WO2016136692A1 - Catalyst for producing fatty acid alkyl ester, method for producing said catalyst and method for producing fatty acid alkyl ester using said catalyst - Google Patents

Catalyst for producing fatty acid alkyl ester, method for producing said catalyst and method for producing fatty acid alkyl ester using said catalyst Download PDF

Info

Publication number
WO2016136692A1
WO2016136692A1 PCT/JP2016/055135 JP2016055135W WO2016136692A1 WO 2016136692 A1 WO2016136692 A1 WO 2016136692A1 JP 2016055135 W JP2016055135 W JP 2016055135W WO 2016136692 A1 WO2016136692 A1 WO 2016136692A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fatty acid
alkyl ester
acid alkyl
producing
Prior art date
Application number
PCT/JP2016/055135
Other languages
French (fr)
Japanese (ja)
Inventor
研司 野中
Original Assignee
日本ケッチェン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケッチェン株式会社 filed Critical 日本ケッチェン株式会社
Publication of WO2016136692A1 publication Critical patent/WO2016136692A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a fatty acid alkyl ester production catalyst, a production method thereof, and a production method of an aliphatic alkyl ester using the catalyst, and more specifically, esterification or transesterification reaction of a fatty acid and / or glyceride with an alcohol.
  • the present invention relates to a catalyst for producing a fatty acid alkyl ester, a method for producing the same, and a method for producing a fatty acid alkyl ester using the catalyst.
  • Fatty acid alkyl esters are used as raw materials for various chemicals, resins, detergents, and surfactants. In recent years, they have been used as alternative fuels for petroleum-based fuels, especially biodiesel fuels, from the viewpoint of reducing environmental impact and carbon neutrality. The use as is expanding.
  • the biodiesel fuel is a general term for fuels that are mainly modified by chemical treatment of vegetable oils and fats to be suitable for diesel engines.
  • fatty acid methyl ester (FAME) obtained by transesterification of a vegetable oil containing triglyceride and methanol is known.
  • FAME fatty acid methyl ester
  • methods for producing a fatty acid alkyl ester in addition to a homogeneous base catalyst method and an acid catalyst method, methods such as an enzyme method and a supercritical methanol method are known.
  • the base catalyst method is a method in which an oil and fat containing fatty acid glycerides and a lower alcohol such as metalanol are contacted in the presence of a base catalyst (caustic soda or the like) to obtain a fatty acid alkyl ester by a transesterification reaction.
  • a base catalyst such as copper or the like
  • the reaction proceeds under relatively mild conditions, but when free fatty acids are present in the raw oil and fat, soap (consumption of the base catalyst) and water (inactivation of the base catalyst) are neutralized with the base catalyst. ) Is formed and the transesterification reaction is inhibited.
  • the saponification of the produced ester is promoted together with the base catalyst, resulting in a decrease in the ester yield.
  • a saponification reaction does not occur with an acid catalyst (sulfuric acid or the like)
  • water produced by an esterification reaction between an existing free fatty acid and an alcohol inactivates the acid catalyst, like a base catalyst.
  • a homogeneous catalyst it is difficult to separate the product and the catalyst, and a waste disposal facility for the catalyst solution is also required.
  • the solid acid catalyst functions as a catalyst for each of the ester exchange reaction of glyceride and the esterification reaction of free fatty acid, and has an advantage that the product after the reaction and the catalyst can be easily separated.
  • Patent Document 1 proposes a solid acid catalyst exhibiting a super strong acid having an argon adsorption heat of 15 to 22 kJ / mol.
  • a super strong acid when used, the transesterification proceeds, but the catalyst is easily deactivated, and there is also a problem that a side reaction such as isomerization occurs.
  • Patent Document 2 discloses an esterification reaction catalyst that exhibits solid acidity with Hammett's acidity function (H 0 ) of ⁇ 3 to ⁇ 9 in which molybdenum oxide is supported on a zirconia support.
  • H 0 Hammett's acidity function
  • the main component of the support is zirconia, which is difficult to control the pore structure, most of the reaction occurs only on the outer surface of the catalyst and has a problem in reaction efficiency.
  • the catalyst component is easily dissolved during the reaction process, and there is a problem in the activity stability of the catalyst.
  • Patent Document 3 is a group consisting of inorganic porous carriers such as silica and alumina, at least one metal element selected from Group 6 of the periodic table, and manganese, iron, cobalt, nickel, copper, zinc, gallium, and tin.
  • a solid acid catalyst for producing a fatty acid alkyl ester is disclosed that carries at least one metal element selected from the group consisting of at least one non-metallic element of boron or silicon. The catalyst exhibits a certain activity in transesterification and esterification reactions. However, particularly when the proportion of free fatty acids in the raw material is high, the elution of the supported active ingredient is not sufficient, and further improvement in the stability of the catalytic activity has been demanded.
  • An object of the present invention is to solve the problems in conventional fatty acid alkyl ester production catalysts, improve the yield of fatty acid alkyl esters, and have high stability, a method for producing the same, and fatty acid alkyl esters using the catalyst It is to provide a manufacturing method.
  • the present inventors have conducted extensive research focusing on optimization of a support component having catalytic activity and a catalyst pore structure, and as a result, a porous support containing alumina. It was found that a catalyst having a specific amount of a specific active metal component and a specific pore structure was extremely effective for transesterification and esterification of fats and oils, and thus completed the present invention.
  • the present invention contains a porous carrier containing alumina and at least two elements selected from Group 6 of the periodic table carried thereon, an average pore diameter of 9.5 to 27 nm, all fine particles.
  • the pore volume is 0.5 to 1.0 ml / g
  • the specific surface area is 120 to 300 m 2 / g
  • the ratio of the pore volume with an average pore diameter of ⁇ 1.5 nm to the total pore volume is 15 to 70%
  • the fatty acid alkyl ester production catalyst is characterized in that the ratio of the pore volume having an average pore diameter of ⁇ 5 nm to the total pore volume is 60% or more.
  • the method for producing a fatty acid alkyl ester production catalyst of the present invention comprises a step of impregnating a porous support containing alumina with a compound solution of at least two elements selected from Group 6 of the periodic table, and then the presence of oxygen. This method includes a step of baking at 400 to 750 ° C. below.
  • the method for producing a fatty acid alkyl ester of the present invention is a method in which fatty acid and / or glyceride and alcohol are reacted at a temperature of 100 to 250 ° C. and a pressure of 0.1 to 6.0 MPa in the presence of the catalyst.
  • the fatty acid alkyl ester production catalyst according to the present invention is not only capable of producing a fatty acid alkyl ester stably and at a higher yield than conventional solid acid catalysts, but also glycerin produced as a by-product in the process of transesterification. It is also possible to obtain a product with high purity and high added value.
  • the alumina-containing porous carrier used for the catalyst of the present invention is based on alumina.
  • the crystal structure of alumina in the carrier is not particularly limited.
  • alumina hydrates such as ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ type transition alumina, bayerite, dibsite, boehmite, pseudoboehmite, etc. Or a mixture thereof.
  • Alumina-containing porous carrier is an alumina hydrate powder obtained from commercially available boehmite, pseudoboehmite or the like, neutralization reaction of acidic and / or basic aluminum compounds, and alumina obtained from a sol-gel method using aluminum alkoxide as a starting material Hydrate gels and powders thereof can be obtained by kneading, molding, drying, and calcination.
  • the content of alumina in the carrier is preferably 75% by mass or more, particularly 80 to 100% by mass, based on the carrier and aluminum oxide.
  • 25 masses of silica, titania, zirconia, boria, magnesia, zinc oxide, diphosphorus pentoxide, zeolite, clay mineral, or any mixture thereof can be used for this carrier in order to modify the chemical properties of the carrier surface. % Or less, particularly preferably 1 to 20% by mass. In that case, it is preferable to add silica, titania and boria, particularly silica and boria.
  • the hydrate is kneaded to satisfy a desirable condition as the pore structure of the finished catalyst described later. Then, the moisture content is adjusted (55 to 70% as loss on ignition) and formed into a desired shape (pellet, sphere, extrudate, etc.).
  • Sodium oxide and organic molding aids (cellulosic aids, starches, etc.) may be added.
  • the molded product is usually 640 to 900 ° C. (instead of the ambient temperature, not the ambient temperature), preferably 660 to 890 ° C., more preferably 680 to 870 ° C. for 0.1 to 10 hours in air.
  • the support is calcined for 0.5 to 8 hours, more preferably 1 to 5 hours.
  • the carrier obtained in the above step is loaded with at least two elements selected from Group 6 of the periodic table.
  • the loading method there are no particular limitations on the loading method, and various industrial methods such as impregnation method, coating method, spraying method and the like can be applied, but the impregnation method is preferable from the viewpoint of workability and addition efficiency.
  • the impregnation method, adsorption method, equilibrium adsorption method, pore filling method, incipient wetness method, evaporation to dryness method, spray method, etc. are all applicable to the present invention, but from the viewpoint of workability, the pore filling method Is preferred.
  • the order of supporting the Group 6 elements is not particularly limited, and can be sequentially or simultaneously supported. In the case of the impregnation method, a solution in which a solvent-soluble compound of each element is dissolved in various polar organic solvents, water or a water-polar organic solvent mixture can be used, but the most preferable solvent is water.
  • the Group 6 element of the periodic table supported as an active component is at least two selected from chromium, molybdenum, and tungsten.
  • chromium-molybdenum, chromium-tungsten, and molybdenum-tungsten can be used. From the viewpoint of economy and activity, a combination of molybdenum and tungsten is preferable.
  • the supported amount is 8 to 25% by mass, preferably 9 to 20% by mass, more preferably 10 to 18% by mass, based on the oxide catalyst, as the sum of all Group 6 group element oxides. If it is less than 8% by mass, the catalyst activity is low, and if it exceeds 25% by mass, there is no increase in activity.
  • the range of the molar ratio of tungsten to molybdenum is 0.01 to 0.25, preferably 0.02 to 0.23, and more preferably 0.03 to 0.20. If the molar ratio is less than 0.01, the stability of the catalyst activity is lacking, and if it exceeds 0.25, no improvement in the improvement effect on the stability of the transesterification and esterification reaction is observed.
  • the raw material for Group 6 elements of the periodic table examples include chromate, molybdate, tungstate, trioxide, halide, heteropolyacid, heteropolyacid salt, and organometallic compounds including carbonyl compounds.
  • the oxide is 0.01 to 8% by mass, preferably 0.01 to 4% by mass, more preferably, based on the oxide catalyst. Can contain 0.01 to 0.99% by mass of iron, cobalt, nickel (including any mixture thereof).
  • the addition amount range is 0.1 to 10% by mass, preferably 0.5 to 8% by mass as phosphorous oxide based on the oxide catalyst. More preferably, it is 1 to 5% by mass.
  • phosphoric acid examples include orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid, phosphonic acid, diphosphonic acid, phosphinic acid, and polyphosphoric acid.
  • a drying operation (room temperature to 300 ° C., 0.1 to 24 hours) is performed as necessary, and then a firing operation is performed.
  • a Group 6 element is supported on an alumina-containing support in the form of an oxide.
  • the firing conditions at this time are 350 to 770 ° C. in air, preferably 400 to 730 ° C., more preferably 480 to 680 ° C., and 0.5 to 24 hours, preferably 1 to 12 hours.
  • the average pore diameter is 9.5 to 27 nm, preferably 9.8 to 26 nm, more preferably 10 to 25 nm.
  • the total pore volume is preferably 0.5 to 1.0 ml / g, more preferably 0.6 to 0.8 ml / g.
  • the ratio of the pore volume having an average pore diameter in the range of ⁇ 1.5 nm is 15 to 70% with respect to the total pore volume. It is desirable to have a pore structure that is preferably 18 to 65%, more preferably 20 to 60%. If it is less than 15%, the proportion of fine pores that do not contribute to the reaction or large pores with a small surface area increases, and if it exceeds 70%, the diffusion of fats and oils having a relatively large molecular size into the pores is inhibited. It causes a decrease in activity.
  • the ratio of the pore volume in the range of the average pore diameter ⁇ 5 nm to the total pore volume as an index indicating the shape of the distribution of the total pore diameter in the catalyst is 60% or more, preferably 65% or more, more preferably Is preferably 70% or more. If it is less than 60%, the volume ratio of micropores and giant pores that do not contribute to the reaction increases (including bimodal and multimodal pore distributions), so that the catalytic activity decreases.
  • the pore distribution of the catalyst of the present invention is a unimodal distribution having an average pore diameter and a local maximum point in the vicinity thereof.
  • the pore structure (total pore volume, average pore diameter, pore distribution, etc.) of the catalyst of the present invention is the mercury intrusion method (contact angle 140 °, surface tension 480 dyn / cm), and the specific surface area is the BET method. This is the value obtained.
  • the catalyst was treated in air at 450 ° C. for 1 hour to remove volatile components such as moisture, and the analysis obtained here, The measured value is a value based on an oxide catalyst standard. The same heating temperature and time were applied to the measurement of loss on ignition. Further, a fluorescent X-ray analyzer was used for quantification of the supported metal component and the carrier component.
  • fatty acid and / or glyceride used as the raw material in the present invention, various animal and vegetable fats and oils including monoglyceride, diglyceride and triglyceride, and a mixture of fatty acids produced by hydrolysis of such animal and vegetable fats and oils can be used. .
  • fat and oil mixtures examples include soybean oil, rapeseed oil, sunflower oil, cottonseed oil, hemp seed oil, linseed oil, tung oil, evening primrose oil, safflower oil, coconut oil, amazana oil, avocado oil, camelina oil, canola oil, coconut oil, Sesame oil, mustard oil, olive oil, corn oil, safflower oil, peanut oil, macadamia nut oil, brazil nut oil, castor oil, rice oil, jojoba oil, neem oil, palm oil, jatropha oil, carranja oil, orlanchonchi Thorium, Pseudocollistis ellipsoidia, Senedesmus, Botryococcus brownie, Euglena and vegetable oils such as algae oil obtained from these algae, beef tallow, beef bone fat, beef leg oil, pork fat, horse fat Animal oils such as sheep oil, deer oil, chicken oil, butter oil, bone oil, whale oil, shark oil, cod liver oil, sardine
  • restoration may be sufficient.
  • the used waste oil of the above fats and oils, the arbitrary mixtures of waste oil and the said fats and oils can also be used.
  • Alcohol used in the method for producing a fatty acid alkyl ester of the present invention is preferably an alcohol having 1 to 10 carbon atoms.
  • Such alcohols include primary alcohols such as methanol, ethanol, n-propyl alcohol, isobutyl alcohol, n-butyl alcohol, pentyl alcohol and neopentyl alcohol, and secondary alcohols such as isopropyl alcohol and sec-butyl alcohol.
  • Tertiary alcohols such as tert-butyl alcohol and tert-amyl alcohol
  • polyhydric alcohols such as ethylene glycol, propylene glycol and trimethylene glycol, and any mixture of these alcohols, but primary alcohols are preferred.
  • methanol or ethanol is preferable.
  • the starting fatty acid and / or glyceride and alcohol are heated at a temperature of 100 to 250 ° C, preferably 120 to 230 ° C, more preferably 140 to 210 ° C, and a pressure of 0.1. It is contacted with the catalyst of the present invention at a pressure of ⁇ 6.0 MPa, preferably 0.5-5 MPa, particularly preferably 1.0-4.5 MPa.
  • a pressure of ⁇ 6.0 MPa preferably 0.5-5 MPa, particularly preferably 1.0-4.5 MPa.
  • the reaction time is not limited, and is 0.1 to 100 hours in the case of a batch system, and 0 to 0 in the flow system when the time for contacting the raw oil and fat and alcohol with the catalyst of the present invention is expressed as a mass space velocity (WHSV).
  • WHSV mass space velocity
  • the molar ratio of alcohol to fatty acid is 1.1 to 50, preferably 1.2 to 40, more preferably.
  • Raw oils and fats and alcohols can be used at 1.5 to 30, particularly preferably 3 to 15.
  • the above reaction may be carried out in one stage, but it is also possible to carry out the reaction in a plurality of stages of two or more stages in order to increase the purity of the produced ester.
  • either a batch type or a flow type reactor can be used, but a flow type reactor is preferably used from the viewpoint of reaction efficiency.
  • alcohol, glycerol, and water are removed from a product, and the crude fatty-acid alkylester (A) containing an unreacted fat and free fatty acid is obtained.
  • alcohol and water can be separated by simple distillation, rectification or the like under normal pressure or reduced pressure conditions.
  • various methods such as sedimentation separation, centrifugal separation, electrostatic separation and the like utilizing the specific gravity difference and polarity difference with the fatty acid alkyl ester can be applied.
  • the crude fatty acid alkyl ester (A) thus obtained is reacted in the second stage with alcohol at the same pressure, raw material / alcohol ratio, and mass space velocity as in the first stage.
  • the reaction temperature at this time is 80 to 230 ° C., preferably 60 to 210 ° C., and is preferably equal to or lower than the first stage.
  • side reactions such as the hydrolysis reaction of produced
  • alcohol, water and glycerin are removed by the same method as in the first stage to obtain a crude fatty acid alkyl ester (B).
  • the crude fatty acid alkyl ester (B) is distilled under normal pressure or reduced pressure, and a fraction having boiling points of 100 ° C. or lower and 360 ° C. or higher is removed to obtain a purified fatty acid alkyl ester.
  • This purified fatty acid alkyl ester can be used as it is as various chemical raw materials and biodiesel fuel, but a higher quality fatty acid alkyl ester can be obtained by further rectifying under normal pressure or reduced pressure.
  • a silica-alumina hydrate gel (silica / alumina mass ratio: 1.5 / 98.5) is prepared by adding and mixing aluminum sulfate, sodium aluminate and water glass into a tank containing hot tap water. did. The hydrate gel was separated from the solution, and the impurities were washed and removed using warm water, citric acid was added, and the mixture was heated and kneaded using a kneader to adjust the moisture content to 64.3%. This kneaded product was extruded and calcined in air at 850 ° C. for 1.5 hours to obtain a silica-alumina carrier.
  • Example 1 was the same as Example 1 except that water glass was not used at the time of carrier preparation, the moisture content at the time of molding the alumina hydrate was 62.8%, and the carrier calcination temperature was 800 ° C.
  • Catalyst B was prepared by the method. Table 1 shows the physical properties and chemical composition of Catalyst B.
  • Example 1 With reference to Example 8 (Catalyst H) of Patent Document 3, the alumina support of Example 2 of the present application was impregnated with an ethyl silicate / ethanol solution and dried at 120 ° C. to prepare an alumina support on which ethyl silicate was supported. (Silica / alumina mass ratio: 1.5 / 98.5).
  • molybdic acid was 8.7% by mass of molybdenum trioxide (10% with respect to alumina) and 3.9% by mass of tin dioxide (4.5% with respect to alumina) based on the oxide catalyst.
  • catalyst C was obtained.
  • the physical properties and chemical composition of the catalyst C are shown in Table 1.
  • the purity of the catalyst C of Comparative Example 1 is low.
  • dehydration condensation products with metal rule such as 2-methoxy-1,3-propanediol and 3-methoxy-1,2-propanediol were observed. It is considered to have been higher than necessary, and showed a catalytic action for side reactions such as etherification between glycerol and methanol and hydrolysis of FAME.
  • the purity of glycerin in the catalysts A and B of Examples 1 and 2 is high, and the catalyst of the present invention is excellent in the quality of by-products.
  • the catalyst of the present invention has less acid elution of the supported metal component than the catalyst C of the prior art, and therefore the degree of activity deactivation is low even when using a raw material having an acid property with many free fatty acids. It is thought that the effect which was excellent in activity stability is shown.
  • the present invention can produce fatty acid alkyl esters that can be used for various chemicals, resins, detergents, surfactant raw materials, biodiesel fuel, and the like from various oil and fat raw materials including poor waste oil with high efficiency and low cost. Useful as technology. Further, the purity of glycerin produced as a by-product is high, and it is possible to obtain a product with high added value including the product of the main reaction.

