WO2016138635A1 - 无线局域网中数据传输方法和传输装置 - Google Patents

无线局域网中数据传输方法和传输装置 Download PDF

Info

Publication number
WO2016138635A1
WO2016138635A1 PCT/CN2015/073578 CN2015073578W WO2016138635A1 WO 2016138635 A1 WO2016138635 A1 WO 2016138635A1 CN 2015073578 W CN2015073578 W CN 2015073578W WO 2016138635 A1 WO2016138635 A1 WO 2016138635A1
Authority
WO
WIPO (PCT)
Prior art keywords
data transmission
frame
data
transmission
node
Prior art date
Application number
PCT/CN2015/073578
Other languages
English (en)
French (fr)
Inventor
闫中江
彭美平
庞继勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/073578 priority Critical patent/WO2016138635A1/zh
Publication of WO2016138635A1 publication Critical patent/WO2016138635A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks

Definitions

  • the invention belongs to the technical field of communications, and in particular relates to a data transmission method and a transmission device in a wireless local area network.
  • the wireless network especially the Wireless Local Area Networks (WLAN), uses the CSMA/CA (English: Carrier Sense Multiple Access with Collision Avoidance) mechanism.
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • Implement link parallel transmission. 1 is a schematic diagram of a scenario. Assuming that the transmission link A->B is undergoing data transmission, the node E1 is within the coverage of the transmitting node A and is outside the coverage of the receiving node B. Thus, E1 may delay transmission of data to its destination node R1 due to detection of the transmission of A. In general, E1 can infer its position by:
  • E1 If ETS and R1 do not perform RTS/CTS handshake, E1 sends data directly to R1, then even if R1 can successfully receive data, its reply ACK frame is likely to be with node A. The data frame being sent is at node E1. Collision collision occurs, so the data transmission between E1 and R1 cannot be effectively performed (unless E1 does not require R1 to reply to ACK, that is, E1 only transmits data and is not responsible for whether R1 can be successfully received).
  • the present invention provides a data transmission method and transmission apparatus in a wireless local area network for solving the problem of concurrent transmission.
  • an embodiment of the present invention provides a data transmission method applied to a WLAN of a wireless local area network, where the method includes:
  • the first sending frame After the first sending node competes to the first data transmission opportunity, the first sending frame includes a time window field, where the time window field is used to indicate a duration of competing for the second data transmission opportunity,
  • the second data transmission opportunity is a transmission opportunity for data transmission during the first data transmission time;
  • the duration of the contention of the second data transmission opportunity is specifically: sending, by the first sending node, the first startup frame The time begins with the end of the time at which the first transmitting node begins transmitting the DATA frame.
  • the first scheduling frame further includes a DATA frame information field, where the DATA frame information field includes: The end time information of the first transmission node DATA frame transmission or the start and end time information of the first transmission node DATA frame transmission.
  • the first response frame further includes a field for identifying second data transmission information, where the second data transmission information includes The transmission power of the second transmitting node or the channel quality of the second data transmission.
  • the first sending node determines, after the one or more second sending nodes compete for the second data transmission opportunity, The first sending node sends the first scheduling frame, and the first scheduling frame includes a receiving address field that is an address of one or more second sending nodes that are preferably allowed to perform second data transmission by the first sending node.
  • the one or more second sending nodes that are allowed to perform the second data transmission by the first sending node are according to the second Data transfer information is determined.
  • an embodiment of the present invention provides a data transmission method applied to a WLAN of a wireless local area network, where the method includes:
  • the first sending frame After the first sending node competes for the first data transmission opportunity, the first sending frame sends a first scheduling frame, where the first scheduling frame includes a receiving address field, where the receiving address field includes the second data transmission allowed by the first sending node.
  • the address of the second transmitting node, and the second data transmission is data transmission performed during the time of the first data transmission.
  • the first scheduling frame further includes a DATA frame information field, where the DATA frame information field includes: an end time of the first sending node DATA frame transmission Information or start and end time information of the first transmission node DATA frame transmission.
  • an embodiment of the present invention provides a data transmission method applied to a WLAN of a wireless local area network, where the method includes:
  • the first sending node After the first sending node competes for the first data transmission opportunity, the first sending node sends a first starting frame, where the first starting frame includes a time window field, and the time window field is used to indicate that the second frame is established.
  • the duration of the data transmission opportunity which is a transmission opportunity for data transmission during the first data transmission time.
  • the time length of establishing the second data transmission opportunity is specifically: starting with a time when the first sending node sends the first start frame, The time at which the first transmitting node starts transmitting the DATA frame ends.
  • the first start frame further includes a DATA frame information field, where the DATA frame information field includes: the first sending node The end time information of the DATA frame transmission or the start and end time information of the first transmission node DATA frame transmission.
  • an embodiment of the present invention provides a data transmission method applied to a WLAN of a wireless local area network, where the method includes:
  • the second data transmission opportunity is a transmission opportunity for data transmission during the first data transmission time
  • the second sending node competes for the second data transmission opportunity
  • the second sending node receives a first scheduling frame, where the first scheduling frame includes a receiving address field, where the receiving address field includes an address of a sending node that is allowed by the first sending node to perform second data transmission.
  • the duration of the contention of the second data transmission opportunity is specifically: when the first sending node sends the first start frame, The time at which the first transmitting node starts transmitting the DATA frame ends.
  • the first scheduling frame further includes a DATA frame information field, where the DATA frame information field includes: The end time information of the first transmission node DATA frame transmission or the start and end time information of the first transmission node DATA frame transmission.
  • the first response frame further includes a field for identifying second data transmission information, where the second data transmission information includes The transmission power of the second transmitting node or the channel quality of the second data transmission.
  • the receiving address field is one or more sending nodes that are preferably allowed to perform second data transmission by the first sending node. the address of.
  • the one or more second sending nodes that are allowed to perform the second data transmission by the first sending node are The second data transmission information is determined.
  • an embodiment of the present invention provides a data transmission method applied to a WLAN of a wireless local area network, where the method includes:
  • the first scheduling frame includes a receiving address field, where the receiving address field includes an address of a second sending node that is allowed by the first sending node to perform second data transmission, where Said second data transmission is a data transmission performed during the time of the first data transmission;
  • the first scheduling frame further includes a DATA frame information field, where the DATA frame information field includes: an end time of the first sending node DATA frame transmission Information or start and end time information of the first transmission node DATA frame transmission.
  • an embodiment of the present invention provides a data transmission method applied to a WLAN of a wireless local area network, where the method includes:
  • the first sending node Receiving, by the first sending node, a first startup frame, where the first startup frame includes a time window field, where the time window field is used to indicate a duration for establishing a second data transmission opportunity, where the second data transmission opportunity is a transmission opportunity for data transmission within a data transmission time;
  • a second data transmission is performed, the second data transmission being a data transmission performed during the first data transmission time.
  • the time length of establishing the second data transmission opportunity is specifically: starting with a time when the first sending node sends the first start frame, The time at which the first transmitting node starts transmitting the DATA frame ends.
  • the first start frame further includes a DATA frame information field, where the DATA frame information field includes: the first sending node The end time information of the DATA frame transmission or the start and end time information of the first transmission node DATA frame transmission.
  • an embodiment of the present invention provides a data transmission apparatus applied to a WLAN of a wireless local area network, where the method includes:
  • a processing unit configured to generate a first startup frame and a first scheduling frame
  • a transceiver unit configured to send the first startup frame after the processing unit contends to the first data transmission opportunity, where the first startup frame includes a time window field, where the time window field is used to indicate that the second data is contending The duration of the transmission opportunity, the second data transmission opportunity being a transmission opportunity for data transmission during the first data transmission time;
  • the transceiver unit is further configured to receive, by the one or more second sending nodes, a first response frame for the first start frame, where the second sending node is a sending node that successfully contends to the second data transmission opportunity;
  • the transceiver unit is further configured to send a first scheduling frame, where the first scheduling frame includes a receiving address field, where the receiving address field includes an address of a second sending node that is allowed by the processing unit to perform second data transmission, where The second data transmission is a data transmission performed during the first data transmission time.
  • the duration of the contention of the second data transmission opportunity is specifically: starting at a time when the transceiver unit sends the first start frame, The time when the transceiver unit starts transmitting the DATA frame ends.
  • the first scheduling frame that is generated by the processing unit further includes a DATA frame information field, and the DATA frame information field
  • the method includes: end time information of the DATA frame transmission of the transceiver unit or start and end time information of the DATA frame transmission of the transceiver unit.
  • the first response frame received by the transceiver unit further includes a field for identifying the second data transmission information, the second data
  • the transmission information includes a transmission power of the second transmitting node or a channel quality of the second data transmission.
  • the processing unit determines, after the one or more second sending nodes compete for the second data transmission opportunity, the sending and receiving The unit transmits the first scheduling frame, and the first scheduling frame includes a receiving address field that is an address of one or more second sending nodes that are preferably allowed to perform second data transmission by the processing unit.
  • the one or more second transmitting nodes that are preferably allowed to perform the second data transmission by the processing unit are determined based on the second data transmission information.
  • an embodiment of the present invention provides a data transmission apparatus applied to a WLAN of a wireless local area network, where the method includes:
  • a processing unit configured to generate a first scheduling frame
  • a transceiver unit configured to send the first scheduling frame after the processing unit contends to the first data transmission opportunity, where the first scheduling frame includes a receiving address field, where the receiving address field is included by the processing unit The address of the second transmitting node performing the second data transmission, the second data transmission being the data transmission performed during the time of the first data transmission.
  • the first scheduling frame that is generated by the processing unit further includes a DATA frame information field, where the DATA frame information field includes: the transceiver unit DATA frame transmission End time information or start and end time information of the transceiving unit DATA frame transmission.
  • an embodiment of the present invention provides a data transmission apparatus applied to a WLAN of a wireless local area network, where the method includes:
  • a processing unit configured to generate a first startup frame
  • a transceiver unit configured to send the first startup frame after the processing unit competes to the first data transmission opportunity, where the first startup frame includes a time window field, where the time window field is used to indicate that the second data transmission is established.
  • the duration of the opportunity, the second data transmission opportunity is a transmission opportunity for data transmission during the first data transmission time.
  • the establishing a second data transmission opportunity duration is specifically: starting at a time when the transceiver unit sends the first startup frame, The time when the transceiver unit starts transmitting the DATA frame ends.
  • the first start frame generated by the processing unit further includes a DATA frame information field, where the DATA frame information field includes: The end time information of the DATA frame transmission of the transceiver unit or the start and end time information of the DATA frame transmission of the transceiver unit.
  • an embodiment of the present invention provides a data transmission apparatus applied to a WLAN of a wireless local area network, where the method includes:
  • a processing unit configured to generate a first response frame and compete for the second data transmission opportunity
  • a transceiver unit configured to receive, after the first sending node competes for the first data transmission opportunity Sending a first startup frame, the first startup frame includes a time window field, the time window field is used to indicate a duration of competing for the second data transmission opportunity, and the second data transmission opportunity is in the first data transmission time Transmission opportunities for data transmission;
  • the transceiver unit is further configured to send a first response frame for the first startup frame
  • the transceiver unit is further configured to receive a first scheduling frame, where the first scheduling frame includes a receiving address field, where the receiving address field includes an address of a transceiver unit that is allowed by the first sending node to perform second data transmission. .
  • the duration of the contention of the second data transmission opportunity is specifically: starting with a time when the first sending node sends the first start frame, The time at which the first transmitting node starts transmitting the DATA frame ends.
  • the first scheduling frame received by the transceiver unit further includes a DATA frame information field, and the DATA frame information field
  • the method includes: an end time information of the first transmission node DATA frame transmission or start and end time information of the first transmission node DATA frame transmission.
  • the first response frame generated by the processing unit further includes a field for identifying the second data transmission information, the second data
  • the transmission information includes a transmission power of the transceiver unit or a channel quality of the second data transmission.
  • the receiving address field is one or more transceiver units that are preferably allowed to perform second data transmission by the first sending node. the address of.
  • the one or more transceiver units that are allowed to perform the second data transmission by the first sending node are according to the second Data transfer information is determined.
  • an embodiment of the present invention provides a data transmission apparatus applied to a WLAN of a wireless local area network, where the method includes:
  • a processing unit configured to perform a second data transmission, where the second data transmission is a data transmission performed during a time of the first data transmission;
  • a transceiver unit configured to receive a first scheduling frame sent by the first sending node, where the first scheduling frame includes a receiving address field, where the receiving address field includes a transceiver unit that is allowed by the first sending node to perform second data transmission. address.
  • the first scheduling frame received by the transceiver unit further includes a DATA frame information field, where the DATA frame information field includes: the first sending node The end time information of the DATA frame transmission or the start and end time information of the first transmission node DATA frame transmission.
  • an embodiment of the present invention provides a data transmission apparatus applied to a WLAN of a wireless local area network, where the method includes:
  • a processing unit configured to perform a second data transmission, where the second data transmission is a data transmission performed during a first data transmission time
  • a transceiver unit configured to receive a first startup frame sent by the first sending node, where the first startup frame includes a time window field, where the time window field is used to indicate a duration of establishing a second data transmission opportunity, the second data A transmission opportunity is a transmission opportunity for data transmission during the first data transmission time.
  • the duration of establishing the second data transmission opportunity is specifically: starting at a time when the first sending node sends the first start frame Ending with the time when the first transmitting node starts transmitting the DATA frame.
  • the first start frame received by the transceiver unit further includes a DATA frame information field, where the DATA frame information field includes: The end time information of the first transmission node DATA frame transmission or the start and end time information of the first transmission node DATA frame transmission.
  • the first sending node sends a first start frame, the start frame includes a time window field, and the first sending node reserves a time window for establishing a second data transmission, by using the foregoing manner
  • the first data transmission opportunity and the second data transmission opportunity are concurrent, and the network throughput is improved.
  • FIG. 1 is an application scenario diagram of an embodiment of the present invention
  • FIG. 3 is a flowchart of a method according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of a frame of a startup frame according to the present invention.
  • FIG. 6 is a schematic diagram of a frame structure of a response frame according to the present invention.
  • FIG. 7 is a schematic structural diagram of a frame of a scheduling frame according to the present invention.
  • Embodiment 8 is a second sub-picture of signaling interaction according to Embodiment 1 of the present invention.
  • Embodiment 9 is a third sub-picture of signaling interaction according to Embodiment 1 of the present invention.
  • Embodiment 10 is a fourth sub-picture of signaling interaction according to Embodiment 1 of the present invention.
  • FIG. 11 is a fifth sub-picture of signaling interaction according to Embodiment 1 of the present invention.
  • FIG. 17 is a schematic diagram of selecting a location of a second receiving node according to Embodiment 4 of the present invention.
  • Figure 19 is a second sub-picture of the NAV setting in Embodiment 4 of the present invention.
  • FIG. 22 is a logical structural diagram of a station in Embodiment 1 of the present invention.
  • FIG. 23 is a logical structural diagram of a station in Embodiment 2 of the present invention.
  • FIG. 24 is a logical structural diagram of a station in Embodiment 3 of the present invention.
  • FIG. 25 is a logical structural diagram of a station in Embodiment 4 of the present invention.
  • 26 is a logical structural diagram of a site of Embodiment 5 of the present invention.
  • Figure 27 is a logical structural diagram of a station in Embodiment 6 of the present invention.
  • FIG. 29 is a physical structural diagram of a station in Embodiment 2 of the present invention.
  • Figure 30 is a physical structural diagram of a station in Embodiment 3 of the present invention.
  • Figure 31 is a physical structural diagram of a station in Embodiment 4 of the present invention.
  • Figure 33 is a diagram showing the physical structure of a station in Embodiment 6 of the present invention.
  • the existing IEEE 802.11 MAC protocol adopts an RTS/CTS handshake mechanism, and a combination of physical carrier sensing and virtual carrier sensing to implement a collision avoidance mechanism.
  • Figure 2 provides a brief explanation of the working mechanism of the existing IEEE802.11 MAC protocol.
  • Step 1 After DIFS (English: Distributed Inter-frame Spacing, Chinese: Distributed Interframe Space) time, A and E1 start to retreat for the contention channel, and assume that the backoff counter of node A first retreats to the zero after access channel and sends RTS control frame.
  • DIFS International: Distributed Inter-frame Spacing
  • Chinese Distributed Interframe Space
  • Step 2 After receiving the RTS control frame, the node (including the node E1) in the transmission range of the node A sets the NAV (English: Network Allocation Vector) to stop the backoff; the destination receiving node (such as the node B) is in the After waiting for the SIFS (English: Short Inter-frame Spacing, Chinese: Short Frame Interval) time after receiving the RTS, it replies to the CTS control frame while waiting to receive the DATA frame.
  • NAV Network Allocation Vector
  • the NAV itself is a timer for estimating the time required to occupy the channel in microseconds (us).
  • NAV information is typically broadcast via the most reliable and widely identifiable RTS/CTS frame interactions, effectively preserving the channel length required for data transmission.
  • the WLAN device sets the time at which the NAV is expected to use the channel, including the time required to transmit all frames for a data transmission. As long as the value of the NAV is not zero, it indicates that the channel virtual carrier sensing result is busy. When the NAV is zero, it indicates that the channel virtual carrier sensing result is idle.
  • Step 3 After receiving the CTS control frame, the node in the transmission range of the receiving Node B sets the NAV to stop backoff (excluding node A); the sending node (such as node A) receives the CTS control frame and waits for the SIFS time to start transmitting data. .
  • Step 4 After the DATA transmission is completed, the receiving node (such as Node B) sends an ACK control frame after the SIFS time, and the transmitting node (such as Node A) waits to receive the ACK control frame.
  • the receiving node such as Node B
  • the transmitting node such as Node A
  • Step 4 As can be seen from the above, the existing IEEE 802.11 MAC protocol cannot implement concurrent transmission between the link A->B and the link E1->R1.
  • the embodiment of the present invention can be applied to a wireless local area network, where a plurality of basic service sets (English: Basic Service Set, BSS for short) can be included in the wireless local area network, and the network node in the basic service set is a station (English: Station, referred to as STA).
