WO2016138750A1 - 一种电能质量扰动源定位系统及定位方法 - Google Patents

一种电能质量扰动源定位系统及定位方法 Download PDF

Info

Publication number
WO2016138750A1
WO2016138750A1 PCT/CN2015/088612 CN2015088612W WO2016138750A1 WO 2016138750 A1 WO2016138750 A1 WO 2016138750A1 CN 2015088612 W CN2015088612 W CN 2015088612W WO 2016138750 A1 WO2016138750 A1 WO 2016138750A1
Authority
WO
WIPO (PCT)
Prior art keywords
power quality
disturbance
monitoring device
time
online monitoring
Prior art date
Application number
PCT/CN2015/088612
Other languages
English (en)
French (fr)
Inventor
余涛
庄重
李铭
陆政
Original Assignee
江苏省电力公司常州供电公司
江苏省电力公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520125920.6U external-priority patent/CN204536472U/zh
Priority claimed from CN201510097288.3A external-priority patent/CN104635114B/zh
Application filed by 江苏省电力公司常州供电公司, 江苏省电力公司, 国家电网公司 filed Critical 江苏省电力公司常州供电公司
Publication of WO2016138750A1 publication Critical patent/WO2016138750A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Definitions

  • the invention relates to the field of online monitoring of power quality pollution sources, and particularly relates to a positioning system and a positioning method for a power quality disturbance source in a power grid.
  • a method for determining a table based on a disturbance direction relationship According to the arrangement of the network structure and power quality online monitoring device (PQMD) in the system, a table of disturbance direction between the location of the disturbance source in the system and the on-line monitoring device of each power quality is pre-registered. When an actual disturbance event occurs in the system, the disturbance direction is determined according to the measurement data of each monitoring point, and compared with the relationship table to implement the positioning function.
  • PQMD power quality online monitoring device
  • a symbolic positioning method based on the determination of the direction of the disturbance source of a single measurement point or multiple measurement points is studied. For example, when a voltage sag event or a harmonic event occurs in a power system, a method based on the disturbance power and the disturbance energy, based on the real part symbol of the equivalent impedance, etc., can be used to determine whether the disturbance event occurs in the forward or backward direction of the monitoring point. .
  • some scholars have proposed a power quality perturbation source localization method based on genetic algorithm.
  • This method analyzes the mechanism of high-frequency components of disturbance signals, uses wavelet transform to extract high-frequency components, and uses the polarity of high-frequency disturbance energy as Based on the system topology and the arrangement of monitoring points, the disturbance source location optimization model is established.
  • the disturbance source location problem is transformed into a 0-1 integer programming problem, and the genetic algorithm is used to solve the problem.
  • the disadvantage of this method is that only the front and rear directions of the disturbance source relative to the monitoring point can be determined.
  • the precise location of the disturbance source cannot be truly realized (for example, positioning to a specific line)
  • the establishment of the disturbance source localization optimization model and the use of the genetic algorithm further increase the calculation amount and storage capacity of the power quality online monitoring device.
  • the technical problem to be solved by the present invention is to provide a positioning system and a positioning method capable of realizing accurate automatic positioning of a disturbance source and automatically eliminating disturbance source fuzzy items, high efficiency, simple structure, low cost, easy realization and deployment of power quality disturbance source. .
  • One of the technical solutions for achieving the object of the present invention is to provide a network-based power quality disturbance source localization analysis method, comprising the following steps:
  • the transient power quality disturbance voltage signal U k is decomposed by the morphological unsampled wavelet to obtain the second layer morphological unsampled wavelet detail coefficient y2. If the modulus maximum value of the detail coefficient y2 is greater than the threshold, Then, the branch where the monitoring point is located is determined as a branch affected by the transient power quality disturbance, and the two time points of the modulus maximum point of the detail coefficient y2 exceeding the threshold and being the farthest distance are determined as the start and end of the disturbance. Time t1, t2;
  • the transient power quality disturbance voltage signal U k of the monitoring point on the branch affected by the transient power quality disturbance determined in step 2 is subjected to window Fourier transform to extract the fundamental frequency amplitude characteristic V of the disturbance signal, and the waveform distortion duration number Characteristic H, perturbation zero-crossing time characteristic O; S-transforming the transient power quality disturbance voltage signal U k , extracting the maximum amplitude fluctuation characteristic Z of the disturbance signal and the time-frequency deviation characteristic B of the disturbance signal; wherein the waveform distortion duration number is extracted
  • the waveform distortion rate threshold of the feature H is set to 0.01; the five features are binary-coded and compared with the binary threshold matrix to identify the type of the disturbance signal, and the type of occurrence of the most monitoring points in each monitoring point is determined as Disturbance type
  • the device will notify the other power quality monitoring devices in the network to immediately start the fault recording system through the Ethernet. Record the sampling data of one cycle and the sampling data of the 8 cycles in front of the cycle and the precise time of this time. This time is the time of the network server calibration system, and the disturbance direction of each monitoring point is the power/current direction discrimination result. Establish a disturbance direction matrix to prepare for the interface waveform curve display and the power quality parameter analysis in the next disturbance source location;
  • the power quality monitoring device at the point can confirm the event type according to the monitored disturbance data according to the data according to steps 3 and 4; when the event type is confirmed According to the recording and playback of each power quality monitoring device in the network, the time of occurrence of the source can be accurately disturbed, and the power quality event event source and the power quality can be determined according to the corresponding matrix algorithm such as power/current direction and system disturbance direction matrix. Monitor the relative position of the device before and after the point.
  • the second technical solution for achieving the object of the present invention is to provide a positioning system for a power quality disturbance source, comprising a power quality management main station and an online power quality monitoring set at each monitoring point of the transmission line of the radiation distribution system.
  • the device, each power quality online monitoring device is connected through Ethernet, and each power quality online monitoring device and the power quality management main station are connected through Ethernet; when an actual disturbance event occurs in the system, the power quality online monitoring device detects After the disturbance event, the moment when the disturbance source occurs is recorded and notified to other power quality online monitoring devices in the network through the Ethernet to start the disturbance recording system based on the time, and the N cycles before and after the time are recorded.
  • the sampling data of N cycles is N ⁇ 1, and is sent to the power quality management main station in real time; the power quality management main station stores the device number of each power quality online monitoring device and the address of the monitoring point.
  • the positioning system of the power quality disturbance source further comprises an Ethernet switch supporting the IEEE1588 protocol
  • the power quality management main station supports the IEEE1588 protocol
  • the power quality online monitoring device is provided with an Ethernet interface supporting the IEEE1588 protocol
  • the power quality is The management main station and each power quality online monitoring device are connected to the Ethernet switch through a dedicated shielded network connection line according to international common standards, and the whole system uses the IEEE1588 time-to-time protocol for clock calibration.
  • the positioning method of the positioning system of the power quality disturbance source described above comprises the following steps:
  • a root number structure diagram is constructed, and location information of each power quality online monitoring device arrangement point in the entire system is identified;
  • the system may define L ⁇ M, A L ⁇ M can be done at system initialization
  • the system has:
  • L is the total number of nodes in the number of roots in the system
  • M corresponds to the number of line segments in the system, and is the number of online quality monitoring devices installed in the whole system.
  • Each data a i ⁇ j of the matrix A L ⁇ M represents the system.
  • the online monitoring device when the online monitoring device detects a problem with the power quality of the power grid or a disturbance source event such as a current or a sudden voltage change, the device records the moment when the disturbance source occurs and passes through the Ethernet.
  • the way of broadcasting informs other power quality online monitoring devices in the network to immediately start the fault recording system, and records the sampling data of N cycles and N cycles before the time, N ⁇ 1, each power quality online monitoring device in the system and
  • the IEEE 1588 time-to-time protocol is used as the reference time for the entire system between power quality management master stations;
  • the power quality online monitoring device can Confirm the type of event based on the detected disturbance data
  • the online monitoring device sends the product coverage matrix and the system direction matrix of the moment to the power quality management master station in real time, and the recording and playback of the multiple times are compared with each other, and the spectrum of each recorded waveform is
  • the analysis and the system location information stored in the power quality management master station obtain the precise time and location of the disturbance source event in the system.
  • the direction matrix B M ⁇ 1 of the system at that time is established:
  • Real-time data information uploaded by the device establishes a system direction matrix at which the disturbance source event occurs;
  • each element c i in the result matrix is related to the power network topology and the specific arrangement status of the power quality online monitoring device, and whether the absolute value of the value of c i is equal to the number of the power quality online monitoring device arranged in the system The number, if equal, confirms that the line segment L i corresponding to the row element c i at that moment is a power quality disturbance source;
  • the specific power quality online monitoring device arrangement point and the specific line segment are determined by the value of c i , and then sent to the power quality management main station through each power quality online monitoring device.
  • the recording and playback function of the time is compared to eliminate the disturbance source fuzzy item and the precise time, and the specific location where the disturbance source event occurs can be obtained by the position information stored on the power quality management main station or the power quality online monitoring device.
  • step 1 the arrangement of each power quality online monitoring device in the system is identified according to the device address of the power quality online monitoring device, and the table is stored in a database of the power quality management main station, and each power quality is monitored online according to the need.
  • the location information of the arrangement point can also be stored in the device.
  • the specific method for confirming the type of the disturbance event in step 4 is: collecting the transient power quality disturbance signal of each monitoring point in the power grid, and obtaining the transient power quality disturbance voltage signal and current signal of each monitoring point after filtering; for each monitoring point The transient power quality disturbance voltage signal is decomposed by the morphological unsampled wavelet to obtain the second layer morphological unsampled wavelet detail coefficient y2. If the modulus maximum value of the detail coefficient y2 is greater than the threshold, the branch of the monitoring point is located.
  • the transient power quality disturbance voltage signal of the monitoring point on the branch affected by the transient power quality disturbance is subjected to window Fourier transform to extract the fundamental frequency amplitude characteristic of the disturbance signal V, the waveform distortion duration number characteristic H, the disturbance zero crossing number characteristic O S-transforming the transient power quality disturbance voltage signal, extracting the maximum amplitude fluctuation characteristic Z of the disturbance signal and the disturbance signal time frequency Deviation characteristic B; wherein the waveform distortion rate threshold value when the waveform distortion continuous period number feature H is extracted is set to 0.01; the five features are binary coded and compared with the binary threshold matrix to identify the type of the disturbance signal, and each monitoring is performed The type with the most occurrences in the point recognition result is determined as the disturbance type.
  • FIG. 1 is a system architecture topology diagram of the present invention
  • FIG. 2 shows a rooted tree constructed by taking the phase A as an example of the topology shown in FIG. 1;
  • Figure 3 is a schematic diagram of the disturbance source positioning of the present invention.
  • the transient power quality disturbance voltage signal U k is decomposed by the morphological unsampled wavelet to obtain the second layer morphological unsampled wavelet detail coefficient y2. If the modulus maximum value of the detail coefficient y2 is greater than the threshold, Then, the branch where the monitoring point is located is determined as a branch affected by the transient power quality disturbance, and the two time points of the modulus maximum point of the detail coefficient y2 exceeding the threshold and being the farthest distance are determined as the start and end of the disturbance. Time t1, t2;
  • the transient power quality disturbance voltage signal U k of the monitoring point on the branch affected by the transient power quality disturbance determined in step 2 is subjected to window Fourier transform to extract the fundamental frequency amplitude characteristic V of the disturbance signal, and the waveform distortion duration number Characteristic H, perturbation zero-crossing time characteristic O; S-transforming the transient power quality disturbance voltage signal U k , extracting the maximum amplitude fluctuation characteristic Z of the disturbance signal and the time-frequency deviation characteristic B of the disturbance signal; wherein the waveform distortion duration number is extracted
  • the waveform distortion rate threshold of the feature H is set to 0.01; the five features are binary-coded and compared with the binary threshold matrix to identify the type of the disturbance signal, and the type of occurrence of the most monitoring points in each monitoring point is determined as Disturbance type
  • the device will notify the other power quality monitoring devices in the network to immediately start the fault recording system through the Ethernet. Record the sampling data of one cycle and the sampling data of the 8 cycles in front of the cycle and the precise time of this time. This time is the time of the network server calibration system, and the disturbance direction of each monitoring point is the power/current direction discrimination result. Establish a disturbance direction matrix to prepare for the interface waveform curve display and the power quality parameter analysis in the next disturbance source location;
