WO2016137096A1 - Device for harvesting hybrid energy of heat and vibration using smart material - Google Patents

Device for harvesting hybrid energy of heat and vibration using smart material Download PDF

Info

Publication number
WO2016137096A1
WO2016137096A1 PCT/KR2015/013432 KR2015013432W WO2016137096A1 WO 2016137096 A1 WO2016137096 A1 WO 2016137096A1 KR 2015013432 W KR2015013432 W KR 2015013432W WO 2016137096 A1 WO2016137096 A1 WO 2016137096A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic beam
ferromagnetic material
hybrid energy
energy harvesting
support means
Prior art date
Application number
PCT/KR2015/013432
Other languages
French (fr)
Korean (ko)
Inventor
이동건
김윤철
이동렬
이승찬
Original Assignee
한국산업기술대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국산업기술대학교산학협력단 filed Critical 한국산업기술대학교산학협력단
Publication of WO2016137096A1 publication Critical patent/WO2016137096A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • the present invention relates to a thermal and vibration hybrid energy harvesting device using a smart material. More specifically, the present invention relates to a hybrid energy harvesting device for converting heat and vibration energy into electrical energy using a smart material.
  • Heat Energy Harvesting is a technology that converts many types of unutilized microenergy sources in our natural environment, such as vibration, heat, temperature changes, and light, into useful electrical energy.
  • heat energy harvesting technology converts waste heat generated in industrial sites, buildings, automobile engines, and the like to heat energy of portable electronic devices such as smartphones and laptops, and micro heat of the human body as energy sources.
  • Heat and vibration hybrid energy harvesting apparatus using a smart material aims to improve the efficiency of thermoelectric conversion.
  • the heat and vibration hybrid energy harvesting apparatus using a smart material aims to convert not only thermal energy but also vibration energy into electrical energy.
  • An elastic beam composed of a piezoelectric member and an elastic member joined to each other; A ferromagnetic material inserted into the elastic beam to reciprocate between a heat source and a cooling source and deform the shape of the elastic beam; Fixed support means for fixing the elastic beam at one side of the elastic beam; And simple supporting means for supporting the elastic beam on the other side of the elastic beam, wherein the piezoelectric member may produce electrical energy when the shape of the elastic beam is deformed by the reciprocating movement of the ferromagnetic material.
  • the heat source is located in the first direction of the elastic beam, the cooling source is located in the second direction of the elastic beam, the hybrid energy harvesting device, the magnet located in the first direction of the elastic beam It may further include.
  • the ferromagnetic material may be attached to the magnet when the temperature of the ferromagnetic material is less than or equal to a predetermined temperature, and may be separated from the magnet when the temperature of the ferromagnetic material exceeds the predetermined temperature.
  • the elastic beam is deformed by the magnetic attraction between the ferromagnetic material and the magnet, and can be restored to its original shape by the elastic force when the ferromagnetic material is dropped from the magnet.
  • the hybrid energy harvesting apparatus may further include a proof mass member positioned at an end of the upper surface of the elastic beam.
  • the hybrid energy harvesting apparatus further includes vibration force applying means for applying a vibration force to the elastic beam, wherein the piezoelectric member may produce electrical energy when the shape of the elastic beam is deformed by the vibration force. have.
  • the hybrid energy harvesting apparatus further includes a proof mass member positioned on an upper surface of the elastic beam, and the weight of the proof mass member is adjusted, so that the vibration force of the natural frequency corresponding to the external environmental frequency is adjusted. This may be applied to the elastic beam.
  • the ratio a / L of the length a between the fixed support means and the ferromagnetic material to the length L between the fixed support means and the simple support means may be between 0.5 and 0.65.
  • Heat and vibration hybrid energy harvesting apparatus using a smart material according to an embodiment of the present invention can improve the efficiency of thermoelectric conversion.
  • the heat and vibration hybrid energy harvesting apparatus using a smart material can convert not only thermal energy but also vibration energy into electrical energy.
  • FIG. 1 is a view showing the configuration of a hybrid energy harvesting apparatus according to an embodiment of the present invention.
  • 2 is a graph for explaining the characteristics of the ferromagnetic material.
  • 3a and 3b are views for explaining the operation of the hybrid energy harvesting apparatus according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining another operation of the hybrid energy harvesting apparatus according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining another operation of the hybrid energy harvesting apparatus according to an embodiment of the present invention.
  • FIG. 1 is a view showing the configuration of a hybrid energy harvesting apparatus 100 according to an embodiment of the present invention.
  • a hybrid energy harvesting apparatus 100 includes an elastic beam 110, a ferromagnetic material 120, fixed support means 130, and simple support means 140. .
  • the elastic beam 110 is composed of a piezoelectric member 112 and a non-magnetic elastic member 114 bonded to each other.
  • the piezoelectric member 112 produces electrical energy when stress or strain is applied.
  • the piezoelectric member 112 may include, for example, PZT or PVDF.
  • the elastic member 114 is changed in shape according to the reciprocating movement of the ferromagnetic material 120.
  • the nonmagnetic elastic member 114 may include metal (CuBe, etc.), rubber, silicon, and the like, but is not limited thereto.
  • the ferromagnetic material 120 is inserted into the elastic beam 110.
  • the ferromagnetic material 120 has a characteristic change around a predetermined temperature (Curie temperature). Specifically, as shown in FIG. 2, the ferromagnetic material 120 has a ferromagnetic property when the temperature of the ferromagnetic material 120 is less than or equal to a predetermined temperature, and has a paramagnetic property when the temperature of the ferromagnetic material 120 exceeds a predetermined temperature.
  • the ferromagnetic material 120 according to the present invention may include Gd (Gadolinium).
  • the fixed support means 130 fixes the elastic beam 110 at one side of the elastic beam 110.
  • the fixed support means 130 may fix the elastic beam 110 under the elastic beam 110.
  • the simple supporting means 140 supports the elastic beam 110 at the other side of the elastic beam 110. Unlike the fixed support means 130, the simple support means 140 does not fix the elastic beam 110, but simply supports the elastic beam 110 under the elastic beam 110 so that the elastic beam 110 may rotate. To be able.
  • a cooling source 170 may be positioned in an upper direction of the elastic beam 110, and a heat source 150 may be positioned in a lower direction of the elastic beam 110.
  • the magnet 160 is positioned in the downward direction of the elastic beam 110.
  • the cooling source 170 may be located in the lower direction of the elastic beam 110, and the heat source 150 may be located in the upper direction of the elastic beam 110.
  • the magnet 160 may be located in the upper direction of the elastic beam 110.
  • the heat source 150 may include the skin of the human body, and the cooling source 170 may include an air-cooled cooling device.
  • the temperature of the cooling source 170 may be lower than the Curie temperature of the ferromagnetic material 120, and the temperature of the heat source 150 may be higher than the Curie temperature of the ferromagnetic material 120.
  • the heat source 150 and the cooling source 170 according to the present invention may refer to a high temperature region higher than a predetermined temperature and a low temperature region lower than a predetermined temperature, rather than a separate device that applies heat or deprives heat.
