本開示の風向計は、狭小空間に設置することが可能で、かつ、風向の水平成分と垂直成分の両方を計測することができる。 According to the anemometer of the present disclosure, the movable portion is fixed to be rotatable about the first rotation axis and the second rotation axis orthogonal to the first rotation axis so as to face the windward direction. Is attached. A magnet that generates a magnetic field is disposed in the movable part. In addition, a magnetic sensor that detects a magnetic field generated by the magnet and outputs a signal for specifying a horizontal component and a vertical component of the wind direction is disposed so as to face the magnet. Thereby, the anemometer of this indication can be installed in a narrow space, and can measure both the horizontal component and the vertical component of the wind direction.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態に係る風向計の外観図である。 第1実施形態に係る風向計の上面図である。 図2中に示したIII-III線に沿った断面図である。 図2中に示したIV-IV線に沿った断面図である。 第1実施形態に係る磁気センサの上面図である。 第1実施形態に係る球型磁石と磁気センサの配置について説明するための図である。 第1実施形態に係る球型磁石の水平方向の回転角と磁気センサのA相出力とB相出力の関係を示した図である。 第1実施形態に係る球型磁石の回転軸が左側に傾斜した場合の磁気センサのA相出力とB相出力について説明するための図である。 第1実施形態に係る球型磁石の回転軸が右側に傾斜した場合の磁気センサのA相出力とB相出力について説明するための図である。 第1実施形態に係る風向計のブロック構成図である。 第2実施形態に係る風向計の外観図である。 第2実施形態に係る風向計の正面図である。 図11中のXII-XII線に沿った断面図である。 図11中のXIII-XIII線に沿った断面図である。 第2実施形態に係る筒型磁石と磁気センサの配置について説明するための図である。 変形例について説明するための図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is an external view of the anemometer which concerns on 1st Embodiment. It is a top view of the anemometer which concerns on 1st Embodiment. FIG. 3 is a sectional view taken along line III-III shown in FIG. 2. FIG. 4 is a sectional view taken along line IV-IV shown in FIG. 2. It is a top view of the magnetic sensor which concerns on 1st Embodiment. It is a figure for demonstrating arrangement | positioning of the spherical magnet which concerns on 1st Embodiment, and a magnetic sensor. It is the figure which showed the relationship between the rotation angle of the horizontal direction of the spherical magnet which concerns on 1st Embodiment, and the A phase output and B phase output of a magnetic sensor. It is a figure for demonstrating the A phase output and B phase output of a magnetic sensor when the rotating shaft of the spherical magnet which concerns on 1st Embodiment inclines to the left side. It is a figure for demonstrating the A phase output and B phase output of a magnetic sensor when the rotating shaft of the spherical magnet which concerns on 1st Embodiment inclines to the right side. It is a block block diagram of the anemometer which concerns on 1st Embodiment. It is an external view of the anemometer which concerns on 2nd Embodiment. It is a front view of the anemometer which concerns on 2nd Embodiment. FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. FIG. 12 is a cross-sectional view taken along line XIII-XIII in FIG. It is a figure for demonstrating arrangement | positioning of the cylindrical magnet and magnetic sensor which concern on 2nd Embodiment. It is a figure for demonstrating a modification.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した実施形態と同様とする。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組み合せることも可能である。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, portions that are the same or equivalent to each other may be denoted by the same reference numerals in the drawings, and redundant description may be omitted. When only a part of the configuration is described in each embodiment, the other parts of the configuration are the same as those of the embodiment described above. In addition to the combination of parts specifically described in each embodiment, the embodiments may be partially combined as long as the combination does not hinder.
 (第1実施形態)
 第1実施形態に係る風向計について、図1から図9を参照して説明する。本実施形態の風向計は、例えば、自動車のエンジンルーム(被測定空間)内の風向を測定するセンサとして用いられる。また、風向計は、風向、風速、気温を同時に計測することができる小型全方位風向風速計として構成されている。図1に示すように、風向計は、固定部20と可動部10を有している。
(First embodiment)
An anemometer according to the first embodiment will be described with reference to FIGS. The anemometer of the present embodiment is used as a sensor that measures the wind direction in an engine room (measurement space) of an automobile, for example. The anemometer is configured as a small omnidirectional anemometer capable of simultaneously measuring the wind direction, wind speed, and temperature. As shown in FIG. 1, the anemometer has a fixed portion 20 and a movable portion 10.
 固定部20は、固定ステージ21および支持部材22を有している。固定ステージ21および支持部材22は、それぞれ樹脂にて一体成形されている。 The fixing unit 20 includes a fixing stage 21 and a support member 22. The fixed stage 21 and the support member 22 are each integrally formed of resin.
 固定ステージ21は、土台となる底板部に相当するものであり、上面が略正方形をなしている。なお、固定ステージ21の上面の1辺は、20ミリメートル程度となっている。また、固定ステージ21の底面から可動部10の上端までの高さは24ミリメートル程度となっている。 The fixed stage 21 corresponds to a bottom plate part serving as a base, and the upper surface is substantially square. One side of the upper surface of the fixed stage 21 is about 20 mm. The height from the bottom surface of the fixed stage 21 to the upper end of the movable part 10 is about 24 millimeters.
 図2に示すように、固定ステージ21の四隅には、取り付け用ネジ穴211が形成されている。図3、4に示すように、固定ステージ21の底面側には開口部21aが形成されており、この開口部21aには、後述する制御部81等が搭載された回路基板80が格納されている。なお、回路基板80には、コネクタ端子80aが搭載されている。また、この開口部21aには、カバー21cが取り付けられている。 As shown in FIG. 2, mounting screw holes 211 are formed at four corners of the fixed stage 21. As shown in FIGS. 3 and 4, an opening 21 a is formed on the bottom side of the fixed stage 21, and a circuit board 80 on which a control unit 81 and the like to be described later are mounted is stored in the opening 21 a. Yes. The circuit board 80 is provided with connector terminals 80a. A cover 21c is attached to the opening 21a.
 固定ステージ21の裏面側の側面には、固定ステージ21の側面を貫通する開口穴21bが形成されている。この開口穴21bから回路基板80に搭載されたコネクタ端子80aが外部に露出している。このコネクタ端子80aには、電源に接続するための接続線(図示せず)が接続される。この接続線を介して車両から電源が供給されるようになっている。 An opening hole 21 b penetrating the side surface of the fixed stage 21 is formed on the side surface on the back surface side of the fixed stage 21. Connector terminals 80a mounted on the circuit board 80 are exposed to the outside through the opening holes 21b. A connection line (not shown) for connecting to the power source is connected to the connector terminal 80a. Power is supplied from the vehicle via this connection line.
 支持部材22は、略円筒形状をなしており、固定ステージ21の上面の中央部から可動部10に向かって鉛直方向に延びている。支持部材22の内部には、軸方向に延びる中空部22aと、磁気センサ35を格納する磁気センサ格納部22bが形成されている。 The support member 22 has a substantially cylindrical shape, and extends in the vertical direction from the central portion of the upper surface of the fixed stage 21 toward the movable portion 10. Inside the support member 22, a hollow portion 22a extending in the axial direction and a magnetic sensor storage portion 22b for storing the magnetic sensor 35 are formed.
 中空部22aには、磁気センサ35と回路基板80の間を接続する接続線25aが配置されている。また、磁気センサ格納部22bには、磁気センサ35が格納されている。支持部材22の先端には、後述する可動部10のU字状部材13を支持するための突起220が形成されている。 In the hollow portion 22a, a connection line 25a for connecting the magnetic sensor 35 and the circuit board 80 is disposed. A magnetic sensor 35 is stored in the magnetic sensor storage unit 22b. A protrusion 220 for supporting a U-shaped member 13 of the movable portion 10 to be described later is formed at the tip of the support member 22.
 また、固定ステージ21の正面側の辺の両端に位置する角部には、それぞれ風速センサ60と温度センサ61が設けられている。正面側とは、固定ステージ21のうちコネクタ端子81aが配置される辺と、当該辺と対向する辺とが並ぶ方向における、支持部材22に対してコネクタ端子80aの反対側を意味する。つまり、風速センサ60と温度センサ61は、コネクタ端子81aが配置される辺と対向する辺の両端に配置されている。 Further, a wind speed sensor 60 and a temperature sensor 61 are provided at corners located at both ends of the front side of the fixed stage 21, respectively. The front side means the side opposite to the connector terminal 80a with respect to the support member 22 in the direction in which the side of the fixed stage 21 where the connector terminal 81a is disposed and the side facing the side are aligned. That is, the wind speed sensor 60 and the temperature sensor 61 are disposed at both ends of the side opposite to the side where the connector terminal 81a is disposed.
 本実施形態において、固定ステージ21のうちコネクタ端子81aが配置される辺と、当該辺と対向する辺とが並ぶ方向を前後方向と称する。前後方向において、コネクタ端子81aは支持部材22の後方に配置されているとする。また、固定ステージ21のうち残り2つの辺が並ぶ方向を左右方向と称する。しかしながら、前、後、左、右の各方向は、実際の搭載方向を限定するものではない。 In the present embodiment, the direction in which the side of the fixed stage 21 where the connector terminal 81a is arranged and the side opposite to the side is referred to as the front-rear direction. It is assumed that the connector terminal 81a is disposed behind the support member 22 in the front-rear direction. In addition, the direction in which the remaining two sides of the fixed stage 21 are aligned is referred to as the left-right direction. However, the front, back, left, and right directions do not limit the actual mounting direction.
 風速センサ60は、熱線式の全方位型風速計により構成されている。熱線式の風速計は、電熱線を環境中に露出させて通電し、その電熱線における発熱と風による冷却とが平衡したときの温度から風速を求めるものである。これにより、この風速計は、風向に依存せず精密に風速を測定することができる。風速センサ60は、風速を検出し、検出した風速を示す信号を制御部81へ出力する。 The wind speed sensor 60 is constituted by a hot-wire omnidirectional anemometer. The hot-wire anemometer obtains the wind speed from the temperature when the heating wire is exposed to the environment and energized, and the heat generated in the heating wire and the cooling by the wind are balanced. As a result, the anemometer can accurately measure the wind speed without depending on the wind direction. The wind speed sensor 60 detects the wind speed and outputs a signal indicating the detected wind speed to the control unit 81.
 温度センサ61は、周囲の気温を検出し、検出した気温を示す信号を制御部81へ出力する。温度センサ61は、例えば、熱電対、サーミスタ等を用いて構成することができる。 The temperature sensor 61 detects the ambient temperature and outputs a signal indicating the detected temperature to the control unit 81. The temperature sensor 61 can be configured using, for example, a thermocouple, a thermistor, or the like.
