WO2016136492A1 - Wireless terminal and base station - Google Patents

Wireless terminal and base station Download PDF

Info

Publication number
WO2016136492A1
WO2016136492A1 PCT/JP2016/054077 JP2016054077W WO2016136492A1 WO 2016136492 A1 WO2016136492 A1 WO 2016136492A1 JP 2016054077 W JP2016054077 W JP 2016054077W WO 2016136492 A1 WO2016136492 A1 WO 2016136492A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmitted
wireless terminal
destination
emergency
Prior art date
Application number
PCT/JP2016/054077
Other languages
French (fr)
Japanese (ja)
Inventor
剛洋 榮祝
空悟 守田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2016136492A1 publication Critical patent/WO2016136492A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • H04W4/04
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a radio terminal and a base station used in a mobile communication system that supports inter-device proximity service (D2D ProSe).
  • D2D ProSe inter-device proximity service
  • D2D ProSe Device to Device Proximity Service
  • D2D ProSe mode two modes of direct discovery (Sidelink Direct Discovery) and direct communication (Sidelink Direct Communication) are defined.
  • Sidelink Direct Discovery is a mode in which a partner is searched by directly transmitting a discovery signal that does not designate a specific destination between wireless terminals.
  • Sidelink Direct Communication is a mode in which data is directly transmitted between wireless terminals by designating a specific destination (destination group).
  • V2V vehicle-to-vehicle
  • the wireless terminal according to the first feature is used in a mobile communication system that directly transmits data between wireless terminals.
  • the wireless terminal includes a transmission unit that directly transmits a control signal including the data allocation information to another wireless terminal, and then directly transmits the data to the other wireless terminal according to the allocation information.
  • the transmission unit When transmitting emergency data as the data, the transmission unit includes information indicating that the emergency data is transmitted in the control signal.
  • the wireless terminal according to the second feature is a wireless terminal used in a mobile communication system that directly transmits data between wireless terminals.
  • the wireless terminal receives a control signal including the data allocation information directly from another wireless terminal, and then receives a data directly from the other wireless terminal according to the allocation information; an emergency unit; A control unit that recognizes that the emergency data is transmitted from the other wireless terminal when information indicating that data is transmitted is included in the control signal.
  • the wireless terminal according to the third feature is used in a mobile communication system that directly transmits data between wireless terminals.
  • the wireless terminal directly transmits a control signal including the data allocation information to another wireless terminal, and then directly transmits the data to the other wireless terminal according to the allocation information;
  • a controller for notifying a base station of information indicating that the emergency data is transmitted in order to receive radio resource allocation for transmitting the emergency data when transmitting emergency data as data.
  • the base station according to the fourth feature is used in a mobile communication system that directly transmits data between wireless terminals.
  • the base station receives, from the wireless terminal, information indicating that emergency data is transmitted as data to be directly transmitted between wireless terminals, and the emergency data according to the information received by the receiving unit.
  • a control unit that preferentially allocates radio resources for transmission to the radio terminals.
  • FIG. 10A shows the main parameters included in the “Sidelink UE Information” message
  • FIG. 10B shows the main parameters included in the “RRC Connection Reconfiguration” message.
  • V2V message data including a traffic safety message (V2V message) is transmitted by “Sidelink Direct Communication”.
  • the embodiment provides a wireless terminal and a base station that can appropriately transmit data requiring low delay by “Sidelink Direct Communication”.
  • the wireless terminal according to the first embodiment is used in a mobile communication system that directly transmits data between wireless terminals.
  • the wireless terminal includes a transmission unit that directly transmits a control signal including the data allocation information to another wireless terminal, and then directly transmits the data to the other wireless terminal according to the allocation information.
  • the transmission unit When transmitting emergency data as the data, the transmission unit includes information indicating that the emergency data is transmitted in the control signal.
  • the control signal includes a destination field that can store a destination identifier that specifies a destination of the data.
  • the information indicating that the emergency data is transmitted is an emergency flag included in the control signal separately from the destination field.
  • control signal includes a destination field that can store a destination identifier that specifies a destination of the data.
  • Information indicating that the emergency data is transmitted is included in the destination field.
  • the information indicating that the emergency data is transmitted is a broadcast identifier indicating that a specific destination is not specified.
  • the wireless terminal according to the first embodiment is used in a mobile communication system that directly transmits data between wireless terminals.
  • the wireless terminal receives a control signal including the data allocation information directly from another wireless terminal, and then receives a data directly from the other wireless terminal according to the allocation information; an emergency unit; A control unit that recognizes that the emergency data is transmitted from the other wireless terminal when information indicating that data is transmitted is included in the control signal.
  • the control signal includes a destination field that can store a destination identifier that specifies a destination of the data.
  • the information indicating that the emergency data is transmitted is an emergency flag included in the control signal separately from the destination field.
  • control signal includes a destination field that can store a destination identifier that specifies a destination of the data.
  • Information indicating that the emergency data is transmitted is included in the destination field.
  • the information indicating that the emergency data is transmitted is a broadcast identifier indicating that a specific destination is not specified.
  • the wireless terminal according to the second embodiment is used in a mobile communication system that directly transmits data between wireless terminals.
  • the wireless terminal directly transmits a control signal including the data allocation information to another wireless terminal, and then directly transmits the data to the other wireless terminal according to the allocation information;
  • a controller for notifying a base station of information indicating that the emergency data is transmitted in order to receive radio resource allocation for transmitting the emergency data when transmitting emergency data as data.
  • control unit includes, in the notification message, information indicating that the emergency data is transmitted when transmitting a notification message regarding direct communication between wireless terminals to the base station.
  • control unit includes, in the request message, information indicating that the emergency data is transmitted when transmitting a request message for establishing a connection with the base station to the base station. .
  • the base station according to the second embodiment is used in a mobile communication system that directly transmits data between wireless terminals.
  • the base station receives, from the wireless terminal, information indicating that emergency data is transmitted as data to be directly transmitted between wireless terminals, and the emergency data according to the information received by the receiving unit.
  • a control unit that preferentially allocates radio resources for transmission to the radio terminals.
  • the information indicating that the emergency data is transmitted is included in a notification message regarding direct communication between wireless terminals.
  • information indicating that the emergency data is transmitted is included in a request message for establishing a connection with the base station.
  • FIG. 1 is a diagram illustrating a configuration of an LTE system.
  • the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a wireless terminal.
  • the UE 100 is a mobile communication device, and performs radio communication with a cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • MME performs various mobility control etc. with respect to UE100.
  • the S-GW performs data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • FIG. 2 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • Data and control signals are transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control signals are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and an allocation resource block to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state (connected state), and otherwise, the UE 100 is in the RRC idle state (idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 3 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • One symbol and one subcarrier constitute one resource element (RE).
  • a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
  • the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting a downlink control signal. Details of the PDCCH will be described later.
  • the remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting downlink data.
  • PDSCH physical downlink shared channel
  • both ends in the frequency direction in each subframe are regions used mainly as physical uplink control channels (PUCCH) for transmitting uplink control signals.
  • the remaining part of each subframe is an area that can be used as a physical uplink shared channel (PUSCH) mainly for transmitting uplink data.
  • PUSCH physical uplink shared channel
  • Sidelink Direct Communication In the following, “Sidelink Direct Communication” will be mainly described for D2D ProSe.
  • D2D ProSe a plurality of UEs 100 transmit and receive various signals via direct radio links that do not go through the eNB 200. Such a direct radio link is referred to as a “side link”.
  • side link Such a direct radio link is referred to as a “side link”.
  • modes of D2D ProSe two modes of “Sidelink Direct Discovery” and “Sidelink Direct Communication” are defined.
  • “Sidelink Direct Discovery” is a mode in which a destination is searched by directly transmitting a discovery signal that does not designate a specific destination between UEs.
  • “Sidelink Direct Communication” is a mode in which data is directly transmitted between UEs by designating a specific destination (destination group).
  • the resource allocation type of “Sidelink Direct Communication” includes “Mode 1” in which the eNB 200 specifies the radio resource of “Sidelink Direct Communication”, and “Mode 2” in which the UE 100 selects the radio resource of “Sidelink Direct Communication”, There is. In the following, “Sidelink Direct Communication” in mode 1 is mainly assumed.
  • FIG. 4 is a protocol stack diagram of “Sidelink Direct Communication”.
  • the “Sidelink Direct Communication” protocol stack includes a physical (PHY) layer, a MAC layer, an RLC layer, and a PDCP layer.
  • PHY physical
  • MAC physical side link control channel
  • RLC radio link control
  • PDCP physical side link shared channel
  • STCH side link traffic channel
  • FIG. 5 is a diagram for explaining the processing of the MAC layer in “Sidelink Direct Communication”.
  • the MAC layer on the transmission side assigns logical channel priorities to the data on the STCH (Logical Channel Priority), multiplexes the data, and passes the data to the physical layer via the HARQ entity.
  • the MAC layer on the receiving side receives data on the SL-SCH by the HARQ entity, performs PDU filtering based on the destination identifier, and then separates (De-Multiplexing) and passes the data to the RLC layer.
  • the UE 100 on the data transmission side is denoted as UE 100-1
  • the UE 100 on the data reception side is denoted as UE 100-2.
  • V2V message a message for “Load Safety” will be described.
  • the message length of the V2V message is 45 bytes, 49 bytes, 99 bytes, 166 bytes, 427 bytes, 507 bytes, or 600 bytes in the case of “Basic Safety Message for DSRC” defined by “The Society of the Automotive Engineers”. Yes (see "SAE J2735: (R) Dedicated Short Range Communication (DSRC) Message Set Dictionary”).
  • the V2V message includes, for example, the following information elements (see “700 MHz band highway traffic system experimental vehicle-to-vehicle communication message guideline ITS FORUM RC-013 1.0 version”).
  • -Vehicle information 1. Vehicle ID, 2. Message ID, 3. Increment counter, 4. Data length-Message content confirmation time information-Location information: 1. Latitude, latitude, altitude, 2. Location acquisition information (measurement standards, etc.) ), -Vehicle status information: 1. Vehicle speed, azimuth, acceleration, 2. Speed acquisition information, acceleration acquisition information-Vehicle attribute information: 1. Vehicle size, application type
