WO2016136684A1 - Method for assisting in prognostic diagnosis of colorectal cancer, recording medium and determining apparatus - Google Patents

Method for assisting in prognostic diagnosis of colorectal cancer, recording medium and determining apparatus Download PDF

Info

Publication number
WO2016136684A1
WO2016136684A1 PCT/JP2016/055124 JP2016055124W WO2016136684A1 WO 2016136684 A1 WO2016136684 A1 WO 2016136684A1 JP 2016055124 W JP2016055124 W JP 2016055124W WO 2016136684 A1 WO2016136684 A1 WO 2016136684A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
expression level
prognosis
colorectal cancer
logarithm
Prior art date
Application number
PCT/JP2016/055124
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 吉田
Original Assignee
シスメックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シスメックス株式会社 filed Critical シスメックス株式会社
Priority to AU2016224709A priority Critical patent/AU2016224709B2/en
Priority to CN201680012066.XA priority patent/CN107429242B/en
Publication of WO2016136684A1 publication Critical patent/WO2016136684A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/10Gene or protein expression profiling; Expression-ratio estimation or normalisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression

Definitions

  • the present invention relates to a method for assisting prognosis of colorectal cancer.
  • the present invention relates to a method, a recording medium, and a determination device for obtaining SCEL gene expression level data for a nucleic acid obtained from a tissue of a colorectal cancer patient and assisting prognosis of the patient's colorectal cancer based on the acquired expression level data. .
  • Colorectal cancer is a general term for carcinomas that occur in the cecum, colon, and rectum. Like many cancers, early detection is important for the treatment of colorectal cancer. In the treatment of cancer, an anticancer agent having a strong side effect may be used, and in this case, the patient is forced to bear a great burden. In order to reduce such a burden on the patient, it is important for the doctor to select the most appropriate treatment method for the patient, and for this purpose, the doctor accurately determines the progression, malignancy, symptoms, etc. of the patient's cancer. It is necessary to grasp.
  • Non-Patent Document 1 reports that exudation can be useful as a prognostic factor for rectal and colonic mucinous cancers.
  • An object of the present invention is to provide a more objective colorectal cancer prognosis assistance method, recording medium, and determination apparatus.
  • the present inventor found that the expression of the SCEL gene correlates with the presence or absence of excision, and completed the present invention.
  • a colorectal cancer comprising the steps of measuring the expression level of the SCEL gene in a biological sample collected from a colorectal cancer patient, and determining the prognosis of colorectal cancer based on the measured expression level.
  • a method is provided to assist in the prognosis of patients.
  • the intermediate information which assists the prognosis diagnosis of colon cancer by doctors etc. can be acquired.
  • the colorectal cancer prognosis determination method of the present embodiment (hereinafter sometimes referred to as “determination method”), first, a step of measuring the expression level of the SCEL gene in a biological sample collected from a colorectal cancer patient is performed. .
  • the “biological sample” is not particularly limited as long as it contains a nucleic acid (eg, mRNA) derived from a tumor cell of a colorectal cancer patient.
  • a clinical sample can be used.
  • the clinical specimen include tissue, blood, serum and the like collected by surgery or biopsy.
  • the clinical specimen may be a tumor tissue collected by surgery or biopsy, particularly a tissue around a cancer advanced part.
  • the nucleotide sequence of the cDNA for the SCEL gene is represented as SEQ ID NO: 1. This base sequence is known under the accession number NM_001160706 in the human genome database GenBank.
  • At least one expression level selected from the MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 gene and WNT11 gene can be measured in the measurement step.
  • MGAT3 mannosyl (beta-1,4-)-glycoprotein beta-1,4-N-acetylglucosaminyltransfer ase
  • SEQ ID NO: 2 The cDNA base sequence of the gene is represented as SEQ ID NO: 2. This base sequence is known under the accession number NM_001098270 in the human genome database GenBank.
  • the nucleotide sequence of cDNA of SLC4A11 (solute carrier family 4, sodium borate transporter, member 11) gene is represented as SEQ ID NO: 3. This base sequence is known under the accession number NM_001174089 in the human genome database GenBank.
  • the base sequence of cDNA of MSLN (mesothelin) gene is represented as SEQ ID NO: 4. This base sequence is known under the accession number NM_001177355 in the human genome database GenBank.
  • the base sequence of cDNA of FOXC1 (forkhead box C1) gene is represented as SEQ ID NO: 5. This base sequence is known under the accession number NM_001453 in the human genome database GenBank.
  • the cDNA base sequence of the RUNX2 (run-related transcription factor 2) gene is represented as SEQ ID NO: 6. This base sequence is known under the accession number NM_001015051 in the human genome database GenBank.
  • the nucleotide sequence of the cDNA of WNT11 (wingless-type MMTV integration site family, member 11) gene is represented as SEQ ID NO: 7. This base sequence is known under the accession number NM_004626 in the human genome database GenBank.
  • Exudation is a nest containing 1 to 4 cancer cells present in the stroma near the advanced cancer area.
  • exudation is a growth of cancer cells that have been released from cancer tissue and is known as a risk factor for lymph node metastasis of colorectal cancer. It has been.
  • the grade of exudation is evaluated by selecting the most advanced area of exudation, observing the advanced part of cancer development in a 20 ⁇ 10 field of view, and counting the number of exudations. Individuals with 5 or more counts (Grade 2 and 3) have a significantly increased lymph node metastasis rate compared to individuals with less than 4 (Grade 1).
  • the present inventor has now found for the first time that the expression levels of the above seven genes are significantly increased in advanced cancerous sections with ulcers. Therefore, the above seven genes can be useful gene markers in prognosis determination of colorectal cancer. Since the expression levels of genes can be measured and quantified according to methods known to those skilled in the art, the prognosis of colorectal cancer can be objectively determined by measuring the expression levels of these genes.
  • a “gene transcription product” is a product obtained by transcription of a gene. Specifically, messenger RNA (mRNA) and a precursor of mRNA are exemplified. Further, the “gene expression level” refers to the amount of gene transcripts present in the biological sample or the amount of a substance that reflects the gene transcript. Therefore, in this embodiment, the amount of mRNA or the amount of complementary deoxyribonucleic acid (cDNA) or complementary RNA (cRNA) obtained from mRNA can be measured. Usually, since the amount of mRNA in a biological sample is very small, it is preferable to measure the amount of cDNA or cRNA obtained therefrom by reverse transcription and in vitro transcription (IVT).
  • IVTT in vitro transcription
  • RNA extraction methods known in the art.
  • a biological sample can be centrifuged to precipitate RNA-containing cells, the cells can be destroyed by physical, chemical, or enzymatic methods, and an RNA extract can be obtained by removing cell debris. it can.
  • RNA extraction can also be performed using a commercially available RNA extraction kit or the like.
  • a contaminated component derived from a biological sample that is preferably not mixed at the time of measuring the expression level of the gene (for example, if the biological sample is blood, globin It is also possible to perform treatment for removing mRNA and the like.
  • the measurement of gene expression level is not particularly limited as long as it is a quantitative method.
  • a microarray using DNA, RNA, artificial nucleic acid or the like as a probe (hereinafter also simply referred to as “microarray”) or quantitative PCR (for example, quantitative RT-PCR) can be used.
  • a method using a microarray may be used.
  • a nucleic acid probe of about 20 to 25 mer immobilized on a substrate is used to extract a gene transcript or a cDNA or cRNA prepared from a gene transcript.
  • the expression level of the target gene can be measured by contacting it and measuring the change in indicators such as fluorescence, color development, and current for the presence or absence of hybrid formation.
  • At least one nucleic acid probe may be used for one gene transcript, and a plurality of probes may be used depending on the length of the gene transcript.
  • the sequence of the probe can be appropriately determined by those skilled in the art according to the sequence of the transcription product of the gene to be measured.
  • a polynucleotide represented by SEQ ID NOs: 8-84 can be used as such a probe.
  • GeneChip registered trademark
  • Affymetrix can be used as a method for measuring the expression level of a gene using a microarray.
  • a gene transcription product or its cDNA or cRNA may be fragmented to facilitate hybridization with a nucleic acid probe. Fragmentation can be performed by methods known in the art. For example, it can be performed using a nucleolytic enzyme such as ribonuclease or deoxyribonuclease.
  • cRNA is usually about 5 to 20 ⁇ g.
  • the contact condition is usually 16 hours at 45 ° C.
  • the gene transcript or its cDNA or cRNA hybridized upon contact with the nucleic acid probe is measured for the presence or absence of the hybridization and the amount of hybridization with the amount of current flowing on the microarray due to the fluorescent substance, dye or hybridization. It can be detected based on a change or the like.
  • the gene transcription product or its cDNA or cRNA is labeled with a labeling substance for detecting the fluorescent substance or the dye.
  • a labeling substance those usually used in the art can be used.
  • biotinylated nucleotides or biotinylated ribonucleotides as a nucleotide or ribonucleotide substrate when synthesizing cDNA or cRNA
  • the resulting cDNA or cRNA can be labeled with biotin.
  • avidin or streptavidin which is a binding partner for biotin, can bind on the microarray. Hybrid formation can be detected by avidin or streptavidin binding to an appropriate fluorescent substance or dye.
  • fluorescent substance examples include fluorescein isothiocyanate (FITC), green fluorescent protein (GFP), luciferin, phycoerythrin, and the like.
  • FITC fluorescein isothiocyanate
  • GFP green fluorescent protein
  • luciferin luciferin
  • phycoerythrin a phycoerythrin-streptavidin conjugate
  • avidin or streptavidin a labeled antibody against avidin or streptavidin can be contacted with avidin or streptavidin to detect the fluorescent substance or dye of the labeled antibody.
  • the expression level of the gene obtained in this step is not particularly limited as long as it is a value that relatively represents the abundance of the transcription product of each gene in the biological sample.
  • the expression level can be a signal obtained from the microarray based on fluorescence intensity, color intensity, current amount, and the like. These signals can be measured using a measuring device for microarrays.
  • the determination step includes a step of comparing the expression level of the gene or its logarithm with a predetermined reference value.
  • a value that can be obtained by the measurement method described above can be used as it is.
  • the value of the fluorescence intensity can be used as the expression level of the gene.
  • values such as the number of PCR cycles and the number of mRNA copies calculated from the number of PCR cycles can be used.
  • the logarithmic base of the gene expression level is not particularly limited, and 2 or 10 can be used.
  • the average value of the gene expression level, the median value of the gene expression level, the logarithm average value of the gene expression level, the median value of the logarithm, the gene The average value of the standardized expression levels, the median value of the standardized values, and the like can be used.
  • these values are compared with a predetermined reference value. If it is greater than or equal to the predetermined reference value, it can be determined that the prognosis is not good. If it is less than the reference value, it can be determined that the prognosis is good.
  • the “reference value” can be set as appropriate based on the accumulation of gene expression level data. Specifically, it may be a threshold that can accurately classify a patient with a poor prognosis and a patient with a good prognosis.
  • the reference value is a value that can measure the gene expression levels of a plurality of patients whose prognosis is known and classify the patient group with a poor prognosis and the patient group with a good prognosis with the highest accuracy.
  • it is less than the above-mentioned threshold it can be determined that the prognosis of the individual's colon cancer is good.
  • the present invention also includes a program product for causing a computer to execute prognosis determination of colorectal cancer in a patient.
  • a program product for causing a computer to execute prognosis determination of colorectal cancer in a patient.
  • Examples of such a program product include a program that can be downloaded via the Internet, a computer-readable recording medium that records the program, and the like.
  • the program for making a computer perform the following processes is illustrated.
  • FIG. 1 is a schematic diagram showing an example of a diagnostic assistance device used for prognosis determination of colorectal cancer in a patient.
  • the diagnostic auxiliary device 10 shown in FIG. 1 includes a measuring device 20 and a determination device 30 connected to the measuring device 20.
  • the measuring device 20 may be a microarray measuring device.
  • the measuring device 20 can acquire information related to the expression level of the gene itself, such as the expression level of the gene itself and the fluorescence hue and fluorescence intensity of the microarray.
  • the measuring device 20 acquires information related to the gene expression level in the biological sample, and provides the obtained information to the determination device 30. Can do.
  • the determination apparatus 30 includes a computer main body 300, an input unit 301 including a keyboard and a mouse, and a display unit 302 including an LCD and a CRT for displaying sample information and determination results.
  • the determination device 30 acquires information related to the expression level of each gene from the measurement device 20. And the determination apparatus 30 runs the program which determines the prognosis of a subject's colon cancer based on such information. From the input unit 301, “to perform 1 gene determination”, “to perform 3 gene determination”, etc., which will be described later, can be input.
  • the determination device 30 may be a device separate from the measurement device 20 as illustrated in FIG. 1, or may be a device that includes the measurement device 20. In the latter case, the determination device 30 may be the diagnostic auxiliary device 10 by itself.
  • FIG. 2 is a block diagram showing software of the computer main body 300 of the determination apparatus 30 as functional blocks.
  • the computer includes an acquisition unit 321, a storage unit 322, a calculation unit 323, a determination unit 324, and an output unit 325.
  • the acquisition unit 321 is connected to the measurement apparatus 20 via a network so that communication is possible.
  • the determination unit 324 includes information necessary for performing a prognosis determination of colorectal cancer via the input unit 301, specifically, information regarding whether or not to perform 1 gene determination and / or whether or not to perform 3 gene determination. Information can be entered.
  • the acquisition unit 321 acquires information provided from the measurement device 20.
  • the storage unit 322 stores a reference value necessary for determination, an expression for calculating the gene expression level, a processing program, and the like.
  • the calculation unit 323 uses the information acquired by the acquisition unit 321 to calculate the gene expression level according to the stored formula.
  • the determination unit 324 determines whether the gene expression level acquired by the acquisition unit 321 or the gene expression level calculated by the calculation unit 323 is greater than or equal to the reference value stored in the storage unit 322.
  • the output unit 325 outputs the determination result by the determination unit 324 to the display unit 302 as the prognosis determination result of the colorectal cancer of the subject.
  • FIG. 3 is a block diagram showing a hardware configuration of the computer main body 300 shown in FIG.
  • the computer main body 300 includes a CPU (Central Processing Unit) 310, a ROM (Read Only Memory) 311, a RAM (Random Access Memory) 312, a hard disk 313, an input / output interface 314, A reading device 315, a communication interface 316, and an image output interface 317 are provided.
  • CPU 310, ROM 311, RAM 312, hard disk 313, input / output interface 314, reading device 315, communication interface 316, and image output interface 317 are connected by a bus 318 so that data communication is possible.
  • the CPU 310 can execute a program stored in the ROM 311 and a program loaded in the RAM 312. Each function shown in FIG. 2 is executed by the CPU 310 executing the program.
  • the determination apparatus 30 functions as a determination apparatus for determining the prognosis of the colorectal cancer of the subject.
  • the ROM 311 is configured by a mask ROM, PROM, EPROM, EEPROM, or the like.
  • the ROM 311 records a program executed by the CPU 310 and data used for the program as described above.
  • the RAM 312 is configured by SRAM, DRAM, or the like.
  • the RAM 312 is used for reading programs recorded in the ROM 311 and the hard disk 313.
  • the RAM 312 is also used as a work area for the CPU 310 when executing these programs.
  • the hard disk 313 is installed with an operating system to be executed by the CPU 310, a program such as an application program (a program for determining the prognosis of colorectal cancer in a subject), and data used for executing the program.
  • a program such as an application program (a program for determining the prognosis of colorectal cancer in a subject), and data used for executing the program.
  • the reading device 315 includes a flexible disk drive, a CD-ROM drive, a DVD-ROM drive, and the like.
  • the reading device 315 can read a program or data recorded on the portable recording medium 40.
  • the input / output interface 314 includes, for example, a serial interface such as USB, IEEE 1394, RS-232C, a parallel interface such as SCSI, IDE, IEEE 1284, and an analog interface including a D / A converter, an A / D converter, and the like. It is configured.
  • An input unit 301 such as a keyboard and a mouse is connected to the input / output interface 314. The operator can input various commands to the computer main body 300 through the input unit 301.
  • the communication interface 316 is, for example, an Ethernet (registered trademark) interface.
  • the computer main body 300 can also transmit print data to a printer or the like via the communication interface 316.
  • the image output interface 317 is connected to a display unit 302 configured with an LCD, a CRT, or the like. Accordingly, the display unit 302 can output a video signal corresponding to the image data given from the CPU 310.
  • the display unit 302 displays an image (screen) according to the input video signal.
  • FIG. 4 is an example of a flowchart for determining the prognosis of colorectal cancer.
  • the fluorescence intensity is calculated from fluorescence information obtained using a biological sample derived from a subject
  • the gene expression level is calculated from the obtained fluorescence intensity
  • the obtained expression level is equal to or greater than a reference value.
  • the present invention is not limited only to this embodiment.
  • step S1-1 the acquisition unit 321 of the diagnostic auxiliary device 10 receives fluorescence information related to the expression levels of the SCEL gene, MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 gene, and WNT11 gene from the measurement device 20. To get.
  • step S1-2 the calculation unit 323 calculates the fluorescence intensity from the acquired fluorescence information and transmits it to the storage unit 322.
  • step S1-3 the calculation unit 323 calculates the expression level of the gene according to the stored formula based on the stored fluorescence intensity.
  • step S1-4 the determination unit 324 determines whether or not the expression level calculated in step S1-3 is greater than or equal to the reference value stored in the storage unit 322.
  • the routine proceeds to step S1-5.
  • the determination unit 324 transmits a determination result indicating that the prognosis of the subject's colorectal cancer is not good to the output unit 325.
  • the routine proceeds to step S1-6.
  • the determination unit 324 transmits a determination result indicating that the prognosis of the subject's colorectal cancer is good to the output unit 325.
  • step S1-7 the output unit 325 outputs the prognosis determination result of the subject's colorectal cancer and causes the display unit 302 to display the result.
  • the diagnostic assistance apparatus 10 can provide a doctor or the like with information that assists in diagnosing whether the prognosis of the colorectal cancer of the subject is good or not.
  • the gene used for prognosis determination may be only the SCEL gene, or at least one gene selected from the MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 gene and WNT11 gene is further added. There may be two or more.
  • the user may be able to select a gene used for prognosis determination.
  • a gene used for prognosis determination Such a processing procedure will be described with reference to FIG.
  • whether to use only SCEL gene (1 gene determination), SCEL gene, MGAT3 gene and SLC4A11 gene (3 gene determination), or SCEL gene, MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 The user can select whether to use the gene and WNT11 gene (7 gene determination).
  • step S2-1 when “input one gene determination” is input from the input unit 301, the routine proceeds to S2-3. And the acquisition part 321 of the determination apparatus 30 acquires the fluorescence information relevant to the expression level of a SCEL gene from the measuring apparatus 20 (1 gene determination).
  • step S2-2 if “input 3 genes is determined” is input from the input unit 301, the routine proceeds to S2-4. Thereafter, the acquisition unit 321 of the diagnostic auxiliary device 10 acquires fluorescence information related to the current amounts of the SCEL gene, the MGAT3 gene, and the SLC4A11 gene from the measurement device 20 (three-gene determination).
  • step S2-2 if “3 gene determination” is not input, the routine proceeds to S2-5. And the acquisition part 321 of the diagnostic assistance apparatus 10 acquires the fluorescence information relevant to the expression level of SCEL gene, MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 gene, and WNT11 gene from the measuring apparatus 20 (7 genes). Judgment).
  • step S2-6 the calculation unit 323 calculates the fluorescence intensity from the acquired fluorescence information, and transmits it to the storage unit 322.
  • step S2-7 the calculation unit 323 calculates the gene expression level according to the stored formula based on the stored fluorescence intensity.
  • step S2-8 the determination unit 324 determines whether or not the expression level calculated in step S2-7 is greater than or equal to the reference value stored in the storage unit 322. If the expression level is greater than or equal to the reference value, the routine proceeds to step S2-9. Then, the determination unit 324 transmits a determination result indicating that the prognosis of the subject's colorectal cancer is not good to the output unit 325. On the other hand, when the expression level is less than the reference value, the routine proceeds to step S2-10. Then, the determination unit 324 transmits a determination result indicating that the prognosis of the subject's colorectal cancer is good to the output unit 325.
  • step S2-11 the output unit 325 outputs the prognosis determination result of the colorectal cancer of the subject and displays it on the display unit 302.
  • the diagnostic assistance apparatus 10 can provide a doctor or the like with information that assists in diagnosing whether the prognosis of the colorectal cancer of the subject is good or not.
  • the present invention also includes a determination apparatus suitable for determining the prognosis of colorectal cancer in a subject.
  • the storage unit 322 records a program for causing the determination device 30 to execute the following steps: Acquires information related to the gene expression level in a biological sample collected from a colorectal cancer patient from the measurement device. A step of determining a prognosis of the colorectal cancer of the patient based on the acquired information.
  • information on the expression level of the gene measured by the microarray is acquired, and the prognosis of the colorectal cancer of the subject can be determined based on the acquired information. For example, it is possible to provide a determination result that the prognosis of the colorectal cancer of the subject is good or not good. By providing the determination result to a doctor or the like, diagnosis by a doctor or the like regarding the prognosis of colorectal cancer can be assisted.
  • Example 1 Determination of prognosis of colorectal cancer using 7 genes (training set)
  • Search for marker Search for the marker was performed according to the following procedure. Specifically, first, for each of a total of 2 sites of advanced and basal portions of 3 specimens of colorectal cancer tissue in which exudation is observed, (1) the average expression value in microarray (Affymetrix) measurement is 200 or more 23,509 A gene was selected. Next, (2) 73 genes whose minimum expression ratio between the advanced part and the basal part in 2 specimens is 2 or more (the gene with the expression in the advanced part where there is squeezing is about twice as much as the expression level) Selected. After that, (3) 34 genes whose expression ratio between the advanced part and the whole tissue was 1 or more (the gene with the expression level in the advanced part where the outbreak was larger than the whole tissue) were selected.
  • Affymetrix microarray
  • the exudation grade was determined as defined in [Grade of Exudation] in the Cancer Treatment Guidelines of the Japanese Cancer Treatment Society.
  • BSS Budding Signature Score
  • the number of exudates is counted as a result of observing the advanced part of cancer growth in a 20x10 field of view and counting the number of exudates, Grade 1, Grade 2 when 5-9, Grade 3 when 10 or more. From FIG. 6, it was found that BSS increases as the leach grade increases. That is, it was found that the higher the leach grade, the more genes were expressed.
  • the survival time was compared between a specimen showing BSS above the threshold and a specimen showing BSS below the threshold.
  • the results are shown in FIG.
  • there is a significant difference (p 0.0479) between the specimen showing BSS above the threshold and the specimen showing BSS below the threshold from the viewpoint of probability.
  • p 0.0479
  • the prognosis of colorectal cancer patients is high-risk or low-risk based on the expression levels of seven genes: SCEL gene, MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 gene and WNT11 gene It was suggested that it can be determined whether there is any.
  • Example 2 Colorectal cancer prognosis using 7 genes (validation set) The usefulness of the above seven genes as a colorectal cancer prognostic marker was further verified by using publicly available colorectal cancer gene expression data.

Abstract

The present invention measures an SCEL gene expression amount in a biological specimen taken from a colorectal cancer patient and assists in the prognostic diagnosis of colorectal cancer on the basis of the measured SCEL gene expression amount.