  • the power quality monitoring device at the point can confirm the event type according to the monitored disturbance data according to the data according to steps 3 and 4; when the event type is confirmed According to the recording and playback of each power quality monitoring device in the network, the time of occurrence of the source can be accurately disturbed, and the power quality event event source and the power quality can be determined according to the corresponding matrix algorithm such as power/current direction and system disturbance direction matrix. Monitor the relative position of the device before and after the point.
  • the power quality disturbance source positioning system of the embodiment includes a power quality management master station supporting the IEEE1588 protocol, and supports the IEEE1588 protocol.
  • Each power quality online monitoring device is connected by Ethernet, and each power quality online monitoring device and the power quality management main station are connected by Ethernet, specifically, the power quality management main station and each power quality online monitoring device All of them are connected to the Ethernet switch after networking through a dedicated shielded network cable.
  • the power quality online monitoring device (PQMD) used in this embodiment uses the model YPM- manufactured by Wuxi Youdian Technology Co., Ltd. 01 power quality online monitoring device.
  • the power quality online monitoring device records the moment of occurrence of the disturbance source after detecting the disturbance event and notifies other online power quality online monitoring devices in the network via the Ethernet as the reference.
  • Start the disturbance recording system record the sampling data of N cycles and N cycles before the moment, N ⁇ 1, and send it to the power quality management master station in real time, and establish mutual cooperation between the power quality online monitoring devices.
  • the system coverage matrix and the system direction matrix are prepared for the analysis of the interface waveform display, the removal of the fuzzy term and the analysis of the power quality parameters when the disturbance source is located.
  • the power quality management master station stores the device number of each power quality online monitoring device and the address of the monitoring point.
  • the entire system uses the IEEE 1588 time-to-time protocol for clock calibration.
  • the positioning method of the positioning system applying the above power quality disturbance source includes the following steps:
  • a root number structure diagram commonly used in the power system is constructed, and the location information of each power quality online monitoring device arrangement point in the whole system is identified.
  • a rooted tree structure diagram commonly used in power system analysis is constructed, and the device address (stack address) of the online quality monitoring device of the power quality is identified in the system.
  • the table is stored in the database of the power quality management main station, and the position information of the disposed point can also be stored in the online power monitoring device of each power quality according to requirements, and the disturbance source location is used for decision analysis.
  • the system may define L ⁇ M, A L ⁇ M can be done at system initialization
  • the system has:
  • L is the total number of nodes in the number of roots in the system
  • M corresponds to the number of line segments in the system, and is the number of online quality monitoring devices installed in the whole system.
  • Each data a i ⁇ j of the matrix A L ⁇ M represents the system.
  • the root node is the first power quality online monitoring device on each line shown in FIG. 2, and the subsequent devices are sequentially added to the root number.
  • the serial number of each power quality online monitoring device (the data table is also established between the serial number and the device address) is consistent with the corresponding line segment number in the topology shown in FIG. L ai denotes the line segment number in the system, and P i denotes the serial number of the power quality online monitoring device device.
  • the system coverage matrix is established according to the relative orientation relationship between each node in the root number and the power quality online monitoring device.
  • L a power transmission line 9 is the number of nodes, i.e. the number of segments of the power distribution monitoring system 9, the serial number followed by L a1 ⁇ L a9, the actual number of power quality monitoring means is arranged online 4.
  • the system coverage matrix A 9 ⁇ 4 can be defined, and each a ij of the matrix A 9 ⁇ 4 represents the positional relationship between the arrangement point of the jth power quality online monitoring device and the i-th node in the system, if L ai is located at P j
  • the initial value of the defined system coverage matrix A 9 ⁇ 4 can be assigned:
  • the device when the online monitoring device detects a problem with the power quality of the power grid or a disturbance source event such as a current or a sudden voltage change, the device records the moment when the disturbance source occurs and passes through the Ethernet.
  • the way of broadcasting informs other power quality online monitoring devices in the network to immediately start the fault recording system, and records the sampling data of N cycles and N cycles before the time, N ⁇ 1, each power quality online monitoring device in the system and
  • the power quality management master station uses the IEEE1588 time-to-time protocol as the reference time of the whole system, and prepares for the interface waveform curve display, the disturbance source source to eliminate the disturbance source fuzzy item and the power quality management master station for data analysis.
  • N 8 once the power quality online monitoring device detects the disturbance source event, the recording and broadcasting system in the power quality online monitoring device records the sampling data of 8 cycles and 8 cycles after the time.
  • the device records the moment when the disturbance source occurs and broadcasts the other network through the Ethernet.
  • the power quality online monitoring device starts the fault recording system in time, and after each power quality online monitoring device receives the broadcast command, the recording and recording function is started to record the sampling data of 8 cycles and 8 cycles before the moment and record the data.
  • the waveform is sent to the power quality management main station.
  • the power quality online monitoring device and the power quality management main station in the system use the IEEE1588 protocol for clock calibration.
  • the clock precision can reach ns level, which is the interface waveform display and the next step. Prepare for power quality parameter analysis and decision making when the disturbance source is located.
  • the power quality online monitoring device can confirm the event type according to the detected disturbance data: collecting the transient power quality disturbance signals of each monitoring point in the power grid, and filtering each The transient power quality of the monitoring point disturbs the voltage signal and the current signal; the transient power quality disturbance voltage signal of each monitoring point is decomposed by the morphological unsampled wavelet to obtain the second layer morphological unsampled wavelet detail coefficient y2, if the details If the modulus maxima of the coefficient y2 is greater than the threshold, then the branch where the monitoring point is located is determined.
  • the transient power quality disturbance voltage signal of the monitoring point on the branch affected by the transient power quality disturbance is subjected to window Fourier transform to extract the fundamental frequency amplitude characteristic of the disturbance signal V, the waveform distortion duration number characteristic H, the disturbance zero crossing number characteristic O;
  • the S-transformation of the transient power quality disturbance voltage signal is performed to extract the maximum amplitude fluctuation characteristic Z of the disturbance signal and the time-frequency deviation characteristic B of the disturbance signal; wherein the waveform distortion rate threshold value when the waveform distortion duration number characteristic H is extracted is set to 0.01
  • the five features are binary coded and compared with the binary threshold matrix to identify the type of the disturbance signal, and the type of occurrence of each monitoring point identification result is determined as the disturbance type;
  • the online monitoring device sends the product coverage matrix and the system direction matrix of the moment to the power quality management master station in real time, and the recording and playback of the multiple times are compared with each other, and the spectrum of each recorded waveform is
  • the analysis and the system location information stored in the power quality management master station obtain the precise time and location of the disturbance source event in the system.
  • the direction matrix B M ⁇ 1 of the system at that time is established:
  • the value of b j is time-scaled, and the power quality management master station can establish a system direction matrix at the moment when the disturbance source event occurs through the real-time data information uploaded by each power quality online monitoring device.
  • each power quality online monitoring device can monitor the disturbance data. After the disturbance source event is confirmed, each power quality online monitoring device can determine the disturbance according to the system direction matrix. The relative positional relationship between the source and the power quality online monitoring device.
  • each element c i in the result matrix is related to the power network topology and the specific arrangement status of the power quality online monitoring device, and whether the absolute value of the value of c i is equal to the number of the power quality online monitoring device arranged in the system The number, if equal, confirms that the line segment L i corresponding to the row element c i at that time is a power quality disturbance source.
  • the wave recording system on the power quality online monitoring device at B, C, and D records the waveform and time when the current or voltage suddenly changes at point A, and the master station can pass B, C, and D.
  • the time on the waveform map uploaded by the power quality online monitoring device accurately locates the moment of occurrence of the disturbance source at point A.
  • C L2 and C L3 are obtained as follows:
  • the absolute value of each element c i in the result matrix C L ⁇ 1 implies information determining the source of the power quality disturbance.
  • the absolute value of the second row of C L2 and the third row of C L3 is equal to the number of detection devices of the online power quality monitoring device installed in the system, and it can be preliminarily determined that the power quality disturbance event occurs simultaneously on the lines L a2 and La 3 .
  • the specific power quality online monitoring device arrangement point and the specific line segment are determined by the value of c i , and then sent to the power quality management main station through each power quality online monitoring device.
  • the recording and playback function of the time is compared to eliminate the disturbance source fuzzy item and the precise time, and the specific location where the disturbance source event occurs can be obtained by the position information stored on the power quality management main station or the power quality online monitoring device.
  • the invention has positive effects: (1) The invention provides a distributed, multi-machine coordinated power quality monitoring system capable of multi-point monitoring based on Ethernet pairing, wherein each power quality online monitoring device passes through the system. IEEE 1588 time-of-day protocol unified clock calibration instead of traditional GPRS calibration method, based on multi-point power quality online monitoring device recorded on the time scale for disturbance identification, information broadcasting and recording matching, etc.
  • power quality management master station can be based on time, power/current direction at each moment and through simple matrix algorithm with time scale (system coverage matrix and matrix multiplication with time-scale system direction matrix), each power quality online monitoring device
  • time scale system coverage matrix and matrix multiplication with time-scale system direction matrix
  • each power quality online monitoring device The mutual comparison of the recorded waveforms and the spectrum analysis of each recorded waveform to achieve accurate automatic positioning of the disturbance source and automatic elimination of the disturbance source fuzzy item, high efficiency, simple structure, low cost, easy to implement and deploy the power quality of the distribution network Disturbance source positioning system and method thereof.
  • the invention combines the disturbance signals of multiple monitoring points in the power grid, detects, identifies and analyzes the power quality disturbance source, outputs the disturbance duration, the disturbance type and other results, and the result is accurate and comprehensive; and at the same time, monitoring and analyzing multiple monitoring
  • the information of the point can realize the precise positioning of the disturbance source, which is convenient for clarifying the responsible party of the accident and the problem of power quality disturbance.
  • the detected and analyzed power quality information can be sent to the system main station for long-term storage through Ethernet, which is convenient for comprehensive recording of power quality.
  • the disturbed data facilitates the management department to quickly and intuitively understand the relevant information about the power quality disturbance, further strengthen the power quality supervision and management, provide real and accurate information for the governance and evaluation of power quality problems, and build a large-scale quality.
  • the power supply system provides decision-making data.
  • the morphological unsampled wavelet can quickly and accurately detect the start and end time of the disturbance, and determine the branch affected by the disturbance, which can narrow the scope of the subsequent analysis and make the disturbance source of the present invention.
  • the detection and analysis method is simpler, faster and more effective.
  • the present invention uses a unified IEEE1588 protocol for clock calibration between each power quality online monitoring device and the primary station.
  • the precise positioning is divided into two steps: 1) initial positioning of the system: system coverage matrix according to the moment of occurrence of the disturbance source event And the direction matrix of the system initially determines the type and orientation of the disturbance source; 2)
  • the power quality online monitoring device physical equipment cooperates with the auxiliary positioning: the voltage sag source positioning method only needs to measure the voltage phase angle, current amplitude and phase angle of the monitoring point Determine the relative position of the disturbance source and the monitoring point by judging the polarity of the change of the real current component at the moment of voltage sag, and the results of the oscillography analysis at the time of the multiple monitoring points in the integrated power grid, the spectrum analysis and storage of each recorded waveform
  • the position information of each power quality online monitoring device in the system of the power quality management main station can determine the precise position of the voltage sag disturbance source, and further eliminate the fuzzy item.
  • the method is simple in calculation and the precision can reach

