WO2016136284A1 - Signal processing device, signal processing method, signal processing program and terminal device - Google Patents

Signal processing device, signal processing method, signal processing program and terminal device Download PDF

Info

Publication number
WO2016136284A1
WO2016136284A1 PCT/JP2016/050275 JP2016050275W WO2016136284A1 WO 2016136284 A1 WO2016136284 A1 WO 2016136284A1 JP 2016050275 W JP2016050275 W JP 2016050275W WO 2016136284 A1 WO2016136284 A1 WO 2016136284A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
gain
sensors
signals
signal processing
Prior art date
Application number
PCT/JP2016/050275
Other languages
French (fr)
Japanese (ja)
Inventor
昭彦 杉山
宮原良次
Original Assignee
日本電気株式会社
Necエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, Necエンジニアリング株式会社 filed Critical 日本電気株式会社
Priority to JP2017501959A priority Critical patent/JPWO2016136284A1/en
Publication of WO2016136284A1 publication Critical patent/WO2016136284A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to a technique for enhancing or suppressing a signal using directivity formed by a plurality of sensors.
  • Non-Patent Document 1 and Non-Patent Document 2 process a plurality of sensor signals to generate an emphasized target signal, and suppress the target signal to relatively emphasize the interference signal.
  • a technique for generating a pseudo jamming signal is disclosed. Furthermore, there is a description that the target signal is emphasized and the interference signal is suppressed by subtracting the component correlated with the pseudo interference signal from the emphasized target signal.
  • This technique forms a directivity using a phase difference of signals based on differences in spatial positions among a plurality of sensors, and emphasizes or suppresses a specific signal based on the formed directivity.
  • Non-Patent Document 3 and Non-Patent Document 4 the technologies of Non-Patent Document 1 and Non-Patent Document 2 are used in a plurality of frequency bands from low to high using a plurality of arrays having different sensor intervals. There is a description of the combined configuration.
  • Non-Patent Document 1 and Non-Patent Document 2 described above cannot form sufficient directivity for low-frequency signal components. This is because when using a sensor common to the medium and high frequencies at a low frequency with a long wave compared to the medium and high frequencies, the relatively narrow sensor interval cannot generate a sufficiently large inter-signal phase difference between multiple sensors. It is. Further, the techniques described in Non-Patent Document 3 and Non-Patent Document 4 have problems such as an increase in cost due to the increased number of sensors and an increase in array size due to a wide sensor interval corresponding to a low frequency range. Further, all the techniques described in Non-Patent Documents 1 to 4 are monaural outputs, and the multi-channel information existing at the input is missing.
  • An object of the present invention is to provide a technique for solving the above-described problems.
  • an apparatus provides: A direction estimation unit that estimates the arrival direction of the target signal using a plurality of signals received from a plurality of sensors, each including a target signal and noise; A first gain calculator for calculating a direction gain using the direction of arrival; A first multiplier for multiplying each of the plurality of signals by the directional gain; Is a signal processing apparatus.
  • an apparatus provides: A first phase difference calculation unit for obtaining a phase difference between a plurality of signals received from a plurality of sensors, each including a target signal and noise; A second gain calculator for calculating a directional gain using the phase difference; A first multiplier for multiplying each of the plurality of signals by the directional gain; Is a signal processing apparatus.
  • an apparatus provides: A second phase difference calculation unit for determining a phase difference between a plurality of signals received from a plurality of sensors, each including a target signal and noise, and a direction of deviation of the arrival direction of the target signal from the front; A third gain calculator for calculating a direction gain using the phase difference and the shift direction; A first multiplier for multiplying each of the plurality of signals by the directional gain; Is a signal processing apparatus.
  • an apparatus provides: A direction estimation unit that estimates an arrival direction of a signal using input signals to a plurality of sensors existing at spatially different positions; Signal suppression that selectively enhances or suppresses signals by multiplying the input signal by the direction gain corresponding to the direction of arrival, or selectively emphasizes or suppresses signals by subtracting the proportion of the corresponding input signal from the input signal And
  • a signal processing apparatus comprising: The signal suppression unit multiplies the input signal by a large direction gain for the direction of arrival to be selectively emphasized, and multiplies the input signal by a small direction gain for the direction of arrival to be suppressed or selects The signal processing apparatus subtracts a small percentage from the input signal for the direction of arrival to be emphasized and subtracts a large percentage from the input signal for the direction of arrival to be suppressed.
  • the method according to the present invention comprises: Obtaining a signal arrival direction for signals received from a plurality of sensors, including a target signal and noise; Calculating a direction gain using the signal arrival direction; Multiplying the directional gain by each signal received from the plurality of sensors; Is a signal processing method.
  • the method according to the present invention comprises: Determining a signal phase difference for signals received from a plurality of sensors, including a target signal and noise; Calculating a directional gain using the phase difference; Multiplying the directional gain by each signal received from the plurality of sensors; Is a signal processing method.
  • the method according to the present invention comprises: Determining the direction of arrival of signals using input signals to a plurality of sensors located at different spatial positions; Multiplying an input signal by a gain corresponding to the direction of arrival and selectively emphasizing or suppressing the signal, or subtracting a proportion of the corresponding input signal from the input signal and selectively emphasizing or suppressing the signal; Including In this signal processing method, a large gain or a small ratio is set for an arrival direction in which a signal is selectively emphasized, and a small gain or a large ratio is set for an arrival direction in which a signal is desired to be suppressed.
  • a program provides: Obtaining a signal arrival direction for signals received from a plurality of sensors, including a target signal and noise; Calculating a direction gain using the signal arrival direction; Multiplying the directional gain by each signal received from the plurality of sensors; Is a signal processing program for causing a computer to execute.
  • a program provides: Determining a signal phase difference for signals received from a plurality of sensors, including a target signal and noise; Calculating a directional gain using the phase difference; Multiplying the directional gain by each signal received from the plurality of sensors; Is a signal processing program for causing a computer to execute.
  • a terminal device provides: Having a plurality of sensors for capturing a plurality of signals, each including a target signal and noise; The terminal device emphasizes or suppresses a plurality of signals received from the plurality of sensors by the signal processing device.
  • a wideband signal can be enhanced or suppressed to the same degree at each frequency while maintaining the same sound image expression capability as the input without increasing the size of the sensor array. That is, array processing with the same beam or null width can be performed in a wide frequency band.
  • the “voice signal” is a direct electrical change that occurs in accordance with voice and other sounds, and is used to transmit voice and other sounds, and is not limited to voice.
  • the signal processing apparatus 100 is an apparatus that enhances or suppresses a broadband signal using signals from a plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 100 includes a direction estimation unit 105, a gain calculation unit 106, and a multiplier 110.
  • the direction estimation unit 105 uses the signals received from the plurality of sensors 101, 102, 103, and 104 to determine the arrival direction of the signals.
  • Gain calculation section 106 calculates a direction gain using the signal arrival direction received from direction estimation section 105.
  • Multiplier 110 multiplies each signal received from a plurality of sensors 101, 102, 103, and 104 by a directional gain, and uses the product as an enhanced signal in which the target signal is enhanced. That is, the number of enhancement signals is equal to the number of signals received from the plurality of sensors 101, 102, 103, 104, and is 4 in FIG.
  • FIG. 1 When estimating the direction of arrival of the signal, it is sufficient that there are at least two sensors.
  • FIG. 1 there are three combinations of two adjacent sensors: a sensor 101 and a sensor 102, a sensor 102 and a sensor 103, and a sensor 103 and a sensor 104.
  • the signal arrival directions at time k obtained from the signals arriving at these sensors are defined as ⁇ 12 (k), ⁇ 23 (k), and ⁇ 34 (k), respectively.
  • two combinations of two sensors adjacent to each other are two sets of the sensor 101 and the sensor 103, and the sensor 102 and the sensor 104.
  • the direction of arrival can also be estimated using these.
  • Signal arrival directions at time k obtained from signals arriving at these sensors are assumed to be ⁇ 13 (k), ⁇ 24 (k), and ⁇ 14 (k), respectively. In this manner, two of the plurality of sensors can be selected, and the arrival directions of signals corresponding to all different selections can be obtained. Furthermore, one signal arrival direction can be obtained using a sensor represented by a natural number larger than two.
  • any of these may be selected and used as the signal arrival direction ⁇ (k) output from the direction estimation unit 105.
  • one signal arrival direction ⁇ (k) may be calculated using these multiple signal arrival direction estimation values. For example, the median value or average value of some or all of them can be obtained, and the median value or average value can be used as the signal arrival direction ⁇ (k). The average value and the median value give a more accurate signal arrival direction ⁇ (k) based on a plurality of measured values.
  • statistical values of estimated values regarding a plurality of signal arrival directions may be used.
  • Examples of statistical values include a maximum value and a minimum value in addition to the median value and the average value.
  • the maximum value has the effect of spreading the characteristics with a phase difference near zero to a region with a larger phase difference.
  • the signal pass band widens in the vicinity of zero, and the probability of erroneously suppressing a part of the target signal due to a calculation error or the like can be reduced.
  • suppressing the target signal it is possible to reduce the probability that a component other than the target signal will remain by mistake due to a calculation error or the like.
  • the minimum value has the opposite effect to the maximum value. That is, there is an effect of extending the characteristics of the region having a large phase difference to the region having a smaller phase difference.
  • the signal passband is narrowed in the vicinity of zero, and the probability that components other than the target signal are erroneously left due to a calculation error or the like can be reduced.
  • the target signal is suppressed, the probability of erroneously suppressing a part of the target signal due to a calculation error or the like can be reduced.
  • Gain calculation section 106 calculates direction gain Gd (k) using signal arrival direction ⁇ (k) received from direction estimation section 105 as follows. First, the direction gain Gd (k) can be calculated using a predetermined relationship between the signal arrival direction and the gain.
  • FIG. 2 shows a first example of the relationship between the signal arrival direction ⁇ (k) and the gain.
  • the horizontal axis represents the signal arrival direction ⁇ (k), and the vertical axis represents the gain corresponding to the signal arrival direction ⁇ (k).
  • the gain is set in the range of 1 and 0.
  • a gain of 1 indicates that the input is passed through without attenuation.
  • a gain of zero indicates that the input is completely blocked and nothing is passed.
  • a continuous phase difference range in which the gain is 1 is referred to as a pass band or a pass band.
  • a continuous phase difference range in which the gain is 0 is referred to as a stop band or a stop band.
  • the passband is colored white
  • the transition zone is colored light gray
  • the stopband is colored dark gray for easy viewing.
  • there is a passband in the vicinity of the signal arrival direction ⁇ (k) 0, and a stopband in the signal arrival direction region away from 0, both of which pass through the transition region.
  • a passband in the vicinity of the signal arrival direction ⁇ (k) 0, and a stopband in the signal arrival direction region away from 0, both of which pass through the transition region.
  • a signal whose signal arrival direction ⁇ (k) is close to 0 passes without attenuation, and a signal whose signal arrival direction ⁇ (k) is away from 0 is completely blocked.
  • the passband and stopband may be directly continuous without a transition zone.
  • the passband and stopband can be exchanged.
  • the gain corresponding to the front direction is 0, and the signal coming from the direction away from the front is 0. Therefore, it can be understood that the characteristics of the signal arrival direction ⁇ (k) and the direction gain Gd (k) are such that signals arriving from the front direction are blocked and signals arriving from other directions are allowed to pass. Furthermore, it may have phase difference versus gain characteristics such as having a plurality of passbands and a plurality of stopbands.
  • FIG. 3 shows a second example of the relationship between the signal arrival direction ⁇ (k) and the gain.
  • the trajectory clearly shows the changing point from the passing zone to the transition zone and the changing point from the battle zone to the stopping zone.
  • the locus changes gently and smoothly in the vicinity of these change points. Similar to FIG. 2, the passband and the stopband can be exchanged also in the characteristics of FIG.
  • FIG. 4 shows a third example of the relationship between the signal arrival direction ⁇ (k) and the gain. 2 and 3, the same gain corresponds to the positive value and the negative value of the signal arrival direction ⁇ (k) if the absolute values are equal. That is, the phase difference versus gain characteristics are symmetrical.
  • is obtained following the signal arrival direction ⁇ (k), and the absolute value
  • the direction gain Gd (k) can be calculated using the relationship between
  • the signal processing apparatus 100 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • the directional gain Gd (k) changes with time. That is, the direction of the target signal is obtained as the signal arrival direction when the target signal is stronger than the other components, and conversely when the target signal is weaker than the other components, the direction of the components other than the target signal is obtained. Therefore, different gains are obtained corresponding to the component configuration of the input signal, and the difference between the signal to be emphasized and the signal to be suppressed is higher than that of the conventional array processing disclosed in Non-Patent Documents 1 to 4. An output signal with clearly marked can be obtained.
  • the signal processing device 500 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 500 includes a phase difference calculation unit 501, a gain calculation unit 502, and a multiplier 110.
  • the phase difference calculation unit 501 obtains a signal from an adjacent sensor, that is, a phase difference between adjacent channel signals, from signals received from a plurality of sensors 101, 102, 103, and 104.
  • Gain calculation section 502 calculates a directional gain using the phase difference received from phase difference calculation section 501.
  • Multiplier 110 multiplies each signal received from a plurality of sensors 101, 102, 103, and 104 by a directional gain, and uses the product as an enhanced signal in which the target signal is enhanced. That is, the number of enhancement signals is equal to the number of signals received from the plurality of sensors 101, 102, 103, 104, and is 4 in FIG.
  • the signal processing apparatus 500 can effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the same sound image expression capability as that of the input.
  • FIG. 5 The configuration of FIG. 5 is the same as that of FIG. 1 except that the direction estimation unit 105 and the gain calculation unit 106 are replaced with a phase difference calculation unit 501 and a gain calculation unit 502. Therefore, only the operations of the phase difference calculation unit 501 and the gain calculation unit 502 which are different components will be described, and the rest will be omitted.
  • the phase difference calculation unit 501 obtains the phase difference ⁇ (k) of the adjacent channel signal from the signals received from the plurality of sensors 101, 102, 103, 104 as follows.
  • the phase difference between adjacent channel signals is calculated by selecting any two adjacent ones of the plurality of sensors and using the signals of these sensors.
  • the selected sensors are sensors 101 and 102.
  • the values at time k of the signals received from the sensors 101, 102, 103, and 104 are x1 (k), x2 (k), x3 (k), and x4 (k), respectively, x1 (k ) And x2 (k) is obtained as a phase difference between adjacent channel signals.
  • ⁇ 12 (k) is the relative delay of x1 (k) and x2 (k).
  • ⁇ 12 (k) is ⁇ i corresponding to the maximum correlation Cor12 (k) between x1 (k ⁇ i) and x2 (k), and Cor12 (k) can be obtained by the following equation.
  • d is the sensor interval
  • c the speed of sound
  • fs is the sampling frequency.
  • Equation (1) the phase difference ⁇ (k) of the adjacent channel signal with respect to an arbitrary frequency f can be obtained.
  • ⁇ 23 (k) or ⁇ 34 (k) may be used instead of ⁇ 12 (k).
  • phase difference between adjacent channel signals the above three values, that is, statistical values of ⁇ 12 (k), ⁇ 23 (k), and ⁇ 31 (k) may be used.
  • Statistical values can include average values, maximum values, minimum values, median values, and the like. The average and median values provide a more accurate adjacent channel signal phase difference based on multiple measurements.
  • the maximum value has the effect of spreading the characteristics with a phase difference near zero to a region with a larger phase difference.
  • the signal pass band widens in the vicinity of zero, and the probability of erroneously suppressing a part of the target signal due to a calculation error or the like can be reduced.
  • suppressing the target signal it is possible to reduce the probability that a component other than the target signal will remain by mistake due to a calculation error or the like.
  • the minimum value has the opposite effect to the maximum value. That is, there is an effect of extending the characteristics of the region having a large phase difference to the region having a smaller phase difference.
  • the signal passband is narrowed in the vicinity of zero, and the probability that components other than the target signal are erroneously left due to a calculation error or the like can be reduced.
  • the target signal is suppressed, the probability of erroneously suppressing a part of the target signal due to a calculation error or the like can be reduced.
  • the phase difference between adjacent channel signals can be calculated by selecting any two adjacent sensors with one sensor between them and using the signals of these sensors. As such a combination, in the example of four sensors illustrated in FIG. 5, there are the sensor 101 and the sensor 103 or the sensor 102 and the sensor 104. Considering the case of the sensor 101 and the sensor 103, a phase difference ⁇ 13 between x1 (k) and x3 (k) is obtained, and this is multiplied by 1/2 to obtain a phase difference between adjacent channel signals. This is because the phase difference is proportional to the sensor interval.
  • kmax is the maximum number of samples determined by the interval between the sensors 101 and 103 and the sampling frequency. If Expression (4) is used, the phase difference ⁇ (k) of the adjacent channel signal with respect to an arbitrary frequency f can be obtained. Similarly, ⁇ 24 (k) may be used instead of ⁇ 13 (k). It is also clear that these statistics can be used.
  • kmax is the maximum number of samples determined by the interval between the sensors 101 and 104 and the sampling frequency.
  • Equation (6) the phase difference ⁇ (k) of the adjacent channel signal with respect to an arbitrary frequency f can be obtained.
  • M 3 has been described as an example, but this description also applies to an arbitrary natural number of M ⁇ 1. Since there are a plurality of combinations that satisfy this condition when M ⁇ 4, the phase difference ⁇ (k) may be obtained using any of these combinations. It is also clear that these statistics can be used.
  • Equation (1) can also be expressed as Equation (9).
  • Equation (4) and Equation (6) can also be expressed by Equation (9) if attention is paid to d in Equation (8) being 2d and 3d, respectively.
  • Equation (9) indicates that the phase difference ⁇ (k) is proportional to the frequency f with respect to signals coming from the same direction ⁇ (k). That is, the relative delay ⁇ (k) of the signal between the two sensors regarding the signal arriving from the same direction ⁇ (k) is constant regardless of the frequency, and the phase difference ⁇ (k) of the signal between the two sensors is Proportional. For this reason, as for the relationship between the phase difference ⁇ (k) and the gain, the phase difference ⁇ (k) must be proportional to the frequency.
  • the characteristics of phase difference versus gain for a specific frequency can be determined in the same manner as signal arrival direction versus gain. For example, in FIG. 2 to FIG. 4, if the signal arrival direction on the horizontal axis is replaced with the corresponding phase difference, the signal arrival direction versus gain characteristic can be used as it is as the phase difference versus gain characteristic.
  • the phase difference versus gain characteristic for another frequency (second frequency) different from the specific frequency is The value of the ratio between the frequency of 2 and the first frequency is obtained by extending the horizontal axis of FIGS. That is, in FIG. 2 to FIG. 4, the frequency axis in which the frequency increases in the depth direction is set so that the passband, transition zone, and stopband widen from the front toward the back.
  • FIG. 6 shows an example of such projection onto the bottom surface when the three-dimensional characteristics related to the phase difference, frequency, and gain are viewed from above.
  • FIG. 6 shows an example of the frequency on the horizontal axis, the phase difference ⁇ (k) on the vertical axis, and the gain in the direction perpendicular to the paper surface, and corresponds to FIG.
  • the passband is white
  • the transition zone is light gray
  • the stopband is dark gray. It can be seen that as the frequency axis goes to the right, that is, as the frequency becomes higher, the pass band, transition band, and stop band become wider.
  • the phase difference and the frequency are not necessarily proportional. Simply setting the phase difference corresponding to the same gain to increase as the frequency increases, it is possible to give directivity (gain based on the signal arrival direction) that does not greatly depend on the frequency to the wideband signal.
  • the center of symmetry coincides with the front direction due to the symmetrical characteristics.
  • the relationship between the phase difference and the frequency must be determined in consideration thereof. That is, the gain characteristic is designed so that the phase difference is proportional to the frequency after correcting the amount of deviation of the center of symmetry from the front and correcting so that the center of symmetry is equivalent to the front.
  • the characteristic that the gain differs for each frequency cannot be realized by the multiplier 110.
  • a different gain for each frequency can be realized by using filters having the same number and the same characteristics as the number of sensors instead of the multiplier 110.
  • the gain calculation unit 502 gives the gain characteristics of these filters, and each signal received from the plurality of sensors 101, 102, 103, 104 is used as an input for these filters.
  • the signal processing apparatus 500 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • a signal processing apparatus 700 as a third embodiment of the present invention will be described with reference to FIG.
  • the signal processing device 700 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 700 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 707.
  • FIG. 7 is the same as FIG. 5 except that an integration unit 704, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 707 are added. Therefore, only the operations of the noise estimation unit 705, the gain calculation unit 706, and the multiplier 707, which are different components, will be described, and the rest will be omitted.
  • the integration unit 704 generates the integrated signal xs (k) by integrating the signals x1 (k), x2 (k), x3 (k), and x4 (k) received from the plurality of sensors 101, 102, 103, and 104. To do. As the integrated signal xs (k), any one of x1 (k), x2 (k), x3 (k), and x4 (k) can be selected and used. Alternatively, statistical values regarding these signals may be used. Statistical values can include average values, maximum values, minimum values, median values, and the like. The average value and the median value give a signal in the virtual sensor existing in the center of the sensors 1 to 4.
  • Non-Patent Document 2 The maximum value gives the signal at the sensor with the shortest distance to the signal when the signal arrives from a direction other than the front.
  • the minimum value gives the signal at the sensor with the longest distance to the signal when the signal comes from a direction other than the front.
  • any of conventional array signal processing shown in Non-Patent Document 2 and Non-Patent Document 6 may be applied.
  • Conventional array signal processing includes delay sum beamformer, filter sum beamformer, MSNR (Maximum Signal-to-Noise) beamformer, MMSE (Minimum Mean Square Error) beamformer, LCMV (Linearlly Constrained Minimum Variance) ) Beamformers, nested beamformers, and the like. The value calculated in this way is used as an integrated signal.
  • the noise estimation unit 705 receives the integrated signal, estimates the power or absolute amplitude of the noise component contained therein, and sets it as a noise estimation value. Since many methods of such noise estimation are disclosed in Non-Patent Document 7, description thereof is omitted here.
  • the gain calculator 706 receives the noise estimation value and the integrated signal, and calculates a signal gain Gs (k) for suppressing noise included in the integrated signal.
  • a method for calculating the gain there are a minimum mean square error (MMSE) method and a posterior probability maximization (MAP) method, but since they are disclosed in detail in Non-Patent Document 6, they are omitted here.
  • MMSE minimum mean square error
  • MAP posterior probability maximization
  • the multiplier 707 multiplies the signal gain Gs (k) and the direction gain Gd (k) to obtain a product Gs (k) ⁇ Gd (k) as a combined gain.
  • Multiplier 710 multiplies combined gain Gs (k) ⁇ Gd (k) by each of the signals received from a plurality of sensors 101, 102, 103, 104, and uses the product as an enhanced signal in which the target signal is enhanced. . That is, the number of enhancement signals is equal to the number of signals received from the plurality of sensors 101, 102, 103, 104, and is 4 in FIG.
  • the signal processing device 700 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since the signal gain Gs (k) for suppressing the background noise is also multiplied by the signals received from the plurality of sensors 101, 102, 103, 104, an output in which the target signal is more emphasized can be obtained.
  • a signal processing apparatus 800 as a fourth embodiment of the present invention will be described with reference to FIG.
  • the signal processing device 800 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 800 includes a phase difference calculation unit 501, a gain calculation unit 502, a multiplier 807, a multiple noise estimation unit 804, a multiple gain calculation unit 805, and a multiplier 806.
  • FIG. 8 Compared with FIG. 7, the configuration of FIG. 8 eliminates the integration unit 704 and replaces the noise estimation unit 705, gain calculation unit 706, multiplier 707, and multiplier 710 with a multiple noise estimation unit 804, multiple gain calculation.
  • the configuration is the same except that the unit 805, the multiplier 806, and the multiplier 807 are used. Therefore, only the operations of the multiple noise estimation unit 804, the multiple gain calculation unit 805, the multiplier 806, and the multiplier 807, which are different components, will be described, and the rest will be omitted.
  • Each signal received from the plurality of sensors 101, 102, 103, 104 is input to the multiple noise estimation unit 804.
  • the multiple noise estimation unit 804 estimates the noise component included in each of the signals received from the plurality of sensors 101, 102, 103, 104, and generates the same number (four in this case) of multiple noise estimation values as the sensors, This is supplied to the multiple gain calculation unit 805.
  • a multiple gain calculation unit 805 uses four multiple noise estimation values and signals received from the plurality of sensors 101, 102, 103, and 104, and is included in each signal received from the plurality of sensors 101, 102, 103, and 104.
  • Four signal gains Gs (k) for suppressing generated noise are calculated and supplied to the multiplier 806.
  • Multiplier 806 calculates the product of four signal gains Gs (k) received from multiple gain calculation unit 805 and directional gain Gd (k) received from gain calculation unit 502, and provides multiplier 807 with four combined gains. Supply.
  • the multiplier 807 multiplies the four combined gains supplied from the multiplier 806 and the corresponding signals received from the plurality of sensors 101, 102, 103, 104, and the target signal is emphasized by multiplying the product.
  • Emphasized signal That is, the first enhancement signal is generated by multiplying the signal from the sensor 101 by the combined gain generated using the signal, and the combined gain generated using the signal from the sensor 102 and the signal. To generate a second enhancement signal.
  • the signal from the sensor 103 is multiplied by the combined gain generated using the signal to generate the third enhancement signal, and the signal generated from the sensor 104 and the combined signal generated using the signal are combined.
  • the signals received from the plurality of sensors 101, 102, 103, 104 are used to determine the phase difference of the signals at the plurality of sensors, and the signal arrives from a specific direction based on the phase difference. The direction gain for emphasizing is obtained.
  • the integrated signals are obtained by integrating the signals received from the plurality of sensors 101, 102, 103, and 104, one noise estimate value is obtained for the noise included in the integrated signal, and the noise estimate value and the integrated signal are obtained. Using this, one signal gain for suppressing noise included in the integrated signal is obtained. Further, the combined gain is obtained by multiplying the directional gain and the signal gain, and four emphasized signals are obtained by multiplying each of the signals received from the plurality of sensors 101, 102, 103, and 104 by the combined gain. That is, the signal gain has a single value and is commonly applied to signals received from the plurality of sensors 101, 102, 103, 104.
  • signals received from a plurality of sensors 101, 102, 103, and 104 are used to determine the phase difference of the signals at the plurality of sensors, and the signal arrives from a specific direction based on the phase difference.
  • the direction gain for emphasizing is obtained.
  • one multiple noise estimation value is obtained for each noise included in each of the signals received from the plurality of sensors 101, 102, 103, and 104.
  • noise contained in each signal received from the plurality of sensors 101, 102, 103, 104 is suppressed. 4 signal gains are obtained.
  • the signal gain has four values, and different values are applied to the signals received from the plurality of sensors 101, 102, 103, and 104.
  • the difference between the third embodiment and the fourth embodiment is that noise estimation is performed on the integrated signal to obtain one noise estimate and one signal gain, or received from a plurality of sensors 101, 102, 103, 104.
  • One is to obtain one multiple noise estimate and four signal gains for each signal, that is, to obtain a noise estimate and signal gain equal to the number of sensors. Therefore, the combined gain is one in the third embodiment and four in the fourth embodiment.
  • an optimum signal gain can be calculated for each of the signals received from the plurality of sensors 101, 102, 103, and 104. Therefore, it is possible to obtain a high quality enhanced signal in which the signal to be processed is further enhanced and noise is further suppressed.
  • the noise estimation is performed on the integrated signal to obtain one noise estimation value and one signal gain, but the noise estimation value and the signal gain equal to the number of sensors are set.
  • the required configuration is also included in the embodiment.
  • a signal processing apparatus 900 as a fifth embodiment of the present invention will be described with reference to FIG.
  • the signal processing apparatus 900 is an apparatus that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 900 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 902.
  • FIG. 9 The configuration of FIG. 9 is the same as that of FIG. 7 except that a multiplier 902 is used instead of the multiplier 707. Therefore, only the operation of the multiplier 902, which is a different component, will be described, and the rest will be omitted.
  • Multiplier 902 multiplies signal gain Gs (k) and signals from a plurality of sensors 101, 102, 103, and 104, respectively, to obtain four intermediate signals in which background noise is suppressed.
  • Multiplier 910 multiplies four intermediate signals in which background noise is suppressed and direction gain Gd (k), and uses the multiplication result as a noise suppression signal (emphasis signal). That is, the fifth embodiment and the third embodiment are the same in the order of multiplication of a plurality of gains, and the enhancement signals are the same.
  • the signal processing apparatus 900 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since the signal gain Gs (k) for suppressing the background noise is also multiplied by the signals received from the plurality of sensors 101, 102, 103, 104, an output in which the target signal is more emphasized can be obtained.
  • the signal processing apparatus 1000 is an apparatus that emphasizes or suppresses a broadband signal using signals from a plurality of sensors 101, 102, 103, and 104.
  • the signal processing apparatus 1000 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 110, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 1004.
  • multiplier 1004 is used instead of the multiplier 902. Therefore, only the operation of the multiplier 1004 which is a different component will be described, and the rest will be omitted.
  • Multiplier 1004 multiplies signal gain Gs (k) by four outputs of multiplier 110, and uses the multiplication result as an enhanced signal.
  • the sixth embodiment and the third and fifth embodiments are the same in the order of multiplication of a plurality of gains, and the enhancement signals are the same.
  • the signal processing apparatus 1000 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since the signal gain Gs (k) for suppressing the background noise is also multiplied by the signals received from the plurality of sensors 101, 102, 103, 104, an output in which the target signal is more emphasized can be obtained.
  • a signal processing apparatus 1100 according to a seventh embodiment of the present invention will be described with reference to FIG.
  • the signal processing apparatus 1100 is an apparatus that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 1100 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 110, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 1004.
  • FIG. 11 is the same as FIG. 5 except that an integration unit 704, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 1004 are added. Therefore, only the operations of the integration unit 704, the noise estimation unit 705, the gain calculation unit 706, and the multiplier 1004, which are different components, will be described, and the rest will be omitted.
  • the integration unit 704 generates an integrated signal by integrating the four outputs of the multiplier 110.
  • the operation of the integration unit 704 is as described for the signal processing device 700 according to the third embodiment with reference to FIG.
  • the noise estimation unit 705 receives the integrated signal and estimates the power or absolute amplitude of the noise component included in the integrated signal to obtain a noise estimation value.
  • Gain calculation section 706 receives the estimated noise value and the output of integration section 704 and calculates a signal gain Gs (k) for suppressing noise included in the output of multiplier 110.
  • the operations of the noise estimation unit 705 and the gain calculation unit 706 are as described for the signal processing device 700 according to the third embodiment with reference to FIG.
  • Multiplier 1004 multiplies each output of multiplier 110 by signal gain Gs (k), and uses the multiplication result as an enhanced signal. That is, the number of enhancement signals is equal to the number of signals received from the plurality of sensors 101, 102, 103, 104, and is 4 in FIG.
  • the signal processing device 1100 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since the signal gain Gs (k) for suppressing the background noise is also multiplied by the signals received from the plurality of sensors 101, 102, 103, 104, an output in which the target signal is more emphasized can be obtained.
  • the configuration in which the signal gain Gs (k) is combined based on the third embodiment is targeted, but the signal gain Gs (k) is based on the fifth to seventh embodiments. A configuration combining these is also included in the embodiment.
  • the signal processing device 1200 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 12, the signal processing device 1200 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 1204, a gain calculation unit 706, and a multiplier 707.
  • FIG. 12 The configuration of FIG. 12 is the same as that of FIG. 7 except that the noise estimation unit 705 is replaced with a noise estimation unit 1204. Therefore, only the operation of the noise estimation unit 1204, which is a different component, will be described, and the rest will be omitted.
  • the noise estimation unit 1204 receives signals from the plurality of sensors 101, 102, 103, and 104, estimates the power or absolute amplitude of components other than the target signal included therein, and obtains a noise estimation value. Specifically, by operating as a null beamformer that receives signals from a plurality of sensors 101, 102, 103, and 104, the power or absolute amplitude of components other than the target signal is estimated. Since the null beam former is disclosed in detail in Non-Patent Documents 2 and 6, it is omitted here.
  • the signal processing device 1200 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • a null beamformer is used to estimate background noise, the influence of directional signals other than background noise can be reduced, and high-quality enhanced speech can be obtained through output through accurate background noise estimation. Can do.
  • a signal processing device 1300 according to a ninth embodiment of the present invention will be described with reference to FIG.
  • the signal processing device 1300 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 1300 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, a multiplier 707, and a phase adjustment unit. 1301 is included.
  • phase adjustment unit 13 is the same as that in FIG. 7 except that a phase adjustment unit 1301 is added. Therefore, only the operation of the phase adjustment unit 1301 which is a different component will be described, and the rest will be omitted.
  • the phase adjustment unit 1301 receives a plurality of signals from the plurality of sensors 101, 102, 103, and 104, and adjusts the phase of the signal from each sensor so that the target signal appears equivalently coming from the front.
  • a plurality of phase adjustment signals are generated. This is a process called beam steering, which is disclosed in detail in Non-Patent Documents 2 and 6, and is omitted here.
  • the signal processing device 1300 can impart directivity (gain based on the signal arrival direction) independent of frequency to the wideband signal. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array. Further, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained even for the target signal coming from other than the front.
  • the signal processing device 1400 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 1400 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 1204, a gain calculation unit 706, a multiplier 707, and a phase adjustment unit. 1301 is included.
  • FIG. 14 is the same as FIG. 13 except that the noise estimation unit 705 is replaced with a noise estimation unit 1204. This is equivalent to the relationship between FIG. 12 and FIG.
  • the signal processing device 1400 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • a null beamformer is used to estimate background noise, the influence of directional signals other than background noise can be reduced, and high-quality enhanced speech can be obtained through output through accurate background noise estimation. Can do.
  • it since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained for the target signal coming from other than the front.
  • a beam steering function is added to the third and eighth embodiments in order to cope with a target signal coming from other than the front. Therefore, not only the first, second, fourth to seventh and eighth embodiments, but also the first embodiment for calculating the direction gain Gd (k) based on the signal arrival direction, the third to eighth embodiments.
  • the beam steering function can also be added to the example in which the signal gain Gs (k) is combined with the configuration shown in FIG. 6, and the effect on the target signal arriving from other than the front is equivalent to the effect on the target signal arriving from the front. The effect is obtained.
  • a signal processing device 1500 as an eleventh embodiment of the present invention will be described with reference to FIG.
  • the signal processing device 1500 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 1500 includes a phase difference calculation unit 1501, a gain calculation unit 1502, an integration unit 1503, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 707.
  • FIG. 15 The configuration of FIG. 15 is different from that of FIG. 13 in that the phase adjustment unit 1301 is deleted, the phase difference calculation unit 501, the gain calculation unit 502, and the integration unit 704 are replaced by the phase difference calculation unit 1501, the gain calculation unit 1502, and the integration unit 1503.
  • the configuration is the same except that it is replaced with. Therefore, only the operations of the phase difference calculation unit 1501, the gain calculation unit 1502, and the integration unit 1503, which are different components, will be described, and the rest will be omitted.
  • the phase difference calculation unit 1501 receives signals from a plurality of sensors 101, 102, 103, and 104 so that the target signal can be viewed as equivalently coming from the front, It has a function of obtaining the phase adjustment amount ⁇ (shift direction indicating how much the arrival direction of the target signal is shifted from the front) from each sensor.
  • the obtained phase adjustment amount ⁇ is supplied to the gain calculation unit 1502 together with the phase difference ⁇ (k).
  • the gain calculation unit 1502 calculates a correction direction gain obtained by shifting the phase difference versus gain characteristic in the horizontal direction by ⁇ .
  • the front shift is equivalently shifted by ⁇ due to the shift ⁇ in the lateral direction, and functions as beam steering. That is, the phase difference calculation unit 1501 has both the function of the phase adjustment unit 1301 and the function of the phase difference calculation unit 501.
  • the integration unit 1503 also requires beam steering. For this reason, the integration unit 1503 has both the function of the phase adjustment unit 1301 and the function of the integration unit 704.
  • the integration unit 1503 estimates the direction of arrival of the target signal and performs beam steering by adjusting the phase of the signals from the plurality of sensors 101, 102, 103, and 104 so that the direction of arrival is in front.
  • An integrated signal is generated by the same processing as the integration unit 704 with respect to the signal subjected to beam steering.