Abstract

Provided are a catalyst for producing a fatty acid alkyl ester, which has more excellent yield and activity stability than those of conventional ones, a method for producing the catalyst, and a method for producing a fatty acid alkyl ester using the catalyst. The catalyst contains an alumina-containing porous carrier, and at least two elements carried by the carrier and selected from group 6 of the periodic table, wherein the catalyst has an average pore diameter of 9.5-27 nm, a total pore volume of 0.5-1.0 ml/g, and a specific surface area of 120-300 m2/g. A proportion of the volume of pores having a diameter which is the average pore diameter ± 1.5 nm to the total pore volume is 15-70%, and a proportion of the volume of pores having a diameter which is the average pore diameter ± 5 nm to the total pore volume is 60% or more.

Description

脂肪酸アルキルエステル製造触媒、その製造方法及び当該触媒を用いた脂肪酸アルキルエステルの製造方法Fatty acid alkyl ester production catalyst, production method thereof, and production method of fatty acid alkyl ester using the catalyst
 本発明は、脂肪酸アルキルエステル製造触媒とその製造方法及び当該触媒を用いた脂肪族アルキルエステルの製造方法に関するものであり、さらに詳しくは、脂肪酸及び/又はグリセリドとアルコールとのエステル化又はエステル交換反応によって、脂肪酸アルキルエステルを製造するための触媒とその製造方法、当該触媒による脂肪酸アルキルエステルの製造する方法に関する。 The present invention relates to a fatty acid alkyl ester production catalyst, a production method thereof, and a production method of an aliphatic alkyl ester using the catalyst, and more specifically, esterification or transesterification reaction of a fatty acid and / or glyceride with an alcohol. The present invention relates to a catalyst for producing a fatty acid alkyl ester, a method for producing the same, and a method for producing a fatty acid alkyl ester using the catalyst.
 脂肪酸アルキルエステルは、各種の化学薬品、樹脂、洗剤、界面活性剤の原材料に使用されている他、近年、環境負荷の低減やカーボンニュートラルの観点から、石油系燃料の代替燃料、特にバイオディーゼル燃料としての利用も拡大している。
 ここで、バイオディーゼル燃料とは、主として植物油脂を化学処理によって改質し、ディーゼルエンジンに適合する燃料としたものの総称である。
代表的なものとして、トリグリセリドを含む植物油とメタノールのエステル交換反応で得られる脂肪酸メチルエステル(Fatty Acid Methyl Ester: FAME)が知られている。
 脂肪酸アルキルエステルの製造方法としては、均一系の塩基触媒法や酸触媒法の他、酵素法、超臨界メタノール法等の方法が知られている。
Fatty acid alkyl esters are used as raw materials for various chemicals, resins, detergents, and surfactants. In recent years, they have been used as alternative fuels for petroleum-based fuels, especially biodiesel fuels, from the viewpoint of reducing environmental impact and carbon neutrality. The use as is expanding.
Here, the biodiesel fuel is a general term for fuels that are mainly modified by chemical treatment of vegetable oils and fats to be suitable for diesel engines.
As a typical example, fatty acid methyl ester (FAME) obtained by transesterification of a vegetable oil containing triglyceride and methanol is known.
As a method for producing a fatty acid alkyl ester, in addition to a homogeneous base catalyst method and an acid catalyst method, methods such as an enzyme method and a supercritical methanol method are known.
 塩基触媒法は、脂肪酸グリセリドを含む油脂とメタルノール等の低級アルコールを塩基触媒(苛性ソーダ等)の存在下で接触させ、エステル交換反応により脂肪酸アルキルエステルを得る方法である。この方法では比較的温和な条件で反応が進行するものの、原料の油脂に遊離脂肪酸が存在する場合、塩基触媒との中和反応で石鹸(塩基触媒の消費)と水(塩基触媒を不活性化)が生成しエステル交換反応を阻害する。また原料中に水分が多い場合、塩基触媒と共に生成エステルの鹸化を促進し、エステル収率の低下を招く。
 一方、酸触媒(硫酸等)では鹸化反応は起こらないものの、存在する遊離脂肪酸とアルコール間のエステル化反応で生成する水は、塩基触媒と同様、酸触媒を不活性化する。更に均一系触媒の場合、生成物と触媒の分離が難しく、触媒溶液の廃棄処理設備も必要となる。
The base catalyst method is a method in which an oil and fat containing fatty acid glycerides and a lower alcohol such as metalanol are contacted in the presence of a base catalyst (caustic soda or the like) to obtain a fatty acid alkyl ester by a transesterification reaction. In this method, the reaction proceeds under relatively mild conditions, but when free fatty acids are present in the raw oil and fat, soap (consumption of the base catalyst) and water (inactivation of the base catalyst) are neutralized with the base catalyst. ) Is formed and the transesterification reaction is inhibited. Further, when the raw material contains a large amount of water, the saponification of the produced ester is promoted together with the base catalyst, resulting in a decrease in the ester yield.
On the other hand, although a saponification reaction does not occur with an acid catalyst (sulfuric acid or the like), water produced by an esterification reaction between an existing free fatty acid and an alcohol inactivates the acid catalyst, like a base catalyst. Furthermore, in the case of a homogeneous catalyst, it is difficult to separate the product and the catalyst, and a waste disposal facility for the catalyst solution is also required.
 その他、酵素法(リパーゼ法:廃液は少ないが、反応時間が長く、酵素が高価で大量生産に不向き)、超臨界メタノール法(無触媒で反応時間が短いが、小規模施設では高コストとなる)にもそれぞれ問題点を有していた。 In addition, enzymatic method (lipase method: little waste liquid, long reaction time, expensive enzyme, unsuitable for mass production), supercritical methanol method (no catalyst and short reaction time, but high cost for small-scale facilities) ) Also had problems.
 上記の先行技術が有する問題に対処するため、不均一系の固体酸触媒を用いたエステル製造触媒が提案されている。固体酸触媒は、グリセリドのエステル交換反応、遊離脂肪酸のエステル化反応の夫々に対して触媒として機能し、反応後の生成物と触媒の分離も容易となる等の利点を有する。 In order to cope with the above-described problems of the prior art, an ester production catalyst using a heterogeneous solid acid catalyst has been proposed. The solid acid catalyst functions as a catalyst for each of the ester exchange reaction of glyceride and the esterification reaction of free fatty acid, and has an advantage that the product after the reaction and the catalyst can be easily separated.
 特許文献1は、アルゴン吸着熱が15~22kJ/molの超強酸を示す固体酸触媒を提案している。
 しかしながら、超強酸を用いた場合、エステル交換反応は進行するものの、触媒は失活しやすく、異性化等の副反応を併発する問題も有する。
Patent Document 1 proposes a solid acid catalyst exhibiting a super strong acid having an argon adsorption heat of 15 to 22 kJ / mol.
However, when a super strong acid is used, the transesterification proceeds, but the catalyst is easily deactivated, and there is also a problem that a side reaction such as isomerization occurs.
 特許文献2では、ジルコニア担体にモリブデン酸化物を担持したハメットの酸度関数(H0)が-3~-9の固体酸性を示すエステル化反応触媒が開示されている。
 しかしながら、担体の主要成分が細孔構造の制御が困難なジルコニアであることから、反応の殆どは触媒外表面でしか起こらず、反応効率上の問題を有する。さらに、反応過程で触媒成分が溶解しやすく、触媒の活性安定性にも問題を有する。
Patent Document 2 discloses an esterification reaction catalyst that exhibits solid acidity with Hammett's acidity function (H 0 ) of −3 to −9 in which molybdenum oxide is supported on a zirconia support.
However, since the main component of the support is zirconia, which is difficult to control the pore structure, most of the reaction occurs only on the outer surface of the catalyst and has a problem in reaction efficiency. Furthermore, the catalyst component is easily dissolved during the reaction process, and there is a problem in the activity stability of the catalyst.
 特許文献3は、シリカ、アルミナ等の無機多孔質担体に周期表第6族から選択される少なくとも1種の金属元素と、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、スズからなる群から選択される少なくとも1種の金属元素、さらにホウ素またはケイ素の少なくとも1種の非金属元素を担持させる脂肪酸アルキルエステル製造用の固体酸触媒を開示している。
 当該触媒はエステル交換、エステル化反応に一定の活性を示す。しかし、特に原料中の遊離脂肪酸の割合が高い場合、担持活性成分の溶出防止が十分ではなく、更なる触媒活性の安定性の改善が求められていた。
Patent Document 3 is a group consisting of inorganic porous carriers such as silica and alumina, at least one metal element selected from Group 6 of the periodic table, and manganese, iron, cobalt, nickel, copper, zinc, gallium, and tin. A solid acid catalyst for producing a fatty acid alkyl ester is disclosed that carries at least one metal element selected from the group consisting of at least one non-metallic element of boron or silicon.
The catalyst exhibits a certain activity in transesterification and esterification reactions. However, particularly when the proportion of free fatty acids in the raw material is high, the elution of the supported active ingredient is not sufficient, and further improvement in the stability of the catalytic activity has been demanded.
国際公開第2004/085584号International Publication No. 2004/088554 特開2011-207820号公報JP 2011-207820 A 国際公開第2013/137286号International Publication No. 2013/137286
 本発明の課題は、従来の脂肪酸アルキルエステル製造触媒における問題点を解決して、脂肪酸アルキルエステルの収率が向上し、且つ安定性が高い触媒とその製造方法、並びに当該触媒を用いる脂肪酸アルキルエステルの製造方法を提供することである。 An object of the present invention is to solve the problems in conventional fatty acid alkyl ester production catalysts, improve the yield of fatty acid alkyl esters, and have high stability, a method for producing the same, and fatty acid alkyl esters using the catalyst It is to provide a manufacturing method.