  • V2V message transmission For example, it is required to be within 100 ms from data generation to transmission. Therefore, it is important to speed up the processing related to the V2V message.
  • FIG. 6 is a block diagram of the eNB 200. As illustrated in FIG. 6, the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor executes various processes and the various communication protocols described above.
  • the backhaul communication unit 240 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • UE100 radio
  • FIG. 7 is a block diagram of the UE 100. As illustrated in FIG. 7, the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor may include a codec that performs encoding / decoding of an audio / video signal.
  • the processor executes various processes and the various communication protocols described above.
  • Transmitting section 120 transmits a control signal including data allocation information directly to UE 100-2 via “PSCCH”.
  • a control signal including data allocation information is referred to as side link control information (SCI).
  • SCI side link control information
  • the transmission unit 120 directly transmits data to the UE 100-2 according to the allocation information via “PSSCH”.
  • the transmission unit 120 when transmitting emergency data (V2V message) as data, the transmission unit 120 includes information (Emergency Flag) indicating that emergency data is transmitted in “SCI”.
  • FIG. 8 is a diagram illustrating a configuration example of “SCI” according to the first embodiment.
  • SCI is “Frequency Hopping flag”, “Resource block assignment and hopping resource allocation”, “Time resource pattern”, “Modulation timing”, “Modulation timing”, “Modulation timing”, “Modification timing”
  • Each field includes “ID” and “Emergency Flag”. For example, when the “Emergency Flag” field is “1”, it indicates that emergency data is to be transmitted. When the “Emergency Flag” field is “0”, it indicates that emergency data is not transmitted.
  • the 8-bit “Group destination ID” corresponds to a destination field that can store a destination identifier that specifies a data destination.
  • the “Group destination ID” field stores a destination identifier (destination group identifier).
  • the reception unit 110 receives “SCI” including data allocation information directly from the UE 100-1 and then receives data directly from the UE 100-1 according to the allocation information.
  • the control unit 130 When information (Emergency Flag) indicating that emergency data is transmitted is included in “SCI”, the control unit 130 recognizes that emergency data is transmitted from the UE 100-1. In this case, it is preferable that the control unit 130 performs processing for receiving emergency data corresponding to “SCI” regardless of “Group destination ID”. Further, when “Emergency Flag” is included in “SCI”, the control unit 130 may perform preparations for emergency response (vehicle control, sensor confirmation, or the like).
  • FIG. 9 is an operation sequence diagram according to the first embodiment.
  • UE 100-1 In the initial state of FIG. 9, it is assumed that UE 100-1 is in an idle state and has decided to transmit emergency data (V2V message).
  • step S101 the eNB 200 broadcasts system information including each parameter of “Sidelink Direct Communication” in its own cell.
  • system information is referred to as system information block type 18 (SIB18).
  • SIB18 system information block type 18
  • the UE 100-1 receives “SIB18”.
  • step S102 the UE 100-1 establishes an RRC connection with the eNB 200, and transitions to a connected state.
  • step S103 the UE 100-1 transmits a notification message (Sidelink UE Information) related to “D2D ProSe” to the eNB 200.
  • FIG. 10A shows main parameters included in the “Sidelink UE Information” message.
  • the “Sidelink UE Information” message includes a transmission request (comTxResourceReq) of “Sidelink Direct Communication”.
  • the eNB 200 receives “Sidelink UE Information”.
  • step S104 the eNB 200 transmits an individual RRC message (RRC Connection Reconfiguration) including various parameters related to “D2D ProSe” to the UE 100-1.
  • RRC Connection Reconfiguration RRC Connection Reconfiguration
  • FIG. 10B shows the main parameters included in the “RRC Connection Reconfiguration” message.
  • the “RRC Connection Reconfiguration” message includes a setting parameter (SL-CommConfig) of “Sidelink Direct Communication”.
  • the UE 100-1 receives the “RRC Connection Reconfiguration” message.
  • step S105 the UE 100-1 transmits a buffer status report (Prose BSR) indicating the transmission data amount of “Sidelink Direct Communication” to the eNB 200.
  • the eNB 200 receives “Prose BSR”.
  • step S105 may be omitted.
  • step S106 the eNB 200 transmits downlink control information (DCI) including allocation resource information (scheduling information) for "Sidelink Direct Communication" to the UE 100-1.
  • DCI downlink control information
  • allocation resource information scheduling information
  • SCI format 5 allocation resource information
  • step S107 the UE 100-1 transmits “SCI” including “Emergency Flag” to the UE 100-2.
  • the UE 100-2 starts a process for receiving emergency data corresponding to “SCI” regardless of the “Group destination ID”.
  • step S108 and subsequent steps the UE 100-1 transmits emergency data (V2V message) to the UE 100-2 using the radio resource indicated by “SCI”.
  • the UE 100-2 receives the emergency data (V2V message) based on “SCI”.
  • FIG. 11 is a diagram for explaining a specific example of the operation in the UE 100-2.
  • the UE 100-1 detects the occurrence of an accident (vehicle accident) and generates a V2V message related to the accident.
  • the UE 100-1 transmits “SCI” including “Emergency Flag”.
  • the UE 100-2 receives “SCI” including “Emergency Flag”.
  • the UE 100-2 determines that an accident has occurred nearby, and starts preparations for emergency response (vehicle control, sensor confirmation, etc.).
  • the UE 100-1 transmits emergency data (V2V message) using the radio resource indicated by "SCI”.
  • the UE 100-2 receives emergency data (V2V message) corresponding to “SCI” regardless of “Group destination ID” in “SCI”.
  • the UE 100-2 grasps the details of the accident based on the emergency data (V2V message).
  • the information indicating that emergency data is transmitted is a broadcast identifier indicating that a specific destination is not specified.
  • the 8-bit “Group destination ID” corresponds to a destination field that can store a destination identifier that designates a data destination. Normally, the “Group destination ID” field stores a destination identifier (destination group identifier).
  • the transmission unit 120 of the UE 100-1 when transmitting emergency data (V2V message), the transmission unit 120 of the UE 100-1 includes a broadcast identifier in the “Group destination ID” field.
  • FIG. 12 is a diagram illustrating a configuration example of “MAC Sub-header” of data (PDU) handled in the MAC layer.
  • “MAC Sub-header” includes a “DST” field for storing a destination identifier (destination group identifier).
  • the “DST” field is 2 octets (16 bits).
  • the destination identifier is 24 bits as a whole. Of the 24 bits, 6 bits are stored in the “Group destination ID” field of “SCI”, and 16 bits of the 24 bits are stored in the “DST” field of “MAC Sub-header”. Thereby, primary filtering is performed in the physical layer on the reception side, and secondary filtering is performed in the MAC layer on the reception side.
  • the broadcast identifier is composed of all 24 bits of “1”.
  • the “Group destination ID” field is all “1”
  • the “DST” field of “MAC Sub-header” is also all “1”.
  • both “Group destination ID” set to “1” and “DST” set to “1” all constitute a broadcast identifier.
  • the UE 100-2 When the UE 100-2 receives “SCI” in which the broadcast identifier is stored in the “Group destination ID” field, the UE 100-2 recognizes that the emergency data (V2V message) is transmitted from the UE 100-1, and passes the primary filtering. Then, when receiving emergency data (V2V message) in which the broadcast identifier is stored in the “DST” field of “MAC Sub-header”, the UE 100-2 passes the secondary filtering.
  • the second embodiment will be described mainly with respect to differences from the first embodiment.
  • the second embodiment is an embodiment for accelerating the processing until receiving a resource assignment for “Sidelink Direct Communication” from the eNB 200.
  • UE 100-1 radio terminal on the transmission side
  • the control unit 130 of the UE 100-1 receives an allocation of radio resources for transmitting emergency data (V2V message) in the case of transmitting emergency data by “Sidelink Direct Communication”. Information indicating transmission of data is notified to the eNB 200.
  • control unit 130 transmits information indicating that emergency data is to be transmitted when a notification message (“Sidelink UE Information” message) regarding “D2D ProSe” is transmitted to the eNB 200, and a “Sidelink UE Information” message. Include in
  • eNB 200 base station
  • the receiving unit 220 of the eNB 200 receives, from the UE 100-1, information indicating that emergency data (V2V message) is to be transmitted by “Sidelink Direct Communication”.
  • the control unit 230 of the eNB 200 preferentially allocates radio resources for transmitting emergency data to the UE 100-1 according to the information received by the reception unit 220.
  • FIG. 13 is an operation sequence diagram according to the second embodiment.
  • differences from the first embodiment will be mainly described, and redundant description will be omitted.
  • step S201 the eNB 200 transmits “SIB18” by broadcast in its own cell.
  • the UE 100-1 receives “SIB18”.
  • step S202 the UE 100-1 establishes an RRC connection with the eNB 200, and transitions to a connected state.
  • step S203 the UE 100-1 transmits “Sidelink UE Information” to the eNB 200.
  • “Sidelink UE Information” includes emergency data information indicating that emergency data is to be transmitted (want to be transmitted) by “Sidelink Direct Communication”.
  • the emergency data information may be information stored in a new field (“Cause” field or “Emergency Flag” field) of “Sidelink UE Information”.
  • the emergency data information may be a specific identifier included in the “SL-DestinationInfoList” shown in 10 (a).
  • “SL-DestinationInfoList” can include a maximum of 16 destination identifiers.
  • the broadcast identifier may be used as emergency data information by including a broadcast identifier (see “Modification of First Embodiment”) in “SL-DestinationInfoList”. From the emergency data information, the eNB 200 grasps that the UE 100-1 wants to transmit emergency data, and prepares radio resources to be preferentially allocated to the UE 100-1.
  • step S204 the eNB 200 transmits an individual RRC message (RRC Connection Reconfiguration) including various parameters related to “D2D ProSe” to the UE 100-1.
  • the UE 100-1 receives the “RRC Connection Reconfiguration” message.
  • the “RRC Connection Reconfiguration” message may include an acknowledgment (Ack) for emergency data information or information indicating that quick radio resource allocation is performed.
  • step S205 the eNB 200 transmits, to the UE 100-1, downlink control information (DCI) including allocation resource information (scheduling information) for “Sidelink Direct Communication”.
  • DCI downlink control information
  • the UE 100-1 receives “DCI”.
  • the subsequent operations are the same as those in the first embodiment.
  • FIG. 14 is a diagram illustrating a specific example of a “Sidelink UE Information” message according to the second embodiment. A portion surrounded by a broken line in FIG. 14 is a new field.
  • the “Sidelink UE Information” message includes a “commTxCause” field that indicates the reason for transmitting “Sidelink Direct Communication”.
  • “commTxCause” field for example, “emergency”, “high Priority Access”, “mt-Access”, “mo-Signaling”, “mo-Data”, or “delayTolerantAccess” is set.
  • “emergency” indicates an emergency call.
  • “High Priority Access” indicates that Access class is 11-15 (11: PLMN Use, 12: Security Service, 13: Public Utilities (e.g. water / gas suppliers), 14: Emergency Services, 15: PLMN Staff).
  • “Mt-Access” indicates paging response.
  • “Mo-Signaling” indicates a control signal such as tracking area update.
  • “Mo-Data” indicates normal data transmission.
  • “DelayTolerantAccess” indicates a low priority signal.
  • the “RRC connection request” message may include emergency data information indicating that emergency data is to be transmitted (want to be transmitted) by “Sidelink Direct Communication”.
  • the “RRC connection request” message is transmitted from the UE 100-1 to the eNB 200 in step S202 of FIG.
  • the “RRC connection request” message corresponds to a request message for establishing a connection with the eNB 200.
  • the V2V message is exemplified as emergency data.
  • the present invention can be applied to transmission of emergency data other than V2V messages.
  • the LTE system is exemplified as the mobile communication system.
  • the present invention is not limited to LTE systems.
  • the present invention may be applied to a system other than the LTE system.
  • the present invention is useful in the communication field.