  • the ferromagnetic material 120 is attached to the magnet 160 in accordance with the change in its temperature and then falls off and repeats the reciprocating movement between the heat source 150 and the cooling source 170, the piezoelectric member 112 is a ferromagnetic material 120 When the shape of the elastic beam 110 is deformed by the reciprocating movement of), electrical energy is produced.
  • the elastic beam 110 so that the distance that the ferromagnetic material 120 moves from the cooling source 170 to the magnet 160 and the distance that the ferromagnetic material 120 moves from the magnet 160 to the cooling source 170 are the same.
  • the position or height of can be adjusted. This is because the displacement of the piezoelectric member 112 becomes constant when the gap distance is the same, so that the magnitude of the voltage generated accordingly may be substantially constant.
  • 3A and 3B are views for explaining the operation of the hybrid energy harvesting apparatus 100 according to an embodiment of the present invention.
  • the ferromagnetic material 120 When the Curie temperature of the ferromagnetic material 120 is higher than room temperature, as shown in FIG. 3A, the ferromagnetic material 120 may be initially attached to the magnet 160 according to magnetic attraction with the magnet 160. In this case, the shape of the elastic beam 110 may be deformed to the maximum.
  • an elastic beam (rather than the magnetic attraction between the ferromagnetic material 120 and the magnet 160) may be used. As the elastic force of the 110 becomes stronger to separate the ferromagnetic material 120 and the magnet 160, the ferromagnetic material 120 is attached to the cooling source 170. Again, when the ferromagnetic material 120 is cooled by the cooling source 170 and the temperature of the ferromagnetic material 120 falls below the Curie temperature, the ferromagnetic material 120 is attached to the magnet 160 as shown in FIG. 3A.
  • the fixed support means 130 fixes the elastic beam 110, while the simple support means 140 simply supports the elastic beam 110, so that the elastic support 110 is elastic according to the reciprocating movement of the ferromagnetic material 120.
  • the shape of the beam 110 can be easily modified.
  • the reciprocating movement period of the ferromagnetic material 120 should be short.
  • Power generated by the piezoelectric member 112 may be expressed by the following equation.
  • P denotes the amount of power produced by the piezoelectric member 112
  • C denotes the capacitance of the piezoelectric member 112
  • V denotes the voltage generated by the piezoelectric member 112
  • f denotes the moving frequency of the ferromagnetic material 120.
  • the moving frequency of the ferromagnetic material 120 in order for the piezoelectric member 112 to produce a large amount of power, the moving frequency of the ferromagnetic material 120 must be large. In other words, the ferromagnetic material 120 has to move quickly between the heat source 150 and the cooling source 170.
  • the energy harvesting device 100 according to an embodiment of the present invention is fixed support means 130 and The distance a between the ferromagnetic bodies 120 is adjusted, and a proof mass member is positioned at the end of the upper surface of the elastic beam 110.
  • the ratio of a may be 0.5 to 0.65. This is to contact the ferromagnetic material 120 in parallel with the magnet 160 or the cooling source 170. If the ferromagnetic material 120 and the magnet 160 or the ferromagnetic material 120 and the cooling source 170 are not in parallel contact (that is, the surface of the ferromagnetic material 120 and the surface of the cooling source 170 or the magnet 160) ) And only a part of the ferromagnetic material 120 comes into contact with the magnet 160 or the cooling source 170. As a result, the contact area is small so that heat transfer is efficient. Will not occur.
  • the ferromagnetic material 120 When the shape of the elastic beam 110 is not deformed, the ferromagnetic material 120 is ideally positioned at the intermediate point between the fixed support means 130 and the simple support means 140, as shown in Figure 3a, the elastic beam 110 ) Is deformed, the ferromagnetic material 120 is fixed support means 130 in this case because the actual length of the elastic beam 110 located between the fixed support means 130 and the simple support means 140 increases. It is preferred to be located away from the intermediate point of the simple supporting means 140 toward the simple supporting means 140. Therefore, when the ratio of a to L is 0.5 to 0.65, the power output can be greatly increased.
  • the hybrid energy harvesting apparatus 100 may further include a proof mass member 180 positioned on an upper surface of the elastic beam 110.
  • the proof mass member 180 also serves to increase the moving speed of the ferromagnetic material 120.
  • the proof mass member 180 exerts a force in the downward direction, so that the moving speed of the ferromagnetic material 120 from the heat source 150 to the cooling source 170 can be increased.
  • Hybrid energy harvesting apparatus 100 by increasing the moving speed of the ferromagnetic material 120 in a variety of ways, it can significantly increase the production of electrical energy.
  • FIG. 4 is a view for explaining another operation of the harvesting apparatus 100 according to an embodiment of the present invention.
  • Hybrid harvesting apparatus 100 may produce electrical energy using a vibration force applied from the external environment. 4, the harvesting apparatus 100 according to an embodiment of the present invention may further include a vibration force applying means 190.
  • the vibration force applying means 190 may include, for example, a motor, but is not limited thereto.
  • the vibration force applying means 190 applies a vibration force to the elastic beam 110 to cause the elastic beam 110 to vibrate like R.
  • the vibration force applying means 190 may apply the vibration force of the frequency corresponding to the natural frequency of the proof mass member 180 to the elastic beam 110 to maximize the shape deformation of the elastic beam 110 through resonance. Can be.
  • the piezoelectric member 112 may produce electric energy corresponding to the degree of deformation.
  • the vibration force applying means 190 may not be included in the hybrid energy harvesting apparatus 100.
  • the hybrid energy harvesting apparatus 100 included in the wireless sensor may generate electrical energy by using the generated vibration when vibration occurs according to the movement of the wireless sensor, and the proof mass member 180 may be elastic by vibration.
  • the shape of the beam 110 may be better modified. In this case, by adjusting the weight of the proof mass member 180, the vibration force of the natural frequency corresponding to the external environmental frequency may be applied to the elastic beam 110.
  • Heat and vibration hybrid energy harvesting apparatus 100 using a smart material according to an embodiment of the present invention can improve the efficiency of thermoelectric conversion, it is possible to convert not only thermal energy but also vibration energy into electrical energy.
  • the embodiments of the present invention described above are implemented as a semi-permanent power supply of the wireless sensor for the Internet of Things or wearable equipment by utilizing the unutilized heat of industrial equipment, buildings, vehicles and human body and the abandoned vibration source by operating the device. Can be.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Disclosed is a device for harvesting hybrid energy, according to an embodiment of the present invention, comprising: a resilient beam that includes a piezoelectric member and a non-magnetic resilient material that are bonded to each other; a ferromagnetic body inserted into the resilient beam to deform the shape of the resilient beam while reciprocating between a heat source and a cooling source; a fixing support means provided on one side of the resilient beam to fix the resilient beam; and a simple support means provided on an opposite side of the resilient beam to support the resilient beam and to allow the resilient beam to rotate, wherein the piezoelectric member produces electrical energy when the shape of the resilient beam is deformed by the reciprocating of the ferromagnetic body. Further, the device for harvesting hybrid energy, according to the embodiment of the present invention, can produce electrical energy using external vibration by adjusting the natural frequency of the resilient beam using a proof mass member installed on the resilient beam.