 可動部10は、胴体部111および羽根部112を有する可動部材110と、U字状部材13とを備えている。可動部10は、固定部20の支持部材22により支持される。 The movable part 10 includes a movable member 110 having a body part 111 and a blade part 112, and a U-shaped member 13. The movable unit 10 is supported by the support member 22 of the fixed unit 20.
 U字状部材13は、固定部20の支持部材22により鉛直方向に延びる第1の回転軸(鉛直軸)周りに回動可能に支持される。具体的には、U字状部材13の底面には、固定部20の支持部材22に形成された突起220と嵌合する穴部130が形成されている。穴部130に突起220が嵌め込まれることで、U字状部材13は鉛直軸周りに回動することができる。 The U-shaped member 13 is supported by the support member 22 of the fixed portion 20 so as to be rotatable around a first rotation axis (vertical axis) extending in the vertical direction. Specifically, the bottom surface of the U-shaped member 13 is formed with a hole portion 130 that fits into the protrusion 220 formed on the support member 22 of the fixed portion 20. By fitting the protrusion 220 into the hole 130, the U-shaped member 13 can rotate around the vertical axis.
 また、U字状部材13は、可動部材110の胴体部111を両側から挟持するように可動部材110を第1の回転軸と直交する第2の回転軸(水平軸)周りに回動可能に支持する。U字状部材13は、胴体部111を回動可能に支持するための雄ネジ部材13aを挿通する2つの貫通孔131を有している。雄ネジ部材13aは、U字状部材13に形成された各貫通孔131に挿通された後、可動部材110の胴体部111の側面に形成されたネジ穴部(図示せず)に締め付けられる。このように、可動部材110は、U字状部材13により水平軸周りに回動可能に支持されている。 The U-shaped member 13 can turn the movable member 110 about a second rotation axis (horizontal axis) orthogonal to the first rotation axis so as to sandwich the body portion 111 of the movable member 110 from both sides. To support. The U-shaped member 13 has two through holes 131 through which the male screw member 13a for rotatably supporting the body portion 111 is inserted. The male screw member 13 a is inserted into each through hole 131 formed in the U-shaped member 13 and then tightened into a screw hole portion (not shown) formed on the side surface of the body portion 111 of the movable member 110. Thus, the movable member 110 is supported by the U-shaped member 13 so as to be rotatable around the horizontal axis.
 胴体部111は、樹脂製であり、丸みを帯びた先端部111aと、球型磁石30を格納する磁石格納部111bとを有している。この磁石格納部111bには、半球ずつS極とN極の2極に着磁された球型磁石30が格納されている。 The body portion 111 is made of resin, and has a rounded tip portion 111 a and a magnet storage portion 111 b that stores the spherical magnet 30. The magnet storage unit 111b stores a spherical magnet 30 that is magnetized in two hemispheres, S pole and N pole.
 胴体部111のバランスは風向の垂直成分の計測に影響するため、無風の時に胴体部111が水平になるようにする必要がある。このため、球型磁石30は、可動部材110の重心となる位置、すなわち、可動部材110の前後左右のバランスの中心となる位置に配置されている。また、球型磁石30は、胴体部111が水平状態となった状態で、S極とN極の境界が磁気センサ35の上面(検出面)に対して直交するように磁石格納部111bに格納されている。 Since the balance of the body part 111 affects the measurement of the vertical component of the wind direction, the body part 111 needs to be horizontal when there is no wind. For this reason, the spherical magnet 30 is disposed at a position that is the center of gravity of the movable member 110, that is, a position that is the center of balance between the front, rear, left, and right of the movable member 110. The spherical magnet 30 is stored in the magnet storage unit 111b so that the boundary between the S pole and the N pole is orthogonal to the upper surface (detection surface) of the magnetic sensor 35 in a state where the body unit 111 is in a horizontal state. Has been.
 羽根部112は、水平方向に延びる薄板状の水平翼(第2板状部材)112aと、水平翼112aから垂直方向に延びる複数の薄板状の垂直翼(第1板状部材)112bを有しており、胴体部111の上面に固定されている。 The blade portion 112 has a thin plate-like horizontal blade (second plate member) 112a extending in the horizontal direction and a plurality of thin plate-like vertical blades (first plate member) 112b extending from the horizontal blade 112a in the vertical direction. It is fixed to the upper surface of the body part 111.
 次に、本実施形態の風向計の作動について説明する。風向計は、固定ステージ21の上面が設置面に対して水平となるように設置される。可動部材110の重心となる位置に球型磁石30が配置されているため、胴体部111は無風の状態では水平となる。 Next, the operation of the anemometer of this embodiment will be described. The anemometer is installed such that the upper surface of the fixed stage 21 is horizontal with respect to the installation surface. Since the spherical magnet 30 is disposed at a position that becomes the center of gravity of the movable member 110, the body portion 111 is horizontal in a windless state.
 風向計は、水平方向からの風を受けると胴体部111は水平状態を維持したまま、先端部111aが風上を向くよう胴体部111が鉛直軸周りに回動する。このとき、胴体部111とともに球型磁石30も鉛直軸周りに回動する。 When the wind direction meter receives wind from the horizontal direction, the body portion 111 rotates around the vertical axis so that the front end portion 111a faces upwind while the body portion 111 is maintained in a horizontal state. At this time, the spherical magnet 30 also rotates around the vertical axis together with the body portion 111.
 あるいは、例えば、風向計が斜め上方向からの風を受けると、先端部111a鉛直方向の上方に向けて移動して風上を向くように、胴体部111が水平軸周りに回動する。このとき、胴体部111とともに球型磁石30も水平軸周りに回動する。 Or, for example, when the anemometer receives wind from an obliquely upward direction, the body portion 111 rotates about the horizontal axis so that the tip 111a moves upward in the vertical direction and faces the windward direction. At this time, the spherical magnet 30 is also rotated around the horizontal axis together with the body portion 111.
 あるいは、例えば、風向計が斜め下方向からの風を受けると、先端部111aが鉛直方向の下方に向けて移動して風上を向くように、胴体部111が水平軸周りに回動する。このとき、胴体部111とともに球型磁石30も水平軸周りに回動する。 Or, for example, when the anemometer receives wind from an obliquely downward direction, the trunk portion 111 rotates about the horizontal axis so that the tip 111a moves downward in the vertical direction and faces upwind. At this time, the spherical magnet 30 is also rotated around the horizontal axis together with the body portion 111.
 本実施形態に係る風向計は、胴体部111の磁石格納部111bに格納された球型磁石30と、この球型磁石30と対向するように支持部材22に配置された磁気センサ35を有している。磁気センサ35は、非接触で球型磁石30が発生する磁界を検出して球型磁石30の回転角を検出する回転角センサである。球型磁石30と磁気センサ35は、支持部材22の伸びる方向(鉛直方向)に並ぶように配置されている。球型磁石30と磁気センサ35との間の鉛直方向における距離は、磁気センサ35と固定ステージ21との間の鉛直方向における距離よりも短くなっている。換言すれば、鉛直方向において、磁気センサ35は球型磁石30と固定ステージ21との間に位置している。 The anemometer according to the present embodiment includes a spherical magnet 30 stored in the magnet storage portion 111 b of the body portion 111 and a magnetic sensor 35 disposed on the support member 22 so as to face the spherical magnet 30. ing. The magnetic sensor 35 is a rotation angle sensor that detects a rotation angle of the spherical magnet 30 by detecting a magnetic field generated by the spherical magnet 30 in a non-contact manner. The spherical magnet 30 and the magnetic sensor 35 are arranged so as to be aligned in the extending direction (vertical direction) of the support member 22. The distance in the vertical direction between the spherical magnet 30 and the magnetic sensor 35 is shorter than the distance in the vertical direction between the magnetic sensor 35 and the fixed stage 21. In other words, the magnetic sensor 35 is located between the spherical magnet 30 and the fixed stage 21 in the vertical direction.
 本実施形態の磁気センサ35は、Ni(ニッケル)、Fe(鉄)等の強磁性金属を主成分とする合金製の薄膜(薄膜強磁性体金属)をガラス基板上にパターン形成して構成されている。この強磁性金属製の薄膜は、特定方向の外部磁界の強度により抵抗値が変化する特性を有している。 The magnetic sensor 35 of this embodiment is configured by patterning a thin film (thin film ferromagnetic metal) made of an alloy mainly composed of a ferromagnetic metal such as Ni (nickel) or Fe (iron) on a glass substrate. ing. This ferromagnetic metal thin film has a characteristic that the resistance value changes depending on the strength of the external magnetic field in a specific direction.
 本実施形態の磁気センサ35は、ガラス基板平面上に形成された4つの強磁性金属製の薄膜をブリッジ状に形成したフルブリッジ回路と、このフルブリッジ回路より出力される電圧波形を波形成形する波形成形回路(いずれも図示せず)を1つのチップとして構成したIC型AMR(Anisotropic-Magneto-Resistive)センサとして構成されている。このようなIC型AMRセンサは、公知のセンサであり、例えば、浜松光電株式会社製のKG-1402-61(型名)を用いることができる。 The magnetic sensor 35 of this embodiment forms a waveform of a full-bridge circuit in which four ferromagnetic metal thin films formed on a glass substrate plane are formed in a bridge shape, and a voltage waveform output from the full-bridge circuit. It is configured as an IC-type AMR (Anisotropic-Magneto-Resistive) sensor in which a waveform shaping circuit (none of which is shown) is configured as one chip. Such an IC type AMR sensor is a known sensor, and for example, KG-1402-61 (type name) manufactured by Hamamatsu Photoelectric Co., Ltd. can be used.
 図5は、磁気センサ35の上面図である。磁気センサ35は、直方体形状をなしている。磁気センサ35は、長手方向の中心線Lが、予め定められた方向(例えば、風向計の正面)を向くよう配置される。磁気センサ35の底面には、2つの電源端子VCCと、2つの接地端子GNDと、一対のA相出力端子+A、-Aと、一対のB相出力端子+B、-Bと、が設けられている。 FIG. 5 is a top view of the magnetic sensor 35. The magnetic sensor 35 has a rectangular parallelepiped shape. The magnetic sensor 35 is arranged such that the center line L in the longitudinal direction faces a predetermined direction (for example, the front of the anemometer). On the bottom surface of the magnetic sensor 35, there are provided two power supply terminals VCC, two ground terminals GND, a pair of A-phase output terminals + A and -A, and a pair of B-phase output terminals + B and -B. Yes.
 なお、磁気センサ35は回路基板(図示せず)に搭載されている。この回路基板は、図3に示した接続線25aを介して回路基板80と接続されている。各電源端子VCCには、回路基板80から接続線25aを介して直流の一定電圧が印加される。また、各接地端子GNDは回路基板80を介して接地されている。また、A相出力端子+A、-Aと、B相出力端子+B、-Bは、それぞれ接続線25aを介して回路基板80に搭載された制御部81と接続されている。 The magnetic sensor 35 is mounted on a circuit board (not shown). This circuit board is connected to the circuit board 80 via the connection line 25a shown in FIG. A DC constant voltage is applied to each power supply terminal VCC from the circuit board 80 via the connection line 25a. Each ground terminal GND is grounded via a circuit board 80. Further, the A-phase output terminals + A and -A and the B-phase output terminals + B and -B are connected to the control unit 81 mounted on the circuit board 80 via connection lines 25a.
 図6に示すように、磁気センサ35は、2極の球型磁石30と対向するように対置される。球型磁石30が回転して磁気センサ35により検出される磁界が変化すると、磁気センサ35のA相出力端子+A、-AとB相出力端子+B、-Bからそれぞれ位相の異なる出力が出力されるようになっている。 As shown in FIG. 6, the magnetic sensor 35 is placed so as to face the two-pole spherical magnet 30. When the spherical magnet 30 rotates and the magnetic field detected by the magnetic sensor 35 changes, outputs having different phases are output from the A-phase output terminals + A and -A and the B-phase output terminals + B and -B of the magnetic sensor 35, respectively. It has become so.