Description

大腸癌の予後診断を補助する方法、記録媒体および判定装置Method, recording medium and determination device for assisting prognosis of colorectal cancer
 本発明は、大腸癌の予後診断を補助する方法に関する。特に、大腸癌患者の組織から得た核酸について、SCEL遺伝子の発現量データを取得し、取得した発現量データに基づいて、患者の大腸癌の予後診断を補助する方法、記録媒体および判定装置に関する。 The present invention relates to a method for assisting prognosis of colorectal cancer. In particular, the present invention relates to a method, a recording medium, and a determination device for obtaining SCEL gene expression level data for a nucleic acid obtained from a tissue of a colorectal cancer patient and assisting prognosis of the patient's colorectal cancer based on the acquired expression level data. .
 大腸癌は、盲腸、結腸、直腸に発生する癌腫の総称である。多くの癌と同様に、大腸癌においても早期の発見がその治療にとって重要である。癌の治療においては、強力な副作用を有する抗癌剤が使用される場合があり、この場合には患者は大きな負担を強いられる。このような患者の負担を低減するために、医師が患者にとって最適な治療法を選択することは重要であり、そのためには、医師は、患者の癌の進行度、悪性度、症状などを的確に把握することが必要である。 Colorectal cancer is a general term for carcinomas that occur in the cecum, colon, and rectum. Like many cancers, early detection is important for the treatment of colorectal cancer. In the treatment of cancer, an anticancer agent having a strong side effect may be used, and in this case, the patient is forced to bear a great burden. In order to reduce such a burden on the patient, it is important for the doctor to select the most appropriate treatment method for the patient, and for this purpose, the doctor accurately determines the progression, malignancy, symptoms, etc. of the patient's cancer. It is necessary to grasp.
 また、患者の予後を正確に予測することは、患者の予後におけるQOL(Quality of Life)の向上のために重要である。近年、大腸癌の病理学的予後因子として、簇出(budding)の出現の有無が注目されている。非特許文献1は、簇出が直腸および結腸粘液癌の予後因子として有用であり得ることを報告している。 Also, accurately predicting the patient's prognosis is important for improving the quality of life (QOL) of the patient's prognosis. In recent years, the appearance of budding has attracted attention as a pathological prognostic factor for colorectal cancer. Non-Patent Document 1 reports that exudation can be useful as a prognostic factor for rectal and colonic mucinous cancers.
 上記の従来法では病理医が顕微鏡での観察によって行うため、診断結果が主観的となる。本発明者は、簇出は1~4個の癌細胞を含む巣であるため、顕微鏡による観察では見落とされる危険性がある。また、従来法による予後判定は高度な専門知識が要求されるため予後判断が難しいという課題を見出した。
 本発明は、より客観的な大腸癌の予後診断の補助方法、記録媒体および判定装置を提供することを目的とする。
In the conventional method described above, since the pathologist performs the observation with a microscope, the diagnosis result becomes subjective. The present inventor has a risk of being overlooked by observation with a microscope, since the oozing is a nest containing 1 to 4 cancer cells. In addition, the prognosis determination by the conventional method has a problem that it is difficult to determine the prognosis because a high level of expertise is required.
An object of the present invention is to provide a more objective colorectal cancer prognosis assistance method, recording medium, and determination apparatus.
 本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、SCEL遺伝子の発現が簇出の有無と相関することを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the present inventor found that the expression of the SCEL gene correlates with the presence or absence of excision, and completed the present invention.
 本発明によれば、大腸癌患者から採取された生体試料における、SCEL遺伝子の発現量を測定する工程と、測定した発現量に基づいて、大腸癌の予後を判定する工程と、を含む大腸癌の予後診断を補助する方法が提供される。 According to the present invention, a colorectal cancer comprising the steps of measuring the expression level of the SCEL gene in a biological sample collected from a colorectal cancer patient, and determining the prognosis of colorectal cancer based on the measured expression level. A method is provided to assist in the prognosis of patients.
 本発明によれば、医師等による大腸癌の予後の診断を補助する中間的な情報を取得する
ことができる。
ADVANTAGE OF THE INVENTION According to this invention, the intermediate information which assists the prognosis diagnosis of colon cancer by doctors etc. can be acquired.
診断補助装置の一例を示した概略図である。It is the schematic which showed an example of the diagnostic assistance apparatus. 診断補助装置のソフトウェアの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the software of a diagnostic assistance apparatus. 診断補助装置のハードウェアの構成を示すブロック図である。It is a block diagram which shows the structure of the hardware of a diagnostic assistance apparatus. 診断補助装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of a diagnostic assistance apparatus. 診断補助装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of a diagnostic assistance apparatus. BSSと簇出グレードとの相関を示す箱ひげ図である。It is a box-and-whisker diagram showing the correlation between BSS and brewing grade. 実施例1(トレーニングセット)の症例におけるROC曲線である。It is a ROC curve in the case of Example 1 (training set). 実施例1(トレーニングセット)の症例における高リスク群(予後不良)と低リスク群(予後良好)との生存期間比較の結果を示すKaplan-Meier曲線である。It is a Kaplan-Meier curve which shows the result of the lifetime comparison of the high risk group (poor prognosis) and the low risk group (good prognosis) in the case of Example 1 (training set). 実施例2(バリデーションセット)の症例におけるROC曲線である。It is a ROC curve in the case of Example 2 (validation set). 実施例2(バリデーションセット)の症例における高リスク群(予後不良)と低リスク群(予後良好)との無病生存期間比較の結果を示すKaplan-Meier曲線である。It is a Kaplan-Meier curve which shows the result of the disease free survival comparison of the high risk group (poor prognosis) and the low risk group (good prognosis) in the case of Example 2 (validation set). 実施例3の症例におけるROC曲線である。4 is an ROC curve in the case of Example 3. 実施例3の症例における高リスク群(予後不良)と低リスク群(予後良好)との無再発生存期間比較の結果を示すKaplan-Meier曲線である。It is a Kaplan-Meier curve which shows the result of the recurrence-free survival comparison of the high risk group (poor prognosis) and the low risk group (good prognosis) in the case of Example 3. 実施例4の症例におけるROC曲線である。4 is an ROC curve in the case of Example 4. 実施例4の症例における高リスク群(予後不良)と低リスク群(予後良好)との無再発生存率比較の結果を示すKaplan-Meier曲線である。It is a Kaplan-Meier curve which shows the result of the recurrence-free survival rate comparison of the high risk group (poor prognosis) and the low risk group (good prognosis) in the case of Example 4.
 本実施形態の大腸癌の予後判定方法(以下、「判定方法」と記す場合がある。)では、まず、大腸癌患者から採取された生体試料における、SCEL遺伝子の発現量を測定する工程を行う。 In the colorectal cancer prognosis determination method of the present embodiment (hereinafter sometimes referred to as “determination method”), first, a step of measuring the expression level of the SCEL gene in a biological sample collected from a colorectal cancer patient is performed. .
 「生体試料」としては、大腸癌患者の腫瘍細胞由来の核酸(例えばmRNA)を含むもの
あれば特に限定されないが、例えば臨床検体を用いることができる。臨床検体として具体的には、手術又は生検により採取した組織、血液、血清などが挙げられる。好ましくは、臨床検体は、手術又は生検により採取した腫瘍組織、特に癌先進部周辺の組織であり得る。
The “biological sample” is not particularly limited as long as it contains a nucleic acid (eg, mRNA) derived from a tumor cell of a colorectal cancer patient. For example, a clinical sample can be used. Specific examples of the clinical specimen include tissue, blood, serum and the like collected by surgery or biopsy. Preferably, the clinical specimen may be a tumor tissue collected by surgery or biopsy, particularly a tissue around a cancer advanced part.
 SCEL (sciellin)遺伝子のcDNAの塩基配列を配列番号1として表す。この塩基配列は、ヒトゲノムデータベースGenBankにおいてアクセッション番号NM_001160706の下公知ある。 The nucleotide sequence of the cDNA for the SCEL gene is represented as SEQ ID NO: 1. This base sequence is known under the accession number NM_001160706 in the human genome database GenBank.
 別の実施態様においては、測定工程において、SCEL遺伝子に加えて、さらにMGAT3遺伝子、SLC4A11遺伝子、MSLN遺伝子、FOXC1遺伝子、RUNX2遺伝子およびWNT11遺伝子から選択される少なくとも1つの発現量が測定され得る。 In another embodiment, in addition to the SCEL gene, at least one expression level selected from the MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 gene and WNT11 gene can be measured in the measurement step.
 MGAT3 (mannosyl (beta-1,4-)-glycoprotein beta-1,4-N-acetylglucosaminyltransfer
ase)遺伝子のcDNAの塩基配列を配列番号2として表す。この塩基配列は、ヒトゲノムデータベースGenBankにおいてアクセッション番号NM_001098270の下公知である。
MGAT3 (mannosyl (beta-1,4-)-glycoprotein beta-1,4-N-acetylglucosaminyltransfer
ase) The cDNA base sequence of the gene is represented as SEQ ID NO: 2. This base sequence is known under the accession number NM_001098270 in the human genome database GenBank.
 SLC4A11 (solute carrier family 4, sodium borate transporter, member 11)遺伝子
のcDNAの塩基配列を配列番号3として表す。この塩基配列は、ヒトゲノムデータベースGenBankにおいてアクセッション番号NM_001174089の下公知である。
The nucleotide sequence of cDNA of SLC4A11 (solute carrier family 4, sodium borate transporter, member 11) gene is represented as SEQ ID NO: 3. This base sequence is known under the accession number NM_001174089 in the human genome database GenBank.
 MSLN (mesothelin)遺伝子のcDNAの塩基配列を配列番号4として表す。この塩基配列は、ヒトゲノムデータベースGenBankにおいてアクセッション番号NM_001177355の下公知である。 The base sequence of cDNA of MSLN (mesothelin) gene is represented as SEQ ID NO: 4. This base sequence is known under the accession number NM_001177355 in the human genome database GenBank.
 FOXC1 (forkhead box C1)遺伝子のcDNAの塩基配列を配列番号5として表す。この塩基配列は、ヒトゲノムデータベースGenBankにおいてアクセッション番号NM_001453の下公知である。 The base sequence of cDNA of FOXC1 (forkhead box C1) gene is represented as SEQ ID NO: 5. This base sequence is known under the accession number NM_001453 in the human genome database GenBank.
 RUNX2 (runt-related transcription factor 2)遺伝子のcDNAの塩基配列を配列番号6として表す。この塩基配列は、ヒトゲノムデータベースGenBankにおいてアクセッション番号NM_001015051の下公知である。 The cDNA base sequence of the RUNX2 (run-related transcription factor 2) gene is represented as SEQ ID NO: 6. This base sequence is known under the accession number NM_001015051 in the human genome database GenBank.
 WNT11 (wingless-type MMTV integration site family, member 11)遺伝子のcDNAの塩基配列を配列番号7として表す。この塩基配列は、ヒトゲノムデータベースGenBankにおいてアクセッション番号NM_004626の下公知である。 The nucleotide sequence of the cDNA of WNT11 (wingless-type MMTV integration site family, member 11) gene is represented as SEQ ID NO: 7. This base sequence is known under the accession number NM_004626 in the human genome database GenBank.
 簇出は、癌先進部付近の間質に存在する1~4個の癌細胞を含む巣である。日本癌治療学会「がん診療ガイドライン」によれば、大腸癌について言及する場合、簇出は、癌細胞が癌組織から遊離して増殖したものであり、大腸癌のリンパ節転移リスク因子として知られている。簇出のグレードは、簇出が最も高度な領域を選択し、20×10倍視野で癌発育先進部を観察し、簇出の個数をカウントすることによって評価される。カウントされた簇出数が5個以上(Grade 2及び3)の個体は、4個未満(Grade 1)の個体と比較して、リンパ節転移率が有意に上昇する。 簇 Exudation is a nest containing 1 to 4 cancer cells present in the stroma near the advanced cancer area. According to the Japanese Cancer Treatment Society's “Cancer Medical Practice Guidelines”, when referring to colorectal cancer, exudation is a growth of cancer cells that have been released from cancer tissue and is known as a risk factor for lymph node metastasis of colorectal cancer. It has been. The grade of exudation is evaluated by selecting the most advanced area of exudation, observing the advanced part of cancer development in a 20 × 10 field of view, and counting the number of exudations. Individuals with 5 or more counts (Grade 2 and 3) have a significantly increased lymph node metastasis rate compared to individuals with less than 4 (Grade 1).