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种电能质量扰动源的定位系统及其定位方法,定位系统包括电能质量管理主站及与主站之间通过以太网连接的电能质量在线监测装置,在辐射型配电系统的输电线路的每个监测点设置一台电能质量在线监测装置,各个电能质量在线监测装置之间通过以太网连接;当系统中发生实际扰动事件时,电能质量在线监测装置检测到扰动事件后会记录下扰动源发生的时刻并通过以太网以广播的方式通知网络中其它的电能质量在线监测装置以该时刻为基准启动扰动录波系统,记录下该时刻之前N个周波和之后N个周波的采样数据,并实时的发送到电能质量管理主站,通过各个电能质量在线监测装置之间相互协作建立系统覆盖矩阵和系统方向矩阵,再进行扰动源定位。

Description

一种电能质量扰动源定位系统及定位方法 技术领域
本发明涉及电能质量污染源在线监测领域,具体涉及一种电网中电能质量扰动源的定位系统及定位方法。
背景技术
近年来随着经济的飞速发展,电力负荷增长迅猛,用电负荷日趋复杂化和多样化,越来越多的非线性、冲击性、不平衡和谐波丰富的应用设备相继接入电网,都会不同程度地影响到供电电网的电能质量。加之监控手段不完善及运行操作、外来干扰和各种故障等原因,电能质量问题日益突出。
当前,电力系统中与电能质量相关的研究热点主要集中在以下几个方面:电能质量信号的辨识处理、电能质量评价指标、电能质量在线监测装置和系统的结构、电能质量控制等。然而,电能质量事件发生后扰动源的定位技术也十分重要,不仅有助于电力部门与用户之间的责任判定和纠纷的合理解决,而且对电力部门制定电能质量缓和和控制策略具有重要指导作用。因此,有必要建立一套电能质量的远程、集中监测与分析系统,对影响电能质量的污染源如电压或电流的暂升、暂降和短时中断等指标进行分析,及时找出影响电能质量污染源的原因,保证电网安全、可靠、经济运行。
目前配电网中电能质量扰动源的定位方法主要有以下两类方法:
1、基于扰动方向关系表格的判定方法。根据系统中网络结构和电能质量在线监测装置(PQMD)的布置情况,预先列写出系统中扰动源位置和各个电能质量在线监测装置之间的扰动方向关系表。当系统中发生实际扰动事件时,根据各监测点的测量数据进行扰动方向的判断,并与该关系表格进行比对,来实现定位功能。该方法的缺点是:必须依靠人工的比较才能进行扰动源的定位,工作效率低。目前虽然可以通过计算机编程进行自动分析来实现扰动源的自动定位,但有些情况下(例如其它线路上的扰动源对电能质量在线监测装置的影响,即不能充分利用所有支路信息进行定位判断)存在模糊目标扰动源时,不能实现精确定位,定位准确性和容错能力较差。
2、基于单测点或多测点的扰动源方向判定的符号型定位方法。根据电力系统中布置的单个或多个电能质量在线监测装置,研究各种事件类型对应的扰动源方向判定算法。例如,当电力系统中发生电压暂降事件或谐波事件时,采用基于扰动功率和扰动能量、基于等效阻抗实部符号等方法,可实现扰动事件发生在监测点前向或后向的判定。目前也有学者在此基础上提出基于遗传算法的电能质量扰动源定位方法,该方法通过对扰动信号高频分量产生机理的分析,利用小波变换提取高频分量,将高频扰动能量的极性作为扰动方向判别的依据,并根据系统拓扑结构及监测点布置情况,建立了扰动源定位优化模型,将扰动源定位问题转化成为0-1整数规划问题,采用遗传算法进行求解。该方法的缺点是:只能判定出扰动源相对于该监测点的前、后方向,在电力网络中发生电能质量事件时,并不能真正实现扰动源的精确定位(如定位到具体某条线路),建立扰动源定位优化模型、采用遗传算法进一步增大了电能质量在线监测装置的计算量和存储量。
发明内容
本发明要解决的技术问题是提供一种能实现扰动源准确自动定位和自动消除扰动源模糊项、效率高、结构简单、成本低廉、易于实现和部署的电能质量扰动源的定位系统及定位方法。
实现本发明目的的技术方案之一是提供一种基于联网的电能质量扰动源定位分析方法,包括以下步骤:
①在辐射型配电系统的输电线路中安装电能质量监测装置,并各个电能质量监测装置之间、电能质量监测装置与电能质量管理主站通过以太网连接,并向电能质量管理主站发送各个监测点的实时监测数据或结果分析;电能质量管理主站存储着各个电能质量监测装置的设备号以及所在监测点的地址;
②采集电网中多个监测点k=1,2,…的暂态电能质量扰动信号,滤波后得到各监测点暂态电能质量扰动电压信号Uk及电流信号Ik
③对每个监测点的暂态电能质量扰动电压信号Uk采用形态非抽样小波进行2层分解,得到第二层形态非抽样小波细节系数y2,若细节系数y2的模极大值大于阈值,则将此监测点所在支路确定为受暂态电能质量扰动影响的支路,并将细节系数y2的 模极大值点中超过阈值且相距最远的两个时间点确定为扰动发生的起止时刻t1,t2;
④对步骤②中确定的受暂态电能质量扰动影响的支路上的监测点的暂态电能质量扰动电压信号Uk进行窗口傅立叶变换提取扰动信号的基频幅值特征V、波形畸变持续周期数特征H、扰动过零点次数特征O;对暂态电能质量扰动电压信号Uk进行S变换,提取扰动信号的最大幅值波动特征Z和扰动信号时频偏差特征B;其中提取波形畸变持续周期数特征H时的波形畸变率阈值设定为0.01;将这五个特征进行二进制编码后与二进制阈值矩阵比较,识别出扰动信号的类型,同时将各个监测点识别结果中出现次数最多的类型确定为扰动类型;
⑤如某点处的电能质量监测装置发现电网电能质量出现问题或发生电流、电压突变时,该设备会通过以太网以广播的方式通知网络中其它的电能质量监测装置即时启动故障录波系统,录下一个周波的采样数据以及该周波前面8个周波的采样数据和此时刻的精确时间,此时间为网络服务器校时系统的时间,同时由各个监测点的扰动方向即功率/电流方向判别结果建立扰动方向矩阵,为界面波形曲线显示和下一步扰动源定位时电能质量参数分析做好准备;
⑥当每个电能质量监测装置设备完成录波工作后,该点处的电能质量监测装置可根据监测到的扰动数据,并据此数据依照步骤③和④确认事件类型;当事件类型得到确认后,根据网络中的各个电能质量监测装置的录波回放即可精确扰动源发生的时间,根据功率/电流方向以及系统扰动方向矩阵等相应的矩阵算法判定出电能质量事件扰动源与该处电能质量监测装置布置点的前后相对位置。
实现本发明目的的技术方案之二是提供一种电能质量扰动源的定位系统,包括电能质量管理主站以及在辐射型配电系统的输电线路的每个监测点设置的一台电能质量在线监测装置,各个电能质量在线监测装置之间通过以太网连接,各电能质量在线监测装置与电能质量管理主站之间通过以太网连接;当系统中发生实际扰动事件时,电能质量在线监测装置检测到扰动事件后会记录下扰动源发生的时刻并通过以太网以广播的方式通知网络中其它的电能质量在线监测装置以该时刻为基准启动扰动录波系统,记录下该时刻之前N个周波和之后N个周波的采样数据,N≥1,并实时的发送到电能质量管理主站;电能质量管理主站存储着各个电能质量在线监测装置的设备号以及所在监测点的地址。
进一步的,所述一种电能质量扰动源的定位系统还包括支持IEEE1588协议的以太网交换机,电能质量管理主站支持IEEE1588协议,电能质量在线监测装置设有支持IEEE1588协议的以太网接口,电能质量管理主站之间与各个电能质量在线监测装置均通过专用的屏蔽网络连接线按照国际通用标准接入以太网交换机后组网,整个系统采用IEEE1588对时协议进行时钟校准。
上述的一种电能质量扰动源的定位系统的定位方法,包括如下几个步骤:
①根据已知的配电系统拓扑结构,构建有根数结构图,并且标识出整个系统中各个电能质量在线监测装置布置点的位置信息;
②建立整个系统覆盖矩阵,根据系统中有根数各节点与电能质量在线监测装置的相关位置关系,可定义系统的覆盖矩阵AL×M,AL×M可在系统初始化时完成:
Figure PCTCN2015088612-appb-000001
其中,L为系统中有根数中的节点总数,M对应系统中的线段数量,为整个系统中安装的电能质量在线监测装置数量,矩阵AL×M的每一个数据ai×j表示系统中第j个电能质量在线监测装置布置点与第i个电能质量在线监测装置监测点的位置关系,初始化具体赋值为:如果如果Li位于Mj的前向区域,则令aij=-1,反之;aij=+1,系统所述的Mj后向区域是指第j个电能质量在线监测装置布置节点以及该节点的子节点区域;前向区域是指除了后向区域外的其它节点区域;
③根据系统中某一时刻某点处的电能质量在线监测装置检测到电网电能质量出现问题或发生电流、电压突变等扰动源事件时,该设备会记录下扰动源发生的时刻并通过以太网以广播的方式通知网络中其它的电能质量在线监测装置即时启动故障录波系统,记录下该时刻之前N个周波和之后N个周波的采样数据,N≥1,系统中各个电能质量在线监测装置与电能质量管理主站间使用IEEE 1588对时协议作为整个系统的基准时间;
④当每个电能质量在线监测装置设备完成录波工作后,电能质量在线监测装置可 根据检测到的扰动数据确认事件类型;