 図7は、図6に示したように鉛直方向に延びる回転軸Jを中心に球型磁石30を回転させたときに、磁気センサ35のA相出力端子+A、-Aから出力されるA相出力(ピークトゥピーク出力電圧)とB相出力端子+B、-Bから出力されるB相出力(ピークトゥピーク出力電圧)の特性を示したものである。なお、図7に示した特性図の横軸は、図5に示した磁気センサ35の長手方向の中心線Lと印加される磁界(印加磁界)の方向とのなす角度θ1を表している。また、図7に示した特性図の縦軸は、A相出力とB相出力のピークトゥピーク出力電圧を表している。 FIG. 7 shows the A phase output from the A phase output terminals + A and −A of the magnetic sensor 35 when the spherical magnet 30 is rotated about the rotation axis J extending in the vertical direction as shown in FIG. The characteristics of the output (peak to peak output voltage) and the B phase output (peak to peak output voltage) output from the B phase output terminals + B and -B are shown. The horizontal axis of the characteristic diagram shown in FIG. 7 represents the angle θ1 formed by the longitudinal center line L of the magnetic sensor 35 shown in FIG. 5 and the direction of the applied magnetic field (applied magnetic field). 7 represents the peak-to-peak output voltage of the A-phase output and the B-phase output.
 鉛直方向に延びる回転軸Jを中心に水平方向に球型磁石30を1回転(360°回転)させると、図7に示すように、磁気センサ35は、それぞれ1周期のA相出力(sin波形)とB相出力(cos波形)を出力する。 When the spherical magnet 30 is rotated once (360 °) in the horizontal direction around the rotation axis J extending in the vertical direction, as shown in FIG. 7, each of the magnetic sensors 35 outputs an A-phase output (sin waveform) of one cycle. ) And B phase output (cos waveform).
 したがって、A相出力とB相出力から、磁気センサ35の長手方向の中心線Lと印加される磁界(印加磁界)の方向とのなす角度θ1を特定することが可能である(図5参照)。角度θ1は、換言すれば、球型磁石30の水平方向の回転角度である。 Therefore, it is possible to specify the angle θ1 between the longitudinal center line L of the magnetic sensor 35 and the direction of the applied magnetic field (applied magnetic field) from the A-phase output and the B-phase output (see FIG. 5). . In other words, the angle θ1 is the rotation angle of the spherical magnet 30 in the horizontal direction.
 風向計は、胴体部111が鉛直方向に延びる鉛直軸周りに回動するだけでなく、第1の回転軸と直交する水平軸(第2の回転軸)の周りに回動するようになっており、三次元的に風向を計測するよう構成されている。 The anemometer not only rotates about the vertical axis in which the body portion 111 extends in the vertical direction, but also rotates about a horizontal axis (second rotation axis) orthogonal to the first rotation axis. The wind direction is measured three-dimensionally.
 このように、胴体部111が水平軸周りに回動した場合、例えば、図8A、8Bに示すように、球型磁石30が傾斜して回転軸Jが磁気センサ35の上面に対して直交しなくなる。 Thus, when the body part 111 rotates around the horizontal axis, for example, as shown in FIGS. 8A and 8B, the spherical magnet 30 is inclined and the rotation axis J is orthogonal to the upper surface of the magnetic sensor 35. Disappear.
 ここで、例えば、図8Aに示すように、球型磁石30の回転軸Jが左側に傾斜すると、磁気センサ35から見た見掛け上の球型磁石30のS極とN極の境界が右側にシフトする。すなわち、球型磁石30のS極とN極の境界が右側にシフトしたものと等価となる。 Here, for example, as shown in FIG. 8A, when the rotation axis J of the spherical magnet 30 is inclined to the left side, the apparent boundary between the S pole and the N pole of the spherical magnet 30 viewed from the magnetic sensor 35 is on the right side. shift. In other words, this is equivalent to the S-pole and N-pole boundary of the spherical magnet 30 shifted to the right.
 また、図8Bに示すように、球型磁石30の回転軸Jが右側に傾斜すると、磁気センサ35から見た見掛け上の球型磁石30のS極とN極の境界が左側にシフトする。すなわち、球型磁石30のS極とN極の境界が左側にシフトしたものと等価となる。 8B, when the rotation axis J of the spherical magnet 30 is tilted to the right side, the apparent boundary between the S pole and the N pole of the spherical magnet 30 viewed from the magnetic sensor 35 is shifted to the left side. That is, this is equivalent to the S-pole and N-pole boundary of the spherical magnet 30 shifted to the left.
 このように、球型磁石30が傾斜して球型磁石30のS極とN極の境界が左右にシフトしたものと等価となると、A相出力とB相出力は、それぞれ球型磁石30の回転軸Jの傾斜の度合いに応じて減衰する。 As described above, when the spherical magnet 30 is inclined and the boundary between the S pole and the N pole of the spherical magnet 30 is shifted to the left and right, the A phase output and the B phase output are respectively equal to those of the spherical magnet 30. It attenuates according to the degree of inclination of the rotation axis J.
 具体的には、A相出力とB相出力は、球型磁石30の回転軸Jが磁気センサ35の上面(検出面)に対して直交している状態、すなわち、球型磁石30の回転軸Jと、磁気センサ35の上面の鉛直方向とのなす角度θ2が0°となっている状態において最大となる。また、A相出力とB相出力は、角度θ2の大きさが大きくなるにつれて減衰して小さくなり、角度θ2が90°となっている状態において最小となる。角度θ2は、換言すれば、球型磁石30の垂直方向の回転角度である。 Specifically, the A-phase output and the B-phase output indicate that the rotation axis J of the spherical magnet 30 is orthogonal to the upper surface (detection surface) of the magnetic sensor 35, that is, the rotation axis of the spherical magnet 30. It becomes maximum when the angle θ2 formed by J and the vertical direction of the upper surface of the magnetic sensor 35 is 0 °. In addition, the A-phase output and the B-phase output are attenuated and become smaller as the angle θ2 increases, and are minimized when the angle θ2 is 90 °. In other words, the angle θ2 is the rotation angle of the spherical magnet 30 in the vertical direction.
 風向計においては、磁気センサ35のA相出力、B相出力、球型磁石30の水平方向の回転角度θ1および球型磁石30の垂直方向の回転角度θ2の関係を表した特性マップが用意されている。具体的には、図7に示したような磁気センサ35のA相出力、B相出力、球型磁石30の水平方向の回転角度θ1の関係を表したマップを、球型磁石30の垂直方向の回転角度θ2を、所定角度(例えば、5°)ずつ変化させて収集したものが特性マップとして用意されている。この特性マップは、制御部81のROMに記憶されている。制御部81は、ROMに記憶された特性マップを用いて、磁気センサ35より出力されるA相出力およびB相出力から球型磁石30の水平方向の回転角度θ1と球型磁石30の垂直方向の回転角度θ2を特定する処理を行う。 In the anemometer, a characteristic map representing the relationship among the A-phase output and B-phase output of the magnetic sensor 35, the horizontal rotation angle θ1 of the spherical magnet 30 and the vertical rotation angle θ2 of the spherical magnet 30 is prepared. ing. Specifically, a map showing the relationship between the A-phase output and B-phase output of the magnetic sensor 35 and the horizontal rotation angle θ1 of the spherical magnet 30 as shown in FIG. A characteristic map is prepared by changing the rotation angle θ2 of each angle by a predetermined angle (for example, 5 °). This characteristic map is stored in the ROM of the control unit 81. The control unit 81 uses the characteristic map stored in the ROM to determine the horizontal rotation angle θ1 of the spherical magnet 30 from the A-phase output and B-phase output output from the magnetic sensor 35 and the vertical direction of the spherical magnet 30. The rotation angle θ2 is specified.
 本実施形態における制御部81は、磁気センサ35より出力されるA相出力およびB相出力の各信号を、球型磁石30の水平方向の回転角度θ1と垂直方向の回転角度θ2を特定するための信号、すなわち、風向の水平成分と垂直成分を特定するための信号として用いる。つまり、制御部81は、磁気センサ35より出力されるA相出力およびB相出力から球型磁石30の水平方向の回転角度θ1と垂直方向の回転角度θ2を特定し、風向の水平成分と垂直成分を特定する。 The control unit 81 in the present embodiment specifies the horizontal rotation angle θ1 and the vertical rotation angle θ2 of the spherical magnet 30 from the signals of the A phase output and the B phase output output from the magnetic sensor 35. Signal, that is, a signal for specifying the horizontal component and the vertical component of the wind direction. That is, the control unit 81 specifies the horizontal rotation angle θ1 and the vertical rotation angle θ2 of the spherical magnet 30 from the A-phase output and the B-phase output output from the magnetic sensor 35, and is perpendicular to the horizontal component of the wind direction. Identify ingredients.
 次に、図9を参照して、風向計のブロック構成について説明する。風向計は、磁気センサ35、風速センサ60、温度センサ61、制御部81および送信部に相当する無線送信部82備えている。風向計は、検出された風向、風速、気温等の各種データをパーソナルコンピュータ(PC)91に無線送信するようになっており、例えば、自動車のエンジンルーム(被測定空間)内に設置される。また、無線受信部90およびPC91は、自動車の外部に配置される。 Next, the block configuration of the anemometer will be described with reference to FIG. The anemometer includes a magnetic sensor 35, a wind speed sensor 60, a temperature sensor 61, a control unit 81, and a wireless transmission unit 82 corresponding to a transmission unit. The anemometer wirelessly transmits various data such as detected wind direction, wind speed, and temperature to a personal computer (PC) 91, and is installed, for example, in an engine room (measurement space) of an automobile. In addition, the wireless reception unit 90 and the PC 91 are disposed outside the automobile.
 制御部81は、CPU、ROM、RAM、I/O、A/D変換部等を備えたコンピュータとして構成されており、CPUはROMに記憶されたプログラムにしたがって各種処理を実施する。また、制御部81は、風速センサ60を制御するセンサ制御回路、温度センサ61より入力される信号を増幅する増幅回路等を有している。 The control unit 81 is configured as a computer including a CPU, a ROM, a RAM, an I / O, an A / D conversion unit, and the like, and the CPU performs various processes according to a program stored in the ROM. The control unit 81 includes a sensor control circuit that controls the wind speed sensor 60, an amplification circuit that amplifies a signal input from the temperature sensor 61, and the like.
 無線送信部82は、予め定められた通信相手にデータを無線送信するものである。無線送信部82は、制御部81よりフレームが入力されると、予め定められた通信方式に従ってフレームを無線送信する。 The wireless transmission unit 82 wirelessly transmits data to a predetermined communication partner. When the frame is input from the control unit 81, the wireless transmission unit 82 wirelessly transmits the frame according to a predetermined communication method.
 制御部81は、風向特定処理、風速特定処理および気温特定処理を並行して行う。風向特定処理は、磁気センサ35より入力される信号に基づいて風向の水平成分と垂直成分を特定する処理である。また、風速特定処理は、風速センサ60より入力される信号に基づいて風速を特定する処理である。また、気温特定処理は、温度センサ61より入力される信号に基づいて気温を特定する処理である。 The control unit 81 performs a wind direction specifying process, a wind speed specifying process, and an air temperature specifying process in parallel. The wind direction specifying process is a process for specifying a horizontal component and a vertical component of the wind direction based on a signal input from the magnetic sensor 35. The wind speed specifying process is a process of specifying the wind speed based on a signal input from the wind speed sensor 60. The temperature specifying process is a process of specifying the temperature based on a signal input from the temperature sensor 61.