  • the site includes sites of the access point class (abbreviation: AP, English: Access Point) and sites of non-access point classes (English: None Access Point Station, referred to as Non-AP STA).
  • the access point class site AP is also called a wireless access point or hotspot.
  • the AP is an access point for mobile users to enter the wired network. It is mainly deployed in the home, inside the building, and inside the campus. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • An AP is equivalent to a bridge connecting a wired network and a wireless network. Its main function is to connect the wireless network clients together and then connect the wireless network to the Ethernet.
  • the standard adopted by AP is IEEE 802.11 series.
  • the AP may be a terminal device or a network device with a WiFi (English: Wireless Fidelity) chip.
  • the AP may be a device supporting the 802.11ax system.
  • the AP may be a device supporting multiple WLAN technologies such as 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the non-access point type site Non-AP STA may be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • a wireless communication chip For example: mobile phones that support WiFi communication, tablets that support WiFi communication, set-top boxes that support WiFi communication, smart TVs that support WiFi communication, smart wearable devices that support WiFi communication, and computers that support WiFi communication.
  • the site can support the 802.11ax system. Further optionally, the site supports multiple WLAN formats such as 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • Embodiment 1 of the present invention provides a data transmission method applied to a WLAN, and the method can be applied to a transmitting node, for example, the station A in FIG. 1, which can support a next-generation WLAN standard, for example, an 802.11ax system.
  • FIG. 3 is an exemplary block diagram of the data transmission method, and the specific steps are as follows:
  • Step 101 The first sending node sends a first start frame after competing for the first data transmission opportunity, where the first start frame includes a time window field, where the time window field is used to indicate the duration of competing for the second data transmission opportunity.
  • the second data transmission opportunity is a transmission opportunity for data transmission during the first data transmission time.
  • Step 102 The first sending node receives a first response frame sent by one or more second sending nodes for a first start frame, and the second sending node is a sending node that successfully contends to the second data transmission opportunity. .
  • Step 103 The first sending node sends a first scheduling frame, where the first scheduling frame includes a receiving address field, where the receiving address field includes a second sending node that is allowed by the first sending node to perform second data transmission. Address, the second data transmission is in the first data transmission Data transmission during the transmission time.
  • the start frame, the response frame, and the scheduling frame in FIG. 4, FIG. 8 to FIG. 15 and FIG. 18 to FIG. 19 respectively correspond to the first start frame, the first response frame, and the first schedule in the embodiment of the present invention. frame. This description applies to subsequent embodiments.
  • the duration of the contention of the second data transmission opportunity is specifically: starting with a time when the first sending node sends the first start frame, and ending with a time when the first sending node starts transmitting a DATA frame .
  • node A and node B constitute a first data transmission
  • A is a first transmitting node
  • B is a first receiving node
  • node E1 and node R1 form a second data transmission
  • E1 is a second sending node
  • R1 is a second
  • the time window includes three steps, and steps 1-3 in FIG. 4 correspond to steps 101-103, and are not described again.
  • the frame structure of the first startup frame is as shown in FIG. 5-1), and the basic structure and field definition thereof are in accordance with the framework definition of the MAC frame structure in the IEEE802.11 protocol.
  • the Frame Control field is used to identify the frame category, and the category of the first startup frame is determined by defining the Type and Subtype subfields in the Frame Control field.
  • the TA field is used to identify the first sending node address, and the Window field is used to indicate the value of the time window. If the first start frame does not include the RA field, the frame is broadcasted by default, as shown in Figure 5-1)a; if the RA field is included in the first start frame, the RA field is unicast/multicast/ The broadcast address is used to indicate that one, one, or all of the second sending nodes receive the first start frame, as shown in Figure 5-1)b. Specifically, the frame structure of the first response frame is as shown in FIG. 6, where FIG.
  • the frame structure 6-1) is the frame structure of the most basic first response frame, and the basic structure and field definition thereof conform to the MAC in the IEEE802.11 protocol.
  • the Frame Control field is used to identify the frame type, and the category of the first response frame is determined by defining the Type and Subtype subfields in the Frame Control field.
  • the RA field is used to identify the first sending node address, and the TA field is used to identify the second sending node address.
  • the first response frame further includes a field for identifying second data transmission information, where the second data transmission information includes a transmit power of the second sending node or a channel quality of the second data transmission.
  • the second sending node may report the second data transmission information to the first sending node for scheduling decision by carrying the Secondary Link Info field in the first response frame.
  • the frame structure of the first scheduling frame is as shown in FIG. 7, and its basic structure and field definition conform to the framework definition of the MAC frame structure in the IEEE802.11 protocol.
  • Figure 7-1) is the most basic first tone
  • the frame structure of the degree frame, the Frame Control field is used to identify the frame type, and the category of the first scheduling frame is determined by defining the Type and Subtype subfields in the Frame Control field.
  • the RA/RA List field is used to identify the authorized second sending node address, and the TA field is used to identify the first sending node address.
  • the first scheduling frame further includes a DATA frame information field, where the DATA frame information field includes: end time information of the first sending node DATA frame transmission or start and end of the first sending node DATA frame transmission Time information.
  • the Data End Time/Offset field identifies the absolute time at which the first transmission node DATA frame transmission ends, or identifies the first transmission node DATA frame transmission end time relative to the first scheduling frame end time. Time offset.
  • a Data Start Time/Offset field may also be added to identify an absolute time at which the first transmitting node DATA frame transmission starts or a time offset thereof relative to the end time of the first scheduling frame.
  • the first scheduling frame may also be a triggering Trigger frame, a beacon Beacon frame and other frame types, and those skilled in the art may have other understandings and do not limit the present invention.
  • the RTS/CTS handshake mechanism is not necessary for the first data transmission.
  • the first data transmission may not use the RTS/CTS handshake, and the first sending node directly sends the first startup frame, as shown in FIG. 8.
  • the RTS/CTS handshake mechanism is not necessary for the second data transmission.
  • the second data transmission may not use the RTS/CTS handshake.
  • the second sending node may directly send the first response frame to the first sending node, as shown in FIG. 9.
  • the sending, by the first sending node, the first scheduling frame specifically includes:
  • the first sending node After the first sending node determines that one or more second sending nodes compete for the second data transmission opportunity, the first sending node sends the first scheduling frame, and the first scheduling frame includes a receiving address.
  • the field is the address of one or more second transmitting nodes that are preferably allowed to perform the second data transmission by the first transmitting node.
  • one or more second sending nodes that are preferably allowed to perform second data transmission by the first sending node are determined according to the second data transmission information.
  • the first sending node may send the first scheduling frame to authorize the corresponding second data transmission after receiving the SIFS time after the first response frame, or may end the time window of the predetermined first response frame. Afterwards (a plurality of first response frames may be received during the period), the first scheduling frame is sent to authorize the second data transmission.
  • the second data transmission opportunity interaction stage may also adopt a frequency backoff mechanism or a time-frequency two-dimensional backoff mechanism.
  • FIG. 11 is an access timing diagram of the frequency backoff mechanism.
  • a second sending node After receiving the first start frame, a second sending node simultaneously sends multiple identical RTS frames on multiple random subchannels by using subchannel access (referred to as S-RTS, indicating second data)
  • S-RTS subchannel access
  • the plurality of second sending nodes randomly select one or more subchannels to simultaneously transmit respective S-RTS frames in a manner of subchannel access, and when competing for the second data transmission opportunity, Simultaneously initiating the establishment process of multiple second data transmission links can increase the robustness of the second data transmission link establishment.
  • the ACK frame sent by the second receiving node is aligned with the start and end time of the ACK frame sent by the first receiving node, as shown in the figure. 4, as shown in Figure 8-11.
  • the second sending node starts to transmit the DATA frame after receiving the first scheduling frame for at least the SIFS time, and the end time of the DATA frame transmitted by the second sending node ensures the DATA frame transmitted by the first sending node.
  • the end time is aligned to ensure that the first receiving node and the second receiving node feed back the ACK frame at the same time.
  • the first sending node may dynamically adjust the length of the time window.
  • the first sending node adjusts the time window based on the historical information. If the second data transmission is established quickly within a given time window length, the time window is shortened by half next time; otherwise, the time window is doubled.
  • the first sending node sends a first start frame, the start frame includes a time window field, and the first sending node reserves a time window for establishing a second data transmission, by using the foregoing manner
  • the first data transmission opportunity and the second data transmission opportunity are concurrent, and the network throughput is improved.
  • the data transmission time mentioned in steps 101-103 includes a first data transmission time and a second data transmission time
  • the data transmission time can be understood as one of the following:
  • the transmission time of the DATA frame, the transmission time of the DATA frame and the ACK frame, and the transmission time of the DATA frame, the ACK frame, and the SIFS interval may be well understood by those skilled in the art.
  • the time for sending the first start frame may be understood as any one of the following: a time when the first start frame is sent, and a time when the first start frame is offset from the SIFS.
  • the time at which the DATA frame is transmitted can be understood as any of the following: the time at which the DATA frame is transmitted, and the time at which the SIFS is offset before the DATA frame is transmitted, and those skilled in the art can have other understandings.
  • first start frame, the first response frame, and the first scheduling frame may also be other frame types such as a trigger Trigger frame, a beacon Beacon frame, etc., and those skilled in the art may have other understandings, and do not constitute the present invention. limit.
  • Embodiment 2 of the present invention provides a data transmission method applied to a WLAN, and the method can be applied to a transmitting node, for example, the station A in FIG. 1, which can support a next-generation WLAN standard, for example, an 802.11ax system.
  • a transmitting node for example, the station A in FIG. 1, which can support a next-generation WLAN standard, for example, an 802.11ax system.
  • the specific process is shown in Figure 12.
  • the first sending frame After the first sending node competes for the first data transmission opportunity, the first sending frame sends a first scheduling frame, where the first scheduling frame includes a receiving address field, where the receiving address field includes the second data transmission allowed by the first sending node.
  • the address of the second transmitting node, and the second data transmission is data transmission performed during the time of the first data transmission.
  • the RTS/CTS handshake mechanism is not necessary for the first data transmission.
  • the first sending node may directly send the first scheduling frame, as shown in FIG.
  • the first sending node may also send the first scheduling frame after waiting for the SIFS after receiving the CTS.
  • the first scheduling frame further includes a DATA frame information field, where the DATA frame information field includes: end time information of the first sending node DATA frame transmission or start and end of the first sending node DATA frame transmission Time information.
  • the ACK frame sent by the first receiving node and the ACK frame sent by the second receiving node start and end time Align as shown in Figure 12-13.
  • the first sending node sends the data in the embodiment of the present invention.
  • a first scheduling frame where the first scheduling frame includes a receiving address field, where the receiving address field includes an address of a second sending node that is allowed by the first sending node to perform second data transmission, and implements the first data by using the foregoing manner
  • the transmission opportunity and the second data transmission opportunity are concurrent, which improves the network throughput.
  • Embodiment 3 of the present invention provides a data transmission method applied to a WLAN, and the method can be applied to a transmitting node, for example, the station A in FIG. 1, which can support a next-generation WLAN standard, for example, an 802.11ax system.
  • a transmitting node for example, the station A in FIG. 1, which can support a next-generation WLAN standard, for example, an 802.11ax system.
  • the specific process is shown in Figure 14.
  • the first sending frame After the first sending node competes to the first data transmission opportunity, the first sending frame includes a time window field, where the time window field is used to indicate a duration of competing for the second data transmission opportunity,
  • the second data transmission opportunity is a transmission opportunity for data transmission during the first data transmission time.
  • the RTS/CTS handshake mechanism is not necessary for the first data transmission.
  • the first sending node may directly send the first starting frame, as shown in FIG.
  • the first transmitting node may also send a start frame after waiting for the SIFS after receiving the CTS.
  • the length of the time slot for establishing the second data transmission opportunity is specifically: starting with a time when the first sending node sends the first start frame, and ending with a time when the first sending node starts transmitting the DATA frame.
  • the first startup frame further includes a DATA frame information field, where the DATA frame information field includes: end time information of the first transmission node DATA frame transmission or start and end of the first transmission node DATA frame transmission. Time information.
  • the Data End Time/Offset field identifies the absolute time at which the first transmission node DATA frame transmission ends, or identifies the first transmission node DATA frame transmission end time relative to the first scheduling frame end time. Time offset.
  • a Data Start Time/Offset field may also be added to identify an absolute time at which the first sending node DATA frame transmission starts or a time offset thereof relative to the end time of the first scheduling frame.
  • the ACK frame sent by the first receiving node and the start and end time of the ACK frame sent by the second receiving node Align as shown in Figure 14-15.
  • the first sending node sends a first start frame after competing for the first data transmission opportunity, where the first start frame includes a time window field, and the time window field is used.
  • the first data transmission opportunity and the second data transmission opportunity are concurrently generated, thereby improving network throughput.
  • Embodiment 4 of the present invention provides a data transmission method for a WLAN, and the data transmission method can be applied to a transmitting node, such as the site E1 in FIG. 1, which can support a next-generation WLAN standard, for example, the 802.11ax system.
  • Figure 16 is an exemplary block diagram of the data transmission method, the specific steps are as follows:
  • Step 201 The second sending node receives a first starting frame sent by the first sending node after competing for the first data transmission opportunity, where the first starting frame includes a time window field, and the time window field is used to indicate that the second contention The duration of the data transmission opportunity, which is a transmission opportunity for the second data transmission during the first data transmission time.
  • Step 202 The second sending node competes for the second data transmission opportunity.
  • Step 203 The second sending node sends a first response frame for the first start frame.
  • Step 204 The second sending node receives a first scheduling frame, where the first scheduling frame includes a receiving address field, where the receiving address field includes a second sending by the first sending node for performing second data transmission. The address of the node.
  • step 202 the second sending node competes for the second data transmission opportunity by the backoff counter.
  • the duration of the contention of the second data transmission opportunity is specifically: starting with a time when the first sending node sends the first start frame, and ending with a time when the first sending node starts transmitting a DATA frame .
  • the node A and the node B constitute a first data transmission, where A is the first sending node, B is the first receiving node, and the node E1 and the node R1 form a second data transmission, where E1 is the second sending node, and R1 is the first
  • the time window includes three steps, and steps 1-3 in FIG. 4 correspond to steps 201, 203, and 204, respectively, and are not described again.
  • the first scheduling frame further includes a DATA frame information field, where the DATA frame information field includes: end time information of the first sending node DATA frame transmission or start and end of the first sending node DATA frame transmission Time information.
  • the second sending node obtains time information of the DATA frame transmission of the first sending node by using the DATA frame information field in the first scheduling frame, thereby determining the time of transmission of the DATA frame.
  • the RTS/CTS handshake mechanism is not necessary for the first data transmission.
  • the first data transmission may not use the RTS/CTS handshake, and the first sending node directly sends the first startup frame, as shown in FIG. 8.
  • the RTS/CTS handshake mechanism is not necessary for the second data transmission.
  • the second data transmission may not use the RTS/CTS handshake.
  • the second sending node may directly send the first response frame to the first sending node, as shown in FIG. 9.
  • the first response frame further includes a field for identifying second data transmission information, where the second data transmission information includes a transmit power of the second sending node or a channel quality of the second data transmission. .
  • the receiving, by the second sending node, the first scheduling frame in step 204 specifically includes:
  • the receive address field is an address of one or more transmit nodes that are preferably allowed to perform a second data transmission by the first transmitting node.
  • the one or more second sending nodes that are preferably allowed to perform the second data transmission by the first sending node are determined according to the second data transmission information.
  • the preferred address of the second sending node matches the RA field in the first scheduling frame, so that the preferred second sending node can parse the first scheduling frame.
  • the ACK frame sent by the second receiving node is aligned with the start and end time of the ACK frame sent by the first receiving node, as shown in FIG. 4 Figure 8-11 shows.
  • the ACK frame of the first data transmission is aligned with the start and end time of the ACK frame of the second data transmission, which can avoid the interference of the second transmission node DATA frame transmission for the first transmission node ACK frame reception, and the similar first transmission node DATA frame transmission The interference received by the second transmitting node ACK frame.
  • a node within the transmission range of the first transmitting node cannot be the second receiving node.
  • Second receiving node location Can you establish a second data transmission?
  • A is outside the transmission range and outside the transmission range of B (as in node R1 in Figure 17) can
  • NAV setting of the second sending node is as shown in FIG. 18, and is divided into at least three cases (as shown in FIG. 18):
  • the second sending node that does not receive the S-CTS frame restores the NAV setting in the RTS frame sent by the first sending node, as shown by NAV1 in FIG.
  • the second transmitting node that has not received the first scheduling frame restores the NAV setting in the RTS frame sent by the first transmitting node, as shown by NAV2 in FIG.
  • the second data transmission is successfully established, and the second transmitting node authorized to transmit the second data has its NAV setting as shown by NAV3 in FIG.
  • the neighboring nodes at the two ends of the second data transmission and reception need to update their NAV settings according to the received S-RTS/S-CTS or the first response frame, as shown in FIG.
  • the second sending node receives the first starting frame sent by the first sending node, where the first starting frame includes a time window field, and the second sending node establishes the first time in the time window.
  • the first data transmission opportunity and the second data transmission opportunity are concurrently realized, and the network throughput is improved.
  • Embodiment 5 of the present invention provides a data transmission method applied to a WLAN, and the method can be applied to a transmitting node, for example, the site E1 in FIG. 1, which can support a next-generation WLAN standard, for example, an 802.11ax system.
  • a transmitting node for example, the site E1 in FIG. 1, which can support a next-generation WLAN standard, for example, an 802.11ax system.
  • the specific process is shown in Figure 20.
  • Step 301 Receive a first scheduling frame sent by the first sending node, where the first scheduling frame includes a receiving address field, where the receiving address field includes a second sending node that is allowed by the first sending node to perform second data transmission.
  • the address, the second data transmission is a data transmission performed during the time of the first data transmission.
  • Step 302 Perform the second data transmission.
  • the first scheduling frame further includes a DATA frame information field, where the DATA frame information field includes: end time information of the first sending node DATA frame transmission or start and end of the first sending node DATA frame transmission Time information.
  • the first data transmission and the second data transmission are aligned, and the ACK frame sent by the first receiving node is aligned with the start and end time of the ACK frame sent by the second receiving node. , as shown in Figure 12-13.
  • the second sending node receives the first scheduling frame, where the first scheduling frame includes a receiving address field, and the receiving address field includes a second allowed by the first sending node.
  • the address of the second sending node of the data transmission in the above manner, realizes concurrent data transmission between the first data transmission opportunity and the second data transmission opportunity, thereby improving network throughput.