⑤根据网络中的各个电能质量在线监测装置实时向电能质量管理主站发送的该时刻的系统覆盖矩阵和系统方向矩阵的乘积、多个时刻的录播回放相互比对、各个所录波形的频谱分析以及电能质量管理主站中存储的系统位置信息获得系统中扰动源事件发生的精确时间和位置,其具体步骤如下:
首先,根据系统覆盖矩阵和发生扰动源事件时各个电能质量在线监测装置实时上传到主站的信息,建立系统该时刻的方向矩阵BM×1
Figure PCTCN2015088612-appb-000002
式中,bj表示系统中第i个线段处发生扰动源事件时,第j个电能质量在线监测装置设备对扰动源方向的判定结果,如果判定扰动源为后向扰动,即判定出扰动源事件位于第j个电能质量在线监测装置设备之后,则令bj=+1;反之,bj=-1;bj的值带有时标,电能质量管理主站则可以通过各个电能质量在线监测装置上传的实时数据信息建立发生扰动源事件时刻的系统方向矩阵;
Figure PCTCN2015088612-appb-000003
然后,将系统覆盖矩阵和该时刻的系统方向矩阵进行矩阵乘法运算,得到结果矩阵CL×1为:
Figure PCTCN2015088612-appb-000004
结果矩阵中每个元素ci的值与电力网络拓扑结构以及电能质量在线监测装置的具体布置状况有关,根据ci的值的绝对值是否等于系统中布置的电能质量在线监测装置的数量的元素个数,若相等则确认该时刻该行元素ci对应的线段Li为电能质量扰动源;
最后,有了初步的扰动源定位信息后,通过ci的值来确定在具体的电能质量在线监测装置布置点和具体线段,再通过各个电能质量在线监测装置发送到电能质量管理主站的该时刻的录波回放功能进行比对消除扰动源模糊项和精确的时间,通过存储在电能质量管理主站或电能质量在线监测装置设备上的位置信息则可获取扰动源事件发生的具体地点。
进一步的,步骤①中,根据电能质量在线监测装置的设备地址标识出系统中各个电能质量在线监测装置的布置情况,该表存储在电能质量管理主站的数据库中,根据需要各个电能质量在线监测装置中也可存储所处布置点的位置信息。
进一步的,步骤④确认扰动事件类型的具体方法是:采集电网中各监测点的暂态电能质量扰动信号,滤波后得到各监测点暂态电能质量扰动电压信号及电流信号;对每个监测点的暂态电能质量扰动电压信号采用形态非抽样小波进行2层分解,得到第二层形态非抽样小波细节系数y2,若细节系数y2的模极大值大于阈值,则将此监测点所在支路确定为受暂态电能质量扰动影响的支路,并将细节系数y2的模极大值点中超过阈值且相距最远的两个时间点确定为扰动发生的起止时刻t1、t2;对确定的受暂态电能质量扰动影响的支路上的监测点的暂态电能质量扰动电压信号进行窗口傅立叶变换提取扰动信号的基频幅值特征V、波形畸变持续周期数特征H、扰动过零点次数特征O;对暂态电能质量扰动电压信号进行S变换,提取扰动信号的最大幅值波动特征Z和扰动信号时频偏差特征B;其中提取波形畸变持续周期数特征H时的波形畸变率阈值设定为0.01;将这五个特征进行二进制编码后与二进制阈值矩阵比较,识别出扰动信号的类型,同时将各个监测点识别结果中出现次数最多的类型确定为扰动类型。
附图说明
图1为本发明的系统架构拓扑图;
图2表示图1所示的拓扑结构以A相为例构建的有根树;
图3是本发明的扰动源定位原理图。
具体实施方式
(实施例1)
本实施例的一种基于联网的电能质量扰动源定位分析方法,包括以下步骤:
①在辐射型配电系统的输电线路中安装电能质量监测装置,并各个电能质量监测装置之间、电能质量监测装置与电能质量管理主站通过以太网连接,并向电能质量管理主站发送各个监测点的实时监测数据或结果分析;电能质量管理主站存储着各个电能质量监测装置的设备号以及所在监测点的地址;
②采集电网中多个监测点k=1,2,…的暂态电能质量扰动信号,滤波后得到各监测点暂态电能质量扰动电压信号Uk及电流信号Ik
③对每个监测点的暂态电能质量扰动电压信号Uk采用形态非抽样小波进行2层分解,得到第二层形态非抽样小波细节系数y2,若细节系数y2的模极大值大于阈值,则将此监测点所在支路确定为受暂态电能质量扰动影响的支路,并将细节系数y2的模极大值点中超过阈值且相距最远的两个时间点确定为扰动发生的起止时刻t1,t2;
④对步骤②中确定的受暂态电能质量扰动影响的支路上的监测点的暂态电能质量扰动电压信号Uk进行窗口傅立叶变换提取扰动信号的基频幅值特征V、波形畸变持续周期数特征H、扰动过零点次数特征O;对暂态电能质量扰动电压信号Uk进行S变换,提取扰动信号的最大幅值波动特征Z和扰动信号时频偏差特征B;其中提取波形畸变持续周期数特征H时的波形畸变率阈值设定为0.01;将这五个特征进行二进制编码后与二进制阈值矩阵比较,识别出扰动信号的类型,同时将各个监测点识别结果中出现次数最多的类型确定为扰动类型;
⑤如某点处的电能质量监测装置发现电网电能质量出现问题或发生电流、电压突变时,该设备会通过以太网以广播的方式通知网络中其它的电能质量监测装置即时启动故障录波系统,录下一个周波的采样数据以及该周波前面8个周波的采样数据和此时刻的精确时间,此时间为网络服务器校时系统的时间,同时由各个监测点的扰动方向即功率/电流方向判别结果建立扰动方向矩阵,为界面波形曲线显示和下一步扰动源定位时电能质量参数分析做好准备;
⑥当每个电能质量监测装置设备完成录波工作后,该点处的电能质量监测装置可根据监测到的扰动数据,并据此数据依照步骤③和④确认事件类型;当事件类型得到确认后,根据网络中的各个电能质量监测装置的录波回放即可精确扰动源发生的时间,根据功率/电流方向以及系统扰动方向矩阵等相应的矩阵算法判定出电能质量事件扰动源与该处电能质量监测装置布置点的前后相对位置。
基于上述基于联网的电能质量扰动源定位分析方法,更具体的来讲,见图1,本实施例的电能质量扰动源的定位系统包括支持IEEE1588协议的电能质量管理主站、带有支持IEEE1588协议的以太网接口的电能质量在线监测装置(PQMD)电能质量在线监测装置、支持IEEE1588协议的以太网交换机,在辐射型配电系统的输电线路的每个监测点设置一台电能质量在线监测装置,各个电能质量在线监测装置之间通过以太网连接,各电能质量在线监测装置与电能质量管理主站之间通过以太网连接,具体来讲,电能质量管理主站之间与各个电能质量在线监测装置均通过专用的屏蔽网络连接线按照国际通用标准接入以太网交换机后组网,本实施例中所述电能质量在线监测装置(PQMD)采用的是无锡优电科技有限公司制造的型号为YPM-01的电能质量在线监测装置。当系统中发生实际扰动事件时,电能质量在线监测装置检测到扰动事件后会记录下扰动源发生的时刻并通过以太网以广播的方式通知网络中其它的电能质量在线监测装置以该时刻为基准启动扰动录波系统,记录下该时刻之前N个周波和之后N个周波的采样数据,N≥1,并实时的发送到电能质量管理主站,通过各个电能质量在线监测装置之间相互协作建立系统覆盖矩阵和系统方向矩阵,为界面波形曲线显示、扰动源定位时消除模糊项以及电能质量参数的分析做好准备。电能质量管理主站存储着各个电能质量在线监测装置的设备号以及所在监测点的地址,整个系统采用IEEE 1588对时协议进行时钟校准。
见图3,应用上述电能质量扰动源的定位系统的定位方法包括如下几个步骤:
①根据已知的配电系统拓扑结构,构建一个在电力系统中常用的有根数结构图,并且标识出整个系统中各个电能质量在线监测装置布置点的位置信息。本实施例中,根据图1所示的系统的拓扑结构,构建出一个在电力系统分析中常用的有根树结构图,并且根据电能质量在线监测装置的设备地址(栈地址)标识出系统中各个电能质量在线监测装置的布置情况。该表存储在电能质量管理主站的数据库中,根据需要各个电能质量在线监测装置中也可存储所处布置点的位置信息,为扰动源定位作决策分析用。
②建立整个系统覆盖矩阵,根据系统中有根数各节点与电能质量在线监测装置的相关位置关系,可定义系统的覆盖矩阵AL×M,AL×M可在系统初始化时完成:
Figure PCTCN2015088612-appb-000005
其中,L为系统中有根数中的节点总数,M对应系统中的线段数量,为整个系统中安装的电能质量在线监测装置数量,矩阵AL×M的每一个数据ai×j表示系统中第j个电能质量在线监测装置布置点与第i个电能质量在线监测装置监测点的位置关系,初始化具体赋值为:如果如果Li位于Mj的前向区域,则令aij=-1,反之;aij=+1,系统所述的Mj后向区域是指第j个电能质量在线监测装置布置节点以及该节点的子节点区域;前向区域是指除了后向区域外的其它节点区域。
本实施例中,根节点为图2所示中每一条线路上的第一个电能质量在线监测装置,后面的设备依次加入该有根数中。其中各电能质量在线监测装置序号(序号和设备地址之间也建立数据表)与图1所示拓扑结构中的对应线段序号一致。Lai表示该系统中的线段序号,Pi表示电能质量在线监测装置设备的序号。
根据有根数中各个节点与电能质量在线监测装置的相对方位关系建立系统覆盖矩阵。
如图2所示:在输电线La中节点数为9,也即该配电监测系统的线段数量为9,序号依次为La1~La9,系统实际配置的电能质量在线监测装置数量为4。据此可定义系统覆盖矩阵A9×4,矩阵A9×4的每一个aij表示系统中第j个电能质量在线监测装置布置点与第i个节点的位置关系,如果Lai位于Pj的前向区域,则令aij=-1;反之,aij=+1。