 本発明者らは、従来技術の上記問題点に鑑みて、特に触媒活性を有する担持成分と触媒細孔構造の最適化に焦点を当てて鋭意研究を重ねた結果、アルミナを含有する多孔質担体に特定の活性金属成分を特定量で担持させ、特定の細孔構造を有する触媒が、油脂類のエステル交換、エステル化反応に極めて有効であることを見出し、本発明を完成するに至った。 In view of the above-described problems of the prior art, the present inventors have conducted extensive research focusing on optimization of a support component having catalytic activity and a catalyst pore structure, and as a result, a porous support containing alumina. It was found that a catalyst having a specific amount of a specific active metal component and a specific pore structure was extremely effective for transesterification and esterification of fats and oils, and thus completed the present invention.
 即ち本発明は、アルミナを含有する多孔質担体と、これに担持された周期表第6族から選択される少なくとも二種の元素を含有し、平均細孔直径が9.5~27nm、全細孔容積が0.5~1.0ml/g、比表面積が120~300m2/g、全細孔容積に対する平均細孔直径±1.5nmの直径の細孔容積の割合が15~70%且つ、全細孔容積に対する平均細孔直径±5nmの直径を有する細孔容積の割合が60%以上であることを特徴とする脂肪酸アルキルエステル製造触媒である。 That is, the present invention contains a porous carrier containing alumina and at least two elements selected from Group 6 of the periodic table carried thereon, an average pore diameter of 9.5 to 27 nm, all fine particles. The pore volume is 0.5 to 1.0 ml / g, the specific surface area is 120 to 300 m 2 / g, and the ratio of the pore volume with an average pore diameter of ± 1.5 nm to the total pore volume is 15 to 70% and The fatty acid alkyl ester production catalyst is characterized in that the ratio of the pore volume having an average pore diameter of ± 5 nm to the total pore volume is 60% or more.
 また、本発明の脂肪酸アルキルエステル製造触媒の製造方法は、アルミナを含有する多孔質担体に、周期表第6族から選択される少なくとも二種の元素の化合物溶液を含浸する工程、その後、酸素存在下400~750℃で焼成する工程を含む方法である。 The method for producing a fatty acid alkyl ester production catalyst of the present invention comprises a step of impregnating a porous support containing alumina with a compound solution of at least two elements selected from Group 6 of the periodic table, and then the presence of oxygen. This method includes a step of baking at 400 to 750 ° C. below.
 更に、本発明の脂肪酸アルキルエステルの製造方法は、前記触媒の存在下、温度100~250℃、圧力0.1~6.0MPaで、脂肪酸及び/又はグリセリドとアルコールを反応させる方法である。 Furthermore, the method for producing a fatty acid alkyl ester of the present invention is a method in which fatty acid and / or glyceride and alcohol are reacted at a temperature of 100 to 250 ° C. and a pressure of 0.1 to 6.0 MPa in the presence of the catalyst.
 本発明による脂肪酸アルキルエステル製造触媒は、従来の固体酸触媒以上に収率が高く且つ安定的に脂肪酸アルキルエステルを製造することを可能とするのみならず、エステル交換反応の過程で副生するグリセリンの純度が高く、付加価値の高い生成物を得ることも可能とする。 The fatty acid alkyl ester production catalyst according to the present invention is not only capable of producing a fatty acid alkyl ester stably and at a higher yield than conventional solid acid catalysts, but also glycerin produced as a by-product in the process of transesterification. It is also possible to obtain a product with high purity and high added value.
 以下、本発明について詳細に説明する。
(1)担体
 本発明の触媒に用いられるアルミナ含有多孔質担体は、アルミナを基体としたものである。担体中のアルミナについては、その結晶構造は特に限定されないが、例えばα、θ、δ、κ、η、γ、χ型等の遷移アルミナ、バイヤライト、ジブサイト、ベーマイト、擬ベーマイト等のアルミナ水和物、あるいはこれらの混合物を用いることができる。アルミナ含有多孔質担体は、市販のベーマイト、擬ベーマイト等のアルミナ水和物紛体、酸性及び/又は塩基性のアルミウム化合物の中和反応やアルミニウムアルコキシドを出発原料とするゾル-ゲル法から得られるアルミナ水和物のゲルやその粉体等を、混練、成形、乾燥、か焼して得ることができる。
Hereinafter, the present invention will be described in detail.
(1) Carrier The alumina-containing porous carrier used for the catalyst of the present invention is based on alumina. The crystal structure of alumina in the carrier is not particularly limited. For example, alumina hydrates such as α, θ, δ, κ, η, γ, χ type transition alumina, bayerite, dibsite, boehmite, pseudoboehmite, etc. Or a mixture thereof. Alumina-containing porous carrier is an alumina hydrate powder obtained from commercially available boehmite, pseudoboehmite or the like, neutralization reaction of acidic and / or basic aluminum compounds, and alumina obtained from a sol-gel method using aluminum alkoxide as a starting material Hydrate gels and powders thereof can be obtained by kneading, molding, drying, and calcination.
 担体中のアルミナの含有量は、担体基準、アルミニウム酸化物として75質量%以上、特に80~100質量%であることが好ましい。
 この担体にはアルミナ以外に、担体表面の化学特性を改質するため、シリカ、チタニア、ジルコニア、ボリア、マグネシア、酸化亜鉛、五酸化二リン、ゼオライト、粘土鉱物又はこれらの任意の混合物を25質量%以下、特に好ましくは1~20質量%の割合で添加できる。その場合、シリカ、チタニア、ボリア、特にはシリカ、ボリアを添加することが好ましい。
 なお、アルミナ以外の成分の添加方法については特に制限はなく、前記のアルミナ含有担体の製造工程中、例えばアルミニウム化合物やアルミナ水和物に、以上の成分や水性又は非水性極性溶媒に可溶な成分前駆体を添加して、最終的に担体骨格中および細孔表面の双方に分散させる方法、アルミナ担体を製造した後に、以上の成分や成分の前駆体(水性又は非水性極性溶媒に可溶)を添加することで、主としてアルミナの細孔表面上に上記成分を分散担持させてもよい。
The content of alumina in the carrier is preferably 75% by mass or more, particularly 80 to 100% by mass, based on the carrier and aluminum oxide.
In addition to alumina, 25 masses of silica, titania, zirconia, boria, magnesia, zinc oxide, diphosphorus pentoxide, zeolite, clay mineral, or any mixture thereof can be used for this carrier in order to modify the chemical properties of the carrier surface. % Or less, particularly preferably 1 to 20% by mass. In that case, it is preferable to add silica, titania and boria, particularly silica and boria.
In addition, there is no restriction | limiting in particular about the addition method of components other than an alumina, During the manufacturing process of the said alumina containing support | carrier, for example, it is soluble in the above component and an aqueous | water-based or non-aqueous polar solvent in an aluminum compound or an alumina hydrate. A method in which component precursors are added and finally dispersed both in the carrier skeleton and on the pore surface, and after the alumina carrier is produced, the above components and component precursors (soluble in aqueous or non-aqueous polar solvents) ) May be dispersed and supported mainly on the pore surface of alumina.
 アルミナ水和物から、又はアルミナ以外の成分を添加した水和物等からアルミナ含有担体を調製する場合、後述する完成触媒の細孔構造として望ましい条件を満たすため、水和物を混練して成分の均一化を図った後、水分率調整(強熱減量として55~70%)を行ない、所望の形状(ペレット、球、押出物等)に成形する。
 なお、混練時に解膠操作や成形性改善のため、必要に応じて塩酸、硫酸、硝酸、有機酸(ギ酸、シュウ酸、酢酸、クエン酸、リンゴ酸、酒石酸、グルコン酸等)、アンモニア、水酸化ナトリウム、有機系成形助剤(セルロース系助剤、澱粉類等)を添加してもよい。成形物は、通常、空気中、640~900℃(雰囲気温度ではなく、成形物の物質温度として)、好ましくは660~890℃、より好ましくは680~870℃の温度で0.1~10時間、好ましくは0.5~8時間、より好ましくは1~5時間、か焼して担体とする。
When preparing an alumina-containing support from an alumina hydrate or from a hydrate or the like to which a component other than alumina is added, the hydrate is kneaded to satisfy a desirable condition as the pore structure of the finished catalyst described later. Then, the moisture content is adjusted (55 to 70% as loss on ignition) and formed into a desired shape (pellet, sphere, extrudate, etc.).
In addition, hydrochloric acid, sulfuric acid, nitric acid, organic acids (formic acid, oxalic acid, acetic acid, citric acid, malic acid, tartaric acid, gluconic acid, etc.), ammonia, water as necessary to improve the peptization operation and moldability during kneading Sodium oxide and organic molding aids (cellulosic aids, starches, etc.) may be added. The molded product is usually 640 to 900 ° C. (instead of the ambient temperature, not the ambient temperature), preferably 660 to 890 ° C., more preferably 680 to 870 ° C. for 0.1 to 10 hours in air. Preferably, the support is calcined for 0.5 to 8 hours, more preferably 1 to 5 hours.
 前記工程で得られた担体に、周期表第6族から選ばれる少なくとも2種の元素を担持させる。担持方法に特に制限は無く、例えば含浸法、塗布法、吹付け法などの様々な工業的な手法を適用できるが、作業性や添加効率の観点から含浸法が好ましい。
 含浸法の手法である吸着法、平衡吸着法、ポアフィリング法、Incipient Wetness法、蒸発乾固法、スプレー法等は何れも本願発明に適用可能であるが、作業性の観点からはポアフィリング法が好ましい。第6族元素の担持の順序も特に限定されることなく、逐次、あるいは同時に担持することができる。含浸法の場合、各元素の溶媒可溶性化合物を各種極性有機溶媒、水や水-極性有機溶媒混合物に溶解した溶液が使用できるが、最も好ましい溶媒は水である。
The carrier obtained in the above step is loaded with at least two elements selected from Group 6 of the periodic table. There are no particular limitations on the loading method, and various industrial methods such as impregnation method, coating method, spraying method and the like can be applied, but the impregnation method is preferable from the viewpoint of workability and addition efficiency.
The impregnation method, adsorption method, equilibrium adsorption method, pore filling method, incipient wetness method, evaporation to dryness method, spray method, etc. are all applicable to the present invention, but from the viewpoint of workability, the pore filling method Is preferred. The order of supporting the Group 6 elements is not particularly limited, and can be sequentially or simultaneously supported. In the case of the impregnation method, a solution in which a solvent-soluble compound of each element is dissolved in various polar organic solvents, water or a water-polar organic solvent mixture can be used, but the most preferable solvent is water.
(2)担持成分
 本発明では活性成分として担持する周期表第6族元素は、クロム、モリブデン、タングステンから選ばれる少なくとも2種である。使用する元素の組み合わせとしては、クロム-モリブデン、クロム-タングステン、モリブデン-タングステンが可能であるが、経済性や活性の観点から、モリブデンとタングステンの組合せが好ましい。
 担持量は、全ての周期表第6族元素酸化物の合計として酸化物触媒基準で8~25質量%、好ましくは9~20質量%、更に好ましくは10~18質量%である。8質量%未満では触媒活性が低く、25質量%を超えても活性の増分は無い。
 さらに、モリブデンに対するタングステンのモル比の範囲は、0.01~0.25、好ましくは0.02~0.23、より好ましくは0.03~0.20である。モル比が0.01未満では触媒活性の安定性に欠け、0.25を超えてもエステル交換及びエステル化反応の安定性に対する改善効果の向上は見られない。