 本発明者は、今回、上記の7つの遺伝子の発現量が、簇出を有する癌先進部において有意に上昇することを初めて見出した。したがって、上記の7つの遺伝子は、大腸癌の予後判定において有用な遺伝子マーカーとなり得る。遺伝子の発現量は、当業者に公知の方法に従って測定および数値化することが可能であるため、これらの遺伝子の発現量を測定することで客観的に大腸癌の予後を判定できる。 The present inventor has now found for the first time that the expression levels of the above seven genes are significantly increased in advanced cancerous sections with ulcers. Therefore, the above seven genes can be useful gene markers in prognosis determination of colorectal cancer. Since the expression levels of genes can be measured and quantified according to methods known to those skilled in the art, the prognosis of colorectal cancer can be objectively determined by measuring the expression levels of these genes.
 「遺伝子の転写産物」とは、遺伝子が転写されることにより得られる産物のことである。具体的には、メッセンジャーRNA(mRNA)、mRNAの前駆体が例示される。
 また、「遺伝子の発現量」とは、上記の生体試料中の遺伝子の転写産物の存在量またはそれを反映する物質の量のことである。よって、本実施形態においては、mRNAの量、またはmRNAから得られる相補デオキシリボ核酸(cDNA)もしくは相補RNA(cRNA)の量測定され得る。通常、生体試料中のmRNAは微量であるので、そこから逆転写およびインビトロ転写(IVT)により得られるcDNAまたはcRNAの量を測定することが好ましい。
A “gene transcription product” is a product obtained by transcription of a gene. Specifically, messenger RNA (mRNA) and a precursor of mRNA are exemplified.
Further, the “gene expression level” refers to the amount of gene transcripts present in the biological sample or the amount of a substance that reflects the gene transcript. Therefore, in this embodiment, the amount of mRNA or the amount of complementary deoxyribonucleic acid (cDNA) or complementary RNA (cRNA) obtained from mRNA can be measured. Usually, since the amount of mRNA in a biological sample is very small, it is preferable to measure the amount of cDNA or cRNA obtained therefrom by reverse transcription and in vitro transcription (IVT).
 生体試料から遺伝子の転写産物を抽出する方法としては、当該技術において知られるRNA抽出法を挙げることができる。例えば、生体試料を遠心分離して、RNAを含む細胞を沈殿させ、前記細胞を物理的手法、化学的手法または酵素的手法によって破壊し、細胞破片を除去することによりRNA抽出物を得ることができる。RNAの抽出は、市販のRNA抽出キットなどを用いて行うこともできる。 Examples of a method for extracting a gene transcription product from a biological sample include RNA extraction methods known in the art. For example, a biological sample can be centrifuged to precipitate RNA-containing cells, the cells can be destroyed by physical, chemical, or enzymatic methods, and an RNA extract can be obtained by removing cell debris. it can. RNA extraction can also be performed using a commercially available RNA extraction kit or the like.
 上記のようにして得られた遺伝子の転写産物の抽出物から、遺伝子の発現量の測定時に混入していないことが好ましい生体試料由来の混入成分(例えば、生体試料が血液である場合はグロビンのmRNAなど)を除去するための処理を行うこともできる。 From the extract of the transcription product of the gene obtained as described above, a contaminated component derived from a biological sample that is preferably not mixed at the time of measuring the expression level of the gene (for example, if the biological sample is blood, globin It is also possible to perform treatment for removing mRNA and the like.
 遺伝子の発現量の測定は、定量性のある方法であれば特に限定されない。例えば、DNA、RNA、人工核酸などをプローブとして用いるマイクロアレイ(以下、単に「マイクロアレイ」ともいう)、定量PCR (例えば定量RT-PCRなど)を用いて行なうことができる。好ましい実施形態においては、マイクロアレイを用いる方法が用いられ得る。
 マイクロアレイを用いて遺伝子の発現量を測定する場合、例えば、基板上に固定された20~25 mer程度の核酸プローブに、遺伝子の転写産物の抽出物または遺伝子の転写産物から作製したcDNAもしくはcRNAを接触させ、ハイブリッドの形成の有無を蛍光、発色、電流などの指標の変化を測定することにより、目的の遺伝子の発現量を測定できる。
 上記の核酸プローブは、1つの遺伝子の転写産物に対して少なくとも1つ用いればよく、遺伝子の転写産物の長さなどに応じて、複数のプローブを用いることもできる。プローブの配列は、測定しようとする遺伝子の転写産物の配列に応じて当業者が適宜決定できる。例えば、本実施形態においては、このようなプローブとして、配列番号8~84で表されるポリヌクレオチドが用いられ得る。
 マイクロアレイを用いる遺伝子の発現量の測定方法としては、例えば、Affymetrix社により提供されるGeneChip(登録商標)システムを用いることができる。
The measurement of gene expression level is not particularly limited as long as it is a quantitative method. For example, a microarray using DNA, RNA, artificial nucleic acid or the like as a probe (hereinafter also simply referred to as “microarray”) or quantitative PCR (for example, quantitative RT-PCR) can be used. In a preferred embodiment, a method using a microarray may be used.
When measuring the expression level of a gene using a microarray, for example, a nucleic acid probe of about 20 to 25 mer immobilized on a substrate is used to extract a gene transcript or a cDNA or cRNA prepared from a gene transcript. The expression level of the target gene can be measured by contacting it and measuring the change in indicators such as fluorescence, color development, and current for the presence or absence of hybrid formation.
At least one nucleic acid probe may be used for one gene transcript, and a plurality of probes may be used depending on the length of the gene transcript. The sequence of the probe can be appropriately determined by those skilled in the art according to the sequence of the transcription product of the gene to be measured. For example, in the present embodiment, a polynucleotide represented by SEQ ID NOs: 8-84 can be used as such a probe.
As a method for measuring the expression level of a gene using a microarray, for example, GeneChip (registered trademark) system provided by Affymetrix can be used.
 マイクロアレイを用いる場合、遺伝子の転写産物またはそのcDNAもしくはcRNAは、核酸プローブとのハイブリッド形成を容易にするために、断片化してよい。断片化は、当該技術において公知の方法により行うことができる。例えば、リボヌクレアーゼ、デオキシリボヌクレアーゼなどの核酸分解酵素を用いて行うことができる。 When using a microarray, a gene transcription product or its cDNA or cRNA may be fragmented to facilitate hybridization with a nucleic acid probe. Fragmentation can be performed by methods known in the art. For example, it can be performed using a nucleolytic enzyme such as ribonuclease or deoxyribonuclease.
 マイクロアレイにおいて核酸プローブと接触させる遺伝子の転写産物またはそのcDNA
しくはcRNAは、通常、5~20μg程度であればよい。接触条件は、通常、45℃にて16時間
度である。
Transcript or cDNA of gene contacted with nucleic acid probe in microarray
Alternatively, cRNA is usually about 5 to 20 μg. The contact condition is usually 16 hours at 45 ° C.
 核酸プローブと接触させてハイブリッドを形成した遺伝子の転写産物またはそのcDNAもしくはcRNAは、そのハイブリッド形成の有無およびハイブリッド形成した量について、蛍光物質、色素またはハイブリッド形成したことによるマイクロアレイ上を流れる電流量の変化などに基づいて検出することができる。
 ハイブリッドの形成を、蛍光物質または色素の検出により測定する場合、遺伝子の転写産物またはそのcDNAもしくはcRNAが、蛍光物質または色素の検出のための標識物質で標識されていることが好ましい。このような標識物質は、当該技術において通常用いられるものを用いることができる。通常、ビオチン化ヌクレオチドまたはビオチン化リボヌクレオチドを、cDNAまたはcRNAを合成するときのヌクレオチドまたはリボヌクレオチド基質として混合しておくことにより、得られるcDNAまたはcRNAをビオチンで標識することができる。cDNAまたはcRNAがビオチン標識されていると、マイクロアレイ上で、ビオチンに対する結合パートナーであるアビジンまたはストレプトアビジンが結合できる。アビジンまたはストレプトアビジンが、適切な蛍光物質または色素と結合していることにより、ハイブリッドの形成が検出できる。蛍光物質としては、フルオレセインイソチオシアネート(FITC)、グリーン蛍光タンパク質(GFP)、ルシフェリン、フィコエリスリンなどが挙げられる。通常、フィコエリスリン-ストレプトアビジンのコンジュゲートが市販されているので、これを用いることが簡便である。
 また、アビジンまたはストレプトアビジンに対する標識抗体を、アビジンまたはストレプトアビジンと接触させ、標識抗体の蛍光物質または色素を検出することもできる。
The gene transcript or its cDNA or cRNA hybridized upon contact with the nucleic acid probe is measured for the presence or absence of the hybridization and the amount of hybridization with the amount of current flowing on the microarray due to the fluorescent substance, dye or hybridization. It can be detected based on a change or the like.
When the formation of a hybrid is measured by detecting a fluorescent substance or a dye, it is preferable that the gene transcription product or its cDNA or cRNA is labeled with a labeling substance for detecting the fluorescent substance or the dye. As such a labeling substance, those usually used in the art can be used. Usually, by mixing biotinylated nucleotides or biotinylated ribonucleotides as a nucleotide or ribonucleotide substrate when synthesizing cDNA or cRNA, the resulting cDNA or cRNA can be labeled with biotin. When the cDNA or cRNA is labeled with biotin, avidin or streptavidin, which is a binding partner for biotin, can bind on the microarray. Hybrid formation can be detected by avidin or streptavidin binding to an appropriate fluorescent substance or dye. Examples of the fluorescent substance include fluorescein isothiocyanate (FITC), green fluorescent protein (GFP), luciferin, phycoerythrin, and the like. Usually, a phycoerythrin-streptavidin conjugate is commercially available, and it is convenient to use it.
Alternatively, a labeled antibody against avidin or streptavidin can be contacted with avidin or streptavidin to detect the fluorescent substance or dye of the labeled antibody.
 この工程で得られる遺伝子の発現量は、生体試料中の各遺伝子の転写産物の存在量を相対的に表す値であれば、特に限定されない。上記のマイクロアレイにより測定を行う場合、発現量は、蛍光強度、発色強度、電流量などに基づくマイクロアレイから得られるシグナルであり得る。
 これらのシグナルは、マイクロアレイ用の測定装置を用いて測定できる。
The expression level of the gene obtained in this step is not particularly limited as long as it is a value that relatively represents the abundance of the transcription product of each gene in the biological sample. When measurement is performed using the above-described microarray, the expression level can be a signal obtained from the microarray based on fluorescence intensity, color intensity, current amount, and the like.
These signals can be measured using a measuring device for microarrays.
 次いで、判定工程において、測定工程において得られた遺伝子の発現量に基づいて、大腸癌の予後を判定する。好ましくは、判定工程は、遺伝子の発現量またはその対数と、所定の基準値とを比較する工程を含む。遺伝子の発現量としては、上述した測定方法で取得できる値をそのまま用いることができる。たとえば、マイクロアレイで発現量を測定する場合、遺伝子の発現量として蛍光強度の値を用いることができる。定量RT-PCRで発現量を測定する場合、PCRサイクル数、PCRサイクル数から算出されるmRNAコピー数などの値を用いることができる。
 遺伝子の発現量の対数の底は特に限定されず、2や10が用いられ得る。
 複数の遺伝子の発現量に基づいて判定工程を実行する場合は、遺伝子の発現量の平均値、遺伝子の発現量の中央値、遺伝子の発現量の対数の平均値、当該対数の中央値、遺伝子の発現量を標準化した値の平均値、当該標準化した値の中央値などを用いることができる。上記比較工程においてはこれらの値と所定の基準値が比較される。
 所定の基準値以上である場合には、予後は良好でないと判定され得る。基準値未満である場合には、予後は良好であると判定され得る。
Next, in the determination step, the prognosis of colorectal cancer is determined based on the gene expression level obtained in the measurement step. Preferably, the determination step includes a step of comparing the expression level of the gene or its logarithm with a predetermined reference value. As the gene expression level, a value that can be obtained by the measurement method described above can be used as it is. For example, when the expression level is measured with a microarray, the value of the fluorescence intensity can be used as the expression level of the gene. When the expression level is measured by quantitative RT-PCR, values such as the number of PCR cycles and the number of mRNA copies calculated from the number of PCR cycles can be used.
The logarithmic base of the gene expression level is not particularly limited, and 2 or 10 can be used.
When performing the determination step based on the expression level of multiple genes, the average value of the gene expression level, the median value of the gene expression level, the logarithm average value of the gene expression level, the median value of the logarithm, the gene The average value of the standardized expression levels, the median value of the standardized values, and the like can be used. In the comparison step, these values are compared with a predetermined reference value.