 また、制御部81は、風向の水平成分と垂直成分を示す情報とともに、風速を検出する風速センサ60により検出された風速および温度センサ61により検出された気温を外部機器であるPC91へ送信する処理を実施する。 In addition, the control unit 81 transmits the wind speed detected by the wind speed sensor 60 that detects the wind speed and the temperature detected by the temperature sensor 61 to the PC 91 that is an external device, together with information indicating the horizontal component and the vertical component of the wind direction. To implement.
 なお、PC91は、無線受信部90を介して風向計より送信されたフレームを受信すると、このフレームから必要なデータを抽出し、風向の水平成分および垂直成分、風速および気温を記憶部に記憶させる処理を実施する。 When the PC 91 receives a frame transmitted from the anemometer via the wireless receiver 90, the PC 91 extracts necessary data from the frame, and stores the horizontal and vertical components of the wind direction, the wind speed, and the temperature in the storage unit. Implement the process.
 風向計は、固定部50、可動部40、球型磁石30、および磁気センサ35を備えている。可動部40は、風上の方向を向くよう鉛直軸(第1の回転軸)の周りおよび該第1の回転軸と直交する水平軸(第2の回転軸)の周りに回動可能に固定部50に取り付けられている。球型磁石30は、可動部40に配置され、磁界を発生する。磁気センサ35は、球型磁石30と対向するよう配置され、球型磁石30が発生する磁界を検出して風向の水平成分と垂直成分を特定するための信号を出力する。この構成によれば、狭小空間に設置することが可能で、かつ、風向の水平成分と垂直成分の両方を計測することができる風向計を提供することができる。 The anemometer includes a fixed portion 50, a movable portion 40, a spherical magnet 30, and a magnetic sensor 35. The movable portion 40 is fixed to be rotatable around a vertical axis (first rotation axis) and a horizontal axis (second rotation axis) orthogonal to the first rotation axis so as to face the windward direction. It is attached to the part 50. The spherical magnet 30 is disposed on the movable portion 40 and generates a magnetic field. The magnetic sensor 35 is disposed so as to face the spherical magnet 30, detects a magnetic field generated by the spherical magnet 30, and outputs a signal for specifying a horizontal component and a vertical component of the wind direction. According to this configuration, it is possible to provide an anemometer that can be installed in a narrow space and can measure both the horizontal component and the vertical component of the wind direction.
 また、本実施形態の風向計は、1つの球型磁石30と、1つの磁気センサ35により風向の水平成分と垂直成分の両方を計測することができる。従って、例えば、複数の磁石と、複数の磁気センサを用いて風向の水平成分と垂直成分を計測するようにした場合と比較して、少ない部品点数で、風向の水平成分と垂直成分の両方を計測することができる。その結果、風向計の小型化および低コスト化を実現することができる。 Further, the anemometer of the present embodiment can measure both the horizontal component and the vertical component of the wind direction with one spherical magnet 30 and one magnetic sensor 35. Therefore, for example, compared with the case where the horizontal component and the vertical component of the wind direction are measured using a plurality of magnets and a plurality of magnetic sensors, both the horizontal component and the vertical component of the wind direction are reduced with a small number of parts. It can be measured. As a result, downsizing and cost reduction of the anemometer can be realized.
 また、風向計は、更に、風速を検出する風速センサ60および気温を検出する温度センサ61を備えているので、風向、風速および気温を複合的に計測することができる。 Further, since the anemometer further includes a wind speed sensor 60 for detecting the wind speed and a temperature sensor 61 for detecting the air temperature, the wind direction, the wind speed and the air temperature can be measured in a composite manner.
 また、固定部20は、土台となる固定ステージ21を有している。風速を検出する風速センサ60および温度を検出する温度センサ61は、可動部と接触しないよう固定ステージ21に設けられている。これにより、可動部10の可動範囲を狭めることなく、風速および気温を検出することができる。 Further, the fixed unit 20 has a fixed stage 21 as a base. The wind speed sensor 60 for detecting the wind speed and the temperature sensor 61 for detecting the temperature are provided on the fixed stage 21 so as not to contact the movable part. Thereby, wind speed and temperature can be detected without narrowing the movable range of the movable part 10.
 また、本実施形態では、無線送信部82によって、風向の水平成分と垂直成分を示す情報とともに、風速センサ60および温度センサ61で検出された情報を外部機器であるPC91へ送信する。これにより、風向計から離れた場所に外部機器を設置して、風向、風速および気温を計測することが可能である。 In this embodiment, the wireless transmission unit 82 transmits information detected by the wind speed sensor 60 and the temperature sensor 61 to the PC 91 that is an external device, together with information indicating the horizontal component and the vertical component of the wind direction. Thereby, it is possible to install an external device in a place away from the anemometer and measure the wind direction, wind speed and temperature.
 また、固定ステージ21は、鉛直方向から見た外形形状が四角形をなしており、風速センサ60および温度センサ61は、固定ステージ21の周縁部に配置されている。これにより、可動部10が受ける風向への、風速センサ60および温度センサ61による影響を低減することができる。 Further, the fixed stage 21 has a quadrangular outer shape when viewed from the vertical direction, and the wind speed sensor 60 and the temperature sensor 61 are arranged at the peripheral edge of the fixed stage 21. Thereby, the influence by the wind speed sensor 60 and the temperature sensor 61 with respect to the wind direction which the movable part 10 receives can be reduced.
 また、風速センサ60および温度センサ61は、固定ステージ21の一辺に配置されている。これにより、風速と気温の測定条件を揃えることができる。 Further, the wind speed sensor 60 and the temperature sensor 61 are arranged on one side of the fixed stage 21. Thereby, the measurement conditions of wind speed and temperature can be made uniform.
 (第2実施形態)
 第2実施形態に係る風向計について、図10~図14を参照して説明する。第1実施形態の風速計は、1つの球型磁石30を可動部10に配置するとともに、この球型磁石30と対向するように1つの磁気センサ35を配置して風向を検出する。本実施形態の風速計は、2つの磁石と2つの磁気センサを有している。具体的に、本実施形態の風速計は、2つの磁石としての第1磁石31と第2磁石32、および2つの磁気センサとしての第1磁気センサ36および第2磁気センサ37を有している。本実施形態の風向計は、第1磁石31と第1磁気センサ36とで風向の水平成分を検出するとともに、第2磁石32と第2磁気センサ37とで風向の垂直成分を検出する。第1磁石31および第2磁石32はそれぞれ、2極に着磁されており、円筒形を有している。
(Second Embodiment)
An anemometer according to the second embodiment will be described with reference to FIGS. In the anemometer of the first embodiment, one spherical magnet 30 is disposed on the movable portion 10 and one magnetic sensor 35 is disposed so as to face the spherical magnet 30 to detect the wind direction. The anemometer of the present embodiment has two magnets and two magnetic sensors. Specifically, the anemometer of the present embodiment has a first magnet 31 and a second magnet 32 as two magnets, and a first magnetic sensor 36 and a second magnetic sensor 37 as two magnetic sensors. . In the anemometer of the present embodiment, the first magnet 31 and the first magnetic sensor 36 detect the horizontal component of the wind direction, and the second magnet 32 and the second magnetic sensor 37 detect the vertical component of the wind direction. Each of the first magnet 31 and the second magnet 32 is magnetized in two poles and has a cylindrical shape.
 本実施形態に係る風向計は、固定部50と可動部40を有している。固定部50は、固定ステージ51およびガイド部材52を有している。 The anemometer according to the present embodiment has a fixed part 50 and a movable part 40. The fixed unit 50 includes a fixed stage 51 and a guide member 52.
 固定ステージ51は、土台となる底板部に相当するものであり、図11に示すように、上面が略正方形をなしている。固定ステージ51およびガイド部材52は、それぞれ樹脂で形成されている。ガイド部材52は、固定ステージ51の両側面から鉛直方向に延びる2つの側板部52aと、2つの側板部52aを連結する天板部52bを有している。2つの側板部52aは、固定ステージ51の対向する2つの辺からそれぞれ鉛直方向に延びている。固定ステージ51の上面の1辺の長さは15ミリメートル程度となっている。また、固定ステージ51の底面からガイド部材52の上面までの高さは17ミリメートル程度となっている。また、固定ステージ51には、風速センサ60が設けられている。 The fixed stage 51 corresponds to a bottom plate portion serving as a base, and the upper surface is substantially square as shown in FIG. The fixed stage 51 and the guide member 52 are each formed of resin. The guide member 52 has two side plate portions 52a extending in the vertical direction from both side surfaces of the fixed stage 51, and a top plate portion 52b connecting the two side plate portions 52a. The two side plate portions 52a extend in the vertical direction from two opposite sides of the fixed stage 51, respectively. The length of one side of the upper surface of the fixed stage 51 is about 15 millimeters. The height from the bottom surface of the fixed stage 51 to the top surface of the guide member 52 is about 17 millimeters. The fixed stage 51 is provided with a wind speed sensor 60.
 また、ガイド部材52の天板部52bには、穴部521が形成されている。また、この穴部521の鉛直方向における下方には固定ステージ51の上面の中央部が位置しており、当該中央部には、穴部511が形成されている。 Further, a hole 521 is formed in the top plate portion 52b of the guide member 52. A central portion of the upper surface of the fixed stage 51 is located below the hole portion 521 in the vertical direction, and a hole portion 511 is formed in the central portion.
 また、図12に示すように、固定ステージ51の内部には、穴部511の直下に位置するように、第1磁気センサ36が格納されている。第1磁気センサ36は、上記第1実施形態の磁気センサ35と同様の構成をしている。 Also, as shown in FIG. 12, the first magnetic sensor 36 is stored in the fixed stage 51 so as to be located immediately below the hole 511. The first magnetic sensor 36 has the same configuration as the magnetic sensor 35 of the first embodiment.
 また、固定ステージ51には回路基板(図示せず)が格納されている。また、この回路基板には、電源を供給するための接続線80bが接続されている。この接続線80bを介して車両から電源が供給されるようになっている。 Further, a circuit board (not shown) is stored in the fixed stage 51. Further, a connection line 80b for supplying power is connected to the circuit board. Power is supplied from the vehicle via the connection line 80b.
 可動部40は、第1部材に相当する枠状の枠部材41および第2部材に相当する可動部材42を有している。枠部材41の鉛直方向における上面の左右方向の中央部には、枠部材41から外周側に突出する突起部411が形成されている。同様に、枠部材41の鉛直方向における下面の左右方向の中央部には、枠部材41から外周側に突出する突起部411が形成されている。ここで言う左右方向とは、図10における左右方向である。 The movable part 40 has a frame-shaped frame member 41 corresponding to the first member and a movable member 42 corresponding to the second member. A protrusion 411 that protrudes from the frame member 41 to the outer peripheral side is formed at the center of the upper surface in the vertical direction of the frame member 41 in the left-right direction. Similarly, a protruding portion 411 that protrudes from the frame member 41 to the outer peripheral side is formed at the central portion of the lower surface in the vertical direction of the frame member 41. The left-right direction referred to here is the left-right direction in FIG.
 枠部材41の上面に形成された突起部411は、ガイド部材52の天板部52bに形成された穴部521に挿入される。また、枠部材41の下面に形成された突起部411は、固定ステージ51の上面の中央部に形成された穴部511に挿入される。 The protrusion 411 formed on the upper surface of the frame member 41 is inserted into the hole 521 formed in the top plate 52 b of the guide member 52. Further, the protrusion 411 formed on the lower surface of the frame member 41 is inserted into a hole 511 formed in the center of the upper surface of the fixed stage 51.