  • the signal processing device 1500 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained even for the target signal coming from other than the front.
  • a signal processing apparatus 1700 as a twelfth embodiment of the present invention will be described with reference to FIG.
  • the signal processing apparatus 1700 is an apparatus that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 1700 includes a phase difference calculation unit 1501, a gain calculation unit 1502, an integration unit 1503, a multiplier 710, a noise estimation unit 1204, a gain calculation unit 706, and a multiplier 707.
  • FIG. 17 The configuration of FIG. 17 is different from that of FIG. 14 in that the phase adjustment unit 1301 is deleted, and the phase difference calculation unit 501, the gain calculation unit 502, and the integration unit 704 are the phase difference calculation unit 1501, the gain calculation unit 1502, and the integration unit 1503.
  • the structure is the same except that it is replaced with. This is equivalent to the relationship between FIG. 15 and FIG. 13 and has already been described, and thus the description thereof is omitted.
  • the signal processing device 1700 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • a null beamformer is used to estimate background noise, the influence of directional signals other than background noise can be reduced, and high-quality enhanced speech can be obtained through output through accurate background noise estimation. Can do.
  • it since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained for the target signal coming from other than the front.
  • a beam steering function is added to the third and eighth embodiments with a different configuration from the ninth and tenth embodiments to respond to target signals coming from other than the front. is there. Therefore, not only the first, second, fourth to seventh and eighth embodiments, but also the first embodiment for calculating the direction gain Gd (k) based on the signal arrival direction, the third to eighth embodiments.
  • the beam steering function shown in the eleventh and twelfth embodiments can be added to the example in which the signal gain Gs (k) is combined in the configuration shown in FIG. And the effect equivalent to the effect with respect to the target signal which comes from the front is acquired also about the target signal which comes from other than the front.
  • a signal processing apparatus 1800 as a thirteenth embodiment of the present invention will be described with reference to FIG.
  • the signal processing apparatus 1800 is an apparatus that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 1800 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, a multiplier 707, and a phase adjustment unit 1301. , Conversion units 1801 to 1804 and an inverse conversion unit 1805 are included.
  • FIG. 18 The configuration of FIG. 18 is the same as that of FIG. 13 except that conversion units 1801 to 1804 and an inverse conversion unit 1805 are added. Therefore, only the operations of the conversion units 1801 to 1804 and the reverse conversion unit 1805 which are different components will be described, and the rest will be omitted.
  • the conversion units 1801 to 1804 independently apply conversion to signals from the plurality of sensors 101, 102, 103, and 104, convert the signals into a plurality of conversion signals (frequency domain signals) corresponding to a plurality of frequencies, and then output the signals. To do. All the processes described so far are performed independently on the data corresponding to each frequency. The specific procedure for applying the conversion to the signal and the configuration of the apparatus are disclosed in Patent Document 1 and will be omitted.
  • the inverse transform unit 1805 is the output of the multiplier 710, performs inverse transform on a plurality of enhancement signals composed of data corresponding to a plurality of frequencies, and outputs a plurality of time domain signals.
  • the signal processing device 1800 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained even for the target signal coming from other than the front. Furthermore, since signal processing is independently applied to a plurality of frequency components, a processing result with higher sound quality can be obtained by appropriate processing corresponding to each frequency.
  • a signal processing apparatus 1900 as a fourteenth embodiment of the present invention will be described with reference to FIG.
  • the signal processing apparatus 1900 is an apparatus that enhances or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 1900 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 1204, a gain calculation unit 706, a multiplier 707, and a phase adjustment unit 1301.
  • Conversion units 1801 to 1804 and an inverse conversion unit 1805 are included.
  • FIG. 19 The configuration in FIG. 19 is the same as that in FIG. 14 except that conversion units 1801 to 1804 and an inverse conversion unit 1805 are added. This is equivalent to the relationship between FIG. 18 and FIG. 13 and has already been described, and thus the description thereof is omitted.
  • the signal processing apparatus 1900 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • a null beamformer is used to estimate background noise, the influence of directional signals other than background noise can be reduced, and high-quality enhanced speech can be obtained through output through accurate background noise estimation. Can do.
  • it since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained for the target signal coming from other than the front.
  • the signal processing is independently applied to a plurality of frequency components by the processing after the frequency components are separated, a processing result with higher sound quality can be obtained by appropriate processing corresponding to each frequency. .
  • the signal processing device 2000 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 2000 includes a phase difference calculation unit 1501, a gain calculation unit 1502, an integration unit 1503, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, a multiplier 707, and conversion units 1801 to 1801. 1804 and an inverse transform unit 1805 are included.
  • FIG. 20 The configuration of FIG. 20 is the same as that of FIG. 15 except that conversion units 1801 to 1804 and an inverse conversion unit 1805 are added. This is equivalent to the relationship between FIG. 18 and FIG. 13 and has already been described, and thus the description thereof is omitted.
  • the signal processing device 2000 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained even for the target signal coming from other than the front. Furthermore, since signal processing is independently applied to a plurality of frequency components, a processing result with higher sound quality can be obtained by appropriate processing corresponding to each frequency.
  • the signal processing device 2100 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 2100 includes a phase difference calculation unit 1501, a gain calculation unit 1502, an integration unit 1503, a multiplier 710, a noise estimation unit 1204, a gain calculation unit 706, a multiplier 707, and conversion units 1801 to 1801. 1804 and an inverse transform unit 1805 are included.
  • FIG. 21 The configuration of FIG. 21 is the same as that of FIG. 17 except that conversion units 1801 to 1804 and an inverse conversion unit 1805 are added. This is equivalent to the relationship between FIG. 18 and FIG. 13 and has already been described, and thus the description thereof is omitted.
  • the signal processing device 2100 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • a null beamformer is used to estimate background noise, the influence of directional signals other than background noise can be reduced, and high-quality enhanced speech can be obtained through output through accurate background noise estimation. Can do.
  • it since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained for the target signal coming from other than the front.
  • the signal processing is independently applied to a plurality of frequency components by the processing after the frequency components are separated, a processing result with higher sound quality can be obtained by appropriate processing corresponding to each frequency. .
  • FIG. 22 is a diagram illustrating a hardware configuration when the signal processing device 2200 according to the second embodiment is realized using software.
  • the signal processing device 2200 includes a processor 2210, a ROM (Read Only Memory) 2220, a RAM (Random Access Memory) 2240, a storage 2250, an input / output interface 2260, an operation unit 2261, an input unit 2262, and an output unit 2263.
  • the processor 2210 is a central processing unit, and controls the entire signal processing device 2200 by executing various programs.
  • the ROM 2220 stores various parameters in addition to the boot program that the processor 2210 should execute first.
  • the RAM 2240 has an area for storing an input signal 2240a, a phase difference 2240b, a gain 2240c, an enhancement signal 2240e (output signal), and the like in addition to a program load area (not shown).
  • the storage 2250 stores a signal processing program 2251.
  • the signal processing program 2251 includes a phase difference calculation module 2251a, a gain calculation module 2251b, and a multiplication module 2251d.
  • the processor 2210 executes each module included in the signal processing program 2251, the functions of the phase difference calculation unit 501, the gain calculation unit 502, and the multiplier 110 in FIG. 5 can be realized.
  • the enhancement signal 2240e which is an output related to the signal processing program 2251 executed by the processor 2210, is output from the output unit 2263 via the input / output interface 2260. Thereby, for example, noise and interference signals included in the input signal 2240a input from the input unit 2262 can be suppressed, and a target signal such as voice can be emphasized.
  • FIG. 23 is a flowchart for explaining a flow of processing for emphasizing a target signal such as voice mixed with noise or interference signal by the signal processing program 2251.
  • a plurality of input signals 2240a from the sensors 101, 102, 103, and 104 are supplied to the phase difference calculation unit.
  • the phase difference calculation unit 501 calculates the phase difference of the input signal.
  • step S2305 a process for calculating a directional gain according to the phase difference is executed.
  • step S2309 a plurality of input signals 2240a from the sensors 101, 102, 103, and 104 are multiplied by the direction gain to generate an enhancement signal.
  • step S2311 the product of the plurality of input signals from the sensors 101, 102, 103, and 104 and the directional gain is output as a target signal, that is, a plurality of signals in which speech is emphasized and others are suppressed.
  • FIG. 23 shows a flowchart for explaining the flow of processing when the signal processing apparatus 500 according to the present embodiment is realized by software.
  • the first embodiment, the third to fifteenth embodiments, and the sixteenth embodiment can be similarly realized by appropriately omitting and adding the differences in the respective block diagrams.
  • directivity gain based on the signal arrival direction
  • the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • the signal processing device 2400 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 2400 includes a direction estimation unit 2405, a gain calculation unit 2406, and a multiplier 2410.
  • the gain calculation unit 2406 and the multiplier 2410 together operate as a signal suppression unit 2401 using direction gain.
  • the direction estimation unit 2405 obtains the relative delay of the signal or equivalently the arrival direction of the signal using signals input to a plurality of sensors existing at spatially different positions.
  • the signal suppression unit 2401 selectively enhances or suppresses the signal based on the arrival direction by multiplying the input signals from the plurality of sensors by the gain corresponding to the relative delay or the arrival direction.
  • directivity gain based on the signal arrival direction
  • the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • the enhancement signal may be generated using subtraction instead of multiplication.
  • the product of signals x1 (k), x2 (k), x3 (k), x4 (k) and ⁇ 1-Gd (k) ⁇ received from the plurality of sensors 101, 102, 103, 104 is obtained and By subtracting from x1 (k), x2 (k), x3 (k), x4 (k), direction gain Gd (k) and x1 (k), x2 (k), x3 (k), x4 (k) It is clear from the product itself. Also, providing different gains depending on the signal arrival direction can also be realized by setting different subtraction amounts depending on the signal arrival direction.
  • the characteristics of the signal arrival direction vs. the subtraction amount are prepared in advance so that the subtraction amount in the spectral subtraction disclosed in Non-Patent Document 6 is set large in the direction in which the signal is to be suppressed and small in the direction in which the signal is to be emphasized.
  • the above-described method can be realized by using this according to the signal arrival direction. Such a configuration will be described as an eighteenth embodiment of the present invention.
  • FIG. 25 is a diagram for explaining a signal processing device 2500 as an eighteenth embodiment of the present invention.
  • the signal processing device 2500 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104.
  • the signal processing device 2500 includes a direction estimation unit 105, a subtraction amount calculation unit 2511, and a subtractor 2510.
  • the subtraction amount calculation unit 2511 and the subtractor 2510 are combined to serve as a direction gain suppression unit 2501. Operate.
  • the direction estimation unit 105 obtains the relative delay of the signal or equivalently the arrival direction of the signal using signals input to a plurality of sensors existing at spatially different positions.
  • the subtraction amount calculation unit 2511 sets the ratio of the input signal corresponding to the relative delay or the arrival direction.
  • the ratio of the input signal is set to a maximum value of 1 with a small value such as zero with respect to the direction of arrival and a value larger as the distance from the direction of arrival increases.
  • the subtractor 2510 selectively calculates the subtraction amount corresponding to the ratio of the input signal based on the input signals from the plurality of sensors, and subtracts the input signal from the plurality of sensors based on the direction of arrival. Emphasize or suppress.
  • the direction gain suppression unit selectively emphasizes or suppresses the signal based on the arrival direction by subtracting the input signal corresponding to the relative delay or the arrival direction from the input signals from the plurality of sensors.
  • the essence of the present embodiment is that, as shown in FIGS. 24 and 25, the relative delay of the signal or equivalently the arrival direction of the signal is obtained using signals input to a plurality of sensors existing at spatially different positions.
  • the signal is selectively emphasized or suppressed by applying a gain corresponding to the relative delay or direction of arrival to a plurality of input signals, or subtracting a corresponding proportion of the input signals from the plurality of input signals. .
  • subtraction is performed by a subtracter 2510 instead of the multiplier 110.
  • a large gain is set for the direction of arrival or relative delay in which the signal is selectively emphasized, and a small gain is set for the direction of arrival or relative delay in which the signal is to be suppressed.
  • Typical values for the large and small gains are 1 and 0, but any value may be used as long as it is a relatively large and small value. This is as shown in FIGS.
  • Such a gain may be calculated in advance and stored in a storage device, or may be calculated every moment.
  • a function or polynomial representing a relationship between a phase difference or signal arrival direction and gain used for calculation is stored in a storage device, and a gain is calculated each time.
  • the signal to be emphasized and the signal to be suppressed can be changed according to the characteristics of the input signal, and more various design requirements can be met. Further, the storage capacity can be reduced as compared with storing all the characteristics.
  • a plurality of gains may be stored in a storage device, and these may be switched appropriately for use.
  • the storage capacity is increased, the amount of calculation can be reduced, which is effective when the required condition is more severe with respect to the amount of calculation.
  • FIG. 26 shows a top view of such an application example as seen from above.
  • a sensor array 2600 including four sensors realized by a microphone is arranged on the upper surface of the tablet PC 2601.
  • the voice of the user 2603 sitting on the sofa is emphasized, and the voice of the person 2604 behind it and the back of the user's front are highlighted.
  • a music signal generated from a certain left and right speaker 2605 can be suppressed. For this reason, only a user's voice is obtained as an output, and a comfortable call and a high voice recognition rate can be realized by using this output for a call and voice recognition.
  • FIG. 27 shows a top view of such an application example as viewed from above.
  • a sensor array 2700 including four sensors realized by a microphone is arranged on the upper surface of the television receiver 2701.
  • the voice signal of the user 2703 seated on the sofa is emphasized by processing the acoustic signal acquired by these microphones in any of the first to eighteenth embodiments, and the voice of the person 2704 in front of the television receiver 2701 is emphasized.
  • music signals generated from the left and right speakers 2705 on the side of the television receiver can be suppressed. For this reason, only the voice of the user 2703 is obtained as an output, and a comfortable call and a high voice recognition rate can be realized by using this output for a call and voice recognition.
  • the user 2703 can change the channel and volume of the television receiver 2701 using voice.
  • a signal processing device 2800 as a twentieth embodiment of the present invention will be described with reference to FIG.
  • the signal processing device 2800 is a device that emphasizes or suppresses a broadband signal using signals from a plurality of sensors 2803 and 2804.
  • the signal processing device 2800 includes a terminal 2801, an image display unit (screen) 2802, sensors 2803 and 2804, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, and left and right external speakers 2807. 2808.
  • the volume adjustment unit 2806 and the external speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
  • a signal processing apparatus having an image display unit there are a personal computer (PC), a tablet, a mobile phone, a television receiver, a voice recorder, an audio player, and the like.
  • the number of sensors and speakers is two, but the following description can be applied to any natural number of two or more.
  • the number of sensors and the number of speakers are usually set equal, but may be different.
  • the downmix process is applied, and when the number is smaller, the upmix process is applied after the process in the signal enhancement / suppression unit.
  • Sensors 2803 and 2804 are installed horizontally above the terminal 2801 or the image display unit 2802.
  • the term “horizontal” includes not only a case where the straight line connecting the sensors 2803 and 2804 is completely parallel to the long side of the image display unit, but also a case where a small angle is formed.
  • the signals of the sensors 2803 and 2804 have a relative delay with respect to a plurality of signal sources existing in different directions on the horizontal plane. Signal enhancement and suppression using relative delay can be performed.
  • the sensor is installed on the upper side of the image display unit, but the description so far can be applied as it is even if it is installed on the lower side of the image display unit.
  • the signals captured by the sensors 2803 and 2804 are supplied to the signal enhancement / suppression unit 2805.
  • the signal enhancement / suppression unit 2805 is any one of the first to eighteenth embodiments described so far.
  • the signal enhancement / suppression unit 2805 obtains the relative delay of the signal or equivalently the arrival direction of the signal using signals input to a plurality of sensors existing at spatially different positions. Further, the signal enhancement / suppression unit 2805 applies the gain (direction gain) corresponding to the relative delay or the arrival direction to the plurality of input signals, or subtracts the corresponding proportion of the input signals from the plurality of input signals. , Selectively enhance or suppress the signal.
  • the directional gain is determined by the relative delay or the arrival direction of the signal, and the relationship between the delay or direction and the gain may be set in advance, or set by calculation along with the execution of the signal enhancement / suppression processing. May be.
  • the output signal of the signal enhancement / suppression unit 2805 is supplied to the volume adjustment unit 2806.
  • the volume adjustment unit 2806 appropriately adjusts the volume of the signal by amplification or attenuation and supplies the signal to the speakers 2807 and 2808.
  • the speakers 2807 and 2808 reproduce the signal received from the volume adjustment unit 2806 and reproduce the sound field.
  • the arrival of a signal using input signals to a plurality of sensors existing at spatially different positions above or below the terminal or the image display unit held so that the long side is substantially parallel to the horizon Determine the relative delay of the signal in the direction or equivalently.
  • the apparatus selectively multiplies or suppresses a signal by multiplying a plurality of input signals by a gain corresponding to the direction of arrival or relative delay, or subtracting the ratio of the corresponding input signal from the plurality of input signals. .
  • a large gain or a small ratio is set for the direction of arrival in which the signal is selectively emphasized, and a small gain or a large ratio is set for the direction of arrival in which the signal is to be suppressed.
  • the signal processing device 2800 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • the signal processing device 2900 is a device that emphasizes or suppresses a broadband signal using signals from a plurality of sensors 2903 and 2904.
  • the number of sensors is 2.
  • the following description can be applied to any natural number of 2 or more.
  • the signal processing apparatus 2900 includes a terminal 2801, an image display unit (screen) 2802, sensors 2903 and 2904, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, a left speaker 2807, and a right speaker. 2808 included.
  • the volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
  • FIG. 29 The configuration of FIG. 29 is the same as that of FIG. 28 except that the terminal 2801 and the image display unit (screen) 2802 are rotated by 90 degrees. Similar to the sensors 2803 and 2804, the sensors 2903 and 2904 are installed horizontally at the upper part of the image display unit. That is, this embodiment corresponds to a case where the rectangular terminal 2801 of the twentieth embodiment is used while being held so that the short side is horizontal. Therefore, the essential operation of this embodiment is the same as that of the twentieth embodiment, and since it has already been described, the description thereof is omitted.
  • the arrival direction of a signal or the arrival direction of a signal using input signals to a plurality of sensors existing at spatially different positions above a terminal or an image display unit held so that the short side is substantially parallel to the horizon Equivalently find the relative delay of the signal. Furthermore, it is a device that selectively emphasizes or suppresses signals by multiplying multiple input signals by gains corresponding to the direction of arrival or relative delay, or by subtracting the proportion of corresponding input signals from multiple input signals. A large gain or a small ratio is set for the direction of arrival in which the signal is selectively emphasized, and a small gain or a large ratio is set for the direction of arrival in which the signal is to be suppressed.
  • the signal processing device 2900 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • a signal processing device 3000 as a twenty-second embodiment of the present invention will be described with reference to FIG.
  • the signal processing device 3000 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 3003 and 3004.
  • the number of sensors is 2.
  • the following description can be applied to any natural number of 2 or more.
  • the signal processing device 3000 includes a terminal 2801, an image display unit (screen) 2802, sensors 3003 and 3004, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, a left speaker 2807, and a right speaker. 2808 included.
  • the volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
  • FIG. 30 is the same as that of FIG. 28 except for the positions of the sensors 3003 and 3004.
  • the sensors 3003 and 3004 are installed substantially horizontally on both sides of the image display unit. That is, this embodiment corresponds to a case where the sensor position of the twentieth embodiment is changed from the upper part or the lower part of the image display unit to both sides. Therefore, the essential operation of this embodiment is the same as that of the twentieth embodiment, and since it has already been described, the description thereof is omitted.
  • the signal processing device 3000 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • the minimum value of the sensor interval is larger in this embodiment than in the twentieth embodiment. Therefore, the present embodiment can generate better directivity for the signal input to the sensor than the twentieth embodiment, and has a higher ability to emphasize or suppress the target signal.
  • a signal processing device 3100 according to a twenty-third embodiment of the present invention will be described with reference to FIG.
  • the signal processing device 3100 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 3103 and 3104.
  • the number of sensors is 2.
  • the following description can be applied to any natural number of 2 or more.
  • the signal processing device 3100 includes a terminal 2801, an image display unit (screen) 2802, sensors 3103 and 3104, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, a left speaker 2807, and a right speaker. 2808 included.
  • the volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
  • the terminal 2801 and the image display unit (screen) 2802 are rotated by 90 degrees. Similar to the sensors 3003 and 3004, the sensors 3103 and 3104 are horizontally installed on the horizontal part of the image display unit. That is, this embodiment corresponds to the case where the rectangular terminal 2801 of the 22nd embodiment is used while being held so that the short side is horizontal. Therefore, the essential operation of this embodiment is the same as that of the twenty-second embodiment, and since it has already been described, the description thereof is omitted.
  • the arrival direction of a signal using input signals to a plurality of sensors existing at spatially different positions next to a terminal or an image display unit held so that the short side is substantially parallel to the horizon or Equivalently calculate the relative delay of the signal, multiply the multiple input signals by the gain corresponding to the direction of arrival or relative delay, or subtract the proportion of the corresponding input signal from the multiple input signals
  • a high gain or a small ratio is set for an arrival direction in which a signal is selectively emphasized, and a small gain or a large ratio is set for an arrival direction to be suppressed.
  • the signal processing device 3100 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • the minimum value of the sensor interval is smaller than that of the twenty-second embodiment, but this embodiment has a larger minimum value than that of the twentieth embodiment. Therefore, the directivity with respect to the signal input to the sensor is excellent in the order of the twentieth embodiment, the present embodiment, and the twenty-second embodiment, and the enhancement or suppression capability of the target signal is high in the same order.
  • a signal processing device 3200 according to the twenty-fourth embodiment of the present invention will be described with reference to FIG.
  • the signal processing device 3200 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 3203 and 3204.
  • the signal processing apparatus 3200 includes a terminal 2801, an image input unit (lens and sensor, etc.) 3210, sensors 3203 and 3204, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, and a left speaker 2807. , Including a right speaker 2808.
  • the volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
  • Such signal processing devices having an image input unit include personal computers (PCs), tablets, mobile phones, and the like, which are suitable for use in recording environmental sounds at the same time when shooting subjects other than the terminal user. ing.
  • PCs personal computers
  • tablets mobile phones
  • the number of sensors and speakers is 2.
  • the following description can be applied to any natural number of 2 or more.
  • FIG. 32 The configuration in FIG. 32 is the same as that in the twentieth embodiment described with reference to FIG. 28 except that the image display unit (screen) 2802 is replaced with an image input unit (lens, sensor, etc.) 3210. It has become. Therefore, the essential operation of this embodiment is the same as that of the twentieth embodiment, and since it has already been described, the description thereof is omitted.
  • the sensors 3203 and 3204 do not need to be arranged on the same horizontal line as the image input unit 3210, and may be installed at a position arbitrarily moved upward or downward from the position of FIG. Furthermore, the image input unit 3210 does not need to be arranged at the midpoint between the sensors 3203 and 3204, and the sensors 3203 and 3204 may be installed at positions arbitrarily moved in the left-right direction from the position of FIG.
  • input signals for a plurality of sensors existing at spatially different positions sandwiching a terminal or an image input unit existing on the back surface of the image display unit held so that the long side is substantially parallel to the horizon are used.
  • To determine the signal arrival direction or equivalent signal relative delay multiply the multiple input signals by the gain corresponding to the arrival direction or relative delay, or subtract the corresponding input signal ratio from the multiple input signals.
  • the signal processing device 3200 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • this embodiment has the characteristic that the freedom degree of sensor arrangement
  • a signal processing device 3300 according to a twenty-fifth embodiment of the present invention will be described with reference to FIG.
  • the signal processing device 3300 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 3303 and 3304.
  • the number of sensors is 2.
  • the following description can be applied to any natural number of 2 or more.
  • the signal processing device 3300 includes a terminal 2801, an image input unit (lens and sensor, etc.) 3310, sensors 3303 and 3304, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, and a left speaker 2807. , Including a right speaker 2808.
  • the volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
  • FIG. 33 is the same as FIG. 32 except that the terminal 2801 is rotated 90 degrees and the position of the image input unit (lens, sensor, etc.) 3310 is changed. Similar to the sensors 3203 and 3204, the sensors 3303 and 3304 are installed almost horizontally across the image input unit (lens, sensor, etc.) 3310. That is, this embodiment corresponds to the case where the rectangular terminal 2801 of the 24th embodiment is used while being held so that the short side is horizontal. Therefore, the essential operation of this embodiment is the same as that of the twenty-fourth embodiment, and since it has already been described, the description thereof is omitted.
  • the sensors 3303 and 3304 do not need to be arranged on the same horizontal line as the image input unit 3310, and may be installed at a position arbitrarily moved upward or downward from the position of FIG. Furthermore, the image input unit 3310 does not need to be arranged at the midpoint between the sensors 3303 and 3304, and the sensors 3303 and 3304 may be installed at positions arbitrarily moved in the left-right direction from the position of FIG.
  • input signals for a plurality of sensors existing at spatially different positions sandwiching a terminal or an image input unit existing on the back surface of the image display unit held so that the short side is substantially parallel to the horizon are used.
  • To determine the signal arrival direction or equivalent signal relative delay multiply the multiple input signals by the gain corresponding to the arrival direction or relative delay, or subtract the corresponding input signal ratio from the multiple input signals.
  • the signal processing device 3300 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • this embodiment has a feature that the degree of freedom of sensor arrangement is large as compared with the nineteenth, twentieth, twenty-first and twenty-third embodiments as in the twenty-fourth embodiment. Therefore, there are fewer restrictions on terminal design due to the components arranged inside, and it becomes possible to reduce the design cost and the design period.
  • a signal processing device 3400 according to a twenty-sixth embodiment of the present invention will be described with reference to FIG.
  • the signal processing device 3400 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 3403 and 3404.
  • the signal processing device 3400 includes a terminal 2801, an image input unit (lens and sensor, etc.) 3410, sensors 3403 and 3404, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, and a left speaker 2807. , Including a right speaker 2808.
  • the volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
  • the sensors 3403 and 3404 are changed to one side of the image input unit instead of the position where the image input unit (lens, sensor, etc.) is sandwiched. Except for this, it has the same configuration.
  • the arrangement of the sensors 3403 and 3404 corresponds to an example of moving in the right direction with respect to the image input unit from the example of FIG. Therefore, the essential operation of this embodiment is the same as that of the twenty-fourth embodiment, and since it has already been described, the description thereof is omitted.
  • input signals to a plurality of sensors existing at spatially different positions on one side of an image input unit existing on the back of the terminal or the image display unit, which is held so that the long side is substantially parallel to the horizon are provided.
  • To determine the signal arrival direction or equivalent signal relative delay multiply the multiple input signals by the gain corresponding to the arrival direction or relative delay, or subtract the corresponding input signal ratio from the multiple input signals Therefore, it is a device that selectively emphasizes or suppresses a signal, and has a large gain or small ratio for the direction of arrival in which the signal is selectively emphasized, and a small gain or large ratio in the direction of arrival that is desired to be suppressed.
  • the signal processing device 3400 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • This embodiment differs from the twenty-fourth embodiment in that the sensor is arranged on one side rather than on both sides of the image input unit. Therefore, as compared with the twenty-fourth embodiment, there are fewer terminal design restrictions due to the components arranged inside, and it is possible to reduce the design cost and shorten the design period.
  • a signal processing device 3500 according to a twenty-seventh embodiment of the present invention will be described with reference to FIG.
  • the signal processing device 3500 is a device that emphasizes or suppresses a broadband signal using signals from a plurality of sensors 3503 and 3504.
  • the signal processing device 3500 includes a terminal 2801, an image input unit (lens and sensor, etc.) 3510, sensors 3503 and 3504, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, and a left speaker 2807. , Including a right speaker 2808.
  • the volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
  • FIG. 35 is different from the twenty-fourth embodiment described with reference to FIG. 33 in that the sensors 3503 and 3504 are changed to one side of the image input unit, not the position where the image input unit (lens, sensor, etc.) is sandwiched. Except for this, it has the same configuration.
  • the arrangement of the sensors 3503 and 3504 corresponds to an example of moving from the example of FIG. 33 in the right direction with respect to the image input unit. Therefore, the essential operation of this embodiment is the same as that of the 25th embodiment, and since it has already been described, the description thereof is omitted.
  • input signals for a plurality of sensors existing at spatially different positions on one side of a terminal or an image input unit existing on the back surface of the image display unit held so that the short side is substantially parallel to the horizon.
  • multiply the multiple input signals by the gain corresponding to the arrival direction or relative delay, or subtract the corresponding input signal ratio from the multiple input signals Therefore, it is a device that selectively emphasizes or suppresses a signal, and has a large gain or small ratio for the direction of arrival in which the signal is selectively emphasized, and a small gain or large ratio in the direction of arrival that is desired to be suppressed.
  • the signal processing device 3500 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
  • This embodiment is different from the twenty-fifth embodiment in that the sensor is arranged on one side instead of on both sides of the image input unit. Therefore, as compared with the twenty-fifth embodiment, there are fewer terminal design restrictions due to the components arranged inside, and it is possible to reduce the design cost and the design period.
  • the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where an information processing program that implements the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention with a computer, a program installed in the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.
  • a part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
  • (Appendix 1) A direction estimation unit that estimates the arrival direction of the target signal using a plurality of signals received from a plurality of sensors, each including a target signal and noise;
  • a first gain calculator for calculating a direction gain using the direction of arrival;
  • a first multiplier for multiplying each of the plurality of signals by the directional gain;
  • a signal processing apparatus comprising: (Appendix 2) A first phase difference calculation unit for obtaining a phase difference between a plurality of signals received from a plurality of sensors, each including a target signal and noise;
  • a second gain calculator for calculating a directional gain using the phase difference;
  • a first multiplier for multiplying each of the plurality of signals by the directional gain;
  • a signal processing apparatus comprising: (Appendix 3) A second phase difference calculation unit for determining a phase difference between a plurality of signals received from a plurality of sensors, each including
  • An integration unit for integrating the plurality of signals to obtain an integrated signal;
  • a first noise estimation unit for obtaining a noise estimation value for noise included in the integrated signal;
  • a fourth gain calculation unit for calculating a signal gain for suppressing noise included in the integrated signal, using the noise estimation value and the integrated signal;
  • a second multiplier for multiplying the directional gain and the signal gain to obtain a combined gain; Further comprising The signal processing apparatus according to any one of appendices 1 to 6, wherein the first multiplier multiplies each signal received from the plurality of sensors by the combined gain.
  • a multiple noise estimator that obtains the same number of noise estimates as the sensor for noise included in each of the plurality of signals;
  • a multiple gain calculation unit that calculates the same number of multiple gains as the sensor for suppressing noise included in the plurality of signals, using the same number of noise estimation values and the plurality of signals as the sensor;
  • a third multiplier for multiplying each of the directional gain and each of the multiple gains to obtain the same number of combined gains as the sensor; Further comprising The signal processing device according to any one of appendices 1 to 7, wherein the first multiplier multiplies corresponding signals among the plurality of signals and the combined gain.
  • An integration unit for integrating the plurality of signals to obtain an integrated signal;
  • a first noise estimation unit for obtaining a noise estimation value for noise included in the integrated signal;
  • a fifth gain calculator for calculating a signal gain for suppressing noise included in the integrated signal, using the noise estimation value and the integrated signal;
  • a fourth multiplier for obtaining a noise suppression signal by multiplying the plurality of signals and the signal gain; Further comprising The signal processing apparatus according to any one of appendices 1 to 6, wherein the first multiplier multiplies the directional gain and the noise suppression signal.
  • An integration unit for integrating the plurality of signals to obtain an integrated signal;
  • a first noise estimation unit for obtaining a noise estimation value for noise included in the integrated signal;
  • a sixth gain calculator for calculating a signal gain for suppressing noise included in the integrated signal using the noise estimation value and the integrated signal;
  • a fifth multiplier for multiplying the output of the first multiplier and the signal gain; 7.
  • the signal processing device further comprising: (Appendix 11) An integration unit for integrating the outputs of the first multiplier to obtain an integrated signal; A first noise estimation unit for obtaining a noise estimation value for noise included in the integrated signal; A seventh gain calculator for calculating a signal gain for suppressing noise included in the integrated signal using the noise estimation value and the integrated signal; A sixth multiplier for multiplying the output of the first multiplier and the signal gain; 7.
  • the signal processing device according to any one of appendices 1 to 6, further comprising: (Appendix 12) An integration unit that integrates signals received from the plurality of sensors to obtain an integrated signal; A second noise estimation unit that obtains a noise estimation value for noise included in signals received from the plurality of sensors; An eighth gain calculation unit for calculating a signal gain for suppressing noise included in the integrated signal using the noise estimation value and the integrated signal; A seventh multiplier for multiplying the directional gain and the signal gain to obtain a combined gain; Further comprising The signal processing device according to any one of appendices 1 to 6, wherein the first multiplier multiplies each of the plurality of signals by the combined gain.
  • (Appendix 13) A phase adjustment unit for obtaining a plurality of phase adjustment signals obtained by adjusting the phases of the signals output from the plurality of sensors; The signal processing device according to any one of appendices 1 to 12, wherein the plurality of signals are the phase adjustment signals.
  • (Appendix 14) A plurality of conversion units for obtaining a plurality of conversion signals including a plurality of frequency components by applying conversion independently to the signals output from the plurality of sensors; The signal processing apparatus according to any one of appendices 1 to 13, wherein the plurality of signals are the plurality of converted signals.
  • (Appendix 15) Obtaining a signal arrival direction for signals received from a plurality of sensors, including a target signal and noise; Calculating a direction gain using the signal arrival direction; Multiplying the directional gain by each signal received from the plurality of sensors;
  • a signal processing method including: (Appendix 16) Determining a signal phase difference for signals received from a plurality of sensors, including a target signal and noise; Calculating a directional gain using the phase difference; Multiplying the directional gain by each signal received from the plurality of sensors;
  • a signal processing method including: (Appendix 17) Determining the direction of arrival of signals using input signals to a plurality of sensors located at different spatial positions; Multiplying an input signal by a gain corresponding to the direction of arrival and selectively emphasizing or suppressing the signal, or subtracting a proportion of the corresponding input signal from the input signal and selectively emphasizing or suppressing the signal; Including A signal processing method in which a large gain or a small ratio is set for an
  • Appendix 20 Having a plurality of sensors for capturing a plurality of signals, each including a target signal and noise; A terminal device that emphasizes or suppresses a plurality of signals received from the plurality of sensors by the signal processing device according to any one of appendices 1 to 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computational Linguistics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Otolaryngology (AREA)
  • Quality & Reliability (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