(2) Supported component In the present invention, the Group 6 element of the periodic table supported as an active component is at least two selected from chromium, molybdenum, and tungsten. As a combination of elements to be used, chromium-molybdenum, chromium-tungsten, and molybdenum-tungsten can be used. From the viewpoint of economy and activity, a combination of molybdenum and tungsten is preferable.
The supported amount is 8 to 25% by mass, preferably 9 to 20% by mass, more preferably 10 to 18% by mass, based on the oxide catalyst, as the sum of all Group 6 group element oxides. If it is less than 8% by mass, the catalyst activity is low, and if it exceeds 25% by mass, there is no increase in activity.
Further, the range of the molar ratio of tungsten to molybdenum is 0.01 to 0.25, preferably 0.02 to 0.23, and more preferably 0.03 to 0.20. If the molar ratio is less than 0.01, the stability of the catalyst activity is lacking, and if it exceeds 0.25, no improvement in the improvement effect on the stability of the transesterification and esterification reaction is observed.
 周期表第6族元素の原料としては、クロム酸塩、モリブデン酸塩、タングステン酸塩、三酸化物、ハロゲン化物、ヘテロポリ酸、ヘテロポリ酸塩、カルボニル化合物を含む有機金属化合物等が挙げられる。この他、反応の選択性や活性点の制御、異物混入を含むその他の理由で、酸化物触媒基準で酸化物として0.01~8質量%、好ましくは0.01~4質量%、更に好ましくは0.01~0.99質量%の鉄、コバルト、ニッケル(これらの任意の混合物を含む)を含有させることが可能である。 Examples of the raw material for Group 6 elements of the periodic table include chromate, molybdate, tungstate, trioxide, halide, heteropolyacid, heteropolyacid salt, and organometallic compounds including carbonyl compounds. In addition, for other reasons including reaction selectivity, active site control, and foreign matter contamination, the oxide is 0.01 to 8% by mass, preferably 0.01 to 4% by mass, more preferably, based on the oxide catalyst. Can contain 0.01 to 0.99% by mass of iron, cobalt, nickel (including any mixture thereof).
 周期表第6族元素の含浸溶液には、必要に応じて溶液のpH調整、液安定性や担体上での分散性を向上させるため、アンモニア水、過酸化水素水、硝酸、硫酸、塩酸、リン酸、フッ化水素酸等の無機化合物やギ酸、シュウ酸、酢酸、クエン酸、リンゴ酸、酒石酸、グルコン酸等の有機酸、エチレンジアミン、エチレンジアミン四酢酸、ジエチレントリアミン、ジエチレントリアミン五酢酸、ニトリロ三酢酸等のキレート剤を添加してもよい。
 ここで、リン酸は触媒成分として添加することもでき、その場合の添加量範囲は、酸化物触媒基準でリン酸化物として0.1~10質量%、好ましくは0.5~8質量%、更に好ましくは1~5質量%である。添加できるリン酸としては、オルトリン酸、ピロリン酸、メタリン酸、ホスホン酸、ジホスホン酸、ホスフィン酸、ポリリン酸等が挙げられる。
 なおリン酸は、第6族元素の含浸液に添加する以外に、前記のようにアルミナ含有担体の製造過程で添加することも可能である。上記の添加物は、単独または適宜組合せて使用することができる。
In the impregnating solution of Group 6 elements of the periodic table, ammonia water, hydrogen peroxide solution, nitric acid, sulfuric acid, hydrochloric acid, Inorganic compounds such as phosphoric acid and hydrofluoric acid, organic acids such as formic acid, oxalic acid, acetic acid, citric acid, malic acid, tartaric acid, gluconic acid, ethylenediamine, ethylenediaminetetraacetic acid, diethylenetriamine, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, etc. A chelating agent may be added.
Here, phosphoric acid can also be added as a catalyst component. In this case, the addition amount range is 0.1 to 10% by mass, preferably 0.5 to 8% by mass as phosphorous oxide based on the oxide catalyst. More preferably, it is 1 to 5% by mass. Examples of phosphoric acid that can be added include orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid, phosphonic acid, diphosphonic acid, phosphinic acid, and polyphosphoric acid.
In addition to adding the phosphoric acid to the group 6 element impregnation solution, it is also possible to add phosphoric acid during the production process of the alumina-containing support as described above. The above additives can be used alone or in appropriate combination.
 アルミナ含有担体に周期表第6族元素を含有させた後、必要に応じて乾燥操作(室温~300℃、0.1~24時間)を施した後、焼成操作を行なうことで、周期表第6族元素を酸化物の形態でアルミナ含有担体に担持する。
 この時の焼成条件は、空気中、350~770℃、好ましくは400~730℃、より好ましくは480~680℃で、0.5~24時間、好ましくは1~12時間である。
After containing the Group 6 element of the periodic table in the alumina-containing support, a drying operation (room temperature to 300 ° C., 0.1 to 24 hours) is performed as necessary, and then a firing operation is performed. A Group 6 element is supported on an alumina-containing support in the form of an oxide.
The firing conditions at this time are 350 to 770 ° C. in air, preferably 400 to 730 ° C., more preferably 480 to 680 ° C., and 0.5 to 24 hours, preferably 1 to 12 hours.
(3)完成した触媒の性状
 完成した触媒が良好な触媒性能を発揮するには、以下の物性、細孔構造を有することが望ましい。即ち、平均細孔直径は9.5~27nm、好ましくは9.8~26nm、より好ましくは10~25nmである。平均細孔直径が9.5nm未満では原料の油脂の細孔内拡散が不十分となり、27nmを超えると比表面積が低下するため触媒性能は低下する。
 また、全細孔容積は、0.5~1.0ml/gが好ましく、より好ましくは0.6~0.8ml/gである。0.5ml/g以下では油脂を細孔内に拡散させるのに不十分であり、1.0ml/gを超えた場合、反応器に触媒を充填した場合、触媒の絶対質量が軽くなる(触媒活性成分量が減少する)ため、十分な触媒性能が現れない。
(3) Properties of the completed catalyst In order for the completed catalyst to exhibit good catalytic performance, it is desirable to have the following physical properties and pore structure. That is, the average pore diameter is 9.5 to 27 nm, preferably 9.8 to 26 nm, more preferably 10 to 25 nm. When the average pore diameter is less than 9.5 nm, the diffusion of the raw material fats and oils into the pores becomes insufficient, and when it exceeds 27 nm, the specific surface area is reduced, so that the catalyst performance is lowered.
The total pore volume is preferably 0.5 to 1.0 ml / g, more preferably 0.6 to 0.8 ml / g. If it is less than 0.5 ml / g, it is insufficient for diffusing fats and oils into the pores. If it exceeds 1.0 ml / g, the absolute mass of the catalyst becomes light when the reactor is filled with the catalyst (catalyst Therefore, sufficient catalytic performance does not appear.
 ここで、反応に寄与する主要細孔の均一さを示す指標として、平均細孔直径±1.5nmの範囲の直径を有する細孔容積の割合が、全細孔容積に対して15~70%、好ましくは18~65%、より好ましくは20~60%である細孔構造を有することが望ましい。15%未満では反応に寄与しない微小細孔や表面積の狭い大細孔の割合が増加し、70%を超える場合は、比較的分子サイズの大きな油脂の細孔内拡散が阻害されることで触媒活性の低下を招く。
 さらに、触媒中の全細孔直径の分布の形状を示す指標として全細孔容積に対する平均細孔直径±5nmの範囲の細孔容積の割合が、60%以上、好ましくは65%以上、より好ましくは70%以上であることが望ましい。60%未満では反応に寄与しない微小細孔や巨大細孔の容積割合が増加する(双峰性、多峰性の細孔分布を含む)ことで、触媒活性が低下する。なお、本発明の触媒の細孔分布は、平均細孔直径やその近傍に極大点を有する単峰性の分布である。
Here, as an index indicating the uniformity of the main pores contributing to the reaction, the ratio of the pore volume having an average pore diameter in the range of ± 1.5 nm is 15 to 70% with respect to the total pore volume. It is desirable to have a pore structure that is preferably 18 to 65%, more preferably 20 to 60%. If it is less than 15%, the proportion of fine pores that do not contribute to the reaction or large pores with a small surface area increases, and if it exceeds 70%, the diffusion of fats and oils having a relatively large molecular size into the pores is inhibited. It causes a decrease in activity.
Furthermore, the ratio of the pore volume in the range of the average pore diameter ± 5 nm to the total pore volume as an index indicating the shape of the distribution of the total pore diameter in the catalyst is 60% or more, preferably 65% or more, more preferably Is preferably 70% or more. If it is less than 60%, the volume ratio of micropores and giant pores that do not contribute to the reaction increases (including bimodal and multimodal pore distributions), so that the catalytic activity decreases. The pore distribution of the catalyst of the present invention is a unimodal distribution having an average pore diameter and a local maximum point in the vicinity thereof.
 なお、本発明の触媒の細孔構造(全細孔容積、平均細孔直径、細孔分布等)は水銀圧入法(接触角140°、表面張力480dyn/cm)、比表面積はBET法でそれぞれ得られた値である。
 完成触媒の細孔構造、比表面積の測定や組成分析に際しては、触媒を空気中450℃で1時間処理して水分等の揮発分を除去したものを測定対象とし、ここで得られた分析、測定値を酸化物触媒基準での値としている。強熱減量の測定も同様の加熱温度、時間を適用した。また、担持金属成分や担体構成成分の定量では、蛍光X線分析装置を用いた。
In addition, the pore structure (total pore volume, average pore diameter, pore distribution, etc.) of the catalyst of the present invention is the mercury intrusion method (contact angle 140 °, surface tension 480 dyn / cm), and the specific surface area is the BET method. This is the value obtained.
When measuring the pore structure and specific surface area of the finished catalyst and analyzing the composition, the catalyst was treated in air at 450 ° C. for 1 hour to remove volatile components such as moisture, and the analysis obtained here, The measured value is a value based on an oxide catalyst standard. The same heating temperature and time were applied to the measurement of loss on ignition. Further, a fluorescent X-ray analyzer was used for quantification of the supported metal component and the carrier component.
(4)脂肪酸、グリセリド
 本発明で使用する原料となる脂肪酸及び/又はグリセリドとして、モノグリセリド、ジグリセリド、トリグリセリドを含む各種動植物油脂やそのような動植物油脂の加水分解等で生成する脂肪酸の混合物を使用できる。
 このような油脂混合物としては、例えば大豆油、菜種油、ひまわり油、綿実油、麻実油、亜麻仁油、桐油、月見草油、紅花油、椿油、アマナズナ油、アボカド油、カメリナ油、キャノーラ油、ヤシ油、ゴマ油、カラシ油、オリーブ油、コーン油、サフラワー油、落花生油、マカダミアナッツ油、ブラジルナッツ油、ヒマシ油、米油、ホホバ油、ニーム油、パーム油、ジャトロファ油、カランジャ油や、オーランチオキトリウム、シュードコリシスティス・エリプソイディア、セネデスムス、ボトリオコッカス・ブラウニー、ユーグレナやこれ等に類する藻類から得られる藻油等の植物油脂、牛脂、牛骨脂、牛脚油、豚脂、馬脂、羊油、鹿油、鶏油、バター油、骨油、鯨油、サメ油、タラ肝油、イワシ油、サバ油等の動物性油脂、マーガリン、ファットスプレッド、精製ラード、ショートニング、ココアバター等の食用加工油脂、および以上の任意の油脂混合物が挙げられる。