Abstract

A UE to be used in a mobile communication system for directly transmitting data between UE. The UE directly transmits a control signal containing data allocation information to another UE, and thereafter, directly transmits data according to the allocation information to the other UE. When transmitting emergency data as the data, the UE includes information indicating transmission of emergency data in the control signal.

Description

無線端末及び基地局Wireless terminal and base station
 本発明は、装置間近傍サービス(D2D ProSe)をサポートする移動通信システムにおいて用いられる無線端末及び基地局に関する。 The present invention relates to a radio terminal and a base station used in a mobile communication system that supports inter-device proximity service (D2D ProSe).
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)において、装置間近傍サービス(D2D ProSe:Device to Device Proximity Service)の仕様策定が進められている。 In 3GPP (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, specifications are being developed for inter-device proximity service (D2D ProSe: Device to Device Proximity Service).
 D2D ProSeのモードとしては、直接ディスカバリー(Sidelink Direct Discovery)及び直接通信(Sidelink Direct Communication)の2つのモードが規定されている。 As the D2D ProSe mode, two modes of direct discovery (Sidelink Direct Discovery) and direct communication (Sidelink Direct Communication) are defined.
 ここで、「Sidelink Direct Discovery」は、特定の宛先を指定しないディスカバリー信号を無線端末間で直接的に伝送することにより、相手先を探索するモードである。「Sidelink Direct Communication」は、特定の宛先(宛先グループ)を指定してデータを無線端末間で直接的に伝送するモードである。 Here, “Sidelink Direct Discovery” is a mode in which a partner is searched by directly transmitting a discovery signal that does not designate a specific destination between wireless terminals. “Sidelink Direct Communication” is a mode in which data is directly transmitted between wireless terminals by designating a specific destination (destination group).
 一方、移動通信システムにおいて人を介さずに無線端末が通信を行うマシンタイプコミュニケーション(MTC)が注目されている。そのような通信の一形態として、車両間で直接的に通信を行う車両間(V2V:Vehicle to Vehicle)通信がある。また、D2D ProSeの機能を利用してV2V通信を実現することが検討されている(非特許文献1,2参照)。 On the other hand, machine type communication (MTC), in which a wireless terminal communicates without a human being in a mobile communication system, has attracted attention. As one form of such communication, there is vehicle-to-vehicle (V2V) communication in which communication is performed directly between vehicles. In addition, it has been studied to realize V2V communication using the function of D2D ProSe (see Non-Patent Documents 1 and 2).
 第1の特徴に係る無線端末は、データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる。前記無線端末は、前記データの割り当て情報を含む制御信号を他の無線端末に直接的に送信した後、前記割り当て情報に従って前記データを前記他の無線端末に直接的に送信する送信部を備える。前記送信部は、前記データとして緊急データを送信する場合において、前記緊急データを送信することを示す情報を前記制御信号に含める。 The wireless terminal according to the first feature is used in a mobile communication system that directly transmits data between wireless terminals. The wireless terminal includes a transmission unit that directly transmits a control signal including the data allocation information to another wireless terminal, and then directly transmits the data to the other wireless terminal according to the allocation information. When transmitting emergency data as the data, the transmission unit includes information indicating that the emergency data is transmitted in the control signal.
 第2の特徴に係る無線端末は、データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる無線端末である。前記無線端末は、前記データの割り当て情報を含む制御信号を他の無線端末から直接的に受信した後、前記割り当て情報に従って前記データを前記他の無線端末から直接的に受信する受信部と、緊急データを送信することを示す情報が前記制御信号に含まれている場合において、前記他の無線端末から前記緊急データが送信されると認識する制御部と、を備える。 The wireless terminal according to the second feature is a wireless terminal used in a mobile communication system that directly transmits data between wireless terminals. The wireless terminal receives a control signal including the data allocation information directly from another wireless terminal, and then receives a data directly from the other wireless terminal according to the allocation information; an emergency unit; A control unit that recognizes that the emergency data is transmitted from the other wireless terminal when information indicating that data is transmitted is included in the control signal.
 第3の特徴に係る無線端末は、データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる。前記無線端末は、前記データの割り当て情報を含む制御信号を他の無線端末に直接的に送信した後、前記割り当て情報に従って前記データを前記他の無線端末に直接的に送信する送信部と、前記データとして緊急データを送信する場合において、前記緊急データを送信するための無線リソースの割り当てを受けるために、前記緊急データを送信することを示す情報を基地局に通知する制御部と、を備える。 The wireless terminal according to the third feature is used in a mobile communication system that directly transmits data between wireless terminals. The wireless terminal directly transmits a control signal including the data allocation information to another wireless terminal, and then directly transmits the data to the other wireless terminal according to the allocation information; A controller for notifying a base station of information indicating that the emergency data is transmitted in order to receive radio resource allocation for transmitting the emergency data when transmitting emergency data as data.
 第4の特徴に係る基地局は、データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる。前記基地局は、無線端末間で直接的に伝送するデータとして緊急データを送信することを示す情報を無線端末から受信する受信部と、前記受信部が受信した情報に応じて、前記緊急データを送信するための無線リソースを優先的に前記無線端末に割り当てる制御部と、を備える。 The base station according to the fourth feature is used in a mobile communication system that directly transmits data between wireless terminals. The base station receives, from the wireless terminal, information indicating that emergency data is transmitted as data to be directly transmitted between wireless terminals, and the emergency data according to the information received by the receiving unit. A control unit that preferentially allocates radio resources for transmission to the radio terminals.
LTEシステムの構成図である。1 is a configuration diagram of an LTE system. 無線インターフェイスのプロトコルスタック図である。It is a protocol stack figure of a radio | wireless interface. 無線フレームの構成図である。It is a block diagram of a radio frame. 「Sidelink Direct Communication」のプロトコルスタック図である。It is a protocol stack figure of "Sidelink Direct Communication". 「Sidelink Direct Communication」におけるMAC層の処理を説明するための図である。It is a figure for demonstrating the process of the MAC layer in "Sidelink Direct Communication." eNBのブロック図である。It is a block diagram of eNB. UEのブロック図である。It is a block diagram of UE. 第1実施形態に係る「SCI」の構成例を示す図である。It is a figure which shows the structural example of "SCI" concerning 1st Embodiment. 第1実施形態に係る動作シーケンス図である。It is an operation | movement sequence diagram which concerns on 1st Embodiment. 図10(a)は「Sidelink UE Infomation」メッセージに含まれる主要なパラメータを示し、図10(b)は「RRC Connection Reconfiguration」メッセージに含まれる主要なパラメータを示す。FIG. 10A shows the main parameters included in the “Sidelink UE Information” message, and FIG. 10B shows the main parameters included in the “RRC Connection Reconfiguration” message. 受信側のUEにおける動作の具体例を説明するための図である。It is a figure for demonstrating the specific example of the operation | movement in UE of the receiving side. MAC層で取り扱うデータ(PDU)の「MAC Sub-header」の構成例を示す図である。It is a figure which shows the structural example of "MAC Sub-header" of the data (PDU) handled by a MAC layer. 第2実施形態に係る動作シーケンス図である。It is an operation | movement sequence diagram which concerns on 2nd Embodiment. 第2実施形態に係る「Sidelink UE Infomation」メッセージの具体例を示す図である。It is a figure which shows the specific example of the "Sidelink UE Information" message which concerns on 2nd Embodiment.
 [実施形態の概要]
 V2V通信においては、「Sidelink Direct Communication」により、交通安全(Road Safety)用のメッセージ(V2Vメッセージ)を含むデータを伝送することが想定される。
[Outline of Embodiment]
In the V2V communication, it is assumed that data including a traffic safety message (V2V message) is transmitted by “Sidelink Direct Communication”.
 しかしながら、V2Vメッセージの伝送には低遅延が要求されるため、そのような低遅延の要求を「Sidelink Direct Communication」において満たすことができない懸念がある。 However, since a low delay is required for transmission of the V2V message, there is a concern that such a low delay request cannot be satisfied in “Sidelink Direct Communication”.
 そこで、実施形態は、「Sidelink Direct Communication」により、低遅延が要求されるデータを適切に伝送可能とする無線端末及び基地局を提供する。 Therefore, the embodiment provides a wireless terminal and a base station that can appropriately transmit data requiring low delay by “Sidelink Direct Communication”.
 第1実施形態に係る無線端末は、データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる。前記無線端末は、前記データの割り当て情報を含む制御信号を他の無線端末に直接的に送信した後、前記割り当て情報に従って前記データを前記他の無線端末に直接的に送信する送信部を備える。前記送信部は、前記データとして緊急データを送信する場合において、前記緊急データを送信することを示す情報を前記制御信号に含める。 The wireless terminal according to the first embodiment is used in a mobile communication system that directly transmits data between wireless terminals. The wireless terminal includes a transmission unit that directly transmits a control signal including the data allocation information to another wireless terminal, and then directly transmits the data to the other wireless terminal according to the allocation information. When transmitting emergency data as the data, the transmission unit includes information indicating that the emergency data is transmitted in the control signal.
 第1実施形態において、前記制御信号は、前記データの宛先を指定する宛先識別子を格納可能な宛先フィールドを含む。前記緊急データを送信することを示す情報は、宛先フィールドとは別に前記制御信号に含められる緊急フラグである。 In the first embodiment, the control signal includes a destination field that can store a destination identifier that specifies a destination of the data. The information indicating that the emergency data is transmitted is an emergency flag included in the control signal separately from the destination field.
 第1実施形態において、前記制御信号は、前記データの宛先を指定する宛先識別子を格納可能な宛先フィールドを含む。前記緊急データを送信することを示す情報は、前記宛先フィールドに含められる。 In the first embodiment, the control signal includes a destination field that can store a destination identifier that specifies a destination of the data. Information indicating that the emergency data is transmitted is included in the destination field.
 第1実施形態において、前記緊急データを送信することを示す情報は、特定の宛先を指定しないことを示すブロードキャスト識別子である。 In the first embodiment, the information indicating that the emergency data is transmitted is a broadcast identifier indicating that a specific destination is not specified.
 第1実施形態に係る無線端末は、データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる。前記無線端末は、前記データの割り当て情報を含む制御信号を他の無線端末から直接的に受信した後、前記割り当て情報に従って前記データを前記他の無線端末から直接的に受信する受信部と、緊急データを送信することを示す情報が前記制御信号に含まれている場合において、前記他の無線端末から前記緊急データが送信されると認識する制御部と、を備える。 The wireless terminal according to the first embodiment is used in a mobile communication system that directly transmits data between wireless terminals. The wireless terminal receives a control signal including the data allocation information directly from another wireless terminal, and then receives a data directly from the other wireless terminal according to the allocation information; an emergency unit; A control unit that recognizes that the emergency data is transmitted from the other wireless terminal when information indicating that data is transmitted is included in the control signal.
 第1実施形態において、前記制御信号は、前記データの宛先を指定する宛先識別子を格納可能な宛先フィールドを含む。前記緊急データを送信することを示す情報は、宛先フィールドとは別に前記制御信号に含められる緊急フラグである。 In the first embodiment, the control signal includes a destination field that can store a destination identifier that specifies a destination of the data. The information indicating that the emergency data is transmitted is an emergency flag included in the control signal separately from the destination field.
 第1実施形態において、前記制御信号は、前記データの宛先を指定する宛先識別子を格納可能な宛先フィールドを含む。前記緊急データを送信することを示す情報は、前記宛先フィールドに含められる。 In the first embodiment, the control signal includes a destination field that can store a destination identifier that specifies a destination of the data. Information indicating that the emergency data is transmitted is included in the destination field.
 第1実施形態において、前記緊急データを送信することを示す情報は、特定の宛先を指定しないことを示すブロードキャスト識別子である。 In the first embodiment, the information indicating that the emergency data is transmitted is a broadcast identifier indicating that a specific destination is not specified.
 第2実施形態に係る無線端末は、データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる。前記無線端末は、前記データの割り当て情報を含む制御信号を他の無線端末に直接的に送信した後、前記割り当て情報に従って前記データを前記他の無線端末に直接的に送信する送信部と、前記データとして緊急データを送信する場合において、前記緊急データを送信するための無線リソースの割り当てを受けるために、前記緊急データを送信することを示す情報を基地局に通知する制御部と、を備える。 The wireless terminal according to the second embodiment is used in a mobile communication system that directly transmits data between wireless terminals. The wireless terminal directly transmits a control signal including the data allocation information to another wireless terminal, and then directly transmits the data to the other wireless terminal according to the allocation information; A controller for notifying a base station of information indicating that the emergency data is transmitted in order to receive radio resource allocation for transmitting the emergency data when transmitting emergency data as data.