The present invention is a signal processing device that implements enhancement or suppression of a broadband signal to the same level at respective frequencies while maintaining the same sound image expression capability as in input without increasing the size of a sensor array. This signal processing device is characterized by being provided with: a direction estimation unit that finds a signal arrival direction regarding signals received from a plurality of sensors and each including a target signal and noise; a gain calculation unit that calculates a direction gain using the signal arrival direction; and a multiplier that multiplies the direction gain and the respective signals received from the plurality of sensors.

Description

信号処理装置、信号処理方法および信号処理プログラム並びに端末装置Signal processing device, signal processing method, signal processing program, and terminal device
 本発明は、複数のセンサが形成する指向性を用いて信号を強調または抑圧する技術に関する。 The present invention relates to a technique for enhancing or suppressing a signal using directivity formed by a plurality of sensors.
 上記技術分野において、非特許文献1および非特許文献2には、複数のセンサ信号を処理して強調された目的信号を生成し、その目的信号を抑圧することで妨害信号が相対的に強調された擬似妨害信号を生成する技術が開示されている。またさらに、その擬似妨害信号と相関のある成分を強調された目的信号から差し引くことで、目的信号を強調し、妨害信号を抑圧する記載がある。 In the above technical field, Non-Patent Document 1 and Non-Patent Document 2 process a plurality of sensor signals to generate an emphasized target signal, and suppress the target signal to relatively emphasize the interference signal. A technique for generating a pseudo jamming signal is disclosed. Furthermore, there is a description that the target signal is emphasized and the interference signal is suppressed by subtracting the component correlated with the pseudo interference signal from the emphasized target signal.
 この技術は、複数のセンサにおける空間位置の違いに基づく信号の位相差を利用して指向性を形成し、形成した指向性に基づいて、特定の信号を強調または抑圧するものである。 This technique forms a directivity using a phase difference of signals based on differences in spatial positions among a plurality of sensors, and emphasizes or suppresses a specific signal based on the formed directivity.
 また、非特許文献3および非特許文献4には、センサ間隔の異なる複数のアレイを用いることにより、低域から高域まで複数の周波数帯域で、非特許文献1および非特許文献2の技術を組み合わせた構成の記載がある。 In Non-Patent Document 3 and Non-Patent Document 4, the technologies of Non-Patent Document 1 and Non-Patent Document 2 are used in a plurality of frequency bands from low to high using a plurality of arrays having different sensor intervals. There is a description of the combined configuration.
US2013/0064392A1US2013 / 0064392A1
 しかし、上述の非特許文献1および非特許文献2に記載の技術では、低周波数の信号成分に対して十分な指向性を形成できない。これは、中高周波と比較して波が長い低周波数で中高周波と共通のセンサを用いると、相対的に狭くなったセンサ間隔が、複数センサ間で十分に大きな信号間位相差を生成できないためである。また、非特許文献3および非特許文献4に記載の技術は、増加したセンサ数によるコスト増や、低域に対応した広いセンサ間隔によるアレイサイズ増大が問題となる。さらに、非特許文献1から4に記載の技術は全てモノラル出力であり、入力において存在した多チャネル情報が欠落している。 However, the techniques described in Non-Patent Document 1 and Non-Patent Document 2 described above cannot form sufficient directivity for low-frequency signal components. This is because when using a sensor common to the medium and high frequencies at a low frequency with a long wave compared to the medium and high frequencies, the relatively narrow sensor interval cannot generate a sufficiently large inter-signal phase difference between multiple sensors. It is. Further, the techniques described in Non-Patent Document 3 and Non-Patent Document 4 have problems such as an increase in cost due to the increased number of sensors and an increase in array size due to a wide sensor interval corresponding to a low frequency range. Further, all the techniques described in Non-Patent Documents 1 to 4 are monaural outputs, and the multi-channel information existing at the input is missing.
 このため、これらの文献に記載の技術では、センサアレイのサイズを大きくしたり、センサ数を増加させたりすることなしに、広い周波数帯域で一様に信号を強調または抑圧することはできなかった。また、入力において存在した多チャネル情報を保持することができず、音像を十分に表現することができなかった。 For this reason, the techniques described in these documents cannot uniformly enhance or suppress signals in a wide frequency band without increasing the size of the sensor array or increasing the number of sensors. . Further, the multi-channel information existing in the input cannot be retained, and the sound image cannot be expressed sufficiently.
 本発明の目的は、上述の課題を解決する技術を提供することにある。 An object of the present invention is to provide a technique for solving the above-described problems.
 上記目的を達成するため、本発明に係る装置は、
 それぞれが目的信号と雑音とを含む、複数のセンサから受けた複数の信号を用いて、前記目的信号の到来方向を推定する方向推定部と、
 前記到来方向を用いて方向利得を計算する第1利得計算部と、
 前記複数の信号のそれぞれと前記方向利得とを乗算する第1乗算器と、
 を備えた信号処理装置である。
In order to achieve the above object, an apparatus according to the present invention provides:
A direction estimation unit that estimates the arrival direction of the target signal using a plurality of signals received from a plurality of sensors, each including a target signal and noise;
A first gain calculator for calculating a direction gain using the direction of arrival;
A first multiplier for multiplying each of the plurality of signals by the directional gain;
Is a signal processing apparatus.
 上記目的を達成するため、本発明に係る装置は、
 それぞれが目的信号と雑音とを含む、複数のセンサから受けた複数の信号の位相差を求める第1位相差計算部と、
 前記位相差を用いて方向利得を計算する第2利得計算部と、
 前記複数の信号のそれぞれと前記方向利得とを乗算する第1乗算器と、
 を備えた信号処理装置である。
In order to achieve the above object, an apparatus according to the present invention provides:
A first phase difference calculation unit for obtaining a phase difference between a plurality of signals received from a plurality of sensors, each including a target signal and noise;
A second gain calculator for calculating a directional gain using the phase difference;
A first multiplier for multiplying each of the plurality of signals by the directional gain;
Is a signal processing apparatus.
 上記目的を達成するため、本発明に係る装置は、
 それぞれが目的信号と雑音とを含む、複数のセンサから受けた複数の信号の位相差と、前記目的信号の到来方向の、正面からのずれ方向とを求める第2位相差計算部と、
 前記位相差と前記ずれ方向とを用いて方向利得を計算する第3利得計算部と、
 前記複数の信号のそれぞれと前記方向利得とを乗算する第1乗算器と、
 を備えた信号処理装置である。
In order to achieve the above object, an apparatus according to the present invention provides:
A second phase difference calculation unit for determining a phase difference between a plurality of signals received from a plurality of sensors, each including a target signal and noise, and a direction of deviation of the arrival direction of the target signal from the front;
A third gain calculator for calculating a direction gain using the phase difference and the shift direction;
A first multiplier for multiplying each of the plurality of signals by the directional gain;
Is a signal processing apparatus.
 上記目的を達成するため、本発明に係る装置は、
 空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向を推定する方向推定部と、
 前記到来方向に対応した方向利得を入力信号に乗算して信号を選択的に強調または抑圧する、あるいは対応した入力信号の割合を入力信号から減算して信号を選択的に強調または抑圧する信号抑圧部と、
 を備えた信号処理装置であって、
 前記信号抑圧部は、選択的に強調したい到来方向に対しては大きな方向利得を前記入力信号に乗算し、抑圧したい到来方向に対しては小さな方向利得を前記入力信号に乗算し、あるいは、選択的に強調したい到来方向に対しては小さな割合を前記入力信号から減算し、抑圧したい到来方向に対しては大きな割合を前記入力信号から減算する信号処理装置である。
In order to achieve the above object, an apparatus according to the present invention provides:
A direction estimation unit that estimates an arrival direction of a signal using input signals to a plurality of sensors existing at spatially different positions;
Signal suppression that selectively enhances or suppresses signals by multiplying the input signal by the direction gain corresponding to the direction of arrival, or selectively emphasizes or suppresses signals by subtracting the proportion of the corresponding input signal from the input signal And
A signal processing apparatus comprising:
The signal suppression unit multiplies the input signal by a large direction gain for the direction of arrival to be selectively emphasized, and multiplies the input signal by a small direction gain for the direction of arrival to be suppressed or selects The signal processing apparatus subtracts a small percentage from the input signal for the direction of arrival to be emphasized and subtracts a large percentage from the input signal for the direction of arrival to be suppressed.
 上記目的を達成するため、本発明に係る方法は、
 目的信号と雑音を含む、複数のセンサから受けた信号に対して信号到来方向を求めるステップと、
 前記信号到来方向を用いて方向利得を計算するステップと、
 前記方向利得と前記複数のセンサから受けた各信号を乗算するステップと、
 を含む信号処理方法である。
In order to achieve the above object, the method according to the present invention comprises:
Obtaining a signal arrival direction for signals received from a plurality of sensors, including a target signal and noise;
Calculating a direction gain using the signal arrival direction;
Multiplying the directional gain by each signal received from the plurality of sensors;
Is a signal processing method.
 上記目的を達成するため、本発明に係る方法は、
 目的信号と雑音を含む、複数のセンサから受けた信号に対して信号の位相差を求めるステップと、
 前記位相差を用いて方向利得を計算するステップと、
 前記方向利得と前記複数のセンサから受けた各信号を乗算するステップと、
 を含む信号処理方法である。
In order to achieve the above object, the method according to the present invention comprises:
Determining a signal phase difference for signals received from a plurality of sensors, including a target signal and noise;
Calculating a directional gain using the phase difference;
Multiplying the directional gain by each signal received from the plurality of sensors;
Is a signal processing method.
 上記目的を達成するため、本発明に係る方法は、
 空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向を求めるステップと、
 前記到来方向に対応した利得を入力信号に乗算して信号を選択的に強調または抑圧する、あるいは対応した入力信号の割合を入力信号から減算して信号を選択的に強調または抑圧するステップとを含み、
 信号を選択的に強調したい到来方向に対しては大きな利得または小さな割合を設定し、抑圧したい到来方向に対しては小さな利得または大きな割合を設定する信号処理方法である。
In order to achieve the above object, the method according to the present invention comprises:
Determining the direction of arrival of signals using input signals to a plurality of sensors located at different spatial positions;
Multiplying an input signal by a gain corresponding to the direction of arrival and selectively emphasizing or suppressing the signal, or subtracting a proportion of the corresponding input signal from the input signal and selectively emphasizing or suppressing the signal; Including
In this signal processing method, a large gain or a small ratio is set for an arrival direction in which a signal is selectively emphasized, and a small gain or a large ratio is set for an arrival direction in which a signal is desired to be suppressed.
 上記目的を達成するため、本発明に係るプログラムは、
 目的信号と雑音を含む、複数のセンサから受けた信号に対して信号到来方向を求めるステップと、
 前記信号到来方向を用いて方向利得を計算するステップと、
 前記方向利得と前記複数のセンサから受けた各信号とを乗算するステップと、
 をコンピュータに実行させる信号処理プログラムである。
In order to achieve the above object, a program according to the present invention provides:
Obtaining a signal arrival direction for signals received from a plurality of sensors, including a target signal and noise;
Calculating a direction gain using the signal arrival direction;
Multiplying the directional gain by each signal received from the plurality of sensors;
Is a signal processing program for causing a computer to execute.
 上記目的を達成するため、本発明に係るプログラムは、
 目的信号と雑音を含む、複数のセンサから受けた信号に対して信号の位相差を求めるステップと、
 前記位相差を用いて方向利得を計算するステップと、
 前記方向利得と前記複数のセンサから受けた各信号を乗算するステップと、
 をコンピュータに実行させる信号処理プログラムである。
In order to achieve the above object, a program according to the present invention provides:
Determining a signal phase difference for signals received from a plurality of sensors, including a target signal and noise;
Calculating a directional gain using the phase difference;
Multiplying the directional gain by each signal received from the plurality of sensors;
Is a signal processing program for causing a computer to execute.
 上記目的を達成するため、本発明に係る端末装置は、
 それぞれが目的信号と雑音とを含む、複数の信号を捕捉するための複数のセンサを有し、
 前記複数のセンサから受けた複数の信号を、上記信号処理装置で強調または抑圧する端末装置である。
In order to achieve the above object, a terminal device according to the present invention provides:
Having a plurality of sensors for capturing a plurality of signals, each including a target signal and noise;
The terminal device emphasizes or suppresses a plurality of signals received from the plurality of sensors by the signal processing device.
 本発明によれば、センサアレイのサイズを大きくすることなく、入力と同様の音像表現能力を維持しながら、広帯域信号を各周波数で同程度に強調または抑圧することができる。すなわち、広い周波数帯域で等しいビームまたはヌルの幅を有したアレイ処理を実施することができる。 According to the present invention, a wideband signal can be enhanced or suppressed to the same degree at each frequency while maintaining the same sound image expression capability as the input without increasing the size of the sensor array. That is, array processing with the same beam or null width can be performed in a wide frequency band.
本発明の第1実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る利得計算部で利用する位相差と利得の関係の第1の例を示す図である。It is a figure which shows the 1st example of the relationship between the phase difference and gain utilized with the gain calculation part which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る利得計算部で利用する位相差と利得の関係の第2の例を示す図である。It is a figure which shows the 2nd example of the relationship between the phase difference and gain utilized with the gain calculation part which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る利得計算部で利用する位相差と利得の関係の第3の例を示す図である。It is a figure which shows the 3rd example of the relationship between the phase difference and gain utilized with the gain calculation part which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る利得計算部で利用する位相差と周波数と利得の関係の一例を示す図である。It is a figure which shows an example of the relationship between the phase difference utilized in the gain calculation part which concerns on 2nd Embodiment of this invention, a frequency, and a gain. 本発明の第3実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 8th Embodiment of this invention. 本発明の第9実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 9th Embodiment of this invention. 本発明の第10実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 10th Embodiment of this invention. 本発明の第11実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 11th Embodiment of this invention. 本発明の第11実施形態に係る利得計算部で利用する位相差と利得の関係の例を示すブロック図である。It is a block diagram which shows the example of the relationship between the phase difference and gain utilized with the gain calculation part which concerns on 11th Embodiment of this invention. 本発明の第12実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 12th Embodiment of this invention. 本発明の第13実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 13th Embodiment of this invention. 本発明の第14実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 14th Embodiment of this invention. 本発明の第15実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 15th Embodiment of this invention. 本発明の第16実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 16th Embodiment of this invention. 本発明の第2実施形態に係る信号処理装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the signal processing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る信号処理装置の処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of the signal processing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第17実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 17th Embodiment of this invention. 本発明の第18実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 18th Embodiment of this invention. 本発明の第1乃至18実施形態の第1の応用例を示すブロック図である。It is a block diagram which shows the 1st application example of 1st thru | or 18th embodiment of this invention. 本発明の第1乃至18実施形態の第2の応用例を示すブロック図である。It is a block diagram which shows the 2nd application example of 1st thru | or 18th embodiment of this invention. 本発明の第18実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 18th Embodiment of this invention. 本発明の第19実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus concerning 19th Embodiment of this invention. 本発明の第20実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 20th Embodiment of this invention. 本発明の第21実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 21st Embodiment of this invention. 本発明の第22実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 22nd Embodiment of this invention. 本発明の第23実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 23rd Embodiment of this invention. 本発明の第24実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 24th Embodiment of this invention. 本発明の第25実施形態に係る信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus which concerns on 25th Embodiment of this invention.
 以下に、図面を参照して、本発明の実施の形態について例示的に詳しく説明する。ただし、以下の実施の形態に記載されている構成要素はあくまで例示であり、本発明の技術範囲をそれらのみに限定する趣旨のものではない。なお、以下の説明中における「音声信号」とは、音声その他の音響に従って生ずる直接的の電気的変化であって、音声その他の音響を伝送するためのものをいい、音声に限定されない。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the components described in the following embodiments are merely examples, and are not intended to limit the technical scope of the present invention only to them. In the following description, the “voice signal” is a direct electrical change that occurs in accordance with voice and other sounds, and is used to transmit voice and other sounds, and is not limited to voice.
 また、センサ数が4のものについて説明しているが、これはあくまで例示であり、2以上の任意のセンサ数について同じ説明が成り立つ。さらに、複数のセンサが同一直線状に等間隔で並んでいる例について説明するが、同一直線状に並んでいないセンサ配置や不等間隔のセンサに対しては、空間位置のずれを振幅と位相に関して補正することで、この後の説明と同じように議論することができる。同一直線状に並んでいないセンサ配置の例としては、円弧状配置や円周配置、さらに全くの自由空間配置がある。特に、自由空間配置は、複数人の所有する端末に装備されたセンサを利用したアドホックセンサアレイ信号処理としてその重要性が増しており、非特許文献5に詳細が開示されている。 Further, although the explanation is given for the case where the number of sensors is four, this is merely an example, and the same explanation holds for any number of sensors of two or more. Furthermore, an example in which a plurality of sensors are arranged in the same straight line at equal intervals will be described. However, for sensor arrangements that are not arranged in the same straight line or sensors with unequal intervals, the displacement of the spatial position is the amplitude and phase. Can be discussed in the same way as the following explanation. Examples of sensor arrangements that are not aligned in a straight line include arcuate arrangements, circumferential arrangements, and totally free space arrangements. In particular, free space layout is becoming increasingly important as ad hoc sensor array signal processing using sensors installed in terminals owned by multiple persons, and details are disclosed in Non-Patent Document 5.
 [第1実施形態]
 本発明の第1実施形態としての信号処理装置100について、図1を用いて説明する。信号処理装置100は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図1に示すように、信号処理装置100は、方向推定部105、利得計算部106、および乗算器110を含む。方向推定部105は、複数のセンサ101、102、103、104から受けた信号を用いて、信号の到来方向を求める。利得計算部106は、方向推定部105から受けた信号到来方向を用いて方向利得を計算する。乗算器110は、複数のセンサ101、102、103、104から受けたそれぞれの信号と方向利得を乗算し、その積を目的信号が強調された強調信号とする。すなわち、強調信号の数は、複数のセンサ101、102、103、104から受けた信号の数に等しく、図1では4である。
[First Embodiment]
A signal processing apparatus 100 according to a first embodiment of the present invention will be described with reference to FIG. The signal processing apparatus 100 is an apparatus that enhances or suppresses a broadband signal using signals from a plurality of sensors 101, 102, 103, and 104. As shown in FIG. 1, the signal processing device 100 includes a direction estimation unit 105, a gain calculation unit 106, and a multiplier 110. The direction estimation unit 105 uses the signals received from the plurality of sensors 101, 102, 103, and 104 to determine the arrival direction of the signals. Gain calculation section 106 calculates a direction gain using the signal arrival direction received from direction estimation section 105. Multiplier 110 multiplies each signal received from a plurality of sensors 101, 102, 103, and 104 by a directional gain, and uses the product as an enhanced signal in which the target signal is enhanced. That is, the number of enhancement signals is equal to the number of signals received from the plurality of sensors 101, 102, 103, 104, and is 4 in FIG.
 (信号到来方向の計算)
 信号到来方向(Direction of Arrival: DOA)の推定法として様々なものが知られており、複数センサに到来する信号の位相差を利用した方法(例えば相互相関法、相互スペクトルパワー分析法、GCC-PHATなど)、MUSIC法に代表されるサブスペース法などが、非特許文献6に開示されている。
(Calculation of signal arrival direction)
Various methods of estimating the direction of arrival (DOA) of signals are known, and methods using the phase difference of signals arriving at multiple sensors (for example, cross-correlation method, cross-spectral power analysis method, GCC- Non-Patent Document 6 discloses a subspace method represented by the MUSIC method and the like.
 信号の到来方向を推定する際には、センサは最低2個あればよい。図1において、隣接する2センサの組合せは、センサ101とセンサ102、センサ102とセンサ103、センサ103とセンサ104の3組である。これらのセンサに到来した信号から求めた時刻kの信号到来方向をそれぞれ、φ12(k)、φ23(k)、φ34(k)とする。また、1つ飛ばして隣接する2センサの組合せは、センサ101とセンサ103、およびセンサ102とセンサ104の2組である。さらに、2つ飛ばして隣接する2センサの組合せ、センサ101とセンサ104もある。これらを用いて到来方向の推定をすることもできる。これらのセンサに到来した信号から求めた時刻kの信号到来方向をそれぞれ、φ13(k)、φ24(k)、φ14(k)とする。このように、複数のセンサのうちから2つを選択し、あらゆる異なった選択に対応した信号の到来方向を求めることもできる。さらに、2より大きい自然数で表されるセンサを用いて一つの信号到来方向を求めることもできる。 When estimating the direction of arrival of the signal, it is sufficient that there are at least two sensors. In FIG. 1, there are three combinations of two adjacent sensors: a sensor 101 and a sensor 102, a sensor 102 and a sensor 103, and a sensor 103 and a sensor 104. The signal arrival directions at time k obtained from the signals arriving at these sensors are defined as φ12 (k), φ23 (k), and φ34 (k), respectively. Moreover, two combinations of two sensors adjacent to each other are two sets of the sensor 101 and the sensor 103, and the sensor 102 and the sensor 104. Further, there is a combination of two sensors adjacent to each other by skipping two sensors 101 and 104. The direction of arrival can also be estimated using these. Signal arrival directions at time k obtained from signals arriving at these sensors are assumed to be φ13 (k), φ24 (k), and φ14 (k), respectively. In this manner, two of the plurality of sensors can be selected, and the arrival directions of signals corresponding to all different selections can be obtained. Furthermore, one signal arrival direction can be obtained using a sensor represented by a natural number larger than two.
 方向推定部105から出力する信号到来方向φ(k)としては、これらのいずれかを選択して用いてもよい。また、これら複数の信号到来方向推定値を用いて、一つの信号到来方向φ(k)を計算してもよい。例えば、これらのうちいくつか、または全部の中央値または平均値を求め、中央値または平均値を信号到来方向φ(k)とすることができる。平均値と中央値は、複数の測定値に基づいてより正確な信号到来方向φ(k)を与える。 Any of these may be selected and used as the signal arrival direction φ (k) output from the direction estimation unit 105. Alternatively, one signal arrival direction φ (k) may be calculated using these multiple signal arrival direction estimation values. For example, the median value or average value of some or all of them can be obtained, and the median value or average value can be used as the signal arrival direction φ (k). The average value and the median value give a more accurate signal arrival direction φ (k) based on a plurality of measured values.
 同様に、複数の信号到来方向に関する推定値の統計値を用いてもよい。統計値の例としては、中央値と平均値以外に、最大値、最小値などをあげることができる。 Similarly, statistical values of estimated values regarding a plurality of signal arrival directions may be used. Examples of statistical values include a maximum value and a minimum value in addition to the median value and the average value.
 最大値は、位相差がゼロ近傍の特性をより位相差が大きな領域に広げる効果がある。目的信号を強調する際には、信号通過帯域がゼロ近傍で広がることになり、計算誤差などによって誤って目的信号の一部を抑圧する確率を低減できる。目的信号を抑圧する際には、計算誤差などによって誤って目的信号以外の成分を残留させる確率を低減できる。 The maximum value has the effect of spreading the characteristics with a phase difference near zero to a region with a larger phase difference. When emphasizing the target signal, the signal pass band widens in the vicinity of zero, and the probability of erroneously suppressing a part of the target signal due to a calculation error or the like can be reduced. When suppressing the target signal, it is possible to reduce the probability that a component other than the target signal will remain by mistake due to a calculation error or the like.
 最小値は、最大値と反対の効果がある。すなわち、位相差が大きな領域の特性をより位相差が小さな領域に広げる効果がある。目的信号を強調する際には、信号通過帯域がゼロ近傍で狭まることになり、計算誤差などによって誤って目的信号以外の成分を残留させる確率を低減できる。目的信号を抑圧する際には、計算誤差などによって誤って目的信号の一部を抑圧する確率を低減できる。 The minimum value has the opposite effect to the maximum value. That is, there is an effect of extending the characteristics of the region having a large phase difference to the region having a smaller phase difference. When emphasizing the target signal, the signal passband is narrowed in the vicinity of zero, and the probability that components other than the target signal are erroneously left due to a calculation error or the like can be reduced. When the target signal is suppressed, the probability of erroneously suppressing a part of the target signal due to a calculation error or the like can be reduced.
 (利得の計算)
 利得計算部106は、方向推定部105から受けた信号到来方向φ(k)を用いて、次のようにして方向利得Gd(k)を計算する。まず、あらかじめ定められた信号到来方向と利得の関係を用いて、方向利得Gd(k)を計算することができる。図2に信号到来方向φ(k)と利得の関係の第1の例を示す。
(Calculation of gain)
Gain calculation section 106 calculates direction gain Gd (k) using signal arrival direction φ (k) received from direction estimation section 105 as follows. First, the direction gain Gd (k) can be calculated using a predetermined relationship between the signal arrival direction and the gain. FIG. 2 shows a first example of the relationship between the signal arrival direction φ (k) and the gain.
 図2において、横軸は信号到来方向φ(k)を、縦軸は信号到来方向φ(k)に対応する利得を表す。ここでは、利得が1と0の範囲に設定されている。利得が1であることは、入力を減衰なしにそのまま通過させることを表す。利得が0であることは、入力を完全に阻止して、何も通過させないことを表す。利得が1である連続した位相差の範囲を通過域または通過帯域という。利得が0である連続した位相差の範囲を阻止域または阻止帯域という。通過域と阻止域の間には、ゆるやかに利得が1から0に変化する遷移域または遷移帯域があってもよい。 2, the horizontal axis represents the signal arrival direction φ (k), and the vertical axis represents the gain corresponding to the signal arrival direction φ (k). Here, the gain is set in the range of 1 and 0. A gain of 1 indicates that the input is passed through without attenuation. A gain of zero indicates that the input is completely blocked and nothing is passed. A continuous phase difference range in which the gain is 1 is referred to as a pass band or a pass band. A continuous phase difference range in which the gain is 0 is referred to as a stop band or a stop band. There may be a transition band or transition band in which the gain gradually changes from 1 to 0 between the passband and the stopband.
 図2では、通過域を白色、遷移域を薄いグレー、阻止域を濃いグレーで着色して見やすくしている。図から明らかなように、第1の例では、信号到来方向φ(k)=0の周辺に通過域が、0から離れた信号到来方向の領域に阻止域があり、両者は遷移域を介して連続している。この場合、信号到来方向φ(k)が0に近い信号は減衰なしに通過し、信号到来方向φ(k)が0から離れている信号は完全に阻止される。中間には、少し減衰される信号到来方向φ(k)の遷移域が存在する。遷移域なしに、通過域と阻止域が直接連続してもよい。信号到来方向φ(k)=0は、信号到来方向を求めるために用いたセンサを結んだ直線に直角な方向から信号が到来する、すなわち正面信号であることを表す。したがって、正面方向から到来する信号は通過させ、それ以外の方向から到来する信号は阻止する、信号到来方向φ(k)と方向利得Gd(k)の特性であることが理解できる。 In Fig. 2, the passband is colored white, the transition zone is colored light gray, and the stopband is colored dark gray for easy viewing. As is clear from the figure, in the first example, there is a passband in the vicinity of the signal arrival direction φ (k) = 0, and a stopband in the signal arrival direction region away from 0, both of which pass through the transition region. Are continuous. In this case, a signal whose signal arrival direction φ (k) is close to 0 passes without attenuation, and a signal whose signal arrival direction φ (k) is away from 0 is completely blocked. In the middle, there is a transition region of the signal arrival direction φ (k) that is slightly attenuated. The passband and stopband may be directly continuous without a transition zone. The signal arrival direction φ (k) = 0 indicates that the signal arrives from a direction perpendicular to a straight line connecting the sensors used for obtaining the signal arrival direction, that is, a front signal. Therefore, it can be understood that the characteristics of the signal arrival direction φ (k) and the direction gain Gd (k) are such that signals arriving from the front direction are allowed to pass and signals arriving from other directions are blocked.
 図2において、通過域と阻止域を交換することもできる。その際には、正面方向に対応した利得が0、正面から離れた方向から到来する信号は利得が0となる。したがって、正面方向から到来する信号は阻止し、それ以外の方向から到来する信号は通過させる、信号到来方向φ(k)と方向利得Gd(k)の特性であることが理解できる。さらに、複数の通過域や複数の阻止域を有するような、位相差対利得特性を有してもよい。 In Fig. 2, the passband and stopband can be exchanged. In that case, the gain corresponding to the front direction is 0, and the signal coming from the direction away from the front is 0. Therefore, it can be understood that the characteristics of the signal arrival direction φ (k) and the direction gain Gd (k) are such that signals arriving from the front direction are blocked and signals arriving from other directions are allowed to pass. Furthermore, it may have phase difference versus gain characteristics such as having a plurality of passbands and a plurality of stopbands.
 図3に信号到来方向φ(k)と利得の関係の第2の例を示す。図2では、通過域から遷移域への変化点、および戦域から阻止域への変化点が明確にわかるような軌跡であった。図3では、これらの変化点近傍でゆるやかに、滑らかに軌跡が変化している。図2と同様に、図3の特性でも、通過域と阻止域を交換することができる。 FIG. 3 shows a second example of the relationship between the signal arrival direction φ (k) and the gain. In FIG. 2, the trajectory clearly shows the changing point from the passing zone to the transition zone and the changing point from the battle zone to the stopping zone. In FIG. 3, the locus changes gently and smoothly in the vicinity of these change points. Similar to FIG. 2, the passband and the stopband can be exchanged also in the characteristics of FIG.
 図4に信号到来方向φ(k)と利得の関係の第3の例を示す。図2および図3では、信号到来方向φ(k)の正の値と負の値に対して、絶対値が等しければ、同じ利得が対応した。すなわち、位相差対利得の特性は左右対称であった。図4は左右非対称な信号到来方向対利得の一例である。特に、遷移域に関してもまた、信号到来方向φ(k)=0を中心として左右非対称である。また、図2および図3では最大利得max{Gd(k)}=1、最小利得min{Gd(k)}=0であったが、図4では最大利得max{Gd(k)}<1、最小利得min{Gd(k)}>0である。これは、通過域に該当する到来方向または位相差を有する信号にある程度の減衰が加わり、阻止域に該当する到来方向または位相差を有する信号が完全には抑圧されないことを表す。 FIG. 4 shows a third example of the relationship between the signal arrival direction φ (k) and the gain. 2 and 3, the same gain corresponds to the positive value and the negative value of the signal arrival direction φ (k) if the absolute values are equal. That is, the phase difference versus gain characteristics are symmetrical. FIG. 4 is an example of a signal arrival direction versus gain that is asymmetrical. In particular, the transition region is also asymmetrical about the signal arrival direction φ (k) = 0. 2 and 3, the maximum gain max {Gd (k)} = 1 and the minimum gain min {Gd (k)} = 0. However, in FIG. 4, the maximum gain max {Gd (k)} <1. , Minimum gain min {Gd (k)}> 0. This indicates that a certain amount of attenuation is added to the signal having the arrival direction or phase difference corresponding to the pass band, and the signal having the arrival direction or phase difference corresponding to the stop band is not completely suppressed.
 図2から図4の特性において、全て利得を定数倍してみればわかるように、最大利得または最小利得のいずれか、あるいは双方が1を超える値をとることができる。これは、入力信号を増幅していることに相当する。 In the characteristics of FIGS. 2 to 4, as can be seen by multiplying the gain by a constant, either the maximum gain or the minimum gain, or both can take a value exceeding 1. This corresponds to amplifying the input signal.
 図2および図3に示すように、信号到来方向φ(k)と利得の関係が信号到来方向φ(k)=0を中心として左右対称であれば、信号到来方向を求めるために用いた2つのセンサの定義を交換してもよいが、非対称なら定義の交換はできない。非対称のときは、物理的に考えてどちらのセンサの信号が他方に対して遅延しているかを考慮して、信号到来方向と利得の関係を表す特性を設計する必要がある。信号到来方向φ(k)と利得の関係が対称であるときは、信号到来方向φ(k)に続いてその絶対値|φ(k)|を求め、信号到来方向の絶対値|φ(k)|と利得の関係を利用して方向利得Gd(k)を計算することができる。信号到来方向と利得の関係が対称であれば、信号到来方向φ(k)と方向利得Gd(k)の関係を記憶しておくための記憶容量を半減することができる。 As shown in FIGS. 2 and 3, if the relationship between the signal arrival direction φ (k) and the gain is symmetrical with respect to the signal arrival direction φ (k) = 0, 2 used to obtain the signal arrival direction. The definition of two sensors may be exchanged, but if it is asymmetric, the definition cannot be exchanged. In the case of asymmetry, it is necessary to design a characteristic that represents the relationship between the signal arrival direction and the gain in consideration of which sensor signal is delayed with respect to the other when physically considered. When the relationship between the signal arrival direction φ (k) and the gain is symmetric, the absolute value | φ (k) | is obtained following the signal arrival direction φ (k), and the absolute value | φ (k The direction gain Gd (k) can be calculated using the relationship between | If the relationship between the signal arrival direction and the gain is symmetric, the storage capacity for storing the relationship between the signal arrival direction φ (k) and the direction gain Gd (k) can be halved.