根据系统中有根数各节点与电能质量在线监测装置的相对方位关系,可以对定义的系统覆盖矩阵A9×4进行赋初值:
Figure PCTCN2015088612-appb-000006
③根据系统中某一时刻某点处的电能质量在线监测装置检测到电网电能质量出现问题或发生电流、电压突变等扰动源事件时,该设备会记录下扰动源发生的时刻并通过以太网以广播的方式通知网络中其它的电能质量在线监测装置即时启动故障录波系统,记录下该时刻之前N个周波和之后N个周波的采样数据,N≥1,系统中各个电能质量在线监测装置与电能质量管理主站间使用IEEE1588对时协议作为整个系统的基准时间,为界面波形曲线显示、扰动源定位时消除扰动源模糊项和电能质量管理主站进行数据分析做好准备。
本实施例中N=8,一旦电能质量在线监测装置检测到扰动源事件时,电能质量在线监测装置中的录播系统记录下该时刻之前8个周波和之后8个周波的采样数据。
见图1,假设A点处的电能质量在线监测装置发现电网电能质量出现问题或发生电流、电压突变时,该设备会记录下扰动源发生的时刻并通过以太网以广播的方式通知网络中其它的电能质量在线监测装置及时启动故障录波系统,每个电能质量在线监测装置收到广播命令后,启动录播功能记录下此时刻之前8个周波和之后8个周波的采样数据并将记录下的波形发送到电能质量管理主站,系统中各个电能质量在线监测装置与电能质量管理主站之间统一使用IEEE1588协议进行时钟校准,该时钟精度可达ns级,为界面波形曲线显示和下一步扰动源定位时电能质量参数分析和决策做好准备。
④当每个电能质量在线监测装置设备完成录波工作后,电能质量在线监测装置可根据检测到的扰动数据确认事件类型:采集电网中各监测点的暂态电能质量扰动信号,滤波后得到各监测点暂态电能质量扰动电压信号及电流信号;对每个监测点的暂态电能质量扰动电压信号采用形态非抽样小波进行2层分解,得到第二层形态非抽样小波细节系数y2,若细节系数y2的模极大值大于阈值,则将此监测点所在支路确定 为受暂态电能质量扰动影响的支路,并将细节系数y2的模极大值点中超过阈值且相距最远的两个时间点确定为扰动发生的起止时刻t1、t2;对确定的受暂态电能质量扰动影响的支路上的监测点的暂态电能质量扰动电压信号进行窗口傅立叶变换提取扰动信号的基频幅值特征V、波形畸变持续周期数特征H、扰动过零点次数特征O;对暂态电能质量扰动电压信号进行S变换,提取扰动信号的最大幅值波动特征Z和扰动信号时频偏差特征B;其中提取波形畸变持续周期数特征H时的波形畸变率阈值设定为0.01;将这五个特征进行二进制编码后与二进制阈值矩阵比较,识别出扰动信号的类型,同时将各个监测点识别结果中出现次数最多的类型确定为扰动类型;
⑤根据网络中的各个电能质量在线监测装置实时向电能质量管理主站发送的该时刻的系统覆盖矩阵和系统方向矩阵的乘积、多个时刻的录播回放相互比对、各个所录波形的频谱分析以及电能质量管理主站中存储的系统位置信息获得系统中扰动源事件发生的精确时间和位置,其具体步骤如下:
首先,根据系统覆盖矩阵和发生扰动源事件时各个电能质量在线监测装置实时上传到主站的信息,建立系统该时刻的方向矩阵BM×1
Figure PCTCN2015088612-appb-000007
式中,bj表示系统中第i个线段处发生扰动源事件时,第j个电能质量在线监测装置设备对扰动源方向的判定结果,如果判定扰动源为后向扰动,即判定出扰动源事件位于第j个电能质量在线监测装置设备之后,则令bj=+1;反之,bj=-1。bj的值带有时标,电能质量管理主站则可以通过各个电能质量在线监测装置上传的实时数据信息建立发生扰动源事件时刻的系统方向矩阵。
本实施例中,当输电线路发生电能质量扰动事件时,各个电能质量在线监测装置均可以监测到扰动数据,当扰动源事件得到确认后,各个电能质量在线监测装置可根据系统方向矩阵来确定扰动源与本电能质量在线监测装置布置点的前后相对位置关系。
据此,可定义本系统的方向矩阵B4×1,矩阵B4×1中的每一个数据bij表示系统中线 段Lai上发生扰动源事件时,序号为Pj的电能质量在线监测装置根据功率/电流方向等相应算法判定出扰动源与它的前后相对位置关系。若为前向扰动,则令bj=-1;反之,bj=+1。
图2所示,假设分别在线路La2、La3发生电能质量扰动事件,依据前述规律,对两种情况下对应的系统扰动方向矩阵BLa2、BLa3赋值如下:
Figure PCTCN2015088612-appb-000008
然后,将系统覆盖矩阵和该时刻的系统方向矩阵进行矩阵乘法运算,得到结果矩阵CL×1为:
Figure PCTCN2015088612-appb-000009
结果矩阵中每个元素ci的值与电力网络拓扑结构以及电能质量在线监测装置的具体布置状况有关,根据ci的值的绝对值是否等于系统中布置的电能质量在线监测装置的数量的元素个数,若相等则确认该时刻该行元素ci对应的线段Li为电能质量扰动源。
如本实施例中,B、C和D处的电能质量在线监测装置上的录波系统都记录着A点处发生电流或电压突变时的波形图和时刻,主站可通过B、C和D处电能质量在线监测装置上传的波形图上的时间来精确定位出A点处的扰动源发生时刻,根据公式计算可得CL2、CL3为:
Figure PCTCN2015088612-appb-000010
结果矩阵CL×1中每个元素ci的绝对值蕴含着判定电能质量扰动源的信息。CL2中第二行和CL3第三行元素的绝对值等于系统中安装电能质量在线监测装置检测设备的数量,可初步判定该时刻线路La2、La3上同时有电能质量扰动事件发生。
最后,有了初步的扰动源定位信息后,通过ci的值来确定在具体的电能质量在线 监测装置布置点和具体线段,再通过各个电能质量在线监测装置发送到电能质量管理主站的该时刻的录波回放功能进行比对消除扰动源模糊项和精确的时间,通过存储在电能质量管理主站或电能质量在线监测装置设备上的位置信息则可获取扰动源事件发生的具体地点。
工业应用性
本发明具有积极的效果:(1)本发明提供一种基于以太网对时,能够进行多点监测的分布式、多机协作的电能质量监测系统,系统中各个电能质量在线监测装置之间通过IEEE 1588对时协议统一进行时钟校准取代传统的依靠GPRS校准方式,根据多测点电能质量在线监测装置上记录的时标进行扰动识别、信息广播和录波匹配等协作建立系统覆盖矩阵和系统方向矩阵,电能质量管理主站可根据各个时刻的时间、功率/电流方向并通过简单的带有时标的矩阵算法(系统覆盖矩阵和带有时标的系统方向矩阵进行矩阵乘法)、各个电能质量在线监测装置之间所录波形的相互比对以及各个所录波形的频谱分析来实现扰动源准确自动定位和自动消除扰动源模糊项、效率高、结构简单、成本低廉、易于实现和部署的配电网电能质量扰动源定位系统及其方法。
(2)本发明结合电网中多个监测点的扰动信号,对电能质量扰动源进行检测、识别分析,输出扰动持续时间,扰动类型等结果,其结果准确全面;同时由于监测并分析多个监测点的信息,能够实现扰动源的精确定位,便于明确事故责任方和治理电能质量扰动问题;检测和分析出的电能质量信息可通过以太网发送到系统主站中长期保存,便于全面记录电能质量扰动的数据,方便管理部门快捷、直观地了解所需的电能质量扰动有关信息,进一步强化电能质量监督与管理工作,为电能质量问题的治理和评估提供真实、准确的信息,为构建一个大型优质的供电系统提供决策性数据。
(3)本发明在扰动检测和识别中,采用形态非抽样小波能快速准确检测出扰动的起止时刻,并确定出受扰动影响的支路,可缩小后续分析的范围,使本发明的扰动源检测分析方法更加简单、快捷、有效。通过建立有根数和系统扰动方向矩阵,简化计算,电能质量在线监测装置自动进行扰动源定位,效率高,通过电能质量在线监测装置之间的相互协调可消除模糊项。
(4)本发明在扰动识别中,结合窗口傅里叶变换(WDFT)和S变换,可同时提取五个能够反映不同暂态扰动源特征的特征量,并对其进行二进制编码后得到8位二进 制特征向量,通过将此8位二进制特征向量与二进制阈值矩阵进行比较来快速识别出扰动事件类型。由于结合多个监测点的识别结果,可避免系统中个别监测点由于强噪声等因素造成的错误对其它设备识别结果的干扰和扰动源模糊项,可同时监测多处扰动源,进而确保扰动类型识别的正确性。
(5)本发明在各个电能质量在线监测装置与主站之间使用统一的IEEE1588协议进行时钟校准,精确定位分为两个步骤:1)系统初步定位:根据发生扰动源事件时刻的系统覆盖矩阵和系统的方向矩阵初步判定扰动源的类型和方位;2)电能质量在线监测装置物理设备相互协作辅助定位:电压暂降源定位方法仅需测量监测点的电压相角、电流幅值和相角,通过判断电压暂降发生时刻实电流成分的变化极性来确定扰动源与监测点相对位置,综合电网中多个监测点对该时刻的录波分析结果、各个所录波形的频谱分析以及存储在电能质量管理主站的系统各个电能质量在线监测装置位置信息可确定出电压暂降扰动源的精确位置,进一步消除模糊项,该方法计算简单,精度可达ns级别。