 第2実施形態において、前記制御部は、無線端末間の直接通信に関する通知メッセージを前記基地局に送信する際に、前記緊急データを送信することを示す情報を前記通知メッセージに含める。 In the second embodiment, the control unit includes, in the notification message, information indicating that the emergency data is transmitted when transmitting a notification message regarding direct communication between wireless terminals to the base station.
 第2実施形態において、前記制御部は、前記基地局との接続を確立するための要求メッセージを前記基地局に送信する際に、前記緊急データを送信することを示す情報を前記要求メッセージに含める。 In the second embodiment, the control unit includes, in the request message, information indicating that the emergency data is transmitted when transmitting a request message for establishing a connection with the base station to the base station. .
 第2実施形態に係る基地局は、データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる。前記基地局は、無線端末間で直接的に伝送するデータとして緊急データを送信することを示す情報を無線端末から受信する受信部と、前記受信部が受信した情報に応じて、前記緊急データを送信するための無線リソースを優先的に前記無線端末に割り当てる制御部と、を備える。 The base station according to the second embodiment is used in a mobile communication system that directly transmits data between wireless terminals. The base station receives, from the wireless terminal, information indicating that emergency data is transmitted as data to be directly transmitted between wireless terminals, and the emergency data according to the information received by the receiving unit. A control unit that preferentially allocates radio resources for transmission to the radio terminals.
 第2実施形態において、前記緊急データを送信することを示す情報は、無線端末間の直接通信に関する通知メッセージに含まれている。 In the second embodiment, the information indicating that the emergency data is transmitted is included in a notification message regarding direct communication between wireless terminals.
 第2実施形態において、前記緊急データを送信することを示す情報は、前記基地局との接続を確立するための要求メッセージに含まれている。 In the second embodiment, information indicating that the emergency data is transmitted is included in a request message for establishing a connection with the base station.
 [第1実施形態]
 (移動通信システム)
 以下において、第1実施形態に係る移動通信システムであるLTEシステムについて説明する。図1は、LTEシステムの構成を示す図である。
[First Embodiment]
(Mobile communication system)
Hereinafter, the LTE system that is the mobile communication system according to the first embodiment will be described. FIG. 1 is a diagram illustrating a configuration of an LTE system.
 図1に示すように、LTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。 As shown in FIG. 1, the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
 UE100は、無線端末に相当する。UE100は、移動型の通信装置であり、セル(サービングセル)との無線通信を行う。UE100の構成については後述する。 UE 100 corresponds to a wireless terminal. The UE 100 is a mobile communication device, and performs radio communication with a cell (serving cell). The configuration of the UE 100 will be described later.
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。 E-UTRAN 10 corresponds to a radio access network. The E-UTRAN 10 includes an eNB 200 (evolved Node-B). The eNB 200 corresponds to a base station. The eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。 The eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell. The eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like. “Cell” is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
 EPC20は、コアネットワークに相当する。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。S-GWは、データの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。E-UTRAN10及びEPC20は、ネットワークを構成する。 The EPC 20 corresponds to a core network. The EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300. MME performs various mobility control etc. with respect to UE100. The S-GW performs data transfer control. The MME / S-GW 300 is connected to the eNB 200 via the S1 interface. The E-UTRAN 10 and the EPC 20 constitute a network.
 図2は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図2に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。 FIG. 2 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 2, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer. The second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. The third layer includes an RRC (Radio Resource Control) layer.
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してデータ及び制御信号が伝送される。 The physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data and control signals are transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
 MAC層は、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定するスケジューラを含む。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control signals are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel. The MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and an allocation resource block to the UE 100.
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してデータ及び制御信号が伝送される。 The RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression / decompression and encryption / decryption.
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態(コネクティッド状態)であり、そうでない場合、UE100はRRCアイドル状態(アイドル状態)である。 The RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200. The RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state (connected state), and otherwise, the UE 100 is in the RRC idle state (idle state).
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理等を行う。 The NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
 図3は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。 FIG. 3 is a configuration diagram of a radio frame used in the LTE system. In the LTE system, OFDMA (Orthogonal Frequency Division Multiplexing Access) is applied to the downlink, and SC-FDMA (Single Carrier Frequency Multiple Access) is applied to the uplink.
 図3に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。また、UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。 As shown in FIG. 3, the radio frame is composed of 10 subframes arranged in the time direction. Each subframe is composed of two slots arranged in the time direction. The length of each subframe is 1 ms, and the length of each slot is 0.5 ms. Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction. Each resource block includes a plurality of subcarriers in the frequency direction. One symbol and one subcarrier constitute one resource element (RE). Further, among radio resources (time / frequency resources) allocated to the UE 100, a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用される領域である。PDCCHの詳細については後述する。また、各サブフレームの残りの部分は、主に下りリンクデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できる領域である。 In the downlink, the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting a downlink control signal. Details of the PDCCH will be described later. The remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting downlink data.
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用される領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できる領域である。 In the uplink, both ends in the frequency direction in each subframe are regions used mainly as physical uplink control channels (PUCCH) for transmitting uplink control signals. The remaining part of each subframe is an area that can be used as a physical uplink shared channel (PUSCH) mainly for transmitting uplink data.
 (Sidelink Direct Communication)
 以下において、D2D ProSeについて、「Sidelink Direct Communication」を主として説明する。D2D ProSeにおいて、複数のUE100は、eNB200を介さない直接的な無線リンクを介して各種の信号を送受信する。このような直接的な無線リンクは、「サイドリンク(Sidelink)」と称される。D2D ProSeのモードとしては、「Sidelink Direct Discovery」及び「Sidelink Direct Communication」の2つのモードが規定されている。
(Sidelink Direct Communication)
In the following, “Sidelink Direct Communication” will be mainly described for D2D ProSe. In D2D ProSe, a plurality of UEs 100 transmit and receive various signals via direct radio links that do not go through the eNB 200. Such a direct radio link is referred to as a “side link”. As modes of D2D ProSe, two modes of “Sidelink Direct Discovery” and “Sidelink Direct Communication” are defined.
 「Sidelink Direct Discovery」は、特定の宛先を指定しないディスカバリー信号をUE間で直接的に伝送することにより、相手先を探索するモードである。「Sidelink Direct Communication」は、特定の宛先(宛先グループ)を指定してデータをUE間で直接的に伝送するモードである。「Sidelink Direct Communication」のリソース割り当てタイプには、「Sidelink Direct Communication」の無線リソースをeNB200が指定する「モード1」と、「Sidelink Direct Communication」の無線リソースをUE100が選択する「モード2」と、がある。以下において、モード1の「Sidelink Direct Communication」を主として想定する。 “Sidelink Direct Discovery” is a mode in which a destination is searched by directly transmitting a discovery signal that does not designate a specific destination between UEs. “Sidelink Direct Communication” is a mode in which data is directly transmitted between UEs by designating a specific destination (destination group). The resource allocation type of “Sidelink Direct Communication” includes “Mode 1” in which the eNB 200 specifies the radio resource of “Sidelink Direct Communication”, and “Mode 2” in which the UE 100 selects the radio resource of “Sidelink Direct Communication”, There is. In the following, “Sidelink Direct Communication” in mode 1 is mainly assumed.
 図4は、「Sidelink Direct Communication」のプロトコルスタック図である。図4に示すように、「Sidelink Direct Communication」プロトコルスタックは、物理(PHY)層、MAC層、RLC層、及びPDCP層を含む。UE(A)の物理層とUE(B)の物理層との間では、物理サイドリンク制御チャネル(PSCCH)を介して制御信号が伝送され、物理サイドリンク共有チャネル(PSSCH)を介してデータが伝送される。また、物理サイドリンクブロードキャストチャネル(PSBCH)を介して同期信号等が伝送されてもよい。UE(A)のMAC層とUE(B)のMAC層との間では、サイドリンク共有チャネル(SL-SCH)と称されるトランスポートチャネルを介してデータが伝送される。UE(A)のRLC層とUE(B)のRLC層との間では、サイドリンクトラフィックチャネル(STCH)と称される論理チャネルを介してデータが伝送される。 FIG. 4 is a protocol stack diagram of “Sidelink Direct Communication”. As shown in FIG. 4, the “Sidelink Direct Communication” protocol stack includes a physical (PHY) layer, a MAC layer, an RLC layer, and a PDCP layer. Between the physical layer of UE (A) and the physical layer of UE (B), a control signal is transmitted via the physical side link control channel (PSCCH), and data is transmitted via the physical side link shared channel (PSSCH). Is transmitted. Further, a synchronization signal or the like may be transmitted via a physical side link broadcast channel (PSBCH). Data is transmitted between the MAC layer of UE (A) and the MAC layer of UE (B) via a transport channel called a side link shared channel (SL-SCH). Between the RLC layer of UE (A) and the RLC layer of UE (B), data is transmitted through a logical channel called a side link traffic channel (STCH).
 図5は、「Sidelink Direct Communication」におけるMAC層の処理を説明するための図である。図5に示すように、送信側のMAC層は、STCH上のデータを論理チャネル優先度付け(Logical Channel Prioritization)し、多重化(Multiplexing)した後、HARQエンティティを介して物理層にデータを渡す。一方、受信側のMAC層は、SL-SCH上のデータをHARQエンティティが受け取り、宛先識別子に基づくPDUフィルタリングを行った後、分離(De-Multiplexing)して、データをRLC層に渡す。 FIG. 5 is a diagram for explaining the processing of the MAC layer in “Sidelink Direct Communication”. As shown in FIG. 5, the MAC layer on the transmission side assigns logical channel priorities to the data on the STCH (Logical Channel Priority), multiplexes the data, and passes the data to the physical layer via the HARQ entity. . On the other hand, the MAC layer on the receiving side receives data on the SL-SCH by the HARQ entity, performs PDU filtering based on the destination identifier, and then separates (De-Multiplexing) and passes the data to the RLC layer.
 なお、以下において、データ送信側のUE100をUE100-1と表記し、データ受信側のUE100をUE100-2と表記する。 In the following description, the UE 100 on the data transmission side is denoted as UE 100-1, and the UE 100 on the data reception side is denoted as UE 100-2.
 (V2Vメッセージ)
 以下において、「Road Safety」用のメッセージ(V2Vメッセージ)について説明する。
(V2V message)
Hereinafter, a message (V2V message) for “Load Safety” will be described.
 V2Vメッセージのメッセージ長は、「The Society of the Automotive Engineers」が定義した「Basic Safety Message for DSRC」の場合、45バイト、49バイト、99バイト、166バイト、427バイト、507バイト、又は600バイトである(「SAE J2735: (R) Dedicated Short Range Communications (DSRC) Message Set Dictionary」参照)。なお、V2Vメッセージは、例えば以下のような情報要素を含む(「700MHz帯高速道路交通システム実験用車車間通信メッセージガイドライン ITS FORUM RC-013 1.0版」参照)。 The message length of the V2V message is 45 bytes, 49 bytes, 99 bytes, 166 bytes, 427 bytes, 507 bytes, or 600 bytes in the case of “Basic Safety Message for DSRC” defined by “The Society of the Automotive Engineers”. Yes (see "SAE J2735: (R) Dedicated Short Range Communication (DSRC) Message Set Dictionary"). Note that the V2V message includes, for example, the following information elements (see “700 MHz band highway traffic system experimental vehicle-to-vehicle communication message guideline ITS FORUM RC-013 1.0 version”).
 ・車両情報: 1.車両ID、2.メッセージID、3.インクリメントカウンタ、4.データ長
 ・メッセージ内容確定時刻情報
 ・位置情報: 1.緯度、緯度、高度、2.位置取得情報(測定基準など)、
 ・車両状態情報: 1.車速、方位角、加速度、2.速度取得情報、加速度取得情報
 ・車両属性情報: 1.車両サイズ、用途種別
-Vehicle information: 1. Vehicle ID, 2. Message ID, 3. Increment counter, 4. Data length-Message content confirmation time information-Location information: 1. Latitude, latitude, altitude, 2. Location acquisition information (measurement standards, etc.) ),