  • Embodiment 6 of the present invention provides a data transmission method applied to a WLAN, and the method can be applied to a transmitting node, for example, the site E1 in FIG. 1, which can support a next-generation WLAN standard, for example, an 802.11ax system.
  • a transmitting node for example, the site E1 in FIG. 1, which can support a next-generation WLAN standard, for example, an 802.11ax system.
  • the specific process is shown in Figure 21.
  • Step 401 Receive a first startup frame sent by the first sending node, where the first startup frame includes a time window field, where the time window field is used to indicate a duration of establishing a second data transmission opportunity, and the second data transmission opportunity It is a transmission opportunity for data transmission during the first data transmission time.
  • Step 402 Perform a second data transmission, where the second data transmission is data transmission performed during the first data transmission time.
  • the length of the time slot for establishing the second data transmission opportunity is specifically: first The time at which the transmitting node sends the first start frame begins, and the time at which the first transmitting node starts transmitting the DATA frame ends.
  • the first startup frame further includes a DATA frame information field, where the DATA frame information field includes: end time information of the first transmission node DATA frame transmission or start and end of the first transmission node DATA frame transmission. Time information.
  • the Data End Time/Offset field identifies the absolute time at which the first transmission node DATA frame transmission ends, or identifies the first transmission node DATA frame transmission end time relative to the first scheduling frame end time. Time offset.
  • a Data Start Time/Offset field may also be added to identify an absolute time at which the first sending node DATA frame transmission starts or a time offset thereof relative to the end time of the first scheduling frame.
  • the ACK frame sent by the second receiving node and the start and end time of the ACK frame sent by the first receiving node Align as shown in Figure 14-15.
  • the second sending node receives the first starting frame sent by the first sending node, where the first starting frame includes a time window field, and the time window field is used to indicate the establishment of the first
  • the first data transmission opportunity and the second data transmission opportunity are concurrently realized, and the network throughput is improved.
  • FIG. 22 is a schematic block diagram of a data transmission apparatus in a wireless local area network according to Embodiment 7 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the data transmission device 70 shown in FIG. 22 includes a processing unit 701 and a transceiver unit 702.
  • the data transmission device 70 can be the station A shown in FIG.
  • the processing unit 701 is configured to generate a first startup frame and a first scheduling frame.
  • the transceiver unit 702 is configured to send the first startup frame after the processing unit 701 contends to the first data transmission opportunity, where the first startup frame includes a time window field, where the time window field is used to indicate competition a duration of the second data transmission opportunity, wherein the second data transmission opportunity is a transmission opportunity for data transmission during the first data transmission time;
  • the transceiver unit 702 is further configured to receive, by the one or more second sending nodes, a first response frame for the first start frame, where the second sending node successfully competes for the second data transmission.
  • the transceiver unit 702 is further configured to send a first scheduling frame, where the first scheduling frame includes a receiving address field, where the receiving address field includes an address of a second sending node that is allowed by the processing unit to perform second data transmission,
  • the second data transmission is a data transmission performed during the first data transmission time.
  • the duration of the second data transmission opportunity is contiguous, that is, the time when the first sending frame is sent by the transceiver unit starts, and the time when the transceiver unit starts transmitting the DATA frame ends.
  • the first scheduling frame generated by the processing unit 701 further includes a DATA frame information field, where the DATA frame information field includes: end time information of the transceiver unit DATA frame transmission or the DATA frame transmission of the transceiver unit Start and end time information.
  • the first response frame received by the transceiver unit 702 further includes a field for identifying second data transmission information, where the second data transmission information includes a transmit power of the second sending node or the second Channel quality of data transmission.
  • the transceiver unit 702 sends the first scheduling frame, where the first scheduling frame includes The Receive Address field is the address of one or more second transmitting nodes that are preferably allowed by the processing unit to perform a second data transmission.
  • one or more second transmitting nodes that are preferably allowed to perform the second data transmission by the processing unit 701 are determined according to the second data transmission information.
  • the transceiver unit sends a first startup frame generated by the processing unit, the startup frame includes a time window field, and the processing unit reserves a time window for establishing the second data transmission. In a manner, the first data transmission opportunity and the second data transmission opportunity are concurrent, and the network throughput is improved.
  • FIG. 23 is a schematic block diagram of a data transmission apparatus in a wireless local area network according to Embodiment 8 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or core that implements related functions sheet.
  • the data transmission device 80 shown in FIG. 23 includes a processing unit 801 and a transceiver unit 802.
  • the data transmission device 80 can be the station A shown in FIG.
  • the processing unit 801 is configured to generate a first scheduling frame.
  • the transceiver unit 802 is configured to send the first scheduling frame after the processing unit 801 contends to the first data transmission opportunity, where the first scheduling frame includes a receiving address field, where the receiving address field is included by the processing unit 801 allows the address of the second transmitting node to perform the second data transmission, and the second data transmission is the data transmission performed during the time of the first data transmission.
  • the first scheduling frame generated by the processing unit 801 further includes a DATA frame information field, where the DATA frame information field includes: end time information of the transceiver unit DATA frame transmission or the DATA frame transmission of the transceiver unit Start and end time information.
  • the transceiver unit sends a first scheduling frame, where the first scheduling frame includes a receiving address field, and the receiving address field includes the second data transmission allowed by the first sending node.
  • the address of the second sending node in the above manner, realizes concurrent data transmission opportunity and second data transmission opportunity, thereby improving network throughput.
  • FIG. 24 is a schematic block diagram of a data transmission apparatus in a wireless local area network according to Embodiment 9 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the data transmission device 90 shown in FIG. 24 includes a processing unit 901 and a transceiver unit 902.
  • the data transmission device 90 can be the station A shown in FIG.
  • the processing unit 901 is configured to generate a first startup frame.
  • the transceiver unit 902 is configured to send the first startup frame after the processing unit 901 contends to the first data transmission opportunity, where the first startup frame includes a time window field, and the time window field is used to indicate that the second frame is established.
  • the duration of the data transmission opportunity which is a transmission opportunity for data transmission during the first data transmission time.
  • the duration of the establishing the second data transmission opportunity is specifically: starting with a time when the transceiver unit sends the first start frame, and ending with a time when the transceiver unit starts transmitting a DATA frame.
  • the first start frame generated by the processing unit 901 further includes a DATA frame information field, where the DATA frame information field includes: end time information of the transceiver unit DATA frame transmission or the DATA frame transmission of the transceiver unit Start and end time information.
  • the transceiver unit sends a first startup frame after the processing unit contends to the first data transmission opportunity, where the first startup frame includes a time window field, and the time window field is used.
  • the duration of the second data transmission opportunity is indicated, and the first data transmission opportunity and the second data transmission opportunity are concurrently implemented, thereby improving network throughput.
  • FIG. 25 is a schematic block diagram of a data transmission device in a wireless local area network according to Embodiment 5 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the data transmission device 1000 shown in FIG. 25 includes a processing unit 1001 and a transceiver unit 1002.
  • the data transmission device 1000 can be the site E1 shown in FIG.
  • the processing unit 1001 is configured to generate a first response frame and compete for the second data transmission opportunity;
  • the transceiver unit 1002 is configured to receive a first startup frame that is sent by the first sending node after competing for the first data transmission opportunity, where the first startup frame includes a time window field, where the time window field is used to indicate that the second data is contending The duration of the transmission opportunity, the second data transmission opportunity being a transmission opportunity for data transmission during the first data transmission time;
  • the transceiver unit 1002 is further configured to send a first response frame for the first start frame.
  • the transceiver unit 1002 is further configured to receive a first scheduling frame, where the first scheduling frame includes a receiving address field, where the receiving address field includes a transceiver unit that is allowed by the first sending node to perform second data transmission. address.
  • the duration of the contention of the second data transmission opportunity is specifically: starting with a time when the first sending node sends the first start frame, and ending with a time when the first sending node starts transmitting a DATA frame .
  • the first scheduling frame received by the transceiver unit 1002 further includes a DATA frame information field, where the DATA frame information field includes: end time information of the first transmission node DATA frame transmission or the first sending node. The start and end time information of the DATA frame transmission.
  • the processing unit 1001 determines the transmission time information of its own DATA frame according to the DATA information field in the first scheduling frame.
  • the first response frame generated by the processing unit 1001 further includes a field for identifying second data transmission information, where the second data transmission information includes a transmit power of the transceiver unit or the second data transmission. Channel quality.
  • the receiving address field is an address of one or more transceiver units that are preferably allowed to perform second data transmission by the first sending node.
  • the one or more transceiver units that are preferably allowed to perform the second data transmission by the first sending node are determined according to the second data transmission information.
  • the transceiver unit receives the first startup frame sent by the first sending node, where the first startup frame includes a time window field, and the second sending node establishes the second data in the time window.
  • the first data transmission opportunity and the second data transmission opportunity are concurrently implemented, and the network throughput is improved.
  • FIG. 26 is a schematic block diagram of a data transmission apparatus in a wireless local area network according to Embodiment 11 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the data transmission device 1100 shown in FIG. 26 includes a processing unit 1101 and a transceiving unit 1102.
  • the data transmission device 1100 can be the site E1 shown in FIG. 1.
  • the processing unit 1101 is configured to perform second data transmission, where the second data transmission is data transmission performed during a time of the first data transmission;
  • the transceiver unit 1102 is configured to receive a first scheduling frame sent by the first sending node, where the first scheduling frame includes a receiving address field, where the receiving address field includes a transceiver unit that is allowed by the first sending node to perform second data transmission. the address of.
  • the first scheduling frame received by the transceiver unit 1102 further includes a DATA frame information field, where the DATA frame information field includes: end time information of the first sending node DATA frame transmission or the first sending node. The start and end time information of the DATA frame transmission.
  • the transceiver unit receives the first scheduling frame, where the first scheduling frame includes a receiving address field, and the receiving address field includes the second data transmission allowed by the first sending node.
  • the address of the second sending node in the above manner, realizes concurrent data transmission opportunity and second data transmission opportunity, thereby improving network throughput.
  • FIG. 27 is a schematic block diagram of a data transmission apparatus in a wireless local area network according to Embodiment 12 of the present invention.
  • the data transmission device is, for example, a site or a dedicated circuit or chip that implements related functions.
  • the data transmission device 1200 shown in FIG. 27 includes a processing unit 1201 and a transceiver unit 1202.
  • the data transmission device 1200 can be the site E1 shown in FIG.
  • the processing unit 1201 is configured to perform second data transmission, where the second data transmission is data transmission performed during the first data transmission time;
  • the transceiver unit 1202 is configured to receive a first startup frame sent by the first sending node, where the first startup frame includes a time window field, where the time window field is used to indicate a duration of establishing a second data transmission opportunity, where the second The data transmission opportunity is a transmission opportunity for data transmission during the first data transmission time.
  • the duration of the establishing the second data transmission opportunity is specifically: starting with a time when the first sending node sends the first start frame, and ending with a time when the first sending node starts transmitting a DATA frame .
  • the first startup frame received by the transceiver unit 1202 further includes a DATA frame information field, where the DATA frame information field includes: end time information of the first transmission node DATA frame transmission or the first sending node. The start and end time information of the DATA frame transmission.
  • the transceiver unit receives the first startup frame sent by the first sending node, where the first startup frame includes a time window field, and the time window field is used to indicate that the second data is established.
  • the first data transmission opportunity and the second data transmission opportunity are concurrently generated, and the network throughput is improved.
  • Figure 28 is a diagram showing the hardware configuration of a station in a wireless local area network.
  • Site 1300 can be implemented by bus 1310 as a general bus architecture. Depending on the particular application of site 1300 and overall design constraints, bus 1310 can include any number of interconnect buses and bridges. The bus connects various circuits together, including a processor 1320, a storage medium 1330, and a bus interface 1340. Site 1300 connects network adapter 1350, etc., via bus 1310 to site 1300 using bus interface 1340.
  • the network adapter 310 can be used to implement signal processing functions of the physical layer in the wireless local area network, and transmit and receive radio frequency signals through the antenna 1370.
  • the user interface 1360 can be connected to a user terminal such as a keyboard, display, mouse, joystick, and the like.
  • the bus 1310 can also be connected to various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, etc., which are well known in the art and therefore will not be described in detail.
  • Site 1300 can be configured as a general purpose processing system including: one or more microprocessors that provide processor functionality; and external memory that provides at least a portion of storage medium 1330, all through external bus architecture and others Support circuits are connected together.
  • the site 1300 can be implemented using an ASIC (application specific integrated circuit) having a processor 1320, a bus interface 1340, a user interface 1360, and at least a portion of the storage medium 1330 integrated in a single chip, or a site 1300 can be implemented using one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, gate logic, discrete hardware components, any other suitable circuitry, or capable of Any combination of circuits that perform the various functions described throughout the present invention.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Protein Deformation Devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable circuitry, or capable of Any combination of circuits that perform the various functions described throughout the present invention
  • the processor 1320 is responsible for managing the bus and general processing (including executing software stored on the storage medium 1330).
  • Processor 1320 can be implemented using one or more general purpose processors and/or special purpose processors. Examples of processors include microprocessors, microcontrollers, DSP processors, and other circuits capable of executing software.
  • Software should be interpreted broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • storage medium 1330 is shown as being separate from processor 1320, however, those skilled in the art will readily appreciate that storage medium 1330, or any portion thereof, may be located outside of station 1300.
  • storage medium 1330 can include transmission lines, carrier waveforms modulated with data, and/or computer products separate from wireless nodes, all of which can be accessed by processor 1320 through bus interface 1340.
  • storage medium 1330, or any portion thereof, may be integrated into processor 1320, for example, may be cached and/or Use registers.
  • the processor 1320 can execute the instructions in FIG. 3, and other instructions executed by the processor 1320 have been described in detail in Embodiment 1, and are not described again.
  • the first sending node sends a first start frame, the start frame includes a time window field, and the first sending node reserves a time window for establishing a second data transmission, by using the foregoing manner
  • the first data transmission opportunity and the second data transmission opportunity are concurrent, and the network throughput is improved.
  • Figure 29 is a diagram showing the hardware configuration of a station in a wireless local area network.
  • the hardware configuration of the site is the same as that of the embodiment 13, and details are not described herein again.
  • the first sending node sends a first scheduling frame, where the first scheduling frame includes a receiving address field, and the receiving address field includes a second allowed by the first sending node.
  • the address of the second sending node of the data transmission in the above manner, realizes concurrent data transmission between the first data transmission opportunity and the second data transmission opportunity, thereby improving network throughput.
  • FIG. 30 shows the hardware configuration structure of the site in the WLAN.
  • the hardware configuration of the site is the same as that of the embodiment 13, and details are not described herein again.
  • Embodiment 15 the instructions executed by the processor 1520 in the site in Embodiment 15 have been elaborated in Embodiment 3 and will not be described again.
  • the first sending node sends a first start frame after competing for the first data transmission opportunity, where the first start frame includes a time window field, and the time window field is used.
  • the first data transmission opportunity and the second data transmission opportunity are concurrently generated, thereby improving network throughput.
  • FIG 31 shows the hardware configuration structure of the site in the WLAN.
  • the hardware configuration of the site is the same as that of the embodiment 13, and details are not described herein again.
  • the second sending node receives the first starting frame sent by the first sending node, where the first starting frame includes a time window field, and the second sending node establishes the first time in the time window.
  • the first data transmission opportunity and the second data transmission opportunity are concurrently realized, and the network throughput is improved.
  • Figure 32 is a block diagram showing the hardware configuration of a station in a wireless local area network.
  • the hardware configuration of the site is the same as that of the embodiment 13, and details are not described herein again.
  • the second sending node receives the first scheduling frame, where the first scheduling frame includes a receiving address field, and the receiving address field includes a second allowed by the first sending node.
  • the address of the second sending node of the data transmission in the above manner, realizes concurrent data transmission between the first data transmission opportunity and the second data transmission opportunity, thereby improving network throughput.
  • FIG 33 shows the hardware configuration structure of the site in the WLAN.
  • the hardware configuration of the site is the same as that of the embodiment 13, and details are not described herein again.
  • the second sending node receives the first starting frame sent by the first sending node, where the first starting frame includes a time window field, and the time window field is used to indicate the establishment of the first
  • the first data transmission opportunity and the second data transmission opportunity are concurrently realized, and the network throughput is improved.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented by the present invention.
  • the implementation of the examples constitutes any limitation.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. Specifically, it can be implemented by means of software plus necessary general hardware including general-purpose integrated circuits, general-purpose CPUs, general-purpose digital signal processors (DSPs), field-programmable gate arrays (FPGAs), and programmable logic devices (PLDs). ), general-purpose memory, general-purpose components, etc., of course, can also be realized by dedicated hardware including an application-specific integrated circuit (ASIC), a dedicated CPU, a dedicated memory, a dedicated component, and the like.
  • ASIC application-specific integrated circuit
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on this It is understood that the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • a computer device which may be a personal computer, server, or network device, etc.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (English: Read-Only Memory, abbreviated as: ROM), a random access memory (English: Random Access Memory, abbreviated as: RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Software or instructions can also be transferred over a transmission medium.
  • a transmission medium For example, if you use coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: DSL) or wireless technology (such as infrared, radio and microwave) to transfer software from websites, servers or other remote sources.
  • coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies are included in the definition of the transmission medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种应用于无线局域网WLAN的数据传输方法,该方法包括:第一发送节点在竞争到第一数据传输机会后,发送第一启动帧,该第一启动帧包括时间窗口字段,该时间窗口字段用于指示竞争第二数据传输机会的时长;第一发送节点收到一个或多个第二发送节点发送的针对第一启动帧的第一响应帧;第一发送节点发送第一调度帧,该第一调度帧包括接收地址字段,该接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址。本发明实施例还提供了相应的数据传输装置,通过应用本发明实施例的方法和装置,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。