Description

스마트소재를 이용한 열 및 진동 하이브리드 에너지 하베스팅 장치Heat and vibration hybrid energy harvesting device using smart material
본 발명은 스마트소재를 이용한 열 및 진동 하이브리드 에너지 하베스팅 장치에 관한 것이다. 보다 구체적으로, 본 발명은 스마트소재를 이용하여 열 및 진동 에너지를 전기 에너지로 변환하는 하이브리드 에너지 하베스팅 장치에 관한 것이다. The present invention relates to a thermal and vibration hybrid energy harvesting device using a smart material. More specifically, the present invention relates to a hybrid energy harvesting device for converting heat and vibration energy into electrical energy using a smart material.
최근, 사물 인터넷(Internet of Things, ioT) 기술의 발전으로 인해 무선 센서 시스템(WSN)의 사용 증가가 예상된다. 무선 센서의 신뢰성을 향상시키기 위해, 무선 센서에 대한 파워 제공 방법으로 에너지 하베스팅 기술이 주목받고 있다.Recently, the development of the Internet of Things (ioT) technology is expected to increase the use of the wireless sensor system (WSN). In order to improve the reliability of the wireless sensor, energy harvesting technology has attracted attention as a method of providing power to the wireless sensor.
에너지 하베스팅(Energy Harvesting)은 진동, 열, 온도 변화 및 빛 등 우리 주변 자연환경에 존재하는 여러 형태의 활용되지 않고 있는 미소 에너지 자원을 유용한 전기 에너지로 변환시키는 기술이다. 특히, 열 에너지 하베스팅 기술은 산업현장, 빌딩, 자동차 엔진 등에서 발생하는 폐열과 스마트폰, 노트북 등의 휴대용 전자기기의 발열 및 인체의 미소열 등을 에너지 소스로 이용하여 전기 에너지로 변환시킨다.Energy Harvesting is a technology that converts many types of unutilized microenergy sources in our natural environment, such as vibration, heat, temperature changes, and light, into useful electrical energy. In particular, heat energy harvesting technology converts waste heat generated in industrial sites, buildings, automobile engines, and the like to heat energy of portable electronic devices such as smartphones and laptops, and micro heat of the human body as energy sources.
앞으로, 무선 센서의 수요가 크게 증가할 것으로 예상되므로, 여러 에너지 자원을 동시에 전기 에너지로 변환하는 효율적인 하이브리드 방식의 기술이 요구된다.In the future, the demand for wireless sensors is expected to increase significantly, and thus, an efficient hybrid type technology for converting multiple energy sources into electrical energy is required.
본 발명의 일 실시예에 따른 스마트소재를 이용한 열 및 진동 하이브리드 에너지 하베스팅 장치는 열전 변환의 효율을 향상시키는 것을 목적으로 한다.Heat and vibration hybrid energy harvesting apparatus using a smart material according to an embodiment of the present invention aims to improve the efficiency of thermoelectric conversion.
또한, 본 발명의 일 실시예에 따른 스마트소재를 이용한 열 및 진동 하이브리드 에너지 하베스팅 장치는 열 에너지뿐만 아니라 진동 에너지를 전기 에너지로 변환하는 것을 목적으로 한다.In addition, the heat and vibration hybrid energy harvesting apparatus using a smart material according to an embodiment of the present invention aims to convert not only thermal energy but also vibration energy into electrical energy.
본 발명의 일 실시예에 따른 하이브리드 에너지 하베스팅 장치는,Hybrid energy harvesting apparatus according to an embodiment of the present invention,
서로 접합된 압전 부재와 탄성 부재로 구성된 탄성 빔(beam); 상기 탄성 빔에 삽입되어, 열원과 냉각원 사이에서 왕복 이동을 하며 상기 탄성 빔의 형상을 변형시키는 강자성체; 상기 탄성 빔의 일 측에서 상기 탄성 빔을 고정하는 고정 지지 수단; 및 상기 탄성 빔의 타 측에서 상기 탄성 빔을 지지하는 단순 지지 수단을 포함하되, 상기 압전 부재는, 상기 강자성체의 왕복 이동에 의해 상기 탄성 빔의 형상이 변형되는 경우 전기 에너지를 생산할 수 있다.An elastic beam composed of a piezoelectric member and an elastic member joined to each other; A ferromagnetic material inserted into the elastic beam to reciprocate between a heat source and a cooling source and deform the shape of the elastic beam; Fixed support means for fixing the elastic beam at one side of the elastic beam; And simple supporting means for supporting the elastic beam on the other side of the elastic beam, wherein the piezoelectric member may produce electrical energy when the shape of the elastic beam is deformed by the reciprocating movement of the ferromagnetic material.
상기 열원은, 상기 탄성 빔의 제 1 방향에 위치되고, 상기 냉각원은, 상기 탄성 빔의 제 2 방향에 위치되되, 상기 하이브리드 에너지 하베스팅 장치는, 상기 탄성 빔의 상기 제 1 방향에 위치한 자석을 더 포함할 수 있다.The heat source is located in the first direction of the elastic beam, the cooling source is located in the second direction of the elastic beam, the hybrid energy harvesting device, the magnet located in the first direction of the elastic beam It may further include.
상기 강자성체는, 상기 강자성체의 온도가 소정 온도 이하인 경우, 상기 자석에 부착되고, 상기 강자성체의 온도가 상기 소정 온도를 초과하는 경우, 상기 자석으로부터 떨어질 수 있다.The ferromagnetic material may be attached to the magnet when the temperature of the ferromagnetic material is less than or equal to a predetermined temperature, and may be separated from the magnet when the temperature of the ferromagnetic material exceeds the predetermined temperature.
상기 탄성 빔은, 상기 강자성체와 상기 자석 사이의 자기 인력에 의해 그 형상이 변형되며, 상기 강자성체가 상기 자석에서 떨어졌을 때 탄성력에 의해 원래의 형상으로 복원될 수 있다.The elastic beam is deformed by the magnetic attraction between the ferromagnetic material and the magnet, and can be restored to its original shape by the elastic force when the ferromagnetic material is dropped from the magnet.
상기 하이브리드 에너지 하베스팅 장치는, 상기 탄성 빔의 상부면 끝단에 위치되는 프루프 매스(proof mass) 부재를 더 포함할 수 있다.The hybrid energy harvesting apparatus may further include a proof mass member positioned at an end of the upper surface of the elastic beam.
상기 하이브리드 에너지 하베스팅 장치는, 상기 탄성 빔으로 진동력을 인가하는 진동력 인가 수단을 더 포함하되, 상기 압전 부재는, 상기 진동력에 의해 상기 탄성 빔의 형상이 변형되는 경우 전기 에너지를 생산할 수 있다.The hybrid energy harvesting apparatus further includes vibration force applying means for applying a vibration force to the elastic beam, wherein the piezoelectric member may produce electrical energy when the shape of the elastic beam is deformed by the vibration force. have.
상기 하이브리드 에너지 하베스팅 장치는, 상기 탄성 빔의 상부면에 위치되는 프루프 매스(proof mass) 부재를 더 포함하되, 상기 프루프 매스 부재의 무게가 조절됨으로써, 외부 환경 진동수에 대응하는 고유 진동수의 진동력이 상기 탄성 빔으로 인가될 수 있다.The hybrid energy harvesting apparatus further includes a proof mass member positioned on an upper surface of the elastic beam, and the weight of the proof mass member is adjusted, so that the vibration force of the natural frequency corresponding to the external environmental frequency is adjusted. This may be applied to the elastic beam.
상기 고정 지지 수단과 상기 단순 지지 수단 사이의 길이(L)에 대한 상기 고정 지지 수단과 상기 강자성체 사이의 길이(a)의 비율(a/L)은 0.5 내지 0.65일 수 있다.The ratio a / L of the length a between the fixed support means and the ferromagnetic material to the length L between the fixed support means and the simple support means may be between 0.5 and 0.65.
본 발명의 일 실시예에 따른 스마트소재를 이용한 열 및 진동 하이브리드 에너지 하베스팅 장치는 열전 변환의 효율을 향상시킬 수 있다.Heat and vibration hybrid energy harvesting apparatus using a smart material according to an embodiment of the present invention can improve the efficiency of thermoelectric conversion.