If it is greater than or equal to the predetermined reference value, it can be determined that the prognosis is not good. If it is less than the reference value, it can be determined that the prognosis is good.
 「基準値」は、遺伝子の発現量のデータの蓄積から適宜設定することができる。具体的には、予後が良好でない患者と予後が良好である患者とを精度良く分類することができる閾値であり得る。たとえば、基準値は、予後が既知である複数の患者の遺伝子の発現量を測定し、予後が良好でない患者群と予後が良好である患者群を最も精度良く分類することができる値となる。本実施形態の方法により予後が未知である患者の遺伝子の発現量を測定し、基準値と比較することによって予後が良好か、良好でないかを判定することができる。 The “reference value” can be set as appropriate based on the accumulation of gene expression level data. Specifically, it may be a threshold that can accurately classify a patient with a poor prognosis and a patient with a good prognosis. For example, the reference value is a value that can measure the gene expression levels of a plurality of patients whose prognosis is known and classify the patient group with a poor prognosis and the patient group with a good prognosis with the highest accuracy. By measuring the gene expression level of a patient whose prognosis is unknown by the method of this embodiment and comparing it with a reference value, it can be determined whether the prognosis is good or not.
 本実施形態において、基準値は、複数の検体についてマイクロアレイによって測定された遺伝子の発現量の対数(底=2)の平均値を用いてROC解析を行い、得られたROC曲線に基づいて設定された閾値であり得る。本実施形態においては、予後判定の対象となる個体に由来する検体についてマイクロアレイによって測定された遺伝子の発現量の対数(底=2)の平均値が上記の閾値である場合、当該個体の大腸癌の予後は良好ではないと判定され得る。一方、上記の閾値未満である場合、当該個体の大腸癌の予後は良好であると判定され得る。 In this embodiment, the reference value is set based on the ROC curve obtained by performing ROC analysis using the average value of the logarithm (base = 2) of the gene expression level measured by the microarray for a plurality of specimens. Threshold. In this embodiment, when the average value of the logarithm (base = 2) of the expression level of a gene measured by a microarray for a specimen derived from an individual subject to prognosis determination is the above threshold, colon cancer of the individual It can be determined that the prognosis is not good. On the other hand, when it is less than the above-mentioned threshold, it can be determined that the prognosis of the individual's colon cancer is good.
 本発明には、患者の大腸癌の予後判定をコンピュータに実行させるためのプログラム製品も含まれる。このようなプログラム製品としては、インターネット等を介してダウンロード可能なプログラムや、当該プログラムを記録したコンピュータ読み取り可能な記録媒体などが例示される。 The present invention also includes a program product for causing a computer to execute prognosis determination of colorectal cancer in a patient. Examples of such a program product include a program that can be downloaded via the Internet, a computer-readable recording medium that records the program, and the like.
 たとえば、以下のような工程をコンピュータに実行させるためのプログラムが例示される。
 大腸癌患者から採取された生体試料における、遺伝子の発現量に関連する情報を測定装置から取得する工程;取得した情報に基づいて、前記患者の大腸癌の予後を判定する工程。
For example, the program for making a computer perform the following processes is illustrated.
A step of acquiring information relating to the expression level of a gene in a biological sample collected from a colorectal cancer patient from a measurement device; a step of determining a prognosis of the colorectal cancer of the patient based on the acquired information.
 以下に、本実施形態の方法を実施するのに好適な装置の一形態を、図面を参照して説明する。しかし、本発明はこの実施形態のみに限定されるものではない。図1は、患者の大腸癌の予後判定に用いる診断補助装置の一例を示した概略図である。図1に示された診断補助装置10は、測定装置20と、前記測定装置20と接続された判定装置30とを含んでいる。 Hereinafter, an embodiment of an apparatus suitable for carrying out the method of this embodiment will be described with reference to the drawings. However, the present invention is not limited only to this embodiment. FIG. 1 is a schematic diagram showing an example of a diagnostic assistance device used for prognosis determination of colorectal cancer in a patient. The diagnostic auxiliary device 10 shown in FIG. 1 includes a measuring device 20 and a determination device 30 connected to the measuring device 20.
 本実施形態においては、測定装置20は、マイクロアレイ用の測定装置であり得る。この測定装置20は、遺伝子の発現量そのものおよびマイクロアレイの蛍光の色相や蛍光強度のような遺伝子の発現量に関連する情報を取得することができる。大腸癌患者から採取された生体試料を測定装置20にセットすると、測定装置20は、前記生体試料における遺伝子の発現量に関連する情報を取得し、得られた情報を判定装置30に提供することができる。 In the present embodiment, the measuring device 20 may be a microarray measuring device. The measuring device 20 can acquire information related to the expression level of the gene itself, such as the expression level of the gene itself and the fluorescence hue and fluorescence intensity of the microarray. When a biological sample collected from a colorectal cancer patient is set in the measuring device 20, the measuring device 20 acquires information related to the gene expression level in the biological sample, and provides the obtained information to the determination device 30. Can do.
 判定装置30は、コンピュータ本体300と、キーボードやマウスからなる入力部301と、LCDやCRTからなり検体情報や判定結果などを表示する表示部302とを含む。判定装置30は、測定装置20から、それぞれ遺伝子の発現量に関連する情報を取得する。そして、判定装置30は、これらの情報に基づいて、被検者の大腸癌の予後を判定するプログラムを実行する。入力部301から、後述する「1遺伝子判定を行なう」、「3遺伝子判定を行なう」等を入力することができる。
 なお、判定装置30は、図1に示されるように測定装置20とは別個の機器であってもよいし、測定装置20を内包する機器であってもよい。後者の場合、判定装置30は、それ自体で診断補助装置10であり得る。
The determination apparatus 30 includes a computer main body 300, an input unit 301 including a keyboard and a mouse, and a display unit 302 including an LCD and a CRT for displaying sample information and determination results. The determination device 30 acquires information related to the expression level of each gene from the measurement device 20. And the determination apparatus 30 runs the program which determines the prognosis of a subject's colon cancer based on such information. From the input unit 301, “to perform 1 gene determination”, “to perform 3 gene determination”, etc., which will be described later, can be input.
The determination device 30 may be a device separate from the measurement device 20 as illustrated in FIG. 1, or may be a device that includes the measurement device 20. In the latter case, the determination device 30 may be the diagnostic auxiliary device 10 by itself.
 図2は、判定装置30のコンピュータ本体300のソフトウェアを機能ブロックで示すブロック図である。図2に示されるように、コンピュータは、取得部321と、記憶部322と、算出部323と、判定部324と、出力部325とを備える。取得部321は、測定装置20と、ネットワークを介して通信可能に接続されている。判定部324には、入力部301を介して大腸癌の予後判定の実施に必要な情報、具体的には1遺伝子判定を行なうか否かに関する情報および/または3遺伝子判定を行なうか否かに関する情報を入力することができる。 FIG. 2 is a block diagram showing software of the computer main body 300 of the determination apparatus 30 as functional blocks. As illustrated in FIG. 2, the computer includes an acquisition unit 321, a storage unit 322, a calculation unit 323, a determination unit 324, and an output unit 325. The acquisition unit 321 is connected to the measurement apparatus 20 via a network so that communication is possible. The determination unit 324 includes information necessary for performing a prognosis determination of colorectal cancer via the input unit 301, specifically, information regarding whether or not to perform 1 gene determination and / or whether or not to perform 3 gene determination. Information can be entered.
 取得部321は、測定装置20から提供された情報を取得する。記憶部322は、判定に必要な基準値および遺伝子の発現量を算出するための式や処理プログラムなどを記憶する。算出部323は、取得部321で取得された情報を用い、記憶された式にしたがって、遺伝子の発現量を算出する。判定部324は、取得部321によって取得されたか、または算出部323によって算出された遺伝子の発現量が、記憶部322に記憶された基準値以上であるか否かを判定する。出力部325は、判定部324による判定結果を、被検者の大腸癌の予後判定結果として表示部302へ出力する。 The acquisition unit 321 acquires information provided from the measurement device 20. The storage unit 322 stores a reference value necessary for determination, an expression for calculating the gene expression level, a processing program, and the like. The calculation unit 323 uses the information acquired by the acquisition unit 321 to calculate the gene expression level according to the stored formula. The determination unit 324 determines whether the gene expression level acquired by the acquisition unit 321 or the gene expression level calculated by the calculation unit 323 is greater than or equal to the reference value stored in the storage unit 322. The output unit 325 outputs the determination result by the determination unit 324 to the display unit 302 as the prognosis determination result of the colorectal cancer of the subject.
 図3は、図2に示すコンピュータ本体300のハードウェア構成を示すブロック図である。図3に示されるように、コンピュータ本体300は、CPU(Central Processing Unit)310と、ROM(Read Only Memory)311と、RAM(Random Access Memory)312と、ハードディスク313と、入出力インターフェイス314と、読出装置315と、通信インターフェイス316と、画像出力インターフェイス317とを備えている。CPU310、ROM311、RAM312、ハードディスク313、入出力インターフェイス314、読出装置315、通信インターフェイス316および画像出力インターフェイス317は、バス318によってデータ通信可能に接続されている。 FIG. 3 is a block diagram showing a hardware configuration of the computer main body 300 shown in FIG. As shown in FIG. 3, the computer main body 300 includes a CPU (Central Processing Unit) 310, a ROM (Read Only Memory) 311, a RAM (Random Access Memory) 312, a hard disk 313, an input / output interface 314, A reading device 315, a communication interface 316, and an image output interface 317 are provided. CPU 310, ROM 311, RAM 312, hard disk 313, input / output interface 314, reading device 315, communication interface 316, and image output interface 317 are connected by a bus 318 so that data communication is possible.
 CPU310は、ROM311に記憶されているプログラムおよびRAM312にロードされたプログラムを実行することが可能である。CPU310がプログラムを実行することにより、図2に示す各機能が実行される。これにより、判定装置30が、被検者の大腸癌の予後を判定するための判定装置として機能する。 The CPU 310 can execute a program stored in the ROM 311 and a program loaded in the RAM 312. Each function shown in FIG. 2 is executed by the CPU 310 executing the program. Thereby, the determination apparatus 30 functions as a determination apparatus for determining the prognosis of the colorectal cancer of the subject.
 ROM311は、マスクROM、PROM、EPROM、EEPROMなどによって構成されている。ROM311には、前述のようにCPU310によって実行されるプログラムおよびこれに用いるデータが記録されている。 The ROM 311 is configured by a mask ROM, PROM, EPROM, EEPROM, or the like. The ROM 311 records a program executed by the CPU 310 and data used for the program as described above.
 RAM312は、SRAM、DRAMなどによって構成されている。RAM312は、ROM311およびハードディスク313に記録されているプログラムの読み出しに用いられる。RAM312はまた、これらのプログラムを実行するときに、CPU310の作業領域として利用される。 The RAM 312 is configured by SRAM, DRAM, or the like. The RAM 312 is used for reading programs recorded in the ROM 311 and the hard disk 313. The RAM 312 is also used as a work area for the CPU 310 when executing these programs.
 ハードディスク313は、CPU310に実行させるためのオペレーティングシステム、アプリケーションプログラム(被検者の大腸癌の予後を判定するためのプログラム)などのプログラムおよび当該プログラムの実行に用いるデータがインストールされている。 The hard disk 313 is installed with an operating system to be executed by the CPU 310, a program such as an application program (a program for determining the prognosis of colorectal cancer in a subject), and data used for executing the program.