Description

无线局域网中数据传输方法和传输装置 技术领域
本发明属于通信技术领域,尤其涉及无线局域网中数据传输方法和传输装置。
背景技术
无线网络尤其是无线局域网(英文:Wireless Local Area Networks,简称:WLAN)中,采用CSMA/CA(英文:Carrier sense multiple access with collision avoidance,中文:载波侦听多路访问/冲突避免)机制,无法实现链路并行传输。图1是场景示意图,假定传输链路A->B正在进行数据传输,节点E1处在发送节点A的覆盖范围之内,而处在接收节点B的覆盖范围之外。于是,E1因检测到A的发送而可能延迟向其目的节点R1传输数据。一般地,E1可以通过如下的方式推断自己的位置:
1)监听到发送节点A发送的RTS(英文:Request To Send,中文:请求发送)控制帧,但并没有在特定时间间隔内监听到接收节点B反馈给发送节点A的CTS(英文:Clear To Send,中文:清除发送)控制帧;
2)或者,监听到发送节点A发送的数据帧,却监听不到接收节点B反馈给发送节点A的ACK(英文:Acknowledgement,中文:应答响应)控制帧。
仍以图1为例,当传输链路A->B正在进行数据传输时,按照现有的IEEE(英文:Institute of Electrical and Electronics Engineers,中文:电气和电子工程师协会)802.11的MAC(英文:Media Access Control,中文:媒质访问控制)协议,在单信道条件下,节点E1和节点R1之间的通信是无法有效建立或进行的:
1)假定E1与R1之间的数据传输需要事先的RTS/CTS握手,那么虽然E1发送的RTS帧很可能传输成功,但R1回复的CTS帧则会与节点A正在发送的数据帧在节点E1处发生碰撞冲突,于是,E1与R1 间无法实现成功的RTS/CTS握手,从而无法建立后续的数据传输;
2)如果E1与R1之间不进行RTS/CTS握手,E1直接向R1发送数据,那么即使R1可以成功接收数据,其回复的ACK帧也很可能会与节点A正在发送的数据帧在节点E1处发生碰撞冲突,于是,E1与R1间的数据传输无法有效进行(除非E1不要求R1回复ACK,即E1只传输数据而不负责R1是否能成功接收)。
显然,如果使用单信道,在A与B的通信期间,无论E1发送多少次RTS或数据,都难以监听到来自R1的CTS或ACK。也就是说,由于E1与R1间无法成功传输数据,两条链路E1->R1(称作第二数据传输)与A->B(称作第一数据传输)之间难以形成并发传输,从而限制了网络吞吐量的提升。
发明内容
有鉴于此,本发明提供一种无线局域网中数据传输方法和传输装置,用于解决并发传输的问题。
第一方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输方法,该方法包括:
第一发送节点在竞争到第一数据传输机会后,发送第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
所述第一发送节点收到一个或多个第二发送节点发送的针对第一启动帧的第一响应帧,所述第二发送节点为成功竞争到第二数据传输机会的发送节点;
所述第一发送节点发送第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输时间内进行的数据传输。
结合第一方面,在第一方面的第一种实现方式中,所述竞争第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧 的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
结合第一方面以及第一方面的第一种实现方式,在第一方面的第二种实现方式中,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,所述第一响应帧还包括用于标识第二数据传输信息的字段,所述第二数据传输信息包括所述第二发送节点的发送功率或所述第二数据传输的信道质量。
结合第一方面的第三种实现方式,在第一方面的第四种实现方式中,所述第一发送节点确定一个或多个第二发送节点竞争所述第二数据传输机会成功后,所述第一发送节点发送所述第一调度帧,所述第一调度帧包括的接收地址字段为一个或多个被第一发送节点优选允许进行第二数据传输的第二发送节点的地址。
结合第一方面的第四种实现方式,在第一方面的第五种实现方式中,一个或多个被第一发送节点优选允许进行第二数据传输的第二发送节点是根据所述第二数据传输信息确定的。
第二方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输方法,该方法包括:
第一发送节点在竞争到第一数据传输机会后,发送第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输的时间内进行的数据传输。
结合第二方面,在第二方面的第一种实现方式中,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
第三方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输方法,该方法包括:
第一发送节点在竞争到第一数据传输机会后,发送第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二 数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会。
结合第三方面,在第三方面的第一种实现方式中,所述建立第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
结合第三方面的第一种实现方式,在第三方面的第二种实现方式中,所述第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
第四方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输方法,该方法包括:
第二发送节点接收第一发送节点在竞争到第一数据传输机会后发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
所述第二发送节点竞争到所述第二数据传输机会;
所述第二发送节点发送针对所述第一启动帧的第一响应帧;
所述第二发送节点接收第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述第一发送节点允许的进行第二数据传输的发送节点的地址。
结合第四方面,在第四方面的第一种实现方式中,所述竞争第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
结合第四方面以及第四方面的第一种实现方式,在第四方面的第二种实现方式中,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,所述第一响应帧还包括用于标识第二数据传输信息的字段,所述第二数据传输信息包括所述第二发送节点的发送功率或所述第二数据传输的信道质量。
结合第四方面的第三种实现方式,在第四方面的第四种实现方式中,所述接收地址字段为一个或多个被所述第一发送节点优选允许进行第二数据传输的发送节点的地址。
结合第四方面的第四种实现方式,在第四方面的第五种实现方式中,所述一个或多个被所述第一发送节点优选允许进行第二数据传输的第二发送节点是根据第二数据传输信息确定的。
第五方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输方法,该方法包括:
接收第一发送节点发送的第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输的时间内进行的数据传输;
进行所述第二数据传输。
结合第五方面,在第五方面的第一种实现方式中,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
第六方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输方法,该方法,包括:
接收第一发送节点发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
进行第二数据传输,所述第二数据传输是在第一数据传输时间内进行的数据传输。
结合第六方面,在第六方面的第一种实现方式中,所述建立第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
结合第六方面的第一种实现方式,在第六方面的第二种实现方式中,所述第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
第七方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输装置,该方法包括:
处理单元,用于生成第一启动帧和第一调度帧;
收发单元,用于在所述处理单元竞争到第一数据传输机会后,发送所述第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
收发单元,还用于接收一个或多个第二发送节点发送的针对第一启动帧的第一响应帧,所述第二发送节点为成功竞争到第二数据传输机会的发送节点;
收发单元,还用于发送第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述处理单元允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输时间内进行的数据传输。
结合第七方面,在第七方面的第一种实现方式中,所述竞争第二数据传输机会的时长,具体为:以所述收发单元发送所述第一启动帧的时间开始,以所述收发单元开始传输DATA帧的时间结束。
结合第七方面以及第七方面的第一种实现方式,在第七方面的第二种实现方式中,所述处理单元生成的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述收发单元DATA帧传输的结束时间信息或所述收发单元DATA帧传输的起止时间信息。
结合第七方面及其上述实现方式,在第七方面的第三种实现方式中,所述收发单元接收的第一响应帧还包括用于标识第二数据传输信息的字段,所述第二数据传输信息包括所述第二发送节点的发送功率或所述第二数据传输的信道质量。
结合第七方面的第三种实现方式,在第七方面的第四种实现方式中,所述处理单元确定一个或多个第二发送节点竞争所述第二数据传输机会成功后,所述收发单元发送所述第一调度帧,所述第一调度帧包括的接收地址字段为一个或多个被所述处理单元优选允许进行第二数据传输的第二发送节点的地址。
结合第七方面的第四种实现方式,在第七方面的第五种实现方式中, 一个或多个被所述处理单元优选允许进行第二数据传输的第二发送节点是根据所述第二数据传输信息确定的。
第八方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输装置,该方法包括:
处理单元,用于生成第一调度帧;
收发单元,用于所述处理单元竞争到第一数据传输机会后,发送所述第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述处理单元允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输的时间内进行的数据传输。
结合第八方面,在第八方面的第一种实现方式中,所述处理单元生成的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述收发单元DATA帧传输的结束时间信息或所述收发单元DATA帧传输的起止时间信息。
第九方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输装置,该方法包括:
处理单元,用于生成第一启动帧;
收发单元,用于所述处理单元竞争到第一数据传输机会后,发送所述第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会。
结合第九方面,在第九方面的第一种实现方式中,所述建立第二数据传输机会的时长,具体为:以所述收发单元发送所述第一启动帧的时间开始,以所述收发单元开始传输DATA帧的时间结束。
结合第九方面的第一种实现方式,在第九方面的第二种实现方式中,所述处理单元生成的第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述收发单元DATA帧传输的结束时间信息或所述收发单元DATA帧传输的起止时间信息。
第十方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输装置,该方法包括:
处理单元,用于生成第一响应帧以及竞争所述第二数据传输机会;
收发单元,用于接收第一发送节点在竞争到第一数据传输机会后发 送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
所述收发单元,还用于发送针对所述第一启动帧的第一响应帧;
所述收发单元,还用于接收第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述第一发送节点允许的进行第二数据传输的收发单元的地址。
结合第十方面,在第十方面的第一种实现方式中,所述竞争第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
结合第十方面以及第十方面的第一种实现方式,在第十方面的第二种实现方式中,所述收发单元接收的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
结合第十方面及其上述实现方式,在第十方面的第三种实现方式中,所述处理单元生成的第一响应帧还包括用于标识第二数据传输信息的字段,所述第二数据传输信息包括所述收发单元的发送功率或所述第二数据传输的信道质量。
结合第十方面的第三种实现方式,在第十方面的第四种实现方式中,所述接收地址字段为一个或多个被所述第一发送节点优选允许进行第二数据传输的收发单元的地址。
结合第十方面的第四种实现方式,在第十方面的第五种实现方式中,所述一个或多个被所述第一发送节点优选允许进行第二数据传输的收发单元是根据第二数据传输信息确定的。
第十一方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输装置,该方法包括:
处理单元,用于进行第二数据传输,所述第二数据传输是在第一数据传输的时间内进行的数据传输;
收发单元,用于接收第一发送节点发送的第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的收发单元的地址。
结合第十一方面,在第十一方面的第一种实现方式中,所述收发单元接收的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
第十二方面,本发明实施例提供了一种应用于无线局域网WLAN的数据传输装置,该方法包括:
处理单元,用于进行第二数据传输,所述第二数据传输是在第一数据传输时间内进行的数据传输;
收发单元,用于接收第一发送节点发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会。
结合第十二方面,在第十二方面的第一种实现方式中,所述建立第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
结合第十方面的第一种实现方式,在第十方面的第二种实现方式中,所述收发单元接收的第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
本发明实施例在无线局域网的数据传输过程中,第一发送节点发送第一启动帧,启动帧中包含时间窗口字段,第一发送节点预留时间窗口用于建立第二数据传输,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
附图说明
图1为本发明实施例的应用场景图;
图2为现有技术中RTS/CTS信令交互图;
图3为本发明实施例1的方法流程图;
图4为本发明实施例1的信令交互第一子图;
图5为本发明启动帧的帧结构示意图;
图6为本发明响应帧的帧结构示意图;
图7为本发明调度帧的帧结构示意图;
图8为本发明实施例1的信令交互第二子图;
图9为本发明实施例1的信令交互第三子图;
图10为本发明实施例1的信令交互第四子图;
图11为本发明实施例1的信令交互第五子图;
图12为本发明实施例2的信令交互第一子图;
图13为本发明实施例2的信令交互第二子图;
图14为本发明实施例3的信令交互第一子图;
图15为本发明实施例3的信令交互第二子图;
图16为本发明实施例4的方法流程图;
图17为本发明实施例4中第二接收节点位置选取的示意图;
图18为本发明实施例4中NAV设置第一子图;
图19为本发明实施例4中NAV设置第二子图。
图20为本发明实施例5的方法流程图;
图21为本发明实施例6的方法流程图;
图22为本发明实施例1站点的逻辑结构图;
图23为本发明实施例2站点的逻辑结构图;
图24为本发明实施例3站点的逻辑结构图;
图25为本发明实施例4站点的逻辑结构图;
图26为本发明实施例5站点的逻辑结构图;
图27为本发明实施例6站点的逻辑结构图;
图28为本发明实施例1站点的物理结构图;
图29为本发明实施例2站点的物理结构图;
图30为本发明实施例3站点的物理结构图;
图31为本发明实施例4站点的物理结构图;
图32为本发明实施例5站点的物理结构图;
图33为本发明实施例6站点的物理结构图。
具体实施方式
现有的IEEE802.11MAC协议,采用RTS/CTS握手机制,以及物理载波侦听和虚拟载波侦听相结合的方式实现碰撞避免机制,下面结合图1 和图2对现有的IEEE802.11MAC协议的工作机制做简要阐释。节点A和E1同时有数据传输到各自的目标节点B和R1时,需要经过如下步骤来完成传输:
步骤1:DIFS(英文:Distributed Inter-frame Spacing,中文:分布式帧间间隔)时间后,A、E1开始退避用于竞争信道,假定节点A的退避计数器首先退避到零后接入信道,发送RTS控制帧。
步骤2:节点A传输范围内的节点(包括节点E1)收到RTS控制帧后,设置NAV(英文:Network Allocation Vector,简称:网络配置向量),停止退避;目的接收节点(如节点B)在收到RTS之后等待SIFS(英文:Short Inter-frame Spacing,中文:短帧间隔)时间后,回复CTS控制帧,同时等待接收DATA帧。