 このような構成により、信号処理装置100は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With such a configuration, the signal processing apparatus 100 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 なお、方向利得Gd(k)は時間と共に変化する。すなわち、目的信号がそれ以外の成分よりも強いときには目的信号の方向が、反対に目的信号がそれ以外の成分よりも弱いときには、目的信号以外の成分の方向が、信号到来方向として得られる。このため、入力信号の成分構成に対応して異なった利得が得られることになり、非特許文献1から4に開示された従来のアレイ処理よりも、強調するべき信号と抑圧するべき信号の差がはっきりとついた出力信号が得られる。 Note that the directional gain Gd (k) changes with time. That is, the direction of the target signal is obtained as the signal arrival direction when the target signal is stronger than the other components, and conversely when the target signal is weaker than the other components, the direction of the components other than the target signal is obtained. Therefore, different gains are obtained corresponding to the component configuration of the input signal, and the difference between the signal to be emphasized and the signal to be suppressed is higher than that of the conventional array processing disclosed in Non-Patent Documents 1 to 4. An output signal with clearly marked can be obtained.
 [第2実施形態]
 本発明の第2実施形態としての信号処理装置500について、図5を用いて説明する。信号処理装置500は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図5に示すように、信号処理装置500は、位相差計算部501、利得計算部502、および乗算器110を含む。位相差計算部501は、複数のセンサ101、102、103、104から受けた信号に対して、隣接するセンサにおける信号、すなわち、隣接チャネル信号の位相差を求める。利得計算部502は、位相差計算部501から受けた位相差を用いて方向利得を計算する。乗算器110は、複数のセンサ101、102、103、104から受けたそれぞれの信号と方向利得を乗算し、その積を目的信号が強調された強調信号とする。すなわち、強調信号の数は、複数のセンサ101、102、103、104から受けた信号の数に等しく、図5では4である。
[Second Embodiment]
A signal processing apparatus 500 as a second embodiment of the present invention will be described with reference to FIG. The signal processing device 500 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As shown in FIG. 5, the signal processing device 500 includes a phase difference calculation unit 501, a gain calculation unit 502, and a multiplier 110. The phase difference calculation unit 501 obtains a signal from an adjacent sensor, that is, a phase difference between adjacent channel signals, from signals received from a plurality of sensors 101, 102, 103, and 104. Gain calculation section 502 calculates a directional gain using the phase difference received from phase difference calculation section 501. Multiplier 110 multiplies each signal received from a plurality of sensors 101, 102, 103, and 104 by a directional gain, and uses the product as an enhanced signal in which the target signal is enhanced. That is, the number of enhancement signals is equal to the number of signals received from the plurality of sensors 101, 102, 103, 104, and is 4 in FIG.
 このような構成により、信号処理装置500は、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With such a configuration, the signal processing apparatus 500 can effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the same sound image expression capability as that of the input.
 図5の構成は、図1と比較すると、方向推定部105と利得計算部106が位相差計算部501と利得計算部502で置換されている以外、同一の構成となっている。そこで、異なる構成要素である位相差計算部501と利得計算部502の動作だけ説明し、それ以外は省略する。 The configuration of FIG. 5 is the same as that of FIG. 1 except that the direction estimation unit 105 and the gain calculation unit 106 are replaced with a phase difference calculation unit 501 and a gain calculation unit 502. Therefore, only the operations of the phase difference calculation unit 501 and the gain calculation unit 502 which are different components will be described, and the rest will be omitted.
 [位相差の計算]
 位相差計算部501は、複数のセンサ101、102、103、104から受けた信号から、次のようにして隣接チャネル信号の位相差ΔΘ(k)を求める。
[Calculation of phase difference]
The phase difference calculation unit 501 obtains the phase difference ΔΘ (k) of the adjacent channel signal from the signals received from the plurality of sensors 101, 102, 103, 104 as follows.
 隣接チャネル信号の位相差は、複数のセンサのうち、隣接する任意の2つを選択し、これらのセンサの信号を用いて計算する。まず、選択したセンサをセンサ101、102と仮定する。センサ101、102、103、104から受けた信号の時刻kにおける値をそれぞれ、x1(k)、x2(k)、x3(k)、x4(k)とすると、次式のようにx1(k)とx2(k)の位相差ΔΘ12(k)を求め、これを隣接チャネル信号の位相差とする。ΔΘ(k)=ΔΘ12(k)=2πf・τ12(k)・・・(1)
 ここにτ12(k)は、x1(k)とx2(k)相対遅延である。τ12(k)は、x1(k-τi)とx2(k)の最大相関Cor12(k)に対応するτiであり、Cor12(k)は次式で求めることができる。
Figure JPOXMLDOC01-appb-M000001
 ここにkmaxはセンサ101とセンサ102の間隔とサンプリング周波数で定まる最大サンプル数であり、アレイに対して横方向から到来する信号の相対遅延とサンプリング周波数の比に等しい。すなわち、kmax=d・sin(π/2)/c・fs=d/c・fs ・・・(3)
 ここに、dはセンサ間隔、cは音速、fsはサンプリング周波数である。数式(1)を用いれば、任意の周波数fに対する隣接チャネル信号の位相差ΔΘ(k)を求めることができる。同様に、ΔΘ12(k)の代わりにΔΘ23(k)またはΔΘ34(k)を用いてもよい。
The phase difference between adjacent channel signals is calculated by selecting any two adjacent ones of the plurality of sensors and using the signals of these sensors. First, assume that the selected sensors are sensors 101 and 102. Assuming that the values at time k of the signals received from the sensors 101, 102, 103, and 104 are x1 (k), x2 (k), x3 (k), and x4 (k), respectively, x1 (k ) And x2 (k) is obtained as a phase difference between adjacent channel signals. ΔΘ (k) = ΔΘ12 (k) = 2πf · τ12 (k) (1)
Here, τ12 (k) is the relative delay of x1 (k) and x2 (k). τ12 (k) is τi corresponding to the maximum correlation Cor12 (k) between x1 (k−τi) and x2 (k), and Cor12 (k) can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000001
Here, kmax is the maximum number of samples determined by the distance between the sensor 101 and the sensor 102 and the sampling frequency, and is equal to the ratio of the relative delay of the signal coming from the lateral direction to the array and the sampling frequency. That is, kmax = d · sin (π / 2) / c · fs = d / c · fs (3)
Here, d is the sensor interval, c is the speed of sound, and fs is the sampling frequency. Using Equation (1), the phase difference ΔΘ (k) of the adjacent channel signal with respect to an arbitrary frequency f can be obtained. Similarly, ΔΘ23 (k) or ΔΘ34 (k) may be used instead of ΔΘ12 (k).
 隣接チャネル信号の位相差として、これら上記3つの値、すなわちΔΘ12(k)、ΔΘ23(k)、ΔΘ31(k)の統計値を用いてもよい。統計値としては、平均値、最大値、最小値、中央値などをあげることができる。平均値と中央値は、複数の測定値に基づいてより正確な隣接チャネル信号の位相差を与える。 As the phase difference between adjacent channel signals, the above three values, that is, statistical values of ΔΘ12 (k), ΔΘ23 (k), and ΔΘ31 (k) may be used. Statistical values can include average values, maximum values, minimum values, median values, and the like. The average and median values provide a more accurate adjacent channel signal phase difference based on multiple measurements.
 最大値は、位相差がゼロ近傍の特性をより位相差が大きな領域に広げる効果がある。目的信号を強調する際には、信号通過帯域がゼロ近傍で広がることになり、計算誤差などによって誤って目的信号の一部を抑圧する確率を低減できる。目的信号を抑圧する際には、計算誤差などによって誤って目的信号以外の成分を残留させる確率を低減できる。 The maximum value has the effect of spreading the characteristics with a phase difference near zero to a region with a larger phase difference. When emphasizing the target signal, the signal pass band widens in the vicinity of zero, and the probability of erroneously suppressing a part of the target signal due to a calculation error or the like can be reduced. When suppressing the target signal, it is possible to reduce the probability that a component other than the target signal will remain by mistake due to a calculation error or the like.
 最小値は、最大値と反対の効果がある。すなわち、位相差が大きな領域の特性をより位相差が小さな領域に広げる効果がある。目的信号を強調する際には、信号通過帯域がゼロ近傍で狭まることになり、計算誤差などによって誤って目的信号以外の成分を残留させる確率を低減できる。目的信号を抑圧する際には、計算誤差などによって誤って目的信号の一部を抑圧する確率を低減できる。 The minimum value has the opposite effect to the maximum value. That is, there is an effect of extending the characteristics of the region having a large phase difference to the region having a smaller phase difference. When emphasizing the target signal, the signal passband is narrowed in the vicinity of zero, and the probability that components other than the target signal are erroneously left due to a calculation error or the like can be reduced. When the target signal is suppressed, the probability of erroneously suppressing a part of the target signal due to a calculation error or the like can be reduced.
 隣接チャネル信号の位相差は、複数のセンサのうち、間に一つのセンサを挟んで隣接する任意の2つを選択し、これらのセンサの信号を用いて計算することもできる。このような組み合わせとしては、図5に示す4センサの例では、センサ101とセンサ103またはセンサ102とセンサ104がある。センサ101とセンサ103の場合を考えると、x1(k)とx3(k)の位相差ΔΘ13を求め、これを1/2倍して隣接チャネル信号の位相差とする。これは、位相差がセンサ間隔に比例するためである。ΔΘ(k)=ΔΘ13(k)/2=πf・τ13(k)・・・(4)
Figure JPOXMLDOC01-appb-M000002
 ここにkmaxはセンサ101とセンサ103の間隔とサンプリング周波数で定まる最大サンプル数である。数式(4)を用いれば、任意の周波数fに対する隣接チャネル信号の位相差ΔΘ(k)を求めることができる。同様に、ΔΘ13(k)の代わりにΔΘ24(k)を用いてもよい。また、これらの統計値を利用できることも明らかである。
The phase difference between adjacent channel signals can be calculated by selecting any two adjacent sensors with one sensor between them and using the signals of these sensors. As such a combination, in the example of four sensors illustrated in FIG. 5, there are the sensor 101 and the sensor 103 or the sensor 102 and the sensor 104. Considering the case of the sensor 101 and the sensor 103, a phase difference ΔΘ13 between x1 (k) and x3 (k) is obtained, and this is multiplied by 1/2 to obtain a phase difference between adjacent channel signals. This is because the phase difference is proportional to the sensor interval. ΔΘ (k) = ΔΘ13 (k) / 2 = πf · τ13 (k) (4)
Figure JPOXMLDOC01-appb-M000002
Here, kmax is the maximum number of samples determined by the interval between the sensors 101 and 103 and the sampling frequency. If Expression (4) is used, the phase difference ΔΘ (k) of the adjacent channel signal with respect to an arbitrary frequency f can be obtained. Similarly, ΔΘ24 (k) may be used instead of ΔΘ13 (k). It is also clear that these statistics can be used.
 隣接チャネル信号の位相差は、複数のセンサのうち、間にM-1個のセンサを挟んで隣接する任意の2つを選択し、これらのセンサの信号を用いて計算することもできる。このような組み合わせとしては、図5に示す4センサの例では、M=3でセンサ101とセンサ104がある。x1(k)とx4(k)の位相差ΔΘ14を求め、これを1/3倍して隣接チャネル信号の位相差とする。すなわち、間に挟まれるセンサの個数に1を加えた数Мで、求めた位相差を除してその商を用いることになる。ΔΘ(k)=ΔΘ14(k)/3=πf・τ14(k)・・・(6)
Figure JPOXMLDOC01-appb-M000003
 ここにkmaxはセンサ101とセンサ104の間隔とサンプリング周波数で定まる最大サンプル数である。
The phase difference between adjacent channel signals can also be calculated by selecting any two adjacent sensors with M−1 sensors in between, and using the signals of these sensors. As such a combination, in the example of four sensors shown in FIG. 5, there are a sensor 101 and a sensor 104 with M = 3. A phase difference ΔΘ14 between x1 (k) and x4 (k) is obtained and multiplied by 1/3 to obtain a phase difference between adjacent channel signals. That is, a quotient obtained by dividing the obtained phase difference by a number М obtained by adding 1 to the number of sensors sandwiched therebetween. ΔΘ (k) = ΔΘ14 (k) / 3 = πf · τ14 (k) (6)
Figure JPOXMLDOC01-appb-M000003
Here, kmax is the maximum number of samples determined by the interval between the sensors 101 and 104 and the sampling frequency.
 数式(6)を用いれば、任意の周波数fに対する隣接チャネル信号の位相差ΔΘ(k)を求めることができる。ここではM=3を例として説明したが、この説明はM≧1の任意の自然数に対してもあてはまる。M≧4では、この条件を満たす組合せが複数存在するので、それらの組合せのいずれを用いて位相差ΔΘ(k)を求めてもよい。また、これらの統計値を利用できることも明らかである。 Using Equation (6), the phase difference ΔΘ (k) of the adjacent channel signal with respect to an arbitrary frequency f can be obtained. Here, M = 3 has been described as an example, but this description also applies to an arbitrary natural number of M ≧ 1. Since there are a plurality of combinations that satisfy this condition when M ≧ 4, the phase difference ΔΘ (k) may be obtained using any of these combinations. It is also clear that these statistics can be used.
 [利得の計算]
 広く知られており、数式(3)からも理解できるように、相対遅延τ12(k)は信号到来方向φ(k)に依存して数式(8)の関係を有する。したがって、数式(1)はまた、数式(9)のように表すことができる。τ12(k)=d・sinφ(k)/c・・・(8)ΔΘ(k)=ΔΘ12(k)=2πfd・sinφ(k)/c・・・(9)
 同様に、数式(4)と数式(6)も、数式(8)においてdがそれぞれ2d、3dになることに注意すれば、数式(9)で表せることがわかる。数式(9)は、同一方向φ(k)から到来する信号に対して、位相差ΔΘ(k)が周波数fに比例することを表している。すなわち、同一方向φ(k)から到来する信号に関する、2センサ間の信号の相対遅延τ(k)は周波数によらず一定であり、2センサ間の信号の位相差ΔΘ(k)は周波数に比例する。このため、位相差ΔΘ(k)と利得の関係は、位相差ΔΘ(k)が周波数に比例しなければならない。
[Calculation of gain]
As is well known and can be understood from Equation (3), the relative delay τ12 (k) has the relationship of Equation (8) depending on the signal arrival direction φ (k). Therefore, Equation (1) can also be expressed as Equation (9). τ12 (k) = d · sinφ (k) / c (8) ΔΘ (k) = ΔΘ12 (k) = 2πfd · sinφ (k) / c (9)
Similarly, it can be seen that Equation (4) and Equation (6) can also be expressed by Equation (9) if attention is paid to d in Equation (8) being 2d and 3d, respectively. Equation (9) indicates that the phase difference ΔΘ (k) is proportional to the frequency f with respect to signals coming from the same direction φ (k). That is, the relative delay τ (k) of the signal between the two sensors regarding the signal arriving from the same direction φ (k) is constant regardless of the frequency, and the phase difference ΔΘ (k) of the signal between the two sensors is Proportional. For this reason, as for the relationship between the phase difference ΔΘ (k) and the gain, the phase difference ΔΘ (k) must be proportional to the frequency.
 まず、特定の周波数に関して位相差対利得の特性は、信号到来方向対利得と同様に定めることができる。例えば、図2から図4において、横軸の信号到来方向を対応する位相差に置き換えれば、信号到来方向対利得の特性を位相差対利得の特性として、そのまま利用することができる。 First, the characteristics of phase difference versus gain for a specific frequency can be determined in the same manner as signal arrival direction versus gain. For example, in FIG. 2 to FIG. 4, if the signal arrival direction on the horizontal axis is replaced with the corresponding phase difference, the signal arrival direction versus gain characteristic can be used as it is as the phase difference versus gain characteristic.
 位相差ΔΘ(k)が周波数に比例しなければならないので、上記の特定周波数(第1の周波数とする)とは異なる別の周波数(第2の周波数)に関する位相差対利得の特性は、第2の周波数と第1の周波数の比の値で、図2から図4の横軸を左右に拡張したものとなる。すなわち、図2から図4において、奥行き方向に周波数が高くなる周波数軸を設定して、通過域、遷移域、阻止域が手前から奥に向かって広くなるような特性とする。このような、位相差と周波数と利得に関する3次元特性を上方から見た場合の底面への射影の1例を図6に示す。 Since the phase difference ΔΘ (k) must be proportional to the frequency, the phase difference versus gain characteristic for another frequency (second frequency) different from the specific frequency (referred to as the first frequency) is The value of the ratio between the frequency of 2 and the first frequency is obtained by extending the horizontal axis of FIGS. That is, in FIG. 2 to FIG. 4, the frequency axis in which the frequency increases in the depth direction is set so that the passband, transition zone, and stopband widen from the front toward the back. FIG. 6 shows an example of such projection onto the bottom surface when the three-dimensional characteristics related to the phase difference, frequency, and gain are viewed from above.
 図6は横軸に周波数、縦軸に位相差ΔΘ(k)を、紙面に垂直な方向に利得を表したものの1例で、図2に対応する。通過域が白、遷移域が薄いグレー、阻止域が濃いグレーに着色されている。周波数軸の右に行くほど、すなわち周波数が高くなるほど、通過域、遷移域、阻止域が広くなっていることがわかる。なお、最高の性能を望まない場合には、必ずしも位相差と周波数が比例する必要はない。単に、周波数が高くなるほど同じ利得に対応した位相差が大きくなるように設定すれば、広帯域信号に対して周波数に大きく依存しない指向性(信号到来方向に基づく利得)を付与することができる。 FIG. 6 shows an example of the frequency on the horizontal axis, the phase difference ΔΘ (k) on the vertical axis, and the gain in the direction perpendicular to the paper surface, and corresponds to FIG. The passband is white, the transition zone is light gray, and the stopband is dark gray. It can be seen that as the frequency axis goes to the right, that is, as the frequency becomes higher, the pass band, transition band, and stop band become wider. When the highest performance is not desired, the phase difference and the frequency are not necessarily proportional. Simply setting the phase difference corresponding to the same gain to increase as the frequency increases, it is possible to give directivity (gain based on the signal arrival direction) that does not greatly depend on the frequency to the wideband signal.
 図6では、左右対称の特性で、さらに対称の中心が正面方向に一致する。しかし、対称の中心が正面からずれている場合には、それを考慮して位相差と周波数の関係を定めなければならない。すなわち、対称の中心が正面からずれている量を補正して等価的に対称の中心が正面になるように補正を行ってから、位相差と周波数が比例するように、利得特性を設計する。 In FIG. 6, the center of symmetry coincides with the front direction due to the symmetrical characteristics. However, when the center of symmetry is deviated from the front, the relationship between the phase difference and the frequency must be determined in consideration thereof. That is, the gain characteristic is designed so that the phase difference is proportional to the frequency after correcting the amount of deviation of the center of symmetry from the front and correcting so that the center of symmetry is equivalent to the front.
 利得が周波数ごとに異なる特性は、乗算器110では実現することができない。周波数ごとに異なる利得は、乗算器110の代わりにセンサ数と同じ数、同じ特性のフィルタを用いることで実現できる。これらのフィルタの利得特性を利得計算部502が与え、複数のセンサ101、102、103、104から受けたそれぞれの信号をこれらのフィルタ入力として演算を行う。 The characteristic that the gain differs for each frequency cannot be realized by the multiplier 110. A different gain for each frequency can be realized by using filters having the same number and the same characteristics as the number of sensors instead of the multiplier 110. The gain calculation unit 502 gives the gain characteristics of these filters, and each signal received from the plurality of sensors 101, 102, 103, 104 is used as an input for these filters.
 このような構成により、信号処理装置500は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With such a configuration, the signal processing apparatus 500 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 [第3実施形態]
 本発明の第3実施形態としての信号処理装置700について、図7を用いて説明する。信号処理装置700は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図7に示すように、信号処理装置700は、位相差計算部501、利得計算部502、統合部704、乗算器710、雑音推定部705、利得計算部706、および乗算器707を含む。
[Third Embodiment]
A signal processing apparatus 700 as a third embodiment of the present invention will be described with reference to FIG. The signal processing device 700 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 7, the signal processing device 700 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 707.
 図7の構成は、図5と比較すると、統合部704、雑音推定部705、利得計算部706、乗算器707が追加されている以外、同一の構成となっている。そこで、異なる構成要素である雑音推定部705、利得計算部706、乗算器707の動作だけ説明し、それ以外は省略する。 7 is the same as FIG. 5 except that an integration unit 704, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 707 are added. Therefore, only the operations of the noise estimation unit 705, the gain calculation unit 706, and the multiplier 707, which are different components, will be described, and the rest will be omitted.
 統合部704は、複数のセンサ101、102、103、104から受けた信号x1(k)、x2(k)、x3(k)、x4(k)を統合して統合信号xs(k)を生成する。統合信号xs(k)としては、x1(k)、x2(k)、x3(k)、x4(k)のうち、いずれか任意のものを選択して用いることができる。あるいは、これらの信号に関する統計値を用いてもよい。統計値としては、平均値、最大値、最小値、中央値などをあげることができる。平均値と中央値は、センサ1から4の中央に存在する仮想センサにおける信号を与える。最大値は、信号が正面以外の方向から到来するときに、信号までの距離が最短であるセンサにおける信号を与える。最小値は、信号が正面以外の方向から到来するときに、信号までの距離が最長であるセンサにおける信号を与える。さらに、これらの信号の単純加算を用いることもできる。あるいは、非特許文献2および非特許文献6に示される、従来のアレイ信号処理のいずれかを適用してもよい。従来のアレイ信号処理としては、遅延和ビームフォーマー、フィルタ和ビームフォーマー、MSNR(Maximum Signal-to-Noise)ビームフォーマー、MMSE(Minimum Mean Square Error)ビームフォーマー、LCMV(Linearlly Constrained Minimum Variance)ビームフォーマー、入れ子(Nested)ビームフォーマーなどを含むが、これらに限定されない。このようにして計算された値を、統合信号とする。 The integration unit 704 generates the integrated signal xs (k) by integrating the signals x1 (k), x2 (k), x3 (k), and x4 (k) received from the plurality of sensors 101, 102, 103, and 104. To do. As the integrated signal xs (k), any one of x1 (k), x2 (k), x3 (k), and x4 (k) can be selected and used. Alternatively, statistical values regarding these signals may be used. Statistical values can include average values, maximum values, minimum values, median values, and the like. The average value and the median value give a signal in the virtual sensor existing in the center of the sensors 1 to 4. The maximum value gives the signal at the sensor with the shortest distance to the signal when the signal arrives from a direction other than the front. The minimum value gives the signal at the sensor with the longest distance to the signal when the signal comes from a direction other than the front. Furthermore, simple addition of these signals can be used. Alternatively, any of conventional array signal processing shown in Non-Patent Document 2 and Non-Patent Document 6 may be applied. Conventional array signal processing includes delay sum beamformer, filter sum beamformer, MSNR (Maximum Signal-to-Noise) beamformer, MMSE (Minimum Mean Square Error) beamformer, LCMV (Linearlly Constrained Minimum Variance) ) Beamformers, nested beamformers, and the like. The value calculated in this way is used as an integrated signal.
 雑音推定部705は、統合信号を受けてその中に含まれる雑音成分のパワーまたは絶対振幅を推定して、雑音推定値とする。このような雑音推定の数々の方法については、非特許文献7に開示されているので、ここでは説明を省略する。 The noise estimation unit 705 receives the integrated signal, estimates the power or absolute amplitude of the noise component contained therein, and sets it as a noise estimation value. Since many methods of such noise estimation are disclosed in Non-Patent Document 7, description thereof is omitted here.
 利得計算部706は、雑音推定値と統合信号を受けて、統合信号に含まれる雑音を抑圧するための信号利得Gs(k)を計算する。利得の計算方法については、最小平均2乗誤差(MMSE)法や事後確率最大化(MAP)法などがあるが、非特許文献6に詳細に開示されているので、ここでは省略する。 The gain calculator 706 receives the noise estimation value and the integrated signal, and calculates a signal gain Gs (k) for suppressing noise included in the integrated signal. As a method for calculating the gain, there are a minimum mean square error (MMSE) method and a posterior probability maximization (MAP) method, but since they are disclosed in detail in Non-Patent Document 6, they are omitted here.
 乗算器707は、信号利得Gs(k)と方向利得Gd(k)を乗算して、合成利得として積Gs(k)・Gd(k)を求める。乗算器710は、合成利得Gs(k)・Gd(k)と複数のセンサ101、102、103、104から受けたそれぞれの信号を乗算し、その積を目的信号が強調された強調信号とする。すなわち、強調信号の数は、複数のセンサ101、102、103、104から受けた信号の数に等しく、図7では4である。 The multiplier 707 multiplies the signal gain Gs (k) and the direction gain Gd (k) to obtain a product Gs (k) · Gd (k) as a combined gain. Multiplier 710 multiplies combined gain Gs (k) · Gd (k) by each of the signals received from a plurality of sensors 101, 102, 103, 104, and uses the product as an enhanced signal in which the target signal is enhanced. . That is, the number of enhancement signals is equal to the number of signals received from the plurality of sensors 101, 102, 103, 104, and is 4 in FIG.
 このような構成により、信号処理装置700は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、背景雑音を抑圧するための信号利得Gs(k)も複数のセンサ101、102、103、104から受けた信号に乗算するので、より目的信号が強調された出力が得られる。 With such a configuration, the signal processing device 700 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since the signal gain Gs (k) for suppressing the background noise is also multiplied by the signals received from the plurality of sensors 101, 102, 103, 104, an output in which the target signal is more emphasized can be obtained.
 [第4実施形態]
 本発明の第4実施形態としての信号処理装置800について、図8を用いて説明する。信号処理装置800は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図8に示すように、信号処理装置800は、位相差計算部501、利得計算部502、乗算器807、多重雑音推定部804、多重利得計算部805、および乗算器806を含む。
[Fourth Embodiment]
A signal processing apparatus 800 as a fourth embodiment of the present invention will be described with reference to FIG. The signal processing device 800 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 8, the signal processing device 800 includes a phase difference calculation unit 501, a gain calculation unit 502, a multiplier 807, a multiple noise estimation unit 804, a multiple gain calculation unit 805, and a multiplier 806.
 図8の構成は、図7と比較すると、統合部704を削除して、雑音推定部705、利得計算部706、乗算器707、乗算器710に代えて、多重雑音推定部804、多重利得計算部805、乗算器806、乗算器807が用いられている以外、同一の構成となっている。そこで、異なる構成要素である多重雑音推定部804、多重利得計算部805、乗算器806、乗算器807の動作だけ説明し、それ以外は省略する。 Compared with FIG. 7, the configuration of FIG. 8 eliminates the integration unit 704 and replaces the noise estimation unit 705, gain calculation unit 706, multiplier 707, and multiplier 710 with a multiple noise estimation unit 804, multiple gain calculation. The configuration is the same except that the unit 805, the multiplier 806, and the multiplier 807 are used. Therefore, only the operations of the multiple noise estimation unit 804, the multiple gain calculation unit 805, the multiplier 806, and the multiplier 807, which are different components, will be described, and the rest will be omitted.
 多重雑音推定部804には、複数のセンサ101、102、103、104から受けたそれぞれの信号が入力されている。多重雑音推定部804は、複数のセンサ101、102、103、104から受けた信号のそれぞれに含まれる雑音成分を推定してセンサと同数(ここでは4つ)の多重雑音推定値を生成し、多重利得計算部805に供給する。多重利得計算部805は、4つの多重雑音推定値と複数のセンサ101、102、103、104から受けた信号を用いて、複数のセンサ101、102、103、104から受けたそれぞれの信号に含まれる雑音を抑圧するための信号利得Gs(k)4つを計算し、乗算器806に供給する。利得の計算方法については、利得計算部706と同様の方法を用いることができる。乗算器806は、多重利得計算部805から受けた信号利得Gs(k)4つと利得計算部502から受けた方向利得Gd(k)の積を計算して、4つの合成利得として乗算器807に供給する。乗算器807は、乗算器806から供給された4つの合成利得と複数のセンサ101、102、103、104から受けた各信号の対応するもの同士を乗算して、その積を目的信号が強調された強調信号とする。つまり、センサ101からの信号と、その信号を用いて生成された合成利得とを乗算して第1の強調信号を生成し、センサ102からの信号と、その信号を用いて生成された合成利得とを乗算して、第2の強調信号を生成する。同様に、センサ103からの信号と、その信号を用いて生成された合成利得とを乗算して第3の強調信号を生成し、センサ104からの信号と、その信号を用いて生成された合成利得とを乗算して、第4の強調信号を生成する。すなわち、強調信号の数は、複数のセンサ101、102、103、104から受けた信号の数に等しく、図8では4である。[第3実施形態と第4実施形態の関係]
 図7に示す第3実施形態では、複数のセンサ101、102、103、104から受けた信号を用いて複数のセンサにおける信号の位相差を求め、位相差に基づいて特定の方向から到来する信号を強調するための方向利得を求める。また、複数のセンサ101、102、103、104から受けた信号を統合して統合信号を求め、統合信号に含まれる雑音に対して1つの雑音推定値を求め、この雑音推定値と統合信号を用いて統合信号に含まれる雑音を抑圧するための信号利得1つを求める。さらに、方向利得と信号利得を乗算して合成利得を求め、複数のセンサ101、102、103、104から受けた信号のそれぞれと合成利得を乗算して4つの強調信号を求める。すなわち、信号利得は1つの値を有し、複数のセンサ101、102、103、104から受けた信号に対して共通に適用される。
Each signal received from the plurality of sensors 101, 102, 103, 104 is input to the multiple noise estimation unit 804. The multiple noise estimation unit 804 estimates the noise component included in each of the signals received from the plurality of sensors 101, 102, 103, 104, and generates the same number (four in this case) of multiple noise estimation values as the sensors, This is supplied to the multiple gain calculation unit 805. A multiple gain calculation unit 805 uses four multiple noise estimation values and signals received from the plurality of sensors 101, 102, 103, and 104, and is included in each signal received from the plurality of sensors 101, 102, 103, and 104. Four signal gains Gs (k) for suppressing generated noise are calculated and supplied to the multiplier 806. As for the gain calculation method, the same method as that of the gain calculation unit 706 can be used. Multiplier 806 calculates the product of four signal gains Gs (k) received from multiple gain calculation unit 805 and directional gain Gd (k) received from gain calculation unit 502, and provides multiplier 807 with four combined gains. Supply. The multiplier 807 multiplies the four combined gains supplied from the multiplier 806 and the corresponding signals received from the plurality of sensors 101, 102, 103, 104, and the target signal is emphasized by multiplying the product. Emphasized signal. That is, the first enhancement signal is generated by multiplying the signal from the sensor 101 by the combined gain generated using the signal, and the combined gain generated using the signal from the sensor 102 and the signal. To generate a second enhancement signal. Similarly, the signal from the sensor 103 is multiplied by the combined gain generated using the signal to generate the third enhancement signal, and the signal generated from the sensor 104 and the combined signal generated using the signal are combined. Multiply the gain to generate a fourth enhancement signal. That is, the number of enhancement signals is equal to the number of signals received from the plurality of sensors 101, 102, 103, 104, and is 4 in FIG. [Relationship between Third Embodiment and Fourth Embodiment]
In the third embodiment shown in FIG. 7, the signals received from the plurality of sensors 101, 102, 103, 104 are used to determine the phase difference of the signals at the plurality of sensors, and the signal arrives from a specific direction based on the phase difference. The direction gain for emphasizing is obtained. Further, the integrated signals are obtained by integrating the signals received from the plurality of sensors 101, 102, 103, and 104, one noise estimate value is obtained for the noise included in the integrated signal, and the noise estimate value and the integrated signal are obtained. Using this, one signal gain for suppressing noise included in the integrated signal is obtained. Further, the combined gain is obtained by multiplying the directional gain and the signal gain, and four emphasized signals are obtained by multiplying each of the signals received from the plurality of sensors 101, 102, 103, and 104 by the combined gain. That is, the signal gain has a single value and is commonly applied to signals received from the plurality of sensors 101, 102, 103, 104.
 図8に示す第4実施形態では、複数のセンサ101、102、103、104から受けた信号を用いて複数のセンサにおける信号の位相差を求め、位相差に基づいて特定の方向から到来する信号を強調するための方向利得を求める。また、複数のセンサ101、102、103、104から受けた信号それぞれに含まれる雑音に対してそれぞれ1つの多重雑音推定値を求める。さらに、この多重雑音推定値と複数のセンサ101、102、103、104から受けたそれぞれの信号を用いて複数のセンサ101、102、103、104から受けたそれぞれの信号に含まれる雑音を抑圧するための信号利得4つを求める。そして、方向利得と信号利得を乗算して合成利得4つを求め、複数のセンサ101、102、103、104から受けた信号のそれぞれと合成利得4つを乗算して4つの強調信号を求める。すなわち、信号利得は4つの値を有し、複数のセンサ101、102、103、104から受けたそれぞれの信号に対して異なった値が適用される。 In the fourth embodiment shown in FIG. 8, signals received from a plurality of sensors 101, 102, 103, and 104 are used to determine the phase difference of the signals at the plurality of sensors, and the signal arrives from a specific direction based on the phase difference. The direction gain for emphasizing is obtained. In addition, one multiple noise estimation value is obtained for each noise included in each of the signals received from the plurality of sensors 101, 102, 103, and 104. Furthermore, using this multiple noise estimation value and each signal received from the plurality of sensors 101, 102, 103, 104, noise contained in each signal received from the plurality of sensors 101, 102, 103, 104 is suppressed. 4 signal gains are obtained. Then, four combined gains are obtained by multiplying the directional gain and the signal gain, and four emphasized signals are obtained by multiplying each of the signals received from the plurality of sensors 101, 102, 103, and 104 by the four combined gains. That is, the signal gain has four values, and different values are applied to the signals received from the plurality of sensors 101, 102, 103, and 104.
 第3実施形態と第4実施形態の違いは、雑音推定を統合信号に対して行って1つの雑音推定値と信号利得1つを求めるか、複数のセンサ101、102、103、104から受けたそれぞれの信号に対してそれぞれ1つの多重雑音推定値と信号利得4つ、すなわちセンサ数に等しい雑音推定値と信号利得を求めるかにある。したがって、合成利得も、第3実施形態では1つ、第4実施形態では4つとなる。このため、第4実施形態では、複数のセンサ101、102、103、104から受けた信号のそれぞれに対して最適な信号利得を計算することができ、第3実施形態と比較して、目的とする信号がより一層強調され、雑音がより一層抑圧された高品質な強調信号を得ることができる。 The difference between the third embodiment and the fourth embodiment is that noise estimation is performed on the integrated signal to obtain one noise estimate and one signal gain, or received from a plurality of sensors 101, 102, 103, 104. One is to obtain one multiple noise estimate and four signal gains for each signal, that is, to obtain a noise estimate and signal gain equal to the number of sensors. Therefore, the combined gain is one in the third embodiment and four in the fourth embodiment. For this reason, in the fourth embodiment, an optimum signal gain can be calculated for each of the signals received from the plurality of sensors 101, 102, 103, and 104. Therefore, it is possible to obtain a high quality enhanced signal in which the signal to be processed is further enhanced and noise is further suppressed.
 これより後で説明する実施形態では、雑音推定を統合信号に対して行って1つの雑音推定値と信号利得1つを求める構成を対象とするが、センサ数に等しい雑音推定値と信号利得を求める構成もその実施形態に含まれる。 In the embodiment described later, the noise estimation is performed on the integrated signal to obtain one noise estimation value and one signal gain, but the noise estimation value and the signal gain equal to the number of sensors are set. The required configuration is also included in the embodiment.
 [第5実施形態]
 本発明の第5実施形態としての信号処理装置900について、図9を用いて説明する。信号処理装置900は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図9に示すように、信号処理装置900は、位相差計算部501、利得計算部502、統合部704、乗算器710、雑音推定部705、利得計算部706、および乗算器902を含む。
[Fifth Embodiment]
A signal processing apparatus 900 as a fifth embodiment of the present invention will be described with reference to FIG. The signal processing apparatus 900 is an apparatus that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 9, the signal processing device 900 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 902.
 図9の構成は、図7と比較すると、乗算器707に代えて乗算器902が用いられている以外、同一の構成となっている。そこで、異なる構成要素である乗算器902の動作だけ説明し、それ以外は省略する。 The configuration of FIG. 9 is the same as that of FIG. 7 except that a multiplier 902 is used instead of the multiplier 707. Therefore, only the operation of the multiplier 902, which is a different component, will be described, and the rest will be omitted.
 乗算器902は、信号利得Gs(k)と複数のセンサ101、102、103、104からの信号をそれぞれ乗算して、背景雑音の抑圧された中間信号4つを求める。乗算器910は、背景雑音の抑圧された中間信号4つと方向利得Gd(k)を乗算し、乗算結果を雑音抑圧信号(強調信号)とする。すなわち、第5実施形態と第3実施形態は、複数の利得の乗算順序が入れ替わっただけであり、強調信号が等しい。 Multiplier 902 multiplies signal gain Gs (k) and signals from a plurality of sensors 101, 102, 103, and 104, respectively, to obtain four intermediate signals in which background noise is suppressed. Multiplier 910 multiplies four intermediate signals in which background noise is suppressed and direction gain Gd (k), and uses the multiplication result as a noise suppression signal (emphasis signal). That is, the fifth embodiment and the third embodiment are the same in the order of multiplication of a plurality of gains, and the enhancement signals are the same.