 また、合成されたトリグリセリド、モノグリセリド及び/又はジグリセリドを含む合成トリグリセリドや、以上に挙げた油脂類の一部を酸化、還元等の処理をして変性した変性油脂でもよい。さらに、以上の油脂の使用済みの廃油、廃油と上記油脂の任意の混合物も使用可能である。
(4) Fatty acid, glyceride As the fatty acid and / or glyceride used as the raw material in the present invention, various animal and vegetable fats and oils including monoglyceride, diglyceride and triglyceride, and a mixture of fatty acids produced by hydrolysis of such animal and vegetable fats and oils can be used. .
Examples of such fat and oil mixtures include soybean oil, rapeseed oil, sunflower oil, cottonseed oil, hemp seed oil, linseed oil, tung oil, evening primrose oil, safflower oil, coconut oil, amazana oil, avocado oil, camelina oil, canola oil, coconut oil, Sesame oil, mustard oil, olive oil, corn oil, safflower oil, peanut oil, macadamia nut oil, brazil nut oil, castor oil, rice oil, jojoba oil, neem oil, palm oil, jatropha oil, carranja oil, orlanchonchi Thorium, Pseudocollistis ellipsoidia, Senedesmus, Botryococcus brownie, Euglena and vegetable oils such as algae oil obtained from these algae, beef tallow, beef bone fat, beef leg oil, pork fat, horse fat Animal oils such as sheep oil, deer oil, chicken oil, butter oil, bone oil, whale oil, shark oil, cod liver oil, sardine oil, mackerel oil, margarine, § Tsu DOO spreads, purified lard, shortening, any fat mixture of edible processed fat and oil, and more like cocoa butter and the like.
Moreover, the synthetic | combination triglyceride containing the synthetic | combination triglyceride, a monoglyceride, and / or a diglyceride, and the modified | denatured fats and oils which modified | denatured some treatments, such as oxidation and a reduction | restoration, may be sufficient. Furthermore, the used waste oil of the above fats and oils, the arbitrary mixtures of waste oil and the said fats and oils can also be used.
(5)アルコール
 本発明の脂肪酸アルキルエステルの製造方法で使用するアルコールは、炭素数が1~10のアルコールが好ましい。
 このようなアルコールとしては、メタノール、エタノール、n-プロピルアルコール、イソブチルアルコール、n-ブチルアルコール、ペンチルアルコール、ネオペンチルアルコール等の第一級アルコール、イソプロピルアルコール、sec-ブチルアルコール等の第二級アルコール、tert-ブチルアルコール、tert-アミルアルコール等の第三級アルコール、エチレングリコール、プロピレングリコール、トリメチレングリコール等の多価アルコールやこれら各種アルコールの任意の混合物が挙げられるが、第一級アルコールが好ましい。特に生成した脂肪酸アルキルエステルをバイオディーゼル燃料等の代替燃料として用いる場合は、メタノールやエタノールが好ましい。
(5) Alcohol The alcohol used in the method for producing a fatty acid alkyl ester of the present invention is preferably an alcohol having 1 to 10 carbon atoms.
Such alcohols include primary alcohols such as methanol, ethanol, n-propyl alcohol, isobutyl alcohol, n-butyl alcohol, pentyl alcohol and neopentyl alcohol, and secondary alcohols such as isopropyl alcohol and sec-butyl alcohol. , Tertiary alcohols such as tert-butyl alcohol and tert-amyl alcohol, polyhydric alcohols such as ethylene glycol, propylene glycol and trimethylene glycol, and any mixture of these alcohols, but primary alcohols are preferred. . In particular, when the produced fatty acid alkyl ester is used as an alternative fuel such as biodiesel fuel, methanol or ethanol is preferable.
(6)脂肪酸アルキルエステルの製造条件
 本発明では、原料の脂肪酸及び/又はグリセリドとアルコールとを、温度100~250℃、好ましくは120~230℃、より好ましくは140~210℃、圧力0.1~6.0MPa、好ましくは0.5~5MPa、特に好ましくは1.0~4.5MPaで本発明の触媒と接触させる。
 使用する反応器に特に制限はなく、回分式、流通式の何れの反応器でも適用可能である。反応時間にも制限はなく、回分式の場合、0.1~100時間、流通式においては、原料油脂及びアルコールを本願発明触媒と接触させる時間を質量空間速度(WHSV)として表した場合、0.1~3h-1、好ましくは0.2~2h-1の条件が適用できる。
(6) Production Conditions for Fatty Acid Alkyl Ester In the present invention, the starting fatty acid and / or glyceride and alcohol are heated at a temperature of 100 to 250 ° C, preferably 120 to 230 ° C, more preferably 140 to 210 ° C, and a pressure of 0.1. It is contacted with the catalyst of the present invention at a pressure of ˜6.0 MPa, preferably 0.5-5 MPa, particularly preferably 1.0-4.5 MPa.
There is no restriction | limiting in particular in the reactor to be used, Either a batch type or a flow-through type reactor is applicable. The reaction time is not limited, and is 0.1 to 100 hours in the case of a batch system, and 0 to 0 in the flow system when the time for contacting the raw oil and fat and alcohol with the catalyst of the present invention is expressed as a mass space velocity (WHSV). Conditions of 0.1 to 3 h −1 , preferably 0.2 to 2 h −1 can be applied.
 なお、原料とアルコールの使用割合についてであるが、脂肪酸のエステル化反応では1モルの脂肪酸に対して1モルのアルコールが必要となる。
 またエステル交換反応の場合、原料エステルをトリグリセリドとすると、1モルのトリグリセリドに対して3モルのアルコールを反応させる必要がある。エステル化、エステル交換反応は共に可逆的な平衡反応であるため、正反応を進行させるには反応物のアルコールを過剰に用いる、又は生成物を反応系内から除く等の操作が有効である。
 本発明では、原料中の脂肪酸(グリセリドの場合、エステル結合の脂肪酸由来の部位)に着目して、脂肪酸に対するアルコールのモル比で1.1~50、好ましくは1.2~40、より好ましくは1.5~30、特に好ましくは3~15で原料油脂とアルコールを用いることができる。
In addition, although it is about the usage-ratio of a raw material and alcohol, in the esterification reaction of a fatty acid, 1 mol of alcohol is needed with respect to 1 mol of fatty acid.
In the case of transesterification, if the starting ester is triglyceride, it is necessary to react 3 mol of alcohol with 1 mol of triglyceride. Since both esterification and transesterification reactions are reversible equilibrium reactions, an operation such as excessive use of alcohol as a reactant or removal of a product from the reaction system is effective for advancing the positive reaction.
In the present invention, paying attention to the fatty acid in the raw material (in the case of glyceride, the site derived from the ester bond fatty acid), the molar ratio of alcohol to fatty acid is 1.1 to 50, preferably 1.2 to 40, more preferably. Raw oils and fats and alcohols can be used at 1.5 to 30, particularly preferably 3 to 15.
 本発明による脂肪酸アルキルエステルの製造では、上記の反応を1段で行なってもよいが、生成エステルの純度を高めるために、2段以上の複数回に亘って行なうことも可能である。
 2段階以上で行なう場合は、回分式、流通式の何れの反応器でも使用可能であるが、反応効率の観点から流通式反応器を用いることが好ましい。その場合、前記の条件で1段目の反応を行なった後、生成物からアルコール、グリセリン、水を除去して未反応の油脂や遊離脂肪酸を含む粗脂肪酸アルキルエステル(A)を得る。ここで、アルコールや水は常圧または減圧条件で単蒸留、精留等で分離できる。グリセリンについては、脂肪酸アルキルエステルとの比重差、極性差を利用した沈降分離、遠心分離、静電分離等の各種方法が適用できる。
In the production of the fatty acid alkyl ester according to the present invention, the above reaction may be carried out in one stage, but it is also possible to carry out the reaction in a plurality of stages of two or more stages in order to increase the purity of the produced ester.
When the reaction is carried out in two or more stages, either a batch type or a flow type reactor can be used, but a flow type reactor is preferably used from the viewpoint of reaction efficiency. In that case, after performing the 1st step | paragraph reaction on the said conditions, alcohol, glycerol, and water are removed from a product, and the crude fatty-acid alkylester (A) containing an unreacted fat and free fatty acid is obtained. Here, alcohol and water can be separated by simple distillation, rectification or the like under normal pressure or reduced pressure conditions. For glycerin, various methods such as sedimentation separation, centrifugal separation, electrostatic separation and the like utilizing the specific gravity difference and polarity difference with the fatty acid alkyl ester can be applied.
 このようにして得られた粗脂肪酸アルキルエステル(A)に対し、2段目として、1段目と同様の圧力、原料/アルコール割合、質量空間速度で、アルコールを反応させる。なお、この時の反応温度は80~230℃、好ましくは60~210℃と1段目と同等以下の温度とすることが望ましい。
 これにより、生成エステルの加水分解反応やグリセリンとアルコール間のエーテル化反応等の副反応を抑制することができる。
 2段目の反応後、1段目と同様の方法により、アルコール、水、グリセリンを除去して、粗脂肪酸アルキルエステル(B)を得る。この粗脂肪酸アルキルエステル(B)を常圧又は減圧下で蒸留して、沸点100℃以下および360℃以上の留分を除くことで、精製脂肪酸アルキルエステルを得ることができる。
 この精製脂肪酸アルキルエステルはそのままで、各種化学原料やバイオディーゼル燃料として利用できるが、さらに常圧又は減圧下で精留を行なうことで、より高品質の脂肪酸アルキルエステルを得ることができる。
The crude fatty acid alkyl ester (A) thus obtained is reacted in the second stage with alcohol at the same pressure, raw material / alcohol ratio, and mass space velocity as in the first stage. The reaction temperature at this time is 80 to 230 ° C., preferably 60 to 210 ° C., and is preferably equal to or lower than the first stage.
Thereby, side reactions, such as the hydrolysis reaction of produced | generated ester and the etherification reaction between glycerol and alcohol, can be suppressed.
After the second stage reaction, alcohol, water and glycerin are removed by the same method as in the first stage to obtain a crude fatty acid alkyl ester (B). The crude fatty acid alkyl ester (B) is distilled under normal pressure or reduced pressure, and a fraction having boiling points of 100 ° C. or lower and 360 ° C. or higher is removed to obtain a purified fatty acid alkyl ester.
This purified fatty acid alkyl ester can be used as it is as various chemical raw materials and biodiesel fuel, but a higher quality fatty acid alkyl ester can be obtained by further rectifying under normal pressure or reduced pressure.