Claims (6)

  1. 一种基于联网的电能质量扰动源定位分析方法,其特征在于包括以下步骤:
    ①在辐射型配电系统的输电线路中安装电能质量监测装置,并各个电能质量监测装置之间、电能质量监测装置与电能质量管理主站通过以太网连接,并向电能质量管理主站发送各个监测点的实时监测数据或结果分析;电能质量管理主站存储着各个电能质量监测装置的设备号以及所在监测点的地址;
    ②采集电网中多个监测点k=1,2,…的暂态电能质量扰动信号,滤波后得到各监测点暂态电能质量扰动电压信号Uk及电流信号Ik
    ③对每个监测点的暂态电能质量扰动电压信号Uk采用形态非抽样小波进行2层分解,得到第二层形态非抽样小波细节系数y2,若细节系数y2的模极大值大于阈值,则将此监测点所在支路确定为受暂态电能质量扰动影响的支路,并将细节系数y2的模极大值点中超过阈值且相距最远的两个时间点确定为扰动发生的起止时刻t1,t2;
    ④对步骤②中确定的受暂态电能质量扰动影响的支路上的监测点的暂态电能质量扰动电压信号Uk进行窗口傅立叶变换提取扰动信号的基频幅值特征V、波形畸变持续周期数特征H、扰动过零点次数特征O;对暂态电能质量扰动电压信号Uk进行S变换,提取扰动信号的最大幅值波动特征Z和扰动信号时频偏差特征B;其中提取波形畸变持续周期数特征H时的波形畸变率阈值设定为0.01;将这五个特征进行二进制编码后与二进制阈值矩阵比较,识别出扰动信号的类型,同时将各个监测点识别结果中出现次数最多的类型确定为扰动类型;
    ⑤如某点处的电能质量监测装置发现电网电能质量出现问题或发生电流、电压突变时,该设备会通过以太网以广播的方式通知网络中其它的电能质量监测装置即时启动故障录波系统,录下一个周波的采样数据以及该周波前面8个周波的采样数据和此时刻的精确时间,此时间为网络服务器校时系统的时间,同时由各个监测点的扰动方向即功率/电流方向判别结果建立扰动方向矩阵,为界面波形曲线显示和下一步扰动源定位时电能质量参数分析做好准备;
    ⑥当每个电能质量监测装置设备完成录波工作后,该点处的电能质量监测装置可根据监测到的扰动数据,并据此数据依照步骤③和④确认事件类型;当事件类型得到确认后,根据网络中的各个电能质量监测装置的录波回放即可精确扰动源发生的时间,根据功率/电流方向以及系统扰动方向矩阵等相应的矩阵算法判定出电能质量事件扰动源与该处电能质量监测装置布置点的前后相对位置。
  2. 一种电能质量扰动源的定位系统,其特征在于:包括电能质量管理主站以及在辐射型配电系统的输电线路的每个监测点设置的一台电能质量在线监测装置,各个电能质量在线监测装置之间通过以太网连接,各电能质量在线监测装置与电能质量管理主站之间通过以太网连接;当系统中发生实际扰动事件时,电能质量在线监测装置检测到扰动事件后会记录下扰动源发生的时刻并通过以太网以广播的方式通知网络中其它的电能质量在线监测装置以该时刻为基准启动扰动录波系统,记录下该时刻之前N个周波和之后N个周波的采样数据,N≥1,并实时的发送到电能质量管理主站;电能质量管理主站存储着各个电能质量在线监测装置的设备号以及所在监测点的地址。
  3. 根据权利要求2所述一种电能质量扰动源的定位系统,其特征在于:还包括支持IEEE1588协议的以太网交换机,电能质量管理主站支持IEEE1588协议,电能质量在线监测装置设有支持IEEE1588协议的以太网接口,电能质量管理主站之间与各个电能质量在线监测装置均通过专用的屏蔽网络连接线按照国际通用标准接入以太网交换机后组网,整个系统采用IEEE1588对时协议进行时钟校准。
  4. 如权利要求3所述的一种电能质量扰动源的定位系统的定位方法,其特征在于包括如下几个步骤:
    ①根据已知的配电系统拓扑结构,构建有根数结构图,并且标识出整个系统中各个电能质量在线监测装置布置点的位置信息;
    ②建立整个系统覆盖矩阵,根据系统中有根数各节点与电能质量在线监测装置的相关位置关系,可定义系统的覆盖矩阵AL×M,AL×M可在系统初始化时完成:
    Figure PCTCN2015088612-appb-100001
    其中,L为系统中有根数中的节点总数,M对应系统中的线段数量,为整个系统中安装的电能质量在线监测装置数量,矩阵AL×M的每一个数据ai×j表示系统中第j个电能质量在线监测装置布置点与第i个电能质量在线监测装置监测点的位置关系,初始化具体赋值为:如果如果Li位于Mj的前向区域,则令aij=-1,反之;aij=+1,系统所述的Mj后向区域是指第j个电能质量在线监测装置布置节点以及该节点的子节点区域;前向区域是指除了后向区域外的其它节点区域;
    ③根据系统中某一时刻某点处的电能质量在线监测装置检测到电网电能质量出现问题或发生电流、电压突变等扰动源事件时,该设备会记录下扰动源发生的时刻并通过以太网以广播的方式通知网络中其它的电能质量在线监测装置即时启动故障录波系统,记录下该时刻之前N个周波和之后N个周波的采样数据,N≥1,系统中各个电能质量在线监测装置与电能质量管理主站间使用IEEE1588对时协议作为整个系统的基准时间;
    ④当每个电能质量在线监测装置设备完成录波工作后,电能质量在线监测装置可根据检测到的扰动数据确认事件类型;
    ⑤根据网络中的各个电能质量在线监测装置实时向电能质量管理主站发送的该时刻的系统覆盖矩阵和系统方向矩阵的乘积、多个时刻的录播回放相互比对、各个所录波形的频谱分析以及电能质量管理主站中存储的系统位置信息获得系统中扰动源事件发生的精确时间和位置,其具体步骤如下:
    首先,根据系统覆盖矩阵和发生扰动源事件时各个电能质量在线监测装置实时上传到主站的信息,建立系统该时刻的方向矩阵BM×1
    Figure PCTCN2015088612-appb-100002
    式中,bj表示系统中第i个线段处发生扰动源事件时,第j个电能质量在线监测装置设备对扰动源方向的判定结果,如果判定扰动源为后向扰动,即判定出扰动源事件位于第j个电能质量在线监测装置设备之后,则令bj=+1;反之,bj=-1;bj的值带有时标,电能质量管理主站则可以通过各个电能质量在线监测装置上传的实时数据信息建立发生扰动源事件时刻的系统方向矩阵;
    Figure PCTCN2015088612-appb-100003
    然后,将系统覆盖矩阵和该时刻的系统方向矩阵进行矩阵乘法运算,得到结果矩阵CL×1为:
    Figure PCTCN2015088612-appb-100004
    结果矩阵中每个元素ci的值与电力网络拓扑结构以及电能质量在线监测装置的具体布置状况有关,根据ci的值的绝对值是否等于系统中布置的电能质量在线监测装置的数量的元素个数,若相等则确认该时刻该行元素ci对应的线段Li为电能质量扰动源;
    最后,有了初步的扰动源定位信息后,通过ci的值来确定在具体的电能质量在线监测装置布置点和具体线段,再通过各个电能质量在线监测装置发送到电能质量管理主站的该时刻的录波回放功能进行比对消除扰动源模糊项和精确的时间,通过存储在电能质量管理主站或电能质量在线监测装置设备上的位置信息则可获取扰动源事件发生的具体地点。
  5. 根据权利要求4所述的一种电能质量扰动源的定位系统的定位方法,其特 征在于:步骤①中,根据电能质量在线监测装置的设备地址标识出系统中各个电能质量在线监测装置的布置情况,该表存储在电能质量管理主站的数据库中,根据需要各个电能质量在线监测装置中也可存储所处布置点的位置信息。
  6. 根据权利要求4所述的一种电能质量扰动源的定位系统的定位方法,其特征在于:步骤④确认扰动事件类型的具体方法是:采集电网中各监测点的暂态电能质量扰动信号,滤波后得到各监测点暂态电能质量扰动电压信号及电流信号;对每个监测点的暂态电能质量扰动电压信号采用形态非抽样小波进行2层分解,得到第二层形态非抽样小波细节系数y2,若细节系数y2的模极大值大于阈值,则将此监测点所在支路确定为受暂态电能质量扰动影响的支路,并将细节系数y2的模极大值点中超过阈值且相距最远的两个时间点确定为扰动发生的起止时刻t1、t2;对确定的受暂态电能质量扰动影响的支路上的监测点的暂态电能质量扰动电压信号进行窗口傅立叶变换提取扰动信号的基频幅值特征V、波形畸变持续周期数特征H、扰动过零点次数特征O;对暂态电能质量扰动电压信号进行S变换,提取扰动信号的最大幅值波动特征Z和扰动信号时频偏差特征B;其中提取波形畸变持续周期数特征H时的波形畸变率阈值设定为0.01;将这五个特征进行二进制编码后与二进制阈值矩阵比较,识别出扰动信号的类型,同时将各个监测点识别结果中出现次数最多的类型确定为扰动类型。