需要说明的是,NAV本身是一个定时器,用以于预计需要占用信道的时间,以微秒(us)为单位。NAV信息通常是经由最为可靠且能够被广泛识别的RTS/CTS帧交互来广播的,从而有效预留数据传输所需占用的信道时长。WLAN设备通过设置NAV预计使用信道的时间,包括完成一次数据传输所需要传输所有帧的时间。只要NAV的数值不为零,就表明信道虚拟载波侦听结果为忙碌状态,当NAV为零时,表明信道虚拟载波侦听结果为空闲状态。
步骤3:接收节点B传输范围内的节点收到CTS控制帧后,设置NAV停止退避(不包括节点A);发送节点(如节点A)收到CTS控制帧,等待SIFS时间后,开始传输数据。
步骤4:DATA传输完毕,接收节点(如节点B)在SIFS时间后发送ACK控制帧,发送节点(如节点A)等待接收ACK控制帧。
此次传输成功,进入下一次竞争传输,假定E1在等待A->B传输结束后,在DIFS时间后竞争得到信道传输机会,则E1->R1之间的传输重复步骤1,步骤2,步骤3,步骤4。由上述内容可知,现有的IEEE802.11MAC协议无法实现链路A->B和链路E1->R1之间的并发传输。
本发明实施例可以应用于无线局域网,无线局域网中可以包括多个基本服务集(英文:Basic Service Set,简称:BSS),基本服务集中的网络节点为站点(英文:Station,简称:STA),站点包括接入点类的站点(简称:AP,英文:Access Point)和非接入点类的站点(英文: None Access Point Station,简称:Non-AP STA)。
接入点类站点AP,也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。目前AP主要采用的标准为IEEE802.11系列。具体地,AP可以是带有WiFi(英文:Wireless Fidelity,中文:无线保真)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11ax制式的设备,进一步可选地,该AP可以为支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式的设备。
非接入点类的站点Non-AP STA,可以是无线通讯芯片、无线传感器或无线通信终端。例如:支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备和支持WiFi通讯功能的计算机。可选地,站点可以支持802.11ax制式,进一步可选地,该站点支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式。
实施例1
本发明实施例1提供了一种应用于WLAN中的数据传输方法,该方法可以应用于发送节点,例如:图1中的站点A,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图3是该数据传输方法的示例性框图,具体步骤如下:
步骤101:第一发送节点在竞争到第一数据传输机会后,发送第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会。
步骤102:所述第一发送节点收到一个或多个第二发送节点发送的针对第一启动帧的第一响应帧,所述第二发送节点为成功竞争到第二数据传输机会的发送节点。
步骤103:所述第一发送节点发送第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传 输时间内进行的数据传输。需要说明的是,图4、图8-图15和图18-图19中的启动帧、响应帧和调度帧分别对应本发明实施例中的第一启动帧、第一响应帧和第一调度帧。该说明适用于后续实施例。
可选地,所述竞争第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
对于竞争第二数据传输机会的时长的解释,具体如图4所示。其中,节点A和节点B组成第一数据传输,A是第一发送节点,B是第一接收节点,节点E1和节点R1组成第二数据传输,其中E1是第二发送节点,R1是第二接收节点,所述时间窗口包含三个步骤,图4中步骤1-3分别与步骤101-103一一对应,不再赘述。具体地,所述第一启动帧的帧结构如图5-1)所示,其基本结构和字段定义符合IEEE802.11协议中MAC帧结构的框架定义。其中,Frame Control字段用于标识帧类别,通过对Frame Control字段中的Type和Subtype子字段定义,确定第一启动帧的类别。TA字段用于标识第一发送节点地址,Window字段用于指示时间窗口的值。如果第一启动帧不包含RA字段,则默认该帧采用广播方式传输,如图5-1)a所示;如果第一启动帧中包含RA字段,则该RA字段为单播/多播/广播地址,用于指示一个、一组或所有第二发送节点接收该第一启动帧,如图5-1)b所示。具体地,所述第一响应帧的帧结构如图6所示,其中,图6-1)是最基本的第一响应帧的帧结构,其基本结构和字段定义符合IEEE802.11协议中MAC帧结构的框架定义。其中,Frame Control字段用于标识帧类别,通过对Frame Control字段中的Type和Subtype子字段定义,确定第一响应帧的类别。RA字段用于标识第一发送节点地址,TA字段用于标识第二发送节点地址。
可选地,所述第一响应帧还包括用于标识第二数据传输信息的字段,所述第二数据传输信息包括所述第二发送节点的发送功率或所述第二数据传输的信道质量。如图6-2)所示,第二发送节点可以通过在第一响应帧中携带Secondary Link Info字段向第一发送节点汇报第二数据传输信息用于调度决策。
所述第一调度帧的帧结构如图7所示,其基本结构和字段定义符合IEEE802.11协议中MAC帧结构的框架定义。图7-1)是最基本的第一调 度帧的帧结构,Frame Control字段用于标识帧类别,通过对Frame Control字段中的Type和Subtype子字段定义,确定第一调度帧的类别。RA/RA List字段用于标识被授权的第二发送节点地址,TA字段用于标识第一发送节点地址。
可选地,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
具体地,如图7-2)所示,Data End Time/Offset字段标识第一发送节点DATA帧传输结束的绝对时间,或者标识第一发送节点DATA帧传输结束时刻相对于第一调度帧结束时刻的时间偏移量。
具体地,如图7-3)所示,还可以添加Data Start Time/Offset字段用于标识第一发送节点DATA帧传输开始的绝对时间或者其相对于第一调度帧结束时刻的时间偏移量。
需要说明的是,所述第一调度帧还可以为触发Trigger帧、信标Beacon帧等其他帧类型,本领域技术人员可以有其他理解,不对本发明构成限制。
需要说明的是,RTS/CTS握手机制对于第一数据传输不是必须的。第一数据传输可以不采用RTS/CTS握手,此时第一发送节点直接发送第一启动帧,如图8所示。
需要说明的是,RTS/CTS握手机制对于第二数据传输不是必须的。第二数据传输可以不采用RTS/CTS握手,此时第二发送节点可以直接发送第一响应帧给第一发送节点,如图9所示。
需要说明的是,若第一数据传输和第二数据传输均不采用RTS/CTS握手机制,信令交互如图10所示。
可选地,对于步骤103中,第一发送节点发送第一调度帧具体包括:
所述第一发送节点确定一个或多个第二发送节点竞争所述第二数据传输机会成功后,所述第一发送节点发送所述第一调度帧,所述第一调度帧包括的接收地址字段为一个或多个被第一发送节点优选允许进行第二数据传输的第二发送节点的地址。
需要说明的是,一个或多个被第一发送节点优选允许进行第二数据传输的第二发送节点是根据所述第二数据传输信息确定的。
具体地,第一发送节点可以在接收到一个第一响应帧后的SIFS时间后发送第一调度帧来授权对应的第二数据传输,也可以在预定的接收第一响应帧的时间窗口定时结束后(期间可能收到多个第一响应帧)发送第一调度帧对第二数据传输授权。
可选地,作为另一实施例,第二数据传输机会交互阶段还可以采用频率退避机制或时频二维退避机制。图11为频率退避机制的接入时序图。
1、当某个第二发送节点接收到第一启动帧之后,采用子信道接入的方式在多个随机子信道上同时发送多个相同的RTS帧(记做S-RTS,表示第二数据传输机会发送的RTS帧)竞争第二数据传输机会时,可以增加竞争成功概率。
2、当多个第二发送节点接收到第一启动帧之后,采用子信道接入的方式各自随机选择一个或多个子信道同时发送各自的S-RTS帧,竞争第二数据传输机会时,可以同时发起多个第二数据传输链路的建立过程,能够增加第二数据传输链路建立的鲁棒性。
可选地,第一数据传输和第二数据传输在并发传输DATA帧的过程结束后,所述第二接收节点发送的ACK帧同所述第一接收节点发送的ACK帧起止时间对齐,如图4,图8-11所示。
需要说明的是,第二发送节点在收到第一调度帧后的至少SIFS时间后开始传输DATA帧,且第二发送节点传输的DATA帧的结束时间要确保与第一发送节点传输的DATA帧的结束时间对齐,从而确保第一接收节点和第二接收节点在同一时刻反馈ACK帧。
可选地,作为另一实施例,第一发送节点可以动态地调整时间窗口的长度。第一发送节点基于历史信息调整时间窗口,如果在给定的时间窗口长度内,很快建立起第二数据传输,则下一次将时间窗口缩短一半;反之,则将时间窗口加倍。
本发明实施例在无线局域网的数据传输过程中,第一发送节点发送第一启动帧,启动帧中包含时间窗口字段,第一发送节点预留时间窗口用于建立第二数据传输,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
需要说明的是,步骤101-103提到的数据传输时间包括第一数据传输时间和第二数据传输时间,所述数据传输时间可以理解为下面一种: DATA帧的传输时间,DATA帧与ACK帧的传输时间,DATA帧、ACK帧与SIFS间隔的传输时间,本领域技术人员也可以有其他理解。
需要说明的是,发送所述第一启动帧的时间可以理解为以下任意一种:发送第一启动帧的时刻,发送第一启动帧前偏移SIFS的时刻。传输DATA帧的时间可以理解为以下任意一种:传输DATA帧的时刻,传输DATA帧前偏移SIFS的时刻,本领域技术人员也可以有其他理解。
需要说明的是,所述第一启动帧、第一响应帧和第一调度帧还可以为触发Trigger帧、信标Beacon帧等其他帧类型,本领域技术人员可以有其他理解,不对本发明构成限制。
以上对于本实施例的说明适用于后续实施例。
实施例2
本发明实施例2提供了一种应用于WLAN中的数据传输方法,该方法可以应用于发送节点,例如:图1中的站点A,该站点可以支持下一代WLAN标准,例如:802.11ax制式。具体流程如图12所示。
第一发送节点在竞争到第一数据传输机会后,发送第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输的时间内进行的数据传输。
需要说明的是,第一调度帧在实施例1中已有详细阐释,不再赘述。
需要说明的是,RTS/CTS握手机制对于第一数据传输不是必须的。第一发送节点可以直接发送第一调度帧,如图13所示。第一发送节点也可以在收到CTS后等待SIFS后发送第一调度帧。
可选地,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
需要说明的是,DATA帧信息字段实施例1中已有详细阐释,不再赘述。
可选地,所述第一数据传输和所述第二数据传输在并发传输DATA帧的过程结束后,所述第一接收节点发送的ACK帧同所述第二接收节点发送的ACK帧起止时间对齐,如图12-13所示。
本发明实施例在无线局域网的数据传输过程中,第一发送节点发送 第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例3
本发明实施例3提供了一种应用于WLAN中的数据传输方法,该方法可以应用于发送节点,例如:图1中的站点A,该站点可以支持下一代WLAN标准,例如:802.11ax制式。具体流程如图14所示。
第一发送节点在竞争到第一数据传输机会后,发送第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会。
需要说明的是,RTS/CTS握手机制对于第一数据传输不是必须的。第一发送节点可以直接发送第一启动帧,如图15所示。第一发送节点也可以在收到CTS后等待SIFS后发送启动帧。
需要说明的是,第一启动帧在实施例1中已有详细阐释,不再赘述。
可选地,所述建立第二数据传输机会的时隙长度,具体为:以第一发送节点发送所述第一启动帧的时间开始,以第一发送节点开始传输DATA帧的时间结束。
可选地,所述第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
具体地,如图5-2)所示,Data End Time/Offset字段标识第一发送节点DATA帧传输结束的绝对时间,或者标识第一发送节点DATA帧传输结束时刻相对于第一调度帧结束时刻的时间偏移量。
具体地,如图5-3)所示,还可以添加Data Start Time/Offset字段用于标识第一发送节点DATA帧传输开始的绝对时间或者其相对于第一调度帧结束时刻的时间偏移量。
可选地,所述第一数据传输和所述第二数据传输在并发传输DATA帧的过程结束后,所述第一接收节点发送的ACK帧同所述第二接收节点发送的ACK帧起止时刻对齐,如图14-15所示。
本发明实施例在无线局域网的数据传输过程中,第一发送节点在竞争到第一数据传输机会后,发送第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例4
本发明实施例4提供了一种WLAN的数据传输方法,该数据传输方法可以应用于发送节点,例如图1中的站点E1,该站点可以支持下一代WLAN标准,例如:802.11ax制式。图16是该数据传输方法的示例性框图,具体步骤如下:
步骤201:第二发送节点接收第一发送节点在竞争到第一数据传输机会后发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行第二数据传输的传输机会。
步骤202:所述第二发送节点竞争到所述第二数据传输机会。
步骤203:所述第二发送节点发送针对所述第一启动帧的第一响应帧。
步骤204:所述第二发送节点接收第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述第一发送节点允许的进行第二数据传输的第二发送节点的地址。
步骤202中,第二发送节点通过退避计数器竞争第二数据传输机会。
需要说明的是,第一启动帧、第一响应帧和第一调度帧三种帧的帧结构在实施例1中已有详细阐释,不再赘述。
可选地,所述竞争第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
具体地,对于竞争第二数据传输机会的时长的解释,具体如图4所示。其中,节点A和节点B组成第一数据传输,其中A是第一发送节点,B是第一接收节点,节点E1和节点R1组成第二数据传输,其中E1是第二发送节点,R1是第二接收节点,所述时间窗口包含三个步骤,图4中步骤1-3分别与步骤201、203、204一一对应,不再赘述。
可选地,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
具体地,第二发送节点通过第一调度帧中的DATA帧信息字段,获得第一发送节点DATA帧传输的时间信息,从而确定自身DATA帧传输的时间。
需要说明的是,RTS/CTS握手机制对于第一数据传输不是必须的。第一数据传输可以不采用RTS/CTS握手,此时第一发送节点直接发送第一启动帧,如图8所示。
需要说明的是,RTS/CTS握手机制对于第二数据传输不是必须的。第二数据传输可以不采用RTS/CTS握手,此时第二发送节点可以直接发送第一响应帧给第一发送节点,如图9所示。
需要说明的是,若第一数据传输和第二数据传输均不采用RTS/CTS握手机制,信令交互如图10所示。
可选地,所述第一响应帧还包括用于标识第二数据传输信息的字段,所述第二数据传输信息包括所述第二发送节点的发送功率或所述第二数据传输的信道质量。
可选地,步骤204中所述第二发送节点接收第一调度帧具体包括:
所述接收地址字段为一个或多个被所述第一发送节点优选允许进行第二数据传输的发送节点的地址。
具体地,所述一个或多个被所述第一发送节点优选允许进行第二数据传输的第二发送节点是根据第二数据传输信息确定的。
需要说明的是,优选的第二发送节点的地址与第一调度帧中的RA字段匹配,从而优选的第二发送节点可以解析第一调度帧。
可选地,第一数据传输和第二数据传输的DATA帧传输的过程结束后,所述第二接收节点发送的ACK帧同所述第一接收节点发送的ACK帧起止时间对齐,如图4,图8-11所示。
第一数据传输的ACK帧和第二数据传输的ACK帧起止时间对齐,可以避免第二发送节点DATA帧传输对于第一发送节点ACK帧接收的干扰,以及类似的第一发送节点DATA帧传输对于第二发送节点ACK帧接收的干扰。
需要说明的是,第二接收节点的选取(如图17所示)符合如下两个标准:
(1)第一发送节点传输范围内的节点不能作为第二接收节点。
(2)第一接收节点传输范围内的节点,且在发送ACK帧时对第一数据传输的ACK产生碰撞的节点不能作为第二接收节点。
表1第二接收节点位置选取判断标准
第二接收节点位置 能否建立第二数据传输
A的传输范围内(如图17中节点E4) 不能
B的传输范围内且在A的传输范围内(如图17中节点R2) 不能
B的传输范围内且在A的传输范围外(如图17中节点R3)
A的传输范围外且在B的传输范围外(如图17中节点R1)
需要说明的是,第二发送节点的NAV设置如图18所示,至少分为三种情况(如图18所示):
1.发送S-RTS后没有收到S-CTS帧的第二发送节点,恢复第一发送节点发送的RTS帧中的NAV设置,如图18中NAV1所示。
2.没有收到第一调度帧的第二发送节点,恢复第一发送节点发送的RTS帧中的NAV设置,如图18中的NAV2所示。
3.第二数据传输建立成功,且被授权第二数据传输的第二发送节点,其NAV设置如图18中的NAV3所示。
需要说明的是,第二数据传输收发两端的邻近节点需要根据接收到的S-RTS/S-CTS或第一响应帧来更新其NAV设置,如图19所示。
本发明实施例在无线局域网的数据传输过程中,第二发送节点接收第一发送节点发送的第一启动帧,该第一启动帧包含时间窗口字段,第二发送节点在该时间窗口内建立第二数据传输,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例5
本发明实施例5提供了一种应用于WLAN中的数据传输方法,该方法可以应用于发送节点,例如:图1中的站点E1,该站点可以支持下一代WLAN标准,例如:802.11ax制式。具体流程如图20所示。
步骤301:接收第一发送节点发送的第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输的时间内进行的数据传输。