 以下に示す実施例によって、更に本発明を具体的に説明する。ただし、下記実施例は何ら本発明を限定するものではない。
〔触媒の調製〕
The following examples further illustrate the present invention. However, the following examples do not limit the present invention.
(Preparation of catalyst)
 温水の水道水を入れたタンクに硫酸アルミニウム、アルミン酸ソーダおよび水ガラスを添加、混合することで、シリカ-アルミナ水和物ゲル(シリカ/アルミナ質量比:1.5/98.5)を調製した。溶液から水和物ゲルを分離し、温水を用いて不純物を洗浄除去した後、クエン酸を添加し混練機を用いて加熱混練して水分率を64.3%に調整した。
 この混練物を押出し成形し、空気中、850℃で1.5時間、か焼することでシリカ-アルミナ担体を得た。
 酸化物触媒基準で三酸化モリブデン8.7質量%、三酸化タングステン1.3質量%となるように、蒸留水にアンモニア水、モリブデン酸アンモニウム、メタタングステン酸アンモニウムを溶解し含浸液を調製し、前記のシリカ-アルミナ担体に含浸した後、この含浸担体を120℃で2時間乾燥後、空気中500℃で6時間焼成して触媒Aを得た。
 触媒Aの物性、化学組成を表1に示す。
A silica-alumina hydrate gel (silica / alumina mass ratio: 1.5 / 98.5) is prepared by adding and mixing aluminum sulfate, sodium aluminate and water glass into a tank containing hot tap water. did. The hydrate gel was separated from the solution, and the impurities were washed and removed using warm water, citric acid was added, and the mixture was heated and kneaded using a kneader to adjust the moisture content to 64.3%.
This kneaded product was extruded and calcined in air at 850 ° C. for 1.5 hours to obtain a silica-alumina carrier.
Prepare an impregnating solution by dissolving ammonia water, ammonium molybdate, and ammonium metatungstate in distilled water so that it becomes 8.7% by mass of molybdenum trioxide and 1.3% by mass of tungsten trioxide based on oxide catalyst. After impregnating the silica-alumina support, the impregnated support was dried at 120 ° C. for 2 hours and then calcined in air at 500 ° C. for 6 hours to obtain Catalyst A.
Table 1 shows the physical properties and chemical composition of Catalyst A.
 実施例1で、担体調製時に水ガラスを使用しなかったこと、アルミナ水和物の成形時の水分率を62.8%、担体か焼温度を800℃とした以外は実施例1と同様の方法で触媒Bを調製した。
 触媒Bの物性、化学組成を表1に示す。
Example 1 was the same as Example 1 except that water glass was not used at the time of carrier preparation, the moisture content at the time of molding the alumina hydrate was 62.8%, and the carrier calcination temperature was 800 ° C. Catalyst B was prepared by the method.
Table 1 shows the physical properties and chemical composition of Catalyst B.
(比較例1)
 特許文献3の実施例8(触媒H)を参考として、本願実施例2のアルミナ担体にケイ酸エチル/エタノール溶液を含浸し、120℃で乾燥してケイ酸エチルが担持されたアルミナ担体を調製した(シリカ/アルミナ質量比:1.5/98.5)。
 これに対して、酸化物触媒基準で三酸化モリブデン8.7質量%(アルミナに対して10%)、二酸化スズ3.9質量%(アルミナに対して4.5%)となるようにモリブデン酸アンモニウム、塩化スズ(IV)を蒸留水に溶解した含浸液を調製し、前記のケイ酸エチル担持アルミナ担体に含浸し、含浸担体を120℃で2時間乾燥後、空気中500℃で6時間焼成して触媒Cを得た。
 触媒Cの物性、化学組成を表1に示す。
(Comparative Example 1)
With reference to Example 8 (Catalyst H) of Patent Document 3, the alumina support of Example 2 of the present application was impregnated with an ethyl silicate / ethanol solution and dried at 120 ° C. to prepare an alumina support on which ethyl silicate was supported. (Silica / alumina mass ratio: 1.5 / 98.5).
On the other hand, molybdic acid was 8.7% by mass of molybdenum trioxide (10% with respect to alumina) and 3.9% by mass of tin dioxide (4.5% with respect to alumina) based on the oxide catalyst. Prepare an impregnating solution in which ammonium and tin (IV) chloride are dissolved in distilled water, impregnate the above-mentioned ethyl silicate-supported alumina support, dry the impregnated support at 120 ° C. for 2 hours, and calcinate in air at 500 ° C. for 6 hours. Thus, catalyst C was obtained.
The physical properties and chemical composition of the catalyst C are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔脂肪酸アルキルエステルの合成試験〕
 実施例1、実施例2、比較例1の触媒A~Cを用いオートクレーブ(内容量120ml)を用いて原料油脂から脂肪酸メチルエステル(FAME)を合成した。合成時の反応条件を表2に示す。
[Synthesis test of fatty acid alkyl ester]
Fatty acid methyl esters (FAME) were synthesized from raw oils and fats using the catalysts A to C of Example 1, Example 2 and Comparative Example 1 using an autoclave (content volume 120 ml). Table 2 shows the reaction conditions during the synthesis.
 反応後、オートクレーブから生成物を取り出し、固液分離により触媒を除き、メタノールをエバポレータにより留去後、静置分離によりFAMEとグリセリンを分離した。
 FAME層をガスクロマトグラフ法および酸価測定することでトリグリセリドの転化率とFAMEの酸価を求めた。また、副生するグリセリンについてもガスクロマトグラフ法により純度を求めた。
 以上の測定結果を表3に示す。
After the reaction, the product was taken out from the autoclave, the catalyst was removed by solid-liquid separation, methanol was distilled off by an evaporator, and FAME and glycerin were separated by stationary separation.
The FAME layer was subjected to gas chromatography and acid value measurement to determine the triglyceride conversion rate and FAME acid value. The purity of glycerin produced as a byproduct was also determined by gas chromatography.
The above measurement results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果より、本願発明の触媒A、触媒Bを用いた場合、トリグリセリドの転化率が高く、FAMEの酸価は低い値を示している。ここから、本願発明触媒を用いた場合、生成エステル中の遊離脂肪酸も少なく、効率よくエステル交換、エステル化反応が進行していることが分かる。
 一方、比較例1の触媒Cでは、トリグリセリドの転化率は低く、FAMEの酸価は高い。これに対しては、原料油脂中の遊離脂肪酸のエステル化が十分に行われていない、又は生成FAMEの加水分解で生成した脂肪酸が酸価を上げていること等が考えられる。
From the results of Table 3, when catalyst A and catalyst B of the present invention were used, the triglyceride conversion rate was high, and the FAME acid value was low. From this, it can be seen that when the catalyst of the present invention is used, the amount of free fatty acid in the produced ester is small and the transesterification and esterification reaction proceed efficiently.
On the other hand, in the catalyst C of Comparative Example 1, the conversion rate of triglyceride is low and the acid value of FAME is high. On the other hand, it is conceivable that the free fatty acid in the raw fat / oil is not sufficiently esterified, or the fatty acid produced by hydrolysis of the produced FAME increases the acid value.
 ここで、副生物であるグリセリンの純度を見ると、比較例1の触媒Cでは純度が低い。グリセリン中の不純物としては、2-メトキシ-1,3-プロパンジオール、3-メトキシ-1,2-プロパンジオール等のメタルールとの脱水縮合物が観測されたが、ここから触媒Cは酸性度が必要以上に高く、グリセリンとメタノール間のエーテル化や、FAMEの加水分解といった副反応に対しても触媒作用を示したものと考えられる。
 一方、実施例1、2の触媒A、Bでのグリセリンの純度は高く、副生物の品質に於いても本願発明触媒は優れていることが分かる。
Here, looking at the purity of glycerin as a by-product, the purity of the catalyst C of Comparative Example 1 is low. As impurities in glycerin, dehydration condensation products with metal rule such as 2-methoxy-1,3-propanediol and 3-methoxy-1,2-propanediol were observed. It is considered to have been higher than necessary, and showed a catalytic action for side reactions such as etherification between glycerol and methanol and hydrolysis of FAME.
On the other hand, it can be seen that the purity of glycerin in the catalysts A and B of Examples 1 and 2 is high, and the catalyst of the present invention is excellent in the quality of by-products.
〔酸による触媒成分溶出試験〕
 触媒A、B、Cを5%シュウ酸水溶液に浸漬して触媒成分を強制的に溶出させることで、触媒の安定性を評価する試験を行なった。
 触媒サンプルをマッフル炉で450℃、1.5時間加熱後に秤量し、以下の条件で溶出試験を行なった。その後、触媒サンプルを蒸留水で洗浄し、マッフル炉で450℃、1.5時間加熱後、触媒サンプルを秤量し、溶出試験前後の質量差から触媒成分の溶出割合(質量減少率)を求めた。
 試験条件と試験結果は、以下の表4と表5の通りである。
[Elution test of catalyst component with acid]
A test for evaluating the stability of the catalyst was conducted by forcibly eluting the catalyst components by immersing the catalysts A, B, and C in a 5% oxalic acid aqueous solution.
The catalyst sample was weighed after heating in a muffle furnace at 450 ° C. for 1.5 hours, and an elution test was performed under the following conditions. Thereafter, the catalyst sample was washed with distilled water, heated at 450 ° C. for 1.5 hours in a muffle furnace, the catalyst sample was weighed, and the elution ratio (mass reduction rate) of the catalyst component was determined from the mass difference before and after the elution test. .
Test conditions and test results are as shown in Tables 4 and 5 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5の結果より、本願発明の触媒は、従来技術の触媒Cよりも担持金属成分の酸溶出が少ないことから、遊離脂肪酸が多い酸性質の原料を使用しても活性失活の度合いが低く、活性安定性に優れた効果を示すと考えられる。 From the results of Table 5, the catalyst of the present invention has less acid elution of the supported metal component than the catalyst C of the prior art, and therefore the degree of activity deactivation is low even when using a raw material having an acid property with many free fatty acids. It is thought that the effect which was excellent in activity stability is shown.
 本発明は、劣悪な廃油を含む様々な油脂原料から、各種化学薬品、樹脂、洗剤、界面活性剤の原材料やバイオディーゼル燃料等に使用できる脂肪酸アルキルエステルを、高効率且つ低コストで製造しうる技術として有用である。
 さらに副生するグリセリンの純度も高く、主反応の生成物を含めて付加価値の高い生成物を得ることを可能とする。
INDUSTRIAL APPLICABILITY The present invention can produce fatty acid alkyl esters that can be used for various chemicals, resins, detergents, surfactant raw materials, biodiesel fuel, and the like from various oil and fat raw materials including poor waste oil with high efficiency and low cost. Useful as technology.
Further, the purity of glycerin produced as a by-product is high, and it is possible to obtain a product with high added value including the product of the main reaction.