 読出装置315は、フレキシブルディスクドライブ、CD-ROMドライブ、DVD-ROMドライブなどによって構成されている。読出装置315は、可搬型記録媒体40に記録されたプログラムまたはデータを読み出すことができる。 The reading device 315 includes a flexible disk drive, a CD-ROM drive, a DVD-ROM drive, and the like. The reading device 315 can read a program or data recorded on the portable recording medium 40.
 入出力インターフェイス314は、例えば、USB、IEEE1394、RS-232Cなどのシリアルインターフェイスと、SCSI、IDE、IEEE1284などのパラレルインターフェイスと、D/A変換器、A/D変換器などからなるアナログインターフェイスとから構成されている。入出力インターフェイス314には、キーボード、マウスなどの入力部301が接続されている。操作者は、当該入力部301により、コンピュータ本体300に各種の指令を入力することが可能である。 The input / output interface 314 includes, for example, a serial interface such as USB, IEEE 1394, RS-232C, a parallel interface such as SCSI, IDE, IEEE 1284, and an analog interface including a D / A converter, an A / D converter, and the like. It is configured. An input unit 301 such as a keyboard and a mouse is connected to the input / output interface 314. The operator can input various commands to the computer main body 300 through the input unit 301.
 通信インターフェイス316は、例えば、Ethernet(登録商標)インターフェイスなどである。コンピュータ本体300は、通信インターフェイス316により、プリンタなどへの印刷データの送信も可能である。 The communication interface 316 is, for example, an Ethernet (registered trademark) interface. The computer main body 300 can also transmit print data to a printer or the like via the communication interface 316.
 画像出力インターフェイス317は、LCD、CRTなどで構成される表示部302に接続されている。これにより、表示部302は、CPU310から与えられた画像データに応じた映像信号を出力することができる。表示部302は、入力された映像信号にしたがって画像(画面)を表示する。 The image output interface 317 is connected to a display unit 302 configured with an LCD, a CRT, or the like. Accordingly, the display unit 302 can output a video signal corresponding to the image data given from the CPU 310. The display unit 302 displays an image (screen) according to the input video signal.
 次に、診断補助装置10による、被検者の大腸癌の予後判定の処理手順を説明する。
 図4は、大腸癌の予後判定のフローチャートの一例である。ここでは、被検者由来の生体試料を用いて得られた蛍光情報から蛍光強度を算出し、得られた蛍光強度から遺伝子の発現量を算出し、得られた発現量が基準値以上であるか否かの判定を行う場合を例として挙げて説明する。しかし、本発明は、この実施形態のみに限定されるものではない。
Next, a processing procedure for determining the prognosis of the colorectal cancer of the subject by the diagnosis assisting apparatus 10 will be described.
FIG. 4 is an example of a flowchart for determining the prognosis of colorectal cancer. Here, the fluorescence intensity is calculated from fluorescence information obtained using a biological sample derived from a subject, the gene expression level is calculated from the obtained fluorescence intensity, and the obtained expression level is equal to or greater than a reference value. The case where it is determined whether or not will be described as an example. However, the present invention is not limited only to this embodiment.
 まず、ステップS1-1において、診断補助装置10の取得部321は、測定装置20からSCEL遺伝子、MGAT3遺伝子、SLC4A11遺伝子、MSLN遺伝子、FOXC1遺伝子、RUNX2遺伝子およびWNT11遺伝子の発現量に関連する蛍光情報を取得する。 First, in step S1-1, the acquisition unit 321 of the diagnostic auxiliary device 10 receives fluorescence information related to the expression levels of the SCEL gene, MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 gene, and WNT11 gene from the measurement device 20. To get.
 次に、ステップS1-2において、算出部323は、取得した蛍光情報から蛍光強度を算出し、記憶部322に送信する。そして、ステップS1-3において、算出部323は、記憶された蛍光強度に基づき、記憶された式にしたがって、遺伝子の発現量を算出する。 Next, in step S1-2, the calculation unit 323 calculates the fluorescence intensity from the acquired fluorescence information and transmits it to the storage unit 322. In step S1-3, the calculation unit 323 calculates the expression level of the gene according to the stored formula based on the stored fluorescence intensity.
 その後、ステップS1-4において、判定部324は、ステップS1-3で算出された発現量が、記憶部322に記憶された基準値以上であるか否かの判定を行う。ここで、発現量が基準値以上であるとき、ルーチンはステップS1-5に進行する。そして、判定部324は被検者の大腸癌の予後が良好でないことを示す判定結果を出力部325に送信する。一方、発現量が基準値未満であるとき、ルーチンはステップS1-6に進行する。そして、判定部324は被検者の大腸癌の予後が良好であることを示す判定結果を出力部325に送信する。 Thereafter, in step S1-4, the determination unit 324 determines whether or not the expression level calculated in step S1-3 is greater than or equal to the reference value stored in the storage unit 322. Here, when the expression level is not less than the reference value, the routine proceeds to step S1-5. Then, the determination unit 324 transmits a determination result indicating that the prognosis of the subject's colorectal cancer is not good to the output unit 325. On the other hand, when the expression level is less than the reference value, the routine proceeds to step S1-6. Then, the determination unit 324 transmits a determination result indicating that the prognosis of the subject's colorectal cancer is good to the output unit 325.
 最後に、ステップS1-7において、出力部325は、被検者の大腸癌の予後判定結果を出力し、表示部302に表示させる。これにより、診断補助装置10は、被検者の大腸癌の予後が良好であるのか、または良好でないのかについて診断することを補助する情報を医師などに提供することができる。 Finally, in step S1-7, the output unit 325 outputs the prognosis determination result of the subject's colorectal cancer and causes the display unit 302 to display the result. Thereby, the diagnostic assistance apparatus 10 can provide a doctor or the like with information that assists in diagnosing whether the prognosis of the colorectal cancer of the subject is good or not.
 この実施形態において、予後判定に用いる遺伝子は、SCEL遺伝子のみであってもよいし、MGAT3遺伝子、SLC4A11遺伝子、MSLN遺伝子、FOXC1遺伝子、RUNX2遺伝子およびWNT11遺伝子から選択される少なくとも1つの遺伝子をさらに加えた2つ以上であってもよい。 In this embodiment, the gene used for prognosis determination may be only the SCEL gene, or at least one gene selected from the MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 gene and WNT11 gene is further added. There may be two or more.
 また、別の実施形態では、予後判定に用いる遺伝子をユーザが選択できるようにしてもよい。図5を例として、このような処理手順について説明する。ここでは、SCEL遺伝子のみを用いるか(1遺伝子判定)、SCEL遺伝子、MGAT3遺伝子およびSLC4A11遺伝子を用いるか(3遺伝子判定)、あるいは、SCEL遺伝子、MGAT3遺伝子、SLC4A11遺伝子、MSLN遺伝子、FOXC1遺伝子、RUNX2遺伝子およびWNT11遺伝子を用いるか(7遺伝子判定)をユーザが選択できる。 In another embodiment, the user may be able to select a gene used for prognosis determination. Such a processing procedure will be described with reference to FIG. Here, whether to use only SCEL gene (1 gene determination), SCEL gene, MGAT3 gene and SLC4A11 gene (3 gene determination), or SCEL gene, MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 The user can select whether to use the gene and WNT11 gene (7 gene determination).
 まず、ステップS2-1において、入力部301から「1遺伝子判定を行なう」と入力された場合には、ルーチンはS2-3に進行する。そして、判定装置30の取得部321は、測定装置20からSCEL遺伝子の発現量に関連する蛍光情報を取得する(1遺伝子判定)。 First, in step S2-1, when “input one gene determination” is input from the input unit 301, the routine proceeds to S2-3. And the acquisition part 321 of the determination apparatus 30 acquires the fluorescence information relevant to the expression level of a SCEL gene from the measuring apparatus 20 (1 gene determination).
 一方、「1遺伝子判定を行なう」と入力されていない場合には、ルーチンはS2-2に進行する。そして、ステップS2-2において、入力部301から「3遺伝子判定を行なう」と入力された場合には、ルーチンはS2-4に進行する。その後、診断補助装置10の取得部321は、測定装置20からSCEL遺伝子、MGAT3遺伝子およびSLC4A11遺伝子の
現量に関連する蛍光情報を取得する(3遺伝子判定)。
On the other hand, if “one gene determination” is not input, the routine proceeds to S2-2. In step S2-2, if “input 3 genes is determined” is input from the input unit 301, the routine proceeds to S2-4. Thereafter, the acquisition unit 321 of the diagnostic auxiliary device 10 acquires fluorescence information related to the current amounts of the SCEL gene, the MGAT3 gene, and the SLC4A11 gene from the measurement device 20 (three-gene determination).
 ステップS2-2において、「3遺伝子判定を行なう」と入力されていない場合には、ルーチンはS2-5に進行する。そして、診断補助装置10の取得部321は、測定装置20からSCEL遺伝子、MGAT3遺伝子、SLC4A11遺伝子、MSLN遺伝子、FOXC1遺伝子、RUNX2遺伝子およびWNT11遺伝子の発現量に関連する蛍光情報を取得する(7遺伝子判定)。 In step S2-2, if “3 gene determination” is not input, the routine proceeds to S2-5. And the acquisition part 321 of the diagnostic assistance apparatus 10 acquires the fluorescence information relevant to the expression level of SCEL gene, MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 gene, and WNT11 gene from the measuring apparatus 20 (7 genes). Judgment).
 次に、ステップS2-6において、算出部323は、取得した蛍光情報から蛍光強度を算出し、記憶部322に送信する。そして、ステップS2-7において、算出部323は、記憶された蛍光強度に基づき、記憶された式にしたがって、遺伝子の発現量を算出する。 Next, in step S2-6, the calculation unit 323 calculates the fluorescence intensity from the acquired fluorescence information, and transmits it to the storage unit 322. In step S2-7, the calculation unit 323 calculates the gene expression level according to the stored formula based on the stored fluorescence intensity.
 その後、ステップS2-8において、判定部324は、ステップS2-7で算出された発現量が、記憶部322に記憶された基準値以上であるか否かの判定を行う。ここで、発現量が基準値以上であるとき、ルーチンはステップS2-9に進行する。そして、判定部324は被検者の大腸癌の予後が良好でないことを示す判定結果を出力部325に送信する。一方、発現量が基準値未満であるとき、ルーチンはステップS2-10に進行する。そして、判定部324は被検者の大腸癌の予後が良好であることを示す判定結果を出力部325に送信する。 Thereafter, in step S2-8, the determination unit 324 determines whether or not the expression level calculated in step S2-7 is greater than or equal to the reference value stored in the storage unit 322. If the expression level is greater than or equal to the reference value, the routine proceeds to step S2-9. Then, the determination unit 324 transmits a determination result indicating that the prognosis of the subject's colorectal cancer is not good to the output unit 325. On the other hand, when the expression level is less than the reference value, the routine proceeds to step S2-10. Then, the determination unit 324 transmits a determination result indicating that the prognosis of the subject's colorectal cancer is good to the output unit 325.
 最後に、ステップS2-11において、出力部325は、被検者の大腸癌の予後判定結果を出力し、表示部302に表示させる。これにより、診断補助装置10は、被検者の大腸癌の予後が良好であるのか、または良好でないのかについて診断することを補助する情報を医師などに提供することができる。 Finally, in step S2-11, the output unit 325 outputs the prognosis determination result of the colorectal cancer of the subject and displays it on the display unit 302. Thereby, the diagnostic assistance apparatus 10 can provide a doctor or the like with information that assists in diagnosing whether the prognosis of the colorectal cancer of the subject is good or not.
 本発明には、被検者の大腸癌の予後判定に適する判定装置も含まれる。 The present invention also includes a determination apparatus suitable for determining the prognosis of colorectal cancer in a subject.
 なお、記憶部322は、以下の工程を判定装置30に実行させるためのプログラムを記録している: 大腸癌患者から採取された生体試料における遺伝子の発現量に関連する情報を測定装置から取得する工程;取得した情報に基づいて、前記患者の大腸癌の予後を判定する工程。 The storage unit 322 records a program for causing the determination device 30 to execute the following steps: Acquires information related to the gene expression level in a biological sample collected from a colorectal cancer patient from the measurement device. A step of determining a prognosis of the colorectal cancer of the patient based on the acquired information.