PCT/CN2015/088612 2015-03-04 2015-08-31 一种电能质量扰动源定位系统及定位方法 WO2016138750A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510097288.3 2015-03-04
CN201520125920.6U CN204536472U (zh) 2015-03-04 2015-03-04 一种电能质量扰动源定位系统
CN201510097288.3A CN104635114B (zh) 2015-03-04 2015-03-04 一种电能质量扰动源定位系统及定位方法
CN201520125920.6 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016138750A1 true WO2016138750A1 (zh) 2016-09-09

Family

ID=56849198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088612 WO2016138750A1 (zh) 2015-03-04 2015-08-31 一种电能质量扰动源定位系统及定位方法

Country Status (1)

Country Link
WO (1) WO2016138750A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597181A (zh) * 2017-02-13 2017-04-26 云南电网有限责任公司电力科学研究院 一种高压电力变压器运行监测系统及方法
CN108053095A (zh) * 2017-11-22 2018-05-18 全球能源互联网研究院有限公司 一种电能质量扰动事件特征提取方法及系统
CN110147760A (zh) * 2019-05-20 2019-08-20 吉林化工学院 一种高效电能质量扰动图像特征提取与识别新方法
TWI686615B (zh) * 2018-10-22 2020-03-01 財團法人工業技術研究院 擾動源定位方法
CN111148140A (zh) * 2019-11-29 2020-05-12 深圳供电局有限公司 一种基于无线通信技术的配电网局放检测数据采集方法
CN111398737A (zh) * 2020-04-08 2020-07-10 北京和信瑞通电力技术股份有限公司 一种应用于录波型故障指示器的录波管理方法与系统
CN112241597A (zh) * 2020-10-27 2021-01-19 深圳供电局有限公司 一种电力系统中谐波源的识别方法、设备及存储介质
CN112415330A (zh) * 2020-10-27 2021-02-26 山东山大电力技术股份有限公司 一种基于广域信息的电网故障智能辨识方法及系统
CN112505486A (zh) * 2020-12-03 2021-03-16 山西世纪中试电力科学技术有限公司 源荷储一体化并网电能质量测试系统
CN113311220A (zh) * 2021-05-26 2021-08-27 上海红檀智能科技有限公司 电压暂降的诊断方法、系统、介质及电子设备
CN113391160A (zh) * 2021-04-29 2021-09-14 东南大学溧阳研究院 一种具有容错性的电压暂降源定位方法
CN113625074A (zh) * 2021-07-02 2021-11-09 深圳供电局有限公司 暂态电能质量扰动引起长时闪变超标的判别方法和装置
CN113708500A (zh) * 2021-09-10 2021-11-26 深圳供电局有限公司 一种低压用电异常监测系统及方法
CN113884791A (zh) * 2021-09-26 2022-01-04 深圳供电局有限公司 电能质量评价装置、方法、配电系统及存储介质
CN114050613A (zh) * 2021-11-29 2022-02-15 国网湖南省电力有限公司 一种电网电压暂态事件的在线识别与追溯方法及其系统
CN114895137A (zh) * 2022-06-29 2022-08-12 广东电网有限责任公司佛山供电局 一种供电设备供电质量测试方法
CN115453254A (zh) * 2022-11-11 2022-12-09 浙江万胜智能科技股份有限公司 一种基于专变采集终端的电能质量监测方法及系统
CN115469192A (zh) * 2022-11-02 2022-12-13 国网信息通信产业集团有限公司 一种电压暂降源定位方法及定位系统
CN115498652A (zh) * 2022-05-30 2022-12-20 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 基于cps的综合能源园区电能质量控制方法及系统
CN115549313A (zh) * 2022-11-09 2022-12-30 国网江苏省电力有限公司徐州供电分公司 基于人工智能的用电监测方法及系统
CN117408537A (zh) * 2023-12-15 2024-01-16 安徽科派自动化技术有限公司 一种能够实现实时风险预测的电能质量监测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360178B1 (en) * 1997-12-09 2002-03-19 Antony Cozart Parsons System and method for locating a disturbance in a power system based upon disturbance power and energy
CN101267116A (zh) * 2008-03-20 2008-09-17 浙江工业大学 一种配电网电能质量扰动源自动定位方法
CN102608493A (zh) * 2011-01-25 2012-07-25 华北电力科学研究院有限责任公司 一种电压暂降源的定位方法及装置
CN103323738A (zh) * 2012-03-20 2013-09-25 华北电力科学研究院有限责任公司 一种多馈入系统闪变源定位方法
CN104034982A (zh) * 2014-06-19 2014-09-10 国家电网公司 一种电能质量谐波扰动源平台
CN104635114A (zh) * 2015-03-04 2015-05-20 江苏省电力公司常州供电公司 一种电能质量扰动源定位系统及定位方法
CN204536472U (zh) * 2015-03-04 2015-08-05 江苏省电力公司常州供电公司 一种电能质量扰动源定位系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360178B1 (en) * 1997-12-09 2002-03-19 Antony Cozart Parsons System and method for locating a disturbance in a power system based upon disturbance power and energy
CN101267116A (zh) * 2008-03-20 2008-09-17 浙江工业大学 一种配电网电能质量扰动源自动定位方法
CN102608493A (zh) * 2011-01-25 2012-07-25 华北电力科学研究院有限责任公司 一种电压暂降源的定位方法及装置
CN103323738A (zh) * 2012-03-20 2013-09-25 华北电力科学研究院有限责任公司 一种多馈入系统闪变源定位方法
CN104034982A (zh) * 2014-06-19 2014-09-10 国家电网公司 一种电能质量谐波扰动源平台
CN104635114A (zh) * 2015-03-04 2015-05-20 江苏省电力公司常州供电公司 一种电能质量扰动源定位系统及定位方法
CN204536472U (zh) * 2015-03-04 2015-08-05 江苏省电力公司常州供电公司 一种电能质量扰动源定位系统