-Vehicle status information: 1. Vehicle speed, azimuth, acceleration, 2. Speed acquisition information, acceleration acquisition information-Vehicle attribute information: 1. Vehicle size, application type
 V2Vメッセージの伝送には低遅延が要求される。例えば、データ発生から送信まで100ms以内であることが要求される。よって、V2Vメッセージに係る処理を迅速化することが重要である。 • Low delay is required for V2V message transmission. For example, it is required to be within 100 ms from data generation to transmission. Therefore, it is important to speed up the processing related to the V2V message.
 (基地局)
 以下において、第1実施形態に係るeNB200(基地局)について説明する。図6は、eNB200のブロック図である。図6に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
(base station)
The eNB 200 (base station) according to the first embodiment will be described below. FIG. 6 is a block diagram of the eNB 200. As illustrated in FIG. 6, the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。 The transmission unit 210 performs various transmissions under the control of the control unit 230. The transmission unit 210 includes an antenna and a transmitter. The transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。 The receiving unit 220 performs various types of reception under the control of the control unit 230. The receiving unit 220 includes an antenna and a receiver. The receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
 制御部230は、eNB200における各種の制御を行う。制御部230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、各種の処理及び上述した各種の通信プロトコルを実行する。 The control unit 230 performs various controls in the eNB 200. The control unit 230 includes a processor and a memory. The memory stores a program executed by the processor and information used for processing by the processor. The processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory. The processor executes various processes and the various communication protocols described above.
 バックホール通信部240は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に使用される。 The backhaul communication unit 240 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface. The backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
 (無線端末)
 以下において、第1実施形態に係るUE100(無線端末)について説明する。第1実施形態に係るUE100は、主として車両に搭載される。
(Wireless terminal)
Below, UE100 (radio | wireless terminal) which concerns on 1st Embodiment is demonstrated. UE100 which concerns on 1st Embodiment is mainly mounted in a vehicle.
 図7は、UE100のブロック図である。図7に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。 FIG. 7 is a block diagram of the UE 100. As illustrated in FIG. 7, the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。 The receiving unit 110 performs various types of reception under the control of the control unit 130. The receiving unit 110 includes an antenna and a receiver. The receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。 The transmission unit 120 performs various transmissions under the control of the control unit 130. The transmission unit 120 includes an antenna and a transmitter. The transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
 制御部130は、UE100における各種の制御を行う。制御部130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサは、各種の処理及び上述した各種の通信プロトコルを実行する。 The control unit 130 performs various controls in the UE 100. The control unit 130 includes a processor and a memory. The memory stores a program executed by the processor and information used for processing by the processor. The processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory. The processor may include a codec that performs encoding / decoding of an audio / video signal. The processor executes various processes and the various communication protocols described above.
 先ず、UE100がデータ送信側(UE100-1)である場合の動作について説明する。送信部120は、「PSCCH」を介して、データの割り当て情報を含む制御信号をUE100-2に直接的に送信する。データの割り当て情報を含む制御信号は、サイドリンク制御情報(SCI)と称される。その後、送信部120は、「PSSCH」を介して、割り当て情報に従ってデータをUE100-2に直接的に送信する。 First, the operation when the UE 100 is the data transmission side (UE 100-1) will be described. Transmitting section 120 transmits a control signal including data allocation information directly to UE 100-2 via “PSCCH”. A control signal including data allocation information is referred to as side link control information (SCI). Then, the transmission unit 120 directly transmits data to the UE 100-2 according to the allocation information via “PSSCH”.
 第1実施形態において、送信部120は、データとして緊急データ(V2Vメッセージ)を送信する場合において、緊急データを送信することを示す情報(Emergency Flag)を「SCI」に含める。 In the first embodiment, when transmitting emergency data (V2V message) as data, the transmission unit 120 includes information (Emergency Flag) indicating that emergency data is transmitted in “SCI”.
 図8は、第1実施形態に係る「SCI」の構成例を示す図である。図8に示すように、「SCI」は、「Frequency Hopping flag」、「Resource block assignment and hopping resource allocation」、「Time resource pattern」、「Modulation and coding scheme」、「Timing advance indication」、「Group destination ID」、「Emergency Flag」の各フィールドを含む。例えば、「Emergency Flag」のフィールドが「1」である場合、緊急データを送信することを示す。「Emergency Flag」のフィールドが「0」である場合、緊急データを送信しないことを示す。 FIG. 8 is a diagram illustrating a configuration example of “SCI” according to the first embodiment. As shown in FIG. 8, “SCI” is “Frequency Hopping flag”, “Resource block assignment and hopping resource allocation”, “Time resource pattern”, “Modulation timing”, “Modulation timing”, “Modulation timing”, “Modification timing” Each field includes “ID” and “Emergency Flag”. For example, when the “Emergency Flag” field is “1”, it indicates that emergency data is to be transmitted. When the “Emergency Flag” field is “0”, it indicates that emergency data is not transmitted.
 なお、8ビットの「Group destination ID」は、データの宛先を指定する宛先識別子を格納可能な宛先フィールドに相当する。「Group destination ID」フィールドは、宛先識別子(宛先グループ識別子)を格納する。 The 8-bit “Group destination ID” corresponds to a destination field that can store a destination identifier that specifies a data destination. The “Group destination ID” field stores a destination identifier (destination group identifier).
 次に、UE100がデータ受信側(UE100-2)である場合の動作について説明する。 Next, the operation when the UE 100 is the data receiving side (UE 100-2) will be described.
 受信部110は、データの割り当て情報を含む「SCI」をUE100-1から直接的に受信した後、割り当て情報に従ってデータをUE100-1から直接的に受信する。 The reception unit 110 receives “SCI” including data allocation information directly from the UE 100-1 and then receives data directly from the UE 100-1 according to the allocation information.
 緊急データを送信することを示す情報(Emergency Flag)が「SCI」に含まれている場合、制御部130は、UE100-1から緊急データが送信されると認識する。この場合、制御部130は、「Group destination ID」と無関係に、「SCI」に対応する緊急データを受信するための処理を行うことが好ましい。また、「Emergency Flag」が「SCI」に含まれている場合、制御部130は、緊急対応のための準備(車両制御又はセンサ確認等)を行ってもよい。 When information (Emergency Flag) indicating that emergency data is transmitted is included in “SCI”, the control unit 130 recognizes that emergency data is transmitted from the UE 100-1. In this case, it is preferable that the control unit 130 performs processing for receiving emergency data corresponding to “SCI” regardless of “Group destination ID”. Further, when “Emergency Flag” is included in “SCI”, the control unit 130 may perform preparations for emergency response (vehicle control, sensor confirmation, or the like).
 (動作シーケンス)
 以下において、第1実施形態に係る動作シーケンスを説明する。図9は、第1実施形態に係る動作シーケンス図である。図9の初期状態において、UE100-1はアイドル状態であって、かつ緊急データ(V2Vメッセージ)の送信を行うことを決定したと仮定する。
(Operation sequence)
Hereinafter, an operation sequence according to the first embodiment will be described. FIG. 9 is an operation sequence diagram according to the first embodiment. In the initial state of FIG. 9, it is assumed that UE 100-1 is in an idle state and has decided to transmit emergency data (V2V message).
 図9に示すように、ステップS101において、eNB200は、「Sidelink Direct Communication」の各パラメータを含むシステム情報を自セル内にブロードキャストで送信する。このようなシステム情報は、システム情報ブロックタイプ18(SIB18)と称される。UE100-1は、「SIB18」を受信する。 As shown in FIG. 9, in step S101, the eNB 200 broadcasts system information including each parameter of “Sidelink Direct Communication” in its own cell. Such system information is referred to as system information block type 18 (SIB18). The UE 100-1 receives “SIB18”.
 ステップS102において、UE100-1は、eNB200とのRRC接続を確立し、コネクティッド状態に遷移する。 In step S102, the UE 100-1 establishes an RRC connection with the eNB 200, and transitions to a connected state.
 ステップS103において、UE100-1は、「D2D ProSe」に関する通知メッセージ(Sidelink UE Infomation)をeNB200に送信する。図10(a)に、「Sidelink UE Infomation」メッセージに含まれる主要なパラメータを示す。図10(a)に示すように、「Sidelink UE Infomation」メッセージは、「Sidelink Direct Communication」の送信要求(commTxResourceReq)を含む。eNB200は、「Sidelink UE Infomation」を受信する。 In step S103, the UE 100-1 transmits a notification message (Sidelink UE Information) related to “D2D ProSe” to the eNB 200. FIG. 10A shows main parameters included in the “Sidelink UE Information” message. As shown in FIG. 10A, the “Sidelink UE Information” message includes a transmission request (comTxResourceReq) of “Sidelink Direct Communication”. The eNB 200 receives “Sidelink UE Information”.
 ステップS104において、eNB200は、「D2D ProSe」に関する各種パラメータを含む個別RRCメッセージ(RRC Connection Reconfiguration)をUE100-1に送信する。図10(b)に、「RRC Connection Reconfiguration」メッセージに含まれる主要なパラメータを示す。図10(b)に示すように、「RRC Connection Reconfiguration」メッセージは、「Sidelink Direct Communication」の設定パラメータ(SL-CommConfig)を含む。UE100-1は、「RRC Connection Reconfiguration」メッセージを受信する。 In step S104, the eNB 200 transmits an individual RRC message (RRC Connection Reconfiguration) including various parameters related to “D2D ProSe” to the UE 100-1. FIG. 10B shows the main parameters included in the “RRC Connection Reconfiguration” message. As shown in FIG. 10B, the “RRC Connection Reconfiguration” message includes a setting parameter (SL-CommConfig) of “Sidelink Direct Communication”. The UE 100-1 receives the “RRC Connection Reconfiguration” message.
 ステップS105において、UE100-1は、「Sidelink Direct Communication」の送信データ量を示すバッファ状態報告(Prose BSR)をeNB200に送信する。eNB200は、「Prose BSR」を受信する。但し、ステップS105は省略してもよい。 In step S105, the UE 100-1 transmits a buffer status report (Prose BSR) indicating the transmission data amount of “Sidelink Direct Communication” to the eNB 200. The eNB 200 receives “Prose BSR”. However, step S105 may be omitted.
 ステップS106において、eNB200は、「Sidelink Direct Communication」のための割り当てリソース情報(スケジューリング情報)を含む下りリンク制御情報(DCI)をUE100-1に送信する。このような「DCI」は、「DCI format 5」と称される。UE100-1は、「DCI」を受信する。 In step S106, the eNB 200 transmits downlink control information (DCI) including allocation resource information (scheduling information) for "Sidelink Direct Communication" to the UE 100-1. Such “DCI” is referred to as “DCI format 5”. The UE 100-1 receives “DCI”.
 ステップS107において、UE100-1は、「Emergency Flag」を含む「SCI」をUE100-2に送信する。UE100-2は、「Group destination ID」と無関係に、「SCI」に対応する緊急データを受信するための処理を開始する。 In step S107, the UE 100-1 transmits “SCI” including “Emergency Flag” to the UE 100-2. The UE 100-2 starts a process for receiving emergency data corresponding to “SCI” regardless of the “Group destination ID”.
 ステップS108以降において、UE100-1は、「SCI」により示した無線リソースを使用して、緊急データ(V2Vメッセージ)をUE100-2に送信する。UE100-2は、「SCI」に基づいて、緊急データ(V2Vメッセージ)を受信する。 In step S108 and subsequent steps, the UE 100-1 transmits emergency data (V2V message) to the UE 100-2 using the radio resource indicated by “SCI”. The UE 100-2 receives the emergency data (V2V message) based on “SCI”.
 (受信側の動作の具体例)
 図11は、UE100-2における動作の具体例を説明するための図である。
(Specific example of receiver operation)
FIG. 11 is a diagram for explaining a specific example of the operation in the UE 100-2.
 図11に示すように、UE100-1は、事故(車両事故)の発生を検知し、当該事故に関するV2Vメッセージを生成する。UE100-1は、「Emergency Flag」を含む「SCI」を送信する。UE100-2は、「Emergency Flag」を含む「SCI」を受信する。UE100-2は、近くで事故が発生したと判断し、緊急対応のための準備(車両制御又はセンサ確認等)を開始する。 As shown in FIG. 11, the UE 100-1 detects the occurrence of an accident (vehicle accident) and generates a V2V message related to the accident. The UE 100-1 transmits “SCI” including “Emergency Flag”. The UE 100-2 receives “SCI” including “Emergency Flag”. The UE 100-2 determines that an accident has occurred nearby, and starts preparations for emergency response (vehicle control, sensor confirmation, etc.).
 UE100-1は、「SCI」により示した無線リソースを使用して、緊急データ(V2Vメッセージ)を送信する。UE100-2は、「SCI」中の「Group destination ID」と無関係に、「SCI」に対応する緊急データ(V2Vメッセージ)を受信する。UE100-2は、緊急データ(V2Vメッセージ)に基づいて、事故の詳細を把握する。 UE 100-1 transmits emergency data (V2V message) using the radio resource indicated by "SCI". The UE 100-2 receives emergency data (V2V message) corresponding to “SCI” regardless of “Group destination ID” in “SCI”. The UE 100-2 grasps the details of the accident based on the emergency data (V2V message).
 [第1実施形態の変更例]
 本変更例において、緊急データを送信することを示す情報は、「SCI」中の宛先フィールド(「Group destination ID」フィールド)に含められる。すなわち、本変更例においては、「Emergency Flag」フィールドは不要である。
[Modification of First Embodiment]
In the present modification, information indicating that emergency data is transmitted is included in a destination field (“Group destination ID” field) in “SCI”. That is, in the present modification, the “Emergency Flag” field is unnecessary.