 本実施形態においては、マイクロアレイにより測定した遺伝子の発現量に関する情報を取得し、取得した情報に基づいて、被検者の大腸癌の予後が判定され得る。例えば、被検者の大腸癌の予後が良好である、または、良好でない、との判定結果を提供することができる。上記の判定結果を医師等に提供することによって、大腸癌の予後についての医師等による診断を補助することができる。 In the present embodiment, information on the expression level of the gene measured by the microarray is acquired, and the prognosis of the colorectal cancer of the subject can be determined based on the acquired information. For example, it is possible to provide a determination result that the prognosis of the colorectal cancer of the subject is good or not good. By providing the determination result to a doctor or the like, diagnosis by a doctor or the like regarding the prognosis of colorectal cancer can be assisted.
実施例1:7遺伝子を用いる大腸癌の予後判定(トレーニングセット)
(1)マーカーの探索
 簇出マーカーの探索は以下の手順に沿って行った。具体的には、まず、簇出がみられる大腸癌組織3検体の先進部および基底部の合計2カ所ずつについて、(1)マイクロアレイ(Affymetrix製)測定における発現値の平均が200以上である23,509遺伝子を選択した。次いで、(2) 3検体における先進部および基底部間の発現比の最低値が2以上である73遺伝子(簇出がある先進部の方が基底部よりもおよそ2倍発現量が多い遺伝子)を選択した。その後、(3) 先進部および組織全体間の発現比が1以上である34遺伝子(簇出がある先進部の方が、組織全体より発現量が多い遺伝子)を選択した。
Example 1: Determination of prognosis of colorectal cancer using 7 genes (training set)
(1) Search for marker Search for the marker was performed according to the following procedure. Specifically, first, for each of a total of 2 sites of advanced and basal portions of 3 specimens of colorectal cancer tissue in which exudation is observed, (1) the average expression value in microarray (Affymetrix) measurement is 200 or more 23,509 A gene was selected. Next, (2) 73 genes whose minimum expression ratio between the advanced part and the basal part in 2 specimens is 2 or more (the gene with the expression in the advanced part where there is squeezing is about twice as much as the expression level) Selected. After that, (3) 34 genes whose expression ratio between the advanced part and the whole tissue was 1 or more (the gene with the expression level in the advanced part where the outbreak was larger than the whole tissue) were selected.
 そして、(4) 前記3検体を含む大腸がん組織85検体を用いて、上記の34遺伝子のうち、簇出陽性検体(グレード3):26例と陰性検体(グレード1): 44例との間のT検定で、有意差(p<0.05)があり、且つ簇出陽性検体において発現が上昇している7遺伝子を選択した。選択された7つの遺伝子およびそれらの発現量測定に用いたプローブセットのIDを下記の表1に示す。また、各プローブの塩基配列(いすれもアンチセンス鎖)を配列番号8~84で表す。 (4) Using 85 colorectal cancer tissue samples including the above three samples, out of the above 34 genes, positive samples (grade 3): 26 cases and negative samples (grade 1): 44 cases In the T test, 7 genes that had a significant difference (p <0.05) and increased expression in the positive specimen were selected. Table 7 below shows the IDs of the seven selected genes and the probe sets used to measure their expression levels. In addition, the base sequence of each probe (both are antisense strands) is represented by SEQ ID NOs: 8-84.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記で算出した発現量の対数(底=2)の平均値(以下、Budding Signature Score;BSSと称する;具体的な計算式を下記に示す)と、病理診断による簇出グレードとの相関を図6に示す。ここで、簇出グレードは、日本癌治療学会のがん診療ガイドラインにおける[簇出のGrade]に定義されるとおりに定めた。すなわち、検体中の簇出が最も高度な領域を選択後、20×10倍視野で癌発育先進部を観察し、簇出の数をカウントした結果、その数が0~4個である場合にGrade 1とし、5~9個である場合にGrade 2とし、10個以上である場合にGrade 3とした。図6から、簇出グレードの上昇に伴い、BSSが上昇することがわかった。すなわち、簇出グレードが高いほど、遺伝子が多く発現していることがわかった。 Figure shows the correlation between the average value of the logarithm (base = 2) of the expression level calculated above (hereinafter referred to as Budding Signature Score; BSS; the specific calculation formula is shown below) and the leach grade by pathological diagnosis It is shown in FIG. Here, the exudation grade was determined as defined in [Grade of Exudation] in the Cancer Treatment Guidelines of the Japanese Cancer Treatment Society. In other words, after selecting the region with the highest degree of exudation in the specimen, if the number of exudates is counted as a result of observing the advanced part of cancer growth in a 20x10 field of view and counting the number of exudates, Grade 1, Grade 2 when 5-9, Grade 3 when 10 or more. From FIG. 6, it was found that BSS increases as the leach grade increases. That is, it was found that the higher the leach grade, the more genes were expressed.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
(2)予後判定
 上記で算出したBSS値を用いて85検体についてROC解析を行い、閾値を設定した。結果を図7に示す。図7のROC曲線でsensitivity, specificityが最も高くなる値(ROC曲線上で(感度, 特異度)=(1,1)に最も近くなる点に対応)を閾値(8.436)とした。曲線下面積(Area under the curve, AUC)は、0.602であった。
(2) Prognosis determination ROC analysis was performed on 85 samples using the BSS value calculated above, and a threshold value was set. The results are shown in FIG. The value (corresponding to the point closest to (sensitivity, specificity) = (1,1) on the ROC curve) on the ROC curve in the ROC curve of FIG. 7 was set as the threshold (8.436). The area under the curve (AUC) was 0.602.
 次いで、上記閾値以上のBSSを示す検体と、上記閾値未満のBSSを示す検体とで生存期間を比較した。結果を図8に示す。図8に示されるように、閾値以上のBSSを示す検体と閾値未満のBSSを示す検体とでは、生存可能性(Probability)の観点から有意差(p = 0.0479)
が認められた。以上より、SCEL遺伝子、MGAT3遺伝子、SLC4A11遺伝子、MSLN遺伝子、FOXC1遺伝子、RUNX2遺伝子およびWNT11遺伝子の7つの遺伝子の発現量に基づいて、大腸癌患者の予後が高リスクであるか、または低リスクであるかについて判定することができることが示唆された。
Next, the survival time was compared between a specimen showing BSS above the threshold and a specimen showing BSS below the threshold. The results are shown in FIG. As shown in FIG. 8, there is a significant difference (p = 0.0479) between the specimen showing BSS above the threshold and the specimen showing BSS below the threshold from the viewpoint of probability.
Was recognized. Based on the above, the prognosis of colorectal cancer patients is high-risk or low-risk based on the expression levels of seven genes: SCEL gene, MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 gene and WNT11 gene It was suggested that it can be determined whether there is any.
実施例2:7遺伝子を用いる大腸癌の予後判定(バリデーションセット)
 上記7つの遺伝子の大腸癌予後マーカーとしての有用性について、公開されている大腸癌の遺伝子発現量データを用いて、さらに検証した。データは公共データベースであるGene Expression Omunibus(GEO)のGE39582(461検体)を用いた(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582)。
 実施例1と同様にしてROC解析を行い、閾値(7.686, AUC = 0.5752)を設定し、上記閾値以上のBSSを示す検体と、上記閾値未満のBSSを示す検体とで生存期間を比較した。結果を図9および10に示す。図10に示されるように、閾値以上のBSSを示す検体と、閾値未満のBSSを示す検体とでは、無病生存率(Disease Free Survival)の観点から有意差(p = 0
.000473)が認められた。この結果は、実施例1の結果を再現している。よって、上記の7つの遺伝子が大腸癌の予後マーカーとして有用であることが確認された。
Example 2: Colorectal cancer prognosis using 7 genes (validation set)
The usefulness of the above seven genes as a colorectal cancer prognostic marker was further verified by using publicly available colorectal cancer gene expression data. GE39582 (461 samples) of Gene Expression Omunibus (GEO) which is a public database was used ( http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582 ).
ROC analysis was performed in the same manner as in Example 1, threshold values (7.686, AUC = 0.5752) were set, and the survival times were compared between samples showing BSS above the threshold and samples showing BSS below the threshold. The results are shown in FIGS. As shown in FIG. 10, there is a significant difference (p = 0) between the specimen showing BSS above the threshold and the specimen showing BSS below the threshold from the viewpoint of disease-free survival (Disease Free Survival).
.000473) was observed. This result reproduces the result of Example 1. Therefore, it was confirmed that the above seven genes are useful as prognostic markers for colorectal cancer.
実施例3:3遺伝子を用いる大腸癌の予後判定
 本発明者は、SCEL遺伝子、MGAT3遺伝子およびSLC4A11遺伝子の3遺伝子について、実施例2と同じデータベースを用いて、実施例2と同様の実験を行った。具体的には、実施例2と同様にしてROC解析を行い、閾値(6.112, AUC = 0.5828)を設定し、上記閾値以上のBSS (3遺伝子測定の場合のBSSの具体的な計算式を下記に示す)を示す検体と、上記閾値未満のBSSを示す検体とで無再発生存期間(r.f.s. delay、日数)を比較した。結果を図11
および12に示す。図12に示されるように、閾値以上のBSSを示す検体と、閾値未満のBSSを示す検体とでは、生存可能性の観点から有意差(p = 0.000684)が認められた。よって、上記の3つの遺伝子の発現量に基づいて、大腸癌の予後を判定することができることが示された。
Example 3 Prognosis Determination of Colorectal Cancer Using 3 Genes The present inventor conducted experiments similar to Example 2 using the same database as Example 2 for 3 genes of SCEL gene, MGAT3 gene and SLC4A11 gene. It was. Specifically, ROC analysis was performed in the same manner as in Example 2, a threshold value (6.112, AUC = 0.5828) was set, and a specific formula for calculating BSS above the above threshold (in the case of 3-gene measurement, BSS) And the specimen showing BSS less than the above threshold were compared for relapse-free survival (rfs delay, days). The result is shown in FIG.
And 12. As shown in FIG. 12, a significant difference (p = 0.000684) was observed from the viewpoint of viability between the specimen showing BSS above the threshold and the specimen showing BSS below the threshold. Therefore, it was shown that the prognosis of colorectal cancer can be determined based on the expression levels of the above three genes.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
実施例4:SCEL遺伝子を用いる大腸癌の予後判定
 SCEL遺伝子の発現量に基づいて、大腸癌の予後判定を行うことが可能か否かについて検証した。すなわち、SCEL遺伝子について、実施例2と同じデータベースを用いて、実施例2と同様の実験を行った。具体的には、実施例2と同様にしてROC解析を行い、閾値(5.300, AUC = 0.6003)を設定し、上記閾値以上のBSS (3遺伝子測定の場合のBSSの具体的な計算式を下記に示す)を示す検体と、上記閾値未満のBSSを示す検体とで無再発生存期間(日数)を比較した。結果を図13および14に示す。図14に示されるように、閾値以上のBSSを示す検体と、閾値未満のBSSを示す検体とでは、生存可能性の観点から有意差(p = 0.000702)が認められた。よって、SCEL遺伝子の発現量に基づいて、大腸癌の予後を判定することができることが示された。
Example 4: Prognosis determination of colorectal cancer using SCEL gene Based on the expression level of SCEL gene, it was verified whether or not prognosis determination of colorectal cancer could be performed. That is, for the SCEL gene, the same experiment as in Example 2 was performed using the same database as in Example 2. Specifically, ROC analysis is performed in the same manner as in Example 2, a threshold value (5.300, AUC = 0.6003) is set, and a specific calculation formula of BSS (BSS in the case of 3-gene measurement) equal to or higher than the above threshold value is as follows. The relapse-free survival period (in days) was compared between a sample showing (shown in (1)) and a sample showing BSS less than the above threshold. The results are shown in FIGS. As shown in FIG. 14, a significant difference (p = 0.00702) was observed from the viewpoint of viability between the specimen showing BSS above the threshold and the specimen showing BSS below the threshold. Therefore, it was shown that the prognosis of colorectal cancer can be determined based on the expression level of the SCEL gene.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 10   診断補助装置
 20   測定装置
 30   判定装置
 40   記録媒体
 300  コンピュータ本体
 301  入力部
 302  表示部
 310  CPU
 311  ROM
 312  RAM
 313  ハードディスク
 314  入出力インターフェイス
 315  読出装置
 316  通信インターフェイス
 317  画像出力インターフェイス
 318  バス
 321  取得部
 322  記憶部
 323  算出部
 324  判定部
 325  出力部
DESCRIPTION OF SYMBOLS 10 Diagnosis assistance apparatus 20 Measuring apparatus 30 Judgment apparatus 40 Recording medium 300 Computer main body 301 Input part 302 Display part 310 CPU
311 ROM
312 RAM
313 Hard disk 314 Input / output interface 315 Reading device 316 Communication interface 317 Image output interface 318 Bus 321 Acquisition unit 322 Storage unit 323 Calculation unit 324 Determination unit 325 Output unit