또한, 본 발명의 일 실시예에 따른 스마트소재를 이용한 열 및 진동 하이브리드 에너지 하베스팅 장치는 열 에너지뿐만 아니라 진동 에너지를 전기 에너지로 변환할 수 있다.In addition, the heat and vibration hybrid energy harvesting apparatus using a smart material according to an embodiment of the present invention can convert not only thermal energy but also vibration energy into electrical energy.
도 1은 본 발명의 일 실시예에 따른 하이브리드 에너지 하베스팅 장치의 구성을 도시하는 도면이다.1 is a view showing the configuration of a hybrid energy harvesting apparatus according to an embodiment of the present invention.
도 2는 강자성체의 특성을 설명하기 위한 그래프이다.2 is a graph for explaining the characteristics of the ferromagnetic material.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 하이브리드 에너지 하베스팅 장치의 동작을 설명하기 위한 도면이다.3a and 3b are views for explaining the operation of the hybrid energy harvesting apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 하이브리드 에너지 하베스팅 장치의 다른 동작을 설명하기 위한 도면이다.4 is a view for explaining another operation of the hybrid energy harvesting apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 하이브리드 에너지 하베스팅 장치의 또 다른 동작을 설명하기 위한 도면이다.5 is a view for explaining another operation of the hybrid energy harvesting apparatus according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and only the embodiments make the disclosure of the present invention complete, and the general knowledge in the art to which the present invention belongs. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
도 1은 본 발명의 일 실시예에 따른 하이브리드 에너지 하베스팅 장치(100)의 구성을 도시하는 도면이다.1 is a view showing the configuration of a hybrid energy harvesting apparatus 100 according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 하이브리드 에너지 하베스팅 장치(100)는 탄성 빔(110), 강자성체(120), 고정 지지 수단(130) 및 단순 지지 수단(140)을 포함한다.Referring to FIG. 1, a hybrid energy harvesting apparatus 100 according to an embodiment of the present invention includes an elastic beam 110, a ferromagnetic material 120, fixed support means 130, and simple support means 140. .
탄성 빔(110)은 서로 접합된 압전 부재(112)와 비자성(Non-magnetic) 탄성 부재(114)로 구성된다. 압전 부재(112)는 응력(stress) 또는 변형력(strain)이 가해지면 전기 에너지를 생산한다. 압전 부재(112)는 예를 들어, PZT 또는 PVDF를 포함할 수 있다. 탄성 부재(114)는 후술하는 바와 같이, 강자성체(120)의 왕복 이동에 따라 그 형태가 변화된다. 비자성 탄성 부재(114)는 메탈(CuBe 등), 고무, 실리콘 등을 포함할 수 있으나 이에 한정되는 것은 아니다.The elastic beam 110 is composed of a piezoelectric member 112 and a non-magnetic elastic member 114 bonded to each other. The piezoelectric member 112 produces electrical energy when stress or strain is applied. The piezoelectric member 112 may include, for example, PZT or PVDF. As will be described later, the elastic member 114 is changed in shape according to the reciprocating movement of the ferromagnetic material 120. The nonmagnetic elastic member 114 may include metal (CuBe, etc.), rubber, silicon, and the like, but is not limited thereto.
강자성체(120)는 탄성 빔(110)에 삽입된다. 강자성체(120)는 소정 온도(퀴리 온도)를 중심으로 그 특성이 변화한다. 구체적으로, 도 2에 도시된 바와 같이, 강자성체(120)는 강자성체(120)의 온도가 소정 온도 이하이면 강자성의 성질을 갖고, 강자성체(120)의 온도가 소정 온도를 초과하면 상자성의 성질을 갖는다. 본 발명에 따른 강자성체(120)는 Gd(Gadolinium)를 포함할 수 있다.The ferromagnetic material 120 is inserted into the elastic beam 110. The ferromagnetic material 120 has a characteristic change around a predetermined temperature (Curie temperature). Specifically, as shown in FIG. 2, the ferromagnetic material 120 has a ferromagnetic property when the temperature of the ferromagnetic material 120 is less than or equal to a predetermined temperature, and has a paramagnetic property when the temperature of the ferromagnetic material 120 exceeds a predetermined temperature. . The ferromagnetic material 120 according to the present invention may include Gd (Gadolinium).
고정 지지 수단(130)은 탄성 빔(110)의 일 측(side)에서 탄성 빔(110)을 고정한다. 고정 지지 수단(130)은 탄성 빔(110)의 하부에서 탄성 빔(110)을 고정할 수 있다.The fixed support means 130 fixes the elastic beam 110 at one side of the elastic beam 110. The fixed support means 130 may fix the elastic beam 110 under the elastic beam 110.
단순 지지 수단(140)은 탄성 빔(110)의 타 측에서 탄성 빔(110)을 지지한다. 단순 지지 수단(140)은 고정 지지 수단(130)과 달리 탄성 빔(110)을 고정시키지 않고 단순히 탄성 빔(110)의 하부에서 탄성 빔(110)을 지지함으로써, 탄성 빔(110)이 회전할 수 있게 한다.The simple supporting means 140 supports the elastic beam 110 at the other side of the elastic beam 110. Unlike the fixed support means 130, the simple support means 140 does not fix the elastic beam 110, but simply supports the elastic beam 110 under the elastic beam 110 so that the elastic beam 110 may rotate. To be able.
도 1을 보면, 탄성 빔(110)의 상부 방향에는 냉각원(170)이 위치되고, 탄성 빔(110)의 하부 방향에는 열원(150)이 위치될 수 있다. 또한, 탄성 빔(110)의 하부 방향에는 자석(160)이 위치된다. 구현예에 따라서는 냉각원(170)이 탄성 빔(110)의 하부 방향에 위치되고, 열원(150)이 탄성 빔(110)의 상부 방향에 위치될 수도 있다. 이 경우, 자석(160)은 탄성 빔(110)의 상부 방향에 위치될 수 있다. 예를 들어, 열원(150)은 인체의 피부를 포함하고, 냉각원(170)은 공냉식 냉각 장치를 포함할 수도 있다.1, a cooling source 170 may be positioned in an upper direction of the elastic beam 110, and a heat source 150 may be positioned in a lower direction of the elastic beam 110. In addition, the magnet 160 is positioned in the downward direction of the elastic beam 110. In some embodiments, the cooling source 170 may be located in the lower direction of the elastic beam 110, and the heat source 150 may be located in the upper direction of the elastic beam 110. In this case, the magnet 160 may be located in the upper direction of the elastic beam 110. For example, the heat source 150 may include the skin of the human body, and the cooling source 170 may include an air-cooled cooling device.
냉각원(170)의 온도는 강자성체(120)의 퀴리 온도보다 낮고, 열원(150)의 온도는 강자성체(120)의 퀴리 온도보다 높을 수 있다. 본 발명에 따른 열원(150)과 냉각원(170)은 열을 가하거나 열을 뺏는 별도의 장치가 아닌, 소정 온도보다 높은 고온 영역 및 소정 온도보다 낮은 저온 영역을 의미할 수도 있다. The temperature of the cooling source 170 may be lower than the Curie temperature of the ferromagnetic material 120, and the temperature of the heat source 150 may be higher than the Curie temperature of the ferromagnetic material 120. The heat source 150 and the cooling source 170 according to the present invention may refer to a high temperature region higher than a predetermined temperature and a low temperature region lower than a predetermined temperature, rather than a separate device that applies heat or deprives heat.