 これにより、枠部材41は、固定部50のガイド部材52に支持されて、ガイド部材52の穴部521と固定ステージ51の穴部511を通る回転軸、すなわち、鉛直方向に延びる鉛直軸(第1の回転軸)の周りに回動可能となっている。 Thus, the frame member 41 is supported by the guide member 52 of the fixed portion 50 and rotates through the hole portion 521 of the guide member 52 and the hole portion 511 of the fixed stage 51, that is, a vertical axis (first axis extending in the vertical direction). 1 rotation axis).
 また、固定ステージ51には、枠部材41の下面に形成された突起部411の鉛直方向における下方に位置するように、第1磁石31が設けられている。すなわち、第1磁石31は、固定ステージ51に格納された第1磁気センサ36と対向するように配置されている(図12参照)。 Further, the fixed stage 51 is provided with the first magnet 31 so as to be positioned below the protrusion 411 formed on the lower surface of the frame member 41 in the vertical direction. That is, the first magnet 31 is disposed so as to face the first magnetic sensor 36 stored in the fixed stage 51 (see FIG. 12).
 図13に示すように、枠部材41の左右方向の2つの側面には、それぞれ固定部412が設けられている。換言すれば、枠部材41のうち水平方向において対向する2つの側面には、それぞれ固定部412が設けられている。各固定部412の内周側の面には、それぞれ穴部413(凹部)が形成されている。また、本風向計を正面側から見て、右側の固定部412には、第2磁気センサ37が格納されている。換言すれば、2つの固定部412のうちの一方に、第2磁気センサ37が格納されている。第2磁気センサ37は、上記第1実施形態の磁気センサ35と同様の構成をしている。正面側とは、固定ステージ51のうち接続線80bが接続される辺と、当該辺と対向する辺とが並ぶ方向における、鉛直軸に対する接続線80bの反対側を意味する。 As shown in FIG. 13, fixing portions 412 are provided on two side surfaces of the frame member 41 in the left-right direction. In other words, the fixing portions 412 are respectively provided on two side surfaces of the frame member 41 that are opposed in the horizontal direction. Hole portions 413 (concave portions) are formed in the inner peripheral surface of each fixing portion 412. In addition, when the anemometer is viewed from the front side, a second magnetic sensor 37 is stored in the right fixed portion 412. In other words, the second magnetic sensor 37 is stored in one of the two fixed portions 412. The second magnetic sensor 37 has the same configuration as the magnetic sensor 35 of the first embodiment. The front side means the opposite side of the connection line 80b to the vertical axis in the direction in which the side of the fixed stage 51 to which the connection line 80b is connected and the side opposite to the side are aligned.
 図13に示すように、可動部材42は、胴体部421、羽根部422、アーム部423および回転支持部材424を有している。胴体部421、羽根部422、アーム部423および回転支持部材424は、樹脂にて一体成形されている。また、胴体部421は、丸みを帯びた先端部421aを有している。 As shown in FIG. 13, the movable member 42 has a body portion 421, a blade portion 422, an arm portion 423, and a rotation support member 424. The body part 421, the blade part 422, the arm part 423, and the rotation support member 424 are integrally formed of resin. Moreover, the trunk | drum 421 has the rounded front-end | tip part 421a.
 羽根部422は、水平方向に延びる薄板状の水平翼(第2板状部材)422aと、水平翼422aから垂直方向に延びる薄板状の垂直翼(第1板状部材)422bを有している。水平翼422aの水平方向における両先端には、それぞれ胴体部421と平行となるように胴体部421の先端部421a側へ延びるアーム部423が設けられている。 The blade portion 422 includes a thin plate-like horizontal blade (second plate member) 422a extending in the horizontal direction and a thin plate-like vertical blade (first plate member) 422b extending in the vertical direction from the horizontal blade 422a. . At both ends in the horizontal direction of the horizontal wing 422a, arm portions 423 extending toward the front end portion 421a side of the body portion 421 are provided so as to be parallel to the body portion 421, respectively.
 また、各アーム部423の先端には、それぞれ回転支持部材424が設けられている。また、各回転支持部材424には突起部424aが形成されており、突起部424aは、枠部材41のうち水平方向に対向する2つの側面の内周側に形成された穴部413に挿入される。各突起部424aが、各穴部413に挿入されることで、可動部材42が枠部材41に支持されている。 In addition, a rotation support member 424 is provided at the tip of each arm portion 423. Each rotation support member 424 has a protrusion 424a, and the protrusion 424a is inserted into a hole 413 formed on the inner peripheral side of two side surfaces of the frame member 41 facing in the horizontal direction. The The movable member 42 is supported by the frame member 41 by inserting the protrusions 424 a into the holes 413.
 可動部材42は、枠部材41の各穴部413を通る回転軸、すなわち、水平軸(第2の回転軸)の周りに回動可能に枠部材41に支持されている。 The movable member 42 is supported by the frame member 41 so as to be rotatable around a rotation axis passing through each hole 413 of the frame member 41, that is, a horizontal axis (second rotation axis).
 また、一方の回転支持部材424には、第2磁石32が格納されている。この第2磁石32は、一方の固定部412に格納されている第2磁気センサ37と水平方向において対向するように配置されている。 Further, the second magnet 32 is stored in one rotation support member 424. The second magnet 32 is disposed so as to face the second magnetic sensor 37 stored in one fixed portion 412 in the horizontal direction.
 なお、胴体部421のバランスは風向の垂直成分の計測に影響するため、無風の時に胴体部421が水平になるよう可動部材42が構成されている。 Since the balance of the body part 421 affects the measurement of the vertical component of the wind direction, the movable member 42 is configured so that the body part 421 is horizontal when there is no wind.
 次に、本実施形態の風向計の作動について説明する。風向計は、固定ステージ51の上面が設置面に対して水平となるように設置される。胴体部421は無風の状態では水平となる。なお、風向計には、接続線80bを介して車両から電源が供給されるようになっている。 Next, the operation of the anemometer of this embodiment will be described. The anemometer is installed such that the upper surface of the fixed stage 51 is horizontal to the installation surface. The body portion 421 is horizontal when there is no wind. The anemometer is supplied with power from the vehicle via a connection line 80b.
 風向計が水平方向からの風を受けると、胴体部421を水平に維持したまま、胴体部421の先端部421aが風上を向くよう可動部材42と枠部材41が鉛直軸周りに回動する。このとき、枠部材41とともに第1磁石31も鉛直軸周りに回動する。 When the anemometer receives wind from the horizontal direction, the movable member 42 and the frame member 41 rotate around the vertical axis so that the front end 421a of the body 421 faces upwind while maintaining the body 421 horizontal. . At this time, the first magnet 31 together with the frame member 41 also rotates around the vertical axis.
 あるいは、例えば、風向計が斜め上方向からの風を受けると、先端部421aが鉛直方向の上方に向けて移動して風上を向くように、可動部材42が水平軸周りに回動する。このとき、可動部材42とともに第2磁石32が水平軸周りに回動する。 Or, for example, when the anemometer receives wind from an obliquely upward direction, the movable member 42 rotates around the horizontal axis so that the tip 421a moves upward in the vertical direction and faces upwind. At this time, the second magnet 32 rotates around the horizontal axis together with the movable member 42.
 あるいは、例えば、風向計が斜め下方向からの風を受けると、先端部421aが鉛直方向の下方に向けて移動して風上を向くように、可動部材42が水平軸周りに回動する。このとき、可動部材42とともに第2磁石32が水平軸周りに回動する。 Or, for example, when the anemometer receives wind from an obliquely downward direction, the movable member 42 rotates around the horizontal axis so that the tip 421a moves downward in the vertical direction and faces upwind. At this time, the second magnet 32 rotates around the horizontal axis together with the movable member 42.
 本実施形態の風速計は、一対の第1磁石31と第1磁気センサ36で風向の水平成分を検出するとともに、一対の第2磁石32と第2磁気センサ37で風向の垂直成分を検出するように構成されている。 The anemometer of the present embodiment detects a horizontal component of the wind direction with the pair of first magnets 31 and the first magnetic sensor 36, and detects the vertical component of the wind direction with the pair of second magnets 32 and the second magnetic sensor 37. It is configured as follows.
 図14に示すように、本実施形態の風速計の磁気センサ36、37は、それぞれ磁気センサ36、37の回転軸Jが磁気センサ36、37の上面(検出面)に対して直交するように配置される。本実施形態の風速計は、回転軸Jを中心に磁石31、32を回転させると、図7に示したものと同様に、磁気センサ36、37のA相出力端子+A、-AからA相出力が出力され、B相出力端子+B、-BからB相出力が出力される。 As shown in FIG. 14, the magnetic sensors 36 and 37 of the anemometer of the present embodiment are configured so that the rotation axis J of the magnetic sensors 36 and 37 is orthogonal to the upper surfaces (detection surfaces) of the magnetic sensors 36 and 37, respectively. Be placed. In the anemometer of this embodiment, when the magnets 31 and 32 are rotated about the rotation axis J, the A phase output terminals + A and −A of the magnetic sensors 36 and 37 to the A phase are the same as those shown in FIG. The output is output, and the B-phase output is output from the B-phase output terminals + B and -B.
 第1磁気センサ36は、鉛直軸の周りに回動可能に支持された枠部材41に設けられた第1磁石31の磁界を検出して、風向の水平成分を特定するための信号を出力する。 The first magnetic sensor 36 detects the magnetic field of the first magnet 31 provided on the frame member 41 supported so as to be rotatable about the vertical axis, and outputs a signal for specifying the horizontal component of the wind direction. .
 第2磁気センサ37は、水平軸の周りに回動可能に支持された可動部材42に設けられた第2磁石32の磁界を検出して、風向の垂直成分を特定するための信号を出力する。 The second magnetic sensor 37 detects a magnetic field of the second magnet 32 provided on the movable member 42 supported so as to be rotatable around a horizontal axis, and outputs a signal for specifying the vertical component of the wind direction. .
 制御部81は、第1磁気センサ36から出力されるA相出力およびB相出力から風向の水平成分および垂直成分を特定するとともに、第2磁気センサ37から出力されるA相出力およびB相出力から風向の水平成分および垂直成分を特定する。 The control unit 81 specifies the horizontal component and the vertical component of the wind direction from the A-phase output and the B-phase output output from the first magnetic sensor 36, and the A-phase output and the B-phase output output from the second magnetic sensor 37. To determine the horizontal and vertical components of the wind direction.
 また、制御部81は、風速センサ60より入力される信号に基づいて風速を特定する風速特定処理を実施する。また、制御部81は、風向の水平成分と垂直成分を示す情報とともに、風速センサ60により検出された風速を外部機器であるPC91へ送信する処理を実施する。 Further, the control unit 81 performs a wind speed specifying process for specifying the wind speed based on a signal input from the wind speed sensor 60. In addition, the control unit 81 performs a process of transmitting the wind speed detected by the wind speed sensor 60 to the PC 91 that is an external device together with information indicating the horizontal component and the vertical component of the wind direction.
 本実施形態では、上記第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 In this embodiment, it is possible to obtain the same effect as that of the first embodiment, which is obtained from the configuration common to the first embodiment.