Claims (6)

  1.  アルミナを含有する多孔質担体と、これに担持された周期表第6族から選択される少なくとも二種の元素を含有し、平均細孔直径が9.5~27nm、全細孔容積が0.5~1.0ml/g、比表面積が120~300m2/g、全細孔容積に対する平均細孔直径±1.5nmの直径の細孔容積の割合が15~70%、且つ、全細孔容積に対する平均細孔直径±5nmの直径を有する細孔容積の割合が60%以上である脂肪酸アルキルエステル製造触媒。 A porous carrier containing alumina and at least two elements selected from Group 6 of the periodic table supported thereon, an average pore diameter of 9.5 to 27 nm, and a total pore volume of 0.5. 5 to 1.0 ml / g, specific surface area of 120 to 300 m 2 / g, ratio of pore volume of average pore diameter ± 1.5 nm to total pore volume is 15 to 70%, and total pores A fatty acid alkyl ester production catalyst in which the ratio of the pore volume having an average pore diameter of ± 5 nm to the volume is 60% or more.
  2.  触媒中の周期表第6族元素の総担持量が、酸化物換算で8~25質量%であることを特徴とする請求項1に記載の脂肪酸アルキルエステル製造触媒。 2. The fatty acid alkyl ester production catalyst according to claim 1, wherein the total supported amount of Group 6 elements in the periodic table in the catalyst is 8 to 25% by mass in terms of oxide.
  3.  周期表第6族から選択される元素が、モリブデンとタングステンであることを特徴とする請求項1又は2に記載の脂肪酸アルキルエステル製造触媒。 3. The fatty acid alkyl ester production catalyst according to claim 1, wherein the elements selected from Group 6 of the periodic table are molybdenum and tungsten.
  4.  モリブデンに対するタングステンのモル比が0.01~0.25であることを特徴とする請求項1~3の何れか1項に記載の脂肪酸アルキルエステル製造触媒。 The fatty acid alkyl ester production catalyst according to any one of claims 1 to 3, wherein a molar ratio of tungsten to molybdenum is 0.01 to 0.25.
  5.  アルミナを含有する多孔質担体に、周期表第6族元素から選択される少なくとも二種の元素の化合物溶液を含浸させる工程、その後、酸素の存在下400~750℃で焼成する工程を含むことを特徴とする請求項1~4の何れか1項に記載の脂肪酸アルキルエステル製造触媒の製造方法。 Impregnating a porous support containing alumina with a compound solution of at least two elements selected from Group 6 elements of the periodic table, and thereafter baking at 400 to 750 ° C. in the presence of oxygen. The method for producing a fatty acid alkyl ester production catalyst according to any one of claims 1 to 4, characterized in that:
  6.  請求項1~4の何れか1項に記載の触媒の存在下、温度100~250℃、圧力0.1~6.0MPaで、脂肪酸及び/又はグリセリドとアルコールを反応させることを特徴とする脂肪酸アルキルエステルの製造方法。 A fatty acid characterized by reacting a fatty acid and / or a glyceride with an alcohol at a temperature of 100 to 250 ° C and a pressure of 0.1 to 6.0 MPa in the presence of the catalyst according to any one of claims 1 to 4. A method for producing an alkyl ester.
PCT/JP2016/055135 2015-02-25 2016-02-23 Catalyst for producing fatty acid alkyl ester, method for producing said catalyst and method for producing fatty acid alkyl ester using said catalyst WO2016136692A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015035024A JP5832678B1 (en) 2015-02-25 2015-02-25 Fatty acid alkyl ester production catalyst, production method thereof, and production method of fatty acid alkyl ester using the catalyst
JP2015-035024 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136692A1 true WO2016136692A1 (en) 2016-09-01