 このような構成により、信号処理装置900は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、背景雑音を抑圧するための信号利得Gs(k)も複数のセンサ101、102、103、104から受けた信号に乗算するので、より目的信号が強調された出力が得られる。 With such a configuration, the signal processing apparatus 900 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since the signal gain Gs (k) for suppressing the background noise is also multiplied by the signals received from the plurality of sensors 101, 102, 103, 104, an output in which the target signal is more emphasized can be obtained.
 [第6実施形態]
 本発明の第6実施形態としての信号処理装置1000について、図10を用いて説明する。信号処理装置1000は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図10に示すように、信号処理装置1000は、位相差計算部501、利得計算部502、統合部704、乗算器110、雑音推定部705、利得計算部706、および乗算器1004を含む。
[Sixth Embodiment]
A signal processing apparatus 1000 as a sixth embodiment of the present invention will be described with reference to FIG. The signal processing apparatus 1000 is an apparatus that emphasizes or suppresses a broadband signal using signals from a plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 10, the signal processing apparatus 1000 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 110, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 1004.
 図10の構成は、図9と比較すると、乗算器902に代えて乗算器1004が用いられている以外、同一の構成となっている。そこで、異なる構成要素である乗算器1004の動作だけ説明し、それ以外は省略する。 10 is the same as that shown in FIG. 9 except that a multiplier 1004 is used instead of the multiplier 902. Therefore, only the operation of the multiplier 1004 which is a different component will be described, and the rest will be omitted.
 乗算器1004は、信号利得Gs(k)と乗算器110の出力4つを乗算して、乗算結果を強調信号とする。すなわち、第6実施形態と第3および第5実施形態は、複数の利得の乗算順序が入れ替わっただけであり、強調信号が等しい。 Multiplier 1004 multiplies signal gain Gs (k) by four outputs of multiplier 110, and uses the multiplication result as an enhanced signal. In other words, the sixth embodiment and the third and fifth embodiments are the same in the order of multiplication of a plurality of gains, and the enhancement signals are the same.
 このような構成により、信号処理装置1000は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、背景雑音を抑圧するための信号利得Gs(k)も複数のセンサ101、102、103、104から受けた信号に乗算するので、より目的信号が強調された出力が得られる。 With such a configuration, the signal processing apparatus 1000 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since the signal gain Gs (k) for suppressing the background noise is also multiplied by the signals received from the plurality of sensors 101, 102, 103, 104, an output in which the target signal is more emphasized can be obtained.
 [第7実施形態]
 本発明の第7実施形態としての信号処理装置1100について、図11を用いて説明する。信号処理装置1100は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図11に示すように、信号処理装置1100は、位相差計算部501、利得計算部502、統合部704、乗算器110、雑音推定部705、利得計算部706、および乗算器1004を含む。
[Seventh Embodiment]
A signal processing apparatus 1100 according to a seventh embodiment of the present invention will be described with reference to FIG. The signal processing apparatus 1100 is an apparatus that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 11, the signal processing device 1100 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 110, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 1004.
 図11の構成は、図5と比較すると、統合部704、雑音推定部705、利得計算部706、乗算器1004が追加されている以外、同一の構成となっている。そこで、異なる構成要素である統合部704、雑音推定部705、利得計算部706、乗算器1004の動作だけ説明し、それ以外は省略する。 11 is the same as FIG. 5 except that an integration unit 704, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 1004 are added. Therefore, only the operations of the integration unit 704, the noise estimation unit 705, the gain calculation unit 706, and the multiplier 1004, which are different components, will be described, and the rest will be omitted.
 統合部704は、乗算器110の出力4つを統合して統合信号を生成する。統合部704の動作は、第3実施形態としての信号処理装置700について、図7を用いて説明したとおりである。 The integration unit 704 generates an integrated signal by integrating the four outputs of the multiplier 110. The operation of the integration unit 704 is as described for the signal processing device 700 according to the third embodiment with reference to FIG.
 雑音推定部705は、統合信号を受けてその中に含まれる雑音成分のパワーまたは絶対振幅を推定して雑音推定値とする。利得計算部706は、雑音推定値と統合部704の出力を受けて、乗算器110の出力に含まれる雑音を抑圧するための信号利得Gs(k)を計算する。雑音推定部705と利得計算部706の動作は、第3実施形態としての信号処理装置700について、図7を用いて説明したとおりである。乗算器1004は、乗算器110の出力それぞれと信号利得Gs(k)を乗算して、乗算結果を強調信号とする。すなわち、強調信号の数は、複数のセンサ101、102、103、104から受けた信号の数に等しく、図11では4である。 The noise estimation unit 705 receives the integrated signal and estimates the power or absolute amplitude of the noise component included in the integrated signal to obtain a noise estimation value. Gain calculation section 706 receives the estimated noise value and the output of integration section 704 and calculates a signal gain Gs (k) for suppressing noise included in the output of multiplier 110. The operations of the noise estimation unit 705 and the gain calculation unit 706 are as described for the signal processing device 700 according to the third embodiment with reference to FIG. Multiplier 1004 multiplies each output of multiplier 110 by signal gain Gs (k), and uses the multiplication result as an enhanced signal. That is, the number of enhancement signals is equal to the number of signals received from the plurality of sensors 101, 102, 103, 104, and is 4 in FIG.
 このような構成により、信号処理装置1100は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、背景雑音を抑圧するための信号利得Gs(k)も複数のセンサ101、102、103、104から受けた信号に乗算するので、より目的信号が強調された出力が得られる。 With such a configuration, the signal processing device 1100 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since the signal gain Gs (k) for suppressing the background noise is also multiplied by the signals received from the plurality of sensors 101, 102, 103, 104, an output in which the target signal is more emphasized can be obtained.
 なお、方向利得Gd(k)によって、目的信号以外の成分が方向に基づいて抑圧された結果が乗算器110の出力に得られており、その結果を用いて雑音推定部705が雑音推定を行う。このため、第3から第6実施形態と比較して、より正確に目的信号を取り出すことが可能となる。 Note that a result of suppressing components other than the target signal based on the direction by the direction gain Gd (k) is obtained at the output of the multiplier 110, and the noise estimation unit 705 performs noise estimation using the result. . Therefore, it is possible to extract the target signal more accurately than in the third to sixth embodiments.
 これまで、第3および第5から第7実施形態において、位相差に基づいて方向利得Gd(k)を計算する第2実施形態に、信号利得Gs(k)を組み合わせた例について説明してきた。同様に、信号到来方向に基づいて方向利得Gd(k)を計算する第1実施形態に、第3および第5から第7実施形態に示した構成で信号利得Gs(k)を組み合わせた例についても、同様の効果が得られる。 So far, in the third and fifth to seventh embodiments, examples in which the signal gain Gs (k) is combined with the second embodiment in which the direction gain Gd (k) is calculated based on the phase difference have been described. Similarly, an example in which the signal gain Gs (k) is combined with the configuration shown in the third and fifth to seventh embodiments in the first embodiment that calculates the direction gain Gd (k) based on the signal arrival direction. The same effect can be obtained.
 また、これより後で説明する実施形態では、第3実施形態に基づいて信号利得Gs(k)を組み合わせる構成を対象とするが、第5から第7実施形態に基づいて信号利得Gs(k)を組み合わせる構成もその実施形態に含まれる。 Further, in the embodiments described later, the configuration in which the signal gain Gs (k) is combined based on the third embodiment is targeted, but the signal gain Gs (k) is based on the fifth to seventh embodiments. A configuration combining these is also included in the embodiment.
 [第8実施形態]
 本発明の第8実施形態としての信号処理装置1200について、図12を用いて説明する。信号処理装置1200は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図12に示すように、信号処理装置1200は、位相差計算部501、利得計算部502、統合部704、乗算器710、雑音推定部1204、利得計算部706、および乗算器707を含む。
[Eighth Embodiment]
A signal processing apparatus 1200 as an eighth embodiment of the present invention will be described with reference to FIG. The signal processing device 1200 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 12, the signal processing device 1200 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 1204, a gain calculation unit 706, and a multiplier 707.
 図12の構成は、図7と比較すると、雑音推定部705が、雑音推定部1204で置換されている以外、同一の構成となっている。そこで、異なる構成要素である雑音推定部1204の動作だけ説明し、それ以外は省略する。 The configuration of FIG. 12 is the same as that of FIG. 7 except that the noise estimation unit 705 is replaced with a noise estimation unit 1204. Therefore, only the operation of the noise estimation unit 1204, which is a different component, will be described, and the rest will be omitted.
 雑音推定部1204は、複数のセンサ101、102、103、104からの信号を受けてその中に含まれる目的信号以外の成分のパワーまたは絶対振幅を推定して、雑音推定値とする。具体的には、複数のセンサ101、102、103、104からの信号を入力とするヌルビーム形成器(null beamformer)として動作することで、目的信号以外の成分のパワーまたは絶対振幅の推定を行う。ヌルビーム形成器に関しては、非特許文献2、6に詳細に開示されているので、ここでは省略する。 The noise estimation unit 1204 receives signals from the plurality of sensors 101, 102, 103, and 104, estimates the power or absolute amplitude of components other than the target signal included therein, and obtains a noise estimation value. Specifically, by operating as a null beamformer that receives signals from a plurality of sensors 101, 102, 103, and 104, the power or absolute amplitude of components other than the target signal is estimated. Since the null beam former is disclosed in detail in Non-Patent Documents 2 and 6, it is omitted here.
 このような構成により、信号処理装置1200は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、背景雑音を推定するためにヌルビーム形成器を用いているので、背景雑音以外の方向性信号の影響を低減することができ、正確な背景雑音推定を通じて高音質の強調音声を出力に得ることができる。 With such a configuration, the signal processing device 1200 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. In addition, since a null beamformer is used to estimate background noise, the influence of directional signals other than background noise can be reduced, and high-quality enhanced speech can be obtained through output through accurate background noise estimation. Can do.
 [第9実施形態]
 本発明の第9実施形態としての信号処理装置1300について、図13を用いて説明する。信号処理装置1300は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図13に示すように、信号処理装置1300は、位相差計算部501、利得計算部502、統合部704、乗算器710、雑音推定部705、利得計算部706、乗算器707、および位相調整部1301を含む。
[Ninth Embodiment]
A signal processing device 1300 according to a ninth embodiment of the present invention will be described with reference to FIG. The signal processing device 1300 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 13, the signal processing device 1300 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, a multiplier 707, and a phase adjustment unit. 1301 is included.
 図13の構成は、図7と比較すると、位相調整部1301が追加されている以外、同一の構成となっている。そこで、異なる構成要素である位相調整部1301の動作だけ説明し、それ以外は省略する。 13 is the same as that in FIG. 7 except that a phase adjustment unit 1301 is added. Therefore, only the operation of the phase adjustment unit 1301 which is a different component will be described, and the rest will be omitted.
 位相調整部1301は、複数のセンサ101、102、103、104からの複数の信号を受けて、目的信号が等価的に正面から到来したと見えるように、各センサからの信号の位相を調整し、複数の位相調整信号を生成する。これは、ビームステアリングと呼ばれる処理であり、非特許文献2と6に詳細に開示されているので、ここでは省略する。 The phase adjustment unit 1301 receives a plurality of signals from the plurality of sensors 101, 102, 103, and 104, and adjusts the phase of the signal from each sensor so that the target signal appears equivalently coming from the front. A plurality of phase adjustment signals are generated. This is a process called beam steering, which is disclosed in detail in Non-Patent Documents 2 and 6, and is omitted here.
 このような構成により、信号処理装置1300は、広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、ビームステアリング機能を有するので、正面以外から到来する目的信号に対しても、正面から到来する目的信号に対する効果と同等の効果が得られる。 With such a configuration, the signal processing device 1300 can impart directivity (gain based on the signal arrival direction) independent of frequency to the wideband signal. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array. Further, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained even for the target signal coming from other than the front.
 [第10実施形態]
 本発明の第10実施形態としての信号処理装置1400について、図14を用いて説明する。信号処理装置1400は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図14に示すように、信号処理装置1400は、位相差計算部501、利得計算部502、統合部704、乗算器710、雑音推定部1204、利得計算部706、乗算器707、および位相調整部1301を含む。
[Tenth embodiment]
A signal processing apparatus 1400 as a tenth embodiment of the present invention will be described with reference to FIG. The signal processing device 1400 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 14, the signal processing device 1400 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 1204, a gain calculation unit 706, a multiplier 707, and a phase adjustment unit. 1301 is included.
 図14の構成は、図13と比較すると、雑音推定部705が雑音推定部1204で置換されている以外、同一の構成となっている。これは、図12と図7の関係に等しく、すでに説明したので、説明を省略する。 14 is the same as FIG. 13 except that the noise estimation unit 705 is replaced with a noise estimation unit 1204. This is equivalent to the relationship between FIG. 12 and FIG.
 このような構成により、信号処理装置1400は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、背景雑音を推定するためにヌルビーム形成器を用いているので、背景雑音以外の方向性信号の影響を低減することができ、正確な背景雑音推定を通じて高音質の強調音声を出力に得ることができる。さらに、ビームステアリング機能を有するので、正面以外から到来する目的信号に対しても、正面から到来する目的信号に対する効果と同等の効果が得られる。 With such a configuration, the signal processing device 1400 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. In addition, since a null beamformer is used to estimate background noise, the influence of directional signals other than background noise can be reduced, and high-quality enhanced speech can be obtained through output through accurate background noise estimation. Can do. Furthermore, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained for the target signal coming from other than the front.
 第9および第10実施形態は、第3および第8実施形態に正面以外から到来する目的信号に対応するためのビームステアリング機能を付加したものである。したがって、第1、第2、第4から第7および第8実施形態ばかりでなく、信号到来方向に基づいて方向利得Gd(k)を計算する第1実施形態に、第3から第8実施形態に示した構成で信号利得Gs(k)を組み合わせた例についても、ビームステアリング機能を付加することができ、正面以外から到来する目的信号に対しても、正面から到来する目的信号に対する効果と同等の効果が得られる。 In the ninth and tenth embodiments, a beam steering function is added to the third and eighth embodiments in order to cope with a target signal coming from other than the front. Therefore, not only the first, second, fourth to seventh and eighth embodiments, but also the first embodiment for calculating the direction gain Gd (k) based on the signal arrival direction, the third to eighth embodiments. The beam steering function can also be added to the example in which the signal gain Gs (k) is combined with the configuration shown in FIG. 6, and the effect on the target signal arriving from other than the front is equivalent to the effect on the target signal arriving from the front. The effect is obtained.
 [第11実施形態]
 本発明の第11実施形態としての信号処理装置1500について、図15を用いて説明する。信号処理装置1500は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図15に示すように、信号処理装置1500は、位相差計算部1501、利得計算部1502、統合部1503、乗算器710、雑音推定部705、利得計算部706、および乗算器707を含む。
[Eleventh embodiment]
A signal processing device 1500 as an eleventh embodiment of the present invention will be described with reference to FIG. The signal processing device 1500 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 15, the signal processing device 1500 includes a phase difference calculation unit 1501, a gain calculation unit 1502, an integration unit 1503, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, and a multiplier 707.
 図15の構成は、図13と比較すると、位相調整部1301を削除して、位相差計算部501、利得計算部502、統合部704を位相差計算部1501、利得計算部1502、統合部1503で置換している以外、同一の構成となっている。そこで、異なる構成要素である位相差計算部1501、利得計算部1502、統合部1503の動作だけ説明し、それ以外は省略する。 The configuration of FIG. 15 is different from that of FIG. 13 in that the phase adjustment unit 1301 is deleted, the phase difference calculation unit 501, the gain calculation unit 502, and the integration unit 704 are replaced by the phase difference calculation unit 1501, the gain calculation unit 1502, and the integration unit 1503. The configuration is the same except that it is replaced with. Therefore, only the operations of the phase difference calculation unit 1501, the gain calculation unit 1502, and the integration unit 1503, which are different components, will be described, and the rest will be omitted.
 位相差計算部1501は、位相差計算部501の機能に加えて、複数のセンサ101、102、103、104からの信号を受けて、目的信号が等価的に正面から到来したと見えるような、各センサからの信号の位相調整量δ(目的信号の到来方向が、正面からどれだけずれているかを示すずれ方向)を求める機能を有する。求めた位相調整量δを、位相差ΔΘ(k)と共に利得計算部1502に供給する。 In addition to the function of the phase difference calculation unit 501, the phase difference calculation unit 1501 receives signals from a plurality of sensors 101, 102, 103, and 104 so that the target signal can be viewed as equivalently coming from the front, It has a function of obtaining the phase adjustment amount δ (shift direction indicating how much the arrival direction of the target signal is shifted from the front) from each sensor. The obtained phase adjustment amount δ is supplied to the gain calculation unit 1502 together with the phase difference ΔΘ (k).
 利得計算部1502はまず、図16に示すように、位相差対利得の特性をδだけ横方向へシフトした補正方向利得を計算する。横方向へのシフトδにより、等価的に正面がδずれたことになり、ビームステアリングとして機能する。すなわち、位相差計算部1501は位相調整部1301の機能と位相差計算部501の機能を併せ持つ。これに合わせて、統合部1503でもビームステアリングが必要になる。このため、統合部1503は、位相調整部1301の機能と統合部704の機能を併せ持つ。統合部1503はまず、目的信号の到来方向を推定して、この到来方向が正面に来るように複数のセンサ101、102、103、104からの信号に関して位相を調整することで、ビームステアリングを行う。ビームステアリングを行った信号に対して、統合部704と同じ処理で統合信号を生成する。 First, as shown in FIG. 16, the gain calculation unit 1502 calculates a correction direction gain obtained by shifting the phase difference versus gain characteristic in the horizontal direction by δ. The front shift is equivalently shifted by δ due to the shift δ in the lateral direction, and functions as beam steering. That is, the phase difference calculation unit 1501 has both the function of the phase adjustment unit 1301 and the function of the phase difference calculation unit 501. In accordance with this, the integration unit 1503 also requires beam steering. For this reason, the integration unit 1503 has both the function of the phase adjustment unit 1301 and the function of the integration unit 704. First, the integration unit 1503 estimates the direction of arrival of the target signal and performs beam steering by adjusting the phase of the signals from the plurality of sensors 101, 102, 103, and 104 so that the direction of arrival is in front. . An integrated signal is generated by the same processing as the integration unit 704 with respect to the signal subjected to beam steering.
 このような構成により、信号処理装置1500は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、ビームステアリング機能を有するので、正面以外から到来する目的信号に対しても、正面から到来する目的信号に対する効果と同等の効果が得られる。 With such a configuration, the signal processing device 1500 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained even for the target signal coming from other than the front.
 [第12実施形態]
 本発明の第12実施形態としての信号処理装置1700について、図17を用いて説明する。信号処理装置1700は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図17に示すように、信号処理装置1700は、位相差計算部1501、利得計算部1502、統合部1503、乗算器710、雑音推定部1204、利得計算部706、および乗算器707を含む。
[Twelfth embodiment]
A signal processing apparatus 1700 as a twelfth embodiment of the present invention will be described with reference to FIG. The signal processing apparatus 1700 is an apparatus that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 17, the signal processing device 1700 includes a phase difference calculation unit 1501, a gain calculation unit 1502, an integration unit 1503, a multiplier 710, a noise estimation unit 1204, a gain calculation unit 706, and a multiplier 707.
 図17の構成は、図14と比較すると、位相調整部1301を削除して、位相差計算部501、利得計算部502、統合部704が位相差計算部1501、利得計算部1502、統合部1503で置換されている以外、同一の構成となっている。これは、図15と図13の関係に等しく、すでに説明したので、説明を省略する。 The configuration of FIG. 17 is different from that of FIG. 14 in that the phase adjustment unit 1301 is deleted, and the phase difference calculation unit 501, the gain calculation unit 502, and the integration unit 704 are the phase difference calculation unit 1501, the gain calculation unit 1502, and the integration unit 1503. The structure is the same except that it is replaced with. This is equivalent to the relationship between FIG. 15 and FIG. 13 and has already been described, and thus the description thereof is omitted.
 このような構成により、信号処理装置1700は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、背景雑音を推定するためにヌルビーム形成器を用いているので、背景雑音以外の方向性信号の影響を低減することができ、正確な背景雑音推定を通じて高音質の強調音声を出力に得ることができる。さらに、ビームステアリング機能を有するので、正面以外から到来する目的信号に対しても、正面から到来する目的信号に対する効果と同等の効果が得られる。 With such a configuration, the signal processing device 1700 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. In addition, since a null beamformer is used to estimate background noise, the influence of directional signals other than background noise can be reduced, and high-quality enhanced speech can be obtained through output through accurate background noise estimation. Can do. Furthermore, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained for the target signal coming from other than the front.
 第11および第12実施形態は、第3および第8実施形態に、第9および第10実施形態と異なる構成で、正面以外から到来する目的信号に対応するためのビームステアリング機能を付加したものである。したがって、第1、第2、第4から第7および第8実施形態ばかりでなく、信号到来方向に基づいて方向利得Gd(k)を計算する第1実施形態に、第3から第8実施形態に示した構成で信号利得Gs(k)を組み合わせた例についても、第11および第12実施形態に示したビームステアリング機能を付加することができる。そして、正面以外から到来する目的信号に対しても、正面から到来する目的信号に対する効果と同等の効果が得られる。 In the eleventh and twelfth embodiments, a beam steering function is added to the third and eighth embodiments with a different configuration from the ninth and tenth embodiments to respond to target signals coming from other than the front. is there. Therefore, not only the first, second, fourth to seventh and eighth embodiments, but also the first embodiment for calculating the direction gain Gd (k) based on the signal arrival direction, the third to eighth embodiments. The beam steering function shown in the eleventh and twelfth embodiments can be added to the example in which the signal gain Gs (k) is combined in the configuration shown in FIG. And the effect equivalent to the effect with respect to the target signal which comes from the front is acquired also about the target signal which comes from other than the front.
 [第13実施形態]
 本発明の第13実施形態としての信号処理装置1800について、図18を用いて説明する。信号処理装置1800は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図18に示すように、信号処理装置1800は、位相差計算部501、利得計算部502、統合部704、乗算器710、雑音推定部705、利得計算部706、乗算器707、位相調整部1301、変換部1801~1804、および逆変換部1805を含む。
[Thirteenth embodiment]
A signal processing apparatus 1800 as a thirteenth embodiment of the present invention will be described with reference to FIG. The signal processing apparatus 1800 is an apparatus that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 18, the signal processing device 1800 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, a multiplier 707, and a phase adjustment unit 1301. , Conversion units 1801 to 1804 and an inverse conversion unit 1805 are included.
 図18の構成は、図13と比較すると、変換部1801~1804と逆変換部1805が追加されている以外、同一の構成となっている。そこで、異なる構成要素である変換部1801~1804と逆変換部1805の動作だけ説明し、それ以外は省略する。 The configuration of FIG. 18 is the same as that of FIG. 13 except that conversion units 1801 to 1804 and an inverse conversion unit 1805 are added. Therefore, only the operations of the conversion units 1801 to 1804 and the reverse conversion unit 1805 which are different components will be described, and the rest will be omitted.
 変換部1801~1804は、複数のセンサ101、102、103、104からの信号に独立に変換を適用し、複数の周波数に対応した複数の変換信号(周波数領域信号)に変換してから、出力する。これまで説明してきた全ての処理を、それぞれの周波数に対応したデータに対して独立に行う。信号に変換を適用する具体的な手続き、および装置の構成については、特許文献1に開示されているので、省略する。 The conversion units 1801 to 1804 independently apply conversion to signals from the plurality of sensors 101, 102, 103, and 104, convert the signals into a plurality of conversion signals (frequency domain signals) corresponding to a plurality of frequencies, and then output the signals. To do. All the processes described so far are performed independently on the data corresponding to each frequency. The specific procedure for applying the conversion to the signal and the configuration of the apparatus are disclosed in Patent Document 1 and will be omitted.
 逆変換部1805は、乗算器710の出力であり、複数の周波数に対応したデータから構成される複数の強調信号を逆変換して、複数の時間領域信号にしてから出力する。 The inverse transform unit 1805 is the output of the multiplier 710, performs inverse transform on a plurality of enhancement signals composed of data corresponding to a plurality of frequencies, and outputs a plurality of time domain signals.
 このような構成により、信号処理装置1800は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、ビームステアリング機能を有するので、正面以外から到来する目的信号に対しても、正面から到来する目的信号に対する効果と同等の効果が得られる。さらに、信号処理を複数の周波数成分に対して独立に適用するので、各周波数に対応した適切な処理によって、より高音質な処理結果を得ることができる。 With such a configuration, the signal processing device 1800 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained even for the target signal coming from other than the front. Furthermore, since signal processing is independently applied to a plurality of frequency components, a processing result with higher sound quality can be obtained by appropriate processing corresponding to each frequency.
 [第14実施形態]
 本発明の第14実施形態としての信号処理装置1900について、図19を用いて説明する。信号処理装置1900は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図19に示すように、信号処理装置1900は、位相差計算部501、利得計算部502、統合部704、乗算器710、雑音推定部1204、利得計算部706、乗算器707、位相調整部1301、変換部1801~1804、および逆変換部1805を含む。
[Fourteenth embodiment]
A signal processing apparatus 1900 as a fourteenth embodiment of the present invention will be described with reference to FIG. The signal processing apparatus 1900 is an apparatus that enhances or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As illustrated in FIG. 19, the signal processing device 1900 includes a phase difference calculation unit 501, a gain calculation unit 502, an integration unit 704, a multiplier 710, a noise estimation unit 1204, a gain calculation unit 706, a multiplier 707, and a phase adjustment unit 1301. , Conversion units 1801 to 1804 and an inverse conversion unit 1805 are included.
 図19の構成は、図14と比較すると、変換部1801~1804と逆変換部1805が追加されている以外、同一の構成となっている。これは、図18と図13の関係に等しく、すでに説明したので、説明を省略する。 The configuration in FIG. 19 is the same as that in FIG. 14 except that conversion units 1801 to 1804 and an inverse conversion unit 1805 are added. This is equivalent to the relationship between FIG. 18 and FIG. 13 and has already been described, and thus the description thereof is omitted.
 このような構成により、信号処理装置1900は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、背景雑音を推定するためにヌルビーム形成器を用いているので、背景雑音以外の方向性信号の影響を低減することができ、正確な背景雑音推定を通じて高音質の強調音声を出力に得ることができる。さらに、ビームステアリング機能を有するので、正面以外から到来する目的信号に対しても、正面から到来する目的信号に対する効果と同等の効果が得られる。また、周波数成分に分離してからの処理によって、信号処理を複数の周波数成分に対して独立に適用するので、各周波数に対応した適切な処理によって、より高音質な処理結果を得ることができる。 With such a configuration, the signal processing apparatus 1900 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. In addition, since a null beamformer is used to estimate background noise, the influence of directional signals other than background noise can be reduced, and high-quality enhanced speech can be obtained through output through accurate background noise estimation. Can do. Furthermore, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained for the target signal coming from other than the front. In addition, since the signal processing is independently applied to a plurality of frequency components by the processing after the frequency components are separated, a processing result with higher sound quality can be obtained by appropriate processing corresponding to each frequency. .
 [第15実施形態]
 本発明の第15実施形態としての信号処理装置2000について、図20を用いて説明する。信号処理装置2000は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図20に示すように、信号処理装置2000は、位相差計算部1501、利得計算部1502、統合部1503、乗算器710、雑音推定部705、利得計算部706、乗算器707、変換部1801~1804、および逆変換部1805を含む。
[Fifteenth embodiment]
A signal processing apparatus 2000 according to the fifteenth embodiment of the present invention will be described with reference to FIG. The signal processing device 2000 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As shown in FIG. 20, the signal processing device 2000 includes a phase difference calculation unit 1501, a gain calculation unit 1502, an integration unit 1503, a multiplier 710, a noise estimation unit 705, a gain calculation unit 706, a multiplier 707, and conversion units 1801 to 1801. 1804 and an inverse transform unit 1805 are included.
 図20の構成は、図15と比較すると、変換部1801~1804と逆変換部1805が追加されている以外、同一の構成となっている。これは、図18と図13の関係に等しく、すでに説明したので、説明を省略する。 The configuration of FIG. 20 is the same as that of FIG. 15 except that conversion units 1801 to 1804 and an inverse conversion unit 1805 are added. This is equivalent to the relationship between FIG. 18 and FIG. 13 and has already been described, and thus the description thereof is omitted.
 このような構成により、信号処理装置2000は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、ビームステアリング機能を有するので、正面以外から到来する目的信号に対しても、正面から到来する目的信号に対する効果と同等の効果が得られる。さらに、信号処理を複数の周波数成分に対して独立に適用するので、各周波数に対応した適切な処理によって、より高音質な処理結果を得ることができる。 With such a configuration, the signal processing device 2000 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. Further, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained even for the target signal coming from other than the front. Furthermore, since signal processing is independently applied to a plurality of frequency components, a processing result with higher sound quality can be obtained by appropriate processing corresponding to each frequency.
 [第16実施形態]
 本発明の第16実施形態としての信号処理装置2100について、図21を用いて説明する。信号処理装置2100は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図21に示すように、信号処理装置2100は、位相差計算部1501、利得計算部1502、統合部1503、乗算器710、雑音推定部1204、利得計算部706、乗算器707、変換部1801~1804および逆変換部1805を含む。
[Sixteenth Embodiment]
A signal processing device 2100 according to a sixteenth embodiment of the present invention will be described with reference to FIG. The signal processing device 2100 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As shown in FIG. 21, the signal processing device 2100 includes a phase difference calculation unit 1501, a gain calculation unit 1502, an integration unit 1503, a multiplier 710, a noise estimation unit 1204, a gain calculation unit 706, a multiplier 707, and conversion units 1801 to 1801. 1804 and an inverse transform unit 1805 are included.
 図21の構成は、図17と比較すると、変換部1801~1804と逆変換部1805が追加されている以外、同一の構成となっている。これは、図18と図13の関係に等しく、すでに説明したので、説明を省略する。 The configuration of FIG. 21 is the same as that of FIG. 17 except that conversion units 1801 to 1804 and an inverse conversion unit 1805 are added. This is equivalent to the relationship between FIG. 18 and FIG. 13 and has already been described, and thus the description thereof is omitted.
 このような構成により、信号処理装置2100は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。また、背景雑音を推定するためにヌルビーム形成器を用いているので、背景雑音以外の方向性信号の影響を低減することができ、正確な背景雑音推定を通じて高音質の強調音声を出力に得ることができる。さらに、ビームステアリング機能を有するので、正面以外から到来する目的信号に対しても、正面から到来する目的信号に対する効果と同等の効果が得られる。また、周波数成分に分離してからの処理によって、信号処理を複数の周波数成分に対して独立に適用するので、各周波数に対応した適切な処理によって、より高音質な処理結果を得ることができる。 With such a configuration, the signal processing device 2100 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input. In addition, since a null beamformer is used to estimate background noise, the influence of directional signals other than background noise can be reduced, and high-quality enhanced speech can be obtained through output through accurate background noise estimation. Can do. Furthermore, since it has a beam steering function, an effect equivalent to the effect on the target signal coming from the front can be obtained for the target signal coming from other than the front. In addition, since the signal processing is independently applied to a plurality of frequency components by the processing after the frequency components are separated, a processing result with higher sound quality can be obtained by appropriate processing corresponding to each frequency. .
 図22は、第2実施形態にかかる信号処理装置2200を、ソフトウェアを用いて実現する場合のハードウェア構成について説明する図である。 FIG. 22 is a diagram illustrating a hardware configuration when the signal processing device 2200 according to the second embodiment is realized using software.
 信号処理装置2200は、プロセッサ2210、ROM(Read Only Memory)2220、RAM(Random Access Memory)2240、ストレージ2250、入出力インタフェース2260、操作部2261、入力部2262、および出力部2263を備えている。プロセッサ2210は中央処理部であって、様々なプログラムを実行することにより信号処理装置2200全体を制御する。 The signal processing device 2200 includes a processor 2210, a ROM (Read Only Memory) 2220, a RAM (Random Access Memory) 2240, a storage 2250, an input / output interface 2260, an operation unit 2261, an input unit 2262, and an output unit 2263. The processor 2210 is a central processing unit, and controls the entire signal processing device 2200 by executing various programs.