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597181B (zh) * 2017-02-13 2023-06-02 云南电网有限责任公司电力科学研究院 一种高压电力变压器运行监测系统及方法
CN106597181A (zh) * 2017-02-13 2017-04-26 云南电网有限责任公司电力科学研究院 一种高压电力变压器运行监测系统及方法
CN108053095B (zh) * 2017-11-22 2024-03-19 全球能源互联网研究院有限公司 一种电能质量扰动事件特征提取方法及系统
CN108053095A (zh) * 2017-11-22 2018-05-18 全球能源互联网研究院有限公司 一种电能质量扰动事件特征提取方法及系统
TWI686615B (zh) * 2018-10-22 2020-03-01 財團法人工業技術研究院 擾動源定位方法
US11340601B2 (en) 2018-10-22 2022-05-24 Industrial Technology Research Institute Disturbance source positioning method
CN110147760A (zh) * 2019-05-20 2019-08-20 吉林化工学院 一种高效电能质量扰动图像特征提取与识别新方法
CN110147760B (zh) * 2019-05-20 2022-08-12 吉林化工学院 一种高效电能质量扰动图像特征提取与识别新方法
CN111148140A (zh) * 2019-11-29 2020-05-12 深圳供电局有限公司 一种基于无线通信技术的配电网局放检测数据采集方法
CN111398737A (zh) * 2020-04-08 2020-07-10 北京和信瑞通电力技术股份有限公司 一种应用于录波型故障指示器的录波管理方法与系统
CN111398737B (zh) * 2020-04-08 2022-05-17 北京和信瑞通电力技术股份有限公司 一种应用于录波型故障指示器的录波管理方法与系统
CN112241597B (zh) * 2020-10-27 2024-02-23 深圳供电局有限公司 一种电力系统中谐波源的识别方法、设备及存储介质
CN112415330A (zh) * 2020-10-27 2021-02-26 山东山大电力技术股份有限公司 一种基于广域信息的电网故障智能辨识方法及系统
CN112241597A (zh) * 2020-10-27 2021-01-19 深圳供电局有限公司 一种电力系统中谐波源的识别方法、设备及存储介质
CN112505486B (zh) * 2020-12-03 2024-02-20 山西世纪中试电力科学技术有限公司 源荷储一体化并网电能质量测试系统
CN112505486A (zh) * 2020-12-03 2021-03-16 山西世纪中试电力科学技术有限公司 源荷储一体化并网电能质量测试系统
CN113391160A (zh) * 2021-04-29 2021-09-14 东南大学溧阳研究院 一种具有容错性的电压暂降源定位方法
CN113391160B (zh) * 2021-04-29 2022-04-08 东南大学溧阳研究院 一种具有容错性的电压暂降源定位方法
CN113311220A (zh) * 2021-05-26 2021-08-27 上海红檀智能科技有限公司 电压暂降的诊断方法、系统、介质及电子设备
CN113311220B (zh) * 2021-05-26 2024-04-19 上海红檀智能科技有限公司 电压暂降的诊断方法、系统、介质及电子设备
CN113625074A (zh) * 2021-07-02 2021-11-09 深圳供电局有限公司 暂态电能质量扰动引起长时闪变超标的判别方法和装置
CN113708500A (zh) * 2021-09-10 2021-11-26 深圳供电局有限公司 一种低压用电异常监测系统及方法
CN113884791B (zh) * 2021-09-26 2023-06-06 深圳供电局有限公司 电能质量评价装置、方法、配电系统及存储介质
CN113884791A (zh) * 2021-09-26 2022-01-04 深圳供电局有限公司 电能质量评价装置、方法、配电系统及存储介质
CN114050613A (zh) * 2021-11-29 2022-02-15 国网湖南省电力有限公司 一种电网电压暂态事件的在线识别与追溯方法及其系统
CN114050613B (zh) * 2021-11-29 2023-10-27 国网湖南省电力有限公司 一种电网电压暂态事件的在线识别与追溯方法及其系统
CN115498652A (zh) * 2022-05-30 2022-12-20 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 基于cps的综合能源园区电能质量控制方法及系统
CN115498652B (zh) * 2022-05-30 2024-04-30 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 基于cps的综合能源园区电能质量控制方法及系统
CN114895137B (zh) * 2022-06-29 2023-04-07 广东电网有限责任公司佛山供电局 一种供电设备供电质量测试方法
CN114895137A (zh) * 2022-06-29 2022-08-12 广东电网有限责任公司佛山供电局 一种供电设备供电质量测试方法
CN115469192A (zh) * 2022-11-02 2022-12-13 国网信息通信产业集团有限公司 一种电压暂降源定位方法及定位系统
CN115549313B (zh) * 2022-11-09 2024-03-08 国网江苏省电力有限公司徐州供电分公司 基于人工智能的用电监测方法及系统
CN115549313A (zh) * 2022-11-09 2022-12-30 国网江苏省电力有限公司徐州供电分公司 基于人工智能的用电监测方法及系统
CN115453254A (zh) * 2022-11-11 2022-12-09 浙江万胜智能科技股份有限公司 一种基于专变采集终端的电能质量监测方法及系统
CN115453254B (zh) * 2022-11-11 2023-05-02 浙江万胜智能科技股份有限公司 一种基于专变采集终端的电能质量监测方法及系统
CN117408537A (zh) * 2023-12-15 2024-01-16 安徽科派自动化技术有限公司 一种能够实现实时风险预测的电能质量监测系统
CN117408537B (zh) * 2023-12-15 2024-05-07 安徽科派自动化技术有限公司 一种能够实现实时风险预测的电能质量监测系统

Similar Documents

Publication Publication Date Title
WO2016138750A1 (zh) 一种电能质量扰动源定位系统及定位方法
CN107576888B (zh) 一种电能质量扰动源的定位系统的定位方法
Bahmanyar et al. A comparison framework for distribution system outage and fault location methods
CN103827678B (zh) 用于配电系统中分布式波形记录的方法
CN107154783B (zh) 应用独立成分分析和s变换检测光伏系统故障电弧的方法
CN109324266B (zh) 一种基于深度学习的配网接地故障分析方法
CN105242176B (zh) 一种适用于监测分支线路的小电流接地系统故障定位方法
CN103941163A (zh) 利用模糊k均值聚类的谐振接地系统故障选线方法
CN106990324B (zh) 一种配电网接地故障检测定位方法
Gu et al. High impedance fault detection in overhead distribution feeders using a DSP-based feeder terminal unit
CN203643551U (zh) 一种行波定位装置
CN103901314B (zh) 电力变压器铁芯接地在线监测装置及其在线监测方法
CN104330708B (zh) 一般电网下广域行波信号的故障定位方法
CN103713237A (zh) 一种电力系统输电线路短路故障诊断方法
CN111404130B (zh) 基于快速开关的新型配电网故障检测方法及故障自愈系统
CN109633321A (zh) 一种台区户变关系区分系统、方法及台区高损监测方法
CN207281225U (zh) 暂态电流采集装置及配电网供电电缆线路故障定位系统
CN107561405B (zh) 一种基于非接触传感装置的故障选线定位方法及系统
CN104820168A (zh) 一种基于波形差异度和雷击故障样本库的雷击故障判别方法
CN112485598A (zh) 结合波形相关性与幅值特征的小电流接地故障定位方法
CN105974223B (zh) 一种用于在线检测用电设备工作状态的方法及系统
CN110988587A (zh) 一种基于最大最小特征值法的配网异常检测方法
CN204536472U (zh) 一种电能质量扰动源定位系统
CN116148710A (zh) 一种单相接地故障定位方法及系统
CN105548740B (zh) 雷击故障侵入波与接地故障侵入波的辨识方法与系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883801

Country of ref document: EP

Kind code of ref document: A1