步骤302:进行所述第二数据传输。
需要说明的是,第一调度帧在实施例1中已有详细阐释,不再赘述。
可选地,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
需要说明的是,DATA帧信息字段实施例1中已有详细阐释,不再赘述。
可选地,所述第一数据传输和所述第二数据传输在传输DATA帧的过程结束后,所述第一接收节点发送的ACK帧同所述第二接收节点发送的ACK帧起止时间对齐,如图12-13所示。
本发明实施例在无线局域网的数据传输过程中,第二发送节点接收第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例6
本发明实施例6提供了一种应用于WLAN中的数据传输方法,该方法可以应用于发送节点,例如:图1中的站点E1,该站点可以支持下一代WLAN标准,例如:802.11ax制式。具体流程如图21所示。
步骤401:接收第一发送节点发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会。
步骤402:进行第二数据传输,所述第二数据传输是在第一数据传输时间内进行的数据传输。
需要说明的是,第一启动帧在实施例1中已有详细阐释,不再赘述。
可选地,所述建立第二数据传输机会的时隙长度,具体为:以第一 发送节点发送所述第一启动帧的时间开始,以第一发送节点开始传输DATA帧的时间结束。
可选地,所述第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
具体地,如图5-2)所示,Data End Time/Offset字段标识第一发送节点DATA帧传输结束的绝对时间,或者标识第一发送节点DATA帧传输结束时刻相对于第一调度帧结束时刻的时间偏移量。
具体地,如图5-3)所示,还可以添加Data Start Time/Offset字段用于标识第一发送节点DATA帧传输开始的绝对时间或者其相对于第一调度帧结束时刻的时间偏移量。
可选地,所述第一数据传输和所述第二数据传输在并发传输DATA帧的过程结束后,所述第二接收节点发送的ACK帧同所述第一接收节点发送的ACK帧起止时刻对齐,如图14-15所示。
本发明实施例在无线局域网的数据传输过程中,第二发送节点接收第一发送节点发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例7
图22是本发明实施例7的无线局域网中的数据传输装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图22所示的数据传输装置70包括处理单元701和收发单元702。例如,该数据传输装置70可以为图1中示出的站点A。
处理单元701,用于生成第一启动帧和第一调度帧;
收发单元702,用于在所述处理单元701竞争到第一数据传输机会后,发送所述第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
收发单元702,还用于接收一个或多个第二发送节点发送的针对第一启动帧的第一响应帧,所述第二发送节点为成功竞争到第二数据传输 机会的发送节点;
收发单元702,还用于发送第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述处理单元允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输时间内进行的数据传输。
需要说明的是,第一启动帧、第一响应帧和第一调度帧的帧结构以及帧交互图在实施例1中已有详细阐释,不再赘述。
可选地,竞争第二数据传输机会的时长,具体为:以所述收发单元发送所述第一启动帧的时间开始,以所述收发单元开始传输DATA帧的时间结束。
需要说明的是,竞争第二数据传输机会的时长的具体情形如图4所示,不再赘述。
可选地,所述处理单元701生成的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述收发单元DATA帧传输的结束时间信息或所述收发单元DATA帧传输的起止时间信息。
可选地,所述收发单元702接收的第一响应帧还包括用于标识第二数据传输信息的字段,所述第二数据传输信息包括所述第二发送节点的发送功率或所述第二数据传输的信道质量。
可选地,所述处理单元701确定一个或多个第二发送节点竞争所述第二数据传输机会成功后,所述收发单元702发送所述第一调度帧,所述第一调度帧包括的接收地址字段为一个或多个被所述处理单元优选允许进行第二数据传输的第二发送节点的地址。
具体地,一个或多个被所述处理单元701优选允许进行第二数据传输的第二发送节点是根据所述第二数据传输信息确定的。
本发明实施例在无线局域网的数据传输过程中,收发单元发送由处理单元生成的第一启动帧,启动帧中包含时间窗口字段,处理单元预留时间窗口用于建立第二数据传输,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例8
图23是本发明实施例8的无线局域网中的数据传输装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯 片。图23所示的数据传输装置80包括处理单元801和收发单元802。例如,该数据传输装置80可以为图1中示出的站点A。
处理单元801,用于生成第一调度帧;
收发单元802,用于所述处理单元801竞争到第一数据传输机会后,发送所述第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述处理单元801允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输的时间内进行的数据传输。
可选地,所述处理单元801生成的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述收发单元DATA帧传输的结束时间信息或所述收发单元DATA帧传输的起止时间信息。
需要说明的是,第一调度帧的结构在实施例1中已有详细阐释,不再赘述。
本发明实施例在无线局域网的数据传输过程中,收发单元发送第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例9
图24是本发明实施例9的无线局域网中的数据传输装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图24所示的数据传输装置90包括处理单元901和收发单元902。例如,该数据传输装置90可以为图1中示出的站点A。
处理单元901,用于生成第一启动帧;
收发单元902,用于所述处理单元901竞争到第一数据传输机会后,发送所述第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会。
可选地,所述建立第二数据传输机会的时长,具体为:以所述收发单元发送所述第一启动帧的时间开始,以所述收发单元开始传输DATA帧的时间结束。
可选地,所述处理单元901生成的第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述收发单元DATA帧传输的结束时间信息或所述收发单元DATA帧传输的起止时间信息。
需要说明的是,第一启动帧的结构在实施例1和实施例3中已有详细阐释,不再赘述。
本发明实施例在无线局域网的数据传输过程中,收发单元在处理单元竞争到第一数据传输机会后发送第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例10
图25是本发明实施例5的无线局域网中的数据传输装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图25所示的数据传输装置1000包括处理单元1001和收发单元1002。例如,该数据传输装置1000可以为图1中示出的站点E1。
处理单元1001,用于生成第一响应帧以及竞争所述第二数据传输机会;
收发单元1002,用于接收第一发送节点在竞争到第一数据传输机会后发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
所述收发单元1002,还用于发送针对所述第一启动帧的第一响应帧;
所述收发单元1002,还用于接收第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述第一发送节点允许的进行第二数据传输的收发单元的地址。
需要说明的是,第一启动帧、第一响应帧和第一调度帧的帧结构以及帧交互图在实施例1中已有详细阐释,不再赘述。
可选地,所述竞争第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
需要说明的是,竞争第二数据传输机会的时长的具体情形如图4所 示,不再赘述。
可选地,所述收发单元1002接收的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
需要说明的是,所述处理单元1001根据第一调度帧中的DATA信息字段确定自身DATA帧的传输时间信息。
可选地,所述处理单元1001生成的第一响应帧还包括用于标识第二数据传输信息的字段,所述第二数据传输信息包括所述收发单元的发送功率或所述第二数据传输的信道质量。
可选地,所述接收地址字段为一个或多个被所述第一发送节点优选允许进行第二数据传输的收发单元的地址。
具体地,所述一个或多个被所述第一发送节点优选允许进行第二数据传输的收发单元是根据第二数据传输信息确定的。
本发明实施例在无线局域网的数据传输过程中,收发单元接收第一发送节点发送的第一启动帧,该第一启动帧包含时间窗口字段,第二发送节点在该时间窗口内建立第二数据传输,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例11
图26是本发明实施例11的无线局域网中的数据传输装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图26所示的数据传输装置1100包括处理单元1101和收发单元1102。例如,该数据传输装置1100可以为图1中示出的站点E1。
处理单元1101,用于进行第二数据传输,所述第二数据传输是在第一数据传输的时间内进行的数据传输;
收发单元1102,用于接收第一发送节点发送的第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的收发单元的地址。
可选地,所述收发单元1102接收的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
需要说明的是,第一调度帧的帧结构在实施例1中已有详细阐释, 不再赘述。
本发明实施例在无线局域网的数据传输过程中,收发单元接收第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例12
图27是本发明实施例12的无线局域网中的数据传输装置的示意性框图。该数据传输装置例如为站点,或者实现相关功能的专用电路或者芯片。图27所示的数据传输装置1200包括处理单元1201和收发单元1202。例如,该数据传输装置1200可以为图1中示出的站点E1。
处理单元1201,用于进行第二数据传输,所述第二数据传输是在第一数据传输时间内进行的数据传输;
收发单元1202,用于接收第一发送节点发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会。
可选地,所述建立第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
可选地,所述收发单元1202接收的第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
需要说明的是,第一启动帧的帧结构在实施例1和实施例3中已有详细阐释,不再赘述。
本发明实施例在无线局域网的数据传输过程中,收发单元接收第一发送节点发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例13
图28所示为无线局域网中站点的硬件配置结构图。在实施例13中, 站点1300可以由总线1310作一般性的总线体系结构来实现,根据站点1300的具体应用和整体设计约束条件,总线1310可以包括任意数量的互连总线和桥接。总线将各种电路连接在一起,这些电路包括处理器1320、存储介质1330和总线接口1340。站点1300使用总线接口1340将网络适配器1350等经由总线1310连接至站点1300。网络适配器310可用于实现无线局域网中物理层的信号处理功能,并通过天线1370实现射频信号的发送和接收。用户接口1360可以连接用户终端,例如:键盘、显示器、鼠标、操纵杆等。总线1310还可以连接各种其它电路,如定时源、外围设备、电压调节器、功率管理电路等,这些电路是本领域所熟知的,因此不再详述。
站点1300可配置成通用处理系统,该通用处理系统包括:提供处理器功能的一个或多个微处理器;以及提供存储介质1330的至少一部分的外部存储器,所有这些都通过外部总线体系结构与其它支持电路连接在一起。可替换地,站点1300可以使用下述来实现:具有处理器1320、总线接口1340、用户接口1360的ASIC(专用集成电路);以及集成在单个芯片中的存储介质1330的至少一部分,或者,站点1300可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本发明通篇所描述的各种功能的电路的任意组合。
处理器1320负责管理总线和一般处理(包括执行存储在存储介质1330上的软件)。处理器1320可以使用一个或多个通用处理器和/或专用处理器来实现。处理器的例子包括微处理器、微控制器、DSP处理器和能够执行软件的其它电路。应当将软件广义地解释为表示指令、数据或其任意组合,而不论是将其称作为软件、固件、中间件、微代码、硬件描述语言还是其它。
在图28所示的硬件实现方案中,存储介质1330被示为与处理器1320分离,然而,本领域技术人员很容易明白,存储介质1330或其任意部分可位于站点1300之外。举例来说,存储介质1330可以包括传输线、用数据调制的载波波形、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器1320通过总线接口1340来访问。可替换地,存储介质1330或其任意部分可以集成到处理器1320中,例如,可以是高速缓存和/或通 用寄存器。
具体地,处理器1320可执行图3中的指令,处理器1320执行的其他指令在实施例1中已有详细阐述,不再赘述。
本发明实施例在无线局域网的数据传输过程中,第一发送节点发送第一启动帧,启动帧中包含时间窗口字段,第一发送节点预留时间窗口用于建立第二数据传输,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例14
图29所示为无线局域网中站点的硬件配置结构图。在实施例14中,站点的硬件配置结构与实施例13相同,不再赘述。
具体地,实施例14中站点中的处理器1420执行的指令在实施例2中已有详细阐述,不再赘述。
本发明实施例在无线局域网的数据传输过程中,第一发送节点发送第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例15
图30所示为无线局域网中站点的硬件配置结构图。在实施例15中,站点的硬件配置结构与实施例13相同,不再赘述。
具体地,实施例15中站点中的处理器1520执行的指令在实施例3中已有详细阐述,不再赘述。
本发明实施例在无线局域网的数据传输过程中,第一发送节点在竞争到第一数据传输机会后,发送第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例16
图31所示为无线局域网中站点的硬件配置结构图。在实施例16中,站点的硬件配置结构与实施例13相同,不再赘述。
具体地,实施例16中站点中的处理器1620执行的指令在实施例4中已有详细阐述,不再赘述。
本发明实施例在无线局域网的数据传输过程中,第二发送节点接收第一发送节点发送的第一启动帧,该第一启动帧包含时间窗口字段,第二发送节点在该时间窗口内建立第二数据传输,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例17
图32所示为无线局域网中站点的硬件配置结构图。在实施例17中,站点的硬件配置结构与实施例13相同,不再赘述。
具体地,实施例17中站点中的处理器1720执行的指令在实施例5中已有详细阐述,不再赘述。
本发明实施例在无线局域网的数据传输过程中,第二发送节点接收第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
实施例18
图33所示为无线局域网中站点的硬件配置结构图。在实施例18中,站点的硬件配置结构与实施例13相同,不再赘述。
具体地,实施例18中站点中的处理器1820执行的指令在实施例6中已有详细阐述,不再赘述。
本发明实施例在无线局域网的数据传输过程中,第二发送节点接收第一发送节点发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,通过上述方式,实现第一数据传输机会和第二数据传输机会并发,提高了网络吞吐量。
应理解地,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述 的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。具体的,可以借助软件加必需的通用硬件的方式来实现,通用硬件包括通用集成电路、通用CPU、通用数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、通用存储器、通用元器件等,当然也可以通过专用硬件包括专用集成电路(ASIC)、专用CPU、专用存储器、专用元器件等来实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的 理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
软件或指令还可以通过传输介质来传输。例如,如果使用同轴电缆、光纤光缆、双绞线、数字用户线(英文:Digital Subscriber Line,简称:DSL)或者无线技术(如红外线、无线电和微波)从网站、服务器或其它远程源传输软件,那么同轴电缆、光纤光缆、双绞线、DSL或者无线技术(如红外线、无线电和微波)包括在传输介质的定义中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (44)