 ROM2220は、プロセッサ2210が最初に実行すべきブートプログラムの他、各種パラメータ等を記憶している。RAM2240は、不図示のプログラムロード領域の他に、入力信号2240a、位相差2240b、利得2240c、強調信号2240e(出力信号)等を記憶する領域を有している。 The ROM 2220 stores various parameters in addition to the boot program that the processor 2210 should execute first. The RAM 2240 has an area for storing an input signal 2240a, a phase difference 2240b, a gain 2240c, an enhancement signal 2240e (output signal), and the like in addition to a program load area (not shown).
 また、ストレージ2250は、信号処理プログラム2251を格納している。信号処理プログラム2251は、位相差計算モジュール2251a、利得計算モジュール2251b、および乗算モジュール2251dを含んでいる。信号処理プログラム2251に含まれる各モジュールをプロセッサ2210が実行することにより、図5の位相差計算部501、利得計算部502、および乗算器110の各機能を実現できる。 The storage 2250 stores a signal processing program 2251. The signal processing program 2251 includes a phase difference calculation module 2251a, a gain calculation module 2251b, and a multiplication module 2251d. When the processor 2210 executes each module included in the signal processing program 2251, the functions of the phase difference calculation unit 501, the gain calculation unit 502, and the multiplier 110 in FIG. 5 can be realized.
 プロセッサ2210が実行した信号処理プログラム2251に関する出力である強調信号2240eは、入出力インタフェース2260を介して出力部2263から出力される。これにより、例えば、入力部2262から入力した入力信号2240aに含まれる雑音や妨害信号などを抑圧し、音声などの目的信号を強調することができる。 The enhancement signal 2240e, which is an output related to the signal processing program 2251 executed by the processor 2210, is output from the output unit 2263 via the input / output interface 2260. Thereby, for example, noise and interference signals included in the input signal 2240a input from the input unit 2262 can be suppressed, and a target signal such as voice can be emphasized.
 図23は、信号処理プログラム2251による、雑音や妨害信号に混合された音声等の目的信号を強調する処理の流れを説明するためのフローチャートである。ステップS2301では、センサ101、102、103、104からの複数の入力信号2240aが位相差計算部に供給される。ステップS2303では、位相差計算部501が、入力信号の位相差を計算する。 FIG. 23 is a flowchart for explaining a flow of processing for emphasizing a target signal such as voice mixed with noise or interference signal by the signal processing program 2251. In step S2301, a plurality of input signals 2240a from the sensors 101, 102, 103, and 104 are supplied to the phase difference calculation unit. In step S2303, the phase difference calculation unit 501 calculates the phase difference of the input signal.
 次にステップS2305において、位相差に応じた方向利得を計算する処理を実行させる。ステップS2309において、センサ101、102、103、104からの複数の入力信号2240aと方向利得を乗算して、強調信号を生成する。 Next, in step S2305, a process for calculating a directional gain according to the phase difference is executed. In step S2309, a plurality of input signals 2240a from the sensors 101, 102, 103, and 104 are multiplied by the direction gain to generate an enhancement signal.
 最終的には、ステップS2311では、センサ101、102、103、104からの複数の入力信号と方向利得の積を、目的信号、すなわち音声が強調され、それ以外が抑圧された複数の信号として出力させる。 Finally, in step S2311, the product of the plurality of input signals from the sensors 101, 102, 103, and 104 and the directional gain is output as a target signal, that is, a plurality of signals in which speech is emphasized and others are suppressed. Let
 図23では、本実施形態にかかる信号処理装置500をソフトウェアで実現する場合の処理の流れを説明するためのフローチャートを示した。しかし、第1実施形態、第3乃至第15実施形態、第16実施形態に関しても、各々のブロック図における違いを適宜省略および追加することで、同様に実現できる。 FIG. 23 shows a flowchart for explaining the flow of processing when the signal processing apparatus 500 according to the present embodiment is realized by software. However, the first embodiment, the third to fifteenth embodiments, and the sixteenth embodiment can be similarly realized by appropriately omitting and adding the differences in the respective block diagrams.
 以上の構成により、本実施形態によれば、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With the above configuration, according to the present embodiment, directivity (gain based on the signal arrival direction) independent of frequency can be imparted to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 [第17実施形態]
 本発明の第17実施形態としての信号処理装置2400について、図24を用いて説明する。信号処理装置2400は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図24に示すように、信号処理装置2400は、方向推定部2405、利得計算部2406、乗算器2410を含み、利得計算部2406と乗算器2410は合わせて、方向利得による信号抑圧部2401として動作する。方向推定部2405は、空間的に異なった位置に存在する複数のセンサに入力する信号を用いて信号の相対遅延あるいは等価的に信号の到来方向を求める。信号抑圧部2401は、相対遅延あるいは到来方向に対応した利得を複数センサからの入力信号に乗算することで、信号を到来方向に基づいて選択的に強調または抑圧する。
[Seventeenth embodiment]
A signal processing device 2400 according to a seventeenth embodiment of the present invention will be described with reference to FIG. The signal processing device 2400 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As shown in FIG. 24, the signal processing device 2400 includes a direction estimation unit 2405, a gain calculation unit 2406, and a multiplier 2410. The gain calculation unit 2406 and the multiplier 2410 together operate as a signal suppression unit 2401 using direction gain. To do. The direction estimation unit 2405 obtains the relative delay of the signal or equivalently the arrival direction of the signal using signals input to a plurality of sensors existing at spatially different positions. The signal suppression unit 2401 selectively enhances or suppresses the signal based on the arrival direction by multiplying the input signals from the plurality of sensors by the gain corresponding to the relative delay or the arrival direction.
 以上の構成により、本実施形態によれば、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With the above configuration, according to the present embodiment, directivity (gain based on the signal arrival direction) independent of frequency can be imparted to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 [第18実施形態]
 上記実施形態において乗算の代わりに減算を用いて強調信号を生成してもよい。複数のセンサ101、102、103、104から受けた信号x1(k)、x2(k)、x3(k)、x4(k)と{1-Gd(k)}の積を求めて、これをx1(k)、x2(k)、x3(k)、x4(k)から減算すれば、方向利得Gd(k)とx1(k)、x2(k)、x3(k)、x4(k)の積そのものになることから、明らかである。また、信号到来方向に応じて異なる利得を与えることは、信号到来方向に応じて異なる減算量を設定することでも実現できる。例えば、非特許文献6に開示されているスペクトルサブトラクションにおける減算量を、信号を抑圧したい方向に対して大きく、強調したい方向に対して小さく設定した信号到来方向対減算量の特性をあらかじめ準備しておき、これを信号到来方向に応じて利用することで、上述の方法を実現できる。このような構成を、本発明の第18実施形態として説明する。
[Eighteenth embodiment]
In the above embodiment, the enhancement signal may be generated using subtraction instead of multiplication. The product of signals x1 (k), x2 (k), x3 (k), x4 (k) and {1-Gd (k)} received from the plurality of sensors 101, 102, 103, 104 is obtained and By subtracting from x1 (k), x2 (k), x3 (k), x4 (k), direction gain Gd (k) and x1 (k), x2 (k), x3 (k), x4 (k) It is clear from the product itself. Also, providing different gains depending on the signal arrival direction can also be realized by setting different subtraction amounts depending on the signal arrival direction. For example, the characteristics of the signal arrival direction vs. the subtraction amount are prepared in advance so that the subtraction amount in the spectral subtraction disclosed in Non-Patent Document 6 is set large in the direction in which the signal is to be suppressed and small in the direction in which the signal is to be emphasized. In addition, the above-described method can be realized by using this according to the signal arrival direction. Such a configuration will be described as an eighteenth embodiment of the present invention.
  図25は、本発明の第18実施形態としての信号処理装置2500について説明するための図である。信号処理装置2500は、複数のセンサ101、102、103、104からの信号を用いて広帯域信号を強調または抑圧する装置である。図25に示すように、信号処理装置2500は、方向推定部105、減算量計算部2511、減算器2510を含み、減算量計算部2511と減算器2510は合わせて、方向利得による抑圧部2501として動作する。方向推定部105は、空間的に異なった位置に存在する複数のセンサに入力する信号を用いて信号の相対遅延あるいは等価的に信号の到来方向を求める。 FIG. 25 is a diagram for explaining a signal processing device 2500 as an eighteenth embodiment of the present invention. The signal processing device 2500 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 101, 102, 103, and 104. As shown in FIG. 25, the signal processing device 2500 includes a direction estimation unit 105, a subtraction amount calculation unit 2511, and a subtractor 2510. The subtraction amount calculation unit 2511 and the subtractor 2510 are combined to serve as a direction gain suppression unit 2501. Operate. The direction estimation unit 105 obtains the relative delay of the signal or equivalently the arrival direction of the signal using signals input to a plurality of sensors existing at spatially different positions.
 減算量計算部2511は、相対遅延あるいは到来方向に対応した入力信号の割合を設定する。入力信号の割合は、到来方向に対してゼロのような小さな値、到来方向から離れるにつれてそれよりも大きな値で最大値を1とする。減算器2510は、入力信号の割合に対応した減算量を複数センサからの入力信号に基づいてそれぞれ計算して、複数センサからの入力信号から減算することで、信号を到来方向に基づいて選択的に強調または抑圧する。すなわち、方向利得による抑圧部は、相対遅延あるいは到来方向に対応した割合の入力信号を複数センサからの入力信号から減算することで、信号を到来方向に基づいて選択的に強調または抑圧する。 The subtraction amount calculation unit 2511 sets the ratio of the input signal corresponding to the relative delay or the arrival direction. The ratio of the input signal is set to a maximum value of 1 with a small value such as zero with respect to the direction of arrival and a value larger as the distance from the direction of arrival increases. The subtractor 2510 selectively calculates the subtraction amount corresponding to the ratio of the input signal based on the input signals from the plurality of sensors, and subtracts the input signal from the plurality of sensors based on the direction of arrival. Emphasize or suppress. In other words, the direction gain suppression unit selectively emphasizes or suppresses the signal based on the arrival direction by subtracting the input signal corresponding to the relative delay or the arrival direction from the input signals from the plurality of sensors.
 本実施形態の本質は、図24および図25に示すように、空間的に異なった位置に存在する複数のセンサに入力する信号を用いて信号の相対遅延あるいは等価的に信号の到来方向を求め、その相対遅延あるいは到来方向に対応した利得を複数の入力信号に作用させ、あるいは対応した割合の入力信号を複数の入力信号から減算することで、信号を選択的に強調または抑圧することにある。図25に示すように、減算は乗算器110に代えて減算器2510が行う。信号を選択的に強調したい到来方向あるいは相対遅延に対しては大きな利得を、抑圧したい到来方向あるいは相対遅延に対しては小さな利得を設定する。大きな利得と小さな利得の代表的な値は1と0であるが、相対的に大きな値と小さな値であれば、いかなる値を用いてもよい。これは、図2から図4に示した通りである。 The essence of the present embodiment is that, as shown in FIGS. 24 and 25, the relative delay of the signal or equivalently the arrival direction of the signal is obtained using signals input to a plurality of sensors existing at spatially different positions. The signal is selectively emphasized or suppressed by applying a gain corresponding to the relative delay or direction of arrival to a plurality of input signals, or subtracting a corresponding proportion of the input signals from the plurality of input signals. . As shown in FIG. 25, subtraction is performed by a subtracter 2510 instead of the multiplier 110. A large gain is set for the direction of arrival or relative delay in which the signal is selectively emphasized, and a small gain is set for the direction of arrival or relative delay in which the signal is to be suppressed. Typical values for the large and small gains are 1 and 0, but any value may be used as long as it is a relatively large and small value. This is as shown in FIGS.
 このような利得は、あらかじめ計算して記憶装置に格納しておいてもよいし、時々刻々計算してもよい。時々刻々計算する例としては、計算に用いる位相差または信号到来方向と利得の関係を表す関数または多項式などを記憶装置に格納しておき、その都度利得を計算する方法が挙げられる。もちろん、これらの関係式(関数、多項式など)を複数準備して切り替えて使用したり、適宜組み合わせて使用したりすることも可能である。時々刻々計算することによって、入力信号の特性に応じて、強調したい信号と抑圧したい信号を変化させることができ、より様々な設計上の要求に対応することができる。また、全ての特性を記憶するよりも記憶容量を削減することができる。さらに、計算する代わりに、複数の利得を記憶装置に格納しておき、これを適宜切り替えて使用してもよい。この場合、記憶容量は増加するが、演算量を低減できるので、演算量に対してより要求条件が厳しい場合に有効である。 Such a gain may be calculated in advance and stored in a storage device, or may be calculated every moment. As an example of calculating from moment to moment, there is a method in which a function or polynomial representing a relationship between a phase difference or signal arrival direction and gain used for calculation is stored in a storage device, and a gain is calculated each time. Of course, it is also possible to prepare a plurality of these relational expressions (functions, polynomials, etc.) and use them by switching them or using them in appropriate combinations. By calculating from moment to moment, the signal to be emphasized and the signal to be suppressed can be changed according to the characteristics of the input signal, and more various design requirements can be met. Further, the storage capacity can be reduced as compared with storing all the characteristics. Furthermore, instead of calculating, a plurality of gains may be stored in a storage device, and these may be switched appropriately for use. In this case, although the storage capacity is increased, the amount of calculation can be reduced, which is effective when the required condition is more severe with respect to the amount of calculation.
 [第19実施形態]
 本発明の適用例として、机上に置いたタブレットPCを利用して、ネットワークを介したビデオチャットや遠隔通信を行うものが考えられる。図26に、そのような適用例を上から見た上面図を示す。
[Nineteenth Embodiment]
As an application example of the present invention, it is possible to use a tablet PC placed on a desk to perform video chat or remote communication via a network. FIG. 26 shows a top view of such an application example as seen from above.
 マイクロホンで実現された4つのセンサを含むセンサアレイ2600をタブレットPC2601の表面上部に配置する。これらのマイクロホンで取得した音響信号を第1から第18実施形態のいずれかで処理することによって、ソファーに着座したユーザー2603の声を強調し、その背後にいる人2604の声およびユーザー正面奥にある左右スピーカー2605から発生される音楽信号を抑圧することができる。このため、ユーザーの音声だけが出力として得られ、この出力を通話や音声認識に利用することで、快適な通話や高い音声認識率が実現できる。 A sensor array 2600 including four sensors realized by a microphone is arranged on the upper surface of the tablet PC 2601. By processing the acoustic signal acquired by these microphones in any of the first to eighteenth embodiments, the voice of the user 2603 sitting on the sofa is emphasized, and the voice of the person 2604 behind it and the back of the user's front are highlighted. A music signal generated from a certain left and right speaker 2605 can be suppressed. For this reason, only a user's voice is obtained as an output, and a comfortable call and a high voice recognition rate can be realized by using this output for a call and voice recognition.
 また、図27に示すように、ユーザーから離れた位置に置いたテレビ受信機2701を利用して、ネットワークを介したビデオチャットや遠隔通信を行うことも考えられる。図27は、そのような適用例を上から見た上面図を示す。 In addition, as shown in FIG. 27, it is also conceivable to perform video chat or remote communication via a network using a television receiver 2701 placed at a position distant from the user. FIG. 27 shows a top view of such an application example as viewed from above.
 マイクロホンで実現された4つセンサを含むセンサアレイ2700をテレビ受信機2701の表面上部に配置する。これらのマイクロホンで取得した音響信号を第1から第18実施形態のいずれかで処理することによって、ソファーに着座したユーザー2703の声を強調し、テレビ受信機2701の斜め前にいる人2704の声およびテレビ受信機側方にある左右スピーカー2705から発生される音楽信号を抑圧することができる。このため、ユーザー2703の音声だけが出力として得られ、この出力を通話や音声認識に利用することで、快適な通話や高い音声認識率が実現できる。特に、この音声認識機能によってテレビ受信機2701を制御することによって、ユーザー2703は音声を用いてテレビ受信機2701のチャネルやボリュームを変更することができる。 A sensor array 2700 including four sensors realized by a microphone is arranged on the upper surface of the television receiver 2701. The voice signal of the user 2703 seated on the sofa is emphasized by processing the acoustic signal acquired by these microphones in any of the first to eighteenth embodiments, and the voice of the person 2704 in front of the television receiver 2701 is emphasized. In addition, music signals generated from the left and right speakers 2705 on the side of the television receiver can be suppressed. For this reason, only the voice of the user 2703 is obtained as an output, and a comfortable call and a high voice recognition rate can be realized by using this output for a call and voice recognition. In particular, by controlling the television receiver 2701 with this voice recognition function, the user 2703 can change the channel and volume of the television receiver 2701 using voice.
 [第20実施形態]
 本発明の第20実施形態としての信号処理装置2800について、図28を用いて説明する。信号処理装置2800は、複数のセンサ2803、2804からの信号を用いて広帯域信号を強調または抑圧する装置である。
[20th embodiment]
A signal processing device 2800 as a twentieth embodiment of the present invention will be described with reference to FIG. The signal processing device 2800 is a device that emphasizes or suppresses a broadband signal using signals from a plurality of sensors 2803 and 2804.
 図28に示すように、信号処理装置2800は、端末2801、画像表示部(スクリーン)2802、センサ2803、2804、信号強調・抑圧部2805、音量調整部(アンプ)2806、および左右の外部スピーカー2807、2808を含む。音量調整部2806と外部スピーカー2807、2808は、信号処理装置に含まずに、外部装置として接続することもできる。このように画像表示部を有した信号処理装置としては、パーソナルコンピュータ(PC)、タブレット、携帯電話、テレビ受像機、ボイスレコーダー、オーディオプレーヤーなどがある。なお、図28に示す第20実施形態では、センサとスピーカーの数を2としてあるが、2以上の任意の自然数でもこの後の説明はそのまま適用できる。センサ数とスピーカー数は通常等しく設定するが、異なっていてもよい。センサ数よりスピーカー数が多いときはダウンミックス処理を、少ないときにはアップミックス処理を、信号強調・抑圧部における処理の後で適用する。 As shown in FIG. 28, the signal processing device 2800 includes a terminal 2801, an image display unit (screen) 2802, sensors 2803 and 2804, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, and left and right external speakers 2807. 2808. The volume adjustment unit 2806 and the external speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device. As such a signal processing apparatus having an image display unit, there are a personal computer (PC), a tablet, a mobile phone, a television receiver, a voice recorder, an audio player, and the like. In the twentieth embodiment shown in FIG. 28, the number of sensors and speakers is two, but the following description can be applied to any natural number of two or more. The number of sensors and the number of speakers are usually set equal, but may be different. When the number of speakers is larger than the number of sensors, the downmix process is applied, and when the number is smaller, the upmix process is applied after the process in the signal enhancement / suppression unit.
 センサ2803、2804は、端末2801または画像表示部2802の上部に水平に設置されている。水平とは、センサ2803、2804を結ぶ直線が画像表示部の長辺に対して完全に平行な場合だけでなく、小さな角度をなす場合も含む。センサ2803、2804をこのように水平に設置することによって、水平平面上の異なった方向に存在する複数の信号源に対して、センサ2803、2804の信号が相対的に遅延を有し、方向または相対遅延を用いた信号の強調・抑圧を行うことができる。なお、図28に示す第20実施形態では、センサは画像表示部の上側に設置されているが、画像表示部の下側に設置されていても、これまでの説明はそのまま適用できる。 Sensors 2803 and 2804 are installed horizontally above the terminal 2801 or the image display unit 2802. The term “horizontal” includes not only a case where the straight line connecting the sensors 2803 and 2804 is completely parallel to the long side of the image display unit, but also a case where a small angle is formed. By placing the sensors 2803 and 2804 horizontally in this way, the signals of the sensors 2803 and 2804 have a relative delay with respect to a plurality of signal sources existing in different directions on the horizontal plane. Signal enhancement and suppression using relative delay can be performed. In the twentieth embodiment shown in FIG. 28, the sensor is installed on the upper side of the image display unit, but the description so far can be applied as it is even if it is installed on the lower side of the image display unit.
 センサ2803、2804が捕捉した信号は信号強調・抑圧部2805に供給される。信号強調・抑圧部2805は、これまでに説明した第1~第18実施形態のいずれかである。信号強調・抑圧部2805は、空間的に異なった位置に存在する複数のセンサに入力する信号を用いて信号の相対遅延あるいは等価的に信号の到来方向を求める。そしてさらに信号強調・抑圧部2805は、その相対遅延あるいは到来方向に対応した利得(方向利得)を複数の入力信号に作用させ、あるいは対応した割合の入力信号を複数の入力信号から減算することで、信号を選択的に強調または抑圧する。ここで方向利得は、相対遅延あるいは信号の到来方向によって決定されるもので、遅延または方向と利得の関係は事前に設定しておいてもよいし、信号強調・抑圧処理の実施とともに計算によって設定してもよい。信号強調・抑圧部2805の出力信号は音量調整部2806に供給される。音量調整部2806は信号の音量を増幅または減衰によって適切に調整し、スピーカー2807、2808に供給する。スピーカー2807、2808は、音量調整部2806から受けた信号を再生し、音場を再現する。 The signals captured by the sensors 2803 and 2804 are supplied to the signal enhancement / suppression unit 2805. The signal enhancement / suppression unit 2805 is any one of the first to eighteenth embodiments described so far. The signal enhancement / suppression unit 2805 obtains the relative delay of the signal or equivalently the arrival direction of the signal using signals input to a plurality of sensors existing at spatially different positions. Further, the signal enhancement / suppression unit 2805 applies the gain (direction gain) corresponding to the relative delay or the arrival direction to the plurality of input signals, or subtracts the corresponding proportion of the input signals from the plurality of input signals. , Selectively enhance or suppress the signal. Here, the directional gain is determined by the relative delay or the arrival direction of the signal, and the relationship between the delay or direction and the gain may be set in advance, or set by calculation along with the execution of the signal enhancement / suppression processing. May be. The output signal of the signal enhancement / suppression unit 2805 is supplied to the volume adjustment unit 2806. The volume adjustment unit 2806 appropriately adjusts the volume of the signal by amplification or attenuation and supplies the signal to the speakers 2807 and 2808. The speakers 2807 and 2808 reproduce the signal received from the volume adjustment unit 2806 and reproduce the sound field.
 本実施形態は、長辺が地平とほぼ並行になるように保持された端末または画像表示部の上部または下部の空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向または等価的に信号の相対遅延を求める。そして、到来方向または相対遅延に対応した利得を複数の入力信号に乗算し、あるいは対応した入力信号の割合を複数の入力信号から減算することで、信号を選択的に強調または抑圧する装置である。ここで、信号を選択的に強調したい到来方向に対しては大きな利得または小さな割合を、抑圧したい到来方向に対しては小さな利得または大きな割合を設定する。 In this embodiment, the arrival of a signal using input signals to a plurality of sensors existing at spatially different positions above or below the terminal or the image display unit held so that the long side is substantially parallel to the horizon Determine the relative delay of the signal in the direction or equivalently. The apparatus selectively multiplies or suppresses a signal by multiplying a plurality of input signals by a gain corresponding to the direction of arrival or relative delay, or subtracting the ratio of the corresponding input signal from the plurality of input signals. . Here, a large gain or a small ratio is set for the direction of arrival in which the signal is selectively emphasized, and a small gain or a large ratio is set for the direction of arrival in which the signal is to be suppressed.
 このような構成により、信号処理装置2800は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With such a configuration, the signal processing device 2800 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 [第21実施形態]
 本発明の第21実施形態としての信号処理装置2900について、図29を用いて説明する。信号処理装置2900は、複数のセンサ2903、2904からの信号を用いて広帯域信号を強調または抑圧する装置である。なお、本実施形態ではセンサの数を2としてあるが、2以上の任意の自然数でもこの後の説明はそのまま適用できる。
[Twenty-first embodiment]
A signal processing apparatus 2900 according to the twenty-first embodiment of the present invention will be described with reference to FIG. The signal processing device 2900 is a device that emphasizes or suppresses a broadband signal using signals from a plurality of sensors 2903 and 2904. In the present embodiment, the number of sensors is 2. However, the following description can be applied to any natural number of 2 or more.
 図29に示すように、信号処理装置2900は、端末2801、画像表示部(スクリーン)2802、センサ2903、2904、信号強調・抑圧部2805、音量調整部(アンプ)2806、左スピーカー2807、右スピーカー2808を含む。音量調整部2806とスピーカー2807、2808は、信号処理装置に含まずに、外部装置として接続することもできる。 As shown in FIG. 29, the signal processing apparatus 2900 includes a terminal 2801, an image display unit (screen) 2802, sensors 2903 and 2904, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, a left speaker 2807, and a right speaker. 2808 included. The volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
 図29の構成は、図28と比較すると、端末2801、画像表示部(スクリーン)2802が90度回転されている以外、同一の構成となっている。センサ2903、センサ2904は、センサ2803、2804と同様に、画像表示部の上部に水平に設置されている。すなわち、本実施形態は、第20実施形態の長方形端末2801を、短辺が水平になるように保持して利用する場合に相当する。したがって、本実施形態の本質的な動作は第20実施形態と等しく、すでに説明したので、説明を省略する。 The configuration of FIG. 29 is the same as that of FIG. 28 except that the terminal 2801 and the image display unit (screen) 2802 are rotated by 90 degrees. Similar to the sensors 2803 and 2804, the sensors 2903 and 2904 are installed horizontally at the upper part of the image display unit. That is, this embodiment corresponds to a case where the rectangular terminal 2801 of the twentieth embodiment is used while being held so that the short side is horizontal. Therefore, the essential operation of this embodiment is the same as that of the twentieth embodiment, and since it has already been described, the description thereof is omitted.
 本実施形態は、短辺が地平とほぼ並行になるように保持された端末または画像表示部の上部の空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向または等価的に信号の相対遅延を求める。さらに、到来方向または相対遅延に対応した利得を複数の入力信号に乗算し、あるいは対応した入力信号の割合を複数の入力信号から減算することで、信号を選択的に強調または抑圧する装置であり、信号を選択的に強調したい到来方向に対しては大きな利得または小さな割合を、抑圧したい到来方向に対しては小さな利得または大きな割合を設定する。 In this embodiment, the arrival direction of a signal or the arrival direction of a signal using input signals to a plurality of sensors existing at spatially different positions above a terminal or an image display unit held so that the short side is substantially parallel to the horizon Equivalently find the relative delay of the signal. Furthermore, it is a device that selectively emphasizes or suppresses signals by multiplying multiple input signals by gains corresponding to the direction of arrival or relative delay, or by subtracting the proportion of corresponding input signals from multiple input signals. A large gain or a small ratio is set for the direction of arrival in which the signal is selectively emphasized, and a small gain or a large ratio is set for the direction of arrival in which the signal is to be suppressed.
 このような構成により、信号処理装置2900は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With such a configuration, the signal processing device 2900 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 [第22実施形態]
 本発明の第22実施形態としての信号処理装置3000について、図30を用いて説明する。信号処理装置3000は、複数のセンサ3003、3004からの信号を用いて広帯域信号を強調または抑圧する装置である。なお、図30に示す本実施形態ではセンサの数を2としてあるが、2以上の任意の自然数でもこの後の説明はそのまま適用できる。
[Twenty-second embodiment]
A signal processing device 3000 as a twenty-second embodiment of the present invention will be described with reference to FIG. The signal processing device 3000 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 3003 and 3004. In the present embodiment shown in FIG. 30, the number of sensors is 2. However, the following description can be applied to any natural number of 2 or more.
 図30に示すように、信号処理装置3000は、端末2801、画像表示部(スクリーン)2802、センサ3003、3004、信号強調・抑圧部2805、音量調整部(アンプ)2806、左スピーカー2807、右スピーカー2808を含む。音量調整部2806とスピーカー2807、2808は、信号処理装置に含まずに、外部装置として接続することもできる。 As shown in FIG. 30, the signal processing device 3000 includes a terminal 2801, an image display unit (screen) 2802, sensors 3003 and 3004, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, a left speaker 2807, and a right speaker. 2808 included. The volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
 図30の構成は、図28と比較すると、センサ3003、3004の位置以外、同一の構成となっている。センサ3003、センサ3004は、センサ2803、2804とは異なって、画像表示部の両横にほぼ水平に設置されている。すなわち、本実施形態は、第20実施形態のセンサ位置を、画像表示部の上部または下部から両横に変更した場合に相当する。したがって、本実施形態の本質的な動作は第20実施形態と等しく、すでに説明したので、説明を省略する。 30 is the same as that of FIG. 28 except for the positions of the sensors 3003 and 3004. Unlike the sensors 2803 and 2804, the sensors 3003 and 3004 are installed substantially horizontally on both sides of the image display unit. That is, this embodiment corresponds to a case where the sensor position of the twentieth embodiment is changed from the upper part or the lower part of the image display unit to both sides. Therefore, the essential operation of this embodiment is the same as that of the twentieth embodiment, and since it has already been described, the description thereof is omitted.
 本実施形態は、長辺が地平とほぼ並行になるように保持された端末または画像表示部の横の空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向または等価的に信号の相対遅延を求め、到来方向または相対遅延に対応した利得を複数の入力信号に乗算し、あるいは対応した入力信号の割合を複数の入力信号から減算することで、信号を選択的に強調または抑圧する装置であり、信号を選択的に強調したい到来方向に対しては大きな利得または小さな割合を、抑圧したい到来方向に対しては小さな利得または大きな割合を設定する。 In this embodiment, the arrival direction of a signal using input signals to a plurality of sensors existing at spatially different positions next to a terminal or an image display unit held so that the long side is substantially parallel to the horizon or Equivalently calculate the relative delay of the signal, multiply the multiple input signals by the gain corresponding to the direction of arrival or relative delay, or subtract the proportion of the corresponding input signal from the multiple input signals A high gain or a small ratio is set for an arrival direction in which a signal is selectively emphasized, and a small gain or a large ratio is set for an arrival direction to be suppressed.
 このような構成により、信号処理装置3000は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With such a configuration, the signal processing device 3000 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 なお、本実施形態は第20実施形態に比べてセンサの間隔の最小値が大きい。したがって、本実施形態の方が第20実施形態よりも、センサに入力される信号に対して優れた指向性を生成することができ、目的信号の強調または抑圧能力が高い。 Note that the minimum value of the sensor interval is larger in this embodiment than in the twentieth embodiment. Therefore, the present embodiment can generate better directivity for the signal input to the sensor than the twentieth embodiment, and has a higher ability to emphasize or suppress the target signal.
  [第23実施形態]
 本発明の第23実施形態としての信号処理装置3100について、図31を用いて説明する。信号処理装置3100は、複数のセンサ3103、3104からの信号を用いて広帯域信号を強調または抑圧する装置である。なお、図31に示す本実施形態ではセンサの数を2としてあるが、2以上の任意の自然数でもこの後の説明はそのまま適用できる。
[Twenty-third embodiment]
A signal processing device 3100 according to a twenty-third embodiment of the present invention will be described with reference to FIG. The signal processing device 3100 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 3103 and 3104. In the present embodiment shown in FIG. 31, the number of sensors is 2. However, the following description can be applied to any natural number of 2 or more.
 図31に示すように、信号処理装置3100は、端末2801、画像表示部(スクリーン)2802、センサ3103、3104、信号強調・抑圧部2805、音量調整部(アンプ)2806、左スピーカー2807、右スピーカー2808を含む。音量調整部2806とスピーカー2807、2808は、信号処理装置に含まずに、外部装置として接続することもできる。 As shown in FIG. 31, the signal processing device 3100 includes a terminal 2801, an image display unit (screen) 2802, sensors 3103 and 3104, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, a left speaker 2807, and a right speaker. 2808 included. The volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
 図31の構成は、図30と比較すると、端末2801、画像表示部(スクリーン)2802が90度回転されている以外、同一の構成となっている。センサ3103、センサ3104は、センサ3003、3004と同様に、画像表示部の横部に水平に設置されている。すなわち、本実施形態は、第22実施形態の長方形端末2801を、短辺が水平になるように保持して利用する場合に相当する。したがって、本実施形態の本質的な動作は第22実施形態と等しく、すでに説明したので、説明を省略する。 31 is the same as that shown in FIG. 30 except that the terminal 2801 and the image display unit (screen) 2802 are rotated by 90 degrees. Similar to the sensors 3003 and 3004, the sensors 3103 and 3104 are horizontally installed on the horizontal part of the image display unit. That is, this embodiment corresponds to the case where the rectangular terminal 2801 of the 22nd embodiment is used while being held so that the short side is horizontal. Therefore, the essential operation of this embodiment is the same as that of the twenty-second embodiment, and since it has already been described, the description thereof is omitted.
 本実施形態は、短辺が地平とほぼ並行になるように保持された端末または画像表示部の横の空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向または等価的に信号の相対遅延を求め、到来方向または相対遅延に対応した利得を複数の入力信号に乗算し、あるいは対応した入力信号の割合を複数の入力信号から減算することで、信号を選択的に強調または抑圧する装置であり、信号を選択的に強調したい到来方向に対しては大きな利得または小さな割合を、抑圧したい到来方向に対しては小さな利得または大きな割合を設定する。 In this embodiment, the arrival direction of a signal using input signals to a plurality of sensors existing at spatially different positions next to a terminal or an image display unit held so that the short side is substantially parallel to the horizon, or Equivalently calculate the relative delay of the signal, multiply the multiple input signals by the gain corresponding to the direction of arrival or relative delay, or subtract the proportion of the corresponding input signal from the multiple input signals A high gain or a small ratio is set for an arrival direction in which a signal is selectively emphasized, and a small gain or a large ratio is set for an arrival direction to be suppressed.
 このような構成により、信号処理装置3100は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With such a configuration, the signal processing device 3100 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 なお、本実施形態は第22実施形態に比べてセンサの間隔の最小値が小さいが、第20実施形態に比べると大きな最小値を有する。したがって、センサに入力される信号に対する指向性は、第20実施形態、本実施形態、第22実施形態の順で優れたものとなり、同じ順で目的信号の強調または抑圧能力が高い。 Note that the minimum value of the sensor interval is smaller than that of the twenty-second embodiment, but this embodiment has a larger minimum value than that of the twentieth embodiment. Therefore, the directivity with respect to the signal input to the sensor is excellent in the order of the twentieth embodiment, the present embodiment, and the twenty-second embodiment, and the enhancement or suppression capability of the target signal is high in the same order.