강자성체(120)는 자신의 온도 변화에 따라 자석(160)에 부착되었다가 떨어졌다가를 반복하며 열원(150)과 냉각원(170) 사이에서 왕복 이동을 하고, 압전 부재(112)는 강자성체(120)의 왕복 이동에 의해 탄성 빔(110)의 형상이 변형되면, 전기 에너지를 생산한다.The ferromagnetic material 120 is attached to the magnet 160 in accordance with the change in its temperature and then falls off and repeats the reciprocating movement between the heat source 150 and the cooling source 170, the piezoelectric member 112 is a ferromagnetic material 120 When the shape of the elastic beam 110 is deformed by the reciprocating movement of), electrical energy is produced.
또한, 냉각원(170)으로부터 자석(160)까지 강자성체(120)가 이동하는 거리와, 자석(160)으로부터 냉각원(170)까지 강자성체(120)가 이동하는 거리가 동일하도록 탄성 빔(110)의 위치 또는 높이가 조절될 수 있다. 이는, 갭거리(Gap Distance)가 동일하면 압전 부재(112)의 변위가 일정해지므로, 이에 따라 발생되는 전압의 크기가 거의 일정해질 수 있기 때문이다.In addition, the elastic beam 110 so that the distance that the ferromagnetic material 120 moves from the cooling source 170 to the magnet 160 and the distance that the ferromagnetic material 120 moves from the magnet 160 to the cooling source 170 are the same. The position or height of can be adjusted. This is because the displacement of the piezoelectric member 112 becomes constant when the gap distance is the same, so that the magnitude of the voltage generated accordingly may be substantially constant.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 하이브리드 에너지 하베스팅 장치(100)의 동작을 설명하기 위한 도면이다.3A and 3B are views for explaining the operation of the hybrid energy harvesting apparatus 100 according to an embodiment of the present invention.
강자성체(120)의 퀴리 온도가 상온보다 높은 경우, 도 3a에 도시된 바와 같이, 초기에 강자성체(120)는 자석(160)과의 자기 인력에 따라 자석(160)에 부착될 수 있다. 이 경우, 탄성 빔(110)의 형상은 최대로 변형될 수 있다. 강자성체(120)가 열원(150)으로부터 가열되어 강자성체(120)의 온도가 퀴리 온도를 초과하면, 도 3b에 도시된 바와 같이, 강자성체(120)와 자석(160) 사이의 자기 인력보다 탄성 빔(110)의 탄성력이 더 강해져 강자성체(120)와 자석(160)이 분리되면서, 강자성체(120)가 냉각원(170)에 부착된다. 다시, 강자성체(120)가 냉각원(170)에 의해 냉각되어 강자성체(120)의 온도가 퀴리 온도 이하로 떨어지면, 도 3a와 같이 강자성체(120)가 자석(160)에 부착된다.When the Curie temperature of the ferromagnetic material 120 is higher than room temperature, as shown in FIG. 3A, the ferromagnetic material 120 may be initially attached to the magnet 160 according to magnetic attraction with the magnet 160. In this case, the shape of the elastic beam 110 may be deformed to the maximum. When the ferromagnetic material 120 is heated from the heat source 150 so that the temperature of the ferromagnetic material 120 exceeds the Curie temperature, as shown in FIG. 3B, an elastic beam (rather than the magnetic attraction between the ferromagnetic material 120 and the magnet 160) may be used. As the elastic force of the 110 becomes stronger to separate the ferromagnetic material 120 and the magnet 160, the ferromagnetic material 120 is attached to the cooling source 170. Again, when the ferromagnetic material 120 is cooled by the cooling source 170 and the temperature of the ferromagnetic material 120 falls below the Curie temperature, the ferromagnetic material 120 is attached to the magnet 160 as shown in FIG. 3A.
전술한 바와 같이, 고정 지지 수단(130)은 탄성 빔(110)을 고정하는 반면에, 단순 지지 수단(140)은 탄성 빔(110)을 단순히 지지하므로, 강자성체(120)의 왕복 이동에 따라 탄성 빔(110)의 형상이 쉽게 변형될 수 있다.As described above, the fixed support means 130 fixes the elastic beam 110, while the simple support means 140 simply supports the elastic beam 110, so that the elastic support 110 is elastic according to the reciprocating movement of the ferromagnetic material 120. The shape of the beam 110 can be easily modified.
한편, 본 발명의 일 실시예에 따른 하베스팅 장치(100)가 많은 양의 전기 에너지를 생산하기 위해서는 강자성체(120)의 왕복 이동 주기가 짧아야 한다. 압전 부재(112)가 생산하는 전력을 하기의 수학식으로 표현할 수 있다.Meanwhile, in order for the harvesting device 100 according to an embodiment of the present invention to produce a large amount of electrical energy, the reciprocating movement period of the ferromagnetic material 120 should be short. Power generated by the piezoelectric member 112 may be expressed by the following equation.
Figure PCTKR2015013432-appb-I000001
Figure PCTKR2015013432-appb-I000001
P는 압전 부재(112)에서 생산되는 전력량, C는 압전 부재(112)의 커패시턴스, V는 압전 부재(112)에서 발생하는 전압, f는 강자성체(120)의 이동 주파수를 의미한다.P denotes the amount of power produced by the piezoelectric member 112, C denotes the capacitance of the piezoelectric member 112, V denotes the voltage generated by the piezoelectric member 112, and f denotes the moving frequency of the ferromagnetic material 120.
상기 수학식을 보면, 압전 부재(112)가 많은 양의 전력을 생산하기 위해서는 강자성체(120)의 이동 주파수가 커야한다. 다시 말하면, 강자성체(120)가 열원(150)과 냉각원(170) 사이에서 빠르게 이동하여야 하는데, 이를 위해 본 발명의 일 실시예에 따른 에너지 하베스팅 장치(100)는 고정 지지 수단(130)과 강자성체(120) 사이의 거리(a)를 조절하고, 탄성 빔(110)의 상부 면 끝단에 프루프 매스(proof mass) 부재를 위치시킨다.Looking at the above equation, in order for the piezoelectric member 112 to produce a large amount of power, the moving frequency of the ferromagnetic material 120 must be large. In other words, the ferromagnetic material 120 has to move quickly between the heat source 150 and the cooling source 170. For this purpose, the energy harvesting device 100 according to an embodiment of the present invention is fixed support means 130 and The distance a between the ferromagnetic bodies 120 is adjusted, and a proof mass member is positioned at the end of the upper surface of the elastic beam 110.
도 1을 다시 보면, 고정 지지 수단(130)과 단순 지지 수단(140) 사이의 거리를 L이라 하고, 고정 지지 수단(130)과 강자성체(120) 사이의 거리를 a라 하는 경우, L에 대한 a의 비율은 0.5 내지 0.65일 수 있다. 이는 강자성체(120)를 자석(160) 또는 냉각원(170)에 평행하게 접촉시키기 위함이다. 만약, 강자성체(120)와 자석(160) 또는 강자성체(120)와 냉각원(170)이 평행하지 않게 접촉되는 경우(즉, 강자성체(120)의 표면과 냉각원(170)의 표면 또는 자석(160)의 표면이 0도보다 큰 각도를 이루며 접촉하는 경우), 강자성체(120)의 일부 영역만이 자석(160) 또는 냉각원(170)에 접촉하게 되고, 결국, 접촉 면적이 작아서 열 전달이 효율적으로 발생하지 않게 된다.Referring again to FIG. 1, when the distance between the fixed support means 130 and the simple support means 140 is L, and the distance between the fixed support means 130 and the ferromagnetic material 120 is a, The ratio of a may be 0.5 to 0.65. This is to contact the ferromagnetic material 120 in parallel with the magnet 160 or the cooling source 170. If the ferromagnetic material 120 and the magnet 160 or the ferromagnetic material 120 and the cooling source 170 are not in parallel contact (that is, the surface of the ferromagnetic material 120 and the surface of the cooling source 170 or the magnet 160) ) And only a part of the ferromagnetic material 120 comes into contact with the magnet 160 or the cooling source 170. As a result, the contact area is small so that heat transfer is efficient. Will not occur.