 また、可動部40は、鉛直軸周りに回動可能に固定部50に支持された枠部材41と、水平軸周りに回動可能に枠部材41に支持された可動部材42と、を備えている。更に、磁石は、枠部材41に配置された第1磁石31と、可動部材42に配置された第2磁石32を有している。磁気センサは、第1磁石31と対向するよう固定部50に固定され、第1磁気センサ36および第2磁気センサ37を有している。第1磁気センサ36は、第1磁石31が発生する磁界を検出して風向の水平成分を特定するための信号を出力する。第2磁気センサ37は、第2磁石32と対向するよう枠部材41に固定され、第2磁石32が発生する磁界を検出して風向の垂直成分を特定するための信号を出力する。 The movable part 40 includes a frame member 41 supported by the fixed part 50 so as to be rotatable around a vertical axis, and a movable member 42 supported by the frame member 41 so as to be rotatable around a horizontal axis. Yes. Further, the magnet has a first magnet 31 disposed on the frame member 41 and a second magnet 32 disposed on the movable member 42. The magnetic sensor is fixed to the fixing unit 50 so as to face the first magnet 31, and includes a first magnetic sensor 36 and a second magnetic sensor 37. The first magnetic sensor 36 detects a magnetic field generated by the first magnet 31 and outputs a signal for specifying the horizontal component of the wind direction. The second magnetic sensor 37 is fixed to the frame member 41 so as to face the second magnet 32, detects a magnetic field generated by the second magnet 32, and outputs a signal for specifying the vertical component of the wind direction.
 このように、第1磁気センサ36と第2磁気センサ37により、風向の水平成分および垂直成分を別々に検出するので、精度よく風向の水平成分と垂直成分を検出することができる。また、制御部81の処理や回路構成を簡素化することも可能である。 Thus, since the horizontal component and the vertical component of the wind direction are separately detected by the first magnetic sensor 36 and the second magnetic sensor 37, the horizontal component and the vertical component of the wind direction can be accurately detected. It is also possible to simplify the processing and circuit configuration of the control unit 81.
 なお、特許文献1(特開2001-215241号公報)に記載された風向風速計は、風向の垂直成分検出器と風向の垂直成分検出器を、鉄芯と巻き線を有するコイルと磁石により構成している。従って、特許文献1の風向風速計は、小型化が困難であり、例えば、ボンネットを閉じた状態におけるエンジンルーム内の狭小空間に設置するのは困難である。 The wind direction anemometer described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-215241) includes a wind direction vertical component detector and a wind direction vertical component detector that are composed of a coil and a magnet having an iron core and a winding. is doing. Therefore, the anemometer of Patent Document 1 is difficult to downsize, and for example, it is difficult to install it in a narrow space in the engine room with the hood closed.
 また、この風向風速計は、電磁誘導によりコイルに発生する起電力を検出する方式となっている。このため、例えば、無風の状態では、磁石が静止してコイルに起電力が発生しないため胴体部が向いている方向を検出することができない。 In addition, this anemometer is a method for detecting an electromotive force generated in a coil by electromagnetic induction. For this reason, for example, in a windless state, since the magnet is stationary and no electromotive force is generated in the coil, the direction in which the body portion is facing cannot be detected.
 これに対し、本実施形態に係る風向計は、磁気センサ35に一定電圧を印加している間、磁気センサ35からA相出力とB相出力が出力される。その結果、無風の状態でも、胴体部111が向いている方向を検出することが可能である。 In contrast, the anemometer according to the present embodiment outputs an A-phase output and a B-phase output from the magnetic sensor 35 while applying a constant voltage to the magnetic sensor 35. As a result, it is possible to detect the direction in which the body portion 111 is facing even in a windless state.
 (他の実施形態)
 上記各実施形態では、自動車のエンジンルーム(被測定空間)内の風向を検出する例を示したが、このような空間以外の風向を検出することもできる。
(Other embodiments)
In each of the above embodiments, an example in which the wind direction in the engine room (measurement space) of the automobile is detected has been described. However, a wind direction other than such a space can also be detected.
 また、上記各実施形態では、1つの風向計で風向を検出する例を示した。しかしながら、例えば、エンジンルーム内のような狭小空間に複数の風向計を設置して、複雑な空気の流れを解析することも可能である。 In each of the above embodiments, an example in which the wind direction is detected by one anemometer is shown. However, for example, it is possible to install a plurality of anemometers in a narrow space such as in an engine room to analyze a complicated air flow.
 また、上記各実施形態では、車両からコネクタ端子80aに接続する接続線または接続線80bを介して電源が供給されるように構成した。しかしながら、電源を供給するための電池を格納するようにして、電源の供給をワイヤレス化してもよい。 Further, in each of the above embodiments, the power is supplied from the vehicle via the connection line connected to the connector terminal 80a or the connection line 80b. However, the power supply may be made wireless by storing a battery for supplying the power.
 また、上記各実施形態では、磁気センサ35、風速センサ60、温度センサ61から出力された信号を用いて、制御部81で、風向特定処理、風速特定処理および気温特定処理を行っている。しかしながら、風向、風速、温度の特定処理を制御部81で行わなくてもよい。例えば、無線送信部82を介してPC91へデータを無線送信した後、PC91内のソフト上で風向特定処理、風速特定処理および気温特定処理を行うようにしてもよい。 In each of the above embodiments, the controller 81 performs the wind direction specifying process, the wind speed specifying process, and the air temperature specifying process using the signals output from the magnetic sensor 35, the wind speed sensor 60, and the temperature sensor 61. However, the control unit 81 may not perform the processing for specifying the wind direction, wind speed, and temperature. For example, after the data is wirelessly transmitted to the PC 91 via the wireless transmission unit 82, the wind direction specifying process, the wind speed specifying process, and the air temperature specifying process may be performed on the software in the PC 91.
 また、上記各実施形態では、風向計から無線送信部82を介してPC91へデータを無線送信するようにした。しかしながら、風速計とPC91を有線で接続し、風向計から有線通信でPC91へデータを送信するようにしてもよい。 In each of the above embodiments, data is wirelessly transmitted from the anemometer to the PC 91 via the wireless transmission unit 82. However, the anemometer and the PC 91 may be connected by wire, and data may be transmitted from the anemometer to the PC 91 by wire communication.
 また、第1実施形態では、風速センサ60および温度センサ61を備えた構成を示したが、必ずしも風速センサ60および温度センサ61を備える必要はない。また、図15に示すように、更に、地磁気を検出して地磁気を示す信号を出力する3軸の地磁気センサ62、傾斜角を検出して傾斜角を示す信号を出力する3軸の傾斜角センサ63、および湿度を検出して湿度を示す信号を出力する湿度センサ64を固定ステージ21に備えてもよい。なお、地磁気センサ62は、加速度センサを用いて構成してもよい。また、これらの各センサ60-64の少なくとも1つを備えた構成としてもよい。 In the first embodiment, the configuration including the wind speed sensor 60 and the temperature sensor 61 is shown, but the wind speed sensor 60 and the temperature sensor 61 are not necessarily provided. In addition, as shown in FIG. 15, a triaxial geomagnetic sensor 62 that detects geomagnetism and outputs a signal indicating geomagnetism, and a triaxial tilt angle sensor that detects a tilt angle and outputs a signal indicating the tilt angle. 63 and a humidity sensor 64 that detects the humidity and outputs a signal indicating the humidity may be provided in the fixed stage 21. The geomagnetic sensor 62 may be configured using an acceleration sensor. Further, it may be configured to include at least one of these sensors 60-64.
 また、第2実施形態では、風速センサ60を備えた構成を示したが、必ずしも風速センサ60を備える必要はない。また、図15に示した各センサ60-64の少なくとも1つを固定ステージ51に備えた構成としてもよい。 In the second embodiment, the configuration including the wind speed sensor 60 is shown, but the wind speed sensor 60 is not necessarily provided. Further, the fixed stage 51 may include at least one of the sensors 60 to 64 shown in FIG.
 特に、上記各実施形態において、地磁気センサ62を備えることにより、風向計がどの方位(方角)を向いて設置されているかを検出することができる。また、地磁気センサ62の検出結果に基づいて風向の方位(方角)を特定することも可能である。 In particular, in each of the above embodiments, by including the geomagnetic sensor 62, it is possible to detect which direction (direction) the anemometer is installed. It is also possible to specify the direction (direction) of the wind direction based on the detection result of the geomagnetic sensor 62.
 また、上記各実施形態において、傾斜角センサ63を備えることによって、風向計が傾斜して設置されているか否かを検出することができる。例えば、狭小空間に風向計を設置するような場合には、各風向計を水平に設置することができないことも考えられる。この場合であっても、傾斜角センサ63を備えることにより、傾斜角センサ63の検出結果に基づいて、風向を補正することも可能である。 In each of the above embodiments, by providing the tilt angle sensor 63, it is possible to detect whether or not the anemometer is installed tilted. For example, when an anemometer is installed in a narrow space, it is conceivable that the anemometers cannot be installed horizontally. Even in this case, it is also possible to correct the wind direction based on the detection result of the inclination angle sensor 63 by providing the inclination angle sensor 63.
 また、上記各実施形態において、風速を検出する風速センサ60、気温を検出する温度センサ61および湿度を検出する湿度センサ64のうち少なくとも1つのセンサを可動部10、40と接触しないよう底板部21、51に設けてもよい。可動部10、40の可動範囲を狭めないようにすることができる。 Further, in each of the above-described embodiments, at least one sensor among the wind speed sensor 60 that detects the wind speed, the temperature sensor 61 that detects the air temperature, and the humidity sensor 64 that detects the humidity does not come into contact with the movable parts 10 and 40. , 51 may be provided. The movable range of the movable parts 10 and 40 can be prevented from being narrowed.
 また、上記各実施形態において、風速センサ60、温度センサ61および湿度センサ64のうち少なくとも1つのセンサを、底板部21、51の周縁部に配置してもよい。これにより、各センサによる風向への影響を低減することが可能である。 In each of the above embodiments, at least one of the wind speed sensor 60, the temperature sensor 61, and the humidity sensor 64 may be disposed on the periphery of the bottom plate portions 21 and 51. Thereby, it is possible to reduce the influence on the wind direction by each sensor.
 また、底板部21、51は、上面の外形形状が四角形をなしており、風速センサ60、温度センサ61および湿度センサ64のうち少なくとも1つのセンサを底板部21、51の一辺に配置してもよい。あるいは、風速センサ60、温度センサ61および湿度センサ64のうち少なくとも2つのセンサを底板部21、51の一辺に配置するようにしてもよい。これにより、各センサの測定条件を揃えることが可能である。 Further, the bottom plate portions 21 and 51 have a quadrangular outer shape on the top surface, and at least one of the wind speed sensor 60, the temperature sensor 61, and the humidity sensor 64 is arranged on one side of the bottom plate portions 21 and 51. Good. Alternatively, at least two of the wind speed sensor 60, the temperature sensor 61, and the humidity sensor 64 may be arranged on one side of the bottom plate portions 21 and 51. Thereby, it is possible to arrange the measurement conditions of each sensor.
 なお、本開示は上記した実施形態に限定されるものではなく、本開示の範囲を逸脱しない範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。