  [第24実施形態]
 本発明の第24実施形態としての信号処理装置3200について、図32を用いて説明する。信号処理装置3200は、複数のセンサ3203、3204からの信号を用いて広帯域信号を強調または抑圧する装置である。
[Twenty-fourth embodiment]
A signal processing device 3200 according to the twenty-fourth embodiment of the present invention will be described with reference to FIG. The signal processing device 3200 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 3203 and 3204.
 図32に示すように、信号処理装置3200は、端末2801、画像入力部(レンズおよびセンサなど)3210、センサ3203、3204、信号強調・抑圧部2805、音量調整部(アンプ)2806、左スピーカー2807、右スピーカー2808を含む。音量調整部2806とスピーカー2807、2808は、信号処理装置に含まずに、外部装置として接続することもできる。 As shown in FIG. 32, the signal processing apparatus 3200 includes a terminal 2801, an image input unit (lens and sensor, etc.) 3210, sensors 3203 and 3204, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, and a left speaker 2807. , Including a right speaker 2808. The volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
 このように画像入力部を有した信号処理装置としては、パーソナルコンピュータ(PC)、タブレット、携帯電話などがあり、端末の使用者以外の被写体を撮影する際に同時に環境音を収録する使い方に適している。なお、図32に示す本実施形態では、センサとスピーカーの数を2としてあるが、2以上の任意の自然数でもこの後の説明はそのまま適用できる。 Such signal processing devices having an image input unit include personal computers (PCs), tablets, mobile phones, and the like, which are suitable for use in recording environmental sounds at the same time when shooting subjects other than the terminal user. ing. In the present embodiment shown in FIG. 32, the number of sensors and speakers is 2. However, the following description can be applied to any natural number of 2 or more.
 図32の構成は、図28を用いて説明した第20実施形態と比較すると、画像表示部(スクリーン)2802が画像入力部(レンズおよびセンサなど)3210と置換されている以外、同一の構成となっている。したがって、本実施形態の本質的な動作は第20実施形態と等しく、すでに説明したので、説明を省略する。 The configuration in FIG. 32 is the same as that in the twentieth embodiment described with reference to FIG. 28 except that the image display unit (screen) 2802 is replaced with an image input unit (lens, sensor, etc.) 3210. It has become. Therefore, the essential operation of this embodiment is the same as that of the twentieth embodiment, and since it has already been described, the description thereof is omitted.
 なお、画像入力部は画像表示部より小さいために、センサ3203、3204の配置に関しては制約が少ない。すなわち、センサ3203、3204は画像入力部3210と同一水平線上に配置する必要はなく、図32の位置から上方または下方に任意に移動した位置に設置してもよい。さらに、センサ3203、3204の中点に画像入力部3210が配置される必要もなく、センサ3203、3204は図32の位置から左右方向に任意に移動した位置に設置してもよい。 Since the image input unit is smaller than the image display unit, there are few restrictions on the arrangement of the sensors 3203 and 3204. That is, the sensors 3203 and 3204 do not need to be arranged on the same horizontal line as the image input unit 3210, and may be installed at a position arbitrarily moved upward or downward from the position of FIG. Furthermore, the image input unit 3210 does not need to be arranged at the midpoint between the sensors 3203 and 3204, and the sensors 3203 and 3204 may be installed at positions arbitrarily moved in the left-right direction from the position of FIG.
 本実施形態は、長辺が地平とほぼ並行になるように保持された端末または画像表示部裏面に存在する画像入力部をはさむ空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向または等価的に信号の相対遅延を求め、到来方向または相対遅延に対応した利得を複数の入力信号に乗算し、あるいは対応した入力信号の割合を複数の入力信号から減算することで、信号を選択的に強調または抑圧する装置であり、信号を選択的に強調したい到来方向に対しては大きな利得または小さな割合を、抑圧したい到来方向に対しては小さな利得または大きな割合を設定する。 In this embodiment, input signals for a plurality of sensors existing at spatially different positions sandwiching a terminal or an image input unit existing on the back surface of the image display unit held so that the long side is substantially parallel to the horizon are used. To determine the signal arrival direction or equivalent signal relative delay, multiply the multiple input signals by the gain corresponding to the arrival direction or relative delay, or subtract the corresponding input signal ratio from the multiple input signals. Is a device that selectively emphasizes or suppresses signals, and sets a large gain or small ratio for the direction of arrival in which the signal is selectively emphasized, and a small gain or large ratio for the direction of arrival in which the signal is to be suppressed. To do.
 このような構成により、信号処理装置3200は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With such a configuration, the signal processing device 3200 can give directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 なお、本実施形態は第19、20、21、23実施形態に比べてセンサ配置の自由度が大きいという特徴を有する。したがって、内部に配置される部品による端末設計の制約が少なくなり、設計コストを低減したり、設計期間を短縮したりすることが可能となる。 In addition, this embodiment has the characteristic that the freedom degree of sensor arrangement | positioning is large compared with 19th, 20th, 21st, 23rd embodiment. Therefore, there are fewer restrictions on terminal design due to the components arranged inside, and it becomes possible to reduce the design cost and the design period.
 [第25実施形態]
 本発明の第25実施形態としての信号処理装置3300について、図33を用いて説明する。信号処理装置3300は、複数のセンサ3303、3304からの信号を用いて広帯域信号を強調または抑圧する装置である。なお、図33に示す本実施形態ではセンサの数を2としてあるが、2以上の任意の自然数でもこの後の説明はそのまま適用できる。
[25th Embodiment]
A signal processing device 3300 according to a twenty-fifth embodiment of the present invention will be described with reference to FIG. The signal processing device 3300 is a device that enhances or suppresses a broadband signal using signals from the plurality of sensors 3303 and 3304. In the present embodiment shown in FIG. 33, the number of sensors is 2. However, the following description can be applied to any natural number of 2 or more.
 図33に示すように、信号処理装置3300は、端末2801、画像入力部(レンズおよびセンサなど)3310、センサ3303、3304、信号強調・抑圧部2805、音量調整部(アンプ)2806、左スピーカー2807、右スピーカー2808を含む。音量調整部2806とスピーカー2807、2808は、信号処理装置に含まずに、外部装置として接続することもできる。 As shown in FIG. 33, the signal processing device 3300 includes a terminal 2801, an image input unit (lens and sensor, etc.) 3310, sensors 3303 and 3304, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, and a left speaker 2807. , Including a right speaker 2808. The volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
 図33の構成は、図32と比較すると、端末2801が90度回転されて画像入力部(レンズおよびセンサなど)3310の位置が変更されている以外、同一の構成となっている。センサ3303、センサ3304は、センサ3203、3204と同様に、画像入力部(レンズおよびセンサなど)3310をはさんでほぼ水平に設置されている。すなわち、本実施形態は、第24実施形態の長方形端末2801を、短辺が水平になるように保持して利用する場合に相当する。したがって、本実施形態の本質的な動作は第24実施形態と等しく、すでに説明したので、説明を省略する。 33 is the same as FIG. 32 except that the terminal 2801 is rotated 90 degrees and the position of the image input unit (lens, sensor, etc.) 3310 is changed. Similar to the sensors 3203 and 3204, the sensors 3303 and 3304 are installed almost horizontally across the image input unit (lens, sensor, etc.) 3310. That is, this embodiment corresponds to the case where the rectangular terminal 2801 of the 24th embodiment is used while being held so that the short side is horizontal. Therefore, the essential operation of this embodiment is the same as that of the twenty-fourth embodiment, and since it has already been described, the description thereof is omitted.
 なお、第24実施形態と同様に、センサ3303、3304の配置に関しては制約が少ない。すなわち、センサ3303、3304は画像入力部3310と同一水平線上に配置する必要はなく、図33の位置から上方または下方に任意に移動した位置に設置してもよい。さらに、センサ3303、3304の中点に画像入力部3310が配置される必要もなく、センサ3303、3304は図33の位置から左右方向に任意に移動した位置に設置してもよい。 As in the twenty-fourth embodiment, there are few restrictions on the arrangement of the sensors 3303 and 3304. That is, the sensors 3303 and 3304 do not need to be arranged on the same horizontal line as the image input unit 3310, and may be installed at a position arbitrarily moved upward or downward from the position of FIG. Furthermore, the image input unit 3310 does not need to be arranged at the midpoint between the sensors 3303 and 3304, and the sensors 3303 and 3304 may be installed at positions arbitrarily moved in the left-right direction from the position of FIG.
 本実施形態は、短辺が地平とほぼ並行になるように保持された端末または画像表示部裏面に存在する画像入力部をはさむ空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向または等価的に信号の相対遅延を求め、到来方向または相対遅延に対応した利得を複数の入力信号に乗算し、あるいは対応した入力信号の割合を複数の入力信号から減算することで、信号を選択的に強調または抑圧する装置であり、信号を選択的に強調したい到来方向に対しては大きな利得または小さな割合を、抑圧したい到来方向に対しては小さな利得または大きな割合を設定する。 In this embodiment, input signals for a plurality of sensors existing at spatially different positions sandwiching a terminal or an image input unit existing on the back surface of the image display unit held so that the short side is substantially parallel to the horizon are used. To determine the signal arrival direction or equivalent signal relative delay, multiply the multiple input signals by the gain corresponding to the arrival direction or relative delay, or subtract the corresponding input signal ratio from the multiple input signals. Is a device that selectively emphasizes or suppresses signals, and sets a large gain or small ratio for the direction of arrival in which the signal is selectively emphasized, and a small gain or large ratio for the direction of arrival in which the signal is to be suppressed. To do.
 このような構成により、信号処理装置3300は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With such a configuration, the signal processing device 3300 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of wideband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 なお、本実施形態は第24実施形態と同様に、第19、20、21,23実施形態に比べてセンサ配置の自由度が大きいという特徴を有する。したがって、内部に配置される部品による端末設計の制約が少なくなり、設計コストを低減したり、設計期間を短縮したりすることが可能となる。 In addition, this embodiment has a feature that the degree of freedom of sensor arrangement is large as compared with the nineteenth, twentieth, twenty-first and twenty-third embodiments as in the twenty-fourth embodiment. Therefore, there are fewer restrictions on terminal design due to the components arranged inside, and it becomes possible to reduce the design cost and the design period.
 [第26実施形態]
 本発明の第26実施形態としての信号処理装置3400について、図34を用いて説明する。信号処理装置3400は、複数のセンサ3403、3404からの信号を用いて広帯域信号を強調または抑圧する装置である。
[Twenty-sixth embodiment]
A signal processing device 3400 according to a twenty-sixth embodiment of the present invention will be described with reference to FIG. The signal processing device 3400 is a device that emphasizes or suppresses a broadband signal using signals from the plurality of sensors 3403 and 3404.
 図34に示すように、信号処理装置3400は、端末2801、画像入力部(レンズおよびセンサなど)3410、センサ3403、3404、信号強調・抑圧部2805、音量調整部(アンプ)2806、左スピーカー2807、右スピーカー2808を含む。音量調整部2806とスピーカー2807、2808は、信号処理装置に含まずに、外部装置として接続することもできる。 As shown in FIG. 34, the signal processing device 3400 includes a terminal 2801, an image input unit (lens and sensor, etc.) 3410, sensors 3403 and 3404, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, and a left speaker 2807. , Including a right speaker 2808. The volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
 図34の構成は、図32を用いて説明した第24実施形態と比較すると、センサ3403、3404が、画像入力部(レンズおよびセンサなど)をはさむ位置ではなく画像入力部の片側に変更されている以外、同一の構成となっている。センサ3403、3404の配置は、図32の例から画像入力部に対して右の方向に移動した一例に相当する。したがって、本実施形態の本質的な動作は第24実施形態と等しく、すでに説明したので、説明を省略する。 34 is different from the twenty-fourth embodiment described with reference to FIG. 32 in that the sensors 3403 and 3404 are changed to one side of the image input unit instead of the position where the image input unit (lens, sensor, etc.) is sandwiched. Except for this, it has the same configuration. The arrangement of the sensors 3403 and 3404 corresponds to an example of moving in the right direction with respect to the image input unit from the example of FIG. Therefore, the essential operation of this embodiment is the same as that of the twenty-fourth embodiment, and since it has already been described, the description thereof is omitted.
 本実施形態は、長辺が地平とほぼ並行になるように保持された端末または画像表示部裏面に存在する画像入力部の片側の空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向または等価的に信号の相対遅延を求め、到来方向または相対遅延に対応した利得を複数の入力信号に乗算し、あるいは対応した入力信号の割合を複数の入力信号から減算することで、信号を選択的に強調または抑圧する装置であり、信号を選択的に強調したい到来方向に対しては大きな利得または小さな割合を、抑圧したい到来方向に対しては小さな利得または大きな割合を設定する。 In the present embodiment, input signals to a plurality of sensors existing at spatially different positions on one side of an image input unit existing on the back of the terminal or the image display unit, which is held so that the long side is substantially parallel to the horizon, are provided. To determine the signal arrival direction or equivalent signal relative delay, multiply the multiple input signals by the gain corresponding to the arrival direction or relative delay, or subtract the corresponding input signal ratio from the multiple input signals Therefore, it is a device that selectively emphasizes or suppresses a signal, and has a large gain or small ratio for the direction of arrival in which the signal is selectively emphasized, and a small gain or large ratio in the direction of arrival that is desired to be suppressed. Set.
 このような構成により、信号処理装置3400は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With this configuration, the signal processing device 3400 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 本実施形態は第24実施形態と異なり、センサが画像入力部の両側ではなく片側に配置されているという特徴を有する。したがって、第24実施形態と比較して、内部に配置される部品による端末設計の制約が少なくなり、設計コストを低減したり、設計期間を短縮したりすることが可能となる。 This embodiment differs from the twenty-fourth embodiment in that the sensor is arranged on one side rather than on both sides of the image input unit. Therefore, as compared with the twenty-fourth embodiment, there are fewer terminal design restrictions due to the components arranged inside, and it is possible to reduce the design cost and shorten the design period.
 [第27実施形態]
 本発明の第27実施形態としての信号処理装置3500について、図35を用いて説明する。信号処理装置3500は、複数のセンサ3503、3504からの信号を用いて広帯域信号を強調または抑圧する装置である。
[Twenty-seventh embodiment]
A signal processing device 3500 according to a twenty-seventh embodiment of the present invention will be described with reference to FIG. The signal processing device 3500 is a device that emphasizes or suppresses a broadband signal using signals from a plurality of sensors 3503 and 3504.
 図35に示すように、信号処理装置3500は、端末2801、画像入力部(レンズおよびセンサなど)3510、センサ3503、3504、信号強調・抑圧部2805、音量調整部(アンプ)2806、左スピーカー2807、右スピーカー2808を含む。音量調整部2806とスピーカー2807、2808は、信号処理装置に含まずに、外部装置として接続することもできる。 As shown in FIG. 35, the signal processing device 3500 includes a terminal 2801, an image input unit (lens and sensor, etc.) 3510, sensors 3503 and 3504, a signal enhancement / suppression unit 2805, a volume adjustment unit (amplifier) 2806, and a left speaker 2807. , Including a right speaker 2808. The volume adjustment unit 2806 and the speakers 2807 and 2808 can be connected as external devices without being included in the signal processing device.
 図35の構成は、図33を用いて説明した第24実施形態と比較すると、センサ3503、3504が、画像入力部(レンズおよびセンサなど)をはさむ位置ではなく画像入力部の片側に変更されている以外、同一の構成となっている。センサ3503、3504の配置は、図33の例から画像入力部に対して右の方向に移動した一例に相当する。したがって、本実施形態の本質的な動作は第25実施形態と等しく、すでに説明したので、説明を省略する。 The configuration of FIG. 35 is different from the twenty-fourth embodiment described with reference to FIG. 33 in that the sensors 3503 and 3504 are changed to one side of the image input unit, not the position where the image input unit (lens, sensor, etc.) is sandwiched. Except for this, it has the same configuration. The arrangement of the sensors 3503 and 3504 corresponds to an example of moving from the example of FIG. 33 in the right direction with respect to the image input unit. Therefore, the essential operation of this embodiment is the same as that of the 25th embodiment, and since it has already been described, the description thereof is omitted.
 本実施形態は、短辺が地平とほぼ並行になるように保持された端末または画像表示部裏面に存在する画像入力部の片側の空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向または等価的に信号の相対遅延を求め、到来方向または相対遅延に対応した利得を複数の入力信号に乗算し、あるいは対応した入力信号の割合を複数の入力信号から減算することで、信号を選択的に強調または抑圧する装置であり、信号を選択的に強調したい到来方向に対しては大きな利得または小さな割合を、抑圧したい到来方向に対しては小さな利得または大きな割合を設定する。 In the present embodiment, input signals for a plurality of sensors existing at spatially different positions on one side of a terminal or an image input unit existing on the back surface of the image display unit held so that the short side is substantially parallel to the horizon. To determine the signal arrival direction or equivalent signal relative delay, multiply the multiple input signals by the gain corresponding to the arrival direction or relative delay, or subtract the corresponding input signal ratio from the multiple input signals Therefore, it is a device that selectively emphasizes or suppresses a signal, and has a large gain or small ratio for the direction of arrival in which the signal is selectively emphasized, and a small gain or large ratio in the direction of arrival that is desired to be suppressed. Set.
 このような構成により、信号処理装置3500は、センサと同じ数の広帯域信号に対して周波数に依存しない指向性(信号到来方向に基づく利得)を付与することができる。したがって、入力と同様の音像表現能力を維持しながら、センサアレイのサイズを大きくすることなく、広帯域信号を効果的に強調または抑圧することができる。 With this configuration, the signal processing device 3500 can impart directivity (gain based on the signal arrival direction) independent of frequency to the same number of broadband signals as the sensor. Therefore, it is possible to effectively enhance or suppress the broadband signal without increasing the size of the sensor array while maintaining the sound image expression capability similar to that of the input.
 本実施形態は第25実施形態と異なり、センサが画像入力部の両側ではなく片側に配置されているという特徴を有する。したがって、第25実施形態と比較して、内部に配置される部品による端末設計の制約が少なくなり、設計コストを低減したり、設計期間を短縮したりすることが可能となる。 This embodiment is different from the twenty-fifth embodiment in that the sensor is arranged on one side instead of on both sides of the image input unit. Therefore, as compared with the twenty-fifth embodiment, there are fewer terminal design restrictions due to the components arranged inside, and it is possible to reduce the design cost and the design period.
 [他の実施形態]
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
[Other Embodiments]
While the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. In addition, a system or an apparatus in which different features included in each embodiment are combined in any way is also included in the scope of the present invention.
 また、本発明は、複数の機器から構成されるシステムに適用されてもよいし、単体の装置に適用されてもよい。さらに、本発明は、実施形態の機能を実現する情報処理プログラムが、システムあるいは装置に直接あるいは遠隔から供給される場合にも適用可能である。したがって、本発明の機能をコンピュータで実現するために、コンピュータにインストールされるプログラム、あるいはそのプログラムを格納した媒体、そのプログラムをダウンロードさせるWWW(World Wide Web)サーバも、本発明の範疇に含まれる。特に、少なくとも、上述した実施形態に含まれる処理ステップをコンピュータに実行させるプログラムを格納した非一時的コンピュータ可読媒体(non-transitory computer readable medium)は本発明の範疇に含まれる。 Further, the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where an information processing program that implements the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention with a computer, a program installed in the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.
 [実施形態の他の表現]
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 それぞれが目的信号と雑音とを含む、複数のセンサから受けた複数の信号を用いて、前記目的信号の到来方向を推定する方向推定部と、
 前記到来方向を用いて方向利得を計算する第1利得計算部と、
 前記複数の信号のそれぞれと前記方向利得とを乗算する第1乗算器と、
 を備えた信号処理装置。
(付記2)
 それぞれが目的信号と雑音とを含む、複数のセンサから受けた複数の信号の位相差を求める第1位相差計算部と、
 前記位相差を用いて方向利得を計算する第2利得計算部と、
 前記複数の信号のそれぞれと前記方向利得とを乗算する第1乗算器と、
 を備えた信号処理装置。
(付記3)
 それぞれが目的信号と雑音とを含む、複数のセンサから受けた複数の信号の位相差と、前記目的信号の到来方向の、正面からのずれ方向とを求める第2位相差計算部と、
 前記位相差と前記ずれ方向とを用いて方向利得を計算する第3利得計算部と、
 前記複数の信号のそれぞれと前記方向利得とを乗算する第1乗算器と、
 を備えた信号処理装置。
(付記4)
 空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向を推定する方向推定部と、
 前記到来方向に対応した方向利得を入力信号に乗算して信号を選択的に強調または抑圧する、あるいは対応した入力信号の割合を入力信号から減算して信号を選択的に強調または抑圧する信号抑圧部と、
 を備えた信号処理装置であって、
 前記信号抑圧部は、選択的に強調したい到来方向に対しては大きな方向利得を前記入力信号に乗算し、抑圧したい到来方向に対しては小さな方向利得を前記入力信号に乗算し、あるいは、選択的に強調したい到来方向に対しては小さな割合を前記入力信号から減算し、抑圧したい到来方向に対しては大きな割合を前記入力信号から減算する信号処理装置。
(付記5)
 前記第2利得計算部が、前記位相差を用いて、周波数に依存する前記方向利得を計算する付記2に記載の信号処理装置。
(付記6)
 前記第2利得計算部が、前記位相差を用いて、周波数に比例する前記方向利得を計算する付記2に記載の信号処理装置。
(付記7)
 前記複数の信号を統合して統合信号を求める統合部と、
 前記統合信号に含まれる雑音に対して雑音推定値を求める第1雑音推定部と、
 前記雑音推定値と前記統合信号とを用いて、前記統合信号に含まれる雑音を抑圧するための信号利得を計算する第4利得計算部と、
 前記方向利得と前記信号利得とを乗算して合成利得を求める第2乗算器と、
 をさらに備え、
 前記第1乗算器が前記複数のセンサから受けた各信号と前記合成利得とを乗算する付記1から6のいずれか1項に記載の信号処理装置。
(付記8)
 前記複数の信号のそれぞれに含まれる雑音に対して前記センサと同数の雑音推定値を求める多重雑音推定部と、
 前記センサと同数の雑音推定値と前記複数の信号とを用いて、前記複数の信号に含まれる雑音を抑圧するための前記センサと同数の多重利得を計算する多重利得計算部と、
 前記方向利得と前記多重利得のそれぞれとを乗算してセンサと同数の合成利得を求める第3乗算器と、
 をさらに備え、
 前記第1乗算器は、前記複数の信号および前記合成利得のうち対応するもの同士を乗算する付記1から7のいずれか1項に記載の信号処理装置。
(付記9)
 前記複数の信号を統合して統合信号を求める統合部と、
 前記統合信号に含まれる雑音に対して雑音推定値を求める第1雑音推定部と、
 前記雑音推定値と前記統合信号とを用いて、前記統合信号に含まれる雑音を抑圧するための信号利得を計算する第5利得計算部と、
 前記複数の信号と前記信号利得とを乗算して雑音抑圧信号を求める第4乗算器と、
 をさらに備え、
 前記第1乗算器が前記方向利得と前記雑音抑圧信号とを乗算する付記1から6のいずれか1項に記載の信号処理装置。
(付記10)
 前記複数の信号を統合して統合信号を求める統合部と、
 前記統合信号に含まれる雑音に対して雑音推定値を求める第1雑音推定部と、
 前記雑音推定値と前記統合信号とを用いて前記統合信号に含まれる雑音を抑圧するための信号利得を計算する第6利得計算部と、
 前記第1乗算器の出力と前記信号利得とを乗算する第5乗算器と、
 をさらに備えた付記1から6のいずれか1項に記載の信号処理装置。
(付記11)
 前記第1乗算器の出力を統合して統合信号を求める統合部と、
 前記統合信号に含まれる雑音に対して雑音推定値を求める第1雑音推定部と、
 前記雑音推定値と前記統合信号とを用いて前記統合信号に含まれる雑音を抑圧するための信号利得を計算する第7利得計算部と、
 前記第1乗算器の出力と前記信号利得とを乗算する第6乗算器と、
 をさらに備えた付記1から6のいずれか1項に記載の信号処理装置。
(付記12)
 前記複数のセンサから受けた信号を統合して統合信号を求める統合部と、
 前記複数のセンサから受けた信号に含まれる雑音に対して雑音推定値を求める第2雑音推定部と、
 前記雑音推定値と前記統合信号とを用いて前記統合信号に含まれる雑音を抑圧するための信号利得を計算する第8利得計算部と、
 前記方向利得と前記信号利得とを乗算して合成利得を求める第7乗算器と、
 をさらに備え、
 前記第1乗算器が前記複数の信号のそれぞれと前記合成利得とを乗算する付記1から6のいずれか1項に記載の信号処理装置。
(付記13)
 前記複数のセンサから出力された信号の位相を調整した複数の位相調整信号を求める位相調整部をさらに備え、
 前記複数の信号は、前記位相調整信号である付記1から12のいずれか1項に記載の信号処理装置。
(付記14)
 前記複数のセンサから出力された信号に対してそれぞれ独立に変換を適用して複数の周波数成分を含む複数の変換信号を求める複数の変換部をさらに備え、
 前記複数の信号は、前記複数の変換信号である付記1から13のいずれか1項に記載の信号処理装置。
(付記15)
 目的信号と雑音を含む、複数のセンサから受けた信号に対して信号到来方向を求めるステップと、
 前記信号到来方向を用いて方向利得を計算するステップと、
 前記方向利得と前記複数のセンサから受けた各信号を乗算するステップと、
 を含む信号処理方法。
(付記16)
 目的信号と雑音を含む、複数のセンサから受けた信号に対して信号の位相差を求めるステップと、
 前記位相差を用いて方向利得を計算するステップと、
 前記方向利得と前記複数のセンサから受けた各信号を乗算するステップと、
 を含む信号処理方法。
(付記17)
 空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向を求めるステップと、
 前記到来方向に対応した利得を入力信号に乗算して信号を選択的に強調または抑圧する、あるいは対応した入力信号の割合を入力信号から減算して信号を選択的に強調または抑圧するステップとを含み、
 信号を選択的に強調したい到来方向に対しては大きな利得または小さな割合を設定し、抑圧したい到来方向に対しては小さな利得または大きな割合を設定する信号処理方法。
(付記18)
 目的信号と雑音を含む、複数のセンサから受けた信号に対して信号到来方向を求めるステップと、
 前記信号到来方向を用いて方向利得を計算するステップと、
 前記方向利得と前記複数のセンサから受けた各信号とを乗算するステップと、
 をコンピュータに実行させる信号処理プログラム。
(付記19)
 目的信号と雑音を含む、複数のセンサから受けた信号に対して信号の位相差を求めるステップと、
 前記位相差を用いて方向利得を計算するステップと、
 前記方向利得と前記複数のセンサから受けた各信号を乗算するステップと、
 をコンピュータに実行させる信号処理プログラム。
(付記20)
 それぞれが目的信号と雑音とを含む、複数の信号を捕捉するための複数のセンサを有し、
 前記複数のセンサから受けた複数の信号を、付記1から19のいずれかに記載の信号処理装置で強調または抑圧する端末装置。
[Other expressions of embodiment]
A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
A direction estimation unit that estimates the arrival direction of the target signal using a plurality of signals received from a plurality of sensors, each including a target signal and noise;
A first gain calculator for calculating a direction gain using the direction of arrival;
A first multiplier for multiplying each of the plurality of signals by the directional gain;
A signal processing apparatus comprising:
(Appendix 2)
A first phase difference calculation unit for obtaining a phase difference between a plurality of signals received from a plurality of sensors, each including a target signal and noise;
A second gain calculator for calculating a directional gain using the phase difference;
A first multiplier for multiplying each of the plurality of signals by the directional gain;
A signal processing apparatus comprising:
(Appendix 3)
A second phase difference calculation unit for determining a phase difference between a plurality of signals received from a plurality of sensors, each including a target signal and noise, and a direction of deviation of the arrival direction of the target signal from the front;
A third gain calculator for calculating a direction gain using the phase difference and the shift direction;
A first multiplier for multiplying each of the plurality of signals by the directional gain;
A signal processing apparatus comprising:
(Appendix 4)
A direction estimation unit that estimates an arrival direction of a signal using input signals to a plurality of sensors existing at spatially different positions;
Signal suppression that selectively enhances or suppresses signals by multiplying the input signal by the direction gain corresponding to the direction of arrival, or selectively emphasizes or suppresses signals by subtracting the proportion of the corresponding input signal from the input signal And
A signal processing apparatus comprising:
The signal suppression unit multiplies the input signal by a large direction gain for the direction of arrival to be selectively emphasized, and multiplies the input signal by a small direction gain for the direction of arrival to be suppressed or selects A signal processing apparatus that subtracts a small percentage from the input signal for the direction of arrival to be emphasized and subtracts a large percentage from the input signal for the direction of arrival to be suppressed.
(Appendix 5)
The signal processing apparatus according to supplementary note 2, wherein the second gain calculation unit calculates the directional gain depending on a frequency using the phase difference.
(Appendix 6)
The signal processing device according to attachment 2, wherein the second gain calculation unit calculates the directional gain proportional to the frequency using the phase difference.
(Appendix 7)
An integration unit for integrating the plurality of signals to obtain an integrated signal;
A first noise estimation unit for obtaining a noise estimation value for noise included in the integrated signal;
A fourth gain calculation unit for calculating a signal gain for suppressing noise included in the integrated signal, using the noise estimation value and the integrated signal;
A second multiplier for multiplying the directional gain and the signal gain to obtain a combined gain;
Further comprising
The signal processing apparatus according to any one of appendices 1 to 6, wherein the first multiplier multiplies each signal received from the plurality of sensors by the combined gain.
(Appendix 8)
A multiple noise estimator that obtains the same number of noise estimates as the sensor for noise included in each of the plurality of signals;
A multiple gain calculation unit that calculates the same number of multiple gains as the sensor for suppressing noise included in the plurality of signals, using the same number of noise estimation values and the plurality of signals as the sensor;
A third multiplier for multiplying each of the directional gain and each of the multiple gains to obtain the same number of combined gains as the sensor;
Further comprising
The signal processing device according to any one of appendices 1 to 7, wherein the first multiplier multiplies corresponding signals among the plurality of signals and the combined gain.
(Appendix 9)
An integration unit for integrating the plurality of signals to obtain an integrated signal;
A first noise estimation unit for obtaining a noise estimation value for noise included in the integrated signal;
A fifth gain calculator for calculating a signal gain for suppressing noise included in the integrated signal, using the noise estimation value and the integrated signal;
A fourth multiplier for obtaining a noise suppression signal by multiplying the plurality of signals and the signal gain;
Further comprising
The signal processing apparatus according to any one of appendices 1 to 6, wherein the first multiplier multiplies the directional gain and the noise suppression signal.
(Appendix 10)
An integration unit for integrating the plurality of signals to obtain an integrated signal;
A first noise estimation unit for obtaining a noise estimation value for noise included in the integrated signal;
A sixth gain calculator for calculating a signal gain for suppressing noise included in the integrated signal using the noise estimation value and the integrated signal;
A fifth multiplier for multiplying the output of the first multiplier and the signal gain;
7. The signal processing device according to any one of appendices 1 to 6, further comprising:
(Appendix 11)
An integration unit for integrating the outputs of the first multiplier to obtain an integrated signal;
A first noise estimation unit for obtaining a noise estimation value for noise included in the integrated signal;
A seventh gain calculator for calculating a signal gain for suppressing noise included in the integrated signal using the noise estimation value and the integrated signal;
A sixth multiplier for multiplying the output of the first multiplier and the signal gain;
7. The signal processing device according to any one of appendices 1 to 6, further comprising:
(Appendix 12)
An integration unit that integrates signals received from the plurality of sensors to obtain an integrated signal;
A second noise estimation unit that obtains a noise estimation value for noise included in signals received from the plurality of sensors;
An eighth gain calculation unit for calculating a signal gain for suppressing noise included in the integrated signal using the noise estimation value and the integrated signal;
A seventh multiplier for multiplying the directional gain and the signal gain to obtain a combined gain;
Further comprising
The signal processing device according to any one of appendices 1 to 6, wherein the first multiplier multiplies each of the plurality of signals by the combined gain.
(Appendix 13)
A phase adjustment unit for obtaining a plurality of phase adjustment signals obtained by adjusting the phases of the signals output from the plurality of sensors;
The signal processing device according to any one of appendices 1 to 12, wherein the plurality of signals are the phase adjustment signals.
(Appendix 14)
A plurality of conversion units for obtaining a plurality of conversion signals including a plurality of frequency components by applying conversion independently to the signals output from the plurality of sensors;
The signal processing apparatus according to any one of appendices 1 to 13, wherein the plurality of signals are the plurality of converted signals.
(Appendix 15)
Obtaining a signal arrival direction for signals received from a plurality of sensors, including a target signal and noise;
Calculating a direction gain using the signal arrival direction;
Multiplying the directional gain by each signal received from the plurality of sensors;
A signal processing method including:
(Appendix 16)
Determining a signal phase difference for signals received from a plurality of sensors, including a target signal and noise;
Calculating a directional gain using the phase difference;
Multiplying the directional gain by each signal received from the plurality of sensors;
A signal processing method including:
(Appendix 17)
Determining the direction of arrival of signals using input signals to a plurality of sensors located at different spatial positions;
Multiplying an input signal by a gain corresponding to the direction of arrival and selectively emphasizing or suppressing the signal, or subtracting a proportion of the corresponding input signal from the input signal and selectively emphasizing or suppressing the signal; Including
A signal processing method in which a large gain or a small ratio is set for an arrival direction in which a signal is selectively emphasized, and a small gain or a large ratio is set for an arrival direction in which a signal is desired to be suppressed.
(Appendix 18)
Obtaining a signal arrival direction for signals received from a plurality of sensors, including a target signal and noise;
Calculating a direction gain using the signal arrival direction;
Multiplying the directional gain by each signal received from the plurality of sensors;
A signal processing program for causing a computer to execute.
(Appendix 19)
Determining a signal phase difference for signals received from a plurality of sensors, including a target signal and noise;
Calculating a directional gain using the phase difference;
Multiplying the directional gain by each signal received from the plurality of sensors;
A signal processing program for causing a computer to execute.
(Appendix 20)
Having a plurality of sensors for capturing a plurality of signals, each including a target signal and noise;
A terminal device that emphasizes or suppresses a plurality of signals received from the plurality of sensors by the signal processing device according to any one of appendices 1 to 19.
 この出願は、2015年2月23日に出願された日本出願特願2015-33430を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-33430 filed on February 23, 2015, the entire disclosure of which is incorporated herein.