탄성 빔(110)의 형상이 변형되지 않는 경우에는 강자성체(120)가 고정 지지 수단(130)과 단순 지지 수단(140)의 중간 지점에 위치하는 것이 이상적이나, 도 3a와 같이, 탄성 빔(110)의 형상이 변형되면, 고정 지지 수단(130)과 단순 지지 수단(140) 사이에 위치하는 탄성 빔(110)의 실제 길이가 증가하기 때문에 이 경우에는 강자성체(120)가 고정 지지 수단(130)과 단순 지지 수단(140)의 중간 지점에서 단순 지지 수단(140) 쪽으로 벗어나 위치되는 것이 바람직하다. 따라서, L에 대한 a의 비율이 0.5 내지 0.65인 경우에 전력 생산량을 크게 증가시킬 수 있다.When the shape of the elastic beam 110 is not deformed, the ferromagnetic material 120 is ideally positioned at the intermediate point between the fixed support means 130 and the simple support means 140, as shown in Figure 3a, the elastic beam 110 ) Is deformed, the ferromagnetic material 120 is fixed support means 130 in this case because the actual length of the elastic beam 110 located between the fixed support means 130 and the simple support means 140 increases. It is preferred to be located away from the intermediate point of the simple supporting means 140 toward the simple supporting means 140. Therefore, when the ratio of a to L is 0.5 to 0.65, the power output can be greatly increased.
또한, 도 1을 다시 보면, 본 발명의 일 실시예에 따른 하이브리드 에너지 하베스팅 장치(100)는 탄성 빔(110)의 상부면에 위치하는 프루프 매스 부재(180)를 더 포함할 수 있는데, 이 프루프 매스 부재(180) 역시 강자성체(120)의 이동 속도를 증가시키는 역할을 한다. 도 3a 및 도 3b를 참조하여 전술한 바와 같이, 상온에서는 강자성체(120)와 자석(160)이 서로 부착되어 있는데, 강자성체(120)의 온도가 올라 강자성체(120)가 냉각원(170) 측으로 부착되려고 할 때, 프루프 매스 부재(180)는 하부 방향으로 힘을 가하므로, 열원(150)으로부터 냉각원(170)으로의 강자성체(120)의 이동 속도가 증가될 수 있다.In addition, referring back to FIG. 1, the hybrid energy harvesting apparatus 100 according to an embodiment of the present invention may further include a proof mass member 180 positioned on an upper surface of the elastic beam 110. The proof mass member 180 also serves to increase the moving speed of the ferromagnetic material 120. As described above with reference to FIGS. 3A and 3B, at room temperature, the ferromagnetic material 120 and the magnet 160 are attached to each other, and the ferromagnetic material 120 has a higher temperature, so that the ferromagnetic material 120 is attached to the cooling source 170. When trying to be, the proof mass member 180 exerts a force in the downward direction, so that the moving speed of the ferromagnetic material 120 from the heat source 150 to the cooling source 170 can be increased.
본 발명의 일 실시예에 따른 하이브리드 에너지 하베스팅 장치(100)는 다양한 방법으로 강자성체(120)의 이동 속도를 증가시킴으로써, 전기 에너지의 생산량을 크게 증가시킬 수 있다.Hybrid energy harvesting apparatus 100 according to an embodiment of the present invention by increasing the moving speed of the ferromagnetic material 120 in a variety of ways, it can significantly increase the production of electrical energy.
도 4는 본 발명의 일 실시예에 따른 하베스팅 장치(100)의 다른 동작을 설명하기 위한 도면이다.4 is a view for explaining another operation of the harvesting apparatus 100 according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 하이브리드 하베스팅 장치(100)는 외부 환경으로부터 인가되는 진동력을 이용하여 전기 에너지를 생산할 수도 있다. 도 4를 보면, 본 발명의 일 실시예에 따른 하베스팅 장치(100)는 진동력 인가 수단(190)을 더 포함할 수 있다. 진동력 인가 수단(190)은 예를 들어, 모터 등을 포함할 수 있으나 이에 한정되는 것은 아니다. Hybrid harvesting apparatus 100 according to an embodiment of the present invention may produce electrical energy using a vibration force applied from the external environment. 4, the harvesting apparatus 100 according to an embodiment of the present invention may further include a vibration force applying means 190. The vibration force applying means 190 may include, for example, a motor, but is not limited thereto.
진동력 인가 수단(190)은 탄성 빔(110)으로 진동력을 인가하여 탄성 빔(110)이 R과 같이 진동하도록 한다. 이때, 진동력 인가 수단(190)은 프루프 매스 부재(180)의 고유 진동수에 대응하는 진동수의 진동력을 탄성 빔(110)으로 인가하여 공명 현상을 통해 탄성 빔(110)의 형상 변형을 극대화할 수 있다. 압전 부재(112)는 진동력에 의해 탄성 빔(110)의 형상이 변형되면 변형 정도에 대응하는 전기 에너지를 생산할 수 있다.The vibration force applying means 190 applies a vibration force to the elastic beam 110 to cause the elastic beam 110 to vibrate like R. In this case, the vibration force applying means 190 may apply the vibration force of the frequency corresponding to the natural frequency of the proof mass member 180 to the elastic beam 110 to maximize the shape deformation of the elastic beam 110 through resonance. Can be. When the shape of the elastic beam 110 is deformed by the vibration force, the piezoelectric member 112 may produce electric energy corresponding to the degree of deformation.
구현예에 따라서는, 도 5에 도시된 바와 같이, 진동력 인가 수단(190)이 하이브리드 에너지 하베스팅 장치(100)에 포함되지 않을 수도 있다. 무선 센서 내에 포함된 하이브리드 에너지 하베스팅 장치(100)는 무선 센서의 움직임에 따라 진동이 발생하는 경우, 발생된 진동을 이용하여 전기 에너지를 생산할 수 있으며, 프루프 매스 부재(180)는 진동에 의해 탄성 빔(110)의 형상이 더욱 잘 변형되도록 할 수 있다. 이 경우, 프루프 매스 부재(180)의 무게가 조절됨으로써, 외부 환경 진동수에 대응하는 고유 진동수의 진동력이 탄성 빔(110)에 인가될 수 있다.According to the embodiment, as shown in FIG. 5, the vibration force applying means 190 may not be included in the hybrid energy harvesting apparatus 100. The hybrid energy harvesting apparatus 100 included in the wireless sensor may generate electrical energy by using the generated vibration when vibration occurs according to the movement of the wireless sensor, and the proof mass member 180 may be elastic by vibration. The shape of the beam 110 may be better modified. In this case, by adjusting the weight of the proof mass member 180, the vibration force of the natural frequency corresponding to the external environmental frequency may be applied to the elastic beam 110.
본 발명의 일 실시예에 따른 스마트소재를 이용한 열 및 진동 하이브리드 에너지 하베스팅 장치(100)는 열전 변환의 효율을 향상시킬 수 있으며, 열 에너지뿐만 아니라 진동 에너지를 전기 에너지로 변환할 수 있다.Heat and vibration hybrid energy harvesting apparatus 100 using a smart material according to an embodiment of the present invention can improve the efficiency of thermoelectric conversion, it is possible to convert not only thermal energy but also vibration energy into electrical energy.
한편, 상술한 본 발명의 실시예들은 상기 장치를 동작시킴으로써 산업 현장 장비, 빌딩, 차량 및 인체의 미활용열과 버려진 진동원을 동시 활용하여 사물 인터넷용 또는 웨어러블 장비용 무선 센서의 반영구적인 전원 공급원으로 구현될 수 있다.On the other hand, the embodiments of the present invention described above are implemented as a semi-permanent power supply of the wireless sensor for the Internet of Things or wearable equipment by utilizing the unutilized heat of industrial equipment, buildings, vehicles and human body and the abandoned vibration source by operating the device. Can be.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may implement the present invention in other specific forms without changing the technical spirit or essential features thereof. You will understand that. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (8)