Family

ID=54874316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055135 WO2016136692A1 (en) 2015-02-25 2016-02-23 Catalyst for producing fatty acid alkyl ester, method for producing said catalyst and method for producing fatty acid alkyl ester using said catalyst

Country Status (3)

Country Link
JP (1) JP5832678B1 (en)
MY (1) MY171534A (en)
WO (1) WO2016136692A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059885A1 (en) * 2018-09-20 2020-03-26 バイオ燃料技研工業株式会社 Method and system for purifying glycerin, method for producing stripping agent, and stripping method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331097A (en) * 1992-05-25 1993-12-14 Mitsubishi Rayon Co Ltd Production of methacrylic acid and its ester
JPH05331098A (en) * 1992-05-25 1993-12-14 Mitsubishi Rayon Co Ltd Production of methacrylic acid and its ester
JP2002079088A (en) * 2000-09-07 2002-03-19 Showa Denko Kk Catalyst for manufacturing lower aliphatic carboxylic acid ester, method for manufacturing the same and method for manufacturing lower aliphatic carboxylic acid ester by the catalyst
WO2004085584A1 (en) * 2003-03-26 2004-10-07 Japan Energy Corporation Process for producing ester through transesterification with solid acid catalyst
JP2011207820A (en) * 2010-03-30 2011-10-20 Dic Corp Method for producing ester
WO2013137286A1 (en) * 2012-03-13 2013-09-19 株式会社ダイキアクシス Solid acid catalyst, method for manufacturing same, and method for manufacturing a fatty acid alkyl ester using same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152248A (en) * 1997-11-19 1999-06-08 Mitsubishi Chemical Corp Production of unsaturated carboxylic acid ester
JP4633339B2 (en) * 2003-05-26 2011-02-16 三洋化成工業株式会社 Method for producing carboxylic acid ester
JP3941876B2 (en) * 2003-08-29 2007-07-04 株式会社日本触媒 Process for producing fatty acid alkyl ester and / or glycerin
JP4586504B2 (en) * 2004-11-15 2010-11-24 東亞合成株式会社 Method for producing aromatic ester compound
US8124801B2 (en) * 2008-06-24 2012-02-28 Benefuel Inc. Process of manufacturing of fatty acid alkyl esters
JP5435269B2 (en) * 2008-09-29 2014-03-05 Dic株式会社 Method for producing ester body
KR101068112B1 (en) * 2010-02-22 2011-09-27 한국에너지기술연구원 Method for preparing tungsten oxide alumina catalyst, tungsten oxide alumina catalyst and method for removing free fatty acid from waste cooking oil containing free fatty acid using the catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331097A (en) * 1992-05-25 1993-12-14 Mitsubishi Rayon Co Ltd Production of methacrylic acid and its ester
JPH05331098A (en) * 1992-05-25 1993-12-14 Mitsubishi Rayon Co Ltd Production of methacrylic acid and its ester
JP2002079088A (en) * 2000-09-07 2002-03-19 Showa Denko Kk Catalyst for manufacturing lower aliphatic carboxylic acid ester, method for manufacturing the same and method for manufacturing lower aliphatic carboxylic acid ester by the catalyst
WO2004085584A1 (en) * 2003-03-26 2004-10-07 Japan Energy Corporation Process for producing ester through transesterification with solid acid catalyst
JP2011207820A (en) * 2010-03-30 2011-10-20 Dic Corp Method for producing ester
WO2013137286A1 (en) * 2012-03-13 2013-09-19 株式会社ダイキアクシス Solid acid catalyst, method for manufacturing same, and method for manufacturing a fatty acid alkyl ester using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GHEORGHITA MITRAN ET AL.: "Study of the esterification reaction of acetic acid with n- butanol over supported WO 3 catalysts", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 396, January 2015 (2015-01-01), pages 275 - 281 *

Also Published As

Publication number Publication date
JP5832678B1 (en) 2015-12-16
JP2016155085A (en) 2016-09-01
MY171534A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
Feyzi et al. Preparation and characterization of Cs/Al/Fe3O4 nanocatalysts for biodiesel production
JP6226861B2 (en) Solid acid catalyst, method for producing the same, and method for producing fatty acid alkyl ester using the same
Zhou et al. Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil
Zabeti et al. Activity of solid catalysts for biodiesel production: a review
Boz et al. Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds
Kulkarni et al. Kinetic studies on the synthesis of fuel additives from glycerol using CeO2-ZrO2 metal oxide catalyst.
CA2729116C (en) Process of manufacturing of fatty acid alkyl esters
JP4976016B2 (en) Process for producing ester by transesterification
Bala et al. Conversion of a variety of high free fatty acid containing feedstock to biodiesel using solid acid supported catalyst
Earle et al. Green synthesis of biodiesel using ionic liquids
US20130019520A1 (en) Methods of Making Fatty Acids and Fatty Acid Alkyl Esters
WO2016054597A1 (en) System and methods for making bioproducts
Han et al. Selective catalytic synthesis of glycerol monolaurate over silica gel-based sulfonic acid functionalized ionic liquid catalysts
Bala et al. Solid-acid catalyzed biodiesel production, part I: biodiesel synthesis from low quality feedstock
Chaveanghong et al. Simultaneous transesterification and esterification of acidic oil feedstocks catalyzed by heterogeneous tungsten loaded bovine bone under mild conditions
US20100139152A1 (en) Heterogeneous catalysts for mono-alkyl ester production, method of making, and method of using same
Čapek et al. Aspects of potassium leaching in the heterogeneously catalyzed transesterification of rapeseed oil
Shah et al. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
Wan et al. Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate
Faba et al. Thermo-chemically tuning of active basic sites on nanoarchitectured silica for biodiesel production
WO2014115356A1 (en) Transesterification catalyst and method for producing biodiesel fuel using transesterification catalyst
Guerrero-Ruiz et al. Use of biobased crude glycerol, obtained biocatalytically, to obtain biofuel additives by catalytic acetalization of furfural using SAPO catalysts
JP5832678B1 (en) Fatty acid alkyl ester production catalyst, production method thereof, and production method of fatty acid alkyl ester using the catalyst
Berrones-Hernández et al. Heterogeneous esterification of waste cooking oil with sulfated titanium dioxide (STi)
Ruatpuia et al. Biodiesel production through heterogeneous catalysis route: A review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755438

Country of ref document: EP

Kind code of ref document: A1