Claims (9)

  1.  大腸癌患者から採取された生体試料における、SCEL遺伝子の発現量を測定する工程と、 前記発現量に基づいて、大腸癌の予後を判定する工程と、を含む大腸癌の予後診断を補助する方法。 A method for assisting in prognosis of colorectal cancer, comprising: measuring an expression level of a SCEL gene in a biological sample collected from a colorectal cancer patient; and determining a prognosis of colorectal cancer based on the expression level. .
  2.  前記判定工程において、
     前記発現量又はその対数を所定の基準値と比較し、
     前記発現量又はその対数が前記基準値以上の場合は予後が良好でないと判定され、前記発現量又はその対数が前記基準値未満の場合は予後が良好であると判定する、請求項1に記載の方法。
    In the determination step,
    Compare the expression level or its logarithm with a predetermined reference value,
    The prognosis is determined to be poor when the expression level or logarithm thereof is equal to or greater than the reference value, and the prognosis is determined to be favorable when the expression level or logarithm thereof is less than the reference value. the method of.
  3.  前記測定工程において、MGAT3遺伝子、SLC4A11遺伝子、MSLN遺伝子、FOXC1遺伝子、RUNX2遺伝子及びWNT11遺伝子からなる群より選択される少なくとも1つの遺伝子の発現量をさらに測定し、
     前記判定工程において、前記測定工程で測定された遺伝子の発現量に基づいて、大腸癌の予後を判定する、請求項1に記載の方法。
    In the measurement step, the expression level of at least one gene selected from the group consisting of MGAT3 gene, SLC4A11 gene, MSLN gene, FOXC1 gene, RUNX2 gene and WNT11 gene is further measured,
    The method according to claim 1, wherein in the determination step, the prognosis of colorectal cancer is determined based on the expression level of the gene measured in the measurement step.
  4.  前記測定工程において、MGAT3遺伝子およびSLC4A11遺伝子の発現量をさらに測定し、
     前記判定工程において、前記測定工程で測定された遺伝子の発現量に基づいて、大腸癌の予後を判定する、請求項1に記載の方法。
    In the measurement step, the expression level of MGAT3 gene and SLC4A11 gene is further measured,
    The method according to claim 1, wherein in the determination step, the prognosis of colorectal cancer is determined based on the expression level of the gene measured in the measurement step.
  5.  前記測定工程において、さらにMSLN遺伝子の発現量、FOXC1遺伝子の発現量、RUNX2遺伝子の発現量及びWNT11遺伝子の発現量を測定し、
     前記判定工程において、前記測定工程で測定された遺伝子の発現量に基づいて、大腸癌の予後を判定する、請求項4に記載の方法。
    In the measurement step, the expression level of MSLN gene, the expression level of FOXC1 gene, the expression level of RUNX2 gene and the expression level of WNT11 gene are further measured,
    The method according to claim 4, wherein in the determination step, the prognosis of colorectal cancer is determined based on the expression level of the gene measured in the measurement step.
  6.  前記判定工程において、
     前記測定工程で測定された遺伝子の発現量の対数を算出し、
     前記対数と所定の基準値とを比較し、
     前記対数が前記基準値以上の場合は予後が良好でないと判定され、前記対数が前記基準値未満の場合は予後が良好であると判定する、請求項1記載の方法。
    In the determination step,
    Calculate the logarithm of the expression level of the gene measured in the measurement step,
    Comparing the logarithm with a predetermined reference value;
    The method according to claim 1, wherein if the logarithm is equal to or greater than the reference value, it is determined that the prognosis is not good, and if the logarithm is less than the reference value, it is determined that the prognosis is good.
  7.  前記判定工程において、
     前記測定工程で測定された遺伝子の発現量の平均値またはその対数を算出し、
     前記平均値または対数と所定の基準値とを比較し、
     前記平均値または対数が前記基準値以上の場合は予後が良好でないと判定され、前記平均値または対数が前記基準値未満の場合は予後が良好であると判定する、請求項3~5のいずれか1項に記載の方法。
    In the determination step,
    Calculate the average value or the logarithm of the expression level of the gene measured in the measurement step,
    Comparing the average value or logarithm with a predetermined reference value;
    The prognosis is determined to be poor when the average value or logarithm is equal to or greater than the reference value, and the prognosis is determined to be good when the average value or logarithm is less than the reference value. The method according to claim 1.
  8.  コンピュータに、
     大腸癌患者から採取された生体試料における、SCEL遺伝子の発現量に関連する情報を測定装置から取得する工程と、
     取得した情報に基づいて、前記患者の大腸癌の予後を判定する工程と、
    を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
    On the computer,
    A step of acquiring information related to the expression level of the SCEL gene in a biological sample collected from a colorectal cancer patient from a measuring device;
    Determining the prognosis of the colorectal cancer of the patient based on the acquired information;
    The computer-readable recording medium which recorded the program for performing this.
  9.  プロセッサとメモリとを含むコンピュータを少なくとも備え、
     前記メモリには、
     大腸癌患者から採取された生体試料における、SCEL遺伝子の発現量に関連する情報を測定装置から取得する工程と、
     取得した情報に基づいて、前記患者の大腸癌の予後を判定する工程と、
    を前記コンピュータに実行させるためのプログラムが記録されている、大腸癌の予後を判定する判定装置。
     