 本変更例において、緊急データを送信することを示す情報は、特定の宛先を指定しないことを示すブロードキャスト識別子である。 In this modified example, the information indicating that emergency data is transmitted is a broadcast identifier indicating that a specific destination is not specified.
 図8に示したように、8ビットの「Group destination ID」は、データの宛先を指定する宛先識別子を格納可能な宛先フィールドに相当する。通常、「Group destination ID」フィールドは、宛先識別子(宛先グループ識別子)を格納する。本変更例において、UE100-1の送信部120は、緊急データ(V2Vメッセージ)を送信する場合、ブロードキャスト識別子を「Group destination ID」フィールドに含める。 As shown in FIG. 8, the 8-bit “Group destination ID” corresponds to a destination field that can store a destination identifier that designates a data destination. Normally, the “Group destination ID” field stores a destination identifier (destination group identifier). In this modified example, when transmitting emergency data (V2V message), the transmission unit 120 of the UE 100-1 includes a broadcast identifier in the “Group destination ID” field.
 図12は、MAC層で取り扱うデータ(PDU)の「MAC Sub-header」の構成例を示す図である。図12に示すように、「MAC Sub-header」は、宛先識別子(宛先グループ識別子)を格納する「DST」フィールドを含む。「DST」フィールドは、2オクテット(16ビット)である。 FIG. 12 is a diagram illustrating a configuration example of “MAC Sub-header” of data (PDU) handled in the MAC layer. As shown in FIG. 12, “MAC Sub-header” includes a “DST” field for storing a destination identifier (destination group identifier). The “DST” field is 2 octets (16 bits).
 宛先識別子は、全体として、24ビットである。24ビットのうち6ビットが「SCI」の「Group destination ID」フィールドに格納され、24ビットのうち16ビットが「MAC Sub-header」の「DST」フィールドに格納される。これにより、受信側の物理層において1次フィルタリングを行い、受信側のMAC層で2次フィルタリングを行う。 The destination identifier is 24 bits as a whole. Of the 24 bits, 6 bits are stored in the “Group destination ID” field of “SCI”, and 16 bits of the 24 bits are stored in the “DST” field of “MAC Sub-header”. Thereby, primary filtering is performed in the physical layer on the reception side, and secondary filtering is performed in the MAC layer on the reception side.
 例えば、ブロードキャスト識別子は、24ビットの全てを「1」で構成したものである。この場合、「Group destination ID」フィールドが全て「1」となり、「MAC Sub-header」の「DST」フィールドも全て「1」となる。ここで、全て「1」に設定された「Group destination ID」及び全て「1」に設定された「DST」の何れもブロードキャスト識別子を構成する。 For example, the broadcast identifier is composed of all 24 bits of “1”. In this case, the “Group destination ID” field is all “1”, and the “DST” field of “MAC Sub-header” is also all “1”. Here, both “Group destination ID” set to “1” and “DST” set to “1” all constitute a broadcast identifier.
 UE100-2は、「Group destination ID」フィールドにブロードキャスト識別子が格納された「SCI」を受信すると、緊急データ(V2Vメッセージ)がUE100-1から送信されると認識し、1次フィルタリングを通過させる。そして、UE100-2は、「MAC Sub-header」の「DST」フィールドにブロードキャスト識別子が格納された緊急データ(V2Vメッセージ)を受信すると、2次フィルタリングを通過させる。 When the UE 100-2 receives “SCI” in which the broadcast identifier is stored in the “Group destination ID” field, the UE 100-2 recognizes that the emergency data (V2V message) is transmitted from the UE 100-1, and passes the primary filtering. Then, when receiving emergency data (V2V message) in which the broadcast identifier is stored in the “DST” field of “MAC Sub-header”, the UE 100-2 passes the secondary filtering.
 [第2実施形態]
 第2実施形態について、第1実施形態との相違点を主として説明する。第2実施形態は、「Sidelink Direct Communication」のためのリソース割り当てをeNB200から受けるまでの処理を迅速化するための実施形態である。
[Second Embodiment]
The second embodiment will be described mainly with respect to differences from the first embodiment. The second embodiment is an embodiment for accelerating the processing until receiving a resource assignment for “Sidelink Direct Communication” from the eNB 200.
 (送信側の無線端末)
 以下において、第2実施形態に係るUE100-1(送信側の無線端末)について説明する。
(Sending wireless terminal)
Hereinafter, UE 100-1 (radio terminal on the transmission side) according to the second embodiment will be described.
 第2実施形態に係るUE100-1の制御部130は、「Sidelink Direct Communication」により緊急データを送信する場合において、緊急データ(V2Vメッセージ)を送信するための無線リソースの割り当てを受けるために、緊急データを送信することを示す情報をeNB200に通知する。 The control unit 130 of the UE 100-1 according to the second embodiment receives an allocation of radio resources for transmitting emergency data (V2V message) in the case of transmitting emergency data by “Sidelink Direct Communication”. Information indicating transmission of data is notified to the eNB 200.
 第2実施形態において、制御部130は、「D2D ProSe」に関する通知メッセージ(「Sidelink UE Infomation」メッセージ)をeNB200に送信する際に、緊急データを送信することを示す情報を「Sidelink UE Infomation」メッセージに含める。 In the second embodiment, the control unit 130 transmits information indicating that emergency data is to be transmitted when a notification message (“Sidelink UE Information” message) regarding “D2D ProSe” is transmitted to the eNB 200, and a “Sidelink UE Information” message. Include in
 (基地局)
 以下において、第2実施形態に係るeNB200(基地局)について説明する。
(base station)
Hereinafter, the eNB 200 (base station) according to the second embodiment will be described.
 第2実施形態に係るeNB200の受信部220は、「Sidelink Direct Communication」により緊急データ(V2Vメッセージ)を送信することを示す情報をUE100-1から受信する。eNB200の制御部230は、受信部220が受信した情報に応じて、緊急データを送信するための無線リソースを優先的にUE100-1に割り当てる。 The receiving unit 220 of the eNB 200 according to the second embodiment receives, from the UE 100-1, information indicating that emergency data (V2V message) is to be transmitted by “Sidelink Direct Communication”. The control unit 230 of the eNB 200 preferentially allocates radio resources for transmitting emergency data to the UE 100-1 according to the information received by the reception unit 220.
 (動作シーケンス)
 以下において、第2実施形態に係る動作シーケンスを説明する。図13は、第2実施形態に係る動作シーケンス図である。ここでは、第1実施形態との相違点を主として説明し、重複する説明を省略する。
(Operation sequence)
Hereinafter, an operation sequence according to the second embodiment will be described. FIG. 13 is an operation sequence diagram according to the second embodiment. Here, differences from the first embodiment will be mainly described, and redundant description will be omitted.
 図13に示すように、ステップS201において、eNB200は、「SIB18」を自セル内にブロードキャストで送信する。UE100-1は、「SIB18」を受信する。 As shown in FIG. 13, in step S201, the eNB 200 transmits “SIB18” by broadcast in its own cell. The UE 100-1 receives “SIB18”.
 ステップS202において、UE100-1は、eNB200とのRRC接続を確立し、コネクティッド状態に遷移する。 In step S202, the UE 100-1 establishes an RRC connection with the eNB 200, and transitions to a connected state.
 ステップS203において、UE100-1は、「Sidelink UE Infomation」をeNB200に送信する。第2実施形態において、「Sidelink UE Infomation」は、「Sidelink Direct Communication」により緊急データを送信する(送信したい)ことを示す緊急データ情報を含む。緊急データ情報は、「Sidelink UE Infomation」の新規フィールド(「Cause」フィールド又は「Emergency Flag」フィールド)に格納される情報であってもよい。或いは、緊急データ情報は、10(a)に示した「SL-DestinationInfoList」に含められる特定の識別子であってもよい。「SL-DestinationInfoList」には、最大16個の宛先識別子を含めることができる。例えば、「SL-DestinationInfoList」にブロードキャスト識別子(「第1実施形態の変更例」を参照)を含めることにより、ブロードキャスト識別子を緊急データ情報としてもよい。緊急データ情報により、eNB200は、UE100-1が緊急データを送信したいことを把握し、UE100-1に優先的に割り当てる無線リソースを準備する。 In step S203, the UE 100-1 transmits “Sidelink UE Information” to the eNB 200. In the second embodiment, “Sidelink UE Information” includes emergency data information indicating that emergency data is to be transmitted (want to be transmitted) by “Sidelink Direct Communication”. The emergency data information may be information stored in a new field (“Cause” field or “Emergency Flag” field) of “Sidelink UE Information”. Alternatively, the emergency data information may be a specific identifier included in the “SL-DestinationInfoList” shown in 10 (a). “SL-DestinationInfoList” can include a maximum of 16 destination identifiers. For example, the broadcast identifier may be used as emergency data information by including a broadcast identifier (see “Modification of First Embodiment”) in “SL-DestinationInfoList”. From the emergency data information, the eNB 200 grasps that the UE 100-1 wants to transmit emergency data, and prepares radio resources to be preferentially allocated to the UE 100-1.
 ステップS204において、eNB200は、「D2D ProSe」に関する各種パラメータを含む個別RRCメッセージ(RRC Connection Reconfiguration)をUE100-1に送信する。UE100-1は、「RRC Connection Reconfiguration」メッセージを受信する。「RRC Connection Reconfiguration」メッセージは、緊急データ情報に対する肯定応答(Ack)又は迅速な無線リソース割り当てを行うことを示す情報を含んでもよい。 In step S204, the eNB 200 transmits an individual RRC message (RRC Connection Reconfiguration) including various parameters related to “D2D ProSe” to the UE 100-1. The UE 100-1 receives the “RRC Connection Reconfiguration” message. The “RRC Connection Reconfiguration” message may include an acknowledgment (Ack) for emergency data information or information indicating that quick radio resource allocation is performed.
 本シーケンスにおいて、UE100-1からeNB200への「Prose BSR」の送信が省略される。例えば、eNB200は、UE100-1のバッファ状態と無関係に、できるだけ低遅延で無線リソースを割り当てる。 In this sequence, transmission of “Prose BSR” from the UE 100-1 to the eNB 200 is omitted. For example, the eNB 200 allocates radio resources with the lowest possible delay regardless of the buffer state of the UE 100-1.
 ステップS205において、eNB200は、「Sidelink Direct Communication」のための割り当てリソース情報(スケジューリング情報)を含む下りリンク制御情報(DCI)をUE100-1に送信する。UE100-1は、「DCI」を受信する。以降の動作(ステップS206乃至S207)については、第1実施形態と同様である。 In step S205, the eNB 200 transmits, to the UE 100-1, downlink control information (DCI) including allocation resource information (scheduling information) for “Sidelink Direct Communication”. The UE 100-1 receives “DCI”. The subsequent operations (steps S206 to S207) are the same as those in the first embodiment.
 (Sidelink UE Infomationの具体例)
 図14は、第2実施形態に係る「Sidelink UE Infomation」メッセージの具体例を示す図である。図14の破線で囲む部分が新規フィールドである。
(Specific example of Sidelink UE Information)
FIG. 14 is a diagram illustrating a specific example of a “Sidelink UE Information” message according to the second embodiment. A portion surrounded by a broken line in FIG. 14 is a new field.
 図14に示すように、「Sidelink UE Infomation」メッセージは、「Sidelink Direct Communication」の送信を行う理由を示す「commTxCause」フィールドを含む。「commTxCause」フィールドには、例えば、「emergency」、「highPriorityAccess」、「mt-Access」、「mo-Signaling」、「mo-Data」、「delayTolerantAccess」の何れかが設定される。ここで、「emergency」は緊急呼を示す。「highPriorityAccess」は、Access classが11-15(11: PLMN Use, 12:Security Service, 13: Public Utilities (e.g. water/gas suppliers), 14:Emergency Services, 15:PLMN Staff)であることを示す。「mt-Access」は、paging responseを示す。「mo-Signaling」は、tracking area update等のコントロールシグナルを示す。「mo-Data」は通常データ送信を示す。「delayTolerantAccess」は低優先度シグナルを示す。 As shown in FIG. 14, the “Sidelink UE Information” message includes a “commTxCause” field that indicates the reason for transmitting “Sidelink Direct Communication”. In the “commTxCause” field, for example, “emergency”, “high Priority Access”, “mt-Access”, “mo-Signaling”, “mo-Data”, or “delayTolerantAccess” is set. Here, “emergency” indicates an emergency call. “High Priority Access” indicates that Access class is 11-15 (11: PLMN Use, 12: Security Service, 13: Public Utilities (e.g. water / gas suppliers), 14: Emergency Services, 15: PLMN Staff). “Mt-Access” indicates paging response. “Mo-Signaling” indicates a control signal such as tracking area update. “Mo-Data” indicates normal data transmission. “DelayTolerantAccess” indicates a low priority signal.
 [第2実施形態の変更例]
 「Sidelink Direct Communication」により緊急データを送信する(送信したい)ことを示す緊急データ情報を、「Sidelink UE Infomation」メッセージに代えて、「RRC connection request」メッセージに含めてもよい。「RRC connection request」メッセージは、図13のステップS202においてUE100-1からeNB200に送信される。「RRC connection request」メッセージは、eNB200との接続を確立するための要求メッセージに相当する。
[Modification Example of Second Embodiment]
Instead of the “Sidelink UE Information” message, the “RRC connection request” message may include emergency data information indicating that emergency data is to be transmitted (want to be transmitted) by “Sidelink Direct Communication”. The “RRC connection request” message is transmitted from the UE 100-1 to the eNB 200 in step S202 of FIG. The “RRC connection request” message corresponds to a request message for establishing a connection with the eNB 200.
 [その他の実施形態]
 上述した第1実施形態及び第2実施形態において、緊急データとしてV2Vメッセージを例示した。しかしながら、V2Vメッセージ以外の緊急データの伝送に本発明を適用可能である。
[Other Embodiments]
In the first embodiment and the second embodiment described above, the V2V message is exemplified as emergency data. However, the present invention can be applied to transmission of emergency data other than V2V messages.
 上述した第1実施形態及び第2実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本発明はLTEシステムに限定されない。LTEシステム以外のシステムに本発明を適用してもよい。 In the first embodiment and the second embodiment described above, the LTE system is exemplified as the mobile communication system. However, the present invention is not limited to LTE systems. The present invention may be applied to a system other than the LTE system.
 [相互参照]
 日本国特許出願第2015-37504号(2015年2月27日)の全内容が参照により本願明細書に組み込まれている。
[Cross-reference]
The entire contents of Japanese Patent Application No. 2015-37504 (February 27, 2015) are incorporated herein by reference.
 本発明は、通信分野において有用である。 The present invention is useful in the communication field.