  1. 一种应用于无线局域网WLAN的数据传输方法,其特征在于,包括:
    第一发送节点在竞争到第一数据传输机会后,发送第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
    所述第一发送节点收到一个或多个第二发送节点发送的针对第一启动帧的第一响应帧,所述第二发送节点为成功竞争到第二数据传输机会的发送节点;
    所述第一发送节点发送第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输时间内进行的数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述竞争第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
  4. 根据权利要求1-3任一所述的方法,其特征在于,所述第一响应帧还包括用于标识第二数据传输信息的字段,所述第二数据传输信息包括所述第二发送节点的发送功率或所述第二数据传输的信道质量。
  5. 根据权利要求4所述的方法,其特征在于,所述第一发送节点确定一个或多个第二发送节点竞争所述第二数据传输机会成功后,所述第一发送节点发送所述第一调度帧,所述第一调度帧包括的接收地址字段为一个或多个被第一发送节点优选允许进行第二数据传输的第二发送节点的地址。
  6. 根据权利要求5所述的方法,其特征在于,一个或多个被第一发 送节点优选允许进行第二数据传输的第二发送节点是根据所述第二数据传输信息确定的。
  7. 一种应用于无线局域网WLAN的数据传输方法,其特征在于,包括:
    第一发送节点在竞争到第一数据传输机会后,发送第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输的时间内进行的数据传输。
  8. 根据权利要求7所述的方法,其特征在于,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
  9. 一种应用于无线局域网WLAN的数据传输方法,其特征在于,包括:
    第一发送节点在竞争到第一数据传输机会后,发送第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会。
  10. 根据权利要求9所述的方法,其特征在于,所述建立第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
  11. 根据权利要求10所述的方法,其特征在于,所述第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
  12. 一种应用于无线局域网WLAN的数据传输方法,其特征在于,包括:
    第二发送节点接收第一发送节点在竞争到第一数据传输机会后发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
    所述第二发送节点竞争到所述第二数据传输机会;
    所述第二发送节点发送针对所述第一启动帧的第一响应帧;
    所述第二发送节点接收第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述第一发送节点允许的进行第二数据传输的发送节点的地址。
  13. 根据权利要求12所述的方法,其特征在于,所述竞争第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
  15. 根据权利要求12-14任一所述的方法,其特征在于,所述第一响应帧还包括用于标识第二数据传输信息的字段,所述第二数据传输信息包括所述第二发送节点的发送功率或所述第二数据传输的信道质量。
  16. 根据权利要求15所述的方法,其特征在于,所述接收地址字段为一个或多个被所述第一发送节点优选允许进行第二数据传输的发送节点的地址。
  17. 根据权利要求16所述的方法,其特征在于,所述一个或多个被所述第一发送节点优选允许进行第二数据传输的第二发送节点是根据第二数据传输信息确定的。
  18. 一种应用于无线局域网WLAN的数据传输方法,其特征在于,包括:
    接收第一发送节点发送的第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输的时间内进行的数据传输;
    进行所述第二数据传输。
  19. 根据权利要求18所述的方法,其特征在于,所述第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起 止时间信息。
  20. 一种应用于无线局域网WLAN的数据传输方法,其特征在于,包括:
    接收第一发送节点发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
    进行第二数据传输,所述第二数据传输是在第一数据传输时间内进行的数据传输。
  21. 根据权利要求20所述的方法,其特征在于,所述建立第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
  22. 根据权利要求21所述的方法,其特征在于,所述第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
  23. 一种应用于无线局域网WLAN的数据传输装置,其特征在于,包括:
    处理单元,用于生成第一启动帧和第一调度帧;
    收发单元,用于在所述处理单元竞争到第一数据传输机会后,发送所述第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
    收发单元,还用于接收一个或多个第二发送节点发送的针对第一启动帧的第一响应帧,所述第二发送节点为成功竞争到第二数据传输机会的发送节点;
    收发单元,还用于发送第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述处理单元允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输时间内进行的数据传输。
  24. 根据权利要求23所述的方法,其特征在于,所述竞争第二数据传输机会的时长,具体为:以所述收发单元发送所述第一启动帧的时间 开始,以所述收发单元开始传输DATA帧的时间结束。
  25. 根据权利要求23或24所述的方法,其特征在于,所述处理单元生成的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述收发单元DATA帧传输的结束时间信息或所述收发单元DATA帧传输的起止时间信息。
  26. 根据权利要求23-25任一所述的方法,其特征在于,所述收发单元接收的第一响应帧还包括用于标识第二数据传输信息的字段,所述第二数据传输信息包括所述第二发送节点的发送功率或所述第二数据传输的信道质量。
  27. 根据权利要求26所述的方法,其特征在于,所述处理单元确定一个或多个第二发送节点竞争所述第二数据传输机会成功后,所述收发单元发送所述第一调度帧,所述第一调度帧包括的接收地址字段为一个或多个被所述处理单元优选允许进行第二数据传输的第二发送节点的地址。
  28. 根据权利要求27所述的方法,其特征在于,一个或多个被所述处理单元优选允许进行第二数据传输的第二发送节点是根据所述第二数据传输信息确定的。
  29. 一种应用于无线局域网WLAN的数据传输装置,其特征在于,包括:
    处理单元,用于生成第一调度帧;
    收发单元,用于所述处理单元竞争到第一数据传输机会后,发送所述第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述处理单元允许的进行第二数据传输的第二发送节点的地址,所述第二数据传输是在第一数据传输的时间内进行的数据传输。
  30. 根据权利要求29所述的方法,其特征在于,所述处理单元生成的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述收发单元DATA帧传输的结束时间信息或所述收发单元DATA帧传输的起止时间信息。
  31. 一种应用于无线局域网WLAN的数据传输装置,其特征在于,包括:
    处理单元,用于生成第一启动帧;
    收发单元,用于所述处理单元竞争到第一数据传输机会后,发送所述第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会。
  32. 根据权利要求31所述的方法,其特征在于,所述建立第二数据传输机会的时长,具体为:以所述收发单元发送所述第一启动帧的时间开始,以所述收发单元开始传输DATA帧的时间结束。
  33. 根据权利要求32所述的方法,其特征在于,所述处理单元生成的第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述收发单元DATA帧传输的结束时间信息或所述收发单元DATA帧传输的起止时间信息。
  34. 一种应用于无线局域网WLAN的数据传输装置,其特征在于,包括:
    处理单元,用于生成第一响应帧以及竞争所述第二数据传输机会;
    收发单元,用于接收第一发送节点在竞争到第一数据传输机会后发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示竞争第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会;
    所述收发单元,还用于发送针对所述第一启动帧的第一响应帧;
    所述收发单元,还用于接收第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被所述第一发送节点允许的进行第二数据传输的收发单元的地址。
  35. 根据权利要求34所述的方法,其特征在于,所述竞争第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
  36. 根据权利要求34或35所述的方法,其特征在于,所述收发单元接收的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
  37. 根据权利要求34-36任一所述的方法,其特征在于,所述处理单元生成的第一响应帧还包括用于标识第二数据传输信息的字段,所述 第二数据传输信息包括所述收发单元的发送功率或所述第二数据传输的信道质量。
  38. 根据权利要求37所述的方法,其特征在于,所述接收地址字段为一个或多个被所述第一发送节点优选允许进行第二数据传输的收发单元的地址。
  39. 根据权利要求38所述的方法,其特征在于,所述一个或多个被所述第一发送节点优选允许进行第二数据传输的收发单元是根据第二数据传输信息确定的。
  40. 一种应用于无线局域网WLAN的数据传输装置,其特征在于,包括:
    处理单元,用于进行第二数据传输,所述第二数据传输是在第一数据传输的时间内进行的数据传输;
    收发单元,用于接收第一发送节点发送的第一调度帧,所述第一调度帧包括接收地址字段,所述接收地址字段包含被第一发送节点允许的进行第二数据传输的收发单元的地址。
  41. 根据权利要求40所述的方法,其特征在于,所述收发单元接收的第一调度帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
  42. 一种应用于无线局域网WLAN的数据传输装置,其特征在于,包括:
    处理单元,用于进行第二数据传输,所述第二数据传输是在第一数据传输时间内进行的数据传输;
    收发单元,用于接收第一发送节点发送的第一启动帧,所述第一启动帧包括时间窗口字段,所述时间窗口字段用于指示建立第二数据传输机会的时长,所述第二数据传输机会是在第一数据传输时间内进行数据传输的传输机会。
  43. 根据权利要求42所述的方法,其特征在于,所述建立第二数据传输机会的时长,具体为:以所述第一发送节点发送所述第一启动帧的时间开始,以所述第一发送节点开始传输DATA帧的时间结束。
  44. 根据权利要求43所述的方法,其特征在于,所述收发单元接收 的第一启动帧还包括DATA帧信息字段,所述DATA帧信息字段包括:所述第一发送节点DATA帧传输的结束时间信息或所述第一发送节点DATA帧传输的起止时间信息。
PCT/CN2015/073578 2015-03-03 2015-03-03 无线局域网中数据传输方法和传输装置 WO2016138635A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073578 WO2016138635A1 (zh) 2015-03-03 2015-03-03 无线局域网中数据传输方法和传输装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073578 WO2016138635A1 (zh) 2015-03-03 2015-03-03 无线局域网中数据传输方法和传输装置