     
    At least a computer including a processor and memory;
    In the memory,
    A step of acquiring information related to the expression level of the SCEL gene in a biological sample collected from a colorectal cancer patient from a measuring device;
    Determining the prognosis of the colorectal cancer of the patient based on the acquired information;
    A determination apparatus for determining a prognosis of colorectal cancer in which a program for causing the computer to execute is recorded.

PCT/JP2016/055124 2015-02-27 2016-02-22 Method for assisting in prognostic diagnosis of colorectal cancer, recording medium and determining apparatus WO2016136684A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2016224709A AU2016224709B2 (en) 2015-02-27 2016-02-22 Method for assisting in prognostic diagnosis of colorectal cancer, recording medium and determining device
CN201680012066.XA CN107429242B (en) 2015-02-27 2016-02-22 Method for assisting prognosis of colorectal cancer, recording medium, and determination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015038578A JP6612509B2 (en) 2015-02-27 2015-02-27 Method, recording medium and determination device for assisting prognosis of colorectal cancer
JP2015-038578 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136684A1 true WO2016136684A1 (en) 2016-09-01

Family

ID=56788966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055124 WO2016136684A1 (en) 2015-02-27 2016-02-22 Method for assisting in prognostic diagnosis of colorectal cancer, recording medium and determining apparatus

Country Status (4)

Country Link
JP (1) JP6612509B2 (en)
CN (1) CN107429242B (en)
AU (1) AU2016224709B2 (en)
WO (1) WO2016136684A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020064A (en) * 2020-03-10 2020-04-17 中山大学达安基因股份有限公司 Novel coronavirus ORF1ab gene nucleic acid detection kit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803020B2 (en) * 2016-09-09 2020-12-23 国立研究開発法人国立がん研究センター Breast cancer prognosis diagnostic aids, as well as kits and devices for breast cancer prognosis diagnostic aids

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072828A1 (en) * 2001-03-14 2002-09-19 Dna Chip Research Inc. Method of predicting cancer
JP2008017832A (en) * 2006-06-13 2008-01-31 Sysmex Corp Method for judging metastasis of cancer and device for the same
WO2015017537A2 (en) * 2013-07-30 2015-02-05 H. Lee Moffitt Cancer Center And Research Institute, Inc. Colorectal cancer recurrence gene expression signature
JP2015503923A (en) * 2012-01-09 2015-02-05 オスロ ウニヴェルスィテーツスィーケフース ハーエフOslo Universitetssykehus Hf Methods and biomarkers for the analysis of colorectal cancer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0907440A2 (en) * 2008-01-22 2016-11-01 Veridex Llc Stage II and III colon cancer molecular staging prognosis
JP2013192478A (en) * 2012-03-16 2013-09-30 Hiroshi Tsuda Biomarker for predicting recurrence risk of endometrial cancer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072828A1 (en) * 2001-03-14 2002-09-19 Dna Chip Research Inc. Method of predicting cancer
JP2008017832A (en) * 2006-06-13 2008-01-31 Sysmex Corp Method for judging metastasis of cancer and device for the same
JP2015503923A (en) * 2012-01-09 2015-02-05 オスロ ウニヴェルスィテーツスィーケフース ハーエフOslo Universitetssykehus Hf Methods and biomarkers for the analysis of colorectal cancer
WO2015017537A2 (en) * 2013-07-30 2015-02-05 H. Lee Moffitt Cancer Center And Research Institute, Inc. Colorectal cancer recurrence gene expression signature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020064A (en) * 2020-03-10 2020-04-17 中山大学达安基因股份有限公司 Novel coronavirus ORF1ab gene nucleic acid detection kit
CN111020064B (en) * 2020-03-10 2020-06-23 中山大学达安基因股份有限公司 Novel coronavirus ORF1ab gene nucleic acid detection kit

Also Published As

Publication number Publication date
AU2016224709A1 (en) 2017-08-31
AU2016224709B2 (en) 2018-11-08
JP2016158531A (en) 2016-09-05
CN107429242A (en) 2017-12-01
JP6612509B2 (en) 2019-11-27
CN107429242B (en) 2020-12-29

Similar Documents

Publication Publication Date Title
Liu et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis
JP7228896B2 (en) Methods for predicting the prognosis of breast cancer patients
WO2020220994A1 (en) Microrna marker combination for diagnosing gastric cancer and diagnostic kit
JP2012514474A (en) Cancer biomarker
JP7301798B2 (en) Gene Expression Profile Algorithm for Calculating Recurrence Scores for Patients with Kidney Cancer
WO2021238086A1 (en) Method for constructing mathematical model for detecting lung cancer in vitro and application
WO2010118559A1 (en) A method for screening cancer
JP2021502069A5 (en)
JP2020519296A (en) DNA methylation and mutation analysis method for bladder cancer monitoring
KR20200002241A (en) Biomarker microRNA-26b or microRNA-4449 for diagnosing obesity and use thereof
Warf et al. Analytical validation of a melanoma diagnostic gene signature using formalin-fixed paraffin-embedded melanocytic lesions
TWI571514B (en) Method for accessing the risk of having colorectal cancer
JP6612509B2 (en) Method, recording medium and determination device for assisting prognosis of colorectal cancer
CN110724743B (en) Methylated biomarker related to colorectal cancer diagnosis in human blood and application thereof
KR102414106B1 (en) Multiple biomarkers for diagnosis of breast cancer and Uses thereof
WO2021191485A1 (en) Biomarkers for predicting a patient&#39;s response to bcg therapy, methods and uses based thereon
TWI626314B (en) Method for accessing the risk of having colorectal cancer
CN102686745B (en) Method for analyzing cervical lymph node metastasis, and tumor marker for head and neck cancer
TWI507412B (en) Gastric cancer biological markers and their use, as well as gastric cancer-related detection methods
JP7445334B1 (en) Detection of pancreatic cancer by combined detection of gene expression pattern specific to pancreatic cancer and measurement of CA19-9
CN114214420B (en) Application of exosome miR-106B-3P, IL B and the like in lung cancer diagnosis
Ye et al. Molecular counting enables accurate and precise quantification of methylated ctDNA for tumor-naive cancer therapy response monitoring
CN109182520B (en) Cervical cancer and precancerous lesion detection kit and application thereof
TWI721414B (en) Methods for early prediction, treatment response, recurrence and prognosis monitoring of breast cancer
Ciniselli Identification of Circulating Biomarkers for the Early Diagnosis of Colorectal Cancer: Methodological Aspects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016224709

Country of ref document: AU

Date of ref document: 20160222

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16755430

Country of ref document: EP

Kind code of ref document: A1