Claims (14)

  1.  データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる無線端末であって、
     前記データの割り当て情報を含む制御信号を他の無線端末に直接的に送信した後、前記割り当て情報に従って前記データを前記他の無線端末に直接的に送信する送信部を備え、
     前記送信部は、前記データとして緊急データを送信する場合において、前記緊急データを送信することを示す情報を前記制御信号に含める無線端末。
    A wireless terminal used in a mobile communication system for directly transmitting data between wireless terminals,
    A transmission unit that directly transmits a control signal including the data allocation information to another wireless terminal, and then directly transmits the data to the other wireless terminal according to the allocation information;
    In the case where emergency data is transmitted as the data, the transmitting unit includes information indicating that the emergency data is transmitted in the control signal.
  2.  前記制御信号は、前記データの宛先を指定する宛先識別子を格納可能な宛先フィールドを含み、
     前記緊急データを送信することを示す情報は、前記宛先フィールドとは別に前記制御信号に含められる緊急フラグである請求項1に記載の無線端末。
    The control signal includes a destination field capable of storing a destination identifier that specifies a destination of the data;
    The wireless terminal according to claim 1, wherein the information indicating that the emergency data is transmitted is an emergency flag included in the control signal separately from the destination field.
  3.  前記制御信号は、前記データの宛先を指定する宛先識別子を格納可能な宛先フィールドを含み、
     前記緊急データを送信することを示す情報は、前記宛先フィールドに含められる請求項1に記載の無線端末。
    The control signal includes a destination field capable of storing a destination identifier that specifies a destination of the data;
    The wireless terminal according to claim 1, wherein information indicating that the emergency data is transmitted is included in the destination field.
  4.  前記緊急データを送信することを示す情報は、特定の宛先を指定しないことを示すブロードキャスト識別子である請求項3に記載の無線端末。 4. The wireless terminal according to claim 3, wherein the information indicating that the emergency data is transmitted is a broadcast identifier indicating that a specific destination is not specified.
  5.  データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる無線端末であって、
     前記データの割り当て情報を含む制御信号を他の無線端末から直接的に受信した後、前記割り当て情報に従って前記データを前記他の無線端末から直接的に受信する受信部と、
     緊急データを送信することを示す情報が前記制御信号に含まれている場合において、前記他の無線端末から前記緊急データが送信されると認識する制御部と、
    を備える無線端末。
    A wireless terminal used in a mobile communication system for directly transmitting data between wireless terminals,
    A receiving unit that directly receives the data from the other wireless terminal according to the allocation information after receiving the control signal including the data allocation information directly from the other wireless terminal;
    In the case where information indicating that emergency data is transmitted is included in the control signal, a controller that recognizes that the emergency data is transmitted from the other wireless terminal;
    A wireless terminal comprising:
  6.  前記制御信号は、前記データの宛先を指定する宛先識別子を格納可能な宛先フィールドを含み、
     前記緊急データを送信することを示す情報は、前記宛先フィールドとは別に前記制御信号に含められる緊急フラグである請求項5に記載の無線端末。
    The control signal includes a destination field capable of storing a destination identifier that specifies a destination of the data;
    The wireless terminal according to claim 5, wherein the information indicating that the emergency data is transmitted is an emergency flag included in the control signal separately from the destination field.
  7.  前記制御信号は、前記データの宛先を指定する宛先識別子を格納可能な宛先フィールドを含み、
     前記緊急データを送信することを示す情報は、前記宛先フィールドに含められる請求項5に記載の無線端末。
    The control signal includes a destination field capable of storing a destination identifier that specifies a destination of the data;
    The wireless terminal according to claim 5, wherein information indicating that the emergency data is transmitted is included in the destination field.
  8.  前記緊急データを送信することを示す情報は、特定の宛先を指定しないことを示すブロードキャスト識別子である請求項7に記載の無線端末。 The wireless terminal according to claim 7, wherein the information indicating that the emergency data is transmitted is a broadcast identifier indicating that a specific destination is not specified.
  9.  データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる無線端末であって、
     前記データの割り当て情報を含む制御信号を他の無線端末に直接的に送信した後、前記割り当て情報に従って前記データを前記他の無線端末に直接的に送信する送信部と、
     前記データとして緊急データを送信する場合において、前記緊急データを送信するための無線リソースの割り当てを受けるために、前記緊急データを送信することを示す情報を基地局に通知する制御部と、
    を備える無線端末。
    A wireless terminal used in a mobile communication system for directly transmitting data between wireless terminals,
    A transmission unit that directly transmits a control signal including the data allocation information to another wireless terminal, and then transmits the data directly to the other wireless terminal according to the allocation information;
    In the case of transmitting emergency data as the data, a control unit for notifying a base station of information indicating that the emergency data is transmitted in order to receive radio resource allocation for transmitting the emergency data;
    A wireless terminal comprising:
  10.  前記制御部は、無線端末間の直接通信に関する通知メッセージを前記基地局に送信する際に、前記緊急データを送信することを示す情報を前記通知メッセージに含める請求項9に記載の無線端末。 The wireless terminal according to claim 9, wherein the control unit includes, in the notification message, information indicating that the emergency data is transmitted when a notification message related to direct communication between wireless terminals is transmitted to the base station.
  11.  前記制御部は、前記基地局との接続を確立するための要求メッセージを前記基地局に送信する際に、前記緊急データを送信することを示す情報を前記要求メッセージに含める請求項9に記載の無線端末。 The control unit according to claim 9, wherein when the request message for establishing a connection with the base station is transmitted to the base station, the control unit includes information indicating that the emergency data is transmitted in the request message. Wireless terminal.
  12.  データを無線端末間で直接的に伝送する移動通信システムにおいて用いられる基地局であって、
     無線端末間で直接的に伝送するデータとして緊急データを送信することを示す情報を無線端末から受信する受信部と、
     前記受信部が受信した情報に応じて、前記緊急データを送信するための無線リソースを優先的に前記無線端末に割り当てる制御部と、
    を備える基地局。
    A base station used in a mobile communication system for directly transmitting data between wireless terminals,
    A receiving unit that receives information indicating that emergency data is transmitted as data to be transmitted directly between wireless terminals from the wireless terminal;
    A control unit that preferentially allocates radio resources for transmitting the emergency data to the radio terminal according to information received by the reception unit;
    A base station comprising:
  13.  前記緊急データを送信することを示す情報は、無線端末間の直接通信に関する通知メッセージに含まれている請求項12に記載の基地局。 The base station according to claim 12, wherein the information indicating that the emergency data is transmitted is included in a notification message regarding direct communication between wireless terminals.
  14.  前記緊急データを送信することを示す情報は、前記基地局との接続を確立するための要求メッセージに含まれている請求項12に記載の基地局。 The base station according to claim 12, wherein the information indicating that the emergency data is transmitted is included in a request message for establishing a connection with the base station.
PCT/JP2016/054077 2015-02-27 2016-02-12 Wireless terminal and base station WO2016136492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-037504 2015-02-27
JP2015037504 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136492A1 true WO2016136492A1 (en) 2016-09-01