 
It should be noted that the present disclosure is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the present disclosure. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes. In each of the above embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless otherwise specified, or in principle limited to a specific material, shape, positional relationship, etc. The material, shape, positional relationship, etc. are not limited.

Claims (13)

  1.  固定部(20、50)と、
     風上の方向を向くよう第1の回転軸の周りおよび前記第1の回転軸と直交する第2の回転軸の周りに回動可能に前記固定部に取り付けられた可動部(10、40)と、
     前記可動部に配置され、磁界を発生する磁石(30、31、32)と、
     前記磁石と対向するよう配置され、前記磁石が発生する磁界を検出して風向の水平成分と垂直成分を特定するための信号を出力する磁気センサ(35~37)と、を備えた風向計。
    A fixing part (20, 50);
    Movable parts (10, 40) attached to the fixed part so as to be rotatable around the first rotation axis and around the second rotation axis perpendicular to the first rotation axis so as to face the windward direction When,
    Magnets (30, 31, 32) that are arranged in the movable part and generate a magnetic field;
    An anemometer comprising a magnetic sensor (35 to 37) arranged to face the magnet and outputting a signal for detecting a magnetic field generated by the magnet and specifying a horizontal component and a vertical component of the wind direction.
  2.  前記磁石は、1つの球型磁石(30)を有し、
     前記磁気センサは、
      前記球型磁石と対向するよう前記固定部に配置され、
      前記球型磁石が発生する磁界を検出して前記風向の水平成分と垂直成分を特定するための信号を出力する1つの磁気センサ(35)を有している請求項1に記載の風向計。
    The magnet has one spherical magnet (30),
    The magnetic sensor is
    Arranged in the fixed part so as to face the spherical magnet,
    The anemometer according to claim 1, further comprising one magnetic sensor (35) for detecting a magnetic field generated by the spherical magnet and outputting a signal for specifying a horizontal component and a vertical component of the wind direction.
  3.  前記可動部は、
      前記第1の回転軸の周りに回動可能に前記固定部に支持された第1部材(41)と、
      前記第2の回転軸の周りに回動可能に前記第1部材に支持された第2部材(42)と、を備え、
     前記磁石は、
      前記第1部材に配置された第1磁石(31)と、
      前記第2部材に配置された第2磁石(32)と、を有し、
     前記磁気センサは、
      前記第1磁石と対向するよう前記固定部に固定され前記第1磁石が発生する磁界を検出して前記風向の水平成分を特定するための信号を出力する第1磁気センサ(36)と、
      前記第2磁石と対向するよう前記第1部材に固定され、前記第2磁石が発生する磁界を検出して前記風向の垂直成分を特定するための信号を出力する第2磁気センサ(37)と、を有している請求項1に記載の風向計。
    The movable part is
    A first member (41) supported by the fixed portion so as to be rotatable around the first rotation axis;
    A second member (42) supported by the first member so as to be rotatable about the second rotation axis,
    The magnet
    A first magnet (31) disposed on the first member;
    A second magnet (32) disposed on the second member,
    The magnetic sensor is
    A first magnetic sensor (36) that is fixed to the fixed portion so as to face the first magnet and detects a magnetic field generated by the first magnet and outputs a signal for specifying a horizontal component of the wind direction;
    A second magnetic sensor (37) fixed to the first member so as to face the second magnet, and detecting a magnetic field generated by the second magnet and outputting a signal for specifying a vertical component of the wind direction; The anemometer according to claim 1, comprising:
  4.  地磁気を検出して地磁気を示す信号を出力する地磁気センサ(62)を備えた請求項1ないし3のいずれか1つに記載の風向計。 The anemometer according to any one of claims 1 to 3, further comprising a geomagnetic sensor (62) for detecting geomagnetism and outputting a signal indicating geomagnetism.
  5.  前記固定部の傾斜角を検出して傾斜角を示す信号を出力する傾斜角センサ(63)を備えた請求項1ないし4のいずれか1つに記載の風向計。 The anemometer according to any one of claims 1 to 4, further comprising an inclination angle sensor (63) that detects an inclination angle of the fixed portion and outputs a signal indicating the inclination angle.
  6.  前記固定部は、土台となる底板部(21、51)を有し、
     風速を検出する風速センサ(60)、気温を検出する温度センサ(61)および湿度を検出する湿度センサ(64)のうち少なくとも1つのセンサが前記可動部と接触しないよう前記底板部に設けられている請求項1ないし5のいずれか1つに記載の風向計。
    The fixed portion has a base plate portion (21, 51) that serves as a base,
    At least one of a wind speed sensor (60) for detecting wind speed, a temperature sensor (61) for detecting air temperature, and a humidity sensor (64) for detecting humidity is provided on the bottom plate portion so as not to contact the movable portion. The anemometer according to any one of claims 1 to 5.
  7.  前記風向の水平成分と垂直成分を示す情報とともに、前記風速を検出する風速センサ(60)、気温を検出する温度センサ(61)および湿度を検出する湿度センサ(64)のうち少なくとも1つのセンサで検出された情報を外部機器(91)へ送信する送信部(82)を備えた請求項6に記載の風向計。 At least one of a wind speed sensor (60) for detecting the wind speed, a temperature sensor (61) for detecting air temperature, and a humidity sensor (64) for detecting humidity, together with information indicating the horizontal and vertical components of the wind direction. The anemometer according to claim 6, further comprising a transmitter (82) for transmitting the detected information to an external device (91).
  8.  前記少なくとも1つのセンサは、前記底板部の周縁部に配置されている請求項6または7に記載の風向計。 The anemometer according to claim 6 or 7, wherein the at least one sensor is arranged at a peripheral edge of the bottom plate.
  9.  前記固定部は、土台となる底板部(21、51)を有し、
     前記底板部は、
      上面の外形形状が四角形をなしており、
      風速を検出する風速センサ、温度を検出する温度センサおよび湿度を検出する湿度センサのうち少なくとも2つのセンサを備え、
     前記少なくとも2つのセンサは、前記底板部の一辺に配置されている請求項1ないし5のいずれか1つに記載の風向計。
    The fixed portion has a base plate portion (21, 51) that serves as a base,
    The bottom plate portion is
    The outer shape of the upper surface is a square,
    A wind speed sensor for detecting the wind speed, a temperature sensor for detecting the temperature, and a humidity sensor for detecting the humidity.
    The anemometer according to any one of claims 1 to 5, wherein the at least two sensors are arranged on one side of the bottom plate portion.
  10.  前記可動部(10、40)は、
      前記第1の回転軸の軸方向に延びる薄板状の第1板状部材(112b、422b)と、
      第2の回転軸の軸方向に延びる薄板状の第2板状部材(112a、422a)と、を有している請求項1ないし9のいずれか1つに記載の風向計。
    The movable part (10, 40) is
    A thin plate-like first plate member (112b, 422b) extending in the axial direction of the first rotation shaft;
    The anemometer according to any one of claims 1 to 9, further comprising a thin plate-like second plate member (112a, 422a) extending in an axial direction of the second rotation shaft.
  11.  前記固定部(20)は、
      土台となる底板部(21)と、
      前記底板部から前記可動部に向かって伸び、可動部を支持する支持部材(22)と、を有し、
     前記磁石(30)と前記磁気センサ(35)は、前記支持部材の伸びる方向に並ぶように配置されている請求項1ないし10のいずれか1つに記載の風向計。
    The fixing part (20)
    A base plate (21) as a base;
    A support member (22) extending from the bottom plate portion toward the movable portion and supporting the movable portion;
    The anemometer according to any one of claims 1 to 10, wherein the magnet (30) and the magnetic sensor (35) are arranged so as to be aligned in a direction in which the support member extends.
  12.  前記磁石と前記磁気センサのとの間の距離は、前記磁気センサと前記底板部との間の距離よりも短くなっている請求項11に記載の風向計。 The anemometer according to claim 11, wherein a distance between the magnet and the magnetic sensor is shorter than a distance between the magnetic sensor and the bottom plate.
  13.  前記磁気センサは、前記磁石と前記底板部との間に設けられている請求項11に記載の風向計。