  1. 서로 접합된 압전 부재와 탄성 부재로 구성된 탄성 빔(beam);An elastic beam composed of a piezoelectric member and an elastic member joined to each other;
    상기 탄성 빔에 삽입되어, 열원과 냉각원 사이에서 왕복 이동을 하며 상기 탄성 빔의 형상을 변형시키는 강자성체;A ferromagnetic material inserted into the elastic beam to reciprocate between a heat source and a cooling source and deform the shape of the elastic beam;
    상기 탄성 빔의 일 측에서 상기 탄성 빔을 고정하는 고정 지지 수단; 및Fixed support means for fixing the elastic beam at one side of the elastic beam; And
    상기 탄성 빔의 타 측에서 상기 탄성 빔을 지지하는 단순 지지 수단을 포함하되,Simple support means for supporting the elastic beam on the other side of the elastic beam,
    상기 압전 부재는, 상기 강자성체의 왕복 이동에 의해 상기 탄성 빔의 형상이 변형되는 경우 전기 에너지를 생산하는 것을 특징으로 하는 하이브리드 에너지 하베스팅 장치.The piezoelectric member is a hybrid energy harvesting device, characterized in that for producing the electrical energy when the shape of the elastic beam is deformed by the reciprocating movement of the ferromagnetic material.
  2. 제1항에 있어서,The method of claim 1,
    상기 열원은, 상기 탄성 빔의 제 1 방향에 위치되고, 상기 냉각원은, 상기 탄성 빔의 제 2 방향에 위치되되,The heat source is located in the first direction of the elastic beam, the cooling source is located in the second direction of the elastic beam,
    상기 하이브리드 에너지 하베스팅 장치는,The hybrid energy harvesting device,
    상기 탄성 빔의 상기 제 1 방향에 위치한 자석을 더 포함하는 것을 특징으로 하는 하이브리드 에너지 하베스팅 장치.And a magnet located in the first direction of the elastic beam.
  3. 제2항에 있어서,The method of claim 2,
    상기 강자성체는,The ferromagnetic material,
    상기 강자성체의 온도가 소정 온도 이하인 경우, 상기 자석에 부착되고, 상기 강자성체의 온도가 상기 소정 온도를 초과하는 경우, 상기 자석으로부터 떨어지는 것을 특징으로 하는 하이브리드 에너지 하베스팅 장치.And the ferromagnetic material is attached to the magnet when the temperature of the ferromagnetic material is less than or equal to a predetermined temperature, and falls from the magnet when the temperature of the ferromagnetic material exceeds the predetermined temperature.
  4. 제3항에 있어서,The method of claim 3,
    상기 탄성 빔은,The elastic beam,
    상기 강자성체와 상기 자석 사이의 자기 인력에 의해 그 형상이 변형되며, 상기 강자성체가 상기 자석에서 떨어졌을 때 탄성력에 의해 원래의 형상으로 복원되는 것을 특징으로 하는 것을 하이브리드 에너지 하베스팅 장치.The shape is deformed by the magnetic attraction between the ferromagnetic material and the magnet, the hybrid energy harvesting device, characterized in that the ferromagnetic material is restored to its original shape by the elastic force when dropped from the magnet.
  5. 제1항에 있어서,The method of claim 1,
    상기 하이브리드 에너지 하베스팅 장치는,The hybrid energy harvesting device,
    상기 탄성 빔의 상부면에 위치되는 프루프 매스(proof mass) 부재를 더 포함하는 것을 특징으로 하는 하이브리드 에너지 하베스팅 장치.And a proof mass member positioned on an upper surface of the elastic beam.
  6. 제1항에 있어서,The method of claim 1,
    상기 하이브리드 에너지 하베스팅 장치는,The hybrid energy harvesting device,
    상기 탄성 빔으로 진동력을 인가하는 진동력 인가 수단을 더 포함하되,Further comprising vibration force applying means for applying a vibration force to the elastic beam,
    상기 압전 부재는, The piezoelectric member,
    상기 진동력에 의해 상기 탄성 빔의 형상이 변형되는 경우 전기 에너지를 생산하는 것을 특징으로 하는 하이브리드 에너지 하베스팅 장치.Hybrid energy harvesting device, characterized in that for producing the electrical energy when the shape of the elastic beam is deformed by the vibration force.
  7. 제6항에 있어서,The method of claim 6,
    상기 하이브리드 에너지 하베스팅 장치는,The hybrid energy harvesting device,
    상기 탄성 빔의 상부면에 위치되는 프루프 매스(proof mass) 부재를 더 포함하되,Further comprising a proof mass member located on the upper surface of the elastic beam,
    상기 프루프 매스 부재의 무게가 조절됨으로써, 외부 환경 진동수에 대응하는 고유 진동수의 진동력이 상기 탄성 빔으로 인가되는 것을 특징으로 하는 하이브리드 에너지 하베스팅 장치.By adjusting the weight of the proof mass member, the vibration energy of the natural frequency corresponding to the external environmental frequency is applied to the elastic beam.
  8. 제1항에 있어서,The method of claim 1,
    상기 고정 지지 수단과 상기 단순 지지 수단 사이의 길이(L)에 대한 상기 고정 지지 수단과 상기 강자성체 사이의 길이(a)의 비율(a/L)은 0.5 내지 0.65인 것을 특징으로 하는 하이브리드 에너지 하베스팅 장치.The ratio (a / L) of the length (a) between the fixed support means and the ferromagnetic material to the length (L) between the fixed support means and the simple support means is between 0.5 and 0.65. Device.
PCT/KR2015/013432 2015-02-23 2015-12-09 Device for harvesting hybrid energy of heat and vibration using smart material WO2016137096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0025275 2015-02-23
KR1020150025275A KR101714368B1 (en) 2015-02-23 2015-02-23 Hybrid Energy Harvesting Apparatus Using Smart Materials for Heat and Vibration