Publications (1)

Publication Number Publication Date
WO2016138635A1 true WO2016138635A1 (zh) 2016-09-09

Family

ID=56849095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073578 WO2016138635A1 (zh) 2015-03-03 2015-03-03 无线局域网中数据传输方法和传输装置

Country Status (1)

Country Link
WO (1) WO2016138635A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098296A (zh) * 2006-06-30 2008-01-02 西门子(中国)有限公司 控制无线信道访问竞争的方法及装置
CN101364944A (zh) * 2008-09-05 2009-02-11 西安电子科技大学 用于无线分布式网络的协同媒体接入控制方法
CN102282904A (zh) * 2009-01-19 2011-12-14 西门子公司 用于局域网中的数据传输的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098296A (zh) * 2006-06-30 2008-01-02 西门子(中国)有限公司 控制无线信道访问竞争的方法及装置
CN101364944A (zh) * 2008-09-05 2009-02-11 西安电子科技大学 用于无线分布式网络的协同媒体接入控制方法
CN102282904A (zh) * 2009-01-19 2011-12-14 西门子公司 用于局域网中的数据传输的方法

Similar Documents

Publication Publication Date Title
US9730217B2 (en) Method and apparatus for accessing channel in WLAN system
US20230071979A1 (en) Wireless communication method for saving power and wireless communication terminal using same
US9521671B2 (en) Method and device for performing channel access in WLAN system
US10708960B2 (en) Method for establishing communication connection between station and access point, access point, and station
JP5814469B2 (ja) デバイスがネットワークにアクセスする方法、アクセスポイント、ネットワークアクセスデバイス、およびシステム
US9848381B2 (en) Channel access method and apparatus in wireless LAN system
JP2023178343A (ja) マルチリンク通信方法および関連装置
US20150358786A1 (en) Method for transmitting/receiving group addressed frame in wlan system and device therefor
KR20070106008A (ko) 무선 네트워크에서의 비콘 전송 방법
CN104284441A (zh) 一种空间复用下的信道接入方法及站点
US9913292B2 (en) Method and device for restricted access window-based channel access in WLAN system
US9936370B2 (en) Scanning method and apparatus in wireless LAN system
WO2022057901A1 (zh) 无线局域网中的信道接入方法及相关装置
US20210337596A1 (en) Heterogeneous network allocation vector (nav)-based communication in wireless lan system
US9615385B2 (en) Method and access point for exchanging frames with a station in a wireless communication system
US9980287B2 (en) Method and apparatus for access in wireless LAN system
KR20230048390A (ko) 채널 경쟁 방법 및 관련 장치
US20170215189A1 (en) Method and apparatus for receiving signal by station in wireless lan system
WO2021254234A1 (zh) 信道竞争方法及相关装置
US9769846B2 (en) Method and device for performing access in wireless LAN system
US10128999B2 (en) Efficient protection of basic service set traffic
WO2016138635A1 (zh) 无线局域网中数据传输方法和传输装置
EP3182792B1 (en) Method for adjusting clear channel assessment threshold, and access point
WO2017036258A1 (zh) 竞争接入方法、竞争接入装置、站点及竞争接入系统
WO2021139793A1 (zh) 信道接入方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883692

Country of ref document: EP

Kind code of ref document: A1