Claims (9)

  1.  それぞれが目的信号と雑音とを含む、複数のセンサから受けた複数の信号を用いて、前記目的信号の到来方向を推定する方向推定部と、
     前記到来方向を用いて方向利得を計算する第1利得計算部と、
     前記複数の信号のそれぞれと前記方向利得とを乗算する第1乗算器と、
     を備えた信号処理装置。
    A direction estimation unit that estimates the arrival direction of the target signal using a plurality of signals received from a plurality of sensors, each including a target signal and noise;
    A first gain calculator for calculating a direction gain using the direction of arrival;
    A first multiplier for multiplying each of the plurality of signals by the directional gain;
    A signal processing apparatus comprising:
  2.  それぞれが目的信号と雑音とを含む、複数のセンサから受けた複数の信号の位相差を求める第1位相差計算部と、
     前記位相差を用いて方向利得を計算する第2利得計算部と、
     前記複数の信号のそれぞれと前記方向利得とを乗算する第1乗算器と、
     を備えた信号処理装置。
    A first phase difference calculation unit for obtaining a phase difference between a plurality of signals received from a plurality of sensors, each including a target signal and noise;
    A second gain calculator for calculating a directional gain using the phase difference;
    A first multiplier for multiplying each of the plurality of signals by the directional gain;
    A signal processing apparatus comprising:
  3.  それぞれが目的信号と雑音とを含む、複数のセンサから受けた複数の信号の位相差と、前記目的信号の到来方向の、正面からのずれ方向とを求める第2位相差計算部と、
     前記位相差と前記ずれ方向とを用いて方向利得を計算する第3利得計算部と、
     前記複数の信号のそれぞれと前記方向利得とを乗算する第1乗算器と、
     を備えた信号処理装置。
    A second phase difference calculation unit for determining a phase difference between a plurality of signals received from a plurality of sensors, each including a target signal and noise, and a direction of deviation of the arrival direction of the target signal from the front;
    A third gain calculator for calculating a direction gain using the phase difference and the shift direction;
    A first multiplier for multiplying each of the plurality of signals by the directional gain;
    A signal processing apparatus comprising:
  4.  空間的に異なった位置に存在する複数のセンサに対する入力信号を用いて信号の到来方向を推定する方向推定部と、
     前記到来方向に対応した方向利得を入力信号に乗算して信号を選択的に強調または抑圧する、あるいは対応した入力信号の割合を入力信号から減算して信号を選択的に強調または抑圧する信号抑圧部と、
     を備えた信号処理装置であって、
     前記信号抑圧部は、選択的に強調したい到来方向に対しては大きな方向利得を前記入力信号に乗算し、抑圧したい到来方向に対しては小さな方向利得を前記入力信号に乗算し、あるいは、選択的に強調したい到来方向に対しては小さな割合を前記入力信号から減算し、抑圧したい到来方向に対しては大きな割合を前記入力信号から減算する信号処理装置。
    A direction estimation unit that estimates an arrival direction of a signal using input signals to a plurality of sensors existing at spatially different positions;
    Signal suppression that selectively enhances or suppresses signals by multiplying the input signal by the direction gain corresponding to the direction of arrival, or selectively emphasizes or suppresses signals by subtracting the proportion of the corresponding input signal from the input signal And
    A signal processing apparatus comprising:
    The signal suppression unit multiplies the input signal by a large direction gain for the direction of arrival to be selectively emphasized, and multiplies the input signal by a small direction gain for the direction of arrival to be suppressed or selects A signal processing apparatus that subtracts a small percentage from the input signal for the direction of arrival to be emphasized and subtracts a large percentage from the input signal for the direction of arrival to be suppressed.
  5.  前記第2利得計算部が、前記位相差を用いて、周波数に依存する前記方向利得を計算する請求項2に記載の信号処理装置。 The signal processing apparatus according to claim 2, wherein the second gain calculation unit calculates the directional gain depending on a frequency using the phase difference.
  6.  前記第2利得計算部が、前記位相差を用いて、周波数に比例する前記方向利得を計算する請求項2に記載の信号処理装置。 The signal processing apparatus according to claim 2, wherein the second gain calculation unit calculates the directional gain proportional to the frequency using the phase difference.
  7.  目的信号と雑音を含む、複数のセンサから受けた信号に対して信号到来方向を求めるステップと、
     前記信号到来方向を用いて方向利得を計算するステップと、
     前記方向利得と前記複数のセンサから受けた各信号を乗算するステップと、
     を含む信号処理方法。
    Obtaining a signal arrival direction for signals received from a plurality of sensors, including a target signal and noise;
    Calculating a direction gain using the signal arrival direction;
    Multiplying the directional gain by each signal received from the plurality of sensors;
    A signal processing method including:
  8.  目的信号と雑音を含む、複数のセンサから受けた信号に対して信号到来方向を求めるステップと、
     前記信号到来方向を用いて方向利得を計算するステップと、
     前記方向利得と前記複数のセンサから受けた各信号とを乗算するステップと、
     をコンピュータに実行させる信号処理プログラム。
    Obtaining a signal arrival direction for signals received from a plurality of sensors, including a target signal and noise;
    Calculating a direction gain using the signal arrival direction;
    Multiplying the directional gain by each signal received from the plurality of sensors;
    A signal processing program for causing a computer to execute.
  9.  それぞれが目的信号と雑音とを含む、複数の信号を捕捉するための複数のセンサを有し、
     前記複数のセンサから受けた複数の信号を、請求項1から6のいずれか1項に記載の信号処理装置で強調または抑圧する端末装置。
    Having a plurality of sensors for capturing a plurality of signals, each including a target signal and noise;
    The terminal device which emphasizes or suppresses the plurality of signals received from the plurality of sensors by the signal processing device according to claim 1.
PCT/JP2016/050275 2015-02-23 2016-01-06 Signal processing device, signal processing method, signal processing program and terminal device WO2016136284A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017501959A JPWO2016136284A1 (en) 2015-02-23 2016-01-06 Signal processing device, signal processing method, signal processing program, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-033430 2015-02-23
JP2015033430 2015-02-23

Publications (1)

Publication Number Publication Date
WO2016136284A1 true WO2016136284A1 (en) 2016-09-01

Family

ID=56788284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050275 WO2016136284A1 (en) 2015-02-23 2016-01-06 Signal processing device, signal processing method, signal processing program and terminal device

Country Status (3)

Country Link
JP (1) JPWO2016136284A1 (en)
TW (1) TW201642597A (en)
WO (1) WO2016136284A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11984132B2 (en) 2019-10-09 2024-05-14 Mitsubishi Electric Corporation Noise suppression device, noise suppression method, and storage medium storing noise suppression program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140000A (en) * 1995-11-15 1997-05-27 Nippon Telegr & Teleph Corp <Ntt> Loud hearing aid for conference

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140000A (en) * 1995-11-15 1997-05-27 Nippon Telegr & Teleph Corp <Ntt> Loud hearing aid for conference

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11984132B2 (en) 2019-10-09 2024-05-14 Mitsubishi Electric Corporation Noise suppression device, noise suppression method, and storage medium storing noise suppression program

Also Published As

Publication number Publication date
TW201642597A (en) 2016-12-01
JPWO2016136284A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
US10015613B2 (en) System, apparatus and method for consistent acoustic scene reproduction based on adaptive functions
KR101415026B1 (en) Method and apparatus for acquiring the multi-channel sound with a microphone array
EP2991382B1 (en) Sound signal processing method and apparatus
US8654990B2 (en) Multiple microphone based directional sound filter
KR101555416B1 (en) Apparatus and method for spatially selective sound acquisition by acoustic triangulation
Marquardt et al. Theoretical analysis of linearly constrained multi-channel Wiener filtering algorithms for combined noise reduction and binaural cue preservation in binaural hearing aids
KR101456866B1 (en) Method and apparatus for extracting the target sound signal from the mixed sound
US9838821B2 (en) Method, apparatus, computer program code and storage medium for processing audio signals
JP2021505064A (en) Crosstalk processing b-chain
US10154345B2 (en) Surround sound recording for mobile devices
US10783896B2 (en) Apparatus, methods and computer programs for encoding and decoding audio signals
US20190219659A1 (en) Signal processing apparatus, signal processing method, and signal processing program
WO2021243634A1 (en) Binaural beamforming microphone array
WO2016136284A1 (en) Signal processing device, signal processing method, signal processing program and terminal device
JP2023054779A (en) Spatial audio filtering within spatial audio capture
Marquardt et al. Incorporating relative transfer function preservation into the binaural multi-channel wiener filter for hearing aids
JP7095854B2 (en) Terminal device and its control method
JP2015126279A (en) Audio signal processing apparatus and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501959

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755034

Country of ref document: EP

Kind code of ref document: A1