Publications (1)

Publication Number Publication Date
WO2016137096A1 true WO2016137096A1 (en) 2016-09-01

Family

ID=56788902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013432 WO2016137096A1 (en) 2015-02-23 2015-12-09 Device for harvesting hybrid energy of heat and vibration using smart material

Country Status (2)

Country Link
KR (1) KR101714368B1 (en)
WO (1) WO2016137096A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227840A1 (en) * 2020-05-11 2021-11-18 浙江大学 Self-energy type thermal response monitoring apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101971787B1 (en) * 2017-09-07 2019-04-23 한양대학교 산학협력단 Energy harvester using piezoelectronic element
KR102009710B1 (en) * 2017-11-10 2019-08-12 한국과학기술연구원 Dielectric having nanoring structure carbon nanotube and Energy harvesting device using the same
US11901842B2 (en) 2018-07-10 2024-02-13 Chung-Ang University Industry-Academic Cooperation Foundation Energy harvesting apparatus utilizing electroactive material and electrode unit for deformation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000053423A (en) * 1999-01-09 2000-08-25 장순길 Energe Generating Apparatus with Magnet
US20050205125A1 (en) * 2004-03-19 2005-09-22 The Regents Of The University Of California Energy harvesting using a thermoelectric material
JP2006158113A (en) * 2004-11-30 2006-06-15 Matsushita Electric Works Ltd Piezoelectric power generation mechanism
WO2007087383A2 (en) * 2006-01-25 2007-08-02 The Regents Of The University Of California Energy harvesting by means of thermo-mechanical device utilizing bistable ferromagnets
KR101332006B1 (en) * 2012-10-22 2013-11-25 광운대학교 산학협력단 Omnidirectional vibration based energy harvester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000053423A (en) * 1999-01-09 2000-08-25 장순길 Energe Generating Apparatus with Magnet
US20050205125A1 (en) * 2004-03-19 2005-09-22 The Regents Of The University Of California Energy harvesting using a thermoelectric material
JP2006158113A (en) * 2004-11-30 2006-06-15 Matsushita Electric Works Ltd Piezoelectric power generation mechanism
WO2007087383A2 (en) * 2006-01-25 2007-08-02 The Regents Of The University Of California Energy harvesting by means of thermo-mechanical device utilizing bistable ferromagnets
KR101332006B1 (en) * 2012-10-22 2013-11-25 광운대학교 산학협력단 Omnidirectional vibration based energy harvester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227840A1 (en) * 2020-05-11 2021-11-18 浙江大学 Self-energy type thermal response monitoring apparatus

Also Published As

Publication number Publication date
KR20160102772A (en) 2016-08-31
KR101714368B1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2016137096A1 (en) Device for harvesting hybrid energy of heat and vibration using smart material
US10425018B2 (en) Triboelectric nanogenerator for harvesting broadband kinetic impact energy
Zhong et al. Flexible PET/EVA-based piezoelectret generator for energy harvesting in harsh environments
Zhang et al. Magnetically levitated-triboelectric nanogenerator as a self-powered vibration monitoring sensor
Wu et al. Hybrid energy cell for harvesting mechanical energy from one motion using two approaches
CN109560721A (en) A kind of combined vibrating energy collecting device
KR101861255B1 (en) electroner energy harvester using magnet spring
Deng et al. Bistable broadband hybrid generator for ultralow-frequency rectilinear motion
Park et al. A highly sensitive magnetic configuration‐based triboelectric nanogenerator for multidirectional vibration energy harvesting and self‐powered environmental monitoring
CN113037134B (en) Wearable multisource environmental energy capture device
JP2015505663A (en) Energy harvesting method and apparatus using intrinsic voltage difference between metal joints
CN111355355B (en) Wearable piezoelectric-electromagnetic composite energy harvesting vibration device
Kalyani et al. Harvesting electrical energy via vibration energy and its applications
Xiao et al. Integrated Triboelectric‐Electromagnetic‐Piezoelectric Self‐Rebounding Energy Harvester for Human Energy Harvesting
Mu et al. Electromechanical coupling properties of a self-powered vibration sensing device for near-surface observation tower monitoring
CN110581673B (en) Shock pad of composite generator
US20200373824A1 (en) Systems and apparatuses for energy harvesting
Yusuf et al. Mechanical energy harvesting devices for low frequency applications: revisited
KR20190041696A (en) Piezoelectric Energy Harvester Module capable of displacement amplification
Zhang et al. Magnetically levitated/piezoelectric/triboelectric hybrid generator as a power supply for the temperature sensor
WO2015060505A1 (en) System for wirelessly controlling energy harvesting using piezoelectric module and wireless control method using same
Shi et al. Double-speed piezoelectric–electromagnetic hybrid energy harvester driven by cross-moving magnets
WO2016076621A2 (en) Charge pump-based artificial lightning generator and method for manufacturing same
KR101968465B1 (en) Apparatus of energy harvesting using contact electrification
Han et al. MEMS energy harvester utilizing a multi-pole magnet and a high-aspect-ratio array coil for low frequency vibrations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883483

Country of ref document: EP

Kind code of ref document: A1