Family

ID=56789251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054077 WO2016136492A1 (en) 2015-02-27 2016-02-12 Wireless terminal and base station

Country Status (1)

Country Link
WO (1) WO2016136492A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3552191A4 (en) * 2016-12-07 2020-07-15 Pehutec OY Apparatus, method and computer program improving emergency communication
US11296850B2 (en) * 2019-05-02 2022-04-05 Samsung Electronics Co., Ltd Method and apparatus for transmission and reception of sidelink feedback in wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147959A1 (en) * 2008-06-04 2009-12-10 三菱電機株式会社 Inter-vehicle communication system and communication terminals
WO2015021185A1 (en) * 2013-08-07 2015-02-12 Interdigital Patent Holdings, Inc. Distributed scheduling for device-to-device communication
WO2015115508A1 (en) * 2014-01-31 2015-08-06 京セラ株式会社 Mobile communication system and user terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147959A1 (en) * 2008-06-04 2009-12-10 三菱電機株式会社 Inter-vehicle communication system and communication terminals
WO2015021185A1 (en) * 2013-08-07 2015-02-12 Interdigital Patent Holdings, Inc. Distributed scheduling for device-to-device communication
WO2015115508A1 (en) * 2014-01-31 2015-08-06 京セラ株式会社 Mobile communication system and user terminal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Public safety requirements of assigned D2D resource allocation for release 12", 3GPP TSG-RAN WG1#78B RL-144194, 27 September 2014 (2014-09-27), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_78b/Docs/R1-144194.zip> *
NOKIA NETWORKS ET AL.: "Further discussion on scheduling assignments", 3GPP TSG-RAN WG1#78 RL-143246, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_78/Docs/Rl-143246.zip> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3552191A4 (en) * 2016-12-07 2020-07-15 Pehutec OY Apparatus, method and computer program improving emergency communication
US11296850B2 (en) * 2019-05-02 2022-04-05 Samsung Electronics Co., Ltd Method and apparatus for transmission and reception of sidelink feedback in wireless communication system
US11943168B2 (en) 2019-05-02 2024-03-26 Samsung Electronics Co., Ltd Method and apparatus for transmission and reception of sidelink feedback in wireless communication system

Similar Documents

Publication Publication Date Title
US10911999B2 (en) Mobile communication system, user terminal, base station, processor, and communication control method
WO2014017476A1 (en) Mobile communication system, base station, user device and processor
US10098162B2 (en) Mobile communication system, user terminal, base station, processor, and communication control method
WO2014208557A1 (en) User terminal, processor, and base station
JP6773657B2 (en) Wireless terminals and base stations
WO2014129465A1 (en) Communication control method, user terminal, and base station
JPWO2015005256A1 (en) Mobile communication system and user terminal
WO2015141847A1 (en) Communications control method and base station
WO2016136493A1 (en) Base station and wireless terminal
WO2016136492A1 (en) Wireless terminal and base station
JP6140292B2 (en) Network device and user terminal
JP6732185B2 (en) User terminal and control method
WO2014192629A1 (en) User terminal, base station, and processor
WO2016163431A1 (en) User terminal and control method
WO2015125686A1 (en) User terminal and communication control method
JP6398032B2 (en) Mobile communication system, user terminal, base station, and processor
WO2015005244A1 (en) User terminal, network device, and processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16755239

Country of ref document: EP

Kind code of ref document: A1