     
    The anemometer according to claim 11, wherein the magnetic sensor is provided between the magnet and the bottom plate portion.

PCT/JP2016/000636 2015-03-05 2016-02-08 Anemoscope WO2016139893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-043780 2015-03-05
JP2015043780A JP6384364B2 (en) 2015-03-05 2015-03-05 Anemometer

Publications (1)

Publication Number Publication Date
WO2016139893A1 true WO2016139893A1 (en) 2016-09-09

Family

ID=56846658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000636 WO2016139893A1 (en) 2015-03-05 2016-02-08 Anemoscope

Country Status (2)

Country Link
JP (1) JP6384364B2 (en)
WO (1) WO2016139893A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280267A (en) * 2021-12-24 2022-04-05 山东省路桥集团有限公司 Intelligent recognition and analysis system and device for damage of steel box girder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190049480A1 (en) * 2017-08-11 2019-02-14 Olfree, Llc Apparatus for detecting wind direction
CN113982857B (en) * 2021-10-27 2023-09-01 国家电网有限公司 Vortex vibration current transformer protector of wisdom wind field monitoring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613471U (en) * 1984-06-13 1986-01-10 古河電気工業株式会社 3D wind vane
JPH04110775A (en) * 1990-08-31 1992-04-13 Enplas Corp Three-dimensional measuring instrument for fluid velocity and flowing direction
JPH11237483A (en) * 1998-02-19 1999-08-31 Futaba Corp Meteorological information processor
JP2006125979A (en) * 2004-10-28 2006-05-18 Yamaha Corp Wind direction detector
JP2011033373A (en) * 2009-07-30 2011-02-17 Tdk Corp Rotation angle sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613471U (en) * 1984-06-13 1986-01-10 古河電気工業株式会社 3D wind vane
JPH04110775A (en) * 1990-08-31 1992-04-13 Enplas Corp Three-dimensional measuring instrument for fluid velocity and flowing direction
JPH11237483A (en) * 1998-02-19 1999-08-31 Futaba Corp Meteorological information processor
JP2006125979A (en) * 2004-10-28 2006-05-18 Yamaha Corp Wind direction detector
JP2011033373A (en) * 2009-07-30 2011-02-17 Tdk Corp Rotation angle sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280267A (en) * 2021-12-24 2022-04-05 山东省路桥集团有限公司 Intelligent recognition and analysis system and device for damage of steel box girder

Also Published As

Publication number Publication date
JP2016161549A (en) 2016-09-05
JP6384364B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
US8633685B2 (en) System and method for measuring alignment errors of shafts
WO2016139893A1 (en) Anemoscope
CN107150759B (en) Shaft integrated angle sensing apparatus for electric bicycle and electric bicycle including the same
JP5128120B2 (en) Rotation sensor
JP2007040850A (en) Rotating angle sensor
JP2007113993A (en) Magnetic compass
US9103682B2 (en) Apparatus for applying multi-axial inertial force
EP2581707B1 (en) Contactless magnetic linear position sensor
US7268540B1 (en) Rotational angle detector
US20150233735A1 (en) Sensor device for acquiring at least one rotational property of a rotating element
ATE547712T1 (en) D'ARSONVAL MOVEMENT MEMS ACCELEROMETER
Včelák et al. Precise magnetic sensors for navigation and prospection
US11448527B2 (en) Magnetic encoder, method, system for detecting absolute electrical angle, and readable storage medium
JP2018513962A (en) Method for detecting the spatial direction of a transducer by one or more spatial direction features
CN107390155A (en) A kind of Magnetic Sensor calibrating installation and method
CN204255971U (en) For the sensor module detecting motor rotary speed or phasing degree and the motor be associated
CN201569429U (en) Hall tilt angle sensor
Trinh et al. Miniature tri-axis magnetometer with in-plane GMR sensors
EP2097718A1 (en) Sensor
JP5703970B2 (en) Velocity detector in eddy current type instrument.
JP6346466B2 (en) Magnetic data correction device
JP2018017584A (en) Detection means, angle sensor, and angle calculation method
CN115307660B (en) Broadband calibration device and calibration method suitable for calibrating angular vibration sensor
CN220302258U (en) Wind-to-wind angle deviation calibration device of wind generating set
JP2019007918A (en) Anemometer and wind direction wind speed monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758594

Country of ref document: EP

Kind code